Bug fixes and improvements (#1380)

* preorder, inorder, postorder -> pre-order, in-order, post-order

* Bug fixes

* Bug fixes

* Update what_is_dsa.md

* Sync zh and zh-hant versions

* Sync zh and zh-hant versions.

* Update performance_evaluation.md and time_complexity.md

* Add @khoaxuantu to the landing page.

* Sync zh and zh-hant versions

* Add @ khoaxuantu to the landing page of zh-hant and en versions.
This commit is contained in:
Yudong Jin
2024-05-31 16:39:06 +08:00
committed by GitHub
parent 39a6890b7e
commit 3f4220de81
91 changed files with 1709 additions and 181 deletions

View File

@@ -35,7 +35,7 @@
**Q**:原码转补码的方法是“先取反后加 1”那么补码转原码应该是逆运算“先减 1 后取反”,而补码转原码也一样可以通过“先取反后加 1”得到这是为什么呢
**A**这是因为原码和补码的相互转换实际上是计算“补数”的过程。我们先给出补数的定义:假设 $a + b = c$ ,那么我们称 $a$ 是 $b$ 到 $c$ 的补数,反之也称 $b$ 是 $a$ 到 $c$ 的补数。
这是因为原码和补码的相互转换实际上是计算“补数”的过程。我们先给出补数的定义:假设 $a + b = c$ ,那么我们称 $a$ 是 $b$ 到 $c$ 的补数,反之也称 $b$ 是 $a$ 到 $c$ 的补数。
给定一个 $n = 4$ 位长度的二进制数 $0010$ ,如果将这个数字看作原码(不考虑符号位),那么它的补码需通过“先取反后加 1”得到
@@ -63,4 +63,4 @@ $$
本质上看,“取反”操作实际上是求到 $1111$ 的补数(因为恒有 `原码 + 反码 = 1111`);而在反码基础上再加 1 得到的补码,就是到 $10000$ 的补数。
上述 $n = 4$ 为例,其可推广至任意位数的二进制数。
上述 $n = 4$ 为例,其可推广至任意位数的二进制数。