mirror of
https://github.com/krahets/hello-algo.git
synced 2026-02-11 22:55:39 +08:00
Translate all code to English (#1836)
* Review the EN heading format. * Fix pythontutor headings. * Fix pythontutor headings. * bug fixes * Fix headings in **/summary.md * Revisit the CN-to-EN translation for Python code using Claude-4.5 * Revisit the CN-to-EN translation for Java code using Claude-4.5 * Revisit the CN-to-EN translation for Cpp code using Claude-4.5. * Fix the dictionary. * Fix cpp code translation for the multipart strings. * Translate Go code to English. * Update workflows to test EN code. * Add EN translation for C. * Add EN translation for CSharp. * Add EN translation for Swift. * Trigger the CI check. * Revert. * Update en/hash_map.md * Add the EN version of Dart code. * Add the EN version of Kotlin code. * Add missing code files. * Add the EN version of JavaScript code. * Add the EN version of TypeScript code. * Fix the workflows. * Add the EN version of Ruby code. * Add the EN version of Rust code. * Update the CI check for the English version code. * Update Python CI check. * Fix cmakelists for en/C code. * Fix Ruby comments
This commit is contained in:
@@ -7,7 +7,7 @@
|
||||
package chapter_computational_complexity;
|
||||
|
||||
public class time_complexity {
|
||||
/* Constant complexity */
|
||||
/* Constant order */
|
||||
static int constant(int n) {
|
||||
int count = 0;
|
||||
int size = 100000;
|
||||
@@ -16,7 +16,7 @@ public class time_complexity {
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Linear complexity */
|
||||
/* Linear order */
|
||||
static int linear(int n) {
|
||||
int count = 0;
|
||||
for (int i = 0; i < n; i++)
|
||||
@@ -24,20 +24,20 @@ public class time_complexity {
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Linear complexity (traversing an array) */
|
||||
/* Linear order (traversing array) */
|
||||
static int arrayTraversal(int[] nums) {
|
||||
int count = 0;
|
||||
// Loop count is proportional to the length of the array
|
||||
// Number of iterations is proportional to the array length
|
||||
for (int num : nums) {
|
||||
count++;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Quadratic complexity */
|
||||
/* Exponential order */
|
||||
static int quadratic(int n) {
|
||||
int count = 0;
|
||||
// Loop count is squared in relation to the data size n
|
||||
// Number of iterations is quadratically related to the data size n
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
count++;
|
||||
@@ -46,29 +46,29 @@ public class time_complexity {
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Quadratic complexity (bubble sort) */
|
||||
/* Quadratic order (bubble sort) */
|
||||
static int bubbleSort(int[] nums) {
|
||||
int count = 0; // Counter
|
||||
// Outer loop: unsorted range is [0, i]
|
||||
for (int i = nums.length - 1; i > 0; i--) {
|
||||
// Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
|
||||
// Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (nums[j] > nums[j + 1]) {
|
||||
// Swap nums[j] and nums[j + 1]
|
||||
int tmp = nums[j];
|
||||
nums[j] = nums[j + 1];
|
||||
nums[j + 1] = tmp;
|
||||
count += 3; // Element swap includes 3 individual operations
|
||||
count += 3; // Element swap includes 3 unit operations
|
||||
}
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Exponential complexity (loop implementation) */
|
||||
/* Exponential order (loop implementation) */
|
||||
static int exponential(int n) {
|
||||
int count = 0, base = 1;
|
||||
// Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
|
||||
// Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1)
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < base; j++) {
|
||||
count++;
|
||||
@@ -79,14 +79,14 @@ public class time_complexity {
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Exponential complexity (recursive implementation) */
|
||||
/* Exponential order (recursive implementation) */
|
||||
static int expRecur(int n) {
|
||||
if (n == 1)
|
||||
return 1;
|
||||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||||
}
|
||||
|
||||
/* Logarithmic complexity (loop implementation) */
|
||||
