mirror of
https://github.com/SmallPond/MIT6.828_OS.git
synced 2026-02-03 02:53:21 +08:00
1263 lines
38 KiB
C
1263 lines
38 KiB
C
/* See COPYRIGHT for copyright information. */
|
||
|
||
#include <inc/x86.h>
|
||
#include <inc/mmu.h>
|
||
#include <inc/error.h>
|
||
#include <inc/string.h>
|
||
#include <inc/assert.h>
|
||
|
||
#include <kern/pmap.h>
|
||
#include <kern/kclock.h>
|
||
#include <kern/env.h>
|
||
#include <kern/cpu.h>
|
||
|
||
// These variables are set by i386_detect_memory()
|
||
size_t npages; // Amount of physical memory (in pages)
|
||
static size_t npages_basemem; // Amount of base memory (in pages)
|
||
|
||
// These variables are set in mem_init()
|
||
pde_t *kern_pgdir; // Kernel's initial page directory
|
||
struct PageInfo *pages; // Physical page state array
|
||
static struct PageInfo *page_free_list; // Free list of physical pages
|
||
|
||
|
||
// --------------------------------------------------------------
|
||
// Detect machine's physical memory setup.
|
||
// --------------------------------------------------------------
|
||
|
||
static int
|
||
nvram_read(int r)
|
||
{
|
||
return mc146818_read(r) | (mc146818_read(r + 1) << 8);
|
||
}
|
||
|
||
static void
|
||
i386_detect_memory(void)
|
||
{
|
||
size_t basemem, extmem, ext16mem, totalmem;
|
||
|
||
// Use CMOS calls to measure available base & extended memory.
|
||
// (CMOS calls return results in kilobytes.)
|
||
basemem = nvram_read(NVRAM_BASELO);
|
||
extmem = nvram_read(NVRAM_EXTLO);
|
||
ext16mem = nvram_read(NVRAM_EXT16LO) * 64;
|
||
|
||
// Calculate the number of physical pages available in both base
|
||
// and extended memory.
|
||
if (ext16mem)
|
||
totalmem = 16 * 1024 + ext16mem;
|
||
else if (extmem)
|
||
totalmem = 1 * 1024 + extmem;
|
||
else
|
||
totalmem = basemem;
|
||
|
||
npages = totalmem / (PGSIZE / 1024);
|
||
npages_basemem = basemem / (PGSIZE / 1024);
|
||
|
||
cprintf("Physical memory: %uK available, base = %uK, extended = %uK\n",
|
||
totalmem, basemem, totalmem - basemem);
|
||
}
|
||
|
||
|
||
// --------------------------------------------------------------
|
||
// Set up memory mappings above UTOP.
|
||
// --------------------------------------------------------------
|
||
|
||
static void mem_init_mp(void);
|
||
static void boot_map_region(pde_t *pgdir, uintptr_t va, size_t size, physaddr_t pa, int perm);
|
||
static void check_page_free_list(bool only_low_memory);
|
||
static void check_page_alloc(void);
|
||
static void check_kern_pgdir(void);
|
||
static physaddr_t check_va2pa(pde_t *pgdir, uintptr_t va);
|
||
static void check_page(void);
|
||
static void check_page_installed_pgdir(void);
|
||
|
||
// This simple physical memory allocator is used only while JOS is setting
|
||
// up its virtual memory system. page_alloc() is the real allocator.
|
||
//
|
||
// If n>0, allocates enough pages of contiguous physical memory to hold 'n'
|
||
// bytes. Doesn't initialize the memory. Returns a kernel virtual address.
|
||
//
|
||
// If n==0, returns the address of the next free page without allocating
|
||
// anything.
|
||
//
|
||
// If we're out of memory, boot_alloc should panic.
|
||
// This function may ONLY be used during initialization,
|
||
// before the page_free_list list has been set up.
|
||
// Note that when this function is called, we are still using entry_pgdir,
|
||
// which only maps the first 4MB of physical memory.
|
||
static void *
|
||
boot_alloc(uint32_t n)
|
||
{
|
||
static char *nextfree; // virtual address of next byte of free memory
|
||
char *result;
|
||
|
||
// Initialize nextfree if this is the first time.
|
||
// 'end' is a magic symbol automatically generated by the linker,
|
||
// which points to the end of the kernel's bss segment:
|
||
// the first virtual address that the linker did *not* assign
|
||
// to any kernel code or global variables.
|
||
if (!nextfree) {
|
||
extern char end[];
|
||
nextfree = ROUNDUP((char *) end, PGSIZE);
|
||
}
|
||
|
||
// Allocate a chunk large enough to hold 'n' bytes, then update
|
||
// nextfree. Make sure nextfree is kept aligned
|
||
// to a multiple of PGSIZE.
|
||
//
|
||
// LAB 2: Your code here.
|
||
result = nextfree;
|
||
nextfree = ROUNDUP(nextfree+n, PGSIZE);
|
||
|
||
return result;
|
||
}
|
||
|
||
// Set up a two-level page table:
|
||
// kern_pgdir is its linear (virtual) address of the root
|
||
//
|
||
// This function only sets up the kernel part of the address space
|
||
// (ie. addresses >= UTOP). The user part of the address space
|
||
// will be set up later.
|
||
//
|
||
// From UTOP to ULIM, the user is allowed to read but not write.
|
||
// Above ULIM the user cannot read or write.
|
||
void
|
||
mem_init(void)
|
||
{
|
||
uint32_t cr0;
|
||
size_t n;
|
||
|
||
// Find out how much memory the machine has (npages & npages_basemem).
|
||
i386_detect_memory();
|
||
|
||
// Remove this line when you're ready to test this function.
|
||
//panic("mem_init: This function is not finished\n");
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// create initial page directory.
|
||
kern_pgdir = (pde_t *) boot_alloc(PGSIZE);
|
||
memset(kern_pgdir, 0, PGSIZE);
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Recursively insert PD in itself as a page table, to form
|
||
// a virtual page table at virtual address UVPT.
|
||
// (For now, you don't have understand the greater purpose of the
|
||
// following line.)
|
||
// 通过以下操作: 我们能通过虚拟地址访问到页目录和页表
|
||
// Permissions: kernel R, user R
|
||
kern_pgdir[PDX(UVPT)] = PADDR(kern_pgdir) | PTE_U | PTE_P;
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Allocate an array of npages 'struct PageInfo's and store it in 'pages'.
|
||
// The kernel uses this array to keep track of physical pages: for
|
||
// each physical page, there is a corresponding struct PageInfo in this
|
||
// array. 'npages' is the number of physical pages in memory. Use memset
|
||
// to initialize all fields of each struct PageInfo to 0.
|
||
// Your code goes here:
|
||
pages = (struct PageInfo*)boot_alloc(sizeof(struct PageInfo)*npages);
|
||
memset(pages, 0, sizeof(struct PageInfo)*npages);
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Make 'envs' point to an array of size 'NENV' of 'struct Env'.
|
||
// LAB 3: Your code here.
