diff --git a/404.html b/404.html index bc247f28d..e88641ecc 100644 --- a/404.html +++ b/404.html @@ -1697,7 +1697,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_appendix/contribution/index.html b/chapter_appendix/contribution/index.html index 5420737f0..45f047553 100644 --- a/chapter_appendix/contribution/index.html +++ b/chapter_appendix/contribution/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_appendix/index.html b/chapter_appendix/index.html index 92dae6066..b47dfa144 100644 --- a/chapter_appendix/index.html +++ b/chapter_appendix/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_appendix/installation/index.html b/chapter_appendix/installation/index.html index 9ddc0fda5..a5e774bfa 100644 --- a/chapter_appendix/installation/index.html +++ b/chapter_appendix/installation/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_appendix/terminology/index.html b/chapter_appendix/terminology/index.html index f7cfbb78b..eb6d217ba 100644 --- a/chapter_appendix/terminology/index.html +++ b/chapter_appendix/terminology/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_array_and_linkedlist/array/index.html b/chapter_array_and_linkedlist/array/index.html index 3431da304..46541ac1b 100644 --- a/chapter_array_and_linkedlist/array/index.html +++ b/chapter_array_and_linkedlist/array/index.html @@ -1857,7 +1857,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3671,7 +3671,7 @@
「数组 array」是一种线性数据结构,其将相同类型的元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的「索引 index」。图 4-1 展示了数组的主要术语和概念。
+「数组 array」是一种线性数据结构,其将相同类型的元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的「索引 index」。图 4-1 展示了数组的主要概念和存储方式。
图 4-1 数组定义与存储方式
diff --git a/chapter_array_and_linkedlist/index.html b/chapter_array_and_linkedlist/index.html index c43d85138..426455798 100644 --- a/chapter_array_and_linkedlist/index.html +++ b/chapter_array_and_linkedlist/index.html @@ -1721,7 +1721,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_array_and_linkedlist/linked_list/index.html b/chapter_array_and_linkedlist/linked_list/index.html index a501b61c3..27c3dd345 100644 --- a/chapter_array_and_linkedlist/linked_list/index.html +++ b/chapter_array_and_linkedlist/linked_list/index.html @@ -1848,7 +1848,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3662,8 +3662,8 @@观察图 4-5 ,链表的组成单位是「节点 node」对象。每个节点都包含两项数据:节点的“值”和指向下一节点的“引用”。
null、nullptr 和 None 。如以下代码所示,链表节点 ListNode 除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,链表比数组占用更多的内存空间。
如图 4-8 所示,常见的链表类型包括三种。
None 。为什么数组要求相同类型的元素,而在链表中却没有强调同类型呢?
-链表由节点组成,节点之间通过引用(指针)连接,各个节点可以存储不同类型的数据,例如 int、double、string、object 等。
-相对地,数组元素则必须是相同类型的,这样才能通过计算偏移量来获取对应元素位置。例如,数组同时包含 int 和 long 两种类型,单个元素分别占用 4 bytes 和 8 bytes ,此时就不能用以下公式计算偏移量了,因为数组中包含了两种长度的元素。
+链表由节点组成,节点之间通过引用(指针)连接,各个节点可以存储不同类型的数据,例如 int、double、string、object 等。
相对地,数组元素则必须是相同类型的,这样才能通过计算偏移量来获取对应元素位置。例如,数组同时包含 int 和 long 两种类型,单个元素分别占用 4 字节 和 8 字节 ,此时就不能用以下公式计算偏移量了,因为数组中包含了两种“元素长度”。
删除节点后,是否需要把 P.next 设为 \(\text{None}\) 呢?
删除节点后,是否需要把 P.next 设为 None 呢?
不修改 P.next 也可以。从该链表的角度看,从头节点遍历到尾节点已经不会遇到 P 了。这意味着节点 P 已经从链表中删除了,此时节点 P 指向哪里都不会对该链表产生影响。
从垃圾回收的角度看,对于 Java、Python、Go 等拥有自动垃圾回收机制的语言来说,节点 P 是否被回收取决于是否仍存在指向它的引用,而不是 P.next 的值。在 C 和 C++ 等语言中,我们需要手动释放节点内存。
图“链表定义与存储方式”中,浅蓝色的存储节点指针是占用一块内存地址吗?还是和节点值各占一半呢?
该示意图只是定性表示,定量表示需要根据具体情况进行分析。
int、long、double 和实例对象等。图 13-15 4 皇后问题的解
-图 13-16 展示了本题的三个约束条件:多个皇后不能在同一行、同一列、同一对角线。值得注意的是,对角线分为主对角线 \ 和次对角线 / 两种。
图 13-16 展示了本题的三个约束条件:多个皇后不能在同一行、同一列、同一条对角线上。值得注意的是,对角线分为主对角线 \ 和次对角线 / 两种。
图 13-16 n 皇后问题的约束条件
@@ -3582,10 +3582,10 @@ return # 遍历所有列 for col in range(n): - # 计算该格子对应的主对角线和副对角线 + # 计算该格子对应的主对角线和次对角线 diag1 = row - col + n - 1 diag2 = row + col - # 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + # 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if not cols[col] and not diags1[diag1] and not diags2[diag2]: # 尝试:将皇后放置在该格子 state[row][col] = "Q" @@ -3602,7 +3602,7 @@ state = [["#" for _ in range(n)] for _ in range(n)] cols = [False] * n # 记录列是否有皇后 diags1 = [False] * (2 * n - 1) # 记录主对角线上是否有皇后 - diags2 = [False] * (2 * n - 1) # 记录副对角线上是否有皇后 + diags2 = [False] * (2 * n - 1) # 记录次对角线上是否有皇后 res = [] backtrack(0, n, state, res, cols, diags1, diags2) @@ -3620,10 +3620,10 @@ } // 遍历所有列 for (int col = 0; col < n; col++) { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = "Q"; @@ -3643,7 +3643,7 @@ vector<vector<string>> state(n, vector<string>(n, "#")); vector<bool> cols(n, false); // 记录列是否有皇后 vector<bool> diags1(2 * n - 1, false); // 记录主对角线上是否有皇后 - vector<bool> diags2(2 * n - 1, false); // 记录副对角线上是否有皇后 + vector<bool> diags2(2 * n - 1, false); // 记录次对角线上是否有皇后 vector<vector<vector<string>>> res; backtrack(0, n, state, res, cols, diags1, diags2); @@ -3667,10 +3667,10 @@ } // 遍历所有列 for (int col = 0; col < n; col++) { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state.get(row).set(col, "Q"); @@ -3697,7 +3697,7 @@ } boolean[] cols = new boolean[n]; // 记录列是否有皇后 boolean[] diags1 = new boolean[2 * n - 1]; // 记录主对角线上是否有皇后 - boolean[] diags2 = new boolean[2 * n - 1]; // 记录副对角线上是否有皇后 + boolean[] diags2 = new boolean[2 * n - 1]; // 记录次对角线上是否有皇后 List<List<List<String>>> res = new ArrayList<>(); backtrack(0, n, state, res, cols, diags1, diags2); @@ -3721,10 +3721,10 @@ } // 遍历所有列 for (int col = 0; col < n; col++) { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = "Q"; @@ -3751,7 +3751,7 @@ } bool[] cols = new bool[n]; // 记录列是否有皇后 bool[] diags1 = new bool[2 * n - 1]; // 记录主对角线上是否有皇后 - bool[] diags2 = new bool[2 * n - 1]; // 记录副对角线上是否有皇后 + bool[] diags2 = new bool[2 * n - 1]; // 记录次对角线上是否有皇后 List<List<List<string>>> res = []; Backtrack(0, n, state, res, cols, diags1, diags2); @@ -3775,10 +3775,10 @@ } // 遍历所有列 for col := 0; col < n; col++ { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 diag1 := row - col + n - 1 diag2 := row + col - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] { // 尝试:将皇后放置在该格子 (*state)[row][col] = "Q" @@ -3806,10 +3806,10 @@ } // 遍历所有列 for col := 0; col < n; col++ { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 diag1 := row - col + n - 1 diag2 := row + col - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] { // 尝试:将皇后放置在该格子 (*state)[row][col] = "Q" @@ -3853,10 +3853,10 @@ } // 遍历所有列 for col in 0 ..< n { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 let diag1 = row - col + n - 1 let diag2 = row + col - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !cols[col] && !diags1[diag1] && !diags2[diag2] { // 尝试:将皇后放置在该格子 state[row][col] = "Q" @@ -3880,7 +3880,7 @@ var state = Array(repeating: Array(repeating: "#", count: n), count: n) var cols = Array(repeating: false, count: n) // 记录列是否有皇后 var diags1 = Array(repeating: false, count: 2 * n - 1) // 记录主对角线上是否有皇后 - var diags2 = Array(repeating: false, count: 2 * n - 1) // 记录副对角线上是否有皇后 + var diags2 = Array(repeating: false, count: 2 * n - 1) // 记录次对角线上是否有皇后 var res: [[[String]]] = [] backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2) @@ -3899,10 +3899,10 @@ } // 遍历所有列 for (let col = 0; col < n; col++) { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 const diag1 = row - col + n - 1; const diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = 'Q'; @@ -3922,7 +3922,7 @@ const state = Array.from({ length: n }, () => Array(n).fill('#')); const cols = Array(n).fill(false); // 记录列是否有皇后 const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线上是否有皇后 - const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线上是否有皇后 + const diags2 = Array(2 * n - 1).fill(false); // 记录次对角线上是否有皇后 const res = []; backtrack(0, n, state, res, cols, diags1, diags2); @@ -3948,10 +3948,10 @@ } // 遍历所有列 for (let col = 0; col < n; col++) { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 const diag1 = row - col + n - 1; const diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = 'Q'; @@ -3971,7 +3971,7 @@ const state = Array.from({ length: n }, () => Array(n).fill('#')); const cols = Array(n).fill(false); // 记录列是否有皇后 const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线上是否有皇后 - const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线上是否有皇后 + const diags2 = Array(2 * n - 1).fill(false); // 记录次对角线上是否有皇后 const res: string[][][] = []; backtrack(0, n, state, res, cols, diags1, diags2); @@ -4001,10 +4001,10 @@ } // 遍历所有列 for (int col = 0; col < n; col++) { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = "Q"; @@ -4028,7 +4028,7 @@ List<List<String>> state = List.generate(n, (index) => List.filled(n, "#")); List<bool> cols = List.filled(n, false); // 记录列是否有皇后 List<bool> diags1 = List.filled(2 * n - 1, false); // 记录主对角线上是否有皇后 - List<bool> diags2 = List.filled(2 * n - 1, false); // 记录副对角线上是否有皇后 + List<bool> diags2 = List.filled(2 * n - 1, false); // 记录次对角线上是否有皇后 List<List<List<String>>> res = []; backtrack(0, n, state, res, cols, diags1, diags2); @@ -4052,10 +4052,10 @@ } // 遍历所有列 for col in 0..n { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 let diag1 = row + n - 1 - col; let diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if !cols[col] && !diags1[diag1] && !diags2[diag2] { // 尝试:将皇后放置在该格子 state.get_mut(row).unwrap()[col] = "Q".into(); @@ -4082,7 +4082,7 @@ } let mut cols = vec![false; n]; // 记录列是否有皇后 let mut diags1 = vec![false; 2 * n - 1]; // 记录主对角线上是否有皇后 - let mut diags2 = vec![false; 2 * n - 1]; // 记录副对角线上是否有皇后 + let mut diags2 = vec![false; 2 * n - 1]; // 记录次对角线上是否有皇后 let mut res: Vec<Vec<Vec<String>>> = Vec::new(); backtrack(0, n, &mut state, &mut res, &mut cols, &mut diags1, &mut diags2); @@ -4107,10 +4107,10 @@ } // 遍历所有列 for (int col = 0; col < n; col++) { - // 计算该格子对应的主对角线和副对角线 + // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; - // 剪枝:不允许该格子所在列、主对角线、副对角线上存在皇后 + // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = 'Q'; @@ -4136,7 +4136,7 @@ } bool cols[MAX_SIZE] = {false}; // 记录列是否有皇后 bool diags1[2 * MAX_SIZE - 1] = {false}; // 记录主对角线上是否有皇后 - bool diags2[2 * MAX_SIZE - 1] = {false}; // 记录副对角线上是否有皇后 + bool diags2[2 * MAX_SIZE - 1] = {false}; // 记录次对角线上是否有皇后 char ***res = (char ***)malloc(sizeof(char **) * MAX_SIZE); *returnSize = 0; diff --git a/chapter_backtracking/permutations_problem/index.html b/chapter_backtracking/permutations_problem/index.html index 0da91db4a..a441d1029 100644 --- a/chapter_backtracking/permutations_problem/index.html +++ b/chapter_backtracking/permutations_problem/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -4521,8 +4521,8 @@请注意,虽然 selected 和 duplicated 都用于剪枝,但两者的目标不同。
selected 。它记录的是当前状态中包含哪些元素,其作用是防止 choices 中的任一元素在 state 中重复出现。backtrack 函数)都包含一个 duplicated 。它记录的是在本轮遍历(for 循环)中哪些元素已被选择过,其作用是保证相等的元素只被选择一次。selected 。它记录的是当前状态中包含哪些元素,其作用是避免某个元素在 state 中重复出现。backtrack 函数)都包含一个 duplicated 。它记录的是在本轮遍历(for 循环)中哪些元素已被选择过,其作用是保证相等元素只被选择一次。图 13-9 展示了两个剪枝条件的生效范围。注意,树中的每个节点代表一个选择,从根节点到叶节点的路径上的各个节点构成一个排列。
diff --git a/chapter_backtracking/subset_sum_problem/index.html b/chapter_backtracking/subset_sum_problem/index.html index 67baf4baa..41bcfb146 100644 --- a/chapter_backtracking/subset_sum_problem/index.html +++ b/chapter_backtracking/subset_sum_problem/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_backtracking/summary/index.html b/chapter_backtracking/summary/index.html index 7b61c9388..f35589f7e 100644 --- a/chapter_backtracking/summary/index.html +++ b/chapter_backtracking/summary/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3525,8 +3525,8 @@生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 \(1\) 个细胞,分裂一轮后变为 \(2\) 个,分裂两轮后变为 \(4\) 个,以此类推,分裂 \(n\) 轮后有 \(2^n\) 个细胞。
-图 2-11 和以下代码模拟了细胞分裂的过程,时间复杂度为 \(O(2^n)\) 。
+图 2-11 和以下代码模拟了细胞分裂的过程,时间复杂度为 \(O(2^n)\) :
基本数据类型以二进制的形式存储在计算机中。一个二进制位即为 \(1\) 比特。在绝大多数现代操作系统中,\(1\) 字节(byte)由 \(8\) 比特(bit)组成。
基本数据类型的取值范围取决于其占用的空间大小。下面以 Java 为例。
byte 占用 \(1\) byte = \(8\) bits ,可以表示 \(2^{8}\) 个数字。int 占用 \(4\) bytes = \(32\) bits ,可以表示 \(2^{32}\) 个数字。byte 占用 \(1\) 字节 = \(8\) 比特 ,可以表示 \(2^{8}\) 个数字。int 占用 \(4\) 字节 = \(32\) 比特 ,可以表示 \(2^{32}\) 个数字。表 3-1 列举了 Java 中各种基本数据类型的占用空间、取值范围和默认值。此表格无须死记硬背,大致理解即可,需要时可以通过查表来回忆。
表 3-1 基本数据类型的占用空间和取值范围
@@ -3474,7 +3474,7 @@byteshortintlongfloatdoublecharbool请注意,表 3-1 针对的是 Java 的基本数据类型的情况。每种编程语言都有各自的数据类型定义,它们的占用空间、取值范围和默认值可能会有所不同。
int 可以是任意大小,只受限于可用内存;浮点数 float 是双精度 64 位;没有 char 类型,单个字符实际上是长度为 1 的字符串 str 。char 的大小在 C 和 C++ 中为 1 字节,在大多数编程语言中取决于特定的字符编码方法,详见“字符编码”章节。那么,基本数据类型与数据结构之间有什么联系呢?我们知道,数据结构是在计算机中组织与存储数据的方式。这句话的主语是“结构”而非“数据”。
-如果想表示“一排数字”,我们自然会想到使用数组。这是因为数组的线性结构可以表示数字的相邻关系和顺序关系,但至于存储的内容是整数 int、小数 float 或是字符 char ,则与“数据结构”无关。
如果想表示“一排数字”,我们自然会想到使用数组。这是因为数组的线性结构可以表示数字的相邻关系和顺序关系,但至于存储的内容是整数 int、小数 float 还是字符 char ,则与“数据结构”无关。
换句话说,基本数据类型提供了数据的“内容类型”,而数据结构提供了数据的“组织方式”。例如以下代码,我们用相同的数据结构(数组)来存储与表示不同的基本数据类型,包括 int、float、char、bool 等。
图 3-6 ASCII 码
-然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的字符集「EASCII」。它在 ASCII 的 7 位基础上扩展到 8 位,能够表示 256 个不同的字符。
+然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的「EASCII」字符集。它在 ASCII 的 7 位基础上扩展到 8 位,能够表示 256 个不同的字符。
在世界范围内,陆续出现了一批适用于不同地区的 EASCII 字符集。这些字符集的前 128 个字符统一为 ASCII 码,后 128 个字符定义不同,以适应不同语言的需求。
后来人们发现,EASCII 码仍然无法满足许多语言的字符数量要求。比如汉字有近十万个,光日常使用的就有几千个。中国国家标准总局于 1980 年发布了「GB2312」字符集,其收录了 6763 个汉字,基本满足了汉字的计算机处理需要。
@@ -3612,7 +3612,7 @@从存储空间占用的角度看,使用 UTF-8 表示英文字符非常高效,因为它仅需 1 字节;使用 UTF-16 编码某些非英文字符(例如中文)会更加高效,因为它仅需 2 字节,而 UTF-8 可能需要 3 字节。
从兼容性的角度看,UTF-8 的通用性最佳,许多工具和库优先支持 UTF-8 。
对于以往的大多数编程语言,程序运行中的字符串都采用 UTF-16 或 UTF-32 这类等长的编码。在等长编码下,我们可以将字符串看作数组来处理,这种做法具有以下优点。
+对于以往的大多数编程语言,程序运行中的字符串都采用 UTF-16 或 UTF-32 这类等长编码。在等长编码下,我们可以将字符串看作数组来处理,这种做法具有以下优点。
基于数组实现的数据结构也称“静态数据结构”,这意味着此类数据结构在初始化后长度不可变。相对应地,基于链表实现的数据结构称“动态数据结构”,这类数据结构在初始化后,仍可以在程序运行过程中对其长度进行调整。
+基于数组实现的数据结构也称“静态数据结构”,这意味着此类数据结构在初始化后长度不可变。相对应地,基于链表实现的数据结构也称“动态数据结构”,这类数据结构在初始化后,仍可以在程序运行过程中对其长度进行调整。
Tip
如果你感觉物理结构理解起来有困难,建议先阅读下一章,然后再回顾本节内容。
diff --git a/chapter_data_structure/index.html b/chapter_data_structure/index.html index 4f79fd43d..8f1a16657 100644 --- a/chapter_data_structure/index.html +++ b/chapter_data_structure/index.html @@ -1721,7 +1721,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_data_structure/number_encoding/index.html b/chapter_data_structure/number_encoding/index.html index bbd5152d0..6875a6eec 100644 --- a/chapter_data_structure/number_encoding/index.html +++ b/chapter_data_structure/number_encoding/index.html @@ -897,7 +897,7 @@Note
在本书中,标题带有 * 符号的是选读章节。如果你时间有限或感到理解困难,可以先跳过,等学完必读章节后再单独攻克。
在上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个,例如 byte 的取值范围是 \([-128, 127]\) 。这个现象比较反直觉,它的内在原因涉及原码、反码、补码的相关知识。
首先需要指出,数字是以“补码”的形式存储在计算机中的。在分析这样做的原因之前,首先给出三者的定义。
现在我们可以总结出计算机使用补码的原因:基于补码表示,计算机可以用同样的电路和操作来处理正数和负数的加法,不需要设计特殊的硬件电路来处理减法,并且无须特别处理正负零的歧义问题。这大大简化了硬件设计,提高了运算效率。
补码的设计非常精妙,因篇幅关系我们就先介绍到这里,建议有兴趣的读者进一步深入了解。
细心的你可能会发现:int 和 float 长度相同,都是 4 bytes ,但为什么 float 的取值范围远大于 int ?这非常反直觉,因为按理说 float 需要表示小数,取值范围应该变小才对。
实际上,这是因为浮点数 float 采用了不同的表示方式。记一个 32-bit 长度的二进制数为:
细心的你可能会发现:int 和 float 长度相同,都是 4 字节 ,但为什么 float 的取值范围远大于 int ?这非常反直觉,因为按理说 float 需要表示小数,取值范围应该变小才对。
实际上,这是因为浮点数 float 采用了不同的表示方式。记一个 32 位长度的二进制数为:
根据 IEEE 754 标准,32-bit 长度的 float 由以下三个部分构成。
二进制数 float 对应值的计算方法为:
char 类型的长度是 1 byte 吗?
char 类型的长度由编程语言采用的编码方法决定。例如,Java、JavaScript、TypeScript、C# 都采用 UTF-16 编码(保存 Unicode 码点),因此 char 类型的长度为 2 bytes。
char 类型的长度是 1 字节吗?
char 类型的长度由编程语言采用的编码方法决定。例如,Java、JavaScript、TypeScript、C# 都采用 UTF-16 编码(保存 Unicode 码点),因此 char 类型的长度为 2 字节。
基于数组实现的数据结构也称“静态数据结构” 是否有歧义?因为栈也可以进行出栈和入栈等操作,这些操作都是“动态”的。
+基于数组实现的数据结构也称“静态数据结构” 是否有歧义?栈也可以进行出栈和入栈等操作,这些操作都是“动态”的。
栈确实可以实现动态的数据操作,但数据结构仍然是“静态”(长度不可变)的。尽管基于数组的数据结构可以动态地添加或删除元素,但它们的容量是固定的。如果数据量超出了预分配的大小,就需要创建一个新的更大的数组,并将旧数组的内容复制到新数组中。
在构建栈(队列)的时候,未指定它的大小,为什么它们是“静态数据结构”呢?
-在高级编程语言中,我们无须人工指定栈(队列)的初始容量,这个工作由类内部自动完成。例如,Java 的 ArrayList 的初始容量通常为 10。另外,扩容操作也是自动实现的。详见后续的“列表”章节。
+在高级编程语言中,我们无须人工指定栈(队列)的初始容量,这个工作由类内部自动完成。例如,Java 的 ArrayList 的初始容量通常为 10。另外,扩容操作也是自动实现的。详见后续的“列表”章节。
inorder 中的索引,利用该索引可将 inorder 划分为 [ 9 | 3 | 1 2 7 ] 。inorder 划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将 preorder 划分为 [ 3 | 9 | 2 1 7 ] 。inorder 的划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将 preorder 划分为 [ 3 | 9 | 2 1 7 ] 。图 12-6 在前序遍历和中序遍历中划分子树
@@ -3619,7 +3619,7 @@请注意,右子树根节点索引中的 \((m-l)\) 的含义是“左子树的节点数量”,建议配合图 12-7 理解。
+请注意,右子树根节点索引中的 \((m-l)\) 的含义是“左子树的节点数量”,建议结合图 12-7 理解。
图 12-7 根节点和左右子树的索引区间表示
diff --git a/chapter_divide_and_conquer/divide_and_conquer/index.html b/chapter_divide_and_conquer/divide_and_conquer/index.html index 218efb0a5..9b13eab9d 100644 --- a/chapter_divide_and_conquer/divide_and_conquer/index.html +++ b/chapter_divide_and_conquer/divide_and_conquer/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3601,7 +3601,7 @@显然,归并排序满足以上三条判断依据。
+显然,归并排序满足以上三个判断依据。
另一方面,分治在算法和数据结构的设计中应用非常广泛。
+另一方面,分治在算法和数据结构的设计中应用得非常广泛。
可以看出,分治是一种“润物细无声”的算法思想,隐含在各种算法与数据结构之中。
diff --git a/chapter_divide_and_conquer/hanota_problem/index.html b/chapter_divide_and_conquer/hanota_problem/index.html index b0dcceacb..f3b7c4953 100644 --- a/chapter_divide_and_conquer/hanota_problem/index.html +++ b/chapter_divide_and_conquer/hanota_problem/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3552,14 +3552,14 @@ -图 12-11 规模为 1 问题的解
+图 12-11 规模为 1 的问题的解
如图 12-12 所示,对于问题 \(f(2)\) ,即当有两个圆盘时,由于要时刻满足小圆盘在大圆盘之上,因此需要借助 B 来完成移动。
图 12-12 规模为 2 问题的解
+图 12-12 规模为 2 的问题的解
解决问题 \(f(2)\) 的过程可总结为:将两个圆盘借助 B 从 A 移至 C 。其中,C 称为目标柱、B 称为缓冲柱。
图 12-13 规模为 3 问题的解
+图 12-13 规模为 3 的问题的解
-从本质上看,我们将问题 \(f(3)\) 划分为两个子问题 \(f(2)\) 和子问题 \(f(1)\) 。按顺序解决这三个子问题之后,原问题随之得到解决。这说明子问题是独立的,而且解可以合并。
+从本质上看,我们将问题 \(f(3)\) 划分为两个子问题 \(f(2)\) 和一个子问题 \(f(1)\) 。按顺序解决这三个子问题之后,原问题随之得到解决。这说明子问题是独立的,而且解可以合并。
至此,我们可总结出图 12-14 所示的解决汉诺塔问题的分治策略:将原问题 \(f(n)\) 划分为两个子问题 \(f(n-1)\) 和一个子问题 \(f(1)\) ,并按照以下顺序解决这三个子问题。
C 从 A 移至 B 。图 14-8 带约束爬到第 3 阶的方案数量
-在该问题中,如果上一轮是跳 \(1\) 阶上来的,那么下一轮就必须跳 \(2\) 阶。这意味着,下一步选择不能由当前状态(当前所在楼梯阶数)独立决定,还和前一个状态(上轮所在楼梯阶数)有关。
+在该问题中,如果上一轮是跳 \(1\) 阶上来的,那么下一轮就必须跳 \(2\) 阶。这意味着,下一步选择不能由当前状态(当前所在楼梯阶数)独立决定,还和前一个状态(上一轮所在楼梯阶数)有关。
不难发现,此问题已不满足无后效性,状态转移方程 \(dp[i] = dp[i-1] + dp[i-2]\) 也失效了,因为 \(dp[i-1]\) 代表本轮跳 \(1\) 阶,但其中包含了许多“上一轮是跳 \(1\) 阶上来的”方案,而为了满足约束,我们就不能将 \(dp[i-1]\) 直接计入 \(dp[i]\) 中。
为此,我们需要扩展状态定义:状态 \([i, j]\) 表示处在第 \(i\) 阶并且上一轮跳了 \(j\) 阶,其中 \(j \in \{1, 2\}\) 。此状态定义有效地区分了上一轮跳了 \(1\) 阶还是 \(2\) 阶,我们可以据此判断当前状态是从何而来的。
如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并在求解过程中验证它。
+如果一个问题满足决策树模型,并具有较为明显的“加分项”,我们就可以假设它是一个动态规划问题,并在求解过程中验证它。
动态规划的解题流程会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 \(dp\) 表,推导状态转移方程,确定边界条件等。
为了更形象地展示解题步骤,我们使用一个经典问题“最小路径和”来举例。
diff --git a/chapter_dynamic_programming/edit_distance_problem/index.html b/chapter_dynamic_programming/edit_distance_problem/index.html index 583d56730..65ad23a33 100644 --- a/chapter_dynamic_programming/edit_distance_problem/index.html +++ b/chapter_dynamic_programming/edit_distance_problem/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_dynamic_programming/index.html b/chapter_dynamic_programming/index.html index f0730b5de..f9fbb006f 100644 --- a/chapter_dynamic_programming/index.html +++ b/chapter_dynamic_programming/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_dynamic_programming/intro_to_dynamic_programming/index.html b/chapter_dynamic_programming/intro_to_dynamic_programming/index.html index 21dff8f06..63b2163c9 100644 --- a/chapter_dynamic_programming/intro_to_dynamic_programming/index.html +++ b/chapter_dynamic_programming/intro_to_dynamic_programming/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -4134,7 +4134,7 @@ dp[i] = dp[i-1] + dp[i-2]图 14-3 爬楼梯对应递归树
观察图 14-3 ,指数阶的时间复杂度是“重叠子问题”导致的。例如 \(dp[9]\) 被分解为 \(dp[8]\) 和 \(dp[7]\) ,\(dp[8]\) 被分解为 \(dp[7]\) 和 \(dp[6]\) ,两者都包含子问题 \(dp[7]\) 。
-以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的问题上。
+以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的子问题上。
为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。为此,我们声明一个数组 mem 来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。
图 9-3 连通图与非连通图
-我们还可以为边添加“权重”变量,从而得到如图 9-4 所示的「有权图 weighted graph」。例如在“王者荣耀”等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。
+我们还可以为边添加“权重”变量,从而得到如图 9-4 所示的「有权图 weighted graph」。例如在《王者荣耀》等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。
图 9-4 有权图与无权图
@@ -3642,7 +3642,7 @@ G & = \{ V, E \} \newline邻接表仅存储实际存在的边,而边的总数通常远小于 \(n^2\) ,因此它更加节省空间。然而,在邻接表中需要通过遍历链表来查找边,因此其时间效率不如邻接矩阵。
观察图 9-6 ,邻接表结构与哈希表中的“链式地址”非常相似,因此我们也可以采用类似的方法来优化效率。比如当链表较长时,可以将链表转化为 AVL 树或红黑树,从而将时间效率从 \(O(n)\) 优化至 \(O(\log n)\) ;还可以把链表转换为哈希表,从而将时间复杂度降至 \(O(1)\) 。
-如表 9-1 所示,许多现实系统可以用图来建模,相应的问题也可以约化为图计算问题。
表 9-1 现实生活中常见的图
diff --git a/chapter_graph/graph_operations/index.html b/chapter_graph/graph_operations/index.html index 9503a1093..ddd2baed2 100644 --- a/chapter_graph/graph_operations/index.html +++ b/chapter_graph/graph_operations/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_graph/graph_traversal/index.html b/chapter_graph/graph_traversal/index.html index 7f27ebe5b..b3da07982 100644 --- a/chapter_graph/graph_traversal/index.html +++ b/chapter_graph/graph_traversal/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3612,7 +3612,7 @@树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作图的一种特例。显然,树的遍历操作也是图的遍历操作的一种特例。
-图和树都需要应用搜索算法来实现遍历操作。图的遍历方式可分为两种:「广度优先遍历 breadth-first traversal」和「深度优先遍历 depth-first traversal」。它们也常被称为「广度优先搜索 breadth-first search」和「深度优先搜索 depth-first search」,简称 BFS 和 DFS 。
+图和树都需要应用搜索算法来实现遍历操作。图的遍历方式也可分为两种:「广度优先遍历」和「深度优先遍历」。
广度优先遍历是一种由近及远的遍历方式,从某个节点出发,始终优先访问距离最近的顶点,并一层层向外扩张。如图 9-9 所示,从左上角顶点出发,首先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。
@@ -3630,7 +3630,7 @@/* 广度优先遍历 BFS */
+graph_bfs.rs/* 广度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
fn graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {
// 顶点遍历序列
@@ -3965,7 +3965,7 @@
return 0;
}
-/* 广度优先遍历 BFS */
+/* 广度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
void graphBFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize, Vertex **visited, int *visitedSize) {
// 队列用于实现 BFS
@@ -4056,7 +4056,7 @@
graph_dfs.pydef dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):
- """深度优先遍历 DFS 辅助函数"""
+ """深度优先遍历辅助函数"""
res.append(vet) # 记录访问顶点
visited.add(vet) # 标记该顶点已被访问
# 遍历该顶点的所有邻接顶点
@@ -4067,7 +4067,7 @@
dfs(graph, visited, res, adjVet)
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
- """深度优先遍历 DFS"""
+ """深度优先遍历"""
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
# 顶点遍历序列
res = []
@@ -4078,7 +4078,7 @@
-graph_dfs.cpp/* 深度优先遍历 DFS 辅助函数 */
+graph_dfs.cpp/* 深度优先遍历辅助函数 */
void dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {
res.push_back(vet); // 记录访问顶点
visited.emplace(vet); // 标记该顶点已被访问
@@ -4091,7 +4091,7 @@
}
}
-/* 深度优先遍历 DFS */
+/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {
// 顶点遍历序列
@@ -4104,7 +4104,7 @@
-graph_dfs.java/* 深度优先遍历 DFS 辅助函数 */
+graph_dfs.java/* 深度优先遍历辅助函数 */
void dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {
res.add(vet); // 记录访问顶点
visited.add(vet); // 标记该顶点已被访问
@@ -4117,7 +4117,7 @@
}
}
-/* 深度优先遍历 DFS */
+/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
// 顶点遍历序列
@@ -4130,7 +4130,7 @@
-graph_dfs.cs/* 深度优先遍历 DFS 辅助函数 */
+graph_dfs.cs/* 深度优先遍历辅助函数 */
void DFS(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {
res.Add(vet); // 记录访问顶点
visited.Add(vet); // 标记该顶点已被访问
@@ -4144,7 +4144,7 @@
}
}
-/* 深度优先遍历 DFS */
+/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
List<Vertex> GraphDFS(GraphAdjList graph, Vertex startVet) {
// 顶点遍历序列
@@ -4157,7 +4157,7 @@
-graph_dfs.go/* 深度优先遍历 DFS 辅助函数 */
+graph_dfs.go/* 深度优先遍历辅助函数 */
func dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {
// append 操作会返回新的的引用,必须让原引用重新赋值为新slice的引用
*res = append(*res, vet)
@@ -4172,7 +4172,7 @@
}
}
-/* 深度优先遍历 DFS */
+/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphDFS(g *graphAdjList, startVet Vertex) []Vertex {
// 顶点遍历序列
@@ -4186,7 +4186,7 @@
-graph_dfs.swift/* 深度优先遍历 DFS 辅助函数 */
+graph_dfs.swift/* 深度优先遍历辅助函数 */
func dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {
res.append(vet) // 记录访问顶点
visited.insert(vet) // 标记该顶点已被访问
@@ -4200,7 +4200,7 @@
}
}
-/* 深度优先遍历 DFS */
+/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
func graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
// 顶点遍历序列
@@ -4213,7 +4213,7 @@
-
-
-
-graph_dfs.rs/* 深度优先遍历 DFS 辅助函数 */
+graph_dfs.rs/* 深度优先遍历辅助函数 */
fn dfs(graph: &GraphAdjList, visited: &mut HashSet<Vertex>, res: &mut Vec<Vertex>, vet: Vertex) {
res.push(vet); // 记录访问顶点
visited.insert(vet); // 标记该顶点已被访问
@@ -4320,7 +4320,7 @@
}
}
-/* 深度优先遍历 DFS */
+/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
fn graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {
// 顶点遍历序列
@@ -4345,7 +4345,7 @@
return 0;
}
-/* 深度优先遍历 DFS 辅助函数 */
+/* 深度优先遍历辅助函数 */
void dfs(GraphAdjList *graph, Vertex **res, int *resSize, Vertex *vet) {
// 记录访问顶点
res[(*resSize)++] = vet;
@@ -4361,7 +4361,7 @@
}
}
-/* 深度优先遍历 DFS */
+/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
void graphDFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize) {
dfs(graph, res, resSize, startVet);
diff --git a/chapter_graph/index.html b/chapter_graph/index.html
index 5fdb7a2e3..253bd5f36 100644
--- a/chapter_graph/index.html
+++ b/chapter_graph/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/chapter_graph/summary/index.html b/chapter_graph/summary/index.html
index d72063c3e..bb5aa8d70 100644
--- a/chapter_graph/summary/index.html
+++ b/chapter_graph/summary/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/chapter_greedy/fractional_knapsack_problem/index.html b/chapter_greedy/fractional_knapsack_problem/index.html
index 82075d6f5..f6d8d9207 100644
--- a/chapter_greedy/fractional_knapsack_problem/index.html
+++ b/chapter_greedy/fractional_knapsack_problem/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3966,13 +3966,13 @@
-在最差情况下,需要遍历整个物品列表,因此时间复杂度为 \(O(n)\) ,其中 \(n\) 为物品数量。
+除排序之外,在最差情况下,需要遍历整个物品列表,因此时间复杂度为 \(O(n)\) ,其中 \(n\) 为物品数量。
由于初始化了一个 Item 对象列表,因此空间复杂度为 \(O(n)\) 。
3. 正确性证明¶
采用反证法。假设物品 \(x\) 是单位价值最高的物品,使用某算法求得最大价值为 res ,但该解中不包含物品 \(x\) 。
现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 \(x\) 。由于物品 \(x\) 的单位价值最高,因此替换后的总价值一定大于 res 。这与 res 是最优解矛盾,说明最优解中必须包含物品 \(x\) 。
对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,单位价值更大的物品总是更优选择,这说明贪心策略是有效的。
-如图 15-6 所示,如果将物品重量和物品单位价值分别看作一张二维图表的横轴和纵轴,则分数背包问题可转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度理解贪心策略的有效性。
+如图 15-6 所示,如果将物品重量和物品单位价值分别看作一张二维图表的横轴和纵轴,则分数背包问题可转化为“求在有限横轴区间下围成的最大面积”。这个类比可以帮助我们从几何角度理解贪心策略的有效性。
图 15-6 分数背包问题的几何表示
diff --git a/chapter_greedy/greedy_algorithm/index.html b/chapter_greedy/greedy_algorithm/index.html
index a20e873ad..43d848c75 100644
--- a/chapter_greedy/greedy_algorithm/index.html
+++ b/chapter_greedy/greedy_algorithm/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3125,7 +3125,7 @@
-
- 15.1.1 贪心的优点与局限性
+ 15.1.1 贪心算法的优点与局限性
@@ -3143,7 +3143,7 @@
-
- 15.1.3 贪心解题步骤
+ 15.1.3 贪心算法解题步骤
@@ -3152,7 +3152,7 @@
-
- 15.1.4 贪心典型例题
+ 15.1.4 贪心算法典型例题
@@ -3481,7 +3481,7 @@
-
- 15.1.1 贪心的优点与局限性
+ 15.1.1 贪心算法的优点与局限性
@@ -3499,7 +3499,7 @@
-
- 15.1.3 贪心解题步骤
+ 15.1.3 贪心算法解题步骤
@@ -3508,7 +3508,7 @@
-
- 15.1.4 贪心典型例题
+ 15.1.4 贪心算法典型例题
@@ -3560,13 +3560,13 @@
我们先通过例题“零钱兑换”了解贪心算法的工作原理。这道题已经在“完全背包问题”章节中介绍过,相信你对它并不陌生。
Question
-给定 \(n\) 种硬币,第 \(i\) 种硬币的面值为 \(coins[i - 1]\) ,目标金额为 \(amt\) ,每种硬币可以重复选取,问能够凑出目标金额的最少硬币数量。如果无法凑出目标金额则返回 \(-1\) 。
+给定 \(n\) 种硬币,第 \(i\) 种硬币的面值为 \(coins[i - 1]\) ,目标金额为 \(amt\) ,每种硬币可以重复选取,问能够凑出目标金额的最少硬币数量。如果无法凑出目标金额,则返回 \(-1\) 。
本题采取的贪心策略如图 15-1 所示。给定目标金额,我们贪心地选择不大于且最接近它的硬币,不断循环该步骤,直至凑出目标金额为止。
图 15-1 零钱兑换的贪心策略
-实现代码如下所示。你可能会不由地发出感叹:So clean !贪心算法仅用约十行代码就解决了零钱兑换问题:
+实现代码如下所示:
@@ -3811,7 +3811,8 @@
-15.1.1 贪心的优点与局限性¶
+你可能会不由地发出感叹:So clean !贪心算法仅用约十行代码就解决了零钱兑换问题。
+15.1.1 贪心算法的优点与局限性¶
贪心算法不仅操作直接、实现简单,而且通常效率也很高。在以上代码中,记硬币最小面值为 \(\min(coins)\) ,则贪心选择最多循环 \(amt / \min(coins)\) 次,时间复杂度为 \(O(amt / \min(coins))\) 。这比动态规划解法的时间复杂度 \(O(n \times amt)\) 提升了一个数量级。
然而,对于某些硬币面值组合,贪心算法并不能找到最优解。图 15-2 给出了两个示例。
@@ -3819,8 +3820,8 @@
- 反例 \(coins = [1, 20, 50]\):假设 \(amt = 60\) ,贪心算法只能找到 \(50 + 1 \times 10\) 的兑换组合,共计 \(11\) 枚硬币,但动态规划可以找到最优解 \(20 + 20 + 20\) ,仅需 \(3\) 枚硬币。
- 反例 \(coins = [1, 49, 50]\):假设 \(amt = 98\) ,贪心算法只能找到 \(50 + 1 \times 48\) 的兑换组合,共计 \(49\) 枚硬币,但动态规划可以找到最优解 \(49 + 49\) ,仅需 \(2\) 枚硬币。
-
- 图 15-2 贪心无法找出最优解的示例
+
+ 图 15-2 贪心算法无法找出最优解的示例
也就是说,对于零钱兑换问题,贪心算法无法保证找到全局最优解,并且有可能找到非常差的解。它更适合用动态规划解决。
一般情况下,贪心算法的适用情况分以下两种。
@@ -3841,9 +3842,9 @@
Quote
有一篇论文给出了一个 \(O(n^3)\) 时间复杂度的算法,用于判断一个硬币组合能否使用贪心算法找出任意金额的最优解。
-Pearson, David. A polynomial-time algorithm for the change-making problem. Operations Research Letters 33.3 (2005): 231-234.
+Pearson, D. A polynomial-time algorithm for the change-making problem[J]. Operations Research Letters, 2005, 33(3): 231-234.
