mirror of
https://github.com/krahets/hello-algo.git
synced 2026-02-13 07:35:47 +08:00
deploy
This commit is contained in:
@@ -60,7 +60,18 @@
|
||||
|
||||
|
||||
|
||||
</head>
|
||||
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
|
||||
html.glightbox-open { overflow: initial; height: 100%; }
|
||||
.gslide-title { margin-top: 0px; user-select: text; }
|
||||
.gslide-desc { color: #666; user-select: text; }
|
||||
.gslide-image img { background: white; }
|
||||
|
||||
.gscrollbar-fixer { padding-right: 15px; }
|
||||
.gdesc-inner { font-size: 0.75rem; }
|
||||
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
|
||||
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
|
||||
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
|
||||
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
|
||||
|
||||
|
||||
|
||||
@@ -1875,14 +1886,6 @@
|
||||
10.2 二分查找插入点
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -1903,14 +1906,6 @@
|
||||
10.3 二分查找边界
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2330,14 +2325,6 @@
|
||||
第 12 章 分治
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
|
||||
@@ -2369,14 +2356,6 @@
|
||||
12.1 分治算法
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2397,14 +2376,6 @@
|
||||
12.2 分治搜索策略
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2425,14 +2396,6 @@
|
||||
12.3 构建树问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2453,14 +2416,6 @@
|
||||
12.4 汉诺塔问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2481,14 +2436,6 @@
|
||||
12.5 小结
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2804,14 +2751,6 @@
|
||||
第 14 章 动态规划
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
|
||||
@@ -2843,14 +2782,6 @@
|
||||
14.1 初探动态规划
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2871,14 +2802,6 @@
|
||||
14.2 DP 问题特性
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2899,14 +2822,6 @@
|
||||
14.3 DP 解题思路
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2927,14 +2842,6 @@
|
||||
14.4 0-1 背包问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2955,14 +2862,6 @@
|
||||
14.5 完全背包问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -2983,14 +2882,6 @@
|
||||
14.6 编辑距离问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -3011,14 +2902,6 @@
|
||||
14.7 小结
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -3077,14 +2960,6 @@
|
||||
第 15 章 贪心
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
|
||||
@@ -3116,14 +2991,6 @@
|
||||
15.1 贪心算法
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -3144,14 +3011,6 @@
|
||||
15.2 分数背包问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -3172,14 +3031,6 @@
|
||||
15.3 最大容量问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -3200,14 +3051,6 @@
|
||||
15.4 最大切分乘积问题
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -3228,14 +3071,6 @@
|
||||
15.5 小结
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<span class="md-status md-status--new" title="最近添加">
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
</a>
|
||||
</li>
|
||||
@@ -3698,7 +3533,7 @@
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<p><img alt="在前序遍历中搜索节点" src="../backtracking_algorithm.assets/preorder_find_nodes.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_nodes.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="在前序遍历中搜索节点" src="../backtracking_algorithm.assets/preorder_find_nodes.png" /></a></p>
|
||||
<p align="center"> 图 13-1 在前序遍历中搜索节点 </p>
|
||||
|
||||
<h2 id="1311">13.1.1 尝试与回退<a class="headerlink" href="#1311" title="Permanent link">¶</a></h2>
|
||||
@@ -3946,37 +3781,37 @@
|
||||
<div class="tabbed-set tabbed-alternate" data-tabs="3:11"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1"><1></label><label for="__tabbed_3_2"><2></label><label for="__tabbed_3_3"><3></label><label for="__tabbed_3_4"><4></label><label for="__tabbed_3_5"><5></label><label for="__tabbed_3_6"><6></label><label for="__tabbed_3_7"><7></label><label for="__tabbed_3_8"><8></label><label for="__tabbed_3_9"><9></label><label for="__tabbed_3_10"><10></label><label for="__tabbed_3_11"><11></label></div>
|
||||
<div class="tabbed-content">
