完成第二章:套接字类型与协议设置

This commit is contained in:
riba2534
2019-01-13 11:09:55 +08:00
parent b7ecd53a65
commit 40895a0ce5
3 changed files with 262 additions and 1 deletions

151
README.md
View File

@@ -10,7 +10,7 @@
## 第一章:理解网络编程和套接字 ## 第一章:理解网络编程和套接字
本章代码,在[TCP-IP-NetworkNote](https://github.com/riba2534/TCP-IP-NetworkNote)中可以找到。 本章代码,在[TCP-IP-NetworkNote](https://github.com/riba2534/TCP-IP-NetworkNote)中可以找到,直接点连接可能进不去
### 1.1 理解网络编程和套接字 ### 1.1 理解网络编程和套接字
@@ -300,13 +300,162 @@ file descriptor 3: 16
## 第二章 套接字类型与协议设置 ## 第二章 套接字类型与协议设置
本章代码,在[TCP-IP-NetworkNote](https://github.com/riba2534/TCP-IP-NetworkNote)中可以找到,直接点连接可能进不去。
本章仅需了解创建套接字时调用的 socket 函数。
### 2.1 套接字协议及数据传输特性 ### 2.1 套接字协议及数据传输特性
#### 2.1.1 创建套接字
```c
#include <sys/socket.h>
int socket(int domain, int type, int protocol);
/*
成功时返回文件描述符,失败时返回-1
domain: 套接字中使用的协议族Protocol Family
type: 套接字数据传输的类型信息
protocol: 计算机间通信中使用的协议信息
*/
```
#### 2.1.2 协议族Protocol Family
通过 socket 函数的第一个参数传递套接字中使用的协议分类信息。此协议分类信息称为协议族,可分成如下几类:
> 头文件 `sys/socket.h` 中声明的协议族
>
| 名称 | 协议族 |
| --------- | -------------------- |
| PF_INET | IPV4 互联网协议族 |
| PF_INET6 | IPV6 互联网协议族 |
| PF_LOCAL | 本地通信 Unix 协议族 |
| PF_PACKET | 底层套接字的协议族 |
| PF_IPX | IPX Novel 协议族 |
本书着重讲 PF_INET 对应的 IPV4 互联网协议族。其他协议并不常用,或并未普及。**另外,套接字中采用的最终的协议信息是通过 socket 函数的第三个参数传递的。在指定的协议族范围内通过第一个参数决定第三个参数。**
#### 2.1.3 套接字类型Type
套接字类型指的是套接字的数据传输方式,是通过 socket 函数的第二个参数进行传递,只有这样才能决定创建的套接字的数据传输方式。**已经通过第一个参数传递了协议族信息,为什么还要决定数据传输方式?问题就在于,决定了协议族并不能同时决定数据传输方式。换言之, socket 函数的第一个参数 PF_INET 协议族中也存在多种数据传输方式。**
#### 2.1.4 套接字类型1面向连接的套接字SOCK_STREAM
如果 socket 函数的第二个参数传递`SOCK_STREAM`,将创建面向连接的套接字。
传输方式特征整理如下:
- 传输过程中数据不会消失
- 按序传输数据
- 传输的数据不存在数据边界Boundary
这种情形适用于之前说过的 write 和 read 函数
> 传输数据的计算机通过调用3次 write 函数传递了 100 字节的数据,但是接受数据的计算机仅仅通过调用 1 次 read 函数调用就接受了全部 100 个字节。
收发数据的套接字内部有缓冲buffer简言之就是字节数组。只要不超过数组容量那么数据填满缓冲后过 1 次 read 函数的调用就可以读取全部,也有可能调用多次来完成读取。
**套接字缓冲已满是否意味着数据丢失?**
> 答:缓冲并不总是满的。如果读取速度比数据传入过来的速度慢,则缓冲可能被填满,但是这时也不会丢失数据,因为传输套接字此时会停止数据传输,所以面向连接的套接字不会发生数据丢失。
套接字联机必须一一对应。面向连接的套接字可总结为:
**可靠地、按序传递的、基于字节的面向连接的数据传输方式的套接字。**
#### 2.1.5 面向消息的套接字SOCK_DGRAM
如果 socket 函数的第二个参数传递`SOCK_DGRAM`,则将创建面向消息的套接字。面向消息的套接字可以比喻成高速移动的摩托车队。特点如下:
- 强调快速传输而非传输有序
- 传输的数据可能丢失也可能损毁
- 传输的数据有边界
- 限制每次传输数据的大小
面向消息的套接字比面向连接的套接字更具哟传输速度,但可能丢失。特点可总结为:
**不可靠的、不按序传递的、以数据的高速传输为目的套接字。**
#### 2.1.6 协议的最终选择
socket 函数的第三个参数决定最终采用的协议。前面已经通过前两个参数传递了协议族信息和套接字数据传输方式,这些信息还不够吗?为什么要传输第三个参数呢?
> 可以应对同一协议族中存在的多个数据传输方式相同的协议,所以数据传输方式相同,但是协议不同,需要用第三个参数指定具体的协议信息。
本书用的是 Ipv4 的协议族,和面向连接的数据传输,满足这两个条件的协议只有 TPPROTO_TCP ,因此可以如下调用 socket 函数创建套接字,这种套接字称为 TCP 套接字。
```c
int tcp_socket = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
```
SOCK_DGRAM 指的是面向消息的数据传输方式,满足上述条件的协议只有 TPPROTO_UDP 。这种套接字称为 UDP 套接字:
```c
int udp_socket = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
```
#### 2.1.7 面向连接的套接字TCP 套接字示例
需要对第一章的代码做出修改,修改好的代码如下:
- [tcp_client.c](https://github.com/riba2534/TCP-IP-NetworkNote/blob/master/ch02/tcp_client.c)
- [tcp_server.c](https://github.com/riba2534/TCP-IP-NetworkNote/blob/master/ch02/tcp_server.c)
编译:
```shell
gcc tcp_client.c -o hclient
gcc tcp_server.c -o hserver
```
运行:
```shell
./hserver 9190
./hclient 127.0.0.1 9190
```
结果:
```
Message from server : Hello World!
Function read call count: 13
```
从运行结果可以看出服务端发送了13字节的数据客户端调用13次 read 函数进行读取。
### 2.2 Windows 平台下的实现及验证
暂略
### 2.3 习题
1. 什么是协议?在收发数据中定义协议有何意义?
> 答:协议是对话中使用的通信规则,简言之,协议就是为了完成数据交换而定好的约定。在收发数据中定义协议,能够让计算机之间进行正确无误的对话,以此来交换数据。
2. 面向连接的套接字 TCP 套接字传输特性有 3 点,请分别说明。
> ①传输过程中数据不会消失②按序传输数据③传输的数据不存在数据边界Boundary
3. 下面那些是面向消息的套接字的特性?
- **传输数据可能丢失**
- 没有数据边界Boundary
- **以快速传递为目标**
- 不限制每次传输数据大小
- **与面向连接的套接字不同,不存在连接概念**
4. 下列数据适合用哪类套接字进行传输?
- 演唱会现场直播的多媒体数据UDP
- 某人压缩过的文本文件TCP
- 网上银行用户与银行之间的数据传递TCP
5. 何种类型的套接字不存在数据边界?这类套接字接收数据时应该注意什么?
> TCP 不存在数据边界。在接收数据时需要保证在接收套接字的缓冲区填充满之时就从buffer里读取数据。也就是在接收套接字内部写入buffer的速度要小于读出buffer的速度。