-15.1.3 贪心解题步骤¶
+15.1.3 贪心算法解题步骤¶
贪心问题的解决流程大体可分为以下三步。
- 问题分析:梳理与理解问题特性,包括状态定义、优化目标和约束条件等。这一步在回溯和动态规划中都有涉及。
@@ -3857,7 +3858,7 @@
为了保证正确性,我们应该对贪心策略进行严谨的数学证明,通常需要用到反证法或数学归纳法。
然而,正确性证明也很可能不是一件易事。如若没有头绪,我们通常会选择面向测试用例进行代码调试,一步步修改与验证贪心策略。
-15.1.4 贪心典型例题¶
+15.1.4 贪心算法典型例题¶
贪心算法常常应用在满足贪心选择性质和最优子结构的优化问题中,以下列举了一些典型的贪心算法问题。
- 硬币找零问题:在某些硬币组合下,贪心算法总是可以得到最优解。
diff --git a/chapter_greedy/index.html b/chapter_greedy/index.html
index 8020aace0..3837b6f5f 100644
--- a/chapter_greedy/index.html
+++ b/chapter_greedy/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/chapter_greedy/max_capacity_problem/index.html b/chapter_greedy/max_capacity_problem/index.html
index 741158673..03a43f47a 100644
--- a/chapter_greedy/max_capacity_problem/index.html
+++ b/chapter_greedy/max_capacity_problem/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3562,10 +3562,10 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
图 15-10 向内移动短板后的状态
-由此便可推出本题的贪心策略:初始化两指针分列容器两端,每轮向内收缩短板对应的指针,直至两指针相遇。
+由此便可推出本题的贪心策略:初始化两指针,使其分列容器两端,每轮向内收缩短板对应的指针,直至两指针相遇。
图 15-11 展示了贪心策略的执行过程。
-- 初始状态下,指针 \(i\) 和 \(j\) 分列与数组两端。
+- 初始状态下,指针 \(i\) 和 \(j\) 分列数组两端。
- 计算当前状态的容量 \(cap[i, j]\) ,并更新最大容量。
- 比较板 \(i\) 和 板 \(j\) 的高度,并将短板向内移动一格。
- 循环执行第
2. 步和第 3. 步,直至 \(i\) 和 \(j\) 相遇时结束。
@@ -3611,7 +3611,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.pydef max_capacity(ht: list[int]) -> int:
"""最大容量:贪心"""
- # 初始化 i, j 分列数组两端
+ # 初始化 i, j,使其分列数组两端
i, j = 0, len(ht) - 1
# 初始最大容量为 0
res = 0
@@ -3631,7 +3631,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.cpp/* 最大容量:贪心 */
int maxCapacity(vector<int> &ht) {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
int i = 0, j = ht.size() - 1;
// 初始最大容量为 0
int res = 0;
@@ -3654,7 +3654,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.java/* 最大容量:贪心 */
int maxCapacity(int[] ht) {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
int i = 0, j = ht.length - 1;
// 初始最大容量为 0
int res = 0;
@@ -3677,7 +3677,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.cs/* 最大容量:贪心 */
int MaxCapacity(int[] ht) {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
int i = 0, j = ht.Length - 1;
// 初始最大容量为 0
int res = 0;
@@ -3700,7 +3700,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.go/* 最大容量:贪心 */
func maxCapacity(ht []int) int {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
i, j := 0, len(ht)-1
// 初始最大容量为 0
res := 0
@@ -3723,7 +3723,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.swift/* 最大容量:贪心 */
func maxCapacity(ht: [Int]) -> Int {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
var i = 0, j = ht.count - 1
// 初始最大容量为 0
var res = 0
@@ -3746,7 +3746,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.js/* 最大容量:贪心 */
function maxCapacity(ht) {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
let i = 0,
j = ht.length - 1;
// 初始最大容量为 0
@@ -3770,7 +3770,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.ts/* 最大容量:贪心 */
function maxCapacity(ht: number[]): number {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
let i = 0,
j = ht.length - 1;
// 初始最大容量为 0
@@ -3794,7 +3794,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.dart/* 最大容量:贪心 */
int maxCapacity(List<int> ht) {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
int i = 0, j = ht.length - 1;
// 初始最大容量为 0
int res = 0;
@@ -3817,7 +3817,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.rs/* 最大容量:贪心 */
fn max_capacity(ht: &[i32]) -> i32 {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
let mut i = 0;
let mut j = ht.len() - 1;
// 初始最大容量为 0
@@ -3841,7 +3841,7 @@ cap[i, j] = \min(ht[i], ht[j]) \times (j - i)
max_capacity.c/* 最大容量:贪心 */
int maxCapacity(int ht[], int htLength) {
- // 初始化 i, j 分列数组两端
+ // 初始化 i, j,使其分列数组两端
int i = 0;
int j = htLength - 1;
// 初始最大容量为 0
diff --git a/chapter_greedy/max_product_cutting_problem/index.html b/chapter_greedy/max_product_cutting_problem/index.html
index e0a81bfed..c47399271 100644
--- a/chapter_greedy/max_product_cutting_problem/index.html
+++ b/chapter_greedy/max_product_cutting_problem/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3573,7 +3573,7 @@ n & \geq 4
- 输入整数 \(n\) ,从其不断地切分出因子 \(3\) ,直至余数为 \(0\)、\(1\)、\(2\) 。
- 当余数为 \(0\) 时,代表 \(n\) 是 \(3\) 的倍数,因此不做任何处理。
-- 当余数为 \(2\) 时,不继续划分,保留之。
+- 当余数为 \(2\) 时,不继续划分,保留。
- 当余数为 \(1\) 时,由于 \(2 \times 2 > 1 \times 3\) ,因此应将最后一个 \(3\) 替换为 \(2\) 。
2. 代码实现¶
diff --git a/chapter_greedy/summary/index.html b/chapter_greedy/summary/index.html
index 7acbfa771..ef8606089 100644
--- a/chapter_greedy/summary/index.html
+++ b/chapter_greedy/summary/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3451,7 +3451,7 @@
- 求解贪心问题主要分为三步:问题分析、确定贪心策略、正确性证明。其中,确定贪心策略是核心步骤,正确性证明往往是难点。
- 分数背包问题在 0-1 背包的基础上,允许选择物品的一部分,因此可使用贪心算法求解。贪心策略的正确性可以使用反证法来证明。
- 最大容量问题可使用穷举法求解,时间复杂度为 \(O(n^2)\) 。通过设计贪心策略,每轮向内移动短板,可将时间复杂度优化至 \(O(n)\) 。
-- 在最大切分乘积问题中,我们先后推理出两个贪心策略:\(\geq 4\) 的整数都应该继续切分、最优切分因子为 \(3\) 。代码中包含幂运算,时间复杂度取决于幂运算实现方法,通常为 \(O(1)\) 或 \(O(\log n)\) 。
+- 在最大切分乘积问题中,我们先后推理出两个贪心策略:\(\geq 4\) 的整数都应该继续切分,最优切分因子为 \(3\) 。代码中包含幂运算,时间复杂度取决于幂运算实现方法,通常为 \(O(1)\) 或 \(O(\log n)\) 。
diff --git a/chapter_hashing/hash_algorithm/index.html b/chapter_hashing/hash_algorithm/index.html
index 3c1104762..ab72c57d7 100644
--- a/chapter_hashing/hash_algorithm/index.html
+++ b/chapter_hashing/hash_algorithm/index.html
@@ -1797,7 +1797,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -4104,7 +4104,7 @@
总而言之,我们通常选取质数作为模数,并且这个质数最好足够大,以尽可能消除周期性模式,提升哈希算法的稳健性。
6.3.3 常见哈希算法¶
不难发现,以上介绍的简单哈希算法都比较“脆弱”,远远没有达到哈希算法的设计目标。例如,由于加法和异或满足交换律,因此加法哈希和异或哈希无法区分内容相同但顺序不同的字符串,这可能会加剧哈希冲突,并引起一些安全问题。
-在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA-1、SHA-2、SHA-3 等。它们可以将任意长度的输入数据映射到恒定长度的哈希值。
+在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA-1、SHA-2 和 SHA-3 等。它们可以将任意长度的输入数据映射到恒定长度的哈希值。
近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6-2 展示了在实际应用中常见的哈希算法。
- MD5 和 SHA-1 已多次被成功攻击,因此它们被各类安全应用弃用。
@@ -4134,10 +4134,10 @@
在许多编程语言中,只有不可变对象才可作为哈希表的 key 。假如我们将列表(动态数组)作为 key ,当列表的内容发生变化时,它的哈希值也随之改变,我们就无法在哈希表中查询到原先的 value 了。
虽然自定义对象(比如链表节点)的成员变量是可变的,但它是可哈希的。这是因为对象的哈希值通常是基于内存地址生成的,即使对象的内容发生了变化,但它的内存地址不变,哈希值仍然是不变的。
-细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。这是因为 Python 解释器在每次启动时,都会为字符串哈希函数加入一个随机的盐(Salt)值。这种做法可以有效防止 HashDoS 攻击,提升哈希算法的安全性。
+细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。这是因为 Python 解释器在每次启动时,都会为字符串哈希函数加入一个随机的盐(salt)值。这种做法可以有效防止 HashDoS 攻击,提升哈希算法的安全性。
diff --git a/chapter_hashing/hash_collision/index.html b/chapter_hashing/hash_collision/index.html index 21756d6ef..9991db1f9 100644 --- a/chapter_hashing/hash_collision/index.html +++ b/chapter_hashing/hash_collision/index.html @@ -1821,7 +1821,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3600,7 +3600,7 @@上一节提到,通常情况下哈希函数的输入空间远大于输出空间,因此理论上哈希冲突是不可避免的。比如,输入空间为全体整数,输出空间为数组容量大小,则必然有多个整数映射至同一桶索引。
-哈希冲突会导致查询结果错误,严重影响哈希表的可用性。为解决该问题,我们可以每当遇到哈希冲突就进行哈希表扩容,直至冲突消失为止。此方法简单粗暴且有效,但效率太低,因为哈希表扩容需要进行大量的数据搬运与哈希值计算。为了提升效率,我们可以采用以下策略。
+哈希冲突会导致查询结果错误,严重影响哈希表的可用性。为了解决该问题,每当遇到哈希冲突时,我们就进行哈希表扩容,直至冲突消失为止。此方法简单粗暴且有效,但效率太低,因为哈希表扩容需要进行大量的数据搬运与哈希值计算。为了提升效率,我们可以采用以下策略。
链式地址存在以下局限性。
以下代码给出了链式地址哈希表的简单实现,需要注意两点。
值得注意的是,当链表很长时,查询效率 \(O(n)\) 很差。此时可以将链表转换为“AVL 树”或“红黑树”,从而将查询操作的时间复杂度优化至 \(O(\log n)\) 。
「开放寻址 open addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测、多次哈希等。
+「开放寻址 open addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测和多次哈希等。
下面以线性探测为例,介绍开放寻址哈希表的工作机制。
线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
value 即可;如果遇到空桶,说明目标元素不在哈希表中,返回 \(\text{None}\) 。value 即可;如果遇到空桶,说明目标元素不在哈希表中,返回 None 。图 6-6 展示了开放寻址(线性探测)哈希表的键值对分布。根据此哈希函数,最后两位相同的 key 都会被映射到相同的桶。而通过线性探测,它们被依次存储在该桶以及之下的桶中。
图 6-6 开放寻址和线性探测
+ +图 6-6 开放寻址(线性探测)哈希表的键值对分布
然而,线性探测容易产生“聚集现象”。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。
-值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶 \(\text{None}\) ,而当查询元素时,线性探测到该空桶就会返回,因此在该空桶之下的元素都无法再被访问到,程序可能误判这些元素不存在。
+值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶 None ,而当查询元素时,线性探测到该空桶就会返回,因此在该空桶之下的元素都无法再被访问到,程序可能误判这些元素不存在。
图 6-7 在开放寻址中删除元素导致的查询问题
-为了解决该问题,我们可以采用「懒删除 lazy deletion」机制:它不直接从哈希表中移除元素,而是利用一个常量 TOMBSTONE 来标记这个桶。在该机制下,\(\text{None}\) 和 TOMBSTONE 都代表空桶,都可以放置键值对。但不同的是,线性探测到 TOMBSTONE 时应该继续遍历,因为其之下可能还存在键值对。
为了解决该问题,我们可以采用「懒删除 lazy deletion」机制:它不直接从哈希表中移除元素,而是利用一个常量 TOMBSTONE 来标记这个桶。在该机制下,None 和 TOMBSTONE 都代表空桶,都可以放置键值对。但不同的是,线性探测到 TOMBSTONE 时应该继续遍历,因为其之下可能还存在键值对。
然而,懒删除可能会加速哈希表的性能退化。这是因为每次删除操作都会产生一个删除标记,随着 TOMBSTONE 的增加,搜索时间也会增加,因为线性探测可能需要跳过多个 TOMBSTONE 才能找到目标元素。
为此,考虑在线性探测中记录遇到的首个 TOMBSTONE 的索引,并将搜索到的目标元素与该 TOMBSTONE 交换位置。这样做的好处是当每次查询或添加元素时,元素会被移动至距离理想位置(探测起始点)更近的桶,从而优化查询效率。
以下代码实现了一个包含懒删除的开放寻址(线性探测)哈希表。为了更加充分地使用哈希表的空间,我们将哈希表看作一个“环形数组”,当越过数组尾部时,回到头部继续遍历。
@@ -4938,9 +4938,9 @@ first_tombstone = -1 # 线性探测,当遇到空桶时跳出 while self.buckets[index] is not None: - # 若遇到 key ,返回对应桶索引 + # 若遇到 key ,返回对应的桶索引 if self.buckets[index].key == key: - # 若之前遇到了删除标记,则将键值对移动至该索引 + # 若之前遇到了删除标记,则将键值对移动至该索引处 if first_tombstone != -1: self.buckets[first_tombstone] = self.buckets[index] self.buckets[index] = self.TOMBSTONE @@ -4949,7 +4949,7 @@ # 记录遇到的首个删除标记 if first_tombstone == -1 and self.buckets[index] is self.TOMBSTONE: first_tombstone = index - # 计算桶索引,越过尾部返回头部 + # 计算桶索引,越过尾部则返回头部 index = (index + 1) % self.capacity # 若 key 不存在,则返回添加点的索引 return index if first_tombstone == -1 else first_tombstone @@ -5054,9 +5054,9 @@ int firstTombstone = -1; // 线性探测,当遇到空桶时跳出 while (buckets[index] != nullptr) { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if (buckets[index]->key == key) { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if (firstTombstone != -1) { buckets[firstTombstone] = buckets[index]; buckets[index] = TOMBSTONE; @@ -5068,7 +5068,7 @@ if (firstTombstone == -1 && buckets[index] == TOMBSTONE) { firstTombstone = index; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % capacity; } // 若 key 不存在,则返回添加点的索引 @@ -5181,9 +5181,9 @@ int firstTombstone = -1; // 线性探测,当遇到空桶时跳出 while (buckets[index] != null) { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if (buckets[index].key == key) { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if (firstTombstone != -1) { buckets[firstTombstone] = buckets[index]; buckets[index] = TOMBSTONE; @@ -5195,7 +5195,7 @@ if (firstTombstone == -1 && buckets[index] == TOMBSTONE) { firstTombstone = index; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % capacity; } // 若 key 不存在,则返回添加点的索引 @@ -5306,9 +5306,9 @@ int firstTombstone = -1; // 线性探测,当遇到空桶时跳出 while (buckets[index] != null) { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if (buckets[index].key == key) { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if (firstTombstone != -1) { buckets[firstTombstone] = buckets[index]; buckets[index] = TOMBSTONE; @@ -5320,7 +5320,7 @@ if (firstTombstone == -1 && buckets[index] == TOMBSTONE) { firstTombstone = index; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % capacity; } // 若 key 不存在,则返回添加点的索引 @@ -5441,7 +5441,7 @@ idx := m.hashFunc(key) // 线性探测,从 index 开始向后遍历 for i := 0; i < m.capacity; i++ { - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 j := (idx + i) % m.capacity // 若遇到空桶,说明无此 key ,则返回 null if m.buckets[j] == (pair{}) { @@ -5452,7 +5452,7 @@ return m.buckets[j].val } } - // 若未找到 key 则返回空字符串 + // 若未找到 key ,则返回空字符串 return "" } @@ -5465,7 +5465,7 @@ idx := m.hashFunc(key) // 线性探测,从 index 开始向后遍历 for i := 0; i < m.capacity; i++ { - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 j := (idx + i) % m.capacity // 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶 if m.buckets[j] == (pair{}) || m.buckets[j] == m.removed { @@ -5490,7 +5490,7 @@ // 遍历桶,从中删除键值对 // 线性探测,从 index 开始向后遍历 for i := 0; i < m.capacity; i++ { - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 j := (idx + i) % m.capacity // 若遇到空桶,说明无此 key ,则直接返回 if m.buckets[j] == (pair{}) { @@ -5570,9 +5570,9 @@ var firstTombstone = -1 // 线性探测,当遇到空桶时跳出 while buckets[index] != nil { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if buckets[index]!.key == key { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if firstTombstone != -1 { buckets[firstTombstone] = buckets[index] buckets[index] = TOMBSTONE @@ -5584,7 +5584,7 @@ if firstTombstone == -1 && buckets[index] == TOMBSTONE { firstTombstone = index } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % capacity } // 若 key 不存在,则返回添加点的索引 @@ -5699,9 +5699,9 @@ let firstTombstone = -1; // 线性探测,当遇到空桶时跳出 while (this.#buckets[index] !== null) { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if (this.#buckets[index].key === key) { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if (firstTombstone !== -1) { this.#buckets[firstTombstone] = this.#buckets[index]; this.#buckets[index] = this.#TOMBSTONE; @@ -5716,7 +5716,7 @@ ) { firstTombstone = index; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % this.#capacity; } // 若 key 不存在,则返回添加点的索引 @@ -5840,9 +5840,9 @@ let firstTombstone = -1; // 线性探测,当遇到空桶时跳出 while (this.buckets[index] !== null) { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if (this.buckets[index]!.key === key) { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if (firstTombstone !== -1) { this.buckets[firstTombstone] = this.buckets[index]; this.buckets[index] = this.TOMBSTONE; @@ -5857,7 +5857,7 @@ ) { firstTombstone = index; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % this.capacity; } // 若 key 不存在,则返回添加点的索引 @@ -5977,9 +5977,9 @@ int firstTombstone = -1; // 线性探测,当遇到空桶时跳出 while (_buckets[index] != null) { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if (_buckets[index]!.key == key) { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if (firstTombstone != -1) { _buckets[firstTombstone] = _buckets[index]; _buckets[index] = _TOMBSTONE; @@ -5991,7 +5991,7 @@ if (firstTombstone == -1 && _buckets[index] == _TOMBSTONE) { firstTombstone = index; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % _capacity; } // 若 key 不存在,则返回添加点的索引 @@ -6125,7 +6125,7 @@ if first_tombstone == -1 && self.buckets[index] == self.TOMBSTONE { first_tombstone = index as i32; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % self.capacity; } // 若 key 不存在,则返回添加点的索引 @@ -6261,9 +6261,9 @@ int firstTombstone = -1; // 线性探测,当遇到空桶时跳出 while (hashMap->buckets[index] != NULL) { - // 若遇到 key ,返回对应桶索引 + // 若遇到 key ,返回对应的桶索引 if (hashMap->buckets[index]->key == key) { - // 若之前遇到了删除标记,则将键值对移动至该索引 + // 若之前遇到了删除标记,则将键值对移动至该索引处 if (firstTombstone != -1) { hashMap->buckets[firstTombstone] = hashMap->buckets[index]; hashMap->buckets[index] = hashMap->TOMBSTONE; @@ -6275,7 +6275,7 @@ if (firstTombstone == -1 && hashMap->buckets[index] == hashMap->TOMBSTONE) { firstTombstone = index; } - // 计算桶索引,越过尾部返回头部 + // 计算桶索引,越过尾部则返回头部 index = (index + 1) % hashMap->capacity; } // 若 key 不存在,则返回添加点的索引 @@ -6392,8 +6392,8 @@顾名思义,多次哈希方法使用多个哈希函数 \(f_1(x)\)、\(f_2(x)\)、\(f_3(x)\)、\(\dots\) 进行探测。
None 。与线性探测相比,多次哈希方法不易产生聚集,但多个哈希函数会带来额外的计算量。
各种编程语言采取了不同的哈希表实现策略,下面举几个例子。
dict 使用伪随机数进行探测。HashMap 内数组长度达到 64 且链表长度达到 8 时,链表会转换为红黑树以提升查找性能。「哈希表 hash table」,又称「散列表」,其通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而言,我们向哈希表输入一个键 key ,则可以在 \(O(1)\) 时间内获取对应的值 value 。
「哈希表 hash table」,又称「散列表」,它通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而言,我们向哈希表中输入一个键 key ,则可以在 \(O(1)\) 时间内获取对应的值 value 。
如图 6-1 所示,给定 \(n\) 个学生,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个学号,返回对应的姓名”的查询功能,则可以采用图 6-1 所示的哈希表来实现。
图 6-1 哈希表的抽象表示
@@ -3596,7 +3596,7 @@ hmap[10583] = "小鸭" # 查询操作 -# 向哈希表输入键 key ,得到值 value +# 向哈希表中输入键 key ,得到值 value name: str = hmap[15937] # 删除操作 @@ -3617,7 +3617,7 @@ map[10583] = "小鸭"; /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value string name = map[15937]; /* 删除操作 */ @@ -3638,7 +3638,7 @@ map.put(10583, "小鸭"); /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value String name = map.get(15937); /* 删除操作 */ @@ -3659,7 +3659,7 @@ }; /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value string name = map[15937]; /* 删除操作 */ @@ -3680,7 +3680,7 @@ hmap[10583] = "小鸭" /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value name := hmap[15937] /* 删除操作 */ @@ -3701,7 +3701,7 @@ map[10583] = "小鸭" /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value let name = map[15937]! /* 删除操作 */ @@ -3721,7 +3721,7 @@ map.set(10583, '小鸭'); /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value let name = map.get(15937); /* 删除操作 */ @@ -3743,7 +3743,7 @@ console.info(map); /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value let name = map.get(15937); console.info('\n输入学号 15937 ,查询到姓名 ' + name); @@ -3767,7 +3767,7 @@ map[10583] = "小鸭"; /* 查询操作 */ -// 向哈希表输入键 key ,得到值 value +// 向哈希表中输入键 key ,得到值 value String name = map[15937]; /* 删除操作 */ @@ -5123,7 +5123,7 @@图 6-4 哈希表扩容
-类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,非常耗时;并且由于哈希表容量 capacity 改变,我们需要通过哈希函数来重新计算所有键值对的存储位置,这进一步提高了扩容过程的计算开销。为此,编程语言通常会预留足够大的哈希表容量,防止频繁扩容。
类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,非常耗时;并且由于哈希表容量 capacity 改变,我们需要通过哈希函数来重新计算所有键值对的存储位置,这进一步增加了扩容过程的计算开销。为此,编程语言通常会预留足够大的哈希表容量,防止频繁扩容。
「负载因子 load factor」是哈希表的一个重要概念,其定义为哈希表的元素数量除以桶数量,用于衡量哈希冲突的严重程度,也常作为哈希表扩容的触发条件。例如在 Java 中,当负载因子超过 \(0.75\) 时,系统会将哈希表扩容至原先的 \(2\) 倍。
diff --git a/chapter_hashing/index.html b/chapter_hashing/index.html index 33703888a..e571c6185 100644 --- a/chapter_hashing/index.html +++ b/chapter_hashing/index.html @@ -1721,7 +1721,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_hashing/summary/index.html b/chapter_hashing/summary/index.html index f5613c308..aaf66621c 100644 --- a/chapter_hashing/summary/index.html +++ b/chapter_hashing/summary/index.html @@ -1779,7 +1779,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3556,7 +3556,7 @@为什么哈希表扩容能够缓解哈希冲突?
-哈希函数的最后一步往往是对数组长度 \(n\) 取余,让输出值落在数组索引范围内;在扩容后,数组长度 \(n\) 发生变化,而 key 对应的索引也可能发生变化。原先落在同一个桶的多个 key ,在扩容后可能会被分配到多个桶中,从而实现哈希冲突的缓解。
哈希函数的最后一步往往是对数组长度 \(n\) 取模(取余),让输出值落在数组索引范围内;在扩容后,数组长度 \(n\) 发生变化,而 key 对应的索引也可能发生变化。原先落在同一个桶的多个 key ,在扩容后可能会被分配到多个桶中,从而实现哈希冲突的缓解。
化简上式需要借助中学的数列知识,先对 \(T(h)\) 乘以 \(2\) ,得到:
+化简上式需要借助中学的数列知识,将对 \(T(h)\) 乘以 \(2\) ,得到:
进一步地,高度为 \(h\) 的完美二叉树的节点数量为 \(n = 2^{h+1} - 1\) ,易得复杂度为 \(O(2^h) = O(n)\) 。以上推算表明,输入列表并建堆的时间复杂度为 \(O(n)\) ,非常高效。
+进一步,高度为 \(h\) 的完美二叉树的节点数量为 \(n = 2^{h+1} - 1\) ,易得复杂度为 \(O(2^h) = O(n)\) 。以上推算表明,输入列表并建堆的时间复杂度为 \(O(n)\) ,非常高效。
@@ -3783,7 +3783,7 @@ aria-label="页脚"「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如图 8-1 所示。
图 8-1 小顶堆与大顶堆
@@ -3629,10 +3629,10 @@需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。
+需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象的数据结构,定义为具有优先级排序的队列。
实际上,堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本书对两者不做特别区分,统一称作“堆”。
堆的常用操作见表 8-1 ,方法名需要根据编程语言来确定。
表 8-1 堆的操作效率
@@ -3648,27 +3648,27 @@push()pop()peek()size()isEmpty()“二叉树”章节讲过,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆。
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。节点指针通过索引映射公式来实现。
-如图 8-2 所示,给定索引 \(i\) ,其左子节点索引为 \(2i + 1\) ,右子节点索引为 \(2i + 2\) ,父节点索引为 \((i - 1) / 2\)(向下整除)。当索引越界时,表示空节点或节点不存在。
+如图 8-2 所示,给定索引 \(i\) ,其左子节点的索引为 \(2i + 1\) ,右子节点的索引为 \(2i + 2\) ,父节点的索引为 \((i - 1) / 2\)(向下整除)。当索引越界时,表示空节点或节点不存在。
图 8-2 堆的表示与存储
@@ -3979,81 +3979,81 @@给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。
给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。
考虑从入堆节点开始,从底至顶执行堆化。如图 8-3 所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。
数据结构的“堆”与内存管理的“堆”是同一个概念吗?
-两者不是同一个概念,只是碰巧都叫堆。计算机系统内存中的堆是动态内存分配的一部分,程序在运行时可以使用它来存储数据。程序可以请求一定量的堆内存,用于存储如对象和数组等复杂结构。当这些数据不再需要时,程序需要释放这些内存,以防止内存泄漏。相较于栈内存,堆内存的管理和使用需要更谨慎,使用不当可能会导致内存泄漏和野指针等问题。
+两者不是同一个概念,只是碰巧都叫“堆”。计算机系统内存中的堆是动态内存分配的一部分,程序在运行时可以使用它来存储数据。程序可以请求一定量的堆内存,用于存储如对象和数组等复杂结构。当这些数据不再需要时,程序需要释放这些内存,以防止内存泄漏。相较于栈内存,堆内存的管理和使用需要更谨慎,使用不当可能会导致内存泄漏和野指针等问题。
总共执行了 \(n\) 轮入堆和出堆,堆的最大长度为 \(k\) ,因此时间复杂度为 \(O(n \log k)\) 。该方法的效率很高,当 \(k\) 较小时,时间复杂度趋向 \(O(n)\) ;当 \(k\) 较大时,时间复杂度不会超过 \(O(n \log n)\) 。
-另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 \(k\) 个元素的动态更新。
+另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 \(k\) 个元素的动态更新。
diff --git a/chapter_introduction/algorithms_are_everywhere/index.html b/chapter_introduction/algorithms_are_everywhere/index.html index b32fc8771..e36b630f9 100644 --- a/chapter_introduction/algorithms_are_everywhere/index.html +++ b/chapter_introduction/algorithms_are_everywhere/index.html @@ -1731,7 +1731,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3443,7 +3443,7 @@当我们听到“算法”这个词时,很自然地会想到数学。然而实际上,许多算法并不涉及复杂数学,而是更多地依赖基本逻辑,这些逻辑在我们的日常生活中处处可见。
在正式探讨算法之前,有一个有趣的事实值得分享:你已经在不知不觉中学会了许多算法,并习惯将它们应用到日常生活中了。下面我将举几个具体的例子来证实这一点。
-例一:查阅字典。在字典里,每个汉字都对应一个拼音,而字典是按照拼音字母顺序排列的。假设我们需要查找一个拼音首字母为 \(r\) 的字,通常会按照图 1-1 所示的方式实现。
+例一:查字典。在字典里,每个汉字都对应一个拼音,而字典是按照拼音字母顺序排列的。假设我们需要查找一个拼音首字母为 \(r\) 的字,通常会按照图 1-1 所示的方式实现。
本项目旨在创建一本开源、免费、新手友好的数据结构与算法入门教程。
+本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。
若你是算法初学者,从未接触过算法,或者已经有一些刷题经验,对数据结构与算法有模糊的认识,在会与不会之间反复横跳,那么本书正是为你量身定制的!
-如果你已经积累一定刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可以当作“刷题工具库”或“算法字典”来使用。
-若你是算法大神,我们期待收到你的宝贵建议,或者一起参与创作。
+如果你已经积累一定的刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可以当作“刷题工具库”或“算法字典”来使用。
+若你是算法“大神”,我们期待收到你的宝贵建议,或者一起参与创作。
前置条件
你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。
@@ -3550,25 +3550,25 @@本书的主要内容如图 0-1 所示。
图 0-1 本书主要内容
在本书的创作过程中,我得到了许多人的帮助,包括但不限于:
+在本书的创作过程中,我得到了许多人的帮助。
在写作过程中,我阅读了许多关于数据结构与算法的教材和文章。这些作品为本书提供了优秀的范本,确保了本书内容的准确性与品质。在此感谢所有老师和前辈们的杰出贡献!
-本书倡导手脑并用的学习方式,在这一点上深受《动手学深度学习》的启发。在此向各位读者强烈推荐这本优秀的著作。
+本书倡导手脑并用的学习方式,在这一点上我深受《动手学深度学习》的启发。在此向各位读者强烈推荐这本优秀的著作。
衷心感谢我的父母,正是你们一直以来的支持与鼓励,让我有机会做这件富有趣味的事。
diff --git a/chapter_preface/index.html b/chapter_preface/index.html index d9a97d469..fea90889f 100644 --- a/chapter_preface/index.html +++ b/chapter_preface/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_preface/suggestions/index.html b/chapter_preface/suggestions/index.html index e5d345ae7..c622c1c82 100644 --- a/chapter_preface/suggestions/index.html +++ b/chapter_preface/suggestions/index.html @@ -1806,7 +1806,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3578,8 +3578,8 @@* 的是选读章节,内容相对困难。如果你的时间有限,可以先跳过。「 」 括号标注,例如 「数组 array」 。建议记住它们,以便阅读文献。“引号” 标注,以避免歧义。None 来表示“空”。相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主要通过动画和图解形式展示,而文字则作为动画和图片的解释与补充。
+相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主要通过动画以图解形式展示,而文字则作为解释与补充。
如果你在阅读本书时,发现某段内容提供了如图 0-2 所示的动画或图解,请以图为主、以文字为辅,综合两者来理解内容。
图 0-2 动画图解示例
@@ -3745,7 +3745,7 @@在阅读本书时,请不要轻易跳过那些没学明白的知识点。欢迎在评论区提出你的问题,我和小伙伴们将竭诚为你解答,一般情况下可在两天内回复。
-如图 0-6 所示,每个章节的底部都配有评论区。希望你能多关注评论区的内容。一方面,你可以了解大家遇到的问题,从而查漏补缺,激发更深入的思考。另一方面,期待你能慷慨地回答其他小伙伴的问题,分享你的见解,帮助他人进步。
+如图 0-6 所示,网页版每个章节的底部都配有评论区。希望你能多关注评论区的内容。一方面,你可以了解大家遇到的问题,从而查漏补缺,激发更深入的思考。另一方面,期待你能慷慨地回答其他小伙伴的问题,分享你的见解,帮助他人进步。
图 0-6 评论区示例
diff --git a/chapter_preface/summary/index.html b/chapter_preface/summary/index.html index 226e5db10..2a9e74675 100644 --- a/chapter_preface/summary/index.html +++ b/chapter_preface/summary/index.html @@ -1731,7 +1731,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3442,12 +3442,12 @@时间复杂度 \(O(\log n)\) :在二分循环中,区间每轮缩小一半,循环次数为 \(\log_2 n\) 。
-空间复杂度 \(O(1)\) :指针 \(i\) 和 \(j\) 使用常数大小空间。
+时间复杂度为 \(O(\log n)\) :在二分循环中,区间每轮缩小一半,循环次数为 \(\log_2 n\) 。
+空间复杂度为 \(O(1)\) :指针 \(i\) 和 \(j\) 使用常数大小空间。
除了上述双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 \([0, n)\) ,即左边界包含自身,右边界不包含自身。在该表示下,区间 \([i, j)\) 在 \(i = j\) 时为空。
我们可以基于该表示实现具有相同功能的二分查找算法:
diff --git a/chapter_searching/binary_search_edge/index.html b/chapter_searching/binary_search_edge/index.html index d87677c6f..8886cb1b3 100644 --- a/chapter_searching/binary_search_edge/index.html +++ b/chapter_searching/binary_search_edge/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3940,7 +3940,7 @@代码在此省略,以下两点值得注意。
target 改为浮点数类型。target 改为浮点数类型(Python 无须改动)。Question
-给定一个长度为 \(n\) 的有序数组 nums 和一个元素 target ,数组不存在重复元素。现将 target 插入数组 nums 中,并保持其有序性。若数组中已存在元素 target ,则插入到其左方。请返回插入后 target 在数组中的索引。
给定一个长度为 \(n\) 的有序数组 nums 和一个元素 target ,数组不存在重复元素。现将 target 插入数组 nums 中,并保持其有序性。若数组中已存在元素 target ,则插入到其左方。请返回插入后 target 在数组中的索引。示例如图 10-4 所示。
图 10-4 二分查找插入点示例数据
diff --git a/chapter_searching/index.html b/chapter_searching/index.html index 45028434c..a2925f492 100644 --- a/chapter_searching/index.html +++ b/chapter_searching/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_searching/replace_linear_by_hashing/index.html b/chapter_searching/replace_linear_by_hashing/index.html index f6374db83..91d8fc9ef 100644 --- a/chapter_searching/replace_linear_by_hashing/index.html +++ b/chapter_searching/replace_linear_by_hashing/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 diff --git a/chapter_searching/searching_algorithm_revisited/index.html b/chapter_searching/searching_algorithm_revisited/index.html index 6568c8953..8c96de503 100644 --- a/chapter_searching/searching_algorithm_revisited/index.html +++ b/chapter_searching/searching_algorithm_revisited/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3651,7 +3651,7 @@设数组的长度为 \(n\) ,冒泡排序的步骤如图 11-5 所示。
桶排序适用于处理体量很大的数据。例如,输入数据包含 100 万个元素,由于空间限制,系统内存无法一次性加载所有数据。此时,可以将数据分成 1000 个桶,然后分别对每个桶进行排序,最后将结果合并。
nums 和遍历 counter ,都使用线性时间。一般情况下 \(n \gg m\) ,时间复杂度趋于 \(O(n)\) 。res 和 counter 。nums 和遍历 counter ,都使用线性时间。一般情况下 \(n \gg m\) ,时间复杂度趋于 \(O(n)\) 。res 和 counter 。res 中填充元素的顺序是“从右向左”的,因此倒序遍历 nums 可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历 nums 也可以得到正确的排序结果,但结果是非稳定的。插入排序的时间复杂度为 \(O(n^2)\) ,而我们即将学习的快速排序的时间复杂度为 \(O(n \log n)\) 。尽管插入排序的时间复杂度更高,但在数据量较小的情况下,插入排序通常更快。
这个结论与线性查找和二分查找的适用情况的结论类似。快速排序这类 \(O(n \log n)\) 的算法属于基于分治策略的排序算法,往往包含更多单元计算操作。而在数据量较小时,\(n^2\) 和 \(n \log n\) 的数值比较接近,复杂度不占主导地位;每轮中的单元操作数量起到决定性作用。
实际上,许多编程语言(例如 Java)的内置排序函数采用了插入排序,大致思路为:对于长数组,采用基于分治策略的排序算法,例如快速排序;对于短数组,直接使用插入排序。
diff --git a/chapter_sorting/merge_sort/index.html b/chapter_sorting/merge_sort/index.html index e41912f46..c055f4703 100644 --- a/chapter_sorting/merge_sort/index.html +++ b/chapter_sorting/merge_sort/index.html @@ -1719,7 +1719,7 @@ - 8.3 Top-K 问题 + 8.3 Top-k 问题 @@ -3595,12 +3595,12 @@def merge(nums: list[int], left: int, mid: int, right: int):
"""合并左子数组和右子数组"""
- # 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ # 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
# 创建一个临时数组 tmp ,用于存放合并后的结果
tmp = [0] * (right - left + 1)
# 初始化左子数组和右子数组的起始索引
i, j, k = left, mid + 1, 0
- # 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ # 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while i <= mid and j <= right:
if nums[i] <= nums[j]:
tmp[k] = nums[i]
@@ -3638,12 +3638,12 @@
merge_sort.cpp/* 合并左子数组和右子数组 */
void merge(vector<int> &nums, int left, int mid, int right) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
vector<int> tmp(right - left + 1);
// 初始化左子数组和右子数组的起始索引
int i = left, j = mid + 1, k = 0;
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j])
tmp[k++] = nums[i++];
@@ -3680,12 +3680,12 @@
merge_sort.java/* 合并左子数组和右子数组 */
void merge(int[] nums, int left, int mid, int right) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
int[] tmp = new int[right - left + 1];
// 初始化左子数组和右子数组的起始索引
int i = left, j = mid + 1, k = 0;
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j])
tmp[k++] = nums[i++];
@@ -3722,12 +3722,12 @@
merge_sort.cs/* 合并左子数组和右子数组 */
void Merge(int[] nums, int left, int mid, int right) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
int[] tmp = new int[right - left + 1];
// 初始化左子数组和右子数组的起始索引
int i = left, j = mid + 1, k = 0;
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j])
tmp[k++] = nums[i++];
@@ -3763,12 +3763,12 @@
merge_sort.go/* 合并左子数组和右子数组 */
func merge(nums []int, left, mid, right int) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
tmp := make([]int, right-left+1)
// 初始化左子数组和右子数组的起始索引
i, j, k := left, mid+1, 0
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
for i <= mid && j <= right {
if nums[i] <= nums[j] {
tmp[k] = nums[i]
@@ -3814,12 +3814,12 @@
merge_sort.swift/* 合并左子数组和右子数组 */
func merge(nums: inout [Int], left: Int, mid: Int, right: Int) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
var tmp = Array(repeating: 0, count: right - left + 1)
// 初始化左子数组和右子数组的起始索引
var i = left, j = mid + 1, k = 0
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while i <= mid, j <= right {
if nums[i] <= nums[j] {
tmp[k] = nums[i]
@@ -3866,14 +3866,14 @@
merge_sort.js/* 合并左子数组和右子数组 */
function merge(nums, left, mid, right) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
const tmp = new Array(right - left + 1);
// 初始化左子数组和右子数组的起始索引
let i = left,
j = mid + 1,
k = 0;
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j]) {
tmp[k++] = nums[i++];
@@ -3910,14 +3910,14 @@
merge_sort.ts/* 合并左子数组和右子数组 */
function merge(nums: number[], left: number, mid: number, right: number): void {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
const tmp = new Array(right - left + 1);
// 初始化左子数组和右子数组的起始索引
let i = left,
j = mid + 1,
k = 0;
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j]) {
tmp[k++] = nums[i++];
@@ -3954,12 +3954,12 @@
merge_sort.dart/* 合并左子数组和右子数组 */
void merge(List<int> nums, int left, int mid, int right) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
List<int> tmp = List.filled(right - left + 1, 0);
// 初始化左子数组和右子数组的起始索引
int i = left, j = mid + 1, k = 0;
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j])
tmp[k++] = nums[i++];
@@ -3995,13 +3995,13 @@
merge_sort.rs/* 合并左子数组和右子数组 */
fn merge(nums: &mut [i32], left: usize, mid: usize, right: usize) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
let tmp_size = right - left + 1;
let mut tmp = vec![0; tmp_size];
// 初始化左子数组和右子数组的起始索引
let (mut i, mut j, mut k) = (left, mid + 1, 0);
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while i <= mid && j <= right {
if nums[i] <= nums[j] {
tmp[k] = nums[j];
@@ -4045,13 +4045,13 @@
merge_sort.c/* 合并左子数组和右子数组 */
void merge(int *nums, int left, int mid, int right) {
- // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
+ // 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
int tmpSize = right - left + 1;
int *tmp = (int *)malloc(tmpSize * sizeof(int));
// 初始化左子数组和右子数组的起始索引
int i = left, j = mid + 1, k = 0;
- // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
+ // 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j]) {
tmp[k++] = nums[i++];
@@ -4144,8 +4144,8 @@
11.6.2 算法特性¶
-- 时间复杂度 \(O(n \log n)\)、非自适应排序:划分产生高度为 \(\log n\) 的递归树,每层合并的总操作数量为 \(n\) ,因此总体时间复杂度为 \(O(n \log n)\) 。
-- 空间复杂度 \(O(n)\)、非原地排序:递归深度为 \(\log n\) ,使用 \(O(\log n)\) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 \(O(n)\) 大小的额外空间。
+- 时间复杂度为 \(O(n \log n)\)、非自适应排序:划分产生高度为 \(\log n\) 的递归树,每层合并的总操作数量为 \(n\) ,因此总体时间复杂度为 \(O(n \log n)\) 。
+- 空间复杂度为 \(O(n)\)、非原地排序:递归深度为 \(\log n\) ,使用 \(O(\log n)\) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 \(O(n)\) 大小的额外空间。
- 稳定排序:在合并过程中,相等元素的次序保持不变。
11.6.3 链表排序¶
diff --git a/chapter_sorting/quick_sort/index.html b/chapter_sorting/quick_sort/index.html
index 404398f9a..00eb6356d 100644
--- a/chapter_sorting/quick_sort/index.html
+++ b/chapter_sorting/quick_sort/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -4113,8 +4113,8 @@
11.5.2 算法特性¶
-- 时间复杂度 \(O(n \log n)\)、自适应排序:在平均情况下,哨兵划分的递归层数为 \(\log n\) ,每层中的总循环数为 \(n\) ,总体使用 \(O(n \log n)\) 时间。在最差情况下,每轮哨兵划分操作都将长度为 \(n\) 的数组划分为长度为 \(0\) 和 \(n - 1\) 的两个子数组,此时递归层数达到 \(n\) ,每层中的循环数为 \(n\) ,总体使用 \(O(n^2)\) 时间。
-- 空间复杂度 \(O(n)\)、原地排序:在输入数组完全倒序的情况下,达到最差递归深度 \(n\) ,使用 \(O(n)\) 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
+- 时间复杂度为 \(O(n \log n)\)、自适应排序:在平均情况下,哨兵划分的递归层数为 \(\log n\) ,每层中的总循环数为 \(n\) ,总体使用 \(O(n \log n)\) 时间。在最差情况下,每轮哨兵划分操作都将长度为 \(n\) 的数组划分为长度为 \(0\) 和 \(n - 1\) 的两个子数组,此时递归层数达到 \(n\) ,每层中的循环数为 \(n\) ,总体使用 \(O(n^2)\) 时间。
+- 空间复杂度为 \(O(n)\)、原地排序:在输入数组完全倒序的情况下,达到最差递归深度 \(n\) ,使用 \(O(n)\) 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
- 非稳定排序:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。
11.5.3 快速排序为什么快¶
@@ -4134,7 +4134,7 @@
-
-
-
-
-
-
-
-
-quick_sort.rs/* 选取三个元素的中位数 */
+quick_sort.rs/* 选取三个候选元素的中位数 */
fn median_three(nums: &mut [i32], left: usize, mid: usize, right: usize) -> usize {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
@@ -4473,7 +4473,7 @@
-quick_sort.zig// 选取三个元素的中位数
+quick_sort.zig// 选取三个候选元素的中位数
fn medianThree(nums: []i32, left: usize, mid: usize, right: usize) usize {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
diff --git a/chapter_sorting/radix_sort/index.html b/chapter_sorting/radix_sort/index.html
index 98573bd52..0b1cdab2d 100644
--- a/chapter_sorting/radix_sort/index.html
+++ b/chapter_sorting/radix_sort/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3531,7 +3531,7 @@
\[
x_k = \lfloor\frac{x}{d^{k-1}}\rfloor \bmod d
\]
-其中 \(\lfloor a \rfloor\) 表示对浮点数 \(a\) 向下取整,而 \(\bmod \: d\) 表示对 \(d\) 取余。对于学号数据,\(d = 10\) 且 \(k \in [1, 8]\) 。
+其中 \(\lfloor a \rfloor\) 表示对浮点数 \(a\) 向下取整,而 \(\bmod \: d\) 表示对 \(d\) 取模(取余)。对于学号数据,\(d = 10\) 且 \(k \in [1, 8]\) 。
此外,我们需要小幅改动计数排序代码,使之可以根据数字的第 \(k\) 位进行排序:
@@ -4174,8 +4174,8 @@ x_k = \lfloor\frac{x}{d^{k-1}}\rfloor \bmod d
11.10.2 算法特性¶
相较于计数排序,基数排序适用于数值范围较大的情况,但前提是数据必须可以表示为固定位数的格式,且位数不能过大。例如,浮点数不适合使用基数排序,因为其位数 \(k\) 过大,可能导致时间复杂度 \(O(nk) \gg O(n^2)\) 。
-- 时间复杂度 \(O(nk)\):设数据量为 \(n\)、数据为 \(d\) 进制、最大位数为 \(k\) ,则对某一位执行计数排序使用 \(O(n + d)\) 时间,排序所有 \(k\) 位使用 \(O((n + d)k)\) 时间。通常情况下,\(d\) 和 \(k\) 都相对较小,时间复杂度趋向 \(O(n)\) 。
-- 空间复杂度 \(O(n + d)\)、非原地排序:与计数排序相同,基数排序需要借助长度为 \(n\) 和 \(d\) 的数组
res 和 counter 。
+- 时间复杂度为 \(O(nk)\):设数据量为 \(n\)、数据为 \(d\) 进制、最大位数为 \(k\) ,则对某一位执行计数排序使用 \(O(n + d)\) 时间,排序所有 \(k\) 位使用 \(O((n + d)k)\) 时间。通常情况下,\(d\) 和 \(k\) 都相对较小,时间复杂度趋向 \(O(n)\) 。
+- 空间复杂度为 \(O(n + d)\)、非原地排序:与计数排序相同,基数排序需要借助长度为 \(n\) 和 \(d\) 的数组
res 和 counter 。
- 稳定排序:当计数排序稳定时,基数排序也稳定;当计数排序不稳定时,基数排序无法保证得到正确的排序结果。
diff --git a/chapter_sorting/selection_sort/index.html b/chapter_sorting/selection_sort/index.html
index 9cf5367c8..aed684396 100644
--- a/chapter_sorting/selection_sort/index.html
+++ b/chapter_sorting/selection_sort/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3762,7 +3762,7 @@
11.2.1 算法特性¶
- 时间复杂度为 \(O(n^2)\)、非自适应排序:外循环共 \(n - 1\) 轮,第一轮的未排序区间长度为 \(n\) ,最后一轮的未排序区间长度为 \(2\) ,即各轮外循环分别包含 \(n\)、\(n - 1\)、\(\dots\)、\(3\)、\(2\) 轮内循环,求和为 \(\frac{(n - 1)(n + 2)}{2}\) 。
-- 空间复杂度 \(O(1)\)、原地排序:指针 \(i\) 和 \(j\) 使用常数大小的额外空间。
+- 空间复杂度为 \(O(1)\)、原地排序:指针 \(i\) 和 \(j\) 使用常数大小的额外空间。
- 非稳定排序:如图 11-3 所示,元素
nums[i] 有可能被交换至与其相等的元素的右边,导致两者的相对顺序发生改变。
diff --git a/chapter_sorting/sorting_algorithm/index.html b/chapter_sorting/sorting_algorithm/index.html
index 1b4890997..8ba217d03 100644
--- a/chapter_sorting/sorting_algorithm/index.html
+++ b/chapter_sorting/sorting_algorithm/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/chapter_sorting/summary/index.html b/chapter_sorting/summary/index.html
index 5bd61e15a..bc5626305 100644
--- a/chapter_sorting/summary/index.html
+++ b/chapter_sorting/summary/index.html
@@ -1719,7 +1719,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3533,8 +3533,7 @@
2. Q & A¶
排序算法稳定性在什么情况下是必需的?