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="尝试与回退" src="../backtracking_algorithm.assets/preorder_find_paths_step1.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="尝试与回退" src="../backtracking_algorithm.assets/preorder_find_paths_step1.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step2" src="../backtracking_algorithm.assets/preorder_find_paths_step2.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step2" src="../backtracking_algorithm.assets/preorder_find_paths_step2.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step3" src="../backtracking_algorithm.assets/preorder_find_paths_step3.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step3" src="../backtracking_algorithm.assets/preorder_find_paths_step3.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step4" src="../backtracking_algorithm.assets/preorder_find_paths_step4.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step4" src="../backtracking_algorithm.assets/preorder_find_paths_step4.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step5" src="../backtracking_algorithm.assets/preorder_find_paths_step5.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step5.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step5" src="../backtracking_algorithm.assets/preorder_find_paths_step5.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step6" src="../backtracking_algorithm.assets/preorder_find_paths_step6.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step6.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step6" src="../backtracking_algorithm.assets/preorder_find_paths_step6.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step7" src="../backtracking_algorithm.assets/preorder_find_paths_step7.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step7.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step7" src="../backtracking_algorithm.assets/preorder_find_paths_step7.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step8" src="../backtracking_algorithm.assets/preorder_find_paths_step8.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step8.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step8" src="../backtracking_algorithm.assets/preorder_find_paths_step8.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step9" src="../backtracking_algorithm.assets/preorder_find_paths_step9.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step9.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step9" src="../backtracking_algorithm.assets/preorder_find_paths_step9.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step10" src="../backtracking_algorithm.assets/preorder_find_paths_step10.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step10.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step10" src="../backtracking_algorithm.assets/preorder_find_paths_step10.png" /></a></p>
|
||||
</div>
|
||||
<div class="tabbed-block">
|
||||
<p><img alt="preorder_find_paths_step11" src="../backtracking_algorithm.assets/preorder_find_paths_step11.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_paths_step11.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="preorder_find_paths_step11" src="../backtracking_algorithm.assets/preorder_find_paths_step11.png" /></a></p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
@@ -4232,7 +4067,7 @@
|
||||
</div>
|
||||
</div>
|
||||
<p>剪枝是一个非常形象的名词。如图 13-3 所示,在搜索过程中,<strong>我们“剪掉”了不满足约束条件的搜索分支</strong>,避免许多无意义的尝试,从而提高了搜索效率。</p>
|
||||
<p><img alt="根据约束条件剪枝" src="../backtracking_algorithm.assets/preorder_find_constrained_paths.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/preorder_find_constrained_paths.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="根据约束条件剪枝" src="../backtracking_algorithm.assets/preorder_find_constrained_paths.png" /></a></p>
|
||||
<p align="center"> 图 13-3 根据约束条件剪枝 </p>
|
||||
|
||||
<h2 id="1313">13.1.3 框架代码<a class="headerlink" href="#1313" title="Permanent link">¶</a></h2>
|
||||
@@ -5046,7 +4881,7 @@
|
||||
</div>
|
||||
</div>
|
||||
<p>根据题意,我们在找到值为 <span class="arithmatex">\(7\)</span> 的节点后应该继续搜索,<strong>因此需要将记录解之后的 <code>return</code> 语句删除</strong>。图 13-4 对比了保留或删除 <code>return</code> 语句的搜索过程。</p>
|
||||
<p><img alt="保留与删除 return 的搜索过程对比" src="../backtracking_algorithm.assets/backtrack_remove_return_or_not.png" /></p>
|
||||
<p><a class="glightbox" href="../backtracking_algorithm.assets/backtrack_remove_return_or_not.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="保留与删除 return 的搜索过程对比" src="../backtracking_algorithm.assets/backtrack_remove_return_or_not.png" /></a></p>
|
||||
<p align="center"> 图 13-4 保留与删除 return 的搜索过程对比 </p>
|
||||
|
||||
<p>相比基于前序遍历的代码实现,基于回溯算法框架的代码实现虽然显得啰嗦,但通用性更好。实际上,<strong>许多回溯问题都可以在该框架下解决</strong>。我们只需根据具体问题来定义 <code>state</code> 和 <code>choices</code> ,并实现框架中的各个方法即可。</p>
|
||||
@@ -5302,10 +5137,15 @@ aria-label="页脚"
|
||||
<div class="md-copyright">
|
||||
|
||||
<div class="md-copyright__highlight">
|
||||
Copyright © 2023 Krahets
|
||||
Copyright © 2022 - 2023 Krahets
|
||||
</div>
|
||||
|
||||
|
||||
Made with
|
||||
<a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener">
|
||||
Material for MkDocs
|
||||
</a>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- Social links -->
|
||||
@@ -5374,5 +5214,5 @@ aria-label="页脚"
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
|
||||
</html>
|
||||
Reference in New Issue
Block a user