|
||
envs = (struct Env*)boot_alloc(sizeof(struct Env)*NENV);
|
||
memset(envs, 0, sizeof(struct Env)*NENV);
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Now that we've allocated the initial kernel data structures, we set
|
||
// up the list of free physical pages. Once we've done so, all further
|
||
// memory management will go through the page_* functions. In
|
||
// particular, we can now map memory using boot_map_region
|
||
// or page_insert
|
||
page_init();
|
||
|
||
check_page_free_list(1);
|
||
check_page_alloc();
|
||
check_page();
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Now we set up virtual memory
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Map 'pages' read-only by the user at linear address UPAGES
|
||
// Permissions:
|
||
// - the new image at UPAGES -- kernel R, user R
|
||
// (ie. perm = PTE_U | PTE_P)
|
||
// - pages itself -- kernel RW, user NONE
|
||
// Your code goes here:
|
||
// 要求把pages结构体所在的页面和虚拟地址UPAGES相互映射。
|
||
// 这里只要计算出pages结构体的大小,就可以进行映射了。
|
||
// 说实话,之前注释有点没看懂。以为要实现虚存对pages指向的物理页的映射
|
||
boot_map_region(kern_pgdir,
|
||
UPAGES,
|
||
ROUNDUP((sizeof(struct PageInfo)*npages), PGSIZE),
|
||
PADDR(pages),
|
||
PTE_U );
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Map the 'envs' array read-only by the user at linear address UENVS
|
||
// (ie. perm = PTE_U | PTE_P).
|
||
// Permissions:
|
||
// - the new image at UENVS -- kernel R, user R
|
||
// - envs itself -- kernel RW, user NONE
|
||
// LAB 3: Your code here.
|
||
boot_map_region(kern_pgdir,
|
||
UENVS,
|
||
ROUNDUP((sizeof(struct Env)*NENV), PGSIZE),
|
||
PADDR(envs),
|
||
PTE_U);
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Use the physical memory that 'bootstack' refers to as the kernel
|
||
// stack. The kernel stack grows down from virtual address KSTACKTOP.
|
||
// We consider the entire range from [KSTACKTOP-PTSIZE, KSTACKTOP)
|
||
// to be the kernel stack, but break this into two pieces:
|
||
// * [KSTACKTOP-KSTKSIZE, KSTACKTOP) -- backed by physical memory
|
||
// * [KSTACKTOP-PTSIZE, KSTACKTOP-KSTKSIZE) -- not backed; so if
|
||
// the kernel overflows its stack, it will fault rather than
|
||
// overwrite memory. Known as a "guard page".
|
||
// Permissions: kernel RW, user NONE
|
||
// Your code goes here:
|
||
// extern char bootstacktop[], bootstack[];
|
||
boot_map_region(kern_pgdir,
|
||
KSTACKTOP-KSTKSIZE,
|
||
KSTKSIZE,
|
||
PADDR(bootstack),
|
||
PTE_W );
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Map all of physical memory at KERNBASE.
|
||
// Ie. the VA range [KERNBASE, 2^32) should map to
|
||
// the PA range [0, 2^32 - KERNBASE)
|
||
// We might not have 2^32 - KERNBASE bytes of physical memory, but
|
||
// we just set up the mapping anyway.
|
||
// Permissions: kernel RW, user NONE
|
||
// Your code goes here:
|
||
uint32_t kern_size = ROUNDUP((0xFFFFFFFF-KERNBASE), PGSIZE);
|
||
// cprintf("size: %d pages:%d\n", kern_size, kern_size/PGSIZE);
|
||
boot_map_region(kern_pgdir,
|
||
(uintptr_t) KERNBASE,
|
||
kern_size,
|
||
(physaddr_t)0,
|
||
PTE_W );
|
||
|
||
// Initialize the SMP-related parts of the memory map
|
||
// 这部分与上面的stack映射有点重复吧。
|
||
mem_init_mp();
|
||
|
||
|
||
// Check that the initial page directory has been set up correctly.
|
||
check_kern_pgdir();
|
||
|
||
// Switch from the minimal entry page directory to the full kern_pgdir
|
||
// page table we just created. Our instruction pointer should be
|
||
// somewhere between KERNBASE and KERNBASE+4MB right now, which is
|
||
// mapped the same way by both page tables.
|
||
//
|
||
// If the machine reboots at this point, you've probably set up your
|
||
// kern_pgdir wrong.
|
||
lcr3(PADDR(kern_pgdir));
|
||
|
||
check_page_free_list(0);
|
||
|
||
// entry.S set the really important flags in cr0 (including enabling
|
||
// paging). Here we configure the rest of the flags that we care about.
|
||
cr0 = rcr0();
|
||
cr0 |= CR0_PE|CR0_PG|CR0_AM|CR0_WP|CR0_NE|CR0_MP;
|
||
cr0 &= ~(CR0_TS|CR0_EM);
|
||
lcr0(cr0);
|
||
|
||
// Some more checks, only possible after kern_pgdir is installed.
|
||
check_page_installed_pgdir();
|
||
}
|
||
|
||
// Modify mappings in kern_pgdir to support SMP
|
||
// - Map the per-CPU stacks in the region [KSTACKTOP-PTSIZE, KSTACKTOP)
|
||
//
|
||
static void
|
||
mem_init_mp(void)
|
||
{
|
||
// Map per-CPU stacks starting at KSTACKTOP, for up to 'NCPU' CPUs.
|
||
//
|
||
// For CPU i, use the physical memory that 'percpu_kstacks[i]' refers
|
||
// to as its kernel stack. CPU i's kernel stack grows down from virtual
|
||
// address kstacktop_i = KSTACKTOP - i * (KSTKSIZE + KSTKGAP), and is
|
||
// divided into two pieces, just like the single stack you set up in
|
||
// mem_init:
|
||
// * [kstacktop_i - KSTKSIZE, kstacktop_i)
|
||
// -- backed by physical memory
|
||
// * [kstacktop_i - (KSTKSIZE + KSTKGAP), kstacktop_i - KSTKSIZE)
|
||
// -- not backed; so if the kernel overflows its stack,
|
||
// it will fault rather than overwrite another CPU's stack.
|
||
// Known as a "guard page".
|
||
// Permissions: kernel RW, user NONE
|
||
//
|
||
// LAB 4: Your code here:
|
||
size_t i;
|
||
size_t kstacktop_i;
|
||
for(i = 0; i < NCPU; i++) {
|
||
kstacktop_i = KSTACKTOP - i * (KSTKSIZE + KSTKGAP);
|
||
boot_map_region(kern_pgdir,
|
||
kstacktop_i - KSTKSIZE,
|
||
KSTKSIZE,
|
||
PADDR(&percpu_kstacks[i]),
|
||
PTE_W );
|
||
|
||
}
|
||
}
|
||
|
||
// --------------------------------------------------------------
|
||
// Tracking of physical pages.
|
||
// The 'pages' array has one 'struct PageInfo' entry per physical page.