-在现实中,我们有可能是基于对象的某个属性进行排序。例如,学生有姓名和身高两个属性,我们希望实现一个多级排序:
-先按照姓名进行排序,得到 (A, 180) (B, 185) (C, 170) (D, 170) ;再对身高进行排序。由于排序算法不稳定,因此可能得到 (D, 170) (C, 170) (A, 180) (B, 185) 。
+在现实中,我们有可能基于对象的某个属性进行排序。例如,学生有姓名和身高两个属性,我们希望实现一个多级排序:先按照姓名进行排序,得到 (A, 180) (B, 185) (C, 170) (D, 170) ;再对身高进行排序。由于排序算法不稳定,因此可能得到 (D, 170) (C, 170) (A, 180) (B, 185) 。
可以发现,学生 D 和 C 的位置发生了交换,姓名的有序性被破坏了,而这是我们不希望看到的。
diff --git a/chapter_stack_and_queue/deque/index.html b/chapter_stack_and_queue/deque/index.html
index 01c8a944a..5694f67b1 100644
--- a/chapter_stack_and_queue/deque/index.html
+++ b/chapter_stack_and_queue/deque/index.html
@@ -1812,7 +1812,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3600,32 +3600,32 @@
-pushFirst()
+pushFirst()
将元素添加至队首
\(O(1)\)
-pushLast()
+pushLast()
将元素添加至队尾
\(O(1)\)
-popFirst()
+popFirst()
删除队首元素
\(O(1)\)
-popLast()
+popLast()
删除队尾元素
\(O(1)\)
-peekFirst()
+peekFirst()
访问队首元素
\(O(1)\)
-peekLast()
+peekLast()
访问队尾元素
\(O(1)\)
@@ -5620,7 +5620,7 @@
print("双向队列已满")
return
# 队首指针向左移动一位
- # 通过取余操作,实现 front 越过数组头部后回到尾部
+ # 通过取余操作实现 front 越过数组头部后回到尾部
self._front = self.index(self._front - 1)
# 将 num 添加至队首
self._nums[self._front] = num
@@ -5631,7 +5631,7 @@
if self._size == self.capacity():
print("双向队列已满")
return
- # 计算尾指针,指向队尾索引 + 1
+ # 计算队尾指针,指向队尾索引 + 1
rear = self.index(self._front + self._size)
# 将 num 添加至队尾
self._nums[rear] = num
@@ -5719,7 +5719,7 @@
return;
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
front = index(front - 1);
// 将 num 添加至队首
nums[front] = num;
@@ -5732,7 +5732,7 @@
cout << "双向队列已满" << endl;
return;
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
int rear = index(front + queSize);
// 将 num 添加至队尾
nums[rear] = num;
@@ -5826,7 +5826,7 @@
return;
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
front = index(front - 1);
// 将 num 添加至队首
nums[front] = num;
@@ -5839,7 +5839,7 @@
System.out.println("双向队列已满");
return;
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
int rear = index(front + queSize);
// 将 num 添加至队尾
nums[rear] = num;
@@ -5933,7 +5933,7 @@
return;
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
front = Index(front - 1);
// 将 num 添加至队首
nums[front] = num;
@@ -5946,7 +5946,7 @@
Console.WriteLine("双向队列已满");
return;
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
int rear = Index(front + queSize);
// 将 num 添加至队尾
nums[rear] = num;
@@ -6043,7 +6043,7 @@
return
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
q.front = q.index(q.front - 1)
// 将 num 添加至队首
q.nums[q.front] = num
@@ -6056,7 +6056,7 @@
fmt.Println("双向队列已满")
return
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
rear := q.index(q.front + q.queSize)
// 将 num 添加至队首
q.nums[rear] = num
@@ -6153,7 +6153,7 @@
return
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
front = index(i: front - 1)
// 将 num 添加至队首
nums[front] = num
@@ -6166,7 +6166,7 @@
print("双向队列已满")
return
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
let rear = index(i: front + size())
// 将 num 添加至队尾
nums[rear] = num
@@ -6263,7 +6263,7 @@
return;
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
this.#front = this.index(this.#front - 1);
// 将 num 添加至队首
this.#nums[this.#front] = num;
@@ -6276,7 +6276,7 @@
console.log('双向队列已满');
return;
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
const rear = this.index(this.#front + this.#queSize);
// 将 num 添加至队尾
this.#nums[rear] = num;
@@ -6369,7 +6369,7 @@
return;
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
this.front = this.index(this.front - 1);
// 将 num 添加至队首
this.nums[this.front] = num;
@@ -6382,7 +6382,7 @@
console.log('双向队列已满');
return;
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
const rear: number = this.index(this.front + this.queSize);
// 将 num 添加至队尾
this.nums[rear] = num;
@@ -6473,7 +6473,7 @@
throw Exception("双向队列已满");
}
// 队首指针向左移动一位
- // 通过取余操作,实现 _front 越过数组头部后回到尾部
+ // 通过取余操作实现 _front 越过数组头部后回到尾部
_front = index(_front - 1);
// 将 _num 添加至队首
_nums[_front] = _num;
@@ -6485,7 +6485,7 @@
if (_queSize == capacity()) {
throw Exception("双向队列已满");
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
int rear = index(_front + _queSize);
// 将 _num 添加至队尾
_nums[rear] = _num;
@@ -6586,7 +6586,7 @@
return
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部后回到尾部
+ // 通过取余操作实现 front 越过数组头部后回到尾部
self.front = self.index(self.front as i32 - 1);
// 将 num 添加至队首
self.nums[self.front] = num;
@@ -6599,7 +6599,7 @@
println!("双向队列已满");
return
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
let rear = self.index(self.front as i32 + self.que_size as i32);
// 将 num 添加至队尾
self.nums[rear] = num;
@@ -6705,7 +6705,7 @@
return;
}
// 队首指针向左移动一位
- // 通过取余操作,实现 front 越过数组头部回到尾部
+ // 通过取余操作实现 front 越过数组头部回到尾部
deque->front = dequeIndex(deque, deque->front - 1);
// 将 num 添加到队首
deque->nums[deque->front] = num;
@@ -6718,7 +6718,7 @@
printf("双向队列已满\r\n");
return;
}
- // 计算尾指针,指向队尾索引 + 1
+ // 计算队尾指针,指向队尾索引 + 1
int rear = dequeIndex(deque, deque->front + deque->queSize);
// 将 num 添加至队尾
deque->nums[rear] = num;
diff --git a/chapter_stack_and_queue/index.html b/chapter_stack_and_queue/index.html
index e192604f8..430ed1446 100644
--- a/chapter_stack_and_queue/index.html
+++ b/chapter_stack_and_queue/index.html
@@ -1721,7 +1721,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/chapter_stack_and_queue/queue/index.html b/chapter_stack_and_queue/queue/index.html
index 34fcee4d3..1d20c43af 100644
--- a/chapter_stack_and_queue/queue/index.html
+++ b/chapter_stack_and_queue/queue/index.html
@@ -1812,7 +1812,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3601,17 +3601,17 @@
-push()
+push()
元素入队,即将元素添加至队尾
\(O(1)\)
-pop()
+pop()
队首元素出队
\(O(1)\)
-peek()
+peek()
访问队首元素
\(O(1)\)
@@ -3888,7 +3888,7 @@
5.2.2 队列实现¶
-为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。链表和数组都符合要求。
+为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素,链表和数组都符合要求。
1. 基于链表的实现¶
如图 5-5 所示,我们可以将链表的“头节点”和“尾节点”分别视为“队首”和“队尾”,规定队尾仅可添加节点,队首仅可删除节点。
@@ -3929,7 +3929,7 @@
def push(self, num: int):
"""入队"""
- # 尾节点后添加 num
+ # 在尾节点后添加 num
node = ListNode(num)
# 如果队列为空,则令头、尾节点都指向该节点
if self._front is None:
@@ -3996,7 +3996,7 @@
/* 入队 */
void push(int num) {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
ListNode *node = new ListNode(num);
// 如果队列为空,则令头、尾节点都指向该节点
if (front == nullptr) {
@@ -4066,7 +4066,7 @@
/* 入队 */
public void push(int num) {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
ListNode node = new ListNode(num);
// 如果队列为空,则令头、尾节点都指向该节点
if (front == null) {
@@ -4132,7 +4132,7 @@
/* 入队 */
public void Push(int num) {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
ListNode node = new(num);
// 如果队列为空,则令头、尾节点都指向该节点
if (front == null) {
@@ -4253,7 +4253,7 @@
/* 入队 */
func push(num: Int) {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
let node = ListNode(x: num)
// 如果队列为空,则令头、尾节点都指向该节点
if front == nil {
@@ -4323,7 +4323,7 @@
/* 入队 */
push(num) {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
const node = new ListNode(num);
// 如果队列为空,则令头、尾节点都指向该节点
if (!this.#front) {
@@ -4389,7 +4389,7 @@
/* 入队 */
push(num: number): void {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
const node = new ListNode(num);
// 如果队列为空,则令头、尾节点都指向该节点
if (!this.front) {
@@ -4456,7 +4456,7 @@
/* 入队 */
void push(int _num) {
- // 尾节点后添加 _num
+ // 在尾节点后添加 _num
final node = ListNode(_num);
// 如果队列为空,则令头、尾节点都指向该节点
if (_front == null) {
@@ -4530,7 +4530,7 @@
/* 入队 */
pub fn push(&mut self, num: T) {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
let new_rear = ListNode::new(num);
match self.rear.take() {
// 如果队列不为空,则将该节点添加到尾节点后
@@ -4713,7 +4713,7 @@
// 入队
pub fn push(self: *Self, num: T) !void {
- // 尾节点后添加 num
+ // 在尾节点后添加 num
var node = try self.mem_allocator.create(inc.ListNode(T));
node.init(num);
// 如果队列为空,则令头、尾节点都指向该节点
@@ -4809,8 +4809,8 @@
"""入队"""
if self._size == self.capacity():
raise IndexError("队列已满")
- # 计算尾指针,指向队尾索引 + 1
- # 通过取余操作,实现 rear 越过数组尾部后回到头部
+ # 计算队尾指针,指向队尾索引 + 1
+ # 通过取余操作实现 rear 越过数组尾部后回到头部
rear: int = (self._front + self._size) % self.capacity()
# 将 num 添加至队尾
self._nums[rear] = num
@@ -4819,7 +4819,7 @@
def pop(self) -> int:
"""出队"""
num: int = self.peek()
- # 队首指针向后移动一位,若越过尾部则返回到数组头部
+ # 队首指针向后移动一位,若越过尾部,则返回到数组头部
self._front = (self._front + 1) % self.capacity()
self._size -= 1
return num
@@ -4883,7 +4883,7 @@
return;
}
// 计算队尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
int rear = (front + queSize) % queCapacity;
// 将 num 添加至队尾
nums[rear] = num;
@@ -4893,7 +4893,7 @@
/* 出队 */
int pop() {
int num = peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
front = (front + 1) % queCapacity;
queSize--;
return num;
@@ -4951,8 +4951,8 @@
System.out.println("队列已满");
return;
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
int rear = (front + queSize) % capacity();
// 将 num 添加至队尾
nums[rear] = num;
@@ -4962,7 +4962,7 @@
/* 出队 */
public int pop() {
int num = peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
front = (front + 1) % capacity();
queSize--;
return num;
@@ -5020,8 +5020,8 @@
Console.WriteLine("队列已满");
return;
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
int rear = (front + queSize) % Capacity();
// 将 num 添加至队尾
nums[rear] = num;
@@ -5031,7 +5031,7 @@
/* 出队 */
public int Pop() {
int num = Peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
front = (front + 1) % Capacity();
queSize--;
return num;
@@ -5091,8 +5091,8 @@
if q.queSize == q.queCapacity {
return
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
rear := (q.front + q.queSize) % q.queCapacity
// 将 num 添加至队尾
q.nums[rear] = num
@@ -5102,7 +5102,7 @@
/* 出队 */
func (q *arrayQueue) pop() any {
num := q.peek()
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
q.front = (q.front + 1) % q.queCapacity
q.queSize--
return num
@@ -5160,8 +5160,8 @@
print("队列已满")
return
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
let rear = (front + queSize) % capacity()
// 将 num 添加至队尾
nums[rear] = num
@@ -5172,7 +5172,7 @@
@discardableResult
func pop() -> Int {
let num = peek()
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
front = (front + 1) % capacity()
queSize -= 1
return num
@@ -5230,8 +5230,8 @@
console.log('队列已满');
return;
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
const rear = (this.#front + this.size) % this.capacity;
// 将 num 添加至队尾
this.#nums[rear] = num;
@@ -5241,7 +5241,7 @@
/* 出队 */
pop() {
const num = this.peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
this.#front = (this.#front + 1) % this.capacity;
this.#queSize--;
return num;
@@ -5298,8 +5298,8 @@
console.log('队列已满');
return;
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
const rear = (this.front + this.queSize) % this.capacity;
// 将 num 添加至队尾
this.nums[rear] = num;
@@ -5309,7 +5309,7 @@
/* 出队 */
pop(): number {
const num = this.peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
this.front = (this.front + 1) % this.capacity;
this.queSize--;
return num;
@@ -5365,8 +5365,8 @@
if (_queSize == capaCity()) {
throw Exception("队列已满");
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
int rear = (_front + _queSize) % capaCity();
// 将 _num 添加至队尾
_nums[rear] = _num;
@@ -5376,7 +5376,7 @@
/* 出队 */
int pop() {
int _num = peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
_front = (_front + 1) % capaCity();
_queSize--;
return _num;
@@ -5443,8 +5443,8 @@
println!("队列已满");
return;
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
let rear = (self.front + self.que_size) % self.que_capacity;
// 将 num 添加至队尾
self.nums[rear as usize] = num;
@@ -5454,7 +5454,7 @@
/* 出队 */
fn pop(&mut self) -> i32 {
let num = self.peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
self.front = (self.front + 1) % self.que_capacity;
self.que_size -= 1;
num
@@ -5535,7 +5535,7 @@
return;
}
// 计算队尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
int rear = (queue->front + queue->queSize) % queue->queCapacity;
// 将 num 添加至队尾
queue->nums[rear] = num;
@@ -5545,7 +5545,7 @@
/* 出队 */
int pop(ArrayQueue *queue) {
int num = peek(queue);
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
queue->front = (queue->front + 1) % queue->queCapacity;
queue->queSize--;
return num;
@@ -5603,10 +5603,10 @@
std.debug.print("队列已满\n", .{});
return;
}
- // 计算尾指针,指向队尾索引 + 1
- // 通过取余操作,实现 rear 越过数组尾部后回到头部
+ // 计算队尾指针,指向队尾索引 + 1
+ // 通过取余操作实现 rear 越过数组尾部后回到头部
var rear = (self.front + self.queSize) % self.capacity();
- // 尾节点后添加 num
+ // 在尾节点后添加 num
self.nums[rear] = num;
self.queSize += 1;
}
@@ -5614,7 +5614,7 @@
// 出队
pub fn pop(self: *Self) T {
var num = self.peek();
- // 队首指针向后移动一位,若越过尾部则返回到数组头部
+ // 队首指针向后移动一位,若越过尾部,则返回到数组头部
self.front = (self.front + 1) % self.capacity();
self.queSize -= 1;
return num;
diff --git a/chapter_stack_and_queue/stack/index.html b/chapter_stack_and_queue/stack/index.html
index 2a01dfe05..d8cbc1b51 100644
--- a/chapter_stack_and_queue/stack/index.html
+++ b/chapter_stack_and_queue/stack/index.html
@@ -1215,7 +1215,7 @@
-
- 5.1.1 栈常用操作
+ 5.1.1 栈的常用操作
@@ -1821,7 +1821,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3505,7 +3505,7 @@
-
- 5.1.1 栈常用操作
+ 5.1.1 栈的常用操作
@@ -3599,13 +3599,13 @@
5.1 栈¶
-「栈 stack」是一种遵循先入后出的逻辑的线性数据结构。
+「栈 stack」是一种遵循先入后出逻辑的线性数据结构。
我们可以将栈类比为桌面上的一摞盘子,如果想取出底部的盘子,则需要先将上面的盘子依次移走。我们将盘子替换为各种类型的元素(如整数、字符、对象等),就得到了栈这种数据结构。
如图 5-1 所示,我们把堆叠元素的顶部称为“栈顶”,底部称为“栈底”。将把元素添加到栈顶的操作叫作“入栈”,删除栈顶元素的操作叫作“出栈”。
图 5-1 栈的先入后出规则
-5.1.1 栈常用操作¶
+5.1.1 栈的常用操作¶
栈的常用操作如表 5-1 所示,具体的方法名需要根据所使用的编程语言来确定。在此,我们以常见的 push()、pop()、peek() 命名为例。
表 5-1 栈的操作效率
@@ -3620,17 +3620,17 @@
-push()
+push()
元素入栈(添加至栈顶)
\(O(1)\)
-pop()
+pop()
栈顶元素出栈
\(O(1)\)
-peek()
+peek()
访问栈顶元素
\(O(1)\)
@@ -3642,7 +3642,7 @@
stack.py# 初始化栈
-# Python 没有内置的栈类,可以把 List 当作栈来使用
+# Python 没有内置的栈类,可以把 list 当作栈来使用
stack: list[int] = []
# 元素入栈
diff --git a/chapter_stack_and_queue/summary/index.html b/chapter_stack_and_queue/summary/index.html
index 9e3bfb5dd..c100addd4 100644
--- a/chapter_stack_and_queue/summary/index.html
+++ b/chapter_stack_and_queue/summary/index.html
@@ -1779,7 +1779,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/chapter_tree/array_representation_of_tree/index.html b/chapter_tree/array_representation_of_tree/index.html
index 383056af5..8266ef163 100644
--- a/chapter_tree/array_representation_of_tree/index.html
+++ b/chapter_tree/array_representation_of_tree/index.html
@@ -1788,7 +1788,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3543,12 +3543,12 @@
映射公式的角色相当于链表中的指针。给定数组中的任意一个节点,我们都可以通过映射公式来访问它的左(右)子节点。
7.3.2 表示任意二叉树¶
-完美二叉树是一个特例,在二叉树的中间层通常存在许多 \(\text{None}\) 。由于层序遍历序列并不包含这些 \(\text{None}\) ,因此我们无法仅凭该序列来推测 \(\text{None}\) 的数量和分布位置。这意味着存在多种二叉树结构都符合该层序遍历序列。
+完美二叉树是一个特例,在二叉树的中间层通常存在许多 None 。由于层序遍历序列并不包含这些 None ,因此我们无法仅凭该序列来推测 None 的数量和分布位置。这意味着存在多种二叉树结构都符合该层序遍历序列。
如图 7-13 所示,给定一棵非完美二叉树,上述数组表示方法已经失效。
图 7-13 层序遍历序列对应多种二叉树可能性
-为了解决此问题,我们可以考虑在层序遍历序列中显式地写出所有 \(\text{None}\) 。如图 7-14 所示,这样处理后,层序遍历序列就可以唯一表示二叉树了。示例代码如下:
+为了解决此问题,我们可以考虑在层序遍历序列中显式地写出所有 None 。如图 7-14 所示,这样处理后,层序遍历序列就可以唯一表示二叉树了。示例代码如下:
@@ -3626,8 +3626,8 @@
图 7-14 任意类型二叉树的数组表示
-值得说明的是,完全二叉树非常适合使用数组来表示。回顾完全二叉树的定义,\(\text{None}\) 只出现在最底层且靠右的位置,因此所有 \(\text{None}\) 一定出现在层序遍历序列的末尾。
-这意味着使用数组表示完全二叉树时,可以省略存储所有 \(\text{None}\) ,非常方便。图 7-15 给出了一个例子。
+值得说明的是,完全二叉树非常适合使用数组来表示。回顾完全二叉树的定义,None 只出现在最底层且靠右的位置,因此所有 None 一定出现在层序遍历序列的末尾。
+这意味着使用数组表示完全二叉树时,可以省略存储所有 None ,非常方便。图 7-15 给出了一个例子。
图 7-15 完全二叉树的数组表示
@@ -4645,7 +4645,7 @@
- 数组存储需要连续内存空间,因此不适合存储数据量过大的树。
- 增删节点需要通过数组插入与删除操作实现,效率较低。
-- 当二叉树中存在大量 \(\text{None}\) 时,数组中包含的节点数据比重较低,空间利用率较低。
+- 当二叉树中存在大量
None 时,数组中包含的节点数据比重较低,空间利用率较低。
diff --git a/chapter_tree/avl_tree/index.html b/chapter_tree/avl_tree/index.html
index fc2e0cebc..bd32589e0 100644
--- a/chapter_tree/avl_tree/index.html
+++ b/chapter_tree/avl_tree/index.html
@@ -1905,7 +1905,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3767,16 +3767,16 @@
7.5 AVL 树 *¶
-在“二叉搜索树”章节中,我们提到,在多次插入和删除操作后,二叉搜索树可能退化为链表。在这种情况下,所有操作的时间复杂度将从 \(O(\log n)\) 恶化为 \(O(n)\) 。
+在“二叉搜索树”章节中我们提到,在多次插入和删除操作后,二叉搜索树可能退化为链表。在这种情况下,所有操作的时间复杂度将从 \(O(\log n)\) 劣化为 \(O(n)\) 。
如图 7-24 所示,经过两次删除节点操作,这棵二叉搜索树便会退化为链表。
图 7-24 AVL 树在删除节点后发生退化
-再例如,在图 7-25 所示的完美二叉树中插入两个节点后,树将严重向左倾斜,查找操作的时间复杂度也随之恶化。
+再例如,在图 7-25 所示的完美二叉树中插入两个节点后,树将严重向左倾斜,查找操作的时间复杂度也随之劣化。
图 7-25 AVL 树在插入节点后发生退化
-1962 年 G. M. Adelson-Velsky 和 E. M. Landis 在论文 "An algorithm for the organization of information" 中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不会退化,从而使得各种操作的时间复杂度保持在 \(O(\log n)\) 级别。换句话说,在需要频繁进行增删查改操作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。
+1962 年 G. M. Adelson-Velsky 和 E. M. Landis 在论文“An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不会退化,从而使得各种操作的时间复杂度保持在 \(O(\log n)\) 级别。换句话说,在需要频繁进行增删查改操作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。
7.5.1 AVL 树常见术语¶
AVL 树既是二叉搜索树也是平衡二叉树,同时满足这两类二叉树的所有性质,因此也被称为「平衡二叉搜索树 balanced binary search tree」。
1. 节点高度¶
@@ -3947,7 +3947,7 @@
-“节点高度”是指从该节点到其最远叶节点的距离,即所经过的“边”的数量。需要特别注意的是,叶节点的高度为 \(0\) ,而空节点的高度为 \(-1\) 。我们将创建两个工具函数,分别用于获取和更新节点的高度:
+“节点高度”是指从该节点到它的最远叶节点的距离,即所经过的“边”的数量。需要特别注意的是,叶节点的高度为 \(0\) ,而空节点的高度为 \(-1\) 。我们将创建两个工具函数,分别用于获取和更新节点的高度:
@@ -4311,9 +4311,9 @@
图 7-26 右旋操作步骤
-如图 7-27 所示,当节点 child 有右子节点(记为 grandChild )时,需要在右旋中添加一步:将 grandChild 作为 node 的左子节点。
-
- 图 7-27 有 grandChild 的右旋操作
+如图 7-27 所示,当节点 child 有右子节点(记为 grand_child )时,需要在右旋中添加一步:将 grand_child 作为 node 的左子节点。
+
+ 图 7-27 有 grand_child 的右旋操作
“向右旋转”是一种形象化的说法,实际上需要通过修改节点指针来实现,代码如下所示:
@@ -4522,9 +4522,9 @@
图 7-28 左旋操作
-同理,如图 7-29 所示,当节点 child 有左子节点(记为 grandChild )时,需要在左旋中添加一步:将 grandChild 作为 node 的右子节点。
-
- 图 7-29 有 grandChild 的左旋操作
+同理,如图 7-29 所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。
+
+ 图 7-29 有 grand_child 的左旋操作
可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左旋的实现代码:
@@ -5183,7 +5183,7 @@
"""递归插入节点(辅助方法)"""
if node is None:
return TreeNode(val)
- # 1. 查找插入位置,并插入节点
+ # 1. 查找插入位置并插入节点
if val < node.val:
node.left = self.insert_helper(node.left, val)
elif val > node.val:
@@ -5207,7 +5207,7 @@
TreeNode *insertHelper(TreeNode *node, int val) {
if (node == nullptr)
return new TreeNode(val);
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if (val < node->val)
node->left = insertHelper(node->left, val);
else if (val > node->val)
@@ -5232,7 +5232,7 @@
TreeNode insertHelper(TreeNode node, int val) {
if (node == null)
return new TreeNode(val);
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
@@ -5256,7 +5256,7 @@
/* 递归插入节点(辅助方法) */
TreeNode? InsertHelper(TreeNode? node, int val) {
if (node == null) return new TreeNode(val);
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if (val < node.val)
node.left = InsertHelper(node.left, val);
else if (val > node.val)
@@ -5282,7 +5282,7 @@
if node == nil {
return NewTreeNode(val)
}
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if val < node.Val.(int) {
node.Left = t.insertHelper(node.Left, val)
} else if val > node.Val.(int) {
@@ -5312,7 +5312,7 @@
if node == nil {
return TreeNode(x: val)
}
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if val < node!.val {
node?.left = insertHelper(node: node?.left, val: val)
} else if val > node!.val {
@@ -5337,7 +5337,7 @@
/* 递归插入节点(辅助方法) */
#insertHelper(node, val) {
if (node === null) return new TreeNode(val);
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if (val < node.val) node.left = this.#insertHelper(node.left, val);
else if (val > node.val)
node.right = this.#insertHelper(node.right, val);
@@ -5359,7 +5359,7 @@
/* 递归插入节点(辅助方法) */
insertHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return new TreeNode(val);
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if (val < node.val) {
node.left = this.insertHelper(node.left, val);
} else if (val > node.val) {
@@ -5384,7 +5384,7 @@
/* 递归插入节点(辅助方法) */
TreeNode? insertHelper(TreeNode? node, int val) {
if (node == null) return TreeNode(val);
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
@@ -5409,7 +5409,7 @@
fn insert_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {
match node {
Some(mut node) => {
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
match {
let node_val = node.borrow().val;
node_val
@@ -5450,7 +5450,7 @@
if (node == NULL) {
return newTreeNode(val);
}
- /* 1. 查找插入位置,并插入节点 */
+ /* 1. 查找插入位置并插入节点 */
if (val < node->val) {
node->left = insertHelper(node->left, val);
} else if (val > node->val) {
@@ -5482,7 +5482,7 @@
tmp_node.init(val);
return tmp_node;
}
- // 1. 查找插入位置,并插入节点
+ // 1. 查找插入位置并插入节点
if (val < node.?.val) {
node.?.left = try self.insertHelper(node.?.left, val);
} else if (val > node.?.val) {
@@ -5513,7 +5513,7 @@
"""递归删除节点(辅助方法)"""
if node is None:
return None
- # 1. 查找节点,并删除之
+ # 1. 查找节点并删除
if val < node.val:
node.left = self.remove_helper(node.left, val)
elif val > node.val:
@@ -5550,7 +5550,7 @@
TreeNode *removeHelper(TreeNode *node, int val) {
if (node == nullptr)
return nullptr;
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if (val < node->val)
node->left = removeHelper(node->left, val);
else if (val > node->val)
@@ -5597,7 +5597,7 @@
TreeNode removeHelper(TreeNode node, int val) {
if (node == null)
return null;
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
@@ -5638,7 +5638,7 @@
/* 递归删除节点(辅助方法) */
TreeNode? RemoveHelper(TreeNode? node, int val) {
if (node == null) return null;
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if (val < node.val)
node.left = RemoveHelper(node.left, val);
else if (val > node.val)
@@ -5681,7 +5681,7 @@
if node == nil {
return nil
}
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if val < node.Val.(int) {
node.Left = t.removeHelper(node.Left, val)
} else if val > node.Val.(int) {
@@ -5730,7 +5730,7 @@
if node == nil {
return nil
}
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if val < node!.val {
node?.left = removeHelper(node: node?.left, val: val)
} else if val > node!.val {
@@ -5773,7 +5773,7 @@
/* 递归删除节点(辅助方法) */
#removeHelper(node, val) {
if (node === null) return null;
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if (val < node.val) node.left = this.#removeHelper(node.left, val);
else if (val > node.val)
node.right = this.#removeHelper(node.right, val);
@@ -5811,7 +5811,7 @@
/* 递归删除节点(辅助方法) */
removeHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return null;
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if (val < node.val) {
node.left = this.removeHelper(node.left, val);
} else if (val > node.val) {
@@ -5853,7 +5853,7 @@
/* 递归删除节点(辅助方法) */
TreeNode? removeHelper(TreeNode? node, int val) {
if (node == null) return null;
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
@@ -5895,7 +5895,7 @@
fn remove_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {
match node {
Some(mut node) => {
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if val < node.borrow().val {
let left = node.borrow().left.clone();
node.borrow_mut().left = Self::remove_helper(left, val);
@@ -5954,7 +5954,7 @@
if (node == NULL) {
return NULL;
}
- /* 1. 查找节点,并删除之 */
+ /* 1. 查找节点并删除 */
if (val < node->val) {
node->left = removeHelper(node->left, val);
} else if (val > node->val) {
@@ -6002,7 +6002,7 @@
fn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {
var node = node_;
if (node == null) return null;
- // 1. 查找节点,并删除之
+ // 1. 查找节点并删除
if (val < node.?.val) {
node.?.left = self.removeHelper(node.?.left, val);
} else if (val > node.?.val) {
diff --git a/chapter_tree/binary_search_tree/index.html b/chapter_tree/binary_search_tree/index.html
index 800c48315..0763c2d79 100644
--- a/chapter_tree/binary_search_tree/index.html
+++ b/chapter_tree/binary_search_tree/index.html
@@ -1830,7 +1830,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3909,8 +3909,8 @@
2. 插入节点¶
给定一个待插入元素 num ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如图 7-18 所示。
-- 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和
num 的大小关系循环向下搜索,直到越过叶节点(遍历至 \(\text{None}\) )时跳出循环。
-- 在该位置插入节点:初始化节点
num ,将该节点置于 \(\text{None}\) 的位置。
+- 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和
num 的大小关系循环向下搜索,直到越过叶节点(遍历至 None )时跳出循环。
+- 在该位置插入节点:初始化节点
num ,将该节点置于 None 的位置。
图 7-18 在二叉搜索树中插入节点
@@ -3918,7 +3918,7 @@
在代码实现中,需要注意以下两点。
- 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
-- 为了实现插入节点,我们需要借助节点
pre 保存上一轮循环的节点。这样在遍历至 \(\text{None}\) 时,我们可以获取到其父节点,从而完成节点插入操作。
+- 为了实现插入节点,我们需要借助节点
pre 保存上一轮循环的节点。这样在遍历至 None 时,我们可以获取到其父节点,从而完成节点插入操作。
@@ -4310,9 +4310,7 @@
与查找节点相同,插入节点使用 \(O(\log n)\) 时间。
3. 删除节点¶
-先在二叉树中查找到目标节点,再将其删除。
-与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。
-因此,我们根据目标节点的子节点数量,分 0、1 和 2 三种情况,执行对应的删除节点操作。
+先在二叉树中查找到目标节点,再将其删除。与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。因此,我们根据目标节点的子节点数量,分 0、1 和 2 三种情况,执行对应的删除节点操作。
如图 7-19 所示,当待删除节点的度为 \(0\) 时,表示该节点是叶节点,可以直接删除。
图 7-19 在二叉搜索树中删除节点(度为 0 )
diff --git a/chapter_tree/binary_tree/index.html b/chapter_tree/binary_tree/index.html
index 3bf7a1948..946748c92 100644
--- a/chapter_tree/binary_tree/index.html
+++ b/chapter_tree/binary_tree/index.html
@@ -1863,7 +1863,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3853,7 +3853,7 @@
二叉树的常用术语如图 7-2 所示。
- 「根节点 root node」:位于二叉树顶层的节点,没有父节点。
-- 「叶节点 leaf node」:没有子节点的节点,其两个指针均指向 \(\text{None}\) 。
+- 「叶节点 leaf node」:没有子节点的节点,其两个指针均指向
None 。
- 「边 edge」:连接两个节点的线段,即节点引用(指针)。
- 节点所在的「层 level」:从顶至底递增,根节点所在层为 1 。
- 节点的「度 degree」:节点的子节点的数量。在二叉树中,度的取值范围是 0、1、2 。
diff --git a/chapter_tree/binary_tree_traversal/index.html b/chapter_tree/binary_tree_traversal/index.html
index a8ef4f312..d1737431d 100644
--- a/chapter_tree/binary_tree_traversal/index.html
+++ b/chapter_tree/binary_tree_traversal/index.html
@@ -1827,7 +1827,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
@@ -3615,7 +3615,7 @@
二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。
7.2.1 层序遍历¶
如图 7-9 所示,「层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。
-层序遍历本质上属于「广度优先遍历 breadth-first traversal, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
+层序遍历本质上属于「广度优先遍历 breadth-first traversal」,也称「广度优先搜索 breadth-first search, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
图 7-9 二叉树的层序遍历
@@ -3905,11 +3905,11 @@
2. 复杂度分析¶
-- 时间复杂度 \(O(n)\) :所有节点被访问一次,使用 \(O(n)\) 时间,其中 \(n\) 为节点数量。
-- 空间复杂度 \(O(n)\) :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 \((n + 1) / 2\) 个节点,占用 \(O(n)\) 空间。
+- 时间复杂度为 \(O(n)\) :所有节点被访问一次,使用 \(O(n)\) 时间,其中 \(n\) 为节点数量。
+- 空间复杂度为 \(O(n)\) :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 \((n + 1) / 2\) 个节点,占用 \(O(n)\) 空间。
7.2.2 前序、中序、后序遍历¶
-相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal, DFS」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
+相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」,也称「深度优先搜索 depth-first search, DFS」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
图 7-10 展示了对二叉树进行深度优先遍历的工作原理。深度优先遍历就像是绕着整棵二叉树的外围“走”一圈,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。
图 7-10 二叉搜索树的前序、中序、后序遍历
@@ -4357,8 +4357,8 @@
2. 复杂度分析¶
-- 时间复杂度 \(O(n)\) :所有节点被访问一次,使用 \(O(n)\) 时间。
-- 空间复杂度 \(O(n)\) :在最差情况下,即树退化为链表时,递归深度达到 \(n\) ,系统占用 \(O(n)\) 栈帧空间。
+- 时间复杂度为 \(O(n)\) :所有节点被访问一次,使用 \(O(n)\) 时间。
+- 空间复杂度为 \(O(n)\) :在最差情况下,即树退化为链表时,递归深度达到 \(n\) ,系统占用 \(O(n)\) 栈帧空间。
diff --git a/chapter_tree/index.html b/chapter_tree/index.html
index 0d01e6fa7..c9d32d5ed 100644
--- a/chapter_tree/index.html
+++ b/chapter_tree/index.html
@@ -1721,7 +1721,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/chapter_tree/summary/index.html b/chapter_tree/summary/index.html
index f4debd046..71246e7ac 100644
--- a/chapter_tree/summary/index.html
+++ b/chapter_tree/summary/index.html
@@ -1779,7 +1779,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/en/chapter_array_and_linkedlist/linked_list/index.html b/en/chapter_array_and_linkedlist/linked_list/index.html
index 1ae9ff4d1..4f13a20b4 100644
--- a/en/chapter_array_and_linkedlist/linked_list/index.html
+++ b/en/chapter_array_and_linkedlist/linked_list/index.html
@@ -1375,7 +1375,7 @@
Observing the image above, the fundamental unit of a linked list is the "node" object. Each node contains two pieces of data: the "value" of the node and the "reference" to the next node.
- The first node of a linked list is known as the "head node", and the last one is called the "tail node".
-- The tail node points to "null", which is represented as \(\text{null}\) in Java, \(\text{nullptr}\) in C++, and \(\text{None}\) in Python.
+- The tail node points to "null", which is represented as
null in Java, nullptr in C++, and None in Python.
- In languages that support pointers, like C, C++, Go, and Rust, the aforementioned "reference" should be replaced with a "pointer".
As shown in the following code, a linked list node ListNode, apart from containing a value, also needs to store a reference (pointer). Therefore, a linked list consumes more memory space than an array for the same amount of data.
diff --git a/en/chapter_array_and_linkedlist/list/index.html b/en/chapter_array_and_linkedlist/list/index.html
index c9931714c..3c443410c 100644
--- a/en/chapter_array_and_linkedlist/list/index.html
+++ b/en/chapter_array_and_linkedlist/list/index.html
@@ -2098,7 +2098,7 @@
def get(self, index: int) -> int:
"""访问元素"""
- # 索引如果越界则抛出异常,下同
+ # 索引如果越界,则抛出异常,下同
if index < 0 or index >= self._size:
raise IndexError("索引越界")
return self._arr[index]
@@ -2141,12 +2141,12 @@
self._arr[j] = self._arr[j + 1]
# 更新元素数量
self._size -= 1
- # 返回被删除元素
+ # 返回被删除的元素
return num
def extend_capacity(self):
"""列表扩容"""
- # 新建一个长度为原数组 __extend_ratio 倍的新数组,并将原数组拷贝到新数组
+ # 新建一个长度为原数组 _extend_ratio 倍的新数组,并将原数组复制到新数组
self._arr = self._arr + [0] * self.capacity() * (self._extend_ratio - 1)
# 更新列表容量
self._capacity = len(self._arr)
@@ -2188,7 +2188,7 @@
/* 访问元素 */
int get(int index) {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if (index < 0 || index >= size())
throw out_of_range("索引越界");
return arr[index];
@@ -2238,7 +2238,7 @@
}
// 更新元素数量
arrSize--;
- // 返回被删除元素
+ // 返回被删除的元素
return num;
}
@@ -2294,7 +2294,7 @@
/* 访问元素 */
public int get(int index) {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("索引越界");
return arr[index];
@@ -2344,13 +2344,13 @@
}
// 更新元素数量
size--;
- // 返回被删除元素
+ // 返回被删除的元素
return num;
}
/* 列表扩容 */
public void extendCapacity() {
- // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组拷贝到新数组
+ // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
arr = Arrays.copyOf(arr, capacity() * extendRatio);
// 更新列表容量
capacity = arr.length;
@@ -2394,7 +2394,7 @@
/* 访问元素 */
public int Get(int index) {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if (index < 0 || index >= arrSize)
throw new IndexOutOfRangeException("索引越界");
return arr[index];
@@ -2444,13 +2444,13 @@
}
// 更新元素数量
arrSize--;
- // 返回被删除元素
+ // 返回被删除的元素
return num;
}
/* 列表扩容 */
public void ExtendCapacity() {
- // 新建一个长度为 arrCapacity * extendRatio 的数组,并将原数组拷贝到新数组
+ // 新建一个长度为 arrCapacity * extendRatio 的数组,并将原数组复制到新数组
Array.Resize(ref arr, arrCapacity * extendRatio);
// 更新列表容量
arrCapacity = arr.Length;
@@ -2499,7 +2499,7 @@
/* 访问元素 */
func (l *myList) get(index int) int {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if index < 0 || index >= l.arrSize {
panic("索引越界")
}
@@ -2555,13 +2555,13 @@
}
// 更新元素数量
l.arrSize--
- // 返回被删除元素
+ // 返回被删除的元素
return num
}
/* 列表扩容 */
func (l *myList) extendCapacity() {
- // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组拷贝到新数组
+ // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
l.arr = append(l.arr, make([]int, l.arrCapacity*(l.extendRatio-1))...)