54
ch02/tcp_client.c Normal file
View File

@@ -0,0 +1,54 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
void error_handling(char *message);
int main(int argc, char *argv[])
{
int sock;
struct sockaddr_in serv_addr;
char message[30];
int str_len = 0;
int idx = 0, read_len = 0;
if (argc != 3)
{
printf("Usage : %s <IP> <port>\n", argv[0]);
exit(1);
}
//创建套接字,此时套接字并不马上分为服务端和客户端。如果紧接着调用 bind,listen 函数,将成为服务器套接字
//如果调用 connect 函数,将成为客户端套接字
//若前两个参数使用PF_INET 和 SOCK_STREAM则可以省略第三个参数 IPPROTO_TCP
sock = socket(PF_INET, SOCK_STREAM, 0);
if (sock == -1)
error_handling("socket() error");
memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(argv[1]);
serv_addr.sin_port = htons(atoi(argv[2]));
//调用 connect 函数向服务器发送连接请求
if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
error_handling("connect() error!");
//当read函数返回0的时候条件为假跳出循环。
while (read_len = read(sock, &message[idx++], 1))
{
if (read_len == -1)
error_handling("read() error!");
str_len += read_len;
}
printf("Message from server : %s \n", message);
printf("Function read call count: %d \n", str_len);
close(sock);
return 0;
}
void error_handling(char *message)
{
fputs(message, stderr);
fputc('\n', stderr);
exit(1);
}

58
ch02/tcp_server.c Normal file
View File

@@ -0,0 +1,58 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
void error_handling(char *message);
int main(int argc, char *argv[])
{
int serv_sock;
int clnt_sock;
struct sockaddr_in serv_addr;
struct sockaddr_in clnt_addr;
socklen_t clnt_addr_size;
char message[] = "Hello World!";
if (argc != 2)
{
printf("Usage : %s <port>\n", argv[0]);
exit(1);
}
//调用 socket 函数创建套接字
serv_sock = socket(PF_INET, SOCK_STREAM, 0);
if (serv_sock == -1)
error_handling("socket() error");
memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_addr.sin_port = htons(atoi(argv[1]));
//调用 bind 函数分配ip地址和端口号
if (bind(serv_sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1)
error_handling("bind() error");
//调用 listen 函数将套接字转为可接受连接状态
if (listen(serv_sock, 5) == -1)
error_handling("listen() error");
clnt_addr_size = sizeof(clnt_addr);
//调用 accept 函数受理连接请求。如果在没有连接请求的情况下调用该函数,则不会返回,直到有连接请求为止
clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_addr, &clnt_addr_size);
if (clnt_sock == -1)
error_handling("accept() error");
//稍后要将介绍的 write 函数用于传输数据,若程序经过 accept 这一行执行到本行,则说明已经有了连接请求
write(clnt_sock, message, sizeof(message));
close(clnt_sock);
close(serv_sock);
return 0;
}
void error_handling(char *message)
{
fputs(message, stderr);
fputc('\n', stderr);
exit(1);
}