|
||
// Pages are reference counted, and free pages are kept on a linked list.
|
||
// --------------------------------------------------------------
|
||
|
||
//
|
||
// Initialize page structure and memory free list.
|
||
// After this is done, NEVER use boot_alloc again. ONLY use the page
|
||
// allocator functions below to allocate and deallocate physical
|
||
// memory via the page_free_list.
|
||
//
|
||
void
|
||
page_init(void)
|
||
{
|
||
// LAB 4:
|
||
// Change your code to mark the physical page at MPENTRY_PADDR
|
||
// as in use
|
||
|
||
// The example code here marks all physical pages as free.
|
||
// However this is not truly the case. What memory is free?
|
||
// 1) Mark physical page 0 as in use.
|
||
// This way we preserve the real-mode IDT and BIOS structures
|
||
// in case we ever need them. (Currently we don't, but...)
|
||
// 2) The rest of base memory, [PGSIZE, npages_basemem * PGSIZE)
|
||
// is free.
|
||
// 3) Then comes the IO hole [IOPHYSMEM, EXTPHYSMEM), which must
|
||
// never be allocated.
|
||
// 4) Then extended memory [EXTPHYSMEM, ...).
|
||
// Some of it is in use, some is free. Where is the kernel
|
||
// in physical memory? Which pages are already in use for
|
||
// page tables and other data structures?
|
||
//
|
||
// Change the code to reflect this.
|
||
// NB: DO NOT actually touch the physical memory corresponding to
|
||
// free pages!
|
||
|
||
// 1.mark page 0 as in use
|
||
// 这样我们就可以保留实模式IDT和BIOS结构,以备不时之需。
|
||
pages[0].pp_ref = 1;
|
||
|
||
// 2.
|
||
size_t i;
|
||
for (i = 1; i < MPENTRY_PADDR/PGSIZE; i++) {
|
||
pages[i].pp_ref = 0;
|
||
pages[i].pp_link = page_free_list;
|
||
page_free_list = &pages[i];
|
||
}
|
||
// cprintf("npage_basemem: %d\n", npages_basemem); npage_basemem:160
|
||
// boot APs entry code
|
||
extern unsigned char mpentry_start[], mpentry_end[];
|
||
size_t size = mpentry_end - mpentry_start;
|
||
size = ROUNDUP(size, PGSIZE);
|
||
for(;i<(MPENTRY_PADDR+size)/PGSIZE; i++) {
|
||
pages[i].pp_ref = 1;
|
||
}
|
||
|
||
for (; i < npages_basemem; i++) {
|
||
pages[i].pp_ref = 0;
|
||
pages[i].pp_link = page_free_list;
|
||
page_free_list = &pages[i];
|
||
}
|
||
|
||
// 3.[IOPHYSMEM, EXTPHYSMEM)
|
||
// mark I/O hole
|
||
for (;i<EXTPHYSMEM/PGSIZE;i++) {
|
||
pages[i].pp_ref = 1;
|
||
}
|
||
|
||
// 4. Extended memory
|
||
// 还要注意哪些内存已经被内核、页表使用了!
|
||
// first需要向上取整对齐。同时此时已经工作在虚拟地址模式(entry.S对内存进行了映射)下,
|
||
// 需要求得first的物理地址
|
||
physaddr_t first_free_addr = PADDR(boot_alloc(0));
|
||
size_t first_free_page = first_free_addr/PGSIZE;
|
||
for(;i<first_free_page;i++) {
|
||
|
||
pages[i].pp_ref = 1;
|
||
}
|
||
|
||
// mark other pages as free
|
||
for(;i<npages;i++) {
|
||
pages[i].pp_ref = 0;
|
||
pages[i].pp_link = page_free_list;
|
||
page_free_list = &pages[i];
|
||
}
|
||
|
||
|
||
}
|
||
|
||
//
|
||
// Allocates a physical page. If (alloc_flags & ALLOC_ZERO), fills the entire
|
||
// returned physical page with '\0' bytes. Does NOT increment the reference
|
||
// count of the page - the caller must do these if necessary (either explicitly
|
||
// or via page_insert).
|
||
//
|
||
// Be sure to set the pp_link field of the allocated page to NULL so
|
||
// page_free can check for double-free bugs.
|
||
//
|
||
// Returns NULL if out of free memory.
|
||
//
|
||
// Hint: use page2kva and memset
|
||
struct PageInfo *
|
||
page_alloc(int alloc_flags)
|
||
{
|
||
// Fill this function in
|
||
struct PageInfo* pp;
|
||
if (!page_free_list) {
|
||
|
||
return NULL;
|
||
}
|
||
pp = page_free_list;
|
||
page_free_list = page_free_list->pp_link;
|
||
pp->pp_link = NULL;
|
||
|
||
//page2kva 返回值 KernelBase + 物理页号<<PGSHIFT, 虚拟地址
|
||
|
||
if (alloc_flags & ALLOC_ZERO) {
|
||
|
||
|
||
void * va = page2kva(pp);
|
||
memset(va, '\0', PGSIZE);
|
||
}
|
||
return pp;
|
||
}
|
||
|
||
//
|
||
// Return a page to the free list.
|
||
// (This function should only be called when pp->pp_ref reaches 0.)
|
||
//
|
||
void
|
||
page_free(struct PageInfo *pp)
|
||
{
|
||
// Fill this function in
|
||
// Hint: You may want to panic if pp->pp_ref is nonzero or
|
||
// pp->pp_link is not NULL.
|
||
if(pp->pp_link || pp->pp_ref) {
|
||
panic("pp->pp_ref is nonzero or pp->pp_link is not NULL\n");
|
||
}
|
||
pp->pp_link = page_free_list;
|
||
page_free_list = pp;
|
||
}
|
||
|
||
//
|
||
// Decrement the reference count on a page,
|
||
// freeing it if there are no more refs.
|
||
//
|
||
void
|
||
page_decref(struct PageInfo* pp)
|
||
{
|
||
if (--pp->pp_ref == 0)
|
||
page_free(pp);
|
||
}
|
||
|
||
// Given 'pgdir', a pointer to a page directory, pgdir_walk returns
|
||
// a pointer to the page table entry (PTE) for linear address 'va'.
|
||
// This requires walking the two-level page table structure.
|
||
//
|
||
// The relevant page table page might not exist yet.
|
||
// If this is true, and create == false, then pgdir_walk returns NULL.
|
||
// Otherwise, pgdir_walk allocates a new page table page with page_alloc.
|
||
// - If the allocation fails, pgdir_walk returns NULL.
|
||
// - Otherwise, the new page's reference count is incremented,
|
||
// the page is cleared,
|
||
// and pgdir_walk returns a pointer into the new page table page.
|
||
//
|
||
// Hint 1: you can turn a PageInfo * into the physical address of the
|
||
// page it refers to with page2pa() from kern/pmap.h.
|
||
//
|
||
// Hint 2: the x86 MMU checks permission bits in both the page directory
|
||
// and the page table, so it's safe to leave permissions in the page
|
||
// directory more permissive than strictly necessary.
