Add the section of unbounded knapsack problem.

This commit is contained in:
krahets
2023-07-11 19:22:41 +08:00
parent ad0fd45cfb
commit 1c02859b13
36 changed files with 1143 additions and 1 deletions

View File

@@ -4,4 +4,6 @@ add_executable(climbing_stairs_dfs_mem climbing_stairs_dfs_mem.cpp)
add_executable(climbing_stairs_dp climbing_stairs_dp.cpp)
add_executable(min_cost_climbing_stairs_dp min_cost_climbing_stairs_dp.cpp)
add_executable(min_path_sum min_path_sum.cpp)
add_executable(knapsack knapsack.cpp)
add_executable(unbounded_knapsack unbounded_knapsack.cpp)
add_executable(coin_change coin_change.cpp)
add_executable(coin_change_ii coin_change_ii.cpp)

View File

@@ -0,0 +1,70 @@
/**
* File: coin_change.cpp
* Created Time: 2023-07-11
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 零钱兑换:动态规划 */
int coinChangeDP(vector<int> &coins, int amt) {
int n = coins.size();
int MAX = amt + 1;
// 初始化 dp 表
vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));
// 状态转移:首行首列
for (int a = 1; a <= amt; a++) {
dp[0][a] = MAX;
}
// 状态转移:其余行列
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// 若超过背包容量,则不选硬币 i
dp[i][a] = dp[i - 1][a];
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
}
}
}
return dp[n][amt] != MAX ? dp[n][amt] : -1;
}
/* 零钱兑换:状态压缩后的动态规划 */
int coinChangeDPComp(vector<int> &coins, int amt) {
int n = coins.size();
int MAX = amt + 1;
// 初始化 dp 表
vector<int> dp(amt + 1, MAX);
dp[0] = 0;
// 状态转移
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// 若超过背包容量,则不选硬币 i
dp[a] = dp[a];
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);
}
}
}
return dp[amt] != MAX ? dp[amt] : -1;
}
/* Driver code */
int main() {
vector<int> coins = {1, 2, 5};
int amt = 4;
// 动态规划
int res = coinChangeDP(coins, amt);
cout << "凑到目标金额所需的最少硬币数量为 " << res << endl;
// 状态压缩后的动态规划
res = coinChangeDPComp(coins, amt);
cout << "凑到目标金额所需的最少硬币数量为 " << res << endl;
return 0;
}

View File

@@ -0,0 +1,68 @@
/**
* File: coin_change_ii.cpp
* Created Time: 2023-07-11
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 零钱兑换 II动态规划 */
int coinChangeIIDP(vector<int> &coins, int amt) {
int n = coins.size();
// 初始化 dp 表
vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));
// 初始化首列
for (int i = 0; i <= n; i++) {
dp[i][0] = 1;
}
// 状态转移
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// 若超过背包容量,则不选硬币 i
dp[i][a] = dp[i - 1][a];
} else {
// 不选和选硬币 i 这两种方案之和
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];
}
}
}
return dp[n][amt];
}
/* 零钱兑换 II状态压缩后的动态规划 */
int coinChangeIIDPComp(vector<int> &coins, int amt) {
int n = coins.size();
// 初始化 dp 表
vector<int> dp(amt + 1, 0);
dp[0] = 1;
// 状态转移
for (int i = 1; i <= n; i++) {
for (int a = 1; a <= amt; a++) {
if (coins[i - 1] > a) {
// 若超过背包容量,则不选硬币 i
dp[a] = dp[a];
} else {
// 不选和选硬币 i 这两种方案之和
dp[a] = dp[a] + dp[a - coins[i - 1]];
}
}
}
return dp[amt];
}
/* Driver code */
int main() {
vector<int> coins = {1, 2, 5};
int amt = 5;
// 动态规划
int res = coinChangeIIDP(coins, amt);
cout << "凑出目标金额的硬币组合数量为 " << res << endl;
// 状态压缩后的动态规划
res = coinChangeIIDPComp(coins, amt);
cout << "凑出目标金额的硬币组合数量为 " << res << endl;
return 0;
}

View File

@@ -0,0 +1,64 @@
/**
* File: unbounded_knapsack.cpp
* Created Time: 2023-07-11
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 完全背包:动态规划 */
int unboundedKnapsackDP(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// 初始化 dp 表
vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* 完全背包:状态压缩后的动态规划 */
int unboundedKnapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// 初始化 dp 表
vector<int> dp(cap + 1, 0);
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[c] = dp[c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* Driver code */
int main() {
vector<int> wgt = {1, 2, 3};
vector<int> val = {5, 11, 15};
int cap = 4;
// 动态规划
int res = unboundedKnapsackDP(wgt, val, cap);
cout << "不超过背包容量的最大物品价值为 " << res << endl;
// 状态压缩后的动态规划
res = unboundedKnapsackDPComp(wgt, val, cap);
cout << "不超过背包容量的最大物品价值为 " << res << endl;
return 0;
}