// 更新列表容量
l.arrCapacity = len(l.arr)
@@ -2656,13 +2656,13 @@
}
// 更新元素数量
_size -= 1
- // 返回被删除元素
+ // 返回被删除的元素
return num
}
/* 列表扩容 */
func extendCapacity() {
- // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组拷贝到新数组
+ // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
arr = arr + Array(repeating: 0, count: _capacity * (extendRatio - 1))
// 更新列表容量
_capacity = arr.count
@@ -2704,7 +2704,7 @@
/* 访问元素 */
get(index) {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if (index < 0 || index >= this.#size) throw new Error('索引越界');
return this.#arr[index];
}
@@ -2752,13 +2752,13 @@
}
// 更新元素数量
this.#size--;
- // 返回被删除元素
+ // 返回被删除的元素
return num;
}
/* 列表扩容 */
extendCapacity() {
- // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组拷贝到新数组
+ // 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
this.#arr = this.#arr.concat(
new Array(this.capacity() * (this.#extendRatio - 1))
);
@@ -2804,7 +2804,7 @@
/* 访问元素 */
public get(index: number): number {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if (index < 0 || index >= this._size) throw new Error('索引越界');
return this.arr[index];
}
@@ -2850,13 +2850,13 @@
}
// 更新元素数量
this._size--;
- // 返回被删除元素
+ // 返回被删除的元素
return num;
}
/* 列表扩容 */
public extendCapacity(): void {
- // 新建一个长度为 size 的数组,并将原数组拷贝到新数组
+ // 新建一个长度为 size 的数组,并将原数组复制到新数组
this.arr = this.arr.concat(
new Array(this.capacity() * (this.extendRatio - 1))
);
@@ -2941,7 +2941,7 @@
}
// 更新元素数量
_size--;
- // 返回被删除元素
+ // 返回被删除的元素
return _num;
}
@@ -2949,7 +2949,7 @@
void extendCapacity() {
// 新建一个长度为原数组 _extendRatio 倍的新数组
final _newNums = List.filled(_capacity * _extendRatio, 0);
- // 将原数组拷贝到新数组
+ // 将原数组复制到新数组
List.copyRange(_newNums, 0, _arr);
// 更新 _arr 的引用
_arr = _newNums;
@@ -3004,7 +3004,7 @@
/* 访问元素 */
pub fn get(&self, index: usize) -> i32 {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if index >= self.size {panic!("索引越界")};
return self.arr[index];
}
@@ -3052,13 +3052,13 @@
}
// 更新元素数量
self.size -= 1;
- // 返回被删除元素
+ // 返回被删除的元素
return num;
}
/* 列表扩容 */
pub fn extend_capacity(&mut self) {
- // 新建一个长度为原数组 extend_ratio 倍的新数组,并将原数组拷贝到新数组
+ // 新建一个长度为原数组 extend_ratio 倍的新数组,并将原数组复制到新数组
let new_capacity = self.capacity * self.extend_ratio;
self.arr.resize(new_capacity, 0);
// 更新列表容量
@@ -3225,14 +3225,14 @@
// 访问元素
pub fn get(self: *Self, index: usize) T {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if (index < 0 or index >= self.size()) @panic("索引越界");
return self.arr[index];
}
// 更新元素
pub fn set(self: *Self, index: usize, num: T) void {
- // 索引如果越界则抛出异常,下同
+ // 索引如果越界,则抛出异常,下同
if (index < 0 or index >= self.size()) @panic("索引越界");
self.arr[index] = num;
}
@@ -3272,13 +3272,13 @@
}
// 更新元素数量
self.numSize -= 1;
- // 返回被删除元素
+ // 返回被删除的元素
return num;
}
// 列表扩容
pub fn extendCapacity(self: *Self) !void {
- // 新建一个长度为 size * extendRatio 的数组,并将原数组拷贝到新数组
+ // 新建一个长度为 size * extendRatio 的数组,并将原数组复制到新数组
var newCapacity = self.capacity() * self.extendRatio;
var extend = try self.mem_allocator.alloc(T, newCapacity);
@memset(extend, @as(T, 0));
diff --git a/en/chapter_preface/suggestions/index.html b/en/chapter_preface/suggestions/index.html
index eb45a16ac..4227dfbde 100644
--- a/en/chapter_preface/suggestions/index.html
+++ b/en/chapter_preface/suggestions/index.html
@@ -1292,7 +1292,7 @@
- Proper nouns and words and phrases with specific meanings are marked with
"double quotes" to avoid ambiguity.
- Important proper nouns and their English translations are marked with
" " in parentheses, e.g. "array array" . It is recommended to memorize them for reading the literature.
- Bolded text Indicates key content or summary statements, which deserve special attention.
-- When it comes to terms that are inconsistent between programming languages, this book follows Python, for example using \(\text{None}\) to mean "empty".
+- When it comes to terms that are inconsistent between programming languages, this book follows Python, for example using
None to mean "empty".
- This book partially abandons the specification of annotations in programming languages in exchange for a more compact layout of the content. There are three main types of annotations: title annotations, content annotations, and multi-line annotations.
diff --git a/en/search/search_index.json b/en/search/search_index.json
index 872c487eb..002b87e19 100644
--- a/en/search/search_index.json
+++ b/en/search/search_index.json
@@ -1 +1 @@
-{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Home","text":"Hello Algo Data Structures and Algorithms Crash Course with Animated Illustrations and Off-the-Shelf Code
Dive In Clone Repo Get PDF
The English edition is brewing...
Feel free to engage in Chinese-to-English translation and pull request review! For guidelines, please see #914.
Endorsements Quote
\"An easy-to-understand book on data structures and algorithms, which guides readers to learn by minds-on and hands-on. Strongly recommended for algorithm beginners!\"
\u2014\u2014 Junhui Deng, Professor of Computer Science, Tsinghua University
Quote
\"If I had 'Hello Algo' when I was learning data structures and algorithms, it would have been 10 times easier!\"
\u2014\u2014 Mu Li, Senior Principal Scientist, Amazon
Animated illustrations Easy to understandSmooth learning curve
\"A picture is worth a thousand words.\"
Off-the-Shelf Code Multi programming languagesRun with one click
\"Talk is cheap. Show me the code.\"
Learning Together Discussion and questions welcomeReaders progress together
\"Chase the wind and moon, never stopping\"
\"Beyond the plains, there are spring mountains\"
Preface Two years ago, I shared the \"Sword Offer\" series of problem solutions on LeetCode, which received much love and support from many students. During my interactions with readers, the most common question I encountered was \"How to get started with algorithms.\" Gradually, I developed a deep interest in this question.
Blindly solving problems seems to be the most popular method, being simple, direct, and effective. However, problem-solving is like playing a \"Minesweeper\" game, where students with strong self-learning abilities can successfully clear the mines one by one, but those with insufficient foundations may end up bruised from explosions, retreating step by step in frustration. Thoroughly reading textbooks is also common, but for students aiming for job applications, the energy consumed by graduation, resume submissions, and preparing for written tests and interviews makes tackling thick books a daunting challenge.
If you are facing similar troubles, then you are lucky to have found this book. This book is my answer to this question, not necessarily the best solution, but at least an active attempt. Although this book won't directly land you an Offer, it will guide you through the \"knowledge map\" of data structures and algorithms, help you understand the shape, size, and distribution of different \"mines,\" and equip you with various \"demining methods.\" With these skills, I believe you can more comfortably solve problems and read literature, gradually building a complete knowledge system.
I deeply agree with Professor Feynman's saying: \"Knowledge isn't free. You have to pay attention.\" In this sense, this book is not entirely \"free.\" To not disappoint the precious \"attention\" you pay to this book, I will do my utmost, investing the greatest \"attention\" to complete the creation of this book.
Author Yudong Jin(Krahets), Senior Algorithm Engineer in a top tech company, Master's degree from Shanghai Jiao Tong University. The highest-read blogger across the entire LeetCode, his published \"Illustration of Algorithm Data Structures\" has been subscribed to by over 300k.
Contribution This book is continuously improved with the joint efforts of many contributors from the open-source community. Thanks to each writer who invested their time and energy, listed in the order generated by GitHub:
The code review work for this book was completed by Gonglja, gvenusleo, hpstory, justin\u2010tse, krahets, night-cruise, nuomi1, Reanon, and sjinzh (listed in alphabetical order). Thanks to them for their time and effort, ensuring the standardization and uniformity of the code in various languages.
GongljaC, C++ gvenusleoDart hpstoryC# justin-tseJS, TS krahetsJava, Python night-cruiseRust nuomi1Swift ReanonGo, C sjinzhRust, Zig"},{"location":"chapter_array_and_linkedlist/","title":"Chapter 4. \u00a0 Arrays and Linked Lists","text":"Abstract
The world of data structures is like a solid brick wall.
The bricks of an array are neatly arranged, each closely connected to the next. In contrast, the bricks of a linked list are scattered, with vines of connections freely weaving through the gaps between bricks.
"},{"location":"chapter_array_and_linkedlist/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 4.1 \u00a0 Array
- 4.2 \u00a0 Linked List
- 4.3 \u00a0 List
- 4.4 \u00a0 Memory and Cache
- 4.5 \u00a0 Summary
"},{"location":"chapter_array_and_linkedlist/array/","title":"4.1 \u00a0 Arrays","text":"The \"array\" is a linear data structure that stores elements of the same type in contiguous memory locations. We refer to the position of an element in the array as its \"index\". The following image illustrates the main terminology and concepts of an array.
Figure 4-1 \u00a0 Array Definition and Storage Method
"},{"location":"chapter_array_and_linkedlist/array/#411-common-operations-on-arrays","title":"4.1.1 \u00a0 Common Operations on Arrays","text":""},{"location":"chapter_array_and_linkedlist/array/#1-initializing-arrays","title":"1. \u00a0 Initializing Arrays","text":"There are two ways to initialize arrays depending on the requirements: without initial values and with given initial values. In cases where initial values are not specified, most programming languages will initialize the array elements to \\(0\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.py# Initialize array\narr: list[int] = [0] * 5 # [ 0, 0, 0, 0, 0 ]\nnums: list[int] = [1, 3, 2, 5, 4]\n
array.cpp/* Initialize array */\n// Stored on stack\nint arr[5];\nint nums[5] = { 1, 3, 2, 5, 4 };\n// Stored on heap (manual memory release needed)\nint* arr1 = new int[5];\nint* nums1 = new int[5] { 1, 3, 2, 5, 4 };\n
array.java/* Initialize array */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
array.cs/* Initialize array */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = [1, 3, 2, 5, 4];\n
array.go/* Initialize array */\nvar arr [5]int\n// In Go, specifying the length ([5]int) denotes an array, while not specifying it ([]int) denotes a slice.\n// Since Go's arrays are designed to have compile-time fixed length, only constants can be used to specify the length.\n// For convenience in implementing the extend() method, the Slice will be considered as an Array here.\nnums := []int{1, 3, 2, 5, 4}\n
array.swift/* Initialize array */\nlet arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]\nlet nums = [1, 3, 2, 5, 4]\n
array.js/* Initialize array */\nvar arr = new Array(5).fill(0);\nvar nums = [1, 3, 2, 5, 4];\n
array.ts/* Initialize array */\nlet arr: number[] = new Array(5).fill(0);\nlet nums: number[] = [1, 3, 2, 5, 4];\n
array.dart/* Initialize array */\nList<int> arr = List.filled(5, 0); // [0, 0, 0, 0, 0]\nList<int> nums = [1, 3, 2, 5, 4];\n
array.rs/* Initialize array */\nlet arr: Vec<i32> = vec![0; 5]; // [0, 0, 0, 0, 0]\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
array.c/* Initialize array */\nint arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }\nint nums[5] = { 1, 3, 2, 5, 4 };\n
array.zig// Initialize array\nvar arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }\nvar nums = [_]i32{ 1, 3, 2, 5, 4 };\n
"},{"location":"chapter_array_and_linkedlist/array/#2-accessing-elements","title":"2. \u00a0 Accessing Elements","text":"Elements in an array are stored in contiguous memory locations, which makes it easy to compute the memory address of any element. Given the memory address of the array (the address of the first element) and the index of an element, we can calculate the memory address of that element using the formula shown in the following image, allowing direct access to the element.
Figure 4-2 \u00a0 Memory Address Calculation for Array Elements
As observed in the above image, the index of the first element of an array is \\(0\\), which may seem counterintuitive since counting starts from \\(1\\). However, from the perspective of the address calculation formula, an index is essentially an offset from the memory address. The offset for the first element's address is \\(0\\), making its index \\(0\\) logical.
Accessing elements in an array is highly efficient, allowing us to randomly access any element in \\(O(1)\\) time.
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef random_access(nums: list[int]) -> int:\n \"\"\"\u968f\u673a\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u5728\u533a\u95f4 [0, len(nums)-1] \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n random_index = random.randint(0, len(nums) - 1)\n # \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n random_num = nums[random_index]\n return random_num\n
array.cpp/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.java/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = ThreadLocalRandom.current().nextInt(0, nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.cs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint RandomAccess(int[] nums) {\n Random random = new();\n // \u5728\u533a\u95f4 [0, nums.Length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = random.Next(nums.Length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.go/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums []int) (randomNum int) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n randomIndex := rand.Intn(len(nums))\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n randomNum = nums[randomIndex]\n return\n}\n
array.swift/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums: [Int]) -> Int {\n // \u5728\u533a\u95f4 [0, nums.count) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let randomIndex = nums.indices.randomElement()!\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let randomNum = nums[randomIndex]\n return randomNum\n}\n
array.js/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.ts/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums: number[]): number {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.dart/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(List<int> nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = Random().nextInt(nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.rs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfn random_access(nums: &[i32]) -> i32 {\n // \u5728\u533a\u95f4 [0, nums.len()) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let random_index = rand::thread_rng().gen_range(0..nums.len());\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let random_num = nums[random_index];\n random_num\n}\n
array.c/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.zig// \u968f\u673a\u8bbf\u95ee\u5143\u7d20\nfn randomAccess(nums: []i32) i32 {\n // \u5728\u533a\u95f4 [0, nums.len) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6574\u6570\n var randomIndex = std.crypto.random.intRangeLessThan(usize, 0, nums.len);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n var randomNum = nums[randomIndex];\n return randomNum;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#3-inserting-elements","title":"3. \u00a0 Inserting Elements","text":"As shown in the image below, to insert an element in the middle of an array, all elements following the insertion point must be moved one position back to make room for the new element.
Figure 4-3 \u00a0 Array Element Insertion Example
It's important to note that since the length of an array is fixed, inserting an element will inevitably lead to the loss of the last element in the array. We will discuss solutions to this problem in the \"List\" chapter.
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef insert(nums: list[int], num: int, index: int):\n \"\"\"\u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\"\"\"\n # \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in range(len(nums) - 1, index, -1):\n nums[i] = nums[i - 1]\n # \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n
array.cpp/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.java/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.cs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid Insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.Length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.go/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums []int, num int, index int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i := len(nums) - 1; i > index; i-- {\n nums[i] = nums[i-1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.swift/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums: inout [Int], num: Int, index: Int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).reversed() {\n nums[i] = nums[i - 1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.js/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums, num, index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.ts/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums: number[], num: number, index: number): void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.dart/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 _num */\nvoid insert(List<int> nums, int _num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 _num \u8d4b\u7ed9 index \u5904\u5143\u7d20\n nums[index] = _num;\n}\n
array.rs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfn insert(nums: &mut Vec<i32>, num: i32, index: usize) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in (index + 1..nums.len()).rev() {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.c/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.zig// \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\nfn insert(nums: []i32, num: i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var i = nums.len - 1;\n while (i > index) : (i -= 1) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#4-deleting-elements","title":"4. \u00a0 Deleting Elements","text":"Similarly, as illustrated below, to delete an element at index \\(i\\), all elements following index \\(i\\) must be moved forward by one position.
Figure 4-4 \u00a0 Array Element Deletion Example
Note that after deletion, the last element becomes \"meaningless\", so we do not need to specifically modify it.
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef remove(nums: list[int], index: int):\n \"\"\"\u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\"\"\"\n # \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in range(index, len(nums) - 1):\n nums[i] = nums[i + 1]\n
array.cpp/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.java/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.cs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid Remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.Length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.go/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums []int, index int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i := index; i < len(nums)-1; i++ {\n nums[i] = nums[i+1]\n }\n}\n
array.swift/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums: inout [Int], index: Int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).dropLast() {\n nums[i] = nums[i + 1]\n }\n}\n
array.js/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums, index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.ts/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums: number[], index: number): void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.dart/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(List<int> nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.rs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfn remove(nums: &mut Vec<i32>, index: usize) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in index..nums.len() - 1 {\n nums[i] = nums[i + 1];\n }\n}\n
array.c/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.zig// \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\nfn remove(nums: []i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var i = index;\n while (i < nums.len - 1) : (i += 1) {\n nums[i] = nums[i + 1];\n }\n}\n
Overall, the insertion and deletion operations in arrays have the following disadvantages:
- High Time Complexity: Both insertion and deletion in an array have an average time complexity of \\(O(n)\\), where \\(n\\) is the length of the array.
- Loss of Elements: Due to the fixed length of arrays, elements that exceed the array's capacity are lost during insertion.
- Waste of Memory: We can initialize a longer array and use only the front part, allowing the \"lost\" end elements during insertion to be \"meaningless\", but this leads to some wasted memory space.
"},{"location":"chapter_array_and_linkedlist/array/#5-traversing-arrays","title":"5. \u00a0 Traversing Arrays","text":"In most programming languages, we can traverse an array either by indices or by directly iterating over each element:
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef traverse(nums: list[int]):\n \"\"\"\u904d\u5386\u6570\u7ec4\"\"\"\n count = 0\n # \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in range(len(nums)):\n count += nums[i]\n # \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums:\n count += num\n # \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num in enumerate(nums):\n count += nums[i]\n count += num\n
array.cpp/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.java/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int num : nums) {\n count += num;\n }\n}\n
array.cs/* \u904d\u5386\u6570\u7ec4 */\nvoid Traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n foreach (int num in nums) {\n count += num;\n }\n}\n
array.go/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums []int) {\n count := 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i := 0; i < len(nums); i++ {\n count += nums[i]\n }\n count = 0\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for _, num := range nums {\n count += num\n }\n // \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num := range nums {\n count += nums[i]\n count += num\n }\n}\n
array.swift/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums: [Int]) {\n var count = 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in nums.indices {\n count += nums[i]\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n count += num\n }\n}\n
array.js/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums) {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.ts/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums: number[]): void {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.dart/* \u904d\u5386\u6570\u7ec4\u5143\u7d20 */\nvoid traverse(List<int> nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int _num in nums) {\n count += _num;\n }\n // \u901a\u8fc7 forEach \u65b9\u6cd5\u904d\u5386\u6570\u7ec4\n nums.forEach((_num) {\n count += _num;\n });\n}\n
array.rs/* \u904d\u5386\u6570\u7ec4 */\nfn traverse(nums: &[i32]) {\n let mut _count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in 0..nums.len() {\n _count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n _count += num;\n }\n}\n
array.c/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.zig// \u904d\u5386\u6570\u7ec4\nfn traverse(nums: []i32) void {\n var count: i32 = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n var i: i32 = 0;\n while (i < nums.len) : (i += 1) {\n count += nums[i];\n }\n count = 0;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (nums) |num| {\n count += num;\n }\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#6-finding-elements","title":"6. \u00a0 Finding Elements","text":"To find a specific element in an array, we need to iterate through it, checking each element to see if it matches.
Since arrays are linear data structures, this operation is known as \"linear search\".
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef find(nums: list[int], target: int) -> int:\n \"\"\"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\"\"\"\n for i in range(len(nums)):\n if nums[i] == target:\n return i\n return -1\n
array.cpp/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.java/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\n for (int i = 0; i < nums.length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.cs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint Find(int[] nums, int target) {\n for (int i = 0; i < nums.Length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.go/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums []int, target int) (index int) {\n index = -1\n for i := 0; i < len(nums); i++ {\n if nums[i] == target {\n index = i\n break\n }\n }\n return\n}\n
array.swift/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums: [Int], target: Int) -> Int {\n for i in nums.indices {\n if nums[i] == target {\n return i\n }\n }\n return -1\n}\n
array.js/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums, target) {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) return i;\n }\n return -1;\n}\n
array.ts/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums: number[], target: number): number {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) {\n return i;\n }\n }\n return -1;\n}\n
array.dart/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(List<int> nums, int target) {\n for (var i = 0; i < nums.length; i++) {\n if (nums[i] == target) return i;\n }\n return -1;\n}\n
array.rs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfn find(nums: &[i32], target: i32) -> Option<usize> {\n for i in 0..nums.len() {\n if nums[i] == target {\n return Some(i);\n }\n }\n None\n}\n
array.c/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.zig// \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\nfn find(nums: []i32, target: i32) i32 {\n for (nums, 0..) |num, i| {\n if (num == target) return @intCast(i);\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#7-expanding-arrays","title":"7. \u00a0 Expanding Arrays","text":"In complex system environments, it's challenging to ensure that the memory space following an array is available, making it unsafe to extend the array's capacity. Therefore, in most programming languages, the length of an array is immutable.
To expand an array, we need to create a larger array and then copy the elements from the original array. This operation has a time complexity of \\(O(n)\\) and can be time-consuming for large arrays. The code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef extend(nums: list[int], enlarge: int) -> list[int]:\n \"\"\"\u6269\u5c55\u6570\u7ec4\u957f\u5ea6\"\"\"\n # \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res = [0] * (len(nums) + enlarge)\n # \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in range(len(nums)):\n res[i] = nums[i]\n # \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n
array.cpp/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = new int[size + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] nums;\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.java/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.cs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] Extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.Length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.go/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums []int, enlarge int) []int {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res := make([]int, len(nums)+enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i, num := range nums {\n res[i] = num\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.swift/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums: [Int], enlarge: Int) -> [Int] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = Array(repeating: 0, count: nums.count + enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in nums.indices {\n res[i] = nums[i]\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.js/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cJavaScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums, enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.ts/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cTypeScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums: number[], enlarge: number): number[] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.dart/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nList<int> extend(List<int> nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n List<int> res = List.filled(nums.length + enlarge, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.rs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfn extend(nums: Vec<i32>, enlarge: usize) -> Vec<i32> {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n let mut res: Vec<i32> = vec![0; nums.len() + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\n for i in 0..nums.len() {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n res\n}\n
array.c/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = (int *)malloc(sizeof(int) * (size + enlarge));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u521d\u59cb\u5316\u6269\u5c55\u540e\u7684\u7a7a\u95f4\n for (int i = size; i < size + enlarge; i++) {\n res[i] = 0;\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.zig// \u6269\u5c55\u6570\u7ec4\u957f\u5ea6\nfn extend(mem_allocator: std.mem.Allocator, nums: []i32, enlarge: usize) ![]i32 {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = try mem_allocator.alloc(i32, nums.len + enlarge);\n @memset(res, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(i32, res, nums);\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#412-advantages-and-limitations-of-arrays","title":"4.1.2 \u00a0 Advantages and Limitations of Arrays","text":"Arrays are stored in contiguous memory spaces and consist of elements of the same type. This approach includes a wealth of prior information that the system can use to optimize the operation efficiency of the data structure.
- High Space Efficiency: Arrays allocate a contiguous block of memory for data, eliminating the need for additional structural overhead.
- Support for Random Access: Arrays allow \\(O(1)\\) time access to any element.
- Cache Locality: When accessing array elements, the computer not only loads them but also caches the surrounding data, leveraging high-speed cache to improve the speed of subsequent operations.
However, continuous space storage is a double-edged sword, with the following limitations:
- Low Efficiency in Insertion and Deletion: When there are many elements in an array, insertion and deletion operations require moving a large number of elements.
- Fixed Length: The length of an array is fixed after initialization. Expanding an array requires copying all data to a new array, which is costly.
- Space Wastage: If the allocated size of an array exceeds the actual need, the extra space is wasted.
"},{"location":"chapter_array_and_linkedlist/array/#413-typical-applications-of-arrays","title":"4.1.3 \u00a0 Typical Applications of Arrays","text":"Arrays are a fundamental and common data structure, frequently used in various algorithms and in implementing complex data structures.
- Random Access: If we want to randomly sample some data, we can use an array for storage and generate a random sequence to implement random sampling based on indices.
- Sorting and Searching: Arrays are the most commonly used data structure for sorting and searching algorithms. Quick sort, merge sort, binary search, etc., are primarily conducted on arrays.
- Lookup Tables: Arrays can be used as lookup tables for fast element or relationship retrieval. For instance, if we want to implement a mapping from characters to ASCII codes, we can use the ASCII code value of a character as the index, with the corresponding element stored in the corresponding position in the array.
- Machine Learning: Arrays are extensively used in neural networks for linear algebra operations between vectors, matrices, and tensors. Arrays are the most commonly used data structure in neural network programming.
- Data Structure Implementation: Arrays can be used to implement stacks, queues, hash tables, heaps, graphs, etc. For example, the adjacency matrix representation of a graph is essentially a two-dimensional array.
"},{"location":"chapter_array_and_linkedlist/linked_list/","title":"4.2 \u00a0 Linked Lists","text":"Memory space is a common resource for all programs. In a complex system environment, free memory space can be scattered throughout memory. We know that the memory space for storing an array must be contiguous, and when the array is very large, it may not be possible to provide such a large contiguous space. This is where the flexibility advantage of linked lists becomes apparent.
A \"linked list\" is a linear data structure where each element is a node object, and the nodes are connected via \"references\". A reference records the memory address of the next node, allowing access to the next node from the current one.
The design of a linked list allows its nodes to be scattered throughout memory, with no need for contiguous memory addresses.
Figure 4-5 \u00a0 Linked List Definition and Storage Method
Observing the image above, the fundamental unit of a linked list is the \"node\" object. Each node contains two pieces of data: the \"value\" of the node and the \"reference\" to the next node.
- The first node of a linked list is known as the \"head node\", and the last one is called the \"tail node\".
- The tail node points to \"null\", which is represented as \\(\\text{null}\\) in Java, \\(\\text{nullptr}\\) in C++, and \\(\\text{None}\\) in Python.
- In languages that support pointers, like C, C++, Go, and Rust, the aforementioned \"reference\" should be replaced with a \"pointer\".
As shown in the following code, a linked list node ListNode, apart from containing a value, also needs to store a reference (pointer). Therefore, a linked list consumes more memory space than an array for the same amount of data.
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"Linked List Node Class\"\"\"\n def __init__(self, val: int):\n self.val: int = val # Node value\n self.next: ListNode | None = None # Reference to the next node\n
/* Linked List Node Structure */\nstruct ListNode {\n int val; // Node value\n ListNode *next; // Pointer to the next node\n ListNode(int x) : val(x), next(nullptr) {} // Constructor\n};\n
/* Linked List Node Class */\nclass ListNode {\n int val; // Node value\n ListNode next; // Reference to the next node\n ListNode(int x) { val = x; } // Constructor\n}\n
/* Linked List Node Class */\nclass ListNode(int x) { // Constructor\n int val = x; // Node value\n ListNode? next; // Reference to the next node\n}\n
/* Linked List Node Structure */\ntype ListNode struct {\n Val int // Node value\n Next *ListNode // Pointer to the next node\n}\n\n// NewListNode Constructor, creates a new linked list\nfunc NewListNode(val int) *ListNode {\n return &ListNode{\n Val: val,\n Next: nil,\n }\n}\n
/* Linked List Node Class */\nclass ListNode {\n var val: Int // Node value\n var next: ListNode? // Reference to the next node\n\n init(x: Int) { // Constructor\n val = x\n }\n}\n
/* Linked List Node Class */\nclass ListNode {\n constructor(val, next) {\n this.val = (val === undefined ? 0 : val); // Node value\n this.next = (next === undefined ? null : next); // Reference to the next node\n }\n}\n
/* Linked List Node Class */\nclass ListNode {\n val: number;\n next: ListNode | null;\n constructor(val?: number, next?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // Node value\n this.next = next === undefined ? null : next; // Reference to the next node\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // Node value\n ListNode? next; // Reference to the next node\n ListNode(this.val, [this.next]); // Constructor\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n/* Linked List Node Class */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // Node value\n next: Option<Rc<RefCell<ListNode>>>, // Pointer to the next node\n}\n
/* Linked List Node Structure */\ntypedef struct ListNode {\n int val; // Node value\n struct ListNode *next; // Pointer to the next node\n} ListNode;\n\n/* Constructor */\nListNode *newListNode(int val) {\n ListNode *node;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n return node;\n}\n
// Linked List Node Class\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // Node value\n next: ?*Self = null, // Pointer to the next node\n\n // Constructor\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#421-common-operations-on-linked-lists","title":"4.2.1 \u00a0 Common Operations on Linked Lists","text":""},{"location":"chapter_array_and_linkedlist/linked_list/#1-initializing-a-linked-list","title":"1. \u00a0 Initializing a Linked List","text":"Building a linked list involves two steps: initializing each node object and then establishing the references between nodes. Once initialized, we can access all nodes sequentially from the head node via the next reference.
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.py# Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4\n# Initialize each node\nn0 = ListNode(1)\nn1 = ListNode(3)\nn2 = ListNode(2)\nn3 = ListNode(5)\nn4 = ListNode(4)\n# Build references between nodes\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.cpp/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode* n0 = new ListNode(1);\nListNode* n1 = new ListNode(3);\nListNode* n2 = new ListNode(2);\nListNode* n3 = new ListNode(5);\nListNode* n4 = new ListNode(4);\n// Build references between nodes\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.java/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.cs/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode n0 = new(1);\nListNode n1 = new(3);\nListNode n2 = new(2);\nListNode n3 = new(5);\nListNode n4 = new(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.go/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nn0 := NewListNode(1)\nn1 := NewListNode(3)\nn2 := NewListNode(2)\nn3 := NewListNode(5)\nn4 := NewListNode(4)\n// Build references between nodes\nn0.Next = n1\nn1.Next = n2\nn2.Next = n3\nn3.Next = n4\n
linked_list.swift/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nlet n0 = ListNode(x: 1)\nlet n1 = ListNode(x: 3)\nlet n2 = ListNode(x: 2)\nlet n3 = ListNode(x: 5)\nlet n4 = ListNode(x: 4)\n// Build references between nodes\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.js/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.ts/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.dart/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode n0 = ListNode(1);\nListNode n1 = ListNode(3);\nListNode n2 = ListNode(2);\nListNode n3 = ListNode(5);\nListNode n4 = ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.rs/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nlet n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));\nlet n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));\nlet n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));\nlet n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));\nlet n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));\n\n// Build references between nodes\nn0.borrow_mut().next = Some(n1.clone());\nn1.borrow_mut().next = Some(n2.clone());\nn2.borrow_mut().next = Some(n3.clone());\nn3.borrow_mut().next = Some(n4.clone());\n
linked_list.c/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode* n0 = newListNode(1);\nListNode* n1 = newListNode(3);\nListNode* n2 = newListNode(2);\nListNode* n3 = newListNode(5);\nListNode* n4 = newListNode(4);\n// Build references between nodes\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.zig// Initialize linked list\n// Initialize each node\nvar n0 = inc.ListNode(i32){.val = 1};\nvar n1 = inc.ListNode(i32){.val = 3};\nvar n2 = inc.ListNode(i32){.val = 2};\nvar n3 = inc.ListNode(i32){.val = 5};\nvar n4 = inc.ListNode(i32){.val = 4};\n// Build references between nodes\nn0.next = &n1;\nn1.next = &n2;\nn2.next = &n3;\nn3.next = &n4;\n
An array is a single variable, such as the array nums containing elements nums[0], nums[1], etc., while a linked list is composed of multiple independent node objects. We usually refer to the linked list by its head node, as in the linked list n0 in the above code.
"},{"location":"chapter_array_and_linkedlist/linked_list/#2-inserting-a-node","title":"2. \u00a0 Inserting a Node","text":"Inserting a node in a linked list is very easy. As shown in the image below, suppose we want to insert a new node P between two adjacent nodes n0 and n1. This requires changing only two node references (pointers), with a time complexity of \\(O(1)\\).
In contrast, the time complexity of inserting an element in an array is \\(O(n)\\), which is less efficient with large data volumes.
Figure 4-6 \u00a0 Linked List Node Insertion Example
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef insert(n0: ListNode, P: ListNode):\n \"\"\"\u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\"\"\"\n n1 = n0.next\n P.next = n1\n n0.next = P\n
linked_list.cpp/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid Insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insertNode(n0 *ListNode, P *ListNode) {\n n1 := n0.Next\n P.Next = n1\n n0.Next = P\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insert(n0: ListNode, P: ListNode) {\n let n1 = n0.next\n P.next = n1\n n0.next = P\n}\n
linked_list.js/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0, P) {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0: ListNode, P: ListNode): void {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\n#[allow(non_snake_case)]\npub fn insert<T>(n0: &Rc<RefCell<ListNode<T>>>, P: Rc<RefCell<ListNode<T>>>) {\n let n1 = n0.borrow_mut().next.take();\n P.borrow_mut().next = n1;\n n0.borrow_mut().next = Some(P);\n}\n
linked_list.c/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\nfn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {\n var n1 = n0.?.next;\n P.?.next = n1;\n n0.?.next = P;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#3-deleting-a-node","title":"3. \u00a0 Deleting a Node","text":"As shown below, deleting a node in a linked list is also very convenient, requiring only the change of one node's reference (pointer).
Note that although node P still points to n1 after the deletion operation is completed, it is no longer accessible when traversing the list, meaning P is no longer part of the list.
Figure 4-7 \u00a0 Linked List Node Deletion
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef remove(n0: ListNode):\n \"\"\"\u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n if not n0.next:\n return\n # n0 -> P -> n1\n P = n0.next\n n1 = P.next\n n0.next = n1\n
linked_list.cpp/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode *n0) {\n if (n0->next == nullptr)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n delete P;\n}\n
linked_list.java/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode n1 = P.next;\n n0.next = n1;\n}\n
linked_list.cs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid Remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.go/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc removeItem(n0 *ListNode) {\n if n0.Next == nil {\n return\n }\n // n0 -> P -> n1\n P := n0.Next\n n1 := P.Next\n n0.Next = n1\n}\n
linked_list.swift/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc remove(n0: ListNode) {\n if n0.next == nil {\n return\n }\n // n0 -> P -> n1\n let P = n0.next\n let n1 = P?.next\n n0.next = n1\n P?.next = nil\n}\n
linked_list.js/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0) {\n if (!n0.next) return;\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.ts/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0: ListNode): void {\n if (!n0.next) {\n return;\n }\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.dart/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null) return;\n // n0 -> P -> n1\n ListNode P = n0.next!;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.rs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n#[allow(non_snake_case)]\npub fn remove<T>(n0: &Rc<RefCell<ListNode<T>>>) {\n if n0.borrow().next.is_none() {return};\n // n0 -> P -> n1\n let P = n0.borrow_mut().next.take();\n if let Some(node) = P {\n let n1 = node.borrow_mut().next.take();\n n0.borrow_mut().next = n1;\n }\n}\n
linked_list.c/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(ListNode *n0) {\n if (!n0->next)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n free(P);\n}\n
linked_list.zig// \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\nfn remove(n0: ?*inc.ListNode(i32)) void {\n if (n0.?.next == null) return;\n // n0 -> P -> n1\n var P = n0.?.next;\n var n1 = P.?.next;\n n0.?.next = n1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#4-accessing-nodes","title":"4. \u00a0 Accessing Nodes","text":"Accessing nodes in a linked list is less efficient. As mentioned earlier, any element in an array can be accessed in \\(O(1)\\) time. However, in a linked list, the program needs to start from the head node and traverse each node sequentially until it finds the target node. That is, accessing the \\(i\\)-th node of a linked list requires \\(i - 1\\) iterations, with a time complexity of \\(O(n)\\).
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef access(head: ListNode, index: int) -> ListNode | None:\n \"\"\"\u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\"\"\"\n for _ in range(index):\n if not head:\n return None\n head = head.next\n return head\n
linked_list.cpp/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == nullptr)\n return nullptr;\n head = head->next;\n }\n return head;\n}\n
linked_list.java/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode access(ListNode head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.cs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? Access(ListNode? head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.go/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head *ListNode, index int) *ListNode {\n for i := 0; i < index; i++ {\n if head == nil {\n return nil\n }\n head = head.Next\n }\n return head\n}\n
linked_list.swift/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head: ListNode, index: Int) -> ListNode? {\n var head: ListNode? = head\n for _ in 0 ..< index {\n if head == nil {\n return nil\n }\n head = head?.next\n }\n return head\n}\n
linked_list.js/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head, index) {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.ts/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head: ListNode | null, index: number): ListNode | null {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.dart/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode? head, int index) {\n for (var i = 0; i < index; i++) {\n if (head == null) return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.rs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\npub fn access<T>(head: Rc<RefCell<ListNode<T>>>, index: i32) -> Rc<RefCell<ListNode<T>>> {\n if index <= 0 {return head};\n if let Some(node) = &head.borrow_mut().next {\n return access(node.clone(), index - 1);\n }\n return head;\n}\n
linked_list.c/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == NULL)\n return NULL;\n head = head->next;\n }\n return head;\n}\n
linked_list.zig// \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\nfn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {\n var head = node;\n var i: i32 = 0;\n while (i < index) : (i += 1) {\n head = head.?.next;\n if (head == null) return null;\n }\n return head;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#5-finding-nodes","title":"5. \u00a0 Finding Nodes","text":"Traverse the linked list to find a node with a value equal to target, and output the index of that node in the linked list. This process also falls under linear search. The code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef find(head: ListNode, target: int) -> int:\n \"\"\"\u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n index = 0\n while head:\n if head.val == target:\n return index\n head = head.next\n index += 1\n return -1\n
linked_list.cpp/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head != nullptr) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint Find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc findNode(head *ListNode, target int) int {\n index := 0\n for head != nil {\n if head.Val == target {\n return index\n }\n head = head.Next\n index++\n }\n return -1\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc find(head: ListNode, target: Int) -> Int {\n var head: ListNode? = head\n var index = 0\n while head != nil {\n if head?.val == target {\n return index\n }\n head = head?.next\n index += 1\n }\n return -1\n}\n
linked_list.js/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head, target) {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head: ListNode | null, target: number): number {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target) {\n return index;\n }\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\npub fn find<T: PartialEq>(head: Rc<RefCell<ListNode<T>>>, target: T, index: i32) -> i32 {\n if head.borrow().val == target {return index};\n if let Some(node) = &head.borrow_mut().next {\n return find(node.clone(), target, index + 1);\n }\n return -1;\n}\n
linked_list.c/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\nfn find(node: ?*inc.ListNode(i32), target: i32) i32 {\n var head = node;\n var index: i32 = 0;\n while (head != null) {\n if (head.?.val == target) return index;\n head = head.?.next;\n index += 1;\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#422-arrays-vs-linked-lists","title":"4.2.2 \u00a0 Arrays vs. Linked Lists","text":"The following table summarizes the characteristics of arrays and linked lists and compares their operational efficiencies. Since they employ two opposite storage strategies, their properties and operational efficiencies also show contrasting features.
Table 4-1 \u00a0 Efficiency Comparison of Arrays and Linked Lists
Arrays Linked Lists Storage Contiguous Memory Space Dispersed Memory Space Capacity Expansion Fixed Length Flexible Expansion Memory Efficiency Less Memory per Element, Potential Space Wastage More Memory per Element Accessing Elements \\(O(1)\\) \\(O(n)\\) Adding Elements \\(O(n)\\) \\(O(1)\\) Deleting Elements \\(O(n)\\) \\(O(1)\\)"},{"location":"chapter_array_and_linkedlist/linked_list/#423-common-types-of-linked-lists","title":"4.2.3 \u00a0 Common Types of Linked Lists","text":"As shown in the following image, there are three common types of linked lists.
- Singly Linked List: This is the regular linked list introduced earlier. The nodes of a singly linked list contain the value and a reference to the next node. The first node is called the head node, and the last node, pointing to null (
None), is the tail node. - Circular Linked List: If the tail node of a singly linked list points back to the head node (forming a loop), it becomes a circular linked list. In a circular linked list, any node can be considered the head node.
- Doubly Linked List: Compared to a singly linked list, a doubly linked list stores references in two directions. Its nodes contain references to both the next (successor) and the previous (predecessor) nodes. Doubly linked lists are more flexible as they allow traversal in both directions but require more memory space.