|
||
//
|
||
// Hint 3: look at inc/mmu.h for useful macros that manipulate page
|
||
// table and page directory entries.
|
||
//
|
||
pte_t *
|
||
pgdir_walk(pde_t *pgdir, const void *va, int create)
|
||
{
|
||
// Fill this function in
|
||
uint32_t pdx = PDX(va); // 页目录项索引
|
||
uint32_t ptx = PTX(va); // 页表项索引
|
||
pte_t *pde; // 页目录项指针
|
||
pte_t *pte; // 页表项指针
|
||
struct PageInfo *pp;
|
||
|
||
pde = &pgdir[pdx]; //获取页目录项
|
||
|
||
if (*pde & PTE_P) {
|
||
// 二级页表有效
|
||
// PTE_ADDR得到物理地址,KADDR转为虚拟地址
|
||
pte = (KADDR(PTE_ADDR(*pde)));
|
||
}
|
||
else {
|
||
|
||
// 二级页表不存在,
|
||
if (!create) {
|
||
return NULL;
|
||
}
|
||
// 获取一页的内存,创建一个新的页表,来存放页表项
|
||
if(!(pp = page_alloc(ALLOC_ZERO))) {
|
||
return NULL;
|
||
}
|
||
pte = (pte_t *)page2kva(pp);
|
||
pp->pp_ref++;
|
||
*pde = PADDR(pte) | (PTE_P | PTE_W | PTE_U); // 设置页目录项
|
||
}
|
||
// 返回页表项的虚拟地址
|
||
return &pte[ptx];
|
||
}
|
||
|
||
//
|
||
// Map [va, va+size) of virtual address space to physical [pa, pa+size)
|
||
// in the page table rooted at pgdir. Size is a multiple of PGSIZE, and
|
||
// va and pa are both page-aligned.
|
||
// Use permission bits perm|PTE_P for the entries.
|
||
//
|
||
// This function is only intended to set up the ``static'' mappings
|
||
// above UTOP. As such, it should *not* change the pp_ref field on the
|
||
// mapped pages.
|
||
//
|
||
// Hint: the TA solution uses pgdir_walk
|
||
static void
|
||
boot_map_region(pde_t *pgdir, uintptr_t va, size_t size, physaddr_t pa, int perm)
|
||
{
|
||
size_t pgs = size / PGSIZE;
|
||
if (size % PGSIZE != 0) {
|
||
pgs++;
|
||
} //计算总共有多少页
|
||
for (int i = 0; i < pgs; i++) {
|
||
// 其实可以使用page_insert实现
|
||
pte_t *pte = pgdir_walk(pgdir, (void *)va, 1);//获取va对应的PTE的地址
|
||
if (pte == NULL) {
|
||
panic("boot_map_region(): out of memory\n");
|
||
}
|
||
*pte = pa | PTE_P | perm; //修改va对应的PTE的值
|
||
pa += PGSIZE; //更新pa和va,进行下一轮循环
|
||
va += PGSIZE;
|
||
}
|
||
}
|
||
|
||
|
||
//
|
||
// Map the physical page 'pp' at virtual address 'va'.
|
||
// The permissions (the low 12 bits) of the page table entry
|
||
// should be set to 'perm|PTE_P'.
|
||
//
|
||
// Requirements
|
||
// - If there is already a page mapped at 'va', it should be page_remove()d.
|
||
// - If necessary, on demand, a page table should be allocated and inserted
|
||
// into 'pgdir'. // create
|
||
// - pp->pp_ref should be incremented if the insertion succeeds.
|
||
// - The TLB must be invalidated if a page was formerly present at 'va'.
|
||
//
|
||
// Corner-case hint: Make sure to consider what happens when the same
|
||
// pp is re-inserted at the same virtual address in the same pgdir.
|
||
// However, try not to distinguish this case in your code, as this
|
||
// frequently leads to subtle bugs; there's an elegant way to handle
|
||
// everything in one code path.
|
||
//
|
||
// RETURNS:
|
||
// 0 on success
|
||
// -E_NO_MEM, if page table couldn't be allocated
|
||
//
|
||
// Hint: The TA solution is implemented using pgdir_walk, page_remove,
|
||
// and page2pa.
|
||
//
|
||
int
|
||
page_insert(pde_t *pgdir, struct PageInfo *pp, void *va, int perm)
|
||
{
|
||
// Fill this function in
|
||
pte_t *pte = pgdir_walk(pgdir, va, 1);
|
||
|
||
if (!pte) {
|
||
|
||
return -E_NO_MEM;
|
||
}
|
||
|
||
if (*pte & PTE_P) {
|
||
if (PTE_ADDR(*pte) == page2pa(pp)) {
|
||
|
||
// 插入的是同一个页面,只需要修改权限等即可
|
||
pp->pp_ref--;
|
||
}
|
||
else {
|
||
|
||
page_remove(pgdir, va);
|
||
}
|
||
|
||
}
|
||
|
||
pp->pp_ref++;
|
||
*pte = page2pa(pp)| perm | PTE_P;
|
||
|
||
return 0;
|
||
}
|
||
|
||
//
|
||
// Return the page mapped at virtual address 'va'.
|
||
// If pte_store is not zero, then we store in it the address
|
||
// of the pte for this page. This is used by page_remove and
|
||
// can be used to verify page permissions for syscall arguments,
|
||
// but should not be used by most callers.
|
||
//
|
||
// Return NULL if there is no page mapped at va.
|
||
//
|
||
// Hint: the TA solution uses pgdir_walk and pa2page.
|
||
//
|
||
struct PageInfo *
|
||
page_lookup(pde_t *pgdir, void *va, pte_t **pte_store)
|
||
{
|
||
// Fill this function in
|
||
pte_t *pte = pgdir_walk(pgdir, va, 0);
|
||
if (!pte) {
|
||
|
||
return NULL;
|
||
}
|
||
if (pte_store) {
|
||
*pte_store = pte; // 通过指针的指针返回指针给调用者
|
||
}
|
||
|
||
// 难道不用考虑页表项是否存在
|
||
|
||
if (*pte & PTE_P) {
|
||
|
||
return (pa2page(PTE_ADDR(*pte)));
|
||
}
|
||
|
||
return NULL;
|
||
|
||
//return pa2page(PTE_ADDR(*pte));
|
||
}
|
||
|
||
//
|
||
// Unmaps the physical page at virtual address 'va'.
|
||
// If there is no physical page at that address, silently does nothing.
|
||
//
|
||
// Details:
|
||
// - The ref count on the physical page should decrement.
|
||
// - The physical page should be freed if the refcount reaches 0.
|
||
// - The pg table entry corresponding to 'va' should be set to 0.
|
||
// (if such a PTE exists)
|
||
// - The TLB must be invalidated if you remove an entry from
|
||
// the page table.
|
||
//
|
||
// Hint: The TA solution is implemented using page_lookup,
|
||
// tlb_invalidate, and page_decref.
