mirror of
https://github.com/krahets/hello-algo.git
synced 2026-02-03 02:43:41 +08:00
Polish the chapter of graph, hashing, appendix
This commit is contained in:
@@ -1,12 +1,12 @@
|
||||
# 图基础操作
|
||||
|
||||
图的基础操作分为对「边」的操作和对「顶点」的操作,在「邻接矩阵」和「邻接表」这两种表示下的实现方式不同。
|
||||
图的基础操作可分为对「边」的操作和对「顶点」的操作。在「邻接矩阵」和「邻接表」两种表示方法下,实现方式有所不同。
|
||||
|
||||
## 基于邻接矩阵的实现
|
||||
|
||||
设图的顶点总数为 $n$ ,则有:
|
||||
给定一个顶点数量为 $n$ 的无向图,则有:
|
||||
|
||||
- **添加或删除边**:直接在邻接矩阵中修改指定边的对应元素即可,使用 $O(1)$ 时间。而由于是无向图,因此需要同时更新两个方向的边。
|
||||
- **添加或删除边**:直接在邻接矩阵中修改指定的边即可,使用 $O(1)$ 时间。而由于是无向图,因此需要同时更新两个方向的边。
|
||||
- **添加顶点**:在邻接矩阵的尾部添加一行一列,并全部填 $0$ 即可,使用 $O(n)$ 时间。
|
||||
- **删除顶点**:在邻接矩阵中删除一行一列。当删除首行首列时达到最差情况,需要将 $(n-1)^2$ 个元素“向左上移动”,从而使用 $O(n^2)$ 时间。
|
||||
- **初始化**:传入 $n$ 个顶点,初始化长度为 $n$ 的顶点列表 `vertices` ,使用 $O(n)$ 时间;初始化 $n \times n$ 大小的邻接矩阵 `adjMat` ,使用 $O(n^2)$ 时间。
|
||||
@@ -90,13 +90,13 @@
|
||||
|
||||
## 基于邻接表的实现
|
||||
|
||||
设图的顶点总数为 $n$ 、边总数为 $m$ ,则有:
|
||||
设无向图的顶点总数为 $n$ 、边总数为 $m$ ,则有:
|
||||
|
||||
- **添加边**:在顶点对应链表的尾部添加边即可,使用 $O(1)$ 时间。因为是无向图,所以需要同时添加两个方向的边。
|
||||
- **删除边**:在顶点对应链表中查询与删除指定边,使用 $O(m)$ 时间。与添加边一样,需要同时删除两个方向的边。
|
||||
- **添加顶点**:在邻接表中添加一个链表即可,并以新增顶点为链表头结点,使用 $O(1)$ 时间。
|
||||
- **删除顶点**:需要遍历整个邻接表,删除包含指定顶点的所有边,使用 $O(n + m)$ 时间。
|
||||
- **初始化**:需要在邻接表中建立 $n$ 个结点和 $2m$ 条边,使用 $O(n + m)$ 时间。
|
||||
- **添加边**:在顶点对应链表的末尾添加边即可,使用 $O(1)$ 时间。因为是无向图,所以需要同时添加两个方向的边。
|
||||
- **删除边**:在顶点对应链表中查找并删除指定边,使用 $O(m)$ 时间。在无向图中,需要同时删除两个方向的边。
|
||||
- **添加顶点**:在邻接表中添加一个链表,并将新增顶点作为链表头结点,使用 $O(1)$ 时间。
|
||||
- **删除顶点**:需遍历整个邻接表,删除包含指定顶点的所有边,使用 $O(1)$ 时间。
|
||||
- **初始化**:在邻接表中创建 $n$ 个顶点和 $2m$ 条边,使用 $O(n + m)$ 时间。
|
||||
|
||||
=== "初始化邻接表"
|
||||

|
||||
@@ -113,10 +113,10 @@
|
||||
=== "删除顶点"
|
||||

|
||||
|
||||
基于邻接表实现图的代码如下所示。细心的同学可能注意到,**我们在邻接表中使用 `Vertex` 结点类来表示顶点**,这样做的原因是:
|
||||
以下是基于邻接表实现图的代码示例。细心的同学可能注意到,**我们在邻接表中使用 `Vertex` 结点类来表示顶点**,这样做的原因有:
|
||||
|
||||
- 如果我们选择通过顶点值来区分不同顶点,那么值重复的顶点将无法被区分。
|
||||
- 如果类似邻接矩阵那样,使用顶点列表索引来区分不同顶点。那么,假设我们想要删除索引为 $i$ 的顶点,则需要遍历整个邻接表,将其中 $> i$ 的索引全部执行 $-1$ ,这样操作效率太低。
|
||||
- 如果类似邻接矩阵那样,使用顶点列表索引来区分不同顶点。那么,假设我们想要删除索引为 $i$ 的顶点,则需要遍历整个邻接表,将其中 $> i$ 的索引全部减 $1$,这样操作效率较低。
|
||||
- 因此我们考虑引入顶点类 `Vertex` ,使得每个顶点都是唯一的对象,此时删除顶点时就无需改动其余顶点了。
|
||||
|
||||
=== "Java"
|
||||
@@ -196,4 +196,4 @@
|
||||
|
||||
</div>
|
||||
|
||||
观察上表,貌似邻接表(哈希表)的时间与空间效率最优。但实际上,在邻接矩阵中操作边的效率更高,只需要一次数组访问或赋值操作即可。总结以上,**邻接矩阵体现“以空间换时间”,邻接表体现“以时间换空间”**。
|
||||
观察上表,似乎邻接表(哈希表)的时间与空间效率最优。但实际上,在邻接矩阵中操作边的效率更高,只需要一次数组访问或赋值操作即可。综合来看,邻接矩阵体现了“以空间换时间”的原则,而邻接表体现了“以时间换空间”的原则。
|
||||
|
||||
Reference in New Issue
Block a user