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"Bidirectional linked list node class\"\"\"\"\n def __init__(self, val: int):\n self.val: int = val # Node value\n self.next: ListNode | None = None # Reference to the successor node\n self.prev: ListNode | None = None # Reference to a predecessor node\n
/* Bidirectional linked list node structure */\nstruct ListNode {\n int val; // Node value\n ListNode *next; // Pointer to the successor node\n ListNode *prev; // Pointer to the predecessor node\n ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // Constructor\n};\n
/* Bidirectional linked list node class */\nclass ListNode {\n int val; // Node value\n ListNode next; // Reference to the next node\n ListNode prev; // Reference to the predecessor node\n ListNode(int x) { val = x; } // Constructor\n}\n
/* Bidirectional linked list node class */\nclass ListNode(int x) { // Constructor\n int val = x; // Node value\n ListNode next; // Reference to the next node\n ListNode prev; // Reference to the predecessor node\n}\n
/* Bidirectional linked list node structure */\ntype DoublyListNode struct {\n Val int // Node value\n Next *DoublyListNode // Pointer to the successor node\n Prev *DoublyListNode // Pointer to the predecessor node\n}\n\n// NewDoublyListNode initialization\nfunc NewDoublyListNode(val int) *DoublyListNode {\n return &DoublyListNode{\n Val: val,\n Next: nil,\n Prev: nil,\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n var val: Int // Node value\n var next: ListNode? // Reference to the next node\n var prev: ListNode? // Reference to the predecessor node\n\n init(x: Int) { // Constructor\n val = x\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n constructor(val, next, prev) {\n this.val = val === undefined ? 0 : val; // Node value\n this.next = next === undefined ? null : next; // Reference to the successor node\n this.prev = prev === undefined ? null : prev; // Reference to the predecessor node\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n val: number;\n next: ListNode | null;\n prev: ListNode | null;\n constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // Node value\n this.next = next === undefined ? null : next; // Reference to the successor node\n this.prev = prev === undefined ? null : prev; // Reference to the predecessor node\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n int val; // Node value\n ListNode next; // Reference to the next node\n ListNode prev; // Reference to the predecessor node\n ListNode(this.val, [this.next, this.prev]); // Constructor\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* Bidirectional linked list node type */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // Node value\n next: Option<Rc<RefCell<ListNode>>>, // Pointer to successor node\n prev: Option<Rc<RefCell<ListNode>>>, // Pointer to predecessor node\n}\n\n/* Constructors */\nimpl ListNode {\n fn new(val: i32) -> Self {\n ListNode {\n val,\n next: None,\n prev: None,\n }\n }\n}\n
/* Bidirectional linked list node structure */\ntypedef struct ListNode {\n int val; // Node value\n struct ListNode *next; // Pointer to the successor node\n struct ListNode *prev; // Pointer to the predecessor node\n} ListNode;\n\n/* Constructors */\nListNode *newListNode(int val) {\n ListNode *node, *next;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n node->prev = NULL;\n return node;\n}\n
// Bidirectional linked list node class\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // Node value\n next: ?*Self = null, // Pointer to the successor node\n prev: ?*Self = null, // Pointer to the predecessor node\n\n // Constructor\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n self.prev = null;\n }\n };\n}\n
Figure 4-8 \u00a0 Common Types of Linked Lists
"},{"location":"chapter_array_and_linkedlist/linked_list/#424-typical-applications-of-linked-lists","title":"4.2.4 \u00a0 Typical Applications of Linked Lists","text":"Singly linked lists are commonly used to implement stacks, queues, hash tables, and graphs.
- Stacks and Queues: When insertion and deletion operations are performed at one end of the linked list, it exhibits last-in-first-out characteristics, corresponding to a stack. When insertion is at one end and deletion is at the other, it shows first-in-first-out characteristics, corresponding to a queue.
- Hash Tables: Chaining is one of the mainstream solutions to hash collisions, where all colliding elements are placed in a linked list.
- Graphs: Adjacency lists are a common way to represent graphs, where each vertex is associated with a linked list. Each element in the list represents other vertices connected to that vertex.
Doubly linked lists are commonly used in scenarios that require quick access to the previous and next elements.
- Advanced Data Structures: For example, in red-black trees and B-trees, we need to access a node's parent, which can be achieved by storing a reference to the parent node in each node, similar to a doubly linked list.
- Browser History: In web browsers, when a user clicks the forward or backward button, the browser needs to know the previously and next visited web pages. The properties of a doubly linked list make this operation simple.
- LRU Algorithm: In Least Recently Used (LRU) cache eviction algorithms, we need to quickly find the least recently used data and support rapid addition and deletion of nodes. Here, using a doubly linked list is very appropriate.
Circular linked lists are commonly used in scenarios requiring periodic operations, such as resource scheduling in operating systems.
- Round-Robin Scheduling Algorithm: In operating systems, the round-robin scheduling algorithm is a common CPU scheduling algorithm that cycles through a group of processes. Each process is assigned a time slice, and when it expires, the CPU switches to the next process. This circular operation can be implemented using a circular linked list.
- Data Buffers: Circular linked lists may also be used in some data buffer implementations. For instance, in audio and video players, the data stream might be divided into multiple buffer blocks placed in a circular linked list to achieve seamless playback.
"},{"location":"chapter_array_and_linkedlist/list/","title":"4.3 \u00a0 List","text":"A \"list\" is an abstract data structure concept, representing an ordered collection of elements. It supports operations like element access, modification, addition, deletion, and traversal, without requiring users to consider capacity limitations. Lists can be implemented based on linked lists or arrays.
- A linked list naturally functions as a list, supporting operations for adding, deleting, searching, and modifying elements, and can dynamically adjust its size.
- Arrays also support these operations, but due to their fixed length, they can be considered as a list with a length limit.
When using arrays to implement lists, the fixed length property reduces the practicality of the list. This is because we often cannot determine in advance how much data needs to be stored, making it difficult to choose an appropriate list length. If the length is too small, it may not meet the requirements; if too large, it may waste memory space.
To solve this problem, we can use a \"dynamic array\" to implement lists. It inherits the advantages of arrays and can dynamically expand during program execution.
In fact, many programming languages' standard libraries implement lists using dynamic arrays, such as Python's list, Java's ArrayList, C++'s vector, and C#'s List. In the following discussion, we will consider \"list\" and \"dynamic array\" as synonymous concepts.
"},{"location":"chapter_array_and_linkedlist/list/#431-common-list-operations","title":"4.3.1 \u00a0 Common List Operations","text":""},{"location":"chapter_array_and_linkedlist/list/#1-initializing-a-list","title":"1. \u00a0 Initializing a List","text":"We typically use two methods of initialization: \"without initial values\" and \"with initial values\".
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Initialize list\n# Without initial values\nnums1: list[int] = []\n# With initial values\nnums: list[int] = [1, 3, 2, 5, 4]\n
list.cpp/* Initialize list */\n// Note, in C++ the vector is the equivalent of nums described here\n// Without initial values\nvector<int> nums1;\n// With initial values\nvector<int> nums = { 1, 3, 2, 5, 4 };\n
list.java/* Initialize list */\n// Without initial values\nList<Integer> nums1 = new ArrayList<>();\n// With initial values (note the element type should be the wrapper class Integer[] for int[])\nInteger[] numbers = new Integer[] { 1, 3, 2, 5, 4 };\nList<Integer> nums = new ArrayList<>(Arrays.asList(numbers));\n
list.cs/* Initialize list */\n// Without initial values\nList<int> nums1 = [];\n// With initial values\nint[] numbers = [1, 3, 2, 5, 4];\nList<int> nums = [.. numbers];\n
list_test.go/* Initialize list */\n// Without initial values\nnums1 := []int{}\n// With initial values\nnums := []int{1, 3, 2, 5, 4}\n
list.swift/* Initialize list */\n// Without initial values\nlet nums1: [Int] = []\n// With initial values\nvar nums = [1, 3, 2, 5, 4]\n
list.js/* Initialize list */\n// Without initial values\nconst nums1 = [];\n// With initial values\nconst nums = [1, 3, 2, 5, 4];\n
list.ts/* Initialize list */\n// Without initial values\nconst nums1: number[] = [];\n// With initial values\nconst nums: number[] = [1, 3, 2, 5, 4];\n
list.dart/* Initialize list */\n// Without initial values\nList<int> nums1 = [];\n// With initial values\nList<int> nums = [1, 3, 2, 5, 4];\n
list.rs/* Initialize list */\n// Without initial values\nlet nums1: Vec<i32> = Vec::new();\n// With initial values\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Initialize list\nvar nums = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums.deinit();\ntry nums.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });\n
"},{"location":"chapter_array_and_linkedlist/list/#2-accessing-elements","title":"2. \u00a0 Accessing Elements","text":"Lists are essentially arrays, so accessing and updating elements can be done in \\(O(1)\\) time, which is very efficient.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Access elements\nnum: int = nums[1] # Access the element at index 1\n\n# Update elements\nnums[1] = 0 # Update the element at index 1 to 0\n
list.cpp/* Access elements */\nint num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.java/* Access elements */\nint num = nums.get(1); // Access the element at index 1\n\n/* Update elements */\nnums.set(1, 0); // Update the element at index 1 to 0\n
list.cs/* Access elements */\nint num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list_test.go/* Access elements */\nnum := nums[1] // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0 // Update the element at index 1 to 0\n
list.swift/* Access elements */\nlet num = nums[1] // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0 // Update the element at index 1 to 0\n
list.js/* Access elements */\nconst num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.ts/* Access elements */\nconst num: number = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.dart/* Access elements */\nint num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.rs/* Access elements */\nlet num: i32 = nums[1]; // Access the element at index 1\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Access elements\nvar num = nums.items[1]; // Access the element at index 1\n\n// Update elements\nnums.items[1] = 0; // Update the element at index 1 to 0 \n
"},{"location":"chapter_array_and_linkedlist/list/#3-inserting-and-deleting-elements","title":"3. \u00a0 Inserting and Deleting Elements","text":"Compared to arrays, lists can freely add and remove elements. Adding elements at the end of the list has a time complexity of \\(O(1)\\), but the efficiency of inserting and deleting elements is still the same as in arrays, with a time complexity of \\(O(n)\\).
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Clear list\nnums.clear()\n\n# Append elements at the end\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n# Insert element in the middle\nnums.insert(3, 6) # Insert number 6 at index 3\n\n# Remove elements\nnums.pop(3) # Remove the element at index 3\n
list.cpp/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.push_back(1);\nnums.push_back(3);\nnums.push_back(2);\nnums.push_back(5);\nnums.push_back(4);\n\n/* Insert element in the middle */\nnums.insert(nums.begin() + 3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.erase(nums.begin() + 3); // Remove the element at index 3\n
list.java/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* Insert element in the middle */\nnums.add(3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.remove(3); // Remove the element at index 3\n
list.cs/* Clear list */\nnums.Clear();\n\n/* Append elements at the end */\nnums.Add(1);\nnums.Add(3);\nnums.Add(2);\nnums.Add(5);\nnums.Add(4);\n\n/* Insert element in the middle */\nnums.Insert(3, 6);\n\n/* Remove elements */\nnums.RemoveAt(3);\n
list_test.go/* Clear list */\nnums = nil\n\n/* Append elements at the end */\nnums = append(nums, 1)\nnums = append(nums, 3)\nnums = append(nums, 2)\nnums = append(nums, 5)\nnums = append(nums, 4)\n\n/* Insert element in the middle */\nnums = append(nums[:3], append([]int{6}, nums[3:]...)...) // Insert number 6 at index 3\n\n/* Remove elements */\nnums = append(nums[:3], nums[4:]...) // Remove the element at index 3\n
list.swift/* Clear list */\nnums.removeAll()\n\n/* Append elements at the end */\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n/* Insert element in the middle */\nnums.insert(6, at: 3) // Insert number 6 at index 3\n\n/* Remove elements */\nnums.remove(at: 3) // Remove the element at index 3\n
list.js/* Clear list */\nnums.length = 0;\n\n/* Append elements at the end */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* Insert element in the middle */\nnums.splice(3, 0, 6);\n\n/* Remove elements */\nnums.splice(3, 1);\n
list.ts/* Clear list */\nnums.length = 0;\n\n/* Append elements at the end */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* Insert element in the middle */\nnums.splice(3, 0, 6);\n\n/* Remove elements */\nnums.splice(3, 1);\n
list.dart/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* Insert element in the middle */\nnums.insert(3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.removeAt(3); // Remove the element at index 3\n
list.rs/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* Insert element in the middle */\nnums.insert(3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.remove(3); // Remove the element at index 3\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Clear list\nnums.clearRetainingCapacity();\n\n// Append elements at the end\ntry nums.append(1);\ntry nums.append(3);\ntry nums.append(2);\ntry nums.append(5);\ntry nums.append(4);\n\n// Insert element in the middle\ntry nums.insert(3, 6); // Insert number 6 at index 3\n\n// Remove elements\n_ = nums.orderedRemove(3); // Remove the element at index 3\n
"},{"location":"chapter_array_and_linkedlist/list/#4-traversing-the-list","title":"4. \u00a0 Traversing the List","text":"Like arrays, lists can be traversed based on index, or by directly iterating over each element.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Iterate through the list by index\ncount = 0\nfor i in range(len(nums)):\n count += nums[i]\n\n# Iterate directly through list elements\nfor num in nums:\n count += num\n
list.cpp/* Iterate through the list by index */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (int num : nums) {\n count += num;\n}\n
list.java/* Iterate through the list by index */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums.get(i);\n}\n\n/* Iterate directly through list elements */\nfor (int num : nums) {\n count += num;\n}\n
list.cs/* Iterate through the list by index */\nint count = 0;\nfor (int i = 0; i < nums.Count; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nforeach (int num in nums) {\n count += num;\n}\n
list_test.go/* Iterate through the list by index */\ncount := 0\nfor i := 0; i < len(nums); i++ {\n count += nums[i]\n}\n\n/* Iterate directly through list elements */\ncount = 0\nfor _, num := range nums {\n count += num\n}\n
list.swift/* Iterate through the list by index */\nvar count = 0\nfor i in nums.indices {\n count += nums[i]\n}\n\n/* Iterate directly through list elements */\ncount = 0\nfor num in nums {\n count += num\n}\n
list.js/* Iterate through the list by index */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.ts/* Iterate through the list by index */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.dart/* Iterate through the list by index */\nint count = 0;\nfor (var i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (var num in nums) {\n count += num;\n}\n
list.rs// Iterate through the list by index\nlet mut _count = 0;\nfor i in 0..nums.len() {\n _count += nums[i];\n}\n\n// Iterate directly through list elements\n_count = 0;\nfor num in &nums {\n _count += num;\n}\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Iterate through the list by index\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < nums.items.len) : (i += 1) {\n count += nums[i];\n}\n\n// Iterate directly through list elements\ncount = 0;\nfor (nums.items) |num| {\n count += num;\n}\n
"},{"location":"chapter_array_and_linkedlist/list/#5-concatenating-lists","title":"5. \u00a0 Concatenating Lists","text":"Given a new list nums1, we can append it to the end of the original list.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Concatenate two lists\nnums1: list[int] = [6, 8, 7, 10, 9]\nnums += nums1 # Concatenate nums1 to the end of nums\n
list.cpp/* Concatenate two lists */\nvector<int> nums1 = { 6, 8, 7, 10, 9 };\n// Concatenate nums1 to the end of nums\nnums.insert(nums.end(), nums1.begin(), nums1.end());\n
list.java/* Concatenate two lists */\nList<Integer> nums1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));\nnums.addAll(nums1); // Concatenate nums1 to the end of nums\n
list.cs/* Concatenate two lists */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.AddRange(nums1); // Concatenate nums1 to the end of nums\n
list_test.go/* Concatenate two lists */\nnums1 := []int{6, 8, 7, 10, 9}\nnums = append(nums, nums1...) // Concatenate nums1 to the end of nums\n
list.swift/* Concatenate two lists */\nlet nums1 = [6, 8, 7, 10, 9]\nnums.append(contentsOf: nums1) // Concatenate nums1 to the end of nums\n
list.js/* Concatenate two lists */\nconst nums1 = [6, 8, 7, 10, 9];\nnums.push(...nums1); // Concatenate nums1 to the end of nums\n
list.ts/* Concatenate two lists */\nconst nums1: number[] = [6, 8, 7, 10, 9];\nnums.push(...nums1); // Concatenate nums1 to the end of nums\n
list.dart/* Concatenate two lists */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.addAll(nums1); // Concatenate nums1 to the end of nums\n
list.rs/* Concatenate two lists */\nlet nums1: Vec<i32> = vec![6, 8, 7, 10, 9];\nnums.extend(nums1);\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Concatenate two lists\nvar nums1 = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums1.deinit();\ntry nums1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });\ntry nums.insertSlice(nums.items.len, nums1.items); // Concatenate nums1 to the end of nums\n
"},{"location":"chapter_array_and_linkedlist/list/#6-sorting-the-list","title":"6. \u00a0 Sorting the List","text":"After sorting the list, we can use algorithms often tested in array-related algorithm problems, such as \"binary search\" and \"two-pointer\" algorithms.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Sort the list\nnums.sort() # After sorting, the list elements are in ascending order\n
list.cpp/* Sort the list */\nsort(nums.begin(), nums.end()); // After sorting, the list elements are in ascending order\n
list.java/* Sort the list */\nCollections.sort(nums); // After sorting, the list elements are in ascending order\n
list.cs/* Sort the list */\nnums.Sort(); // After sorting, the list elements are in ascending order\n
list_test.go/* Sort the list */\nsort.Ints(nums) // After sorting, the list elements are in ascending order\n
list.swift/* Sort the list */\nnums.sort() // After sorting, the list elements are in ascending order\n
list.js/* Sort the list */ \nnums.sort((a, b) => a - b); // After sorting, the list elements are in ascending order\n
list.ts/* Sort the list */\nnums.sort((a, b) => a - b); // After sorting, the list elements are in ascending order\n
list.dart/* Sort the list */\nnums.sort(); // After sorting, the list elements are in ascending order\n
list.rs/* Sort the list */\nnums.sort(); // After sorting, the list elements are in ascending order\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Sort the list\nstd.sort.sort(i32, nums.items, {}, comptime std.sort.asc(i32));\n
"},{"location":"chapter_array_and_linkedlist/list/#432-list-implementation","title":"4.3.2 \u00a0 List Implementation","text":"Many programming languages have built-in lists, such as Java, C++, Python, etc. Their implementations are quite complex, with very meticulous settings for parameters such as initial capacity and expansion multiplier. Interested readers can refer to the source code for learning.
To deepen the understanding of how lists work, let's try implementing a simple version of a list, focusing on three key designs.
- Initial Capacity: Choose a reasonable initial capacity for the array. In this example, we choose 10 as the initial capacity.
- Size Recording: Declare a variable
size to record the current number of elements in the list, updating in real-time with element insertion and deletion. With this variable, we can locate the end of the list and determine whether expansion is needed. - Expansion Mechanism: If the list's capacity is full when inserting an element, expansion is necessary. First, create a larger array based on the expansion multiplier, then move all elements of the current array to the new array. In this example, we define that each time the array will expand to twice its previous size.
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_list.pyclass MyList:\n \"\"\"\u5217\u8868\u7c7b\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._capacity: int = 10 # \u5217\u8868\u5bb9\u91cf\n self._arr: list[int] = [0] * self._capacity # \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n self._size: int = 0 # \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n self._extend_ratio: int = 2 # \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\"\"\"\n return self._size\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u5bb9\u91cf\"\"\"\n return self._capacity\n\n def get(self, index: int) -> int:\n \"\"\"\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n return self._arr[index]\n\n def set(self, num: int, index: int):\n \"\"\"\u66f4\u65b0\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n self._arr[index] = num\n\n def add(self, num: int):\n \"\"\"\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\"\"\"\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size() == self.capacity():\n self.extend_capacity()\n self._arr[self._size] = num\n self._size += 1\n\n def insert(self, num: int, index: int):\n \"\"\"\u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self._size == self.capacity():\n self.extend_capacity()\n # \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in range(self._size - 1, index - 1, -1):\n self._arr[j + 1] = self._arr[j]\n self._arr[index] = num\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size += 1\n\n def remove(self, index: int) -> int:\n \"\"\"\u5220\u9664\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n num = self._arr[index]\n # \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in range(index, self._size - 1):\n self._arr[j] = self._arr[j + 1]\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size -= 1\n # \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num\n\n def extend_capacity(self):\n \"\"\"\u5217\u8868\u6269\u5bb9\"\"\"\n # \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 __extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n self._arr = self._arr + [0] * self.capacity() * (self._extend_ratio - 1)\n # \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self._capacity = len(self._arr)\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868\"\"\"\n return self._arr[: self._size]\n
my_list.cpp/* \u5217\u8868\u7c7b */\nclass MyList {\n private:\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~MyList() {\n delete[] arr;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n arr[size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size() - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size() - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n int newCapacity = capacity() * extendRatio;\n int *tmp = arr;\n arr = new int[newCapacity];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n arr[i] = tmp[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] tmp;\n arrCapacity = newCapacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Vector \u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> vec(size());\n for (int i = 0; i < size(); i++) {\n vec[i] = arr[i];\n }\n return vec;\n }\n};\n
my_list.java/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int capacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[capacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\n public int size() {\n return size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int capacity() {\n return capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void set(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n arr[size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void insert(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int remove(int index) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n arr = Arrays.copyOf(arr, capacity() * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n capacity = arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] toArray() {\n int size = size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[size];\n for (int i = 0; i < size; i++) {\n arr[i] = get(i);\n }\n return arr;\n }\n}\n
my_list.cs/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private readonly int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public int Size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int Capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int Get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void Set(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void Add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n arr[arrSize] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void Insert(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = arrSize - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int Remove(int index) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < arrSize - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void ExtendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a arrCapacity * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n Array.Resize(ref arr, arrCapacity * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n arrCapacity = arr.Length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[arrSize];\n for (int i = 0; i < arrSize; i++) {\n arr[i] = Get(i);\n }\n return arr;\n }\n}\n
my_list.go/* \u5217\u8868\u7c7b */\ntype myList struct {\n arrCapacity int\n arr []int\n arrSize int\n extendRatio int\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newMyList() *myList {\n return &myList{\n arrCapacity: 10, // \u5217\u8868\u5bb9\u91cf\n arr: make([]int, 10), // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrSize: 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n }\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\nfunc (l *myList) size() int {\n return l.arrSize\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc (l *myList) capacity() int {\n return l.arrCapacity\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc (l *myList) get(index int) int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return l.arr[index]\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc (l *myList) set(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n l.arr[index] = num\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc (l *myList) add(num int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n l.arr[l.arrSize] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc (l *myList) insert(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j := l.arrSize - 1; j >= index; j-- {\n l.arr[j+1] = l.arr[j]\n }\n l.arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5220\u9664\u5143\u7d20 */\nfunc (l *myList) remove(index int) int {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n num := l.arr[index]\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j := index; j < l.arrSize-1; j++ {\n l.arr[j] = l.arr[j+1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize--\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nfunc (l *myList) extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n l.arr = append(l.arr, make([]int, l.arrCapacity*(l.extendRatio-1))...)\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n l.arrCapacity = len(l.arr)\n}\n\n/* \u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868 */\nfunc (l *myList) toArray() []int {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n return l.arr[:l.arrSize]\n}\n
my_list.swift/* \u5217\u8868\u7c7b */\nclass MyList {\n private var arr: [Int] // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private var _capacity = 10 // \u5217\u8868\u5bb9\u91cf\n private var _size = 0 // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private let extendRatio = 2 // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n arr = Array(repeating: 0, count: _capacity)\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n func size() -> Int {\n _size\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n func capacity() -> Int {\n _capacity\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n func get(index: Int) -> Int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u9519\u8bef\uff0c\u4e0b\u540c\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return arr[index]\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n func set(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n arr[index] = num\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n func add(num: Int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n arr[_size] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n func insert(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in sequence(first: _size - 1, next: { $0 >= index + 1 ? $0 - 1 : nil }) {\n arr[j + 1] = arr[j]\n }\n arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n @discardableResult\n func remove(index: Int) -> Int {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n let num = arr[index]\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in index ..< (_size - 1) {\n arr[j] = arr[j + 1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size -= 1\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n func extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n arr = arr + Array(repeating: 0, count: _capacity * (extendRatio - 1))\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = arr.count\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n func toArray() -> [Int] {\n var arr = Array(repeating: 0, count: _size)\n for i in 0 ..< _size {\n arr[i] = get(index: i)\n }\n return arr\n }\n}\n
my_list.js/* \u5217\u8868\u7c7b */\nclass MyList {\n #arr = new Array(); // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n #capacity = 10; // \u5217\u8868\u5bb9\u91cf\n #size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n #extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#arr = new Array(this.#capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n size() {\n return this.#size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n capacity() {\n return this.#capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n get(index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.#arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n set(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.#arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n add(num) {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.#arr[this.#size] = num;\n this.#size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n insert(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this.#size - 1; j >= index; j--) {\n this.#arr[j + 1] = this.#arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#arr[index] = num;\n this.#size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n remove(index) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.#arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this.#size - 1; j++) {\n this.#arr[j] = this.#arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n this.#arr = this.#arr.concat(\n new Array(this.capacity() * (this.#extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this.#capacity = this.#arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n toArray() {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.ts/* \u5217\u8868\u7c7b */\nclass MyList {\n private arr: Array<number>; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private _capacity: number = 10; // \u5217\u8868\u5bb9\u91cf\n private _size: number = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private extendRatio: number = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.arr = new Array(this._capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public size(): number {\n return this._size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public capacity(): number {\n return this._capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public get(index: number): number {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public set(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public add(num: number): void {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this._size === this._capacity) this.extendCapacity();\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.arr[this._size] = num;\n this._size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public insert(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this._size === this._capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this._size - 1; j >= index; j--) {\n this.arr[j + 1] = this.arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.arr[index] = num;\n this._size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public remove(index: number): number {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this._size - 1; j++) {\n this.arr[j] = this.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this._size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public extendCapacity(): void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n this.arr = this.arr.concat(\n new Array(this.capacity() * (this.extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this._capacity = this.arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public toArray(): number[] {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.dart/* \u5217\u8868\u7c7b */\nclass MyList {\n late List<int> _arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int _capacity = 10; // \u5217\u8868\u5bb9\u91cf\n int _size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int _extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n _arr = List.filled(_capacity, 0);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() => _size;\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() => _capacity;\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n return _arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n _arr[index] = _num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int _num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n _arr[_size] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var j = _size - 1; j >= index; j--) {\n _arr[j + 1] = _arr[j];\n }\n _arr[index] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n int _num = _arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var j = index; j < _size - 1; j++) {\n _arr[j] = _arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return _num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n final _newNums = List.filled(_capacity * _extendRatio, 0);\n // \u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n List.copyRange(_newNums, 0, _arr);\n // \u66f4\u65b0 _arr \u7684\u5f15\u7528\n _arr = _newNums;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = _arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n List<int> toArray() {\n List<int> arr = [];\n for (var i = 0; i < _size; i++) {\n arr.add(get(i));\n }\n return arr;\n }\n}\n
my_list.rs/* \u5217\u8868\u7c7b */\n#[allow(dead_code)]\nstruct MyList {\n arr: Vec<i32>, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n capacity: usize, // \u5217\u8868\u5bb9\u91cf\n size: usize, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extend_ratio: usize, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n\n#[allow(unused,unused_comparisons)]\nimpl MyList {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(capacity: usize) -> Self {\n let mut vec = Vec::new(); \n vec.resize(capacity, 0);\n Self {\n arr: vec,\n capacity,\n size: 0,\n extend_ratio: 2,\n }\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n pub fn size(&self) -> usize {\n return self.size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n pub fn capacity(&self) -> usize {\n return self.capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n pub fn get(&self, index: usize) -> i32 {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n return self.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n pub fn set(&mut self, index: usize, num: i32) {\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n self.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n pub fn add(&mut self, num: i32) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n self.arr[self.size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n pub fn insert(&mut self, index: usize, num: i32) {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size).rev() {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n pub fn remove(&mut self, index: usize) -> i32 {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n let num = self.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size - 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n pub fn extend_capacity(&mut self) {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n let new_capacity = self.capacity * self.extend_ratio;\n self.arr.resize(new_capacity, 0);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.capacity = new_capacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n pub fn to_array(&mut self) -> Vec<i32> {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n let mut arr = Vec::new();\n for i in 0..self.size {\n arr.push(self.get(i));\n }\n arr\n }\n}\n
my_list.c/* \u5217\u8868\u7c7b */\ntypedef struct {\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int capacity; // \u5217\u8868\u5bb9\u91cf\n int size; // \u5217\u8868\u5927\u5c0f\n int extendRatio; // \u5217\u8868\u6bcf\u6b21\u6269\u5bb9\u7684\u500d\u6570\n} MyList;\n\n/* \u6784\u9020\u51fd\u6570 */\nMyList *newMyList() {\n MyList *nums = malloc(sizeof(MyList));\n nums->capacity = 10;\n nums->arr = malloc(sizeof(int) * nums->capacity);\n nums->size = 0;\n nums->extendRatio = 2;\n return nums;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delMyList(MyList *nums) {\n free(nums->arr);\n free(nums);\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6 */\nint size(MyList *nums) {\n return nums->size;\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity(MyList *nums) {\n return nums->capacity;\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(MyList *nums, int index) {\n assert(index >= 0 && index < nums->size);\n return nums->arr[index];\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(MyList *nums, int index, int num) {\n assert(index >= 0 && index < nums->size);\n nums->arr[index] = num;\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(MyList *nums, int num) {\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n nums->arr[size(nums)] = num;\n nums->size++;\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(MyList *nums, int index, int num) {\n assert(index >= 0 && index < size(nums));\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n for (int i = size(nums); i > index; --i) {\n nums->arr[i] = nums->arr[i - 1];\n }\n nums->arr[index] = num;\n nums->size++;\n}\n\n/* \u5220\u9664\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nint removeItem(MyList *nums, int index) {\n assert(index >= 0 && index < size(nums));\n int num = nums->arr[index];\n for (int i = index; i < size(nums) - 1; i++) {\n nums->arr[i] = nums->arr[i + 1];\n }\n nums->size--;\n return num;\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity(MyList *nums) {\n // \u5148\u5206\u914d\u7a7a\u95f4\n int newCapacity = capacity(nums) * nums->extendRatio;\n int *extend = (int *)malloc(sizeof(int) * newCapacity);\n int *temp = nums->arr;\n\n // \u62f7\u8d1d\u65e7\u6570\u636e\u5230\u65b0\u6570\u636e\n for (int i = 0; i < size(nums); i++)\n extend[i] = nums->arr[i];\n\n // \u91ca\u653e\u65e7\u6570\u636e\n free(temp);\n\n // \u66f4\u65b0\u65b0\u6570\u636e\n nums->arr = extend;\n nums->capacity = newCapacity;\n}\n\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Array \u7528\u4e8e\u6253\u5370 */\nint *toArray(MyList *nums) {\n return nums->arr;\n}\n
my_list.zig// \u5217\u8868\u7c7b\nfn MyList(comptime T: type) type {\n return struct {\n const Self = @This();\n\n arr: []T = undefined, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrCapacity: usize = 10, // \u5217\u8868\u5bb9\u91cf\n numSize: usize = 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: usize = 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u5217\u8868\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.arr = try self.mem_allocator.alloc(T, self.arrCapacity);\n @memset(self.arr, @as(T, 0));\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n pub fn size(self: *Self) usize {\n return self.numSize;\n }\n\n // \u83b7\u53d6\u5217\u8868\u5bb9\u91cf\n pub fn capacity(self: *Self) usize {\n return self.arrCapacity;\n }\n\n // \u8bbf\u95ee\u5143\u7d20\n pub fn get(self: *Self, index: usize) T {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n return self.arr[index];\n } \n\n // \u66f4\u65b0\u5143\u7d20\n pub fn set(self: *Self, index: usize, num: T) void {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n self.arr[index] = num;\n } \n\n // \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\n pub fn add(self: *Self, num: T) !void {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n self.arr[self.size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n } \n\n // \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\n pub fn insert(self: *Self, index: usize, num: T) !void {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var j = self.size() - 1;\n while (j >= index) : (j -= 1) {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n }\n\n // \u5220\u9664\u5143\u7d20\n pub fn remove(self: *Self, index: usize) T {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n var num = self.arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var j = index;\n while (j < self.size() - 1) : (j += 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n // \u5217\u8868\u6269\u5bb9\n pub fn extendCapacity(self: *Self) !void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n var newCapacity = self.capacity() * self.extendRatio;\n var extend = try self.mem_allocator.alloc(T, newCapacity);\n @memset(extend, @as(T, 0));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(T, extend, self.arr);\n self.arr = extend;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.arrCapacity = newCapacity;\n }\n\n // \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var arr = try self.mem_allocator.alloc(T, self.size());\n @memset(arr, @as(T, 0));\n for (arr, 0..) |*num, i| {\n num.* = self.get(i);\n }\n return arr;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/","title":"4.4 \u00a0 Memory and Cache *","text":"In the first two sections of this chapter, we explored arrays and linked lists, two fundamental and important data structures, representing \"continuous storage\" and \"dispersed storage\" respectively.
In fact, the physical structure largely determines the efficiency of a program's use of memory and cache, which in turn affects the overall performance of the algorithm.
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#441-computer-storage-devices","title":"4.4.1 \u00a0 Computer Storage Devices","text":"There are three types of storage devices in computers: \"hard disk,\" \"random-access memory (RAM),\" and \"cache memory.\" The following table shows their different roles and performance characteristics in computer systems.
Table 4-2 \u00a0 Computer Storage Devices
Hard Disk Memory Cache Usage Long-term storage of data, including OS, programs, files, etc. Temporary storage of currently running programs and data being processed Stores frequently accessed data and instructions, reducing the number of CPU accesses to memory Volatility Data is not lost after power off Data is lost after power off Data is lost after power off Capacity Larger, TB level Smaller, GB level Very small, MB level Speed Slower, several hundred to thousands MB/s Faster, several tens of GB/s Very fast, several tens to hundreds of GB/s Price Cheaper, several cents to yuan / GB More expensive, tens to hundreds of yuan / GB Very expensive, priced with CPU We can imagine the computer storage system as a pyramid structure shown in the Figure 4-9 . The storage devices closer to the top of the pyramid are faster, have smaller capacity, and are more costly. This multi-level design is not accidental, but the result of careful consideration by computer scientists and engineers.
- Hard disks are difficult to replace with memory. Firstly, data in memory is lost after power off, making it unsuitable for long-term data storage; secondly, the cost of memory is dozens of times that of hard disks, making it difficult to popularize in the consumer market.
- It is difficult for caches to have both large capacity and high speed. As the capacity of L1, L2, L3 caches gradually increases, their physical size becomes larger, increasing the physical distance from the CPU core, leading to increased data transfer time and higher element access latency. Under current technology, a multi-level cache structure is the best balance between capacity, speed, and cost.
Figure 4-9 \u00a0 Computer Storage System
Note
The storage hierarchy of computers reflects a delicate balance between speed, capacity, and cost. In fact, this kind of trade-off is common in all industrial fields, requiring us to find the best balance between different advantages and limitations.
Overall, hard disks are used for long-term storage of large amounts of data, memory is used for temporary storage of data being processed during program execution, and cache is used to store frequently accessed data and instructions to improve program execution efficiency. Together, they ensure the efficient operation of computer systems.
As shown in the Figure 4-10 , during program execution, data is read from the hard disk into memory for CPU computation. The cache can be considered a part of the CPU, smartly loading data from memory to provide fast data access to the CPU, significantly enhancing program execution efficiency and reducing reliance on slower memory.
Figure 4-10 \u00a0 Data Flow Between Hard Disk, Memory, and Cache
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#442-memory-efficiency-of-data-structures","title":"4.4.2 \u00a0 Memory Efficiency of Data Structures","text":"In terms of memory space utilization, arrays and linked lists have their advantages and limitations.
On one hand, memory is limited and cannot be shared by multiple programs, so we hope that data structures can use space as efficiently as possible. The elements of an array are tightly packed without extra space for storing references (pointers) between linked list nodes, making them more space-efficient. However, arrays require allocating sufficient continuous memory space at once, which may lead to memory waste, and array expansion also requires additional time and space costs. In contrast, linked lists allocate and reclaim memory dynamically on a per-node basis, providing greater flexibility.
On the other hand, during program execution, as memory is repeatedly allocated and released, the degree of fragmentation of free memory becomes higher, leading to reduced memory utilization efficiency. Arrays, due to their continuous storage method, are relatively less likely to cause memory fragmentation. In contrast, the elements of a linked list are dispersedly stored, and frequent insertion and deletion operations make memory fragmentation more likely.
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#443-cache-efficiency-of-data-structures","title":"4.4.3 \u00a0 Cache Efficiency of Data Structures","text":"Although caches are much smaller in space capacity than memory, they are much faster and play a crucial role in program execution speed. Since the cache's capacity is limited and can only store a small part of frequently accessed data, when the CPU tries to access data not in the cache, a \"cache miss\" occurs, forcing the CPU to load the needed data from slower memory.
Clearly, the fewer the cache misses, the higher the CPU's data read-write efficiency, and the better the program performance. The proportion of successful data retrieval from the cache by the CPU is called the \"cache hit rate,\" a metric often used to measure cache efficiency.
To achieve higher efficiency, caches adopt the following data loading mechanisms.
- Cache Lines: Caches don't store and load data byte by byte but in units of cache lines. Compared to byte-by-byte transfer, the transmission of cache lines is more efficient.
- Prefetch Mechanism: Processors try to predict data access patterns (such as sequential access, fixed stride jumping access, etc.) and load data into the cache according to specific patterns to improve the hit rate.
- Spatial Locality: If data is accessed, data nearby is likely to be accessed in the near future. Therefore, when loading certain data, the cache also loads nearby data to improve the hit rate.
- Temporal Locality: If data is accessed, it's likely to be accessed again in the near future. Caches use this principle to retain recently accessed data to improve the hit rate.
In fact, arrays and linked lists have different cache utilization efficiencies, mainly reflected in the following aspects.
- Occupied Space: Linked list elements occupy more space than array elements, resulting in less effective data volume in the cache.
- Cache Lines: Linked list data is scattered throughout memory, and since caches load \"by line,\" the proportion of loading invalid data is higher.
- Prefetch Mechanism: The data access pattern of arrays is more \"predictable\" than that of linked lists, meaning the system is more likely to guess which data will be loaded next.
- Spatial Locality: Arrays are stored in concentrated memory spaces, so the data near the loaded data is more likely to be accessed next.
Overall, arrays have a higher cache hit rate and are generally more efficient in operation than linked lists. This makes data structures based on arrays more popular in solving algorithmic problems.
It should be noted that high cache efficiency does not mean that arrays are always better than linked lists. Which data structure to choose in actual applications should be based on specific requirements. For example, both arrays and linked lists can implement the \"stack\" data structure (which will be detailed in the next chapter), but they are suitable for different scenarios.
- In algorithm problems, we tend to choose stacks based on arrays because they provide higher operational efficiency and random access capabilities, with the only cost being the need to pre-allocate a certain amount of memory space for the array.
- If the data volume is very large, highly dynamic, and the expected size of the stack is difficult to estimate, then a stack based on a linked list is more appropriate. Linked lists can disperse a large amount of data in different parts of the memory and avoid the additional overhead of array expansion.
"},{"location":"chapter_array_and_linkedlist/summary/","title":"4.5 \u00a0 Summary","text":""},{"location":"chapter_array_and_linkedlist/summary/#1-key-review","title":"1. \u00a0 Key Review","text":" - Arrays and linked lists are two fundamental data structures, representing two storage methods in computer memory: continuous space storage and dispersed space storage. Their characteristics complement each other.
- Arrays support random access and use less memory; however, they are inefficient in inserting and deleting elements and have a fixed length after initialization.
- Linked lists implement efficient node insertion and deletion through changing references (pointers) and can flexibly adjust their length; however, they have lower node access efficiency and use more memory.
- Common types of linked lists include singly linked lists, circular linked lists, and doubly linked lists, each with its own application scenarios.
- Lists are ordered collections of elements that support addition, deletion, and modification, typically implemented based on dynamic arrays, retaining the advantages of arrays while allowing flexible length adjustment.
- The advent of lists significantly enhanced the practicality of arrays but may lead to some memory space wastage.
- During program execution, data is mainly stored in memory. Arrays provide higher memory space efficiency, while linked lists are more flexible in memory usage.
- Caches provide fast data access to CPUs through mechanisms like cache lines, prefetching, spatial locality, and temporal locality, significantly enhancing program execution efficiency.
- Due to higher cache hit rates, arrays are generally more efficient than linked lists. When choosing a data structure, the appropriate choice should be made based on specific needs and scenarios.
"},{"location":"chapter_array_and_linkedlist/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"Does storing arrays on the stack versus the heap affect time and space efficiency?
Arrays stored on both the stack and heap are stored in continuous memory spaces, and data operation efficiency is essentially the same. However, stacks and heaps have their own characteristics, leading to the following differences.
- Allocation and release efficiency: The stack is a smaller memory block, allocated automatically by the compiler; the heap memory is relatively larger and can be dynamically allocated in the code, more prone to fragmentation. Therefore, allocation and release operations on the heap are generally slower than on the stack.
- Size limitation: Stack memory is relatively small, while the heap size is generally limited by available memory. Therefore, the heap is more suitable for storing large arrays.
- Flexibility: The size of arrays on the stack needs to be determined at compile-time, while the size of arrays on the heap can be dynamically determined at runtime.
Why do arrays require elements of the same type, while linked lists do not emphasize same-type elements?
Linked lists consist of nodes connected by references (pointers), and each node can store data of different types, such as int, double, string, object, etc.
In contrast, array elements must be of the same type, allowing the calculation of offsets to access the corresponding element positions. For example, an array containing both int and long types, with single elements occupying 4 bytes and 8 bytes respectively, cannot use the following formula to calculate offsets, as the array contains elements of two different lengths.
# Element memory address = Array memory address + Element length * Element index\n
After deleting a node, is it necessary to set P.next to None?
Not modifying P.next is also acceptable. From the perspective of the linked list, traversing from the head node to the tail node will no longer encounter P. This means that node P has been effectively removed from the list, and where P points no longer affects the list.
From a garbage collection perspective, for languages with automatic garbage collection mechanisms like Java, Python, and Go, whether node P is collected depends on whether there are still references pointing to it, not on the value of P.next. In languages like C and C++, we need to manually free the node's memory.
In linked lists, the time complexity for insertion and deletion operations is O(1). But searching for the element before insertion or deletion takes O(n) time, so why isn't the time complexity O(n)?
If an element is searched first and then deleted, the time complexity is indeed O(n). However, the O(1) advantage of linked lists in insertion and deletion can be realized in other applications. For example, in the implementation of double-ended queues using linked lists, we maintain pointers always pointing to the head and tail nodes, making each insertion and deletion operation O(1).
In the image 'Linked List Definition and Storage Method', do the light blue storage nodes occupy a single memory address, or do they share half with the node value?
The diagram is just a qualitative representation; quantitative analysis depends on specific situations.
- Different types of node values occupy different amounts of space, such as int, long, double, and object instances.
- The memory space occupied by pointer variables depends on the operating system and compilation environment used, usually 8 bytes or 4 bytes.
Is adding elements to the end of a list always O(1)?
If adding an element exceeds the list length, the list needs to be expanded first. The system will request a new memory block and move all elements of the original list over, in which case the time complexity becomes O(n).
The statement 'The emergence of lists greatly improves the practicality of arrays, but may lead to some memory space wastage' - does this refer to the memory occupied by additional variables like capacity, length, and expansion multiplier?
The space wastage here mainly refers to two aspects: on the one hand, lists are set with an initial length, which we may not always need; on the other hand, to prevent frequent expansion, expansion usually multiplies by a coefficient, such as \\(\\times 1.5\\). This results in many empty slots, which we typically cannot fully fill.