|
||
//
|
||
|
||
void
|
||
page_remove(pde_t *pgdir, void *va)
|
||
{
|
||
// Fill this function in
|
||
// 二级指针有点晕
|
||
pte_t *pte;
|
||
pte_t **pte_store = &pte;
|
||
|
||
struct PageInfo *pi = page_lookup(pgdir, va, pte_store);
|
||
if (!pi) {
|
||
return ;
|
||
}
|
||
|
||
page_decref(pi); // 减引用
|
||
|
||
**pte_store = 0; // 取消映射
|
||
tlb_invalidate(pgdir, va);
|
||
|
||
|
||
}
|
||
|
||
//
|
||
// Invalidate a TLB entry, but only if the page tables being
|
||
// edited are the ones currently in use by the processor.
|
||
//
|
||
void
|
||
tlb_invalidate(pde_t *pgdir, void *va)
|
||
{
|
||
// Flush the entry only if we're modifying the current address space.
|
||
if (!curenv || curenv->env_pgdir == pgdir)
|
||
invlpg(va);
|
||
}
|
||
|
||
//
|
||
// Reserve size bytes in the MMIO region and map [pa,pa+size) at this
|
||
// location. Return the base of the reserved region. size does *not*
|
||
// have to be multiple of PGSIZE.
|
||
//
|
||
void *
|
||
mmio_map_region(physaddr_t pa, size_t size)
|
||
{
|
||
// Where to start the next region. Initially, this is the
|
||
// beginning of the MMIO region. Because this is static, its
|
||
// value will be preserved between calls to mmio_map_region
|
||
// (just like nextfree in boot_alloc).
|
||
static uintptr_t base = MMIOBASE;
|
||
|
||
// Reserve size bytes of virtual memory starting at base and
|
||
// map physical pages [pa,pa+size) to virtual addresses
|
||
// [base,base+size). Since this is device memory and not
|
||
// regular DRAM, you'll have to tell the CPU that it isn't
|
||
// safe to cache access to this memory. Luckily, the page
|
||
// tables provide bits for this purpose; simply create the
|
||
// mapping with PTE_PCD|PTE_PWT (cache-disable and
|
||
// write-through) in addition to PTE_W. (If you're interested
|
||
// in more details on this, see section 10.5 of IA32 volume
|
||
// 3A.)
|
||
//
|
||
// Be sure to round size up to a multiple of PGSIZE and to
|
||
// handle if this reservation would overflow MMIOLIM (it's
|
||
// okay to simply panic if this happens).
|
||
//
|
||
// Hint: The staff solution uses boot_map_region.
|
||
//
|
||
// Your code here:
|
||
// ret -> MMIOBASE 暂存
|
||
void *ret = (void *)base;
|
||
size = ROUNDUP(size, PGSIZE);
|
||
if (base + size > MMIOLIM || base + size < base) {
|
||
panic("mmio_map_region reservation overflow\n");
|
||
}
|
||
|
||
boot_map_region(kern_pgdir, base, size, pa, PTE_W|PTE_PCD|PTE_PWT);
|
||
// 为什么需要加以下操作? base 为static!
|
||
base += size;
|
||
return ret;
|
||
}
|
||
|
||
static uintptr_t user_mem_check_addr;
|
||
|
||
//
|
||
// Check that an environment is allowed to access the range of memory
|
||
// [va, va+len) with permissions 'perm | PTE_P'.
|
||
// Normally 'perm' will contain PTE_U at least, but this is not required.
|
||
// 'va' and 'len' need not be page-aligned; you must test every page that
|
||
// contains any of that range. You will test either 'len/PGSIZE',
|
||
// 'len/PGSIZE + 1', or 'len/PGSIZE + 2' pages.
|
||
//
|
||
// A user program can access a virtual address if (1) the address is below
|
||
// ULIM, and (2) the page table gives it permission. These are exactly
|
||
// the tests you should implement here.
|
||
//
|
||
// If there is an error, set the 'user_mem_check_addr' variable to the first
|
||
// erroneous virtual address.
|
||
//
|
||
// Returns 0 if the user program can access this range of addresses,
|
||
// and -E_FAULT otherwise.
|
||
//
|
||
/*
|
||
int
|
||
user_mem_check(struct Env *env, const void *va, size_t len, int perm)
|
||
{
|
||
// LAB 3: Your code here.
|
||
|
||
size_t vae = ROUNDUP((size_t)(va+len), PGSIZE);
|
||
size_t vas = ROUNDDOWN((size_t)va, PGSIZE);
|
||
|
||
|
||
pte_t * pte;
|
||
|
||
for (; vas < vae; vas += PGSIZE ) {
|
||
pte = pgdir_walk(env->env_pgdir, (void *)vas, 0);
|
||
if(!( vas < ULIM && pte==NULL && (*pte & perm))) {
|
||
if (vas < (size_t)va)
|
||
{
|
||
user_mem_check_addr = (uintptr_t)va;
|
||
}
|
||
else
|
||
{
|
||
user_mem_check_addr = (uintptr_t)vas;
|
||
}
|
||
return -E_FAULT;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
*/
|
||
int
|
||
user_mem_check(struct Env *env, const void *va, size_t len, int perm)
|
||
{
|
||
// LAB 3: Your code here.
|
||
uint32_t start = (uint32_t)ROUNDDOWN((char *)va, PGSIZE);
|
||
uint32_t end = (uint32_t)ROUNDUP((char *)va+len, PGSIZE);
|
||
for(; start < end; start += PGSIZE) {
|
||
pte_t *pte = pgdir_walk(env->env_pgdir, (void*)start, 0);
|
||
if((start >= ULIM) || (pte == NULL) || !(*pte & PTE_P) || ((*pte & perm) != perm)) {
|
||
user_mem_check_addr = (start < (uint32_t)va ? (uint32_t)va : start);
|
||
return -E_FAULT;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
//
|
||
// Checks that environment 'env' is allowed to access the range
|
||
// of memory [va, va+len) with permissions 'perm | PTE_U | PTE_P'.
|
||
// If it can, then the function simply returns.
|
||
// If it cannot, 'env' is destroyed and, if env is the current
|
||
// environment, this function will not return.
|
||
//
|
||
void
|
||
user_mem_assert(struct Env *env, const void *va, size_t len, int perm)
|
||
{
|
||
if (user_mem_check(env, va, len, perm | PTE_U) < 0) {
|
||
cprintf("[%08x] user_mem_check assertion failure for "
|
||
"va %08x\n", env->env_id, user_mem_check_addr);
|
||
env_destroy(env); // may not return
|
||
}
|
||
}
|
||
|
||
|
||
// --------------------------------------------------------------
|
||
// Checking functions.
|
||
// --------------------------------------------------------------
|
||
|
||
//
|
||
// Check that the pages on the page_free_list are reasonable.