/* Logarithmic order (loop implementation) */
|
||||
static int logarithmic(int n) {
|
||||
int count = 0;
|
||||
while (n > 1) {
|
||||
@@ -96,14 +96,14 @@ public class time_complexity {
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Logarithmic complexity (recursive implementation) */
|
||||
/* Logarithmic order (recursive implementation) */
|
||||
static int logRecur(int n) {
|
||||
if (n <= 1)
|
||||
return 0;
|
||||
return logRecur(n / 2) + 1;
|
||||
}
|
||||
|
||||
/* Linear logarithmic complexity */
|
||||
/* Linearithmic order */
|
||||
static int linearLogRecur(int n) {
|
||||
if (n <= 1)
|
||||
return 1;
|
||||
@@ -114,12 +114,12 @@ public class time_complexity {
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Factorial complexity (recursive implementation) */
|
||||
/* Factorial order (recursive implementation) */
|
||||
static int factorialRecur(int n) {
|
||||
if (n == 0)
|
||||
return 1;
|
||||
int count = 0;
|
||||
// From 1 split into n
|
||||
// Split from 1 into n
|
||||
for (int i = 0; i < n; i++) {
|
||||
count += factorialRecur(n - 1);
|
||||
}
|
||||
@@ -128,40 +128,40 @@ public class time_complexity {
|
||||
|
||||
/* Driver Code */
|
||||
public static void main(String[] args) {
|
||||
// Can modify n to experience the trend of operation count changes under various complexities
|
||||
// You can modify n to run and observe the trend of the number of operations for various complexities
|
||||
int n = 8;
|
||||
System.out.println("Input data size n = " + n);
|
||||
|
||||
int count = constant(n);
|
||||
System.out.println("Number of constant complexity operations = " + count);
|
||||
System.out.println("Constant order operation count = " + count);
|
||||
|
||||
count = linear(n);
|
||||
System.out.println("Number of linear complexity operations = " + count);
|
||||
System.out.println("Linear order operation count = " + count);
|
||||
count = arrayTraversal(new int[n]);
|
||||
System.out.println("Number of linear complexity operations (traversing the array) = " + count);
|
||||
System.out.println("Linear order (array traversal) operation count = " + count);
|
||||
|
||||
count = quadratic(n);
|
||||
System.out.println("Number of quadratic order operations = " + count);
|
||||
System.out.println("Quadratic order operation count = " + count);
|
||||
int[] nums = new int[n];
|
||||
for (int i = 0; i < n; i++)
|
||||
nums[i] = n - i; // [n,n-1,...,2,1]
|
||||
count = bubbleSort(nums);
|
||||
System.out.println("Number of quadratic order operations (bubble sort) = " + count);
|
||||
System.out.println("Quadratic order (bubble sort) operation count = " + count);
|
||||
|
||||
count = exponential(n);
|
||||
System.out.println("Number of exponential complexity operations (implemented by loop) = " + count);
|
||||
System.out.println("Exponential order (loop implementation) operation count = " + count);
|
||||
count = expRecur(n);
|
||||
System.out.println("Number of exponential complexity operations (implemented by recursion) = " + count);
|
||||
System.out.println("Exponential order (recursive implementation) operation count = " + count);
|
||||
|
||||
count = logarithmic(n);
|
||||
System.out.println("Number of logarithmic complexity operations (implemented by loop) = " + count);
|
||||
System.out.println("Logarithmic order (loop implementation) operation count = " + count);
|
||||
count = logRecur(n);
|
||||
System.out.println("Number of logarithmic complexity operations (implemented by recursion) = " + count);
|
||||
System.out.println("Logarithmic order (recursive implementation) operation count = " + count);
|
||||
|
||||
count = linearLogRecur(n);
|
||||
System.out.println("Number of linear logarithmic complexity operations (implemented by recursion) = " + count);
|
||||
System.out.println("Linearithmic order (recursive implementation) operation count = " + count);
|
||||
|
||||
count = factorialRecur(n);
|
||||
System.out.println("Number of factorial complexity operations (implemented by recursion) = " + count);
|
||||
System.out.println("Factorial order (recursive implementation) operation count = " + count);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user