In Python, after initializing n = [1, 2, 3], the addresses of these 3 elements are contiguous, but initializing m = [2, 1, 3] shows that each element's id is not consecutive but identical to those in n. If the addresses of these elements are not contiguous, is m still an array?
If we replace list elements with linked list nodes n = [n1, n2, n3, n4, n5], these 5 node objects are also typically dispersed throughout memory. However, given a list index, we can still access the node's memory address in O(1) time, thereby accessing the corresponding node. This is because the array stores references to the nodes, not the nodes themselves.
Unlike many languages, in Python, numbers are also wrapped as objects, and lists store references to these numbers, not the numbers themselves. Therefore, we find that the same number in two arrays has the same id, and these numbers' memory addresses need not be contiguous.
The std::list in C++ STL has already implemented a doubly linked list, but it seems that some algorithm books don't directly use it. Is there any limitation?
On the one hand, we often prefer to use arrays to implement algorithms, only using linked lists when necessary, mainly for two reasons.
- Space overhead: Since each element requires two additional pointers (one for the previous element and one for the next),
std::list usually occupies more space than std::vector. - Cache unfriendly: As the data is not stored continuously,
std::list has a lower cache utilization rate. Generally, std::vector performs better.
On the other hand, linked lists are primarily necessary for binary trees and graphs. Stacks and queues are often implemented using the programming language's stack and queue classes, rather than linked lists.
Does initializing a list res = [0] * self.size() result in each element of res referencing the same address?
No. However, this issue arises with two-dimensional arrays, for example, initializing a two-dimensional list res = [[0] * self.size()] would reference the same list [0] multiple times.
In deleting a node, is it necessary to break the reference to its successor node?
From the perspective of data structures and algorithms (problem-solving), it's okay not to break the link, as long as the program's logic is correct. From the perspective of standard libraries, breaking the link is safer and more logically clear. If the link is not broken, and the deleted node is not properly recycled, it could affect the recycling of the successor node's memory.
"},{"location":"chapter_computational_complexity/","title":"Chapter 2. \u00a0 Complexity Analysis","text":"Abstract
Complexity analysis is like a space-time navigator in the vast universe of algorithms.
It guides us in exploring deeper within the the dimensions of time and space, seeking more elegant solutions.
"},{"location":"chapter_computational_complexity/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 2.1 \u00a0 Algorithm Efficiency Assessment
- 2.2 \u00a0 Iteration and Recursion
- 2.3 \u00a0 Time Complexity
- 2.4 \u00a0 Space Complexity
- 2.5 \u00a0 Summary
"},{"location":"chapter_computational_complexity/iteration_and_recursion/","title":"2.2 \u00a0 Iteration and Recursion","text":"In algorithms, repeatedly performing a task is common and closely related to complexity analysis. Therefore, before introducing time complexity and space complexity, let's first understand how to implement task repetition in programs, focusing on two basic programming control structures: iteration and recursion.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#221-iteration","title":"2.2.1 \u00a0 Iteration","text":"\"Iteration\" is a control structure for repeatedly performing a task. In iteration, a program repeats a block of code as long as a certain condition is met, until this condition is no longer satisfied.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1-for-loop","title":"1. \u00a0 for Loop","text":"The for loop is one of the most common forms of iteration, suitable for use when the number of iterations is known in advance.
The following function implements the sum \\(1 + 2 + \\dots + n\\) using a for loop, with the sum result recorded in the variable res. Note that in Python, range(a, b) corresponds to a \"left-closed, right-open\" interval, covering \\(a, a + 1, \\dots, b-1\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef for_loop(n: int) -> int:\n \"\"\"for \u5faa\u73af\"\"\"\n res = 0\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n res += i\n return res\n
iteration.cpp/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n res += i;\n }\n return res;\n}\n
iteration.java/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.cs/* for \u5faa\u73af */\nint ForLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.go/* for \u5faa\u73af */\nfunc forLoop(n int) int {\n res := 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n res += i\n }\n return res\n}\n
iteration.swift/* for \u5faa\u73af */\nfunc forLoop(n: Int) -> Int {\n var res = 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1 ... n {\n res += i\n }\n return res\n}\n
iteration.js/* for \u5faa\u73af */\nfunction forLoop(n) {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.ts/* for \u5faa\u73af */\nfunction forLoop(n: number): number {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.dart/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.rs/* for \u5faa\u73af */\nfn for_loop(n: i32) -> i32 {\n let mut res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1..=n {\n res += i;\n }\n res\n} \n
iteration.c/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.zig// for \u5faa\u73af\nfn forLoop(n: usize) i32 {\n var res: i32 = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n res = res + @as(i32, @intCast(i));\n }\n return res;\n} \n
The flowchart below represents this sum function.
Figure 2-1 \u00a0 Flowchart of the Sum Function
The number of operations in this sum function is proportional to the input data size \\(n\\), or in other words, it has a \"linear relationship\". This is actually what time complexity describes. This topic will be detailed in the next section.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2-while-loop","title":"2. \u00a0 while Loop","text":"Similar to the for loop, the while loop is another method to implement iteration. In a while loop, the program checks the condition in each round; if the condition is true, it continues, otherwise, the loop ends.
Below we use a while loop to implement the sum \\(1 + 2 + \\dots + n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop(n: int) -> int:\n \"\"\"while \u5faa\u73af\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n:\n res += i\n i += 1 # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n return res\n
iteration.cpp/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af */\nint WhileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af */\nfunc whileLoop(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af */\nfunc whileLoop(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i\n i += 1 // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af */\nfunction whileLoop(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af */\nfunction whileLoop(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af */\nfn while_loop(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n res\n}\n
iteration.c/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\nfn whileLoop(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += @intCast(i);\n i += 1;\n }\n return res;\n}\n
The while loop is more flexible than the for loop. In a while loop, we can freely design the initialization and update steps of the condition variable.
For example, in the following code, the condition variable \\(i\\) is updated twice in each round, which would be inconvenient to implement with a for loop:
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop_ii(n: int) -> int:\n \"\"\"while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n:\n res += i\n # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n return res\n
iteration.cpp/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint WhileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, 4, 5...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1; \n i *= 2;\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n i *= 2\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfn while_loop_ii(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n res\n}\n
iteration.c/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\nfn whileLoopII(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += @intCast(i);\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n return res;\n}\n
Overall, for loops are more concise, while while loops are more flexible. Both can implement iterative structures. Which one to use should be determined based on the specific requirements of the problem.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3-nested-loops","title":"3. \u00a0 Nested Loops","text":"We can nest one loop structure within another. Below is an example using for loops:
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef nested_for_loop(n: int) -> str:\n \"\"\"\u53cc\u5c42 for \u5faa\u73af\"\"\"\n res = \"\"\n # \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n # \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in range(1, n + 1):\n res += f\"({i}, {j}), \"\n return res\n
iteration.cpp/* \u53cc\u5c42 for \u5faa\u73af */\nstring nestedForLoop(int n) {\n ostringstream res;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; ++j) {\n res << \"(\" << i << \", \" << j << \"), \";\n }\n }\n return res.str();\n}\n
iteration.java/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n StringBuilder res = new StringBuilder();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.append(\"(\" + i + \", \" + j + \"), \");\n }\n }\n return res.toString();\n}\n
iteration.cs/* \u53cc\u5c42 for \u5faa\u73af */\nstring NestedForLoop(int n) {\n StringBuilder res = new();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.Append($\"({i}, {j}), \");\n }\n }\n return res.ToString();\n}\n
iteration.go/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n int) string {\n res := \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n for j := 1; j <= n; j++ {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n res += fmt.Sprintf(\"(%d, %d), \", i, j)\n }\n }\n return res\n}\n
iteration.swift/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n: Int) -> String {\n var res = \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1 ... n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1 ... n {\n res.append(\"(\\(i), \\(j)), \")\n }\n }\n return res\n}\n
iteration.js/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n) {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.ts/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n: number): string {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.dart/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n String res = \"\";\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res += \"($i, $j), \";\n }\n }\n return res;\n}\n
iteration.rs/* \u53cc\u5c42 for \u5faa\u73af */\nfn nested_for_loop(n: i32) -> String {\n let mut res = vec![];\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1..=n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1..=n {\n res.push(format!(\"({}, {}), \", i, j));\n }\n }\n res.join(\"\")\n}\n
iteration.c/* \u53cc\u5c42 for \u5faa\u73af */\nchar *nestedForLoop(int n) {\n // n * n \u4e3a\u5bf9\u5e94\u70b9\u6570\u91cf\uff0c\"(i, j), \" \u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u6700\u5927\u4e3a 6+10*2\uff0c\u52a0\u4e0a\u6700\u540e\u4e00\u4e2a\u7a7a\u5b57\u7b26 \\0 \u7684\u989d\u5916\u7a7a\u95f4\n int size = n * n * 26 + 1;\n char *res = malloc(size * sizeof(char));\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n char tmp[26];\n snprintf(tmp, sizeof(tmp), \"(%d, %d), \", i, j);\n strncat(res, tmp, size - strlen(res) - 1);\n }\n }\n return res;\n}\n
iteration.zig// \u53cc\u5c42 for \u5faa\u73af\nfn nestedForLoop(allocator: Allocator, n: usize) ![]const u8 {\n var res = std.ArrayList(u8).init(allocator);\n defer res.deinit();\n var buffer: [20]u8 = undefined;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (1..n+1) |j| {\n var _str = try std.fmt.bufPrint(&buffer, \"({d}, {d}), \", .{i, j});\n try res.appendSlice(_str);\n }\n }\n return res.toOwnedSlice();\n}\n
The flowchart below represents this nested loop.
Figure 2-2 \u00a0 Flowchart of the Nested Loop
In this case, the number of operations in the function is proportional to \\(n^2\\), or the algorithm's running time and the input data size \\(n\\) have a \"quadratic relationship\".
We can continue adding nested loops, each nesting is a \"dimensional escalation,\" which will increase the time complexity to \"cubic,\" \"quartic,\" and so on.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#222-recursion","title":"2.2.2 \u00a0 Recursion","text":"\"Recursion\" is an algorithmic strategy that solves problems by having a function call itself. It mainly consists of two phases.
- Recursion: The program continuously calls itself, usually with smaller or more simplified parameters, until reaching a \"termination condition.\"
- Return: Upon triggering the \"termination condition,\" the program begins to return from the deepest recursive function, aggregating the results of each layer.
From an implementation perspective, recursive code mainly includes three elements.
- Termination Condition: Determines when to switch from \"recursion\" to \"return.\"
- Recursive Call: Corresponds to \"recursion,\" where the function calls itself, usually with smaller or more simplified parameters.
- Return Result: Corresponds to \"return,\" where the result of the current recursion level is returned to the previous layer.
Observe the following code, where calling the function recur(n) completes the computation of \\(1 + 2 + \\dots + n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef recur(n: int) -> int:\n \"\"\"\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 1:\n return 1\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res = recur(n - 1)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n
recursion.cpp/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.java/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.cs/* \u9012\u5f52 */\nint Recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = Recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.go/* \u9012\u5f52 */\nfunc recur(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res := recur(n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.swift/* \u9012\u5f52 */\nfunc recur(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n: n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.js/* \u9012\u5f52 */\nfunction recur(n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.ts/* \u9012\u5f52 */\nfunction recur(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.dart/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.rs/* \u9012\u5f52 */\nfn recur(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n n + res\n}\n
recursion.c/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.zig// \u9012\u5f52\u51fd\u6570\nfn recur(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var res: i32 = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
The Figure 2-3 shows the recursive process of this function.
Figure 2-3 \u00a0 Recursive Process of the Sum Function
Although iteration and recursion can achieve the same results from a computational standpoint, they represent two entirely different paradigms of thinking and solving problems.
- Iteration: Solves problems \"from the bottom up.\" It starts with the most basic steps, then repeatedly adds or accumulates these steps until the task is complete.
- Recursion: Solves problems \"from the top down.\" It breaks down the original problem into smaller sub-problems, each of which has the same form as the original problem. These sub-problems are then further decomposed into even smaller sub-problems, stopping at the base case (whose solution is known).
Taking the sum function as an example, let's define the problem as \\(f(n) = 1 + 2 + \\dots + n\\).
- Iteration: In a loop, simulate the summing process, iterating from \\(1\\) to \\(n\\), performing the sum operation in each round, to obtain \\(f(n)\\).
- Recursion: Break down the problem into sub-problems \\(f(n) = n + f(n-1)\\), continuously (recursively) decomposing until reaching the base case \\(f(1) = 1\\) and then stopping.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1-call-stack","title":"1. \u00a0 Call Stack","text":"Each time a recursive function calls itself, the system allocates memory for the newly initiated function to store local variables, call addresses, and other information. This leads to two main consequences.
- The function's context data is stored in a memory area called \"stack frame space\" and is only released after the function returns. Therefore, recursion generally consumes more memory space than iteration.
- Recursive calls introduce additional overhead. Hence, recursion is usually less time-efficient than loops.
As shown in the Figure 2-4 , there are \\(n\\) unreturned recursive functions before triggering the termination condition, indicating a recursion depth of \\(n\\).
Figure 2-4 \u00a0 Recursion Call Depth
In practice, the depth of recursion allowed by programming languages is usually limited, and excessively deep recursion can lead to stack overflow errors.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2-tail-recursion","title":"2. \u00a0 Tail Recursion","text":"Interestingly, if a function makes its recursive call as the last step before returning, it can be optimized by compilers or interpreters to be as space-efficient as iteration. This scenario is known as \"tail recursion\".
- Regular Recursion: The function needs to perform more code after returning to the previous level, so the system needs to save the context of the previous call.
- Tail Recursion: The recursive call is the last operation before the function returns, meaning no further actions are required upon returning to the previous level, so the system doesn't need to save the context of the previous level's function.
For example, in calculating \\(1 + 2 + \\dots + n\\), we can make the result variable res a parameter of the function, thereby achieving tail recursion:
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef tail_recur(n, res):\n \"\"\"\u5c3e\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 0:\n return res\n # \u5c3e\u9012\u5f52\u8c03\u7528\n return tail_recur(n - 1, res + n)\n
recursion.cpp/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.java/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.cs/* \u5c3e\u9012\u5f52 */\nint TailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return TailRecur(n - 1, res + n);\n}\n
recursion.go/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n int, res int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n-1, res+n)\n}\n
recursion.swift/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n: Int, res: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n: n - 1, res: res + n)\n}\n
recursion.js/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n, res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.ts/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n: number, res: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.dart/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.rs/* \u5c3e\u9012\u5f52 */\nfn tail_recur(n: i32, res: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n tail_recur(n - 1, res + n)\n}\n
recursion.c/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.zig// \u5c3e\u9012\u5f52\u51fd\u6570\nfn tailRecur(n: i32, res: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
The execution process of tail recursion is shown in the following figure. Comparing regular recursion and tail recursion, the point of the summation operation is different.
- Regular Recursion: The summation operation occurs during the \"return\" phase, requiring another summation after each layer returns.
- Tail Recursion: The summation operation occurs during the \"recursion\" phase, and the \"return\" phase only involves returning through each layer.
Figure 2-5 \u00a0 Tail Recursion Process
Tip
Note that many compilers or interpreters do not support tail recursion optimization. For example, Python does not support tail recursion optimization by default, so even if the function is in the form of tail recursion, it may still encounter stack overflow issues.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3-recursion-tree","title":"3. \u00a0 Recursion Tree","text":"When dealing with algorithms related to \"divide and conquer\", recursion often offers a more intuitive approach and more readable code than iteration. Take the \"Fibonacci sequence\" as an example.
Question
Given a Fibonacci sequence \\(0, 1, 1, 2, 3, 5, 8, 13, \\dots\\), find the \\(n\\)th number in the sequence.
Let the \\(n\\)th number of the Fibonacci sequence be \\(f(n)\\), it's easy to deduce two conclusions:
- The first two numbers of the sequence are \\(f(1) = 0\\) and \\(f(2) = 1\\).
- Each number in the sequence is the sum of the two preceding ones, that is, \\(f(n) = f(n - 1) + f(n - 2)\\).
Using the recursive relation, and considering the first two numbers as termination conditions, we can write the recursive code. Calling fib(n) will yield the \\(n\\)th number of the Fibonacci sequence:
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef fib(n: int) -> int:\n \"\"\"\u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 or n == 2:\n return n - 1\n # \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res = fib(n - 1) + fib(n - 2)\n # \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n
recursion.cpp/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.java/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.cs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint Fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = Fib(n - 1) + Fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.go/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res := fib(n-1) + fib(n-2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.swift/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n: n - 1) + fib(n: n - 2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.js/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.ts/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.dart/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.rs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfn fib(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c\n res\n}\n
recursion.c/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.zig// \u6590\u6ce2\u90a3\u5951\u6570\u5217\nfn fib(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 or n == 2) {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n var res: i32 = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
Observing the above code, we see that it recursively calls two functions within itself, meaning that one call generates two branching calls. As illustrated below, this continuous recursive calling eventually creates a \"recursion tree\" with a depth of \\(n\\).
Figure 2-6 \u00a0 Fibonacci Sequence Recursion Tree
Fundamentally, recursion embodies the paradigm of \"breaking down a problem into smaller sub-problems.\" This divide-and-conquer strategy is crucial.
- From an algorithmic perspective, many important strategies like searching, sorting, backtracking, divide-and-conquer, and dynamic programming directly or indirectly use this way of thinking.
- From a data structure perspective, recursion is naturally suited for dealing with linked lists, trees, and graphs, as they are well suited for analysis using the divide-and-conquer approach.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#223-comparison","title":"2.2.3 \u00a0 Comparison","text":"Summarizing the above content, the following table shows the differences between iteration and recursion in terms of implementation, performance, and applicability.
Table: Comparison of Iteration and Recursion Characteristics
Iteration Recursion Approach Loop structure Function calls itself Time Efficiency Generally higher efficiency, no function call overhead Each function call generates overhead Memory Usage Typically uses a fixed size of memory space Accumulative function calls can use a substantial amount of stack frame space Suitable Problems Suitable for simple loop tasks, intuitive and readable code Suitable for problem decomposition, like trees, graphs, divide-and-conquer, backtracking, etc., concise and clear code structure Tip
If you find the following content difficult to understand, consider revisiting it after reading the \"Stack\" chapter.
So, what is the intrinsic connection between iteration and recursion? Taking the above recursive function as an example, the summation operation occurs during the recursion's \"return\" phase. This means that the initially called function is actually the last to complete its summation operation, mirroring the \"last in, first out\" principle of a stack.
In fact, recursive terms like \"call stack\" and \"stack frame space\" hint at the close relationship between recursion and stacks.
- Recursion: When a function is called, the system allocates a new stack frame on the \"call stack\" for that function, storing local variables, parameters, return addresses, and other data.
- Return: When a function completes execution and returns, the corresponding stack frame is removed from the \"call stack,\" restoring the execution environment of the previous function.
Therefore, we can use an explicit stack to simulate the behavior of the call stack, thus transforming recursion into an iterative form:
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef for_loop_recur(n: int) -> int:\n \"\"\"\u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\"\"\"\n # \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack = []\n res = 0\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in range(n, 0, -1):\n # \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while stack:\n # \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop()\n # res = 1+2+3+...+n\n return res\n
recursion.cpp/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack<int> stack;\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.empty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.top();\n stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.java/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<Integer> stack = new Stack<>();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.cs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint ForLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<int> stack = new();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.Push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.Count > 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.go/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n int) int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack := list.New()\n res := 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i := n; i > 0; i-- {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.PushBack(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n for stack.Len() != 0 {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Back().Value.(int)\n stack.Remove(stack.Back())\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.swift/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n: Int) -> Int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [Int] = []\n var res = 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in stride(from: n, to: 0, by: -1) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.isEmpty {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast()\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.js/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n const stack = [];\n let res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.ts/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n: number): number {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808 \n const stack: number[] = [];\n let res: number = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.dart/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n List<int> stack = [];\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.add(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.rs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfn for_loop_recur(n: i32) -> i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n let mut stack = Vec::new();\n let mut res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in (1..=n).rev() {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.is_empty() {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop().unwrap();\n }\n // res = 1+2+3+...+n\n res\n}\n
recursion.c/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n int stack[1000]; // \u501f\u52a9\u4e00\u4e2a\u5927\u6570\u7ec4\u6765\u6a21\u62df\u6808\n int top = -1; // \u6808\u9876\u7d22\u5f15\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack[1 + top++] = i;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (top >= 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack[top--];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.zig// \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\nfn forLoopRecur(comptime n: i32) i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [n]i32 = undefined;\n var res: i32 = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var i: usize = n;\n while (i > 0) {\n stack[i - 1] = @intCast(i);\n i -= 1;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n var index: usize = n;\n while (index > 0) {\n index -= 1;\n res += stack[index];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
Observing the above code, when recursion is transformed into iteration, the code becomes more complex. Although iteration and recursion can often be transformed into each other, it's not always advisable to do so for two reasons:
- The transformed code may become harder to understand and less readable.
- For some complex problems, simulating the behavior of the system's call stack can be quite challenging.
In summary, choosing between iteration and recursion depends on the nature of the specific problem. In programming practice, weighing the pros and cons of each and choosing the appropriate method for the situation is essential.
"},{"location":"chapter_computational_complexity/performance_evaluation/","title":"2.1 \u00a0 Algorithm Efficiency Assessment","text":"In algorithm design, we pursue the following two objectives in sequence.
- Finding a Solution to the Problem: The algorithm should reliably find the correct solution within the stipulated range of inputs.
- Seeking the Optimal Solution: For the same problem, multiple solutions might exist, and we aim to find the most efficient algorithm possible.
In other words, under the premise of being able to solve the problem, algorithm efficiency has become the main criterion for evaluating the merits of an algorithm, which includes the following two dimensions.
- Time Efficiency: The speed at which an algorithm runs.
- Space Efficiency: The size of the memory space occupied by an algorithm.
In short, our goal is to design data structures and algorithms that are both fast and memory-efficient. Effectively assessing algorithm efficiency is crucial because only then can we compare various algorithms and guide the process of algorithm design and optimization.
There are mainly two methods of efficiency assessment: actual testing and theoretical estimation.
"},{"location":"chapter_computational_complexity/performance_evaluation/#211-actual-testing","title":"2.1.1 \u00a0 Actual Testing","text":"Suppose we have algorithms A and B, both capable of solving the same problem, and we need to compare their efficiencies. The most direct method is to use a computer to run these two algorithms and monitor and record their runtime and memory usage. This assessment method reflects the actual situation but has significant limitations.
On one hand, it's difficult to eliminate interference from the testing environment. Hardware configurations can affect algorithm performance. For example, algorithm A might run faster than B on one computer, but the opposite result may occur on another computer with different configurations. This means we would need to test on a variety of machines to calculate average efficiency, which is impractical.
On the other hand, conducting a full test is very resource-intensive. As the volume of input data changes, the efficiency of the algorithms may vary. For example, with smaller data volumes, algorithm A might run faster than B, but the opposite might be true with larger data volumes. Therefore, to draw convincing conclusions, we need to test a wide range of input data sizes, which requires significant computational resources.
"},{"location":"chapter_computational_complexity/performance_evaluation/#212-theoretical-estimation","title":"2.1.2 \u00a0 Theoretical Estimation","text":"Due to the significant limitations of actual testing, we can consider evaluating algorithm efficiency solely through calculations. This estimation method is known as \"asymptotic complexity analysis,\" or simply \"complexity analysis.\"
Complexity analysis reflects the relationship between the time and space resources required for algorithm execution and the size of the input data. It describes the trend of growth in the time and space required by the algorithm as the size of the input data increases. This definition might sound complex, but we can break it down into three key points to understand it better.
- \"Time and space resources\" correspond to \"time complexity\" and \"space complexity,\" respectively.
- \"As the size of input data increases\" means that complexity reflects the relationship between algorithm efficiency and the volume of input data.
- \"The trend of growth in time and space\" indicates that complexity analysis focuses not on the specific values of runtime or space occupied but on the \"rate\" at which time or space grows.
Complexity analysis overcomes the disadvantages of actual testing methods, reflected in the following aspects:
- It is independent of the testing environment and applicable to all operating platforms.
- It can reflect algorithm efficiency under different data volumes, especially in the performance of algorithms with large data volumes.
Tip
If you're still confused about the concept of complexity, don't worry. We will introduce it in detail in subsequent chapters.
Complexity analysis provides us with a \"ruler\" to measure the time and space resources needed to execute an algorithm and compare the efficiency between different algorithms.
Complexity is a mathematical concept and may be abstract and challenging for beginners. From this perspective, complexity analysis might not be the best content to introduce first. However, when discussing the characteristics of a particular data structure or algorithm, it's hard to avoid analyzing its speed and space usage.
In summary, it's recommended that you establish a preliminary understanding of complexity analysis before diving deep into data structures and algorithms, so that you can carry out simple complexity analyses of algorithms.
"},{"location":"chapter_computational_complexity/space_complexity/","title":"2.4 \u00a0 Space Complexity","text":"\"Space complexity\" is used to measure the growth trend of the memory space occupied by an algorithm as the amount of data increases. This concept is very similar to time complexity, except that \"running time\" is replaced with \"occupied memory space\".
"},{"location":"chapter_computational_complexity/space_complexity/#241-space-related-to-algorithms","title":"2.4.1 \u00a0 Space Related to Algorithms","text":"The memory space used by an algorithm during its execution mainly includes the following types.
- Input Space: Used to store the input data of the algorithm.
- Temporary Space: Used to store variables, objects, function contexts, and other data during the algorithm's execution.
- Output Space: Used to store the output data of the algorithm.
Generally, the scope of space complexity statistics includes both \"Temporary Space\" and \"Output Space\".
Temporary space can be further divided into three parts.
- Temporary Data: Used to save various constants, variables, objects, etc., during the algorithm's execution.
- Stack Frame Space: Used to save the context data of the called function. The system creates a stack frame at the top of the stack each time a function is called, and the stack frame space is released after the function returns.
- Instruction Space: Used to store compiled program instructions, which are usually negligible in actual statistics.
When analyzing the space complexity of a program, we typically count the Temporary Data, Stack Frame Space, and Output Data, as shown in the Figure 2-15 .
Figure 2-15 \u00a0 Space Types Used in Algorithms
The relevant code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig class Node:\n \"\"\"Classes\"\"\"\"\n def __init__(self, x: int):\n self.val: int = x # node value\n self.next: Node | None = None # reference to the next node\n\ndef function() -> int:\n \"\"\"\"Functions\"\"\"\"\"\n # Perform certain operations...\n return 0\n\ndef algorithm(n) -> int: # input data\n A = 0 # temporary data (constant, usually in uppercase)\n b = 0 # temporary data (variable)\n node = Node(0) # temporary data (object)\n c = function() # Stack frame space (call function)\n return A + b + c # output data\n
/* Structures */\nstruct Node {\n int val;\n Node *next;\n Node(int x) : val(x), next(nullptr) {}\n};\n\n/* Functions */\nint func() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node* node = new Node(0); // temporary data (object)\n int c = func(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n int val;\n Node next;\n Node(int x) { val = x; }\n}\n\n/* Functions */\nint function() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n final int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node node = new Node(0); // temporary data (object)\n int c = function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n int val;\n Node next;\n Node(int x) { val = x; }\n}\n\n/* Functions */\nint Function() {\n // Perform certain operations...\n return 0;\n}\n\nint Algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node node = new(0); // temporary data (object)\n int c = Function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Structures */\ntype node struct {\n val int\n next *node\n}\n\n/* Create node structure */\nfunc newNode(val int) *node {\n return &node{val: val}\n}\n\n/* Functions */\nfunc function() int {\n // Perform certain operations...\n return 0\n}\n\nfunc algorithm(n int) int { // input data\n const a = 0 // temporary data (constant)\n b := 0 // temporary storage of data (variable)\n newNode(0) // temporary data (object)\n c := function() // stack frame space (call function)\n return a + b + c // output data\n}\n
/* Classes */\nclass Node {\n var val: Int\n var next: Node?\n\n init(x: Int) {\n val = x\n }\n}\n\n/* Functions */\nfunc function() -> Int {\n // Perform certain operations...\n return 0\n}\n\nfunc algorithm(n: Int) -> Int { // input data\n let a = 0 // temporary data (constant)\n var b = 0 // temporary data (variable)\n let node = Node(x: 0) // temporary data (object)\n let c = function() // stack frame space (call function)\n return a + b + c // output data\n}\n
/* Classes */\nclass Node {\n val;\n next;\n constructor(val) {\n this.val = val === undefined ? 0 : val; // node value\n this.next = null; // reference to the next node\n }\n}\n\n/* Functions */\nfunction constFunc() {\n // Perform certain operations\n return 0;\n}\n\nfunction algorithm(n) { // input data\n const a = 0; // temporary data (constant)\n let b = 0; // temporary data (variable)\n const node = new Node(0); // temporary data (object)\n const c = constFunc(); // Stack frame space (calling function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n val: number;\n next: Node | null;\n constructor(val?: number) {\n this.val = val === undefined ? 0 : val; // node value\n this.next = null; // reference to the next node\n }\n}\n\n/* Functions */\nfunction constFunc(): number {\n // Perform certain operations\n return 0;\n}\n\nfunction algorithm(n: number): number { // input data\n const a = 0; // temporary data (constant)\n let b = 0; // temporary data (variable)\n const node = new Node(0); // temporary data (object)\n const c = constFunc(); // Stack frame space (calling function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n int val;\n Node next;\n Node(this.val, [this.next]);\n}\n\n/* Functions */\nint function() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node node = Node(0); // temporary data (object)\n int c = function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* Structures */\nstruct Node {\n val: i32,\n next: Option<Rc<RefCell<Node>>>,\n}\n\n/* Creating a Node structure */\nimpl Node {\n fn new(val: i32) -> Self {\n Self { val: val, next: None }\n }\n}\n\n/* Functions */\nfn function() -> i32 { \n // Perform certain operations...\n return 0;\n}\n\nfn algorithm(n: i32) -> i32 { // input data\n const a: i32 = 0; // temporary data (constant)\n let mut b = 0; // temporary data (variable)\n let node = Node::new(0); // temporary data (object)\n let c = function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Functions */\nint func() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n int c = func(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
\n
"},{"location":"chapter_computational_complexity/space_complexity/#242-calculation-method","title":"2.4.2 \u00a0 Calculation Method","text":"The method for calculating space complexity is roughly similar to that of time complexity, with the only change being the shift of the statistical object from \"number of operations\" to \"size of used space\".
However, unlike time complexity, we usually only focus on the worst-case space complexity. This is because memory space is a hard requirement, and we must ensure that there is enough memory space reserved under all input data.
Consider the following code, the term \"worst-case\" in worst-case space complexity has two meanings.
- Based on the worst input data: When \\(n < 10\\), the space complexity is \\(O(1)\\); but when \\(n > 10\\), the initialized array
nums occupies \\(O(n)\\) space, thus the worst-case space complexity is \\(O(n)\\). - Based on the peak memory used during the algorithm's execution: For example, before executing the last line, the program occupies \\(O(1)\\) space; when initializing the array
nums, the program occupies \\(O(n)\\) space, hence the worst-case space complexity is \\(O(n)\\).
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 0 # O(1)\n b = [0] * 10000 # O(1)\n if n > 10:\n nums = [0] * n # O(n)\n
void algorithm(int n) {\n int a = 0; // O(1)\n vector<int> b(10000); // O(1)\n if (n > 10)\n vector<int> nums(n); // O(n)\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10)\n int[] nums = new int[n]; // O(n)\n}\n
void Algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10) {\n int[] nums = new int[n]; // O(n)\n }\n}\n
func algorithm(n int) {\n a := 0 // O(1)\n b := make([]int, 10000) // O(1)\n var nums []int\n if n > 10 {\n nums := make([]int, n) // O(n)\n }\n fmt.Println(a, b, nums)\n}\n
func algorithm(n: Int) {\n let a = 0 // O(1)\n let b = Array(repeating: 0, count: 10000) // O(1)\n if n > 10 {\n let nums = Array(repeating: 0, count: n) // O(n)\n }\n}\n
function algorithm(n) {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
function algorithm(n: number): void {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n List<int> b = List.filled(10000, 0); // O(1)\n if (n > 10) {\n List<int> nums = List.filled(n, 0); // O(n)\n }\n}\n
fn algorithm(n: i32) {\n let a = 0; // O(1)\n let b = [0; 10000]; // O(1)\n if n > 10 {\n let nums = vec![0; n as usize]; // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int b[10000]; // O(1)\n if (n > 10)\n int nums[n] = {0}; // O(n)\n}\n
\n
In recursive functions, stack frame space must be taken into count. Consider the following code:
PythonC++JavaC#GoSwiftJSTSDartRustCZig def function() -> int:\n # Perform certain operations\n return 0\n\ndef loop(n: int):\n \"\"\"Loop O(1)\"\"\"\"\"\n for _ in range(n):\n function()\n\ndef recur(n: int) -> int:\n \"\"\"Recursion O(n)\"\"\"\"\"\n if n == 1: return\n return recur(n - 1)\n
int func() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int function() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int Function() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid Loop(int n) {\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n/* Recursion O(n) */\nint Recur(int n) {\n if (n == 1) return 1;\n return Recur(n - 1);\n}\n
func function() int {\n // Perform certain operations\n return 0\n}\n\n/* Cycle O(1) */\nfunc loop(n int) {\n for i := 0; i < n; i++ {\n function()\n }\n}\n\n/* Recursion O(n) */\nfunc recur(n int) {\n if n == 1 {\n return\n }\n recur(n - 1)\n}\n
@discardableResult\nfunc function() -> Int {\n // Perform certain operations\n return 0\n}\n\n/* Cycle O(1) */\nfunc loop(n: Int) {\n for _ in 0 ..< n {\n function()\n }\n}\n\n/* Recursion O(n) */\nfunc recur(n: Int) {\n if n == 1 {\n return\n }\n recur(n: n - 1)\n}\n
function constFunc() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nfunction loop(n) {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* Recursion O(n) */\nfunction recur(n) {\n if (n === 1) return;\n return recur(n - 1);\n}\n
function constFunc(): number {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nfunction loop(n: number): void {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* Recursion O(n) */\nfunction recur(n: number): void {\n if (n === 1) return;\n return recur(n - 1);\n}\n
int function() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
fn function() -> i32 {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nfn loop(n: i32) {\n for i in 0..n {\n function();\n }\n}\n/* Recursion O(n) */\nvoid recur(n: i32) {\n if n == 1 {\n return;\n }\n recur(n - 1);\n}\n
int func() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
\n
The time complexity of both loop() and recur() functions is \\(O(n)\\), but their space complexities differ.
- The
loop() function calls function() \\(n\\) times in a loop, where each iteration's function() returns and releases its stack frame space, so the space complexity remains \\(O(1)\\). - The recursive function
recur() will have \\(n\\) instances of unreturned recur() existing simultaneously during its execution, thus occupying \\(O(n)\\) stack frame space.
"},{"location":"chapter_computational_complexity/space_complexity/#243-common-types","title":"2.4.3 \u00a0 Common Types","text":"Let the size of the input data be \\(n\\), the following chart displays common types of space complexities (arranged from low to high).
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n^2) < O(2^n) \\newline \\text{Constant Order} < \\text{Logarithmic Order} < \\text{Linear Order} < \\text{Quadratic Order} < \\text{Exponential Order} \\end{aligned} \\] Figure 2-16 \u00a0 Common Types of Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#1-constant-order-o1","title":"1. \u00a0 Constant Order \\(O(1)\\)","text":"Constant order is common in constants, variables, objects that are independent of the size of input data \\(n\\).
Note that memory occupied by initializing variables or calling functions in a loop, which is released upon entering the next cycle, does not accumulate over space, thus the space complexity remains \\(O(1)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef function() -> int:\n \"\"\"\u51fd\u6570\"\"\"\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n\ndef constant(n: int):\n \"\"\"\u5e38\u6570\u9636\"\"\"\n # \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n a = 0\n nums = [0] * 10000\n node = ListNode(0)\n # \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n c = 0\n # \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n function()\n
space_complexity.cpp/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n vector<int> nums(10000);\n ListNode node(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.java/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.cs/* \u51fd\u6570 */\nint Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid Constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n
space_complexity.go/* \u51fd\u6570 */\nfunc function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc spaceConstant(n int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0\n b := 0\n nums := make([]int, 10000)\n ListNode := newNode(0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n var c int\n for i := 0; i < n; i++ {\n c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i := 0; i < n; i++ {\n function()\n }\n fmt.Println(a, b, nums, c, ListNode)\n}\n
space_complexity.swift/* \u51fd\u6570 */\n@discardableResult\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n let a = 0\n var b = 0\n let nums = Array(repeating: 0, count: 10000)\n let node = ListNode(x: 0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n let c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n function()\n }\n}\n
space_complexity.js/* \u51fd\u6570 */\nfunction constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.ts/* \u51fd\u6570 */\nfunction constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n: number): void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.dart/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n List<int> nums = List.filled(10000, 0);\n ListNode node = ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.rs/* \u51fd\u6570 */\nfn function() ->i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\n#[allow(unused)]\nfn constant(n: i32) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const A: i32 = 0;\n let b = 0;\n let nums = vec![0; 10000];\n let node = ListNode::new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n let c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n function();\n }\n}\n
space_complexity.c/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n int nums[1000];\n ListNode *node = newListNode(0);\n free(node);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.zig// \u51fd\u6570\nfn function() i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n// \u5e38\u6570\u9636\nfn constant(n: i32) void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a: i32 = 0;\n var b: i32 = 0;\n var nums = [_]i32{0}**10000;\n var node = inc.ListNode(i32){.val = 0};\n var i: i32 = 0;\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n while (i < n) : (i += 1) {\n var c: i32 = 0;\n _ = c;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n i = 0;\n while (i < n) : (i += 1) {\n _ = function();\n }\n _ = a;\n _ = b;\n _ = nums;\n _ = node;\n}\n
"},{"location":"chapter_computational_complexity/space_complexity/#2-linear-order-on","title":"2. \u00a0 Linear Order \\(O(n)\\)","text":"Linear order is common in arrays, linked lists, stacks, queues, etc., where the number of elements is proportional to \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear(n: int):\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n # \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n nums = [0] * n\n # \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n hmap = dict[int, str]()\n for i in range(n):\n hmap[i] = str(i)\n
space_complexity.cpp/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n vector<int> nums(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n vector<ListNode> nodes;\n for (int i = 0; i < n; i++) {\n nodes.push_back(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n unordered_map<int, string> map;\n for (int i = 0; i < n; i++) {\n map[i] = to_string(i);\n }\n}\n
space_complexity.java/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n nodes.add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<Integer, String> map = new HashMap<>();\n for (int i = 0; i < n; i++) {\n map.put(i, String.valueOf(i));\n }\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636 */\nvoid Linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (int i = 0; i < n; i++) {\n nodes.Add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Dictionary<int, string> map = [];\n for (int i = 0; i < n; i++) {\n map.Add(i, i.ToString());\n }\n}\n
space_complexity.go/* \u7ebf\u6027\u9636 */\nfunc spaceLinear(n int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n _ = make([]int, n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes []*node\n for i := 0; i < n; i++ {\n nodes = append(nodes, newNode(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n m := make(map[int]string, n)\n for i := 0; i < n; i++ {\n m[i] = strconv.Itoa(i)\n }\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let nums = Array(repeating: 0, count: n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let nodes = (0 ..< n).map { ListNode(x: $0) }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, \"\\($0)\") })\n}\n
space_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes: ListNode[] = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n List<int> nums = List.filled(n, 0);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (var i = 0; i < n; i++) {\n nodes.add(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<int, String> map = HashMap();\n for (var i = 0; i < n; i++) {\n map.putIfAbsent(i, () => i.toString());\n }\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636 */\n#[allow(unused)]\nfn linear(n: i32) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nums = vec![0; n as usize];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nodes = Vec::new();\n for i in 0..n {\n nodes.push(ListNode::new(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut map = HashMap::new();\n for i in 0..n {\n map.insert(i, i.to_string());\n }\n}\n
space_complexity.c/* \u54c8\u5e0c\u8868 */\ntypedef struct {\n int key;\n int val;\n UT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n} HashTable;\n\n/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int *nums = malloc(sizeof(int) * n);\n free(nums);\n\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n ListNode **nodes = malloc(sizeof(ListNode *) * n);\n for (int i = 0; i < n; i++) {\n nodes[i] = newListNode(i);\n }\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(nodes[i]);\n }\n free(nodes);\n\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n HashTable *h = NULL;\n for (int i = 0; i < n; i++) {\n HashTable *tmp = malloc(sizeof(HashTable));\n tmp->key = i;\n tmp->val = i;\n HASH_ADD_INT(h, key, tmp);\n }\n\n // \u5185\u5b58\u91ca\u653e\n HashTable *curr, *tmp;\n HASH_ITER(hh, h, curr, tmp) {\n HASH_DEL(h, curr);\n free(curr);\n }\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\nfn linear(comptime n: i32) !void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n var nums = [_]i32{0}**n;\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes = std.ArrayList(i32).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n try nodes.append(i);\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var map = std.AutoArrayHashMap(i32, []const u8).init(std.heap.page_allocator);\n defer map.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n const string = try std.fmt.allocPrint(std.heap.page_allocator, \"{d}\", .{j});\n defer std.heap.page_allocator.free(string);\n try map.put(i, string);\n }\n _ = nums;\n}\n
As shown below, this function's recursive depth is \\(n\\), meaning there are \\(n\\) instances of unreturned linear_recur() function, using \\(O(n)\\) size of stack frame space:
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear_recur(n: int):\n \"\"\"\u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n print(\"\u9012\u5f52 n =\", n)\n if n == 1:\n return\n linear_recur(n - 1)\n
space_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n cout << \"\u9012\u5f52 n = \" << n << endl;\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.java/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n System.out.println(\"\u9012\u5f52 n = \" + n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid LinearRecur(int n) {\n Console.WriteLine(\"\u9012\u5f52 n = \" + n);\n if (n == 1) return;\n LinearRecur(n - 1);\n}\n
space_complexity.go/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceLinearRecur(n int) {\n fmt.Println(\"\u9012\u5f52 n =\", n)\n if n == 1 {\n return\n }\n spaceLinearRecur(n - 1)\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc linearRecur(n: Int) {\n print(\"\u9012\u5f52 n = \\(n)\")\n if n == 1 {\n return\n }\n linearRecur(n: n - 1)\n}\n
space_complexity.js/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n) {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n: number): void {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n print('\u9012\u5f52 n = $n');\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn linear_recur(n: i32) {\n println!(\"\u9012\u5f52 n = {}\", n);\n if n == 1 {return};\n linear_recur(n - 1);\n}\n
space_complexity.c/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n printf(\"\u9012\u5f52 n = %d\\r\\n\", n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn linearRecur(comptime n: i32) void {\n std.debug.print(\"\u9012\u5f52 n = {}\\n\", .{n});\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
Figure 2-17 \u00a0 Recursive Function Generating Linear Order Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#3-quadratic-order-on2","title":"3. \u00a0 Quadratic Order \\(O(n^2)\\)","text":"Quadratic order is common in matrices and graphs, where the number of elements is quadratic to \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic(n: int):\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n # \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n num_matrix = [[0] * n for _ in range(n)]\n
space_complexity.cpp/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n vector<vector<int>> numMatrix;\n for (int i = 0; i < n; i++) {\n vector<int> tmp;\n for (int j = 0; j < n; j++) {\n tmp.push_back(0);\n }\n numMatrix.push_back(tmp);\n }\n}\n
space_complexity.java/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[][] numMatrix = new int[n][n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<Integer>> numList = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n List<Integer> tmp = new ArrayList<>();\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636 */\nvoid Quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[,] numMatrix = new int[n, n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (int i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.Add(0);\n }\n numList.Add(tmp);\n }\n}\n
space_complexity.go/* \u5e73\u65b9\u9636 */\nfunc spaceQuadratic(n int) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n numMatrix := make([][]int, n)\n for i := 0; i < n; i++ {\n numMatrix[i] = make([]int, n)\n }\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let numList = Array(repeating: Array(repeating: 0, count: n), count: n)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): void {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numMatrix = List.generate(n, (_) => List.filled(n, 0));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (var i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636 */\n#[allow(unused)]\nfn quadratic(n: i32) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n let num_matrix = vec![vec![0; n as usize]; n as usize];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let mut num_list = Vec::new();\n for i in 0..n {\n let mut tmp = Vec::new();\n for j in 0..n {\n tmp.push(0);\n }\n num_list.push(tmp);\n }\n}\n
space_complexity.c/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n int **numMatrix = malloc(sizeof(int *) * n);\n for (int i = 0; i < n; i++) {\n int *tmp = malloc(sizeof(int) * n);\n for (int j = 0; j < n; j++) {\n tmp[j] = 0;\n }\n numMatrix[i] = tmp;\n }\n\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(numMatrix[i]);\n }\n free(numMatrix);\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) !void {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n var nodes = std.ArrayList(std.ArrayList(i32)).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n var tmp = std.ArrayList(i32).init(std.heap.page_allocator);\n defer tmp.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n try tmp.append(0);\n }\n try nodes.append(tmp);\n }\n}\n
As shown below, the recursive depth of this function is \\(n\\), and in each recursive call, an array is initialized with lengths \\(n\\), \\(n-1\\), \\(\\dots\\), \\(2\\), \\(1\\), averaging \\(n/2\\), thus overall occupying \\(O(n^2)\\) space:
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic_recur(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 0:\n return 0\n # \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n nums = [0] * n\n return quadratic_recur(n - 1)\n
space_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n vector<int> nums(n);\n cout << \"\u9012\u5f52 n = \" << n << \" \u4e2d\u7684 nums \u957f\u5ea6 = \" << nums.size() << endl;\n return quadraticRecur(n - 1);\n}\n
space_complexity.java/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n int[] nums = new int[n];\n System.out.println(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.length);\n return quadraticRecur(n - 1);\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint QuadraticRecur(int n) {\n if (n <= 0) return 0;\n int[] nums = new int[n];\n Console.WriteLine(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.Length);\n return QuadraticRecur(n - 1);\n}\n
space_complexity.go/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceQuadraticRecur(n int) int {\n if n <= 0 {\n return 0\n }\n nums := make([]int, n)\n fmt.Printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d \\n\", n, len(nums))\n return spaceQuadraticRecur(n - 1)\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\n@discardableResult\nfunc quadraticRecur(n: Int) -> Int {\n if n <= 0 {\n return 0\n }\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = Array(repeating: 0, count: n)\n print(\"\u9012\u5f52 n = \\(n) \u4e2d\u7684 nums \u957f\u5ea6 = \\(nums.count)\")\n return quadraticRecur(n: n - 1)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n) {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n: number): number {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0) return 0;\n List<int> nums = List.filled(n, 0);\n print('\u9012\u5f52 n = $n \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}');\n return quadraticRecur(n - 1);\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn quadratic_recur(n: i32) -> i32 {\n if n <= 0 {return 0};\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = vec![0; n as usize];\n println!(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\", n, nums.len());\n return quadratic_recur(n - 1);\n}\n
space_complexity.c/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n int *nums = malloc(sizeof(int) * n);\n printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d\\r\\n\", n, n);\n int res = quadraticRecur(n - 1);\n free(nums);\n return res;\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn quadraticRecur(comptime n: i32) i32 {\n if (n <= 0) return 0;\n var nums = [_]i32{0}**n;\n std.debug.print(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\\n\", .{n, nums.len});\n return quadraticRecur(n - 1);\n}\n
Figure 2-18 \u00a0 Recursive Function Generating Quadratic Order Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#4-exponential-order-o2n","title":"4. \u00a0 Exponential Order \\(O(2^n)\\)","text":"Exponential order is common in binary trees. Observe the below image, a \"full binary tree\" with \\(n\\) levels has \\(2^n - 1\\) nodes, occupying \\(O(2^n)\\) space:
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef build_tree(n: int) -> TreeNode | None:\n \"\"\"\u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\"\"\"\n if n == 0:\n return None\n root = TreeNode(0)\n root.left = build_tree(n - 1)\n root.right = build_tree(n - 1)\n return root\n
space_complexity.cpp/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return nullptr;\n TreeNode *root = new TreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.java/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode buildTree(int n) {\n if (n == 0)\n return null;\n TreeNode root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.cs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? BuildTree(int n) {\n if (n == 0) return null;\n TreeNode root = new(0) {\n left = BuildTree(n - 1),\n right = BuildTree(n - 1)\n };\n return root;\n}\n
space_complexity.go/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n int) *treeNode {\n if n == 0 {\n return nil\n }\n root := newTreeNode(0)\n root.left = buildTree(n - 1)\n root.right = buildTree(n - 1)\n return root\n}\n
space_complexity.swift/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n: Int) -> TreeNode? {\n if n == 0 {\n return nil\n }\n let root = TreeNode(x: 0)\n root.left = buildTree(n: n - 1)\n root.right = buildTree(n: n - 1)\n return root\n}\n
space_complexity.js/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n) {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.ts/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n: number): TreeNode | null {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.dart/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\n if (n == 0) return null;\n TreeNode root = TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.rs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {\n if n == 0 {return None};\n let root = TreeNode::new(0);\n root.borrow_mut().left = build_tree(n - 1);\n root.borrow_mut().right = build_tree(n - 1);\n return Some(root);\n}\n
space_complexity.c/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return NULL;\n TreeNode *root = newTreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.zig// \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\nfn buildTree(mem_allocator: std.mem.Allocator, n: i32) !?*inc.TreeNode(i32) {\n if (n == 0) return null;\n const root = try mem_allocator.create(inc.TreeNode(i32));\n root.init(0);\n root.left = try buildTree(mem_allocator, n - 1);\n root.right = try buildTree(mem_allocator, n - 1);\n return root;\n}\n
Figure 2-19 \u00a0 Full Binary Tree Generating Exponential Order Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#5-logarithmic-order-olog-n","title":"5. \u00a0 Logarithmic Order \\(O(\\log n)\\)","text":"Logarithmic order is common in divide-and-conquer algorithms. For example, in merge sort, an array of length \\(n\\) is recursively divided in half each round, forming a recursion tree of height \\(\\log n\\), using \\(O(\\log n)\\) stack frame space.