|
||
//
|
||
static void
|
||
check_page_free_list(bool only_low_memory)
|
||
{
|
||
struct PageInfo *pp;
|
||
unsigned pdx_limit = only_low_memory ? 1 : NPDENTRIES;
|
||
int nfree_basemem = 0, nfree_extmem = 0;
|
||
char *first_free_page;
|
||
|
||
if (!page_free_list)
|
||
panic("'page_free_list' is a null pointer!");
|
||
|
||
if (only_low_memory) {
|
||
// Move pages with lower addresses first in the free
|
||
// list, since entry_pgdir does not map all pages.
|
||
struct PageInfo *pp1, *pp2;
|
||
struct PageInfo **tp[2] = { &pp1, &pp2 };
|
||
for (pp = page_free_list; pp; pp = pp->pp_link) {
|
||
int pagetype = PDX(page2pa(pp)) >= pdx_limit;
|
||
*tp[pagetype] = pp;
|
||
tp[pagetype] = &pp->pp_link;
|
||
}
|
||
*tp[1] = 0;
|
||
*tp[0] = pp2;
|
||
page_free_list = pp1;
|
||
}
|
||
|
||
// if there's a page that shouldn't be on the free list,
|
||
// try to make sure it eventually causes trouble.
|
||
for (pp = page_free_list; pp; pp = pp->pp_link)
|
||
if (PDX(page2pa(pp)) < pdx_limit)
|
||
memset(page2kva(pp), 0x97, 128);
|
||
|
||
first_free_page = (char *) boot_alloc(0);
|
||
for (pp = page_free_list; pp; pp = pp->pp_link) {
|
||
// check that we didn't corrupt the free list itself
|
||
assert(pp >= pages);
|
||
assert(pp < pages + npages);
|
||
assert(((char *) pp - (char *) pages) % sizeof(*pp) == 0);
|
||
|
||
// check a few pages that shouldn't be on the free list
|
||
assert(page2pa(pp) != 0);
|
||
assert(page2pa(pp) != IOPHYSMEM);
|
||
assert(page2pa(pp) != EXTPHYSMEM - PGSIZE);
|
||
assert(page2pa(pp) != EXTPHYSMEM);
|
||
assert(page2pa(pp) < EXTPHYSMEM || (char *) page2kva(pp) >= first_free_page);
|
||
// (new test for lab 4)
|
||
assert(page2pa(pp) != MPENTRY_PADDR);
|
||
|
||
if (page2pa(pp) < EXTPHYSMEM)
|
||
++nfree_basemem;
|
||
else
|
||
++nfree_extmem;
|
||
}
|
||
|
||
assert(nfree_basemem > 0);
|
||
assert(nfree_extmem > 0);
|
||
|
||
cprintf("check_page_free_list() succeeded!\n");
|
||
}
|
||
|
||
//
|
||
// Check the physical page allocator (page_alloc(), page_free(),
|
||
// and page_init()).
|
||
//
|
||
static void
|
||
check_page_alloc(void)
|
||
{
|
||
struct PageInfo *pp, *pp0, *pp1, *pp2;
|
||
int nfree;
|
||
struct PageInfo *fl;
|
||
char *c;
|
||
int i;
|
||
|
||
if (!pages)
|
||
panic("'pages' is a null pointer!");
|
||
|
||
// check number of free pages
|
||
for (pp = page_free_list, nfree = 0; pp; pp = pp->pp_link)
|
||
++nfree;
|
||
|
||
// should be able to allocate three pages
|
||
pp0 = pp1 = pp2 = 0;
|
||
assert((pp0 = page_alloc(0)));
|
||
assert((pp1 = page_alloc(0)));
|
||
assert((pp2 = page_alloc(0)));
|
||
|
||
assert(pp0);
|
||
assert(pp1 && pp1 != pp0);
|
||
assert(pp2 && pp2 != pp1 && pp2 != pp0);
|
||
assert(page2pa(pp0) < npages*PGSIZE);
|
||
assert(page2pa(pp1) < npages*PGSIZE);
|
||
assert(page2pa(pp2) < npages*PGSIZE);
|
||
|
||
// temporarily steal the rest of the free pages
|
||
fl = page_free_list;
|
||
page_free_list = 0;
|
||
|
||
// should be no free memory
|
||
assert(!page_alloc(0));
|
||
|
||
// free and re-allocate?
|
||
page_free(pp0);
|
||
page_free(pp1);
|
||
page_free(pp2);
|
||
pp0 = pp1 = pp2 = 0;
|
||
assert((pp0 = page_alloc(0)));
|
||
assert((pp1 = page_alloc(0)));
|
||
assert((pp2 = page_alloc(0)));
|
||
assert(pp0);
|
||
assert(pp1 && pp1 != pp0);
|
||
assert(pp2 && pp2 != pp1 && pp2 != pp0);
|
||
assert(!page_alloc(0));
|
||
|
||
// test flags
|
||
memset(page2kva(pp0), 1, PGSIZE);
|
||
page_free(pp0);
|
||
assert((pp = page_alloc(ALLOC_ZERO)));
|
||
assert(pp && pp0 == pp);
|
||
c = page2kva(pp);
|
||
for (i = 0; i < PGSIZE; i++)
|
||
assert(c[i] == 0);
|
||
|
||
// give free list back
|
||
page_free_list = fl;
|
||
|
||
// free the pages we took
|
||
page_free(pp0);
|
||
page_free(pp1);
|
||
page_free(pp2);
|
||
|
||
// number of free pages should be the same
|
||
for (pp = page_free_list; pp; pp = pp->pp_link)
|
||
--nfree;
|
||
assert(nfree == 0);
|
||
|
||
cprintf("check_page_alloc() succeeded!\n");
|
||
}
|
||
|
||
//
|
||
// Checks that the kernel part of virtual address space
|
||
// has been set up roughly correctly (by mem_init()).
|
||
//
|
||
// This function doesn't test every corner case,
|
||
// but it is a pretty good sanity check.
