Files
openmlsys-zh/chapter_federated_learning/fedavg.md
2022-03-13 16:14:52 +08:00

733 B
Raw Permalink Blame History

联邦平均算法

和传统分布式学习相比联邦学习存在训练结点不稳定和通信代价大的难点。这些难点导致了联邦学习无法和传统分布式学习一样在每次单步训练之后同步不同训练结点上的权重。为了提高计算通信比并降低频繁通信带来的高能耗谷歌公司提出了联邦平均算法Federated AveragingFedAvg。 :numfef:ch10-federated-learning-fedavg展示了FedAvg的整体流程。在每轮联邦训练过程中端侧进行多次单步训练。然后云侧聚合多个端侧权重并取加权平均。

联邦平均算法

🏷️ch10-federated-learning-fedavg