Another example is converting a number to a string. Given a positive integer \\(n\\), its number of digits is \\(\\log_{10} n + 1\\), corresponding to the length of the string, thus the space complexity is \\(O(\\log_{10} n + 1) = O(\\log n)\\).
"},{"location":"chapter_computational_complexity/space_complexity/#244-balancing-time-and-space","title":"2.4.4 \u00a0 Balancing Time and Space","text":"Ideally, we aim for both time complexity and space complexity to be optimal. However, in practice, optimizing both simultaneously is often difficult.
Lowering time complexity usually comes at the cost of increased space complexity, and vice versa. The approach of sacrificing memory space to improve algorithm speed is known as \"space-time tradeoff\"; the reverse is known as \"time-space tradeoff\".
The choice depends on which aspect we value more. In most cases, time is more precious than space, so \"space-time tradeoff\" is often the more common strategy. Of course, controlling space complexity is also very important when dealing with large volumes of data.
"},{"location":"chapter_computational_complexity/summary/","title":"2.5 \u00a0 Summary","text":""},{"location":"chapter_computational_complexity/summary/#1-key-review","title":"1. \u00a0 Key Review","text":"Algorithm Efficiency Assessment
- Time efficiency and space efficiency are the two main criteria for assessing the merits of an algorithm.
- We can assess algorithm efficiency through actual testing, but it's challenging to eliminate the influence of the test environment, and it consumes substantial computational resources.
- Complexity analysis can overcome the disadvantages of actual testing. Its results are applicable across all operating platforms and can reveal the efficiency of algorithms at different data scales.
Time Complexity
- Time complexity measures the trend of an algorithm's running time with the increase in data volume, effectively assessing algorithm efficiency. However, it can fail in certain cases, such as with small input data volumes or when time complexities are the same, making it challenging to precisely compare the efficiency of algorithms.
- Worst-case time complexity is denoted using big O notation, representing the asymptotic upper bound, reflecting the growth level of the number of operations \\(T(n)\\) as \\(n\\) approaches infinity.
- Calculating time complexity involves two steps: first counting the number of operations, then determining the asymptotic upper bound.
- Common time complexities, arranged from low to high, include \\(O(1)\\), \\(O(\\log n)\\), \\(O(n)\\), \\(O(n \\log n)\\), \\(O(n^2)\\), \\(O(2^n)\\), and \\(O(n!)\\), among others.
- The time complexity of some algorithms is not fixed and depends on the distribution of input data. Time complexities are divided into worst, best, and average cases. The best case is rarely used because input data generally needs to meet strict conditions to achieve the best case.
- Average time complexity reflects the efficiency of an algorithm under random data inputs, closely resembling the algorithm's performance in actual applications. Calculating average time complexity requires accounting for the distribution of input data and the subsequent mathematical expectation.
Space Complexity
- Space complexity, similar to time complexity, measures the trend of memory space occupied by an algorithm with the increase in data volume.
- The relevant memory space used during the algorithm's execution can be divided into input space, temporary space, and output space. Generally, input space is not included in space complexity calculations. Temporary space can be divided into temporary data, stack frame space, and instruction space, where stack frame space usually affects space complexity only in recursive functions.
- We usually focus only on the worst-case space complexity, which means calculating the space complexity of the algorithm under the worst input data and at the worst moment of operation.
- Common space complexities, arranged from low to high, include \\(O(1)\\), \\(O(\\log n)\\), \\(O(n)\\), \\(O(n^2)\\), and \\(O(2^n)\\), among others.
"},{"location":"chapter_computational_complexity/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"Is the space complexity of tail recursion \\(O(1)\\)?
Theoretically, the space complexity of a tail-recursive function can be optimized to \\(O(1)\\). However, most programming languages (such as Java, Python, C++, Go, C#) do not support automatic optimization of tail recursion, so it's generally considered to have a space complexity of \\(O(n)\\).
What is the difference between the terms 'function' and 'method'?
A \"function\" can be executed independently, with all parameters passed explicitly. A \"method\" is associated with an object and is implicitly passed to the object calling it, able to operate on the data contained within an instance of a class.
Here are some examples from common programming languages:
- C is a procedural programming language without object-oriented concepts, so it only has functions. However, we can simulate object-oriented programming by creating structures (struct), and functions associated with these structures are equivalent to methods in other programming languages.
- Java and C# are object-oriented programming languages where code blocks (methods) are typically part of a class. Static methods behave like functions because they are bound to the class and cannot access specific instance variables.
- C++ and Python support both procedural programming (functions) and object-oriented programming (methods).
Does the 'Common Types of Space Complexity' figure reflect the absolute size of occupied space?
No, the figure shows space complexities, which reflect growth trends, not the absolute size of the occupied space.
If you take \\(n = 8\\), you might find that the values of each curve don't correspond to their functions. This is because each curve includes a constant term, intended to compress the value range into a visually comfortable range.
In practice, since we usually don't know the \"constant term\" complexity of each method, it's generally not possible to choose the best solution for \\(n = 8\\) based solely on complexity. However, for \\(n = 8^5\\), it's much easier to choose, as the growth trend becomes dominant.
"},{"location":"chapter_computational_complexity/time_complexity/","title":"2.3 \u00a0 Time Complexity","text":"Time complexity is a concept used to measure how the run time of an algorithm increases with the size of the input data. Understanding time complexity is crucial for accurately assessing the efficiency of an algorithm.
- Determining the Running Platform: This includes hardware configuration, programming language, system environment, etc., all of which can affect the efficiency of code execution.
- Evaluating the Run Time for Various Computational Operations: For instance, an addition operation
+ might take 1 ns, a multiplication operation * might take 10 ns, a print operation print() might take 5 ns, etc. - Counting All the Computational Operations in the Code: Summing the execution times of all these operations gives the total run time.
For example, consider the following code with an input size of \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig # Under an operating platform\ndef algorithm(n: int):\n a = 2 # 1 ns\n a = a + 1 # 1 ns\n a = a * 2 # 10 ns\n # Cycle n times\n for _ in range(n): # 1 ns\n print(0) # 5 ns\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n cout << 0 << endl; // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n System.out.println(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid Algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n Console.WriteLine(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfunc algorithm(n int) {\n a := 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // Loop n times\n for i := 0; i < n; i++ { // 1 ns\n fmt.Println(a) // 5 ns\n }\n}\n
// Under a particular operating platform\nfunc algorithm(n: Int) {\n var a = 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // Loop n times\n for _ in 0 ..< n { // 1 ns\n print(0) // 5 ns\n }\n}\n
// Under a particular operating platform\nfunction algorithm(n) {\n var a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for(let i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n console.log(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfunction algorithm(n: number): void {\n var a: number = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for(let i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n console.log(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n print(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfn algorithm(n: i32) {\n let mut a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for _ in 0..n { // 1 ns for each round i++\n println!(\"{}\", 0); // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n printf(\"%d\", 0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfn algorithm(n: usize) void {\n var a: i32 = 2; // 1 ns\n a += 1; // 1 ns\n a *= 2; // 10 ns\n // Loop n times\n for (0..n) |_| { // 1 ns\n std.debug.print(\"{}\\n\", .{0}); // 5 ns\n }\n}\n
Using the above method, the run time of the algorithm can be calculated as \\((6n + 12)\\) ns:
\\[ 1 + 1 + 10 + (1 + 5) \\times n = 6n + 12 \\] However, in practice, counting the run time of an algorithm is neither practical nor reasonable. First, we don't want to tie the estimated time to the running platform, as algorithms need to run on various platforms. Second, it's challenging to know the run time for each type of operation, making the estimation process difficult.
"},{"location":"chapter_computational_complexity/time_complexity/#231-assessing-time-growth-trend","title":"2.3.1 \u00a0 Assessing Time Growth Trend","text":"Time complexity analysis does not count the algorithm's run time, but rather the growth trend of the run time as the data volume increases.
Let's understand this concept of \"time growth trend\" with an example. Assume the input data size is \\(n\\), and consider three algorithms A, B, and C:
PythonC++JavaC#GoSwiftJSTSDartRustCZig # Time complexity of algorithm A: constant order\ndef algorithm_A(n: int):\n print(0)\n# Time complexity of algorithm B: linear order\ndef algorithm_B(n: int):\n for _ in range(n):\n print(0)\n# Time complexity of algorithm C: constant order\ndef algorithm_C(n: int):\n for _ in range(1000000):\n print(0)\n
// Time complexity of algorithm A: constant order\nvoid algorithm_A(int n) {\n cout << 0 << endl;\n}\n// Time complexity of algorithm B: linear order\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n cout << 0 << endl;\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n cout << 0 << endl;\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid algorithm_A(int n) {\n System.out.println(0);\n}\n// Time complexity of algorithm B: linear order\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n System.out.println(0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n System.out.println(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid AlgorithmA(int n) {\n Console.WriteLine(0);\n}\n// Time complexity of algorithm B: linear order\nvoid AlgorithmB(int n) {\n for (int i = 0; i < n; i++) {\n Console.WriteLine(0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid AlgorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n Console.WriteLine(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfunc algorithm_A(n int) {\n fmt.Println(0)\n}\n// Time complexity of algorithm B: linear order\nfunc algorithm_B(n int) {\n for i := 0; i < n; i++ {\n fmt.Println(0)\n }\n}\n// Time complexity of algorithm C: constant order\nfunc algorithm_C(n int) {\n for i := 0; i < 1000000; i++ {\n fmt.Println(0)\n }\n}\n
// Time complexity of algorithm A: constant order\nfunc algorithmA(n: Int) {\n print(0)\n}\n\n// Time complexity of algorithm B: linear order\nfunc algorithmB(n: Int) {\n for _ in 0 ..< n {\n print(0)\n }\n}\n\n// Time complexity of algorithm C: constant order\nfunc algorithmC(n: Int) {\n for _ in 0 ..< 1000000 {\n print(0)\n }\n}\n
// Time complexity of algorithm A: constant order\nfunction algorithm_A(n) {\n console.log(0);\n}\n// Time complexity of algorithm B: linear order\nfunction algorithm_B(n) {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// Time complexity of algorithm C: constant order\nfunction algorithm_C(n) {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfunction algorithm_A(n: number): void {\n console.log(0);\n}\n// Time complexity of algorithm B: linear order\nfunction algorithm_B(n: number): void {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// Time complexity of algorithm C: constant order\nfunction algorithm_C(n: number): void {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid algorithmA(int n) {\n print(0);\n}\n// Time complexity of algorithm B: linear order\nvoid algorithmB(int n) {\n for (int i = 0; i < n; i++) {\n print(0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n print(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfn algorithm_A(n: i32) {\n println!(\"{}\", 0);\n}\n// Time complexity of algorithm B: linear order\nfn algorithm_B(n: i32) {\n for _ in 0..n {\n println!(\"{}\", 0);\n }\n}\n// Time complexity of algorithm C: constant order\nfn algorithm_C(n: i32) {\n for _ in 0..1000000 {\n println!(\"{}\", 0);\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid algorithm_A(int n) {\n printf(\"%d\", 0);\n}\n// Time complexity of algorithm B: linear order\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n printf(\"%d\", 0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n printf(\"%d\", 0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfn algorithm_A(n: usize) void {\n _ = n;\n std.debug.print(\"{}\\n\", .{0});\n}\n// Time complexity of algorithm B: linear order\nfn algorithm_B(n: i32) void {\n for (0..n) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n}\n// Time complexity of algorithm C: constant order\nfn algorithm_C(n: i32) void {\n _ = n;\n for (0..1000000) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n}\n
The following figure shows the time complexities of these three algorithms.
- Algorithm
A has just one print operation, and its run time does not grow with \\(n\\). Its time complexity is considered \"constant order.\" - Algorithm
B involves a print operation looping \\(n\\) times, and its run time grows linearly with \\(n\\). Its time complexity is \"linear order.\" - Algorithm
C has a print operation looping 1,000,000 times. Although it takes a long time, it is independent of the input data size \\(n\\). Therefore, the time complexity of C is the same as A, which is \"constant order.\"
Figure 2-7 \u00a0 Time Growth Trend of Algorithms A, B, and C
Compared to directly counting the run time of an algorithm, what are the characteristics of time complexity analysis?
- Time complexity effectively assesses algorithm efficiency. For instance, algorithm
B has linearly growing run time, which is slower than algorithm A when \\(n > 1\\) and slower than C when \\(n > 1,000,000\\). In fact, as long as the input data size \\(n\\) is sufficiently large, a \"constant order\" complexity algorithm will always be better than a \"linear order\" one, demonstrating the essence of time growth trend. - Time complexity analysis is more straightforward. Obviously, the running platform and the types of computational operations are irrelevant to the trend of run time growth. Therefore, in time complexity analysis, we can simply treat the execution time of all computational operations as the same \"unit time,\" simplifying the \"computational operation run time count\" to a \"computational operation count.\" This significantly reduces the complexity of estimation.
- Time complexity has its limitations. For example, although algorithms
A and C have the same time complexity, their actual run times can be quite different. Similarly, even though algorithm B has a higher time complexity than C, it is clearly superior when the input data size \\(n\\) is small. In these cases, it's difficult to judge the efficiency of algorithms based solely on time complexity. Nonetheless, despite these issues, complexity analysis remains the most effective and commonly used method for evaluating algorithm efficiency.
"},{"location":"chapter_computational_complexity/time_complexity/#232-asymptotic-upper-bound","title":"2.3.2 \u00a0 Asymptotic Upper Bound","text":"Consider a function with an input size of \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +1\n a = a + 1 # +1\n a = a * 2 # +1\n # Cycle n times\n for i in range(n): # +1\n print(0) # +1\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n cout << 0 << endl; // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n System.out.println(0); // +1\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n Console.WriteLine(0); // +1\n }\n}\n
func algorithm(n int) {\n a := 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // Loop n times\n for i := 0; i < n; i++ { // +1\n fmt.Println(a) // +1\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // Loop n times\n for _ in 0 ..< n { // +1\n print(0) // +1\n }\n}\n
function algorithm(n) {\n var a = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // Loop n times\n for(let i = 0; i < n; i++){ // +1 (execute i ++ every round)\n console.log(0); // +1\n }\n}\n
function algorithm(n: number): void{\n var a: number = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // Loop n times\n for(let i = 0; i < n; i++){ // +1 (execute i ++ every round)\n console.log(0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n print(0); // +1\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n\n // Loop n times\n for _ in 0..n { // +1 (execute i ++ every round)\n println!(\"{}\", 0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n printf(\"%d\", 0); // +1\n }\n} \n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // Loop n times\n for (0..n) |_| { // +1 (execute i ++ every round)\n std.debug.print(\"{}\\n\", .{0}); // +1\n }\n}\n
Given a function that represents the number of operations of an algorithm as a function of the input size \\(n\\), denoted as \\(T(n)\\), consider the following example:
\\[ T(n) = 3 + 2n \\] Since \\(T(n)\\) is a linear function, its growth trend is linear, and therefore, its time complexity is of linear order, denoted as \\(O(n)\\). This mathematical notation, known as \"big-O notation,\" represents the \"asymptotic upper bound\" of the function \\(T(n)\\).
In essence, time complexity analysis is about finding the asymptotic upper bound of the \"number of operations \\(T(n)\\)\". It has a precise mathematical definition.
Asymptotic Upper Bound
If there exist positive real numbers \\(c\\) and \\(n_0\\) such that for all \\(n > n_0\\), \\(T(n) \\leq c \\cdot f(n)\\), then \\(f(n)\\) is considered an asymptotic upper bound of \\(T(n)\\), denoted as \\(T(n) = O(f(n))\\).
As illustrated below, calculating the asymptotic upper bound involves finding a function \\(f(n)\\) such that, as \\(n\\) approaches infinity, \\(T(n)\\) and \\(f(n)\\) have the same growth order, differing only by a constant factor \\(c\\).
Figure 2-8 \u00a0 Asymptotic Upper Bound of a Function
"},{"location":"chapter_computational_complexity/time_complexity/#233-calculation-method","title":"2.3.3 \u00a0 Calculation Method","text":"While the concept of asymptotic upper bound might seem mathematically dense, you don't need to fully grasp it right away. Let's first understand the method of calculation, which can be practiced and comprehended over time.
Once \\(f(n)\\) is determined, we obtain the time complexity \\(O(f(n))\\). But how do we determine the asymptotic upper bound \\(f(n)\\)? This process generally involves two steps: counting the number of operations and determining the asymptotic upper bound.
"},{"location":"chapter_computational_complexity/time_complexity/#1-step-1-counting-the-number-of-operations","title":"1. \u00a0 Step 1: Counting the Number of Operations","text":"This step involves going through the code line by line. However, due to the presence of the constant \\(c\\) in \\(c \\cdot f(n)\\), all coefficients and constant terms in \\(T(n)\\) can be ignored. This principle allows for simplification techniques in counting operations.
- Ignore constant terms in \\(T(n)\\), as they do not affect the time complexity being independent of \\(n\\).
- Omit all coefficients. For example, looping \\(2n\\), \\(5n + 1\\) times, etc., can be simplified to \\(n\\) times since the coefficient before \\(n\\) does not impact the time complexity.
- Use multiplication for nested loops. The total number of operations equals the product of the number of operations in each loop, applying the simplification techniques from points 1 and 2 for each loop level.
Given a function, we can use these techniques to count operations:
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +0 (trick 1)\n a = a + n # +0 (trick 1)\n # +n (technique 2)\n for i in range(5 * n + 1):\n print(0)\n # +n*n (technique 3)\n for i in range(2 * n):\n for j in range(n + 1):\n print(0)\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n cout << 0 << endl;\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n cout << 0 << endl;\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n System.out.println(0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n System.out.println(0);\n }\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n Console.WriteLine(0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n Console.WriteLine(0);\n }\n }\n}\n
func algorithm(n int) {\n a := 1 // +0 (trick 1)\n a = a + n // +0 (trick 1)\n // +n (technique 2)\n for i := 0; i < 5 * n + 1; i++ {\n fmt.Println(0)\n }\n // +n*n (technique 3)\n for i := 0; i < 2 * n; i++ {\n for j := 0; j < n + 1; j++ {\n fmt.Println(0)\n }\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +0 (trick 1)\n a = a + n // +0 (trick 1)\n // +n (technique 2)\n for _ in 0 ..< (5 * n + 1) {\n print(0)\n }\n // +n*n (technique 3)\n for _ in 0 ..< (2 * n) {\n for _ in 0 ..< (n + 1) {\n print(0)\n }\n }\n}\n
function algorithm(n) {\n let a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n (technique 3)\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
function algorithm(n: number): void {\n let a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n (technique 3)\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n print(0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n print(0);\n }\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n\n // +n (technique 2)\n for i in 0..(5 * n + 1) {\n println!(\"{}\", 0);\n }\n\n // +n*n (technique 3)\n for i in 0..(2 * n) {\n for j in 0..(n + 1) {\n println!(\"{}\", 0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n printf(\"%d\", 0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n printf(\"%d\", 0);\n }\n }\n}\n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +0 (trick 1)\n a = a + @as(i32, @intCast(n)); // +0 (trick 1)\n\n // +n (technique 2)\n for(0..(5 * n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n\n // +n*n (technique 3)\n for(0..(2 * n)) |_| {\n for(0..(n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n }\n}\n
The formula below shows the counting results before and after simplification, both leading to a time complexity of \\(O(n^2)\\):
\\[ \\begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \\text{Complete Count (-.-|||)} \\newline & = 2n^2 + 7n + 3 \\newline T(n) & = n^2 + n & \\text{Simplified Count (o.O)} \\end{aligned} \\]"},{"location":"chapter_computational_complexity/time_complexity/#2-step-2-determining-the-asymptotic-upper-bound","title":"2. \u00a0 Step 2: Determining the Asymptotic Upper Bound","text":"The time complexity is determined by the highest order term in \\(T(n)\\). This is because, as \\(n\\) approaches infinity, the highest order term dominates, rendering the influence of other terms negligible.
The following table illustrates examples of different operation counts and their corresponding time complexities. Some exaggerated values are used to emphasize that coefficients cannot alter the order of growth. When \\(n\\) becomes very large, these constants become insignificant.
Table: Time Complexity for Different Operation Counts
Operation Count \\(T(n)\\) Time Complexity \\(O(f(n))\\) \\(100000\\) \\(O(1)\\) \\(3n + 2\\) \\(O(n)\\) \\(2n^2 + 3n + 2\\) \\(O(n^2)\\) \\(n^3 + 10000n^2\\) \\(O(n^3)\\) \\(2^n + 10000n^{10000}\\) \\(O(2^n)\\)"},{"location":"chapter_computational_complexity/time_complexity/#234-common-types-of-time-complexity","title":"2.3.4 \u00a0 Common Types of Time Complexity","text":"Let's consider the input data size as \\(n\\). The common types of time complexities are illustrated below, arranged from lowest to highest:
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n \\log n) < O(n^2) < O(2^n) < O(n!) \\newline \\text{Constant Order} < \\text{Logarithmic Order} < \\text{Linear Order} < \\text{Linear-Logarithmic Order} < \\text{Quadratic Order} < \\text{Exponential Order} < \\text{Factorial Order} \\end{aligned} \\] Figure 2-9 \u00a0 Common Types of Time Complexity
"},{"location":"chapter_computational_complexity/time_complexity/#1-constant-order-o1","title":"1. \u00a0 Constant Order \\(O(1)\\)","text":"Constant order means the number of operations is independent of the input data size \\(n\\). In the following function, although the number of operations size might be large, the time complexity remains \\(O(1)\\) as it's unrelated to \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef constant(n: int) -> int:\n \"\"\"\u5e38\u6570\u9636\"\"\"\n count = 0\n size = 100000\n for _ in range(size):\n count += 1\n return count\n
time_complexity.cpp/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u5e38\u6570\u9636 */\nint Constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u5e38\u6570\u9636 */\nfunc constant(n int) int {\n count := 0\n size := 100000\n for i := 0; i < size; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) -> Int {\n var count = 0\n let size = 100_000\n for _ in 0 ..< size {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u5e38\u6570\u9636 */\nfunction constant(n: number): number {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (var i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5e38\u6570\u9636 */\nfn constant(n: i32) -> i32 {\n _ = n;\n let mut count = 0;\n let size = 100_000;\n for _ in 0..size {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n int i = 0;\n for (int i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5e38\u6570\u9636\nfn constant(n: i32) i32 {\n _ = n;\n var count: i32 = 0;\n const size: i32 = 100_000;\n var i: i32 = 0;\n while(i<size) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#2-linear-order-on","title":"2. \u00a0 Linear Order \\(O(n)\\)","text":"Linear order indicates the number of operations grows linearly with the input data size \\(n\\). Linear order commonly appears in single-loop structures:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear(n: int) -> int:\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n count = 0\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636 */\nint Linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636 */\nfunc linear(n int) int {\n count := 0\n for i := 0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) -> Int {\n var count = 0\n for _ in 0 ..< n {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): number {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636 */\nfn linear(n: i32) -> i32 {\n let mut count = 0;\n for _ in 0..n {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\nfn linear(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
Operations like array traversal and linked list traversal have a time complexity of \\(O(n)\\), where \\(n\\) is the length of the array or list:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef array_traversal(nums: list[int]) -> int:\n \"\"\"\u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for num in nums:\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(vector<int> &nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint ArrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n foreach (int num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums []int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for range nums {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums: [Int]) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums: number[]): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(List<int> nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (var _num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfn array_traversal(nums: &[i32]) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int *nums, int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\nfn arrayTraversal(nums: []i32) i32 {\n var count: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (nums) |_| {\n count += 1;\n }\n return count;\n}\n
It's important to note that the input data size \\(n\\) should be determined based on the type of input data. For example, in the first example, \\(n\\) represents the input data size, while in the second example, the length of the array \\(n\\) is the data size.
"},{"location":"chapter_computational_complexity/time_complexity/#3-quadratic-order-on2","title":"3. \u00a0 Quadratic Order \\(O(n^2)\\)","text":"Quadratic order means the number of operations grows quadratically with the input data size \\(n\\). Quadratic order typically appears in nested loops, where both the outer and inner loops have a time complexity of \\(O(n)\\), resulting in an overall complexity of \\(O(n^2)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef quadratic(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i in range(n):\n for j in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636 */\nint Quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636 */\nfunc quadratic(n int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i := 0; i < n; i++ {\n for j := 0; j < n; j++ {\n count++\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0 ..< n {\n for _ in 0 ..< n {\n count += 1\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636 */\nfn quadratic(n: i32) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0..n {\n for _ in 0..n {\n count += 1;\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n count += 1;\n }\n }\n return count;\n}\n
The following image compares constant order, linear order, and quadratic order time complexities.
Figure 2-10 \u00a0 Constant, Linear, and Quadratic Order Time Complexities
For instance, in bubble sort, the outer loop runs \\(n - 1\\) times, and the inner loop runs \\(n-1\\), \\(n-2\\), ..., \\(2\\), \\(1\\) times, averaging \\(n / 2\\) times, resulting in a time complexity of \\(O((n - 1) n / 2) = O(n^2)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef bubble_sort(nums: list[int]) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\"\"\"\n count = 0 # \u8ba1\u6570\u5668\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(len(nums) - 1, 0, -1):\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp: int = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 # \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(vector<int> &nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint BubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums []int) int {\n count := 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp := nums[j]\n nums[j] = nums[j+1]\n nums[j+1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums: inout [Int]) -> Int {\n var count = 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0 ..< i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums) {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums: number[]): number {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(List<int> nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (var i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (var j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfn bubble_sort(nums: &mut [i32]) -> i32 {\n let mut count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int *nums, int n) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = n - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\nfn bubbleSort(nums: []i32) i32 {\n var count: i32 = 0; // \u8ba1\u6570\u5668 \n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: i32 = @as(i32, @intCast(nums.len)) - 1;\n while (i > 0) : (i -= 1) {\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#4-exponential-order-o2n","title":"4. \u00a0 Exponential Order \\(O(2^n)\\)","text":"Biological \"cell division\" is a classic example of exponential order growth: starting with one cell, it becomes two after one division, four after two divisions, and so on, resulting in \\(2^n\\) cells after \\(n\\) divisions.
The following image and code simulate the cell division process, with a time complexity of \\(O(2^n)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exponential(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n base = 1\n # \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in range(n):\n for _ in range(base):\n count += 1\n base *= 2\n # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Exponential(int n) {\n int count = 0, bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc exponential(n int) int {\n count, base := 0, 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for i := 0; i < n; i++ {\n for j := 0; j < base; j++ {\n count++\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc exponential(n: Int) -> Int {\n var count = 0\n var base = 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0 ..< n {\n for _ in 0 ..< base {\n count += 1\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n) {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n: number): number {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (var i = 0; i < n; i++) {\n for (var j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn exponential(n: i32) -> i32 {\n let mut count = 0;\n let mut base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0..n {\n for _ in 0..base {\n count += 1\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n count\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0;\n int bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn exponential(n: i32) i32 {\n var count: i32 = 0;\n var bas: i32 = 1;\n var i: i32 = 0;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < bas) : (j += 1) {\n count += 1;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
Figure 2-11 \u00a0 Exponential Order Time Complexity
In practice, exponential order often appears in recursive functions. For example, in the code below, it recursively splits into two halves, stopping after \\(n\\) divisions:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exp_recur(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 1:\n return 1\n return exp_recur(n - 1) + exp_recur(n - 1) + 1\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint ExpRecur(int n) {\n if (n == 1) return 1;\n return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc expRecur(n int) int {\n if n == 1 {\n return 1\n }\n return expRecur(n-1) + expRecur(n-1) + 1\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc expRecur(n: Int) -> Int {\n if n == 1 {\n return 1\n }\n return expRecur(n: n - 1) + expRecur(n: n - 1) + 1\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n) {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n: number): number {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn exp_recur(n: i32) -> i32 {\n if n == 1 {\n return 1;\n }\n exp_recur(n - 1) + exp_recur(n - 1) + 1\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn expRecur(n: i32) i32 {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
Exponential order growth is extremely rapid and is commonly seen in exhaustive search methods (brute force, backtracking, etc.). For large-scale problems, exponential order is unacceptable, often requiring dynamic programming or greedy algorithms as solutions.
"},{"location":"chapter_computational_complexity/time_complexity/#5-logarithmic-order-olog-n","title":"5. \u00a0 Logarithmic Order \\(O(\\log n)\\)","text":"In contrast to exponential order, logarithmic order reflects situations where \"the size is halved each round.\" Given an input data size \\(n\\), since the size is halved each round, the number of iterations is \\(\\log_2 n\\), the inverse function of \\(2^n\\).
The following image and code simulate the \"halving each round\" process, with a time complexity of \\(O(\\log_2 n)\\), commonly abbreviated as \\(O(\\log n)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef logarithmic(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n while n > 1:\n n = n / 2\n count += 1\n return count\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n /= 2;\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc logarithmic(n float64) int {\n count := 0\n for n > 1 {\n n = n / 2\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc logarithmic(n: Double) -> Int {\n var count = 0\n var n = n\n while n > 1 {\n n = n / 2\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n) {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n: number): number {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(num n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn logarithmic(mut n: f32) -> i32 {\n let mut count = 0;\n while n > 1.0 {\n n = n / 2.0;\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn logarithmic(n: f32) i32 {\n var count: i32 = 0;\n var n_var = n;\n while (n_var > 1)\n {\n n_var = n_var / 2;\n count +=1;\n }\n return count;\n}\n
Figure 2-12 \u00a0 Logarithmic Order Time Complexity
Like exponential order, logarithmic order also frequently appears in recursive functions. The code below forms a recursive tree of height \\(\\log_2 n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef log_recur(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 1:\n return 0\n return log_recur(n / 2) + 1\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint LogRecur(float n) {\n if (n <= 1) return 0;\n return LogRecur(n / 2) + 1;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc logRecur(n float64) int {\n if n <= 1 {\n return 0\n }\n return logRecur(n/2) + 1\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc logRecur(n: Double) -> Int {\n if n <= 1 {\n return 0\n }\n return logRecur(n: n / 2) + 1\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n: number): number {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(num n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 0;\n }\n log_recur(n / 2.0) + 1\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn logRecur(n: f32) i32 {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
Logarithmic order is typical in algorithms based on the divide-and-conquer strategy, embodying the \"split into many\" and \"simplify complex problems\" approach. It's slow-growing and is the most ideal time complexity after constant order.
What is the base of \\(O(\\log n)\\)?
Technically, \"splitting into \\(m\\)\" corresponds to a time complexity of \\(O(\\log_m n)\\). Using the logarithm base change formula, we can equate different logarithmic complexities:
\\[ O(\\log_m n) = O(\\log_k n / \\log_k m) = O(\\log_k n) \\] This means the base \\(m\\) can be changed without affecting the complexity. Therefore, we often omit the base \\(m\\) and simply denote logarithmic order as \\(O(\\log n)\\).
"},{"location":"chapter_computational_complexity/time_complexity/#6-linear-logarithmic-order-on-log-n","title":"6. \u00a0 Linear-Logarithmic Order \\(O(n \\log n)\\)","text":"Linear-logarithmic order often appears in nested loops, with the complexities of the two loops being \\(O(\\log n)\\) and \\(O(n)\\) respectively. The related code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear_log_recur(n: float) -> int:\n \"\"\"\u7ebf\u6027\u5bf9\u6570\u9636\"\"\"\n if n <= 1:\n return 1\n count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint LinearLogRecur(float n) {\n if (n <= 1) return 1;\n int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n float64) int {\n if n <= 1 {\n return 1\n }\n count := linearLogRecur(n/2) + linearLogRecur(n/2)\n for i := 0.0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n: Double) -> Int {\n if n <= 1 {\n return 1\n }\n var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)\n for _ in stride(from: 0, to: n, by: 1) {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n) {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n: number): number {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(num n) {\n if (n <= 1) return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfn linear_log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 1;\n }\n let mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);\n for _ in 0 ..n as i32 {\n count += 1;\n }\n return count\n}\n
time_complexity.c/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u5bf9\u6570\u9636\nfn linearLogRecur(n: f32) i32 {\n if (n <= 1) return 1;\n var count: i32 = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n var i: f32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
The image below demonstrates how linear-logarithmic order is generated. Each level of a binary tree has \\(n\\) operations, and the tree has \\(\\log_2 n + 1\\) levels, resulting in a time complexity of \\(O(n \\log n)\\).
Figure 2-13 \u00a0 Linear-Logarithmic Order Time Complexity
Mainstream sorting algorithms typically have a time complexity of \\(O(n \\log n)\\), such as quicksort, mergesort, and heapsort.
"},{"location":"chapter_computational_complexity/time_complexity/#7-factorial-order-on","title":"7. \u00a0 Factorial Order \\(O(n!)\\)","text":"Factorial order corresponds to the mathematical problem of \"full permutation.\" Given \\(n\\) distinct elements, the total number of possible permutations is:
\\[ n! = n \\times (n - 1) \\times (n - 2) \\times \\dots \\times 2 \\times 1 \\] Factorials are typically implemented using recursion. As shown in the image and code below, the first level splits into \\(n\\) branches, the second level into \\(n - 1\\) branches, and so on, stopping after the \\(n\\)th level:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef factorial_recur(n: int) -> int:\n \"\"\"\u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 0:\n return 1\n count = 0\n # \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in range(n):\n count += factorial_recur(n - 1)\n return count\n
time_complexity.cpp/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.java/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.cs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint FactorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += FactorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.go/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n int) int {\n if n == 0 {\n return 1\n }\n count := 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for i := 0; i < n; i++ {\n count += factorialRecur(n - 1)\n }\n return count\n}\n
time_complexity.swift/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n: Int) -> Int {\n if n == 0 {\n return 1\n }\n var count = 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0 ..< n {\n count += factorialRecur(n: n - 1)\n }\n return count\n}\n
time_complexity.js/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n) {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.ts/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n: number): number {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.dart/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (var i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.rs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn factorial_recur(n: i32) -> i32 {\n if n == 0 {\n return 1;\n }\n let mut count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0..n {\n count += factorial_recur(n - 1);\n }\n count\n}\n
time_complexity.c/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.zig// \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn factorialRecur(n: i32) i32 {\n if (n == 0) return 1;\n var count: i32 = 0;\n var i: i32 = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n while (i < n) : (i += 1) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
Figure 2-14 \u00a0 Factorial Order Time Complexity
Note that factorial order grows even faster than exponential order; it's unacceptable for larger \\(n\\) values.
"},{"location":"chapter_computational_complexity/time_complexity/#235-worst-best-and-average-time-complexities","title":"2.3.5 \u00a0 Worst, Best, and Average Time Complexities","text":"The time efficiency of an algorithm is often not fixed but depends on the distribution of the input data. Assume we have an array nums of length \\(n\\), consisting of numbers from \\(1\\) to \\(n\\), each appearing only once, but in a randomly shuffled order. The task is to return the index of the element \\(1\\). We can draw the following conclusions:
- When
nums = [?, ?, ..., 1], that is, when the last element is \\(1\\), it requires a complete traversal of the array, achieving the worst-case time complexity of \\(O(n)\\). - When
nums = [1, ?, ?, ...], that is, when the first element is \\(1\\), no matter the length of the array, no further traversal is needed, achieving the best-case time complexity of \\(\\Omega(1)\\).