|
||
//
|
||
|
||
static void
|
||
check_kern_pgdir(void)
|
||
{
|
||
uint32_t i, n;
|
||
pde_t *pgdir;
|
||
|
||
pgdir = kern_pgdir;
|
||
|
||
// check pages array
|
||
n = ROUNDUP(npages*sizeof(struct PageInfo), PGSIZE);
|
||
for (i = 0; i < n; i += PGSIZE)
|
||
assert(check_va2pa(pgdir, UPAGES + i) == PADDR(pages) + i);
|
||
|
||
// check envs array (new test for lab 3)
|
||
n = ROUNDUP(NENV*sizeof(struct Env), PGSIZE);
|
||
for (i = 0; i < n; i += PGSIZE)
|
||
assert(check_va2pa(pgdir, UENVS + i) == PADDR(envs) + i);
|
||
|
||
// check phys mem
|
||
for (i = 0; i < npages * PGSIZE; i += PGSIZE)
|
||
assert(check_va2pa(pgdir, KERNBASE + i) == i);
|
||
|
||
// check kernel stack
|
||
// (updated in lab 4 to check per-CPU kernel stacks)
|
||
for (n = 0; n < NCPU; n++) {
|
||
uint32_t base = KSTACKTOP - (KSTKSIZE + KSTKGAP) * (n + 1);
|
||
for (i = 0; i < KSTKSIZE; i += PGSIZE)
|
||
assert(check_va2pa(pgdir, base + KSTKGAP + i)
|
||
== PADDR(percpu_kstacks[n]) + i);
|
||
for (i = 0; i < KSTKGAP; i += PGSIZE)
|
||
assert(check_va2pa(pgdir, base + i) == ~0);
|
||
}
|
||
|
||
// check PDE permissions
|
||
for (i = 0; i < NPDENTRIES; i++) {
|
||
switch (i) {
|
||
case PDX(UVPT):
|
||
case PDX(KSTACKTOP-1):
|
||
case PDX(UPAGES):
|
||
case PDX(UENVS):
|
||
case PDX(MMIOBASE):
|
||
assert(pgdir[i] & PTE_P);
|
||
break;
|
||
default:
|
||
if (i >= PDX(KERNBASE)) {
|
||
assert(pgdir[i] & PTE_P);
|
||
assert(pgdir[i] & PTE_W);
|
||
} else
|
||
assert(pgdir[i] == 0);
|
||
break;
|
||
}
|
||
}
|
||
cprintf("check_kern_pgdir() succeeded!\n");
|
||
}
|
||
|
||
// This function returns the physical address of the page containing 'va',
|
||
// defined by the page directory 'pgdir'. The hardware normally performs
|
||
// this functionality for us! We define our own version to help check
|
||
// the check_kern_pgdir() function; it shouldn't be used elsewhere.
|
||
|
||
static physaddr_t
|
||
check_va2pa(pde_t *pgdir, uintptr_t va)
|
||
{
|
||
pte_t *p;
|
||
|
||
pgdir = &pgdir[PDX(va)];
|
||
if (!(*pgdir & PTE_P))
|
||
return ~0;
|
||
p = (pte_t*) KADDR(PTE_ADDR(*pgdir));
|
||
if (!(p[PTX(va)] & PTE_P))
|
||
return ~0;
|
||
return PTE_ADDR(p[PTX(va)]);
|
||
}
|
||
|
||
|
||
// check page_insert, page_remove, &c
|
||
static void
|
||
check_page(void)
|
||
{
|
||
struct PageInfo *pp, *pp0, *pp1, *pp2;
|
||
struct PageInfo *fl;
|
||
pte_t *ptep, *ptep1;
|
||
void *va;
|
||
uintptr_t mm1, mm2;
|
||
int i;
|
||
extern pde_t entry_pgdir[];
|
||
|
||
// should be able to allocate three pages
|
||
pp0 = pp1 = pp2 = 0;
|
||
assert((pp0 = page_alloc(0)));
|
||
assert((pp1 = page_alloc(0)));
|
||
assert((pp2 = page_alloc(0)));
|
||
|
||
assert(pp0);
|
||
assert(pp1 && pp1 != pp0);
|
||
assert(pp2 && pp2 != pp1 && pp2 != pp0);
|
||
|
||
// temporarily steal the rest of the free pages
|
||
fl = page_free_list;
|
||
page_free_list = 0;
|
||
|
||
// should be no free memory
|
||
assert(!page_alloc(0));
|
||
|
||
// there is no page allocated at address 0
|
||
assert(page_lookup(kern_pgdir, (void *) 0x0, &ptep) == NULL);
|
||
|
||
// there is no free memory, so we can't allocate a page table
|
||
assert(page_insert(kern_pgdir, pp1, 0x0, PTE_W) < 0);
|
||
|
||
// free pp0 and try again: pp0 should be used for page table
|
||
page_free(pp0);
|
||
assert(page_insert(kern_pgdir, pp1, 0x0, PTE_W) == 0);
|
||
assert(PTE_ADDR(kern_pgdir[0]) == page2pa(pp0));
|
||
assert(check_va2pa(kern_pgdir, 0x0) == page2pa(pp1));
|
||
assert(pp1->pp_ref == 1);
|
||
assert(pp0->pp_ref == 1);
|
||
|
||
// should be able to map pp2 at PGSIZE because pp0 is already allocated for page table
|
||
assert(page_insert(kern_pgdir, pp2, (void*) PGSIZE, PTE_W) == 0);
|
||
assert(check_va2pa(kern_pgdir, PGSIZE) == page2pa(pp2));
|
||
assert(pp2->pp_ref == 1);
|
||
|
||
// should be no free memory
|
||
assert(!page_alloc(0));
|
||
|
||
// should be able to map pp2 at PGSIZE because it's already there
|
||
assert(page_insert(kern_pgdir, pp2, (void*) PGSIZE, PTE_W) == 0);
|
||
assert(check_va2pa(kern_pgdir, PGSIZE) == page2pa(pp2));
|
||
assert(pp2->pp_ref == 1);
|
||
|
||
// pp2 should NOT be on the free list
|
||
// could happen in ref counts are handled sloppily in page_insert
|
||
assert(!page_alloc(0));
|
||
|
||
// check that pgdir_walk returns a pointer to the pte
|
||
ptep = (pte_t *) KADDR(PTE_ADDR(kern_pgdir[PDX(PGSIZE)]));
|
||
assert(pgdir_walk(kern_pgdir, (void*)PGSIZE, 0) == ptep+PTX(PGSIZE));
|
||
|
||
// should be able to change permissions too.
|
||
assert(page_insert(kern_pgdir, pp2, (void*) PGSIZE, PTE_W|PTE_U) == 0);
|
||
assert(check_va2pa(kern_pgdir, PGSIZE) == page2pa(pp2));
|
||
assert(pp2->pp_ref == 1);
|
||
assert(*pgdir_walk(kern_pgdir, (void*) PGSIZE, 0) & PTE_U);
|
||
assert(kern_pgdir[0] & PTE_U);
|
||
|
||
// should be able to remap with fewer permissions
|
||
assert(page_insert(kern_pgdir, pp2, (void*) PGSIZE, PTE_W) == 0);
|
||
assert(*pgdir_walk(kern_pgdir, (void*) PGSIZE, 0) & PTE_W);
|
||
assert(!(*pgdir_walk(kern_pgdir, (void*) PGSIZE, 0) & PTE_U));
|
||
|
||
// should not be able to map at PTSIZE because need free page for page table
|
||
assert(page_insert(kern_pgdir, pp0, (void*) PTSIZE, PTE_W) < 0);
|
||
|
||
// insert pp1 at PGSIZE (replacing pp2)
|
||
assert(page_insert(kern_pgdir, pp1, (void*) PGSIZE, PTE_W) == 0);
|
||
assert(!(*pgdir_walk(kern_pgdir, (void*) PGSIZE, 0) & PTE_U));
|
||
|
||
// should have pp1 at both 0 and PGSIZE, pp2 nowhere, ...
|
||
assert(check_va2pa(kern_pgdir, 0) == page2pa(pp1));
|
||
assert(check_va2pa(kern_pgdir, PGSIZE) == page2pa(pp1));
|
||
// ... and ref counts should reflect this
|
||
assert(pp1->pp_ref == 2);
|
||
assert(pp2->pp_ref == 0);
|
||
|
||
// pp2 should be returned by page_alloc
|
||
assert((pp = page_alloc(0)) && pp == pp2);
|
||
|
||
// unmapping pp1 at 0 should keep pp1 at PGSIZE
|
||
page_remove(kern_pgdir, 0x0);
|
||
assert(check_va2pa(kern_pgdir, 0x0) == ~0);
|
||
assert(check_va2pa(kern_pgdir, PGSIZE) == page2pa(pp1));
|
||
assert(pp1->pp_ref == 1);
|
||
assert(pp2->pp_ref == 0);
|
||
|
||
// test re-inserting pp1 at PGSIZE
|
||
assert(page_insert(kern_pgdir, pp1, (void*) PGSIZE, 0) == 0);
|
||
assert(pp1->pp_ref);
|
||
assert(pp1->pp_link == NULL);
|
||
|
||
// unmapping pp1 at PGSIZE should free it
|
||
page_remove(kern_pgdir, (void*) PGSIZE);
|
||
assert(check_va2pa(kern_pgdir, 0x0) == ~0);
|
||
assert(check_va2pa(kern_pgdir, PGSIZE) == ~0);
|
||
assert(pp1->pp_ref == 0);
|
||
assert(pp2->pp_ref == 0);
|
||
|
||
// so it should be returned by page_alloc
|
||
assert((pp = page_alloc(0)) && pp == pp1);
|
||
|
||
// should be no free memory
|
||
assert(!page_alloc(0));
|
||
|
||
// forcibly take pp0 back
|
||
assert(PTE_ADDR(kern_pgdir[0]) == page2pa(pp0));
|
||
kern_pgdir[0] = 0;
|
||
assert(pp0->pp_ref == 1);
|
||
pp0->pp_ref = 0;
|
||
|
||
// check pointer arithmetic in pgdir_walk
|
||
page_free(pp0);
|
||
va = (void*)(PGSIZE * NPDENTRIES + PGSIZE);
|
||
ptep = pgdir_walk(kern_pgdir, va, 1);
|
||
ptep1 = (pte_t *) KADDR(PTE_ADDR(kern_pgdir[PDX(va)]));
|
||
assert(ptep == ptep1 + PTX(va));
|
||
kern_pgdir[PDX(va)] = 0;
|
||
pp0->pp_ref = 0;
|
||
|
||
// check that new page tables get cleared
|
||
memset(page2kva(pp0), 0xFF, PGSIZE);
|
||
page_free(pp0);
|
||
pgdir_walk(kern_pgdir, 0x0, 1);
|
||
ptep = (pte_t *) page2kva(pp0);
|
||
for(i=0; i<NPTENTRIES; i++)
|
||
assert((ptep[i] & PTE_P) == 0);
|
||
kern_pgdir[0] = 0;
|
||
pp0->pp_ref = 0;
|
||
|
||
// give free list back
|
||
page_free_list = fl;
|
||
|
||
// free the pages we took
|
||
page_free(pp0);
|
||
page_free(pp1);
|
||
page_free(pp2);
|
||
|
||
// test mmio_map_region
|
||
mm1 = (uintptr_t) mmio_map_region(0, 4097);
|
||
mm2 = (uintptr_t) mmio_map_region(0, 4096);
|
||
// check that they're in the right region
|
||
assert(mm1 >= MMIOBASE && mm1 + 8192 < MMIOLIM);
|
||
assert(mm2 >= MMIOBASE && mm2 + 8192 < MMIOLIM);
|
||
// check that they're page-aligned
|
||
assert(mm1 % PGSIZE == 0 && mm2 % PGSIZE == 0);
|
||
// check that they don't overlap
|
||
assert(mm1 + 8192 <= mm2);
|
||
// check page mappings
|
||
assert(check_va2pa(kern_pgdir, mm1) == 0);
|
||
assert(check_va2pa(kern_pgdir, mm1+PGSIZE) == PGSIZE);
|
||
assert(check_va2pa(kern_pgdir, mm2) == 0);
|
||
assert(check_va2pa(kern_pgdir, mm2+PGSIZE) == ~0);
|
||
// check permissions
|
||
assert(*pgdir_walk(kern_pgdir, (void*) mm1, 0) & (PTE_W|PTE_PWT|PTE_PCD));
|
||
assert(!(*pgdir_walk(kern_pgdir, (void*) mm1, 0) & PTE_U));
|
||
// clear the mappings
|
||
*pgdir_walk(kern_pgdir, (void*) mm1, 0) = 0;
|
||
*pgdir_walk(kern_pgdir, (void*) mm1 + PGSIZE, 0) = 0;
|
||
*pgdir_walk(kern_pgdir, (void*) mm2, 0) = 0;
|
||
|
||
cprintf("check_page() succeeded!\n");
|
||
}
|
||
|
||
// check page_insert, page_remove, &c, with an installed kern_pgdir
|
||
static void
|
||
check_page_installed_pgdir(void)
|
||
{
|
||
struct PageInfo *pp, *pp0, *pp1, *pp2;
|
||
struct PageInfo *fl;
|
||
pte_t *ptep, *ptep1;
|
||
uintptr_t va;
|
||
int i;
|
||
|
||
// check that we can read and write installed pages
|
||
pp1 = pp2 = 0;
|
||
assert((pp0 = page_alloc(0)));
|
||
assert((pp1 = page_alloc(0)));
|
||
assert((pp2 = page_alloc(0)));
|
||
page_free(pp0);
|
||
memset(page2kva(pp1), 1, PGSIZE);
|
||
memset(page2kva(pp2), 2, PGSIZE);
|
||
page_insert(kern_pgdir, pp1, (void*) PGSIZE, PTE_W);
|
||
assert(pp1->pp_ref == 1);
|
||
assert(*(uint32_t *)PGSIZE == 0x01010101U);
|
||
page_insert(kern_pgdir, pp2, (void*) PGSIZE, PTE_W);
|
||
assert(*(uint32_t *)PGSIZE == 0x02020202U);
|
||
assert(pp2->pp_ref == 1);
|
||
assert(pp1->pp_ref == 0);
|
||
*(uint32_t *)PGSIZE = 0x03030303U;
|
||
assert(*(uint32_t *)page2kva(pp2) == 0x03030303U);
|
||
page_remove(kern_pgdir, (void*) PGSIZE);
|
||
assert(pp2->pp_ref == 0);
|
||
|
||
// forcibly take pp0 back
|
||
assert(PTE_ADDR(kern_pgdir[0]) == page2pa(pp0));
|
||
kern_pgdir[0] = 0;
|
||
assert(pp0->pp_ref == 1);
|
||
pp0->pp_ref = 0;
|
||
|
||
// free the pages we took
|
||
page_free(pp0);
|
||
|
||
cprintf("check_page_installed_pgdir() succeeded!\n");
|
||
}
|