The \"worst-case time complexity\" corresponds to the asymptotic upper bound, denoted by the big \\(O\\) notation. Correspondingly, the \"best-case time complexity\" corresponds to the asymptotic lower bound, denoted by \\(\\Omega\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig worst_best_time_complexity.pydef random_numbers(n: int) -> list[int]:\n \"\"\"\u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a: 1, 2, ..., n \uff0c\u987a\u5e8f\u88ab\u6253\u4e71\"\"\"\n # \u751f\u6210\u6570\u7ec4 nums =: 1, 2, 3, ..., n\n nums = [i for i in range(1, n + 1)]\n # \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n random.shuffle(nums)\n return nums\n\ndef find_one(nums: list[int]) -> int:\n \"\"\"\u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\"\"\"\n for i in range(len(nums)):\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1:\n return i\n return -1\n
worst_best_time_complexity.cpp/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nvector<int> randomNumbers(int n) {\n vector<int> nums(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u4f7f\u7528\u7cfb\u7edf\u65f6\u95f4\u751f\u6210\u968f\u673a\u79cd\u5b50\n unsigned seed = chrono::system_clock::now().time_since_epoch().count();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n shuffle(nums.begin(), nums.end(), default_random_engine(seed));\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(vector<int> &nums) {\n for (int i = 0; i < nums.size(); i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.java/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\n Integer[] nums = new Integer[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n Collections.shuffle(Arrays.asList(nums));\n // Integer[] -> int[]\n int[] res = new int[n];\n for (int i = 0; i < n; i++) {\n res[i] = nums[i];\n }\n return res;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\n for (int i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.cs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] RandomNumbers(int n) {\n int[] nums = new int[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = 0; i < nums.Length; i++) {\n int index = new Random().Next(i, nums.Length);\n (nums[i], nums[index]) = (nums[index], nums[i]);\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint FindOne(int[] nums) {\n for (int i = 0; i < nums.Length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.go/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n int) []int {\n nums := make([]int, n)\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for i := 0; i < n; i++ {\n nums[i] = i + 1\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n rand.Shuffle(len(nums), func(i, j int) {\n nums[i], nums[j] = nums[j], nums[i]\n })\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums []int) int {\n for i := 0; i < len(nums); i++ {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.swift/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n: Int) -> [Int] {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n var nums = Array(1 ... n)\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle()\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums: [Int]) -> Int {\n for i in nums.indices {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.js/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n) {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums) {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.ts/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n: number): number[] {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums: number[]): number {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.dart/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nList<int> randomNumbers(int n) {\n final nums = List.filled(n, 0);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (var i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle();\n\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(List<int> nums) {\n for (var i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1) return i;\n }\n\n return -1;\n}\n
worst_best_time_complexity.rs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfn random_numbers(n: i32) -> Vec<i32> {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n let mut nums = (1..=n).collect::<Vec<i32>>();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle(&mut thread_rng());\n nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfn find_one(nums: &[i32]) -> Option<usize> {\n for i in 0..nums.len() {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return Some(i);\n }\n }\n None\n}\n
worst_best_time_complexity.c/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint *randomNumbers(int n) {\n // \u5206\u914d\u5806\u533a\u5185\u5b58\uff08\u521b\u5efa\u4e00\u7ef4\u53ef\u53d8\u957f\u6570\u7ec4\uff1a\u6570\u7ec4\u4e2d\u5143\u7d20\u6570\u91cf\u4e3a n \uff0c\u5143\u7d20\u7c7b\u578b\u4e3a int \uff09\n int *nums = (int *)malloc(n * sizeof(int));\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = n - 1; i > 0; i--) {\n int j = rand() % (i + 1);\n int temp = nums[i];\n nums[i] = nums[j];\n nums[j] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int *nums, int n) {\n for (int i = 0; i < n; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.zig// \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71\nfn randomNumbers(comptime n: usize) [n]i32 {\n var nums: [n]i32 = undefined;\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (&nums, 0..) |*num, i| {\n num.* = @as(i32, @intCast(i)) + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n const rand = std.crypto.random;\n rand.shuffle(i32, &nums);\n return nums;\n}\n\n// \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\nfn findOne(nums: []i32) i32 {\n for (nums, 0..) |num, i| {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (num == 1) return @intCast(i);\n }\n return -1;\n}\n
It's important to note that the best-case time complexity is rarely used in practice, as it is usually only achievable under very low probabilities and might be misleading. The worst-case time complexity is more practical as it provides a safety value for efficiency, allowing us to confidently use the algorithm.
From the above example, it's clear that both the worst-case and best-case time complexities only occur under \"special data distributions,\" which may have a small probability of occurrence and may not accurately reflect the algorithm's run efficiency. In contrast, the average time complexity can reflect the algorithm's efficiency under random input data, denoted by the \\(\\Theta\\) notation.
For some algorithms, we can simply estimate the average case under a random data distribution. For example, in the aforementioned example, since the input array is shuffled, the probability of element \\(1\\) appearing at any index is equal. Therefore, the average number of loops for the algorithm is half the length of the array \\(n / 2\\), giving an average time complexity of \\(\\Theta(n / 2) = \\Theta(n)\\).
However, calculating the average time complexity for more complex algorithms can be quite difficult, as it's challenging to analyze the overall mathematical expectation under the data distribution. In such cases, we usually use the worst-case time complexity as the standard for judging the efficiency of the algorithm.
Why is the \\(\\Theta\\) symbol rarely seen?
Possibly because the \\(O\\) notation is more commonly spoken, it is often used to represent the average time complexity. However, strictly speaking, this practice is not accurate. In this book and other materials, if you encounter statements like \"average time complexity \\(O(n)\\)\", please understand it directly as \\(\\Theta(n)\\).
"},{"location":"chapter_data_structure/","title":"Chapter 3. \u00a0 Data Structures","text":"Abstract
Data structures serve as a robust and diverse framework.
They offer a blueprint for the orderly organization of data, upon which algorithms come to life.
"},{"location":"chapter_data_structure/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 3.1 \u00a0 Classification of Data Structures
- 3.2 \u00a0 Fundamental Data Types
- 3.3 \u00a0 Number Encoding *
- 3.4 \u00a0 Character Encoding *
- 3.5 \u00a0 Summary
"},{"location":"chapter_data_structure/basic_data_types/","title":"3.2 \u00a0 Fundamental Data Types","text":"When we think of data in computers, we imagine various forms like text, images, videos, voice, 3D models, etc. Despite their different organizational forms, they are all composed of various fundamental data types.
Fundamental data types are those that the CPU can directly operate on and are directly used in algorithms, mainly including the following.
- Integer types:
byte, short, int, long. - Floating-point types:
float, double, used to represent decimals. - Character type:
char, used to represent letters, punctuation, and even emojis in various languages. - Boolean type:
bool, used for \"yes\" or \"no\" decisions.
Fundamental data types are stored in computers in binary form. One binary digit is equal to 1 bit. In most modern operating systems, 1 byte consists of 8 bits.
The range of values for fundamental data types depends on the size of the space they occupy. Below, we take Java as an example.
- The integer type
byte occupies 1 byte = 8 bits and can represent \\(2^8\\) numbers. - The integer type
int occupies 4 bytes = 32 bits and can represent \\(2^{32}\\) numbers.
The following table lists the space occupied, value range, and default values of various fundamental data types in Java. This table does not need to be memorized, but understood roughly and referred to when needed.
Table 3-1 \u00a0 Space Occupied and Value Range of Fundamental Data Types
Type Symbol Space Occupied Minimum Value Maximum Value Default Value Integer byte 1 byte \\(-2^7\\) (\\(-128\\)) \\(2^7 - 1\\) (\\(127\\)) 0 short 2 bytes \\(-2^{15}\\) \\(2^{15} - 1\\) 0 int 4 bytes \\(-2^{31}\\) \\(2^{31} - 1\\) 0 long 8 bytes \\(-2^{63}\\) \\(2^{63} - 1\\) 0 Float float 4 bytes \\(1.175 \\times 10^{-38}\\) \\(3.403 \\times 10^{38}\\) \\(0.0\\text{f}\\) double 8 bytes \\(2.225 \\times 10^{-308}\\) \\(1.798 \\times 10^{308}\\) 0.0 Char char 2 bytes 0 \\(2^{16} - 1\\) 0 Boolean bool 1 byte \\(\\text{false}\\) \\(\\text{true}\\) \\(\\text{false}\\) Please note that the above table is specific to Java's fundamental data types. Each programming language has its own data type definitions, and their space occupied, value ranges, and default values may differ.
- In Python, the integer type
int can be of any size, limited only by available memory; the floating-point float is double precision 64-bit; there is no char type, as a single character is actually a string str of length 1. - C and C++ do not specify the size of fundamental data types, which varies with implementation and platform. The above table follows the LP64 data model, used for Unix 64-bit operating systems including Linux and macOS.
- The size of
char in C and C++ is 1 byte, while in most programming languages, it depends on the specific character encoding method, as detailed in the \"Character Encoding\" chapter. - Even though representing a boolean only requires 1 bit (0 or 1), it is usually stored in memory as 1 byte. This is because modern computer CPUs typically use 1 byte as the smallest addressable memory unit.
So, what is the connection between fundamental data types and data structures? We know that data structures are ways to organize and store data in computers. The focus here is on \"structure\" rather than \"data\".
If we want to represent \"a row of numbers\", we naturally think of using an array. This is because the linear structure of an array can represent the adjacency and order of numbers, but whether the stored content is an integer int, a decimal float, or a character char, is irrelevant to the \"data structure\".
In other words, fundamental data types provide the \"content type\" of data, while data structures provide the \"way of organizing\" data. For example, in the following code, we use the same data structure (array) to store and represent different fundamental data types, including int, float, char, bool, etc.
PythonC++JavaC#GoSwiftJSTSDartRustCZig # Using various fundamental data types to initialize arrays\nnumbers: list[int] = [0] * 5\ndecimals: list[float] = [0.0] * 5\n# Python's characters are actually strings of length 1\ncharacters: list[str] = ['0'] * 5\nbools: list[bool] = [False] * 5\n# Python's lists can freely store various fundamental data types and object references\ndata = [0, 0.0, 'a', False, ListNode(0)]\n
// Using various fundamental data types to initialize arrays\nint numbers[5];\nfloat decimals[5];\nchar characters[5];\nbool bools[5];\n
// Using various fundamental data types to initialize arrays\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nboolean[] bools = new boolean[5];\n
// Using various fundamental data types to initialize arrays\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nbool[] bools = new bool[5];\n
// Using various fundamental data types to initialize arrays\nvar numbers = [5]int{}\nvar decimals = [5]float64{}\nvar characters = [5]byte{}\nvar bools = [5]bool{}\n
// Using various fundamental data types to initialize arrays\nlet numbers = Array(repeating: Int(), count: 5)\nlet decimals = Array(repeating: Double(), count: 5)\nlet characters = Array(repeating: Character(\"a\"), count: 5)\nlet bools = Array(repeating: Bool(), count: 5)\n
// JavaScript's arrays can freely store various fundamental data types and objects\nconst array = [0, 0.0, 'a', false];\n
// Using various fundamental data types to initialize arrays\nconst numbers: number[] = [];\nconst characters: string[] = [];\nconst bools: boolean[] = [];\n
// Using various fundamental data types to initialize arrays\nList<int> numbers = List.filled(5, 0);\nList<double> decimals = List.filled(5, 0.0);\nList<String> characters = List.filled(5, 'a');\nList<bool> bools = List.filled(5, false);\n
// Using various fundamental data types to initialize arrays\nlet numbers: Vec<i32> = vec![0; 5];\nlet decimals: Vec<f32> = vec![0.0, 5];\nlet characters: Vec<char> = vec!['0'; 5];\nlet bools: Vec<bool> = vec![false; 5];\n
// Using various fundamental data types to initialize arrays\nint numbers[10];\nfloat decimals[10];\nchar characters[10];\nbool bools[10];\n
// Using various fundamental data types to initialize arrays\nvar numbers: [5]i32 = undefined;\nvar decimals: [5]f32 = undefined;\nvar characters: [5]u8 = undefined;\nvar bools: [5]bool = undefined;\n
"},{"location":"chapter_data_structure/character_encoding/","title":"3.4 \u00a0 Character Encoding *","text":"In computers, all data is stored in binary form, and the character char is no exception. To represent characters, we need to establish a \"character set\" that defines a one-to-one correspondence between each character and binary numbers. With a character set, computers can convert binary numbers to characters by looking up a table.
"},{"location":"chapter_data_structure/character_encoding/#341-ascii-character-set","title":"3.4.1 \u00a0 ASCII Character Set","text":"The \"ASCII code\" is one of the earliest character sets, officially known as the American Standard Code for Information Interchange. It uses 7 binary digits (the lower 7 bits of a byte) to represent a character, allowing for a maximum of 128 different characters. As shown in the Figure 3-6 , ASCII includes uppercase and lowercase English letters, numbers 0 ~ 9, some punctuation marks, and some control characters (such as newline and tab).
Figure 3-6 \u00a0 ASCII Code
However, ASCII can only represent English characters. With the globalization of computers, a character set called \"EASCII\" was developed to represent more languages. It expands on the 7-bit basis of ASCII to 8 bits, enabling the representation of 256 different characters.
Globally, a series of EASCII character sets for different regions emerged. The first 128 characters of these sets are uniformly ASCII, while the remaining 128 characters are defined differently to cater to various language requirements.
"},{"location":"chapter_data_structure/character_encoding/#342-gbk-character-set","title":"3.4.2 \u00a0 GBK Character Set","text":"Later, it was found that EASCII still could not meet the character requirements of many languages. For instance, there are nearly a hundred thousand Chinese characters, with several thousand used in everyday life. In 1980, China's National Standards Bureau released the \"GB2312\" character set, which included 6763 Chinese characters, essentially meeting the computer processing needs for Chinese.
However, GB2312 could not handle some rare and traditional characters. The \"GBK\" character set, an expansion of GB2312, includes a total of 21886 Chinese characters. In the GBK encoding scheme, ASCII characters are represented with one byte, while Chinese characters use two bytes.
"},{"location":"chapter_data_structure/character_encoding/#343-unicode-character-set","title":"3.4.3 \u00a0 Unicode Character Set","text":"With the rapid development of computer technology and a plethora of character sets and encoding standards, numerous problems arose. On one hand, these character sets generally only defined characters for specific languages and could not function properly in multilingual environments. On the other hand, the existence of multiple character set standards for the same language caused garbled text when information was exchanged between computers using different encoding standards.
Researchers of that era thought: What if we introduced a comprehensive character set that included all languages and symbols worldwide, wouldn't that solve the problems of cross-language environments and garbled text? Driven by this idea, the extensive character set, Unicode, was born.
The Chinese name for \"Unicode\" is \"\u7edf\u4e00\u7801\" (Unified Code), theoretically capable of accommodating over a million characters. It aims to incorporate characters from all over the world into a single set, providing a universal character set for processing and displaying various languages and reducing the issues of garbled text due to different encoding standards.
Since its release in 1991, Unicode has continually expanded to include new languages and characters. As of September 2022, Unicode contains 149,186 characters, including characters, symbols, and even emojis from various languages. In the vast Unicode character set, commonly used characters occupy 2 bytes, while some rare characters take up 3 or even 4 bytes.
Unicode is a universal character set that assigns a number (called a \"code point\") to each character, but it does not specify how these character code points should be stored in a computer. One might ask: When Unicode code points of varying lengths appear in a text, how does the system parse the characters? For example, given a 2-byte code, how does the system determine if it represents a single 2-byte character or two 1-byte characters?
A straightforward solution to this problem is to store all characters as equal-length encodings. As shown in the Figure 3-7 , each character in \"Hello\" occupies 1 byte, while each character in \"\u7b97\u6cd5\" (algorithm) occupies 2 bytes. We could encode all characters in \"Hello \u7b97\u6cd5\" as 2 bytes by padding the higher bits with zeros. This way, the system can parse a character every 2 bytes, recovering the content of the phrase.
Figure 3-7 \u00a0 Unicode Encoding Example
However, as ASCII has shown us, encoding English only requires 1 byte. Using the above approach would double the space occupied by English text compared to ASCII encoding, which is a waste of memory space. Therefore, a more efficient Unicode encoding method is needed.
"},{"location":"chapter_data_structure/character_encoding/#344-utf-8-encoding","title":"3.4.4 \u00a0 UTF-8 Encoding","text":"Currently, UTF-8 has become the most widely used Unicode encoding method internationally. It is a variable-length encoding, using 1 to 4 bytes to represent a character, depending on the complexity of the character. ASCII characters need only 1 byte, Latin and Greek letters require 2 bytes, commonly used Chinese characters need 3 bytes, and some other rare characters need 4 bytes.
The encoding rules for UTF-8 are not complex and can be divided into two cases:
- For 1-byte characters, set the highest bit to \\(0\\), and the remaining 7 bits to the Unicode code point. Notably, ASCII characters occupy the first 128 code points in the Unicode set. This means that UTF-8 encoding is backward compatible with ASCII. This implies that UTF-8 can be used to parse ancient ASCII text.
- For characters of length \\(n\\) bytes (where \\(n > 1\\)), set the highest \\(n\\) bits of the first byte to \\(1\\), and the \\((n + 1)^{\\text{th}}\\) bit to \\(0\\); starting from the second byte, set the highest 2 bits of each byte to \\(10\\); the rest of the bits are used to fill the Unicode code point.
The Figure 3-8 shows the UTF-8 encoding for \"Hello\u7b97\u6cd5\". It can be observed that since the highest \\(n\\) bits are set to \\(1\\), the system can determine the length of the character as \\(n\\) by counting the number of highest bits set to \\(1\\).
But why set the highest 2 bits of the remaining bytes to \\(10\\)? Actually, this \\(10\\) serves as a kind of checksum. If the system starts parsing text from an incorrect byte, the \\(10\\) at the beginning of the byte can help the system quickly detect an anomaly.
The reason for using \\(10\\) as a checksum is that, under UTF-8 encoding rules, it's impossible for the highest two bits of a character to be \\(10\\). This can be proven by contradiction: If the highest two bits of a character are \\(10\\), it indicates that the character's length is \\(1\\), corresponding to ASCII. However, the highest bit of an ASCII character should be \\(0\\), contradicting the assumption.
Figure 3-8 \u00a0 UTF-8 Encoding Example
Apart from UTF-8, other common encoding methods include:
- UTF-16 Encoding: Uses 2 or 4 bytes to represent a character. All ASCII characters and commonly used non-English characters are represented with 2 bytes; a few characters require 4 bytes. For 2-byte characters, the UTF-16 encoding is equal to the Unicode code point.
- UTF-32 Encoding: Every character uses 4 bytes. This means UTF-32 occupies more space than UTF-8 and UTF-16, especially for texts with a high proportion of ASCII characters.
From the perspective of storage space, UTF-8 is highly efficient for representing English characters, requiring only 1 byte; UTF-16 might be more efficient for encoding some non-English characters (like Chinese), as it requires only 2 bytes, while UTF-8 might need 3 bytes.
From a compatibility standpoint, UTF-8 is the most versatile, with many tools and libraries supporting UTF-8 as a priority.
"},{"location":"chapter_data_structure/character_encoding/#345-character-encoding-in-programming-languages","title":"3.4.5 \u00a0 Character Encoding in Programming Languages","text":"In many classic programming languages, strings during program execution are encoded using fixed-length encodings like UTF-16 or UTF-32. This allows strings to be treated as arrays, offering several advantages:
- Random Access: Strings encoded in UTF-16 can be accessed randomly with ease. For UTF-8, which is a variable-length encoding, locating the \\(i^{th}\\) character requires traversing the string from the start to the \\(i^{th}\\) position, taking \\(O(n)\\) time.
- Character Counting: Similar to random access, counting the number of characters in a UTF-16 encoded string is an \\(O(1)\\) operation. However, counting characters in a UTF-8 encoded string requires traversing the entire string.
- String Operations: Many string operations like splitting, concatenating, inserting, and deleting are easier on UTF-16 encoded strings. These operations generally require additional computation on UTF-8 encoded strings to ensure the validity of the UTF-8 encoding.
The design of character encoding schemes in programming languages is an interesting topic involving various factors:
- Java\u2019s
String type uses UTF-16 encoding, with each character occupying 2 bytes. This was based on the initial belief that 16 bits were sufficient to represent all possible characters, a judgment later proven incorrect. As the Unicode standard expanded beyond 16 bits, characters in Java may now be represented by a pair of 16-bit values, known as \u201csurrogate pairs.\u201d - JavaScript and TypeScript use UTF-16 encoding for similar reasons as Java. When JavaScript was first introduced by Netscape in 1995, Unicode was still in its early stages, and 16-bit encoding was sufficient to represent all Unicode characters.
- C# uses UTF-16 encoding, largely because the .NET platform, designed by Microsoft, and many Microsoft technologies, including the Windows operating system, extensively use UTF-16 encoding.
Due to the underestimation of character counts, these languages had to resort to using \"surrogate pairs\" to represent Unicode characters exceeding 16 bits. This approach has its drawbacks: strings containing surrogate pairs may have characters occupying 2 or 4 bytes, losing the advantage of fixed-length encoding, and handling surrogate pairs adds to the complexity and debugging difficulty of programming.
Owing to these reasons, some programming languages have adopted different encoding schemes:
- Python\u2019s
str type uses Unicode encoding with a flexible representation where the storage length of characters depends on the largest Unicode code point in the string. If all characters are ASCII, each character occupies 1 byte; if characters exceed ASCII but are within the Basic Multilingual Plane (BMP), each occupies 2 bytes; if characters exceed the BMP, each occupies 4 bytes. - Go\u2019s
string type internally uses UTF-8 encoding. Go also provides the rune type for representing individual Unicode code points. - Rust\u2019s
str and String types use UTF-8 encoding internally. Rust also offers the char type for individual Unicode code points.
It\u2019s important to note that the above discussion pertains to how strings are stored in programming languages, which is a different issue from how strings are stored in files or transmitted over networks. For file storage or network transmission, strings are usually encoded in UTF-8 format for optimal compatibility and space efficiency.
"},{"location":"chapter_data_structure/classification_of_data_structure/","title":"3.1 \u00a0 Classification of Data Structures","text":"Common data structures include arrays, linked lists, stacks, queues, hash tables, trees, heaps, and graphs. They can be classified into two dimensions: \"Logical Structure\" and \"Physical Structure\".
"},{"location":"chapter_data_structure/classification_of_data_structure/#311-logical-structure-linear-and-non-linear","title":"3.1.1 \u00a0 Logical Structure: Linear and Non-Linear","text":"The logical structure reveals the logical relationships between data elements. In arrays and linked lists, data is arranged in a certain order, reflecting a linear relationship between them. In trees, data is arranged from top to bottom in layers, showing a \"ancestor-descendant\" hierarchical relationship. Graphs, consisting of nodes and edges, represent complex network relationships.
As shown in the Figure 3-1 , logical structures can be divided into two major categories: \"Linear\" and \"Non-linear\". Linear structures are more intuitive, indicating data is arranged linearly in logical relationships; non-linear structures, conversely, are arranged non-linearly.
- Linear Data Structures: Arrays, Linked Lists, Stacks, Queues, Hash Tables.
- Non-Linear Data Structures: Trees, Heaps, Graphs, Hash Tables.
Figure 3-1 \u00a0 Linear and Non-Linear Data Structures
Non-linear data structures can be further divided into tree structures and network structures.
- Tree Structures: Trees, Heaps, Hash Tables, where elements have one-to-many relationships.
- Network Structures: Graphs, where elements have many-to-many relationships.
"},{"location":"chapter_data_structure/classification_of_data_structure/#312-physical-structure-contiguous-and-dispersed","title":"3.1.2 \u00a0 Physical Structure: Contiguous and Dispersed","text":"When an algorithm program runs, the data being processed is mainly stored in memory. The following figure shows a computer memory stick, each black block containing a memory space. We can imagine memory as a huge Excel spreadsheet, where each cell can store a certain amount of data.
The system accesses data at the target location through memory addresses. As shown in the Figure 3-2 , the computer allocates numbers to each cell in the table according to specific rules, ensuring each memory space has a unique memory address. With these addresses, programs can access data in memory.
Figure 3-2 \u00a0 Memory Stick, Memory Spaces, Memory Addresses
Tip
It's worth noting that comparing memory to an Excel spreadsheet is a simplified analogy. The actual working mechanism of memory is more complex, involving concepts like address space, memory management, cache mechanisms, virtual memory, and physical memory.
Memory is a shared resource for all programs. When a block of memory is occupied by one program, it cannot be used by others simultaneously. Therefore, memory resources are an important consideration in the design of data structures and algorithms. For example, the peak memory usage of an algorithm should not exceed the system's remaining free memory. If there is a lack of contiguous large memory spaces, the chosen data structure must be able to store data in dispersed memory spaces.
As shown in the Figure 3-3 , the physical structure reflects how data is stored in computer memory, which can be divided into contiguous space storage (arrays) and dispersed space storage (linked lists). The physical structure determines from the bottom level how data is accessed, updated, added, or deleted. Both types of physical structures exhibit complementary characteristics in terms of time efficiency and space efficiency.
Figure 3-3 \u00a0 Contiguous Space Storage and Dispersed Space Storage
It's important to note that all data structures are implemented based on arrays, linked lists, or a combination of both. For example, stacks and queues can be implemented using either arrays or linked lists; while hash tables may include both arrays and linked lists.
- Array-based Implementations: Stacks, Queues, Hash Tables, Trees, Heaps, Graphs, Matrices, Tensors (arrays with dimensions \\(\\geq 3\\)).
- Linked List-based Implementations: Stacks, Queues, Hash Tables, Trees, Heaps, Graphs, etc.
Data structures implemented based on arrays are also called \u201cStatic Data Structures,\u201d meaning their length cannot be changed after initialization. Conversely, those based on linked lists are called \u201cDynamic Data Structures,\u201d which can still adjust their size during program execution.
Tip
If you find it difficult to understand the physical structure, it's recommended to read the next chapter first and then revisit this section.
"},{"location":"chapter_data_structure/number_encoding/","title":"3.3 \u00a0 Number Encoding *","text":"Note
In this book, chapters marked with an * symbol are optional reads. If you are short on time or find them challenging, you may skip these initially and return to them after completing the essential chapters.
"},{"location":"chapter_data_structure/number_encoding/#331-integer-encoding","title":"3.3.1 \u00a0 Integer Encoding","text":"In the table from the previous section, we noticed that all integer types can represent one more negative number than positive numbers, such as the byte range of \\([-128, 127]\\). This phenomenon, somewhat counterintuitive, is rooted in the concepts of sign-magnitude, one's complement, and two's complement encoding.
Firstly, it's important to note that numbers are stored in computers using the two's complement form. Before analyzing why this is the case, let's define these three encoding methods:
- Sign-magnitude: The highest bit of a binary representation of a number is considered the sign bit, where \\(0\\) represents a positive number and \\(1\\) represents a negative number. The remaining bits represent the value of the number.
- One's complement: The one's complement of a positive number is the same as its sign-magnitude. For negative numbers, it's obtained by inverting all bits except the sign bit.
- Two's complement: The two's complement of a positive number is the same as its sign-magnitude. For negative numbers, it's obtained by adding \\(1\\) to their one's complement.
The following diagram illustrates the conversions among sign-magnitude, one's complement, and two's complement:
Figure 3-4 \u00a0 Conversions between Sign-Magnitude, One's Complement, and Two's Complement
Although sign-magnitude is the most intuitive, it has limitations. For one, negative numbers in sign-magnitude cannot be directly used in calculations. For example, in sign-magnitude, calculating \\(1 + (-2)\\) results in \\(-3\\), which is incorrect.
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 + 1000 \\; 0010 \\newline & = 1000 \\; 0011 \\newline & \\rightarrow -3 \\end{aligned} \\] To address this, computers introduced the one's complement. If we convert to one's complement and calculate \\(1 + (-2)\\), then convert the result back to sign-magnitude, we get the correct result of \\(-1\\).
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 \\; \\text{(Sign-magnitude)} + 1000 \\; 0010 \\; \\text{(Sign-magnitude)} \\newline & = 0000 \\; 0001 \\; \\text{(One's complement)} + 1111 \\; 1101 \\; \\text{(One's complement)} \\newline & = 1111 \\; 1110 \\; \\text{(One's complement)} \\newline & = 1000 \\; 0001 \\; \\text{(Sign-magnitude)} \\newline & \\rightarrow -1 \\end{aligned} \\] Additionally, there are two representations of zero in sign-magnitude: \\(+0\\) and \\(-0\\). This means two different binary encodings for zero, which could lead to ambiguity. For example, in conditional checks, not differentiating between positive and negative zero might result in incorrect outcomes. Addressing this ambiguity would require additional checks, potentially reducing computational efficiency.
\\[ \\begin{aligned} +0 & \\rightarrow 0000 \\; 0000 \\newline -0 & \\rightarrow 1000 \\; 0000 \\end{aligned} \\] Like sign-magnitude, one's complement also suffers from the positive and negative zero ambiguity. Therefore, computers further introduced the two's complement. Let's observe the conversion process for negative zero in sign-magnitude, one's complement, and two's complement:
\\[ \\begin{aligned} -0 \\rightarrow \\; & 1000 \\; 0000 \\; \\text{(Sign-magnitude)} \\newline = \\; & 1111 \\; 1111 \\; \\text{(One's complement)} \\newline = 1 \\; & 0000 \\; 0000 \\; \\text{(Two's complement)} \\newline \\end{aligned} \\] Adding \\(1\\) to the one's complement of negative zero produces a carry, but with byte length being only 8 bits, the carried-over \\(1\\) to the 9th bit is discarded. Therefore, the two's complement of negative zero is \\(0000 \\; 0000\\), the same as positive zero, thus resolving the ambiguity.
One last puzzle is the \\([-128, 127]\\) range for byte, with an additional negative number, \\(-128\\). We observe that for the interval \\([-127, +127]\\), all integers have corresponding sign-magnitude, one's complement, and two's complement, and these can be converted between each other.
However, the two's complement \\(1000 \\; 0000\\) is an exception without a corresponding sign-magnitude. According to the conversion method, its sign-magnitude would be \\(0000 \\; 0000\\), which is a contradiction since this represents zero, and its two's complement should be itself. Computers designate this special two's complement \\(1000 \\; 0000\\) as representing \\(-128\\). In fact, the calculation of \\((-1) + (-127)\\) in two's complement results in \\(-128\\).
\\[ \\begin{aligned} & (-127) + (-1) \\newline & \\rightarrow 1111 \\; 1111 \\; \\text{(Sign-magnitude)} + 1000 \\; 0001 \\; \\text{(Sign-magnitude)} \\newline & = 1000 \\; 0000 \\; \\text{(One's complement)} + 1111 \\; 1110 \\; \\text{(One's complement)} \\newline & = 1000 \\; 0001 \\; \\text{(Two's complement)} + 1111 \\; 1111 \\; \\text{(Two's complement)} \\newline & = 1000 \\; 0000 \\; \\text{(Two's complement)} \\newline & \\rightarrow -128 \\end{aligned} \\] As you might have noticed, all these calculations are additions, hinting at an important fact: computers' internal hardware circuits are primarily designed around addition operations. This is because addition is simpler to implement in hardware compared to other operations like multiplication, division, and subtraction, allowing for easier parallelization and faster computation.
It's important to note that this doesn't mean computers can only perform addition. By combining addition with basic logical operations, computers can execute a variety of other mathematical operations. For example, the subtraction \\(a - b\\) can be translated into \\(a + (-b)\\); multiplication and division can be translated into multiple additions or subtractions.
We can now summarize the reason for using two's complement in computers: with two's complement representation, computers can use the same circuits and operations to handle both positive and negative number addition, eliminating the need for special hardware circuits for subtraction and avoiding the ambiguity of positive and negative zero. This greatly simplifies hardware design and enhances computational efficiency.
The design of two's complement is quite ingenious, and due to space constraints, we'll stop here. Interested readers are encouraged to explore further.
"},{"location":"chapter_data_structure/number_encoding/#332-floating-point-number-encoding","title":"3.3.2 \u00a0 Floating-Point Number Encoding","text":"You might have noticed something intriguing: despite having the same length of 4 bytes, why does a float have a much larger range of values compared to an int? This seems counterintuitive, as one would expect the range to shrink for float since it needs to represent fractions.
In fact, this is due to the different representation method used by floating-point numbers (float). Let's consider a 32-bit binary number as:
\\[ b_{31} b_{30} b_{29} \\ldots b_2 b_1 b_0 \\] According to the IEEE 754 standard, a 32-bit float consists of the following three parts:
- Sign bit \\(\\mathrm{S}\\): Occupies 1 bit, corresponding to \\(b_{31}\\).
- Exponent bit \\(\\mathrm{E}\\): Occupies 8 bits, corresponding to \\(b_{30} b_{29} \\ldots b_{23}\\).
- Fraction bit \\(\\mathrm{N}\\): Occupies 23 bits, corresponding to \\(b_{22} b_{21} \\ldots b_0\\).
The value of a binary float number is calculated as:
\\[ \\text{val} = (-1)^{b_{31}} \\times 2^{\\left(b_{30} b_{29} \\ldots b_{23}\\right)_2 - 127} \\times \\left(1 . b_{22} b_{21} \\ldots b_0\\right)_2 \\] Converted to a decimal formula, this becomes:
\\[ \\text{val} = (-1)^{\\mathrm{S}} \\times 2^{\\mathrm{E} - 127} \\times (1 + \\mathrm{N}) \\] The range of each component is:
\\[ \\begin{aligned} \\mathrm{S} \\in & \\{ 0, 1\\}, \\quad \\mathrm{E} \\in \\{ 1, 2, \\dots, 254 \\} \\newline (1 + \\mathrm{N}) = & (1 + \\sum_{i=1}^{23} b_{23-i} \\times 2^{-i}) \\subset [1, 2 - 2^{-23}] \\end{aligned} \\] Figure 3-5 \u00a0 Example Calculation of a float in IEEE 754 Standard
Observing the diagram, given an example data \\(\\mathrm{S} = 0\\), \\(\\mathrm{E} = 124\\), \\(\\mathrm{N} = 2^{-2} + 2^{-3} = 0.375\\), we have:
\\[ \\text{val} = (-1)^0 \\times 2^{124 - 127} \\times (1 + 0.375) = 0.171875 \\] Now we can answer the initial question: The representation of float includes an exponent bit, leading to a much larger range than int. Based on the above calculation, the maximum positive number representable by float is approximately \\(2^{254 - 127} \\times (2 - 2^{-23}) \\approx 3.4 \\times 10^{38}\\), and the minimum negative number is obtained by switching the sign bit.
However, the trade-off for float's expanded range is a sacrifice in precision. The integer type int uses all 32 bits to represent the number, with values evenly distributed; but due to the exponent bit, the larger the value of a float, the greater the difference between adjacent numbers.
As shown in the Table 3-2 , exponent bits \\(E = 0\\) and \\(E = 255\\) have special meanings, used to represent zero, infinity, \\(\\mathrm{NaN}\\), etc.
Table 3-2 \u00a0 Meaning of Exponent Bits
Exponent Bit E Fraction Bit \\(\\mathrm{N} = 0\\) Fraction Bit \\(\\mathrm{N} \\ne 0\\) Calculation Formula \\(0\\) \\(\\pm 0\\) Subnormal Numbers \\((-1)^{\\mathrm{S}} \\times 2^{-126} \\times (0.\\mathrm{N})\\) \\(1, 2, \\dots, 254\\) Normal Numbers Normal Numbers \\((-1)^{\\mathrm{S}} \\times 2^{(\\mathrm{E} -127)} \\times (1.\\mathrm{N})\\) \\(255\\) \\(\\pm \\infty\\) \\(\\mathrm{NaN}\\) It's worth noting that subnormal numbers significantly improve the precision of floating-point numbers. The smallest positive normal number is \\(2^{-126}\\), and the smallest positive subnormal number is \\(2^{-126} \\times 2^{-23}\\).
Double-precision double also uses a similar representation method to float, which is not elaborated here for brevity.
"},{"location":"chapter_data_structure/summary/","title":"3.5 \u00a0 Summary","text":""},{"location":"chapter_data_structure/summary/#1-key-review","title":"1. \u00a0 Key Review","text":" - Data structures can be categorized from two perspectives: logical structure and physical structure. Logical structure describes the logical relationships between data elements, while physical structure describes how data is stored in computer memory.
- Common logical structures include linear, tree-like, and network structures. We generally classify data structures into linear (arrays, linked lists, stacks, queues) and non-linear (trees, graphs, heaps) based on their logical structure. The implementation of hash tables may involve both linear and non-linear data structures.
- When a program runs, data is stored in computer memory. Each memory space has a corresponding memory address, and the program accesses data through these addresses.
- Physical structures are primarily divided into contiguous space storage (arrays) and dispersed space storage (linked lists). All data structures are implemented using arrays, linked lists, or a combination of both.
- Basic data types in computers include integers (
byte, short, int, long), floating-point numbers (float, double), characters (char), and booleans (boolean). Their range depends on the size of the space occupied and the representation method. - Original code, complement code, and two's complement code are three methods of encoding numbers in computers, and they can be converted into each other. The highest bit of the original code of an integer is the sign bit, and the remaining bits represent the value of the number.
- Integers are stored in computers in the form of two's complement. In this representation, the computer can treat the addition of positive and negative numbers uniformly, without the need for special hardware circuits for subtraction, and there is no ambiguity of positive and negative zero.
- The encoding of floating-point numbers consists of 1 sign bit, 8 exponent bits, and 23 fraction bits. Due to the presence of the exponent bit, the range of floating-point numbers is much greater than that of integers, but at the cost of sacrificing precision.
- ASCII is the earliest English character set, 1 byte in length, and includes 127 characters. The GBK character set is a commonly used Chinese character set, including more than 20,000 Chinese characters. Unicode strives to provide a complete character set standard, including characters from various languages worldwide, thus solving the problem of garbled characters caused by inconsistent character encoding methods.
- UTF-8 is the most popular Unicode encoding method, with excellent universality. It is a variable-length encoding method with good scalability and effectively improves the efficiency of space usage. UTF-16 and UTF-32 are fixed-length encoding methods. When encoding Chinese characters, UTF-16 occupies less space than UTF-8. Programming languages like Java and C# use UTF-16 encoding by default.
"},{"location":"chapter_data_structure/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"Why does a hash table contain both linear and non-linear data structures?
The underlying structure of a hash table is an array. To resolve hash collisions, we may use \"chaining\": each bucket in the array points to a linked list, which, when exceeding a certain threshold, might be transformed into a tree (usually a red-black tree). From a storage perspective, the foundation of a hash table is an array, where each bucket slot might contain a value, a linked list, or a tree. Therefore, hash tables may contain both linear data structures (arrays, linked lists) and non-linear data structures (trees).
Is the length of the char type 1 byte?
The length of the char type is determined by the encoding method used by the programming language. For example, Java, JavaScript, TypeScript, and C# all use UTF-16 encoding (to save Unicode code points), so the length of the char type is 2 bytes.
Is there ambiguity in calling data structures based on arrays 'static data structures'? Because operations like push and pop on stacks are 'dynamic.'
While stacks indeed allow for dynamic data operations, the data structure itself remains \"static\" (with unchangeable length). Even though data structures based on arrays can dynamically add or remove elements, their capacity is fixed. If the data volume exceeds the pre-allocated size, a new, larger array needs to be created, and the contents of the old array copied into it.
When building stacks (queues) without specifying their size, why are they considered 'static data structures'?
In high-level programming languages, we don't need to manually specify the initial capacity of stacks (queues); this task is automatically handled internally by the class. For example, the initial capacity of Java's ArrayList is usually 10. Furthermore, the expansion operation is also implemented automatically. See the subsequent \"List\" chapter for details.
"},{"location":"chapter_introduction/","title":"Chapter 1. \u00a0 Introduction to Algorithms","text":"Abstract
A graceful maiden dances, intertwined with the data, her skirt swaying to the melody of algorithms.
She invites you to a dance, follow her steps, and enter the world of algorithms full of logic and beauty.
"},{"location":"chapter_introduction/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 1.1 \u00a0 Algorithms are Everywhere
- 1.2 \u00a0 What is an Algorithm
- 1.3 \u00a0 Summary
"},{"location":"chapter_introduction/algorithms_are_everywhere/","title":"1.1 \u00a0 Algorithms are Everywhere","text":"When we hear the word \"algorithm,\" we naturally think of mathematics. However, many algorithms do not involve complex mathematics but rely more on basic logic, which can be seen everywhere in our daily lives.
Before formally discussing algorithms, there's an interesting fact worth sharing: you have already unconsciously learned many algorithms and have become accustomed to applying them in your daily life. Here, I will give a few specific examples to prove this point.
Example 1: Looking Up a Dictionary. In an English dictionary, words are listed alphabetically. Suppose we're searching for a word that starts with the letter \\(r\\). This is typically done in the following way:
- Open the dictionary to about halfway and check the first letter on the page, let's say the letter is \\(m\\).
- Since \\(r\\) comes after \\(m\\) in the alphabet, we can ignore the first half of the dictionary and focus on the latter half.
- Repeat steps
1. and 2. until you find the page where the word starts with \\(r\\).
<1><2><3><4><5> Figure 1-1 \u00a0 Process of Looking Up a Dictionary
This essential skill for elementary students, looking up a dictionary, is actually the famous \"Binary Search\" algorithm. From a data structure perspective, we can consider the dictionary as a sorted \"array\"; from an algorithmic perspective, the series of actions taken to look up a word in the dictionary can be viewed as \"Binary Search.\"
Example 2: Organizing Playing Cards. When playing cards, we need to arrange the cards in our hand in ascending order, as shown in the following process.
- Divide the playing cards into \"ordered\" and \"unordered\" sections, assuming initially the leftmost card is already in order.
- Take out a card from the unordered section and insert it into the correct position in the ordered section; after this, the leftmost two cards are in order.
- Continue to repeat step
2. until all cards are in order.
Figure 1-2 \u00a0 Playing Cards Sorting Process
The above method of organizing playing cards is essentially the \"Insertion Sort\" algorithm, which is very efficient for small datasets. Many programming languages' sorting functions include the insertion sort.
Example 3: Making Change. Suppose we buy goods worth \\(69\\) yuan at a supermarket and give the cashier \\(100\\) yuan, then the cashier needs to give us \\(31\\) yuan in change. They would naturally complete the thought process as shown below.
- The options are currencies smaller than \\(31\\), including \\(1\\), \\(5\\), \\(10\\), and \\(20\\).
- Take out the largest \\(20\\) from the options, leaving \\(31 - 20 = 11\\).
- Take out the largest \\(10\\) from the remaining options, leaving \\(11 - 10 = 1\\).
- Take out the largest \\(1\\) from the remaining options, leaving \\(1 - 1 = 0\\).
- Complete the change-making, with the solution being \\(20 + 10 + 1 = 31\\).
Figure 1-3 \u00a0 Change making process
In the above steps, we make the best choice at each step (using the largest denomination possible), ultimately resulting in a feasible change-making plan. From the perspective of data structures and algorithms, this method is essentially a \"Greedy\" algorithm.
From cooking a meal to interstellar travel, almost all problem-solving involves algorithms. The advent of computers allows us to store data structures in memory and write code to call the CPU and GPU to execute algorithms. In this way, we can transfer real-life problems to computers, solving various complex issues more efficiently.
Tip
If concepts such as data structures, algorithms, arrays, and binary search still seem somewhat obsecure, I encourage you to continue reading. This book will gently guide you into the realm of understanding data structures and algorithms.
"},{"location":"chapter_introduction/summary/","title":"1.3 \u00a0 Summary","text":" - Algorithms are ubiquitous in daily life and are not as inaccessible and complex as they might seem. In fact, we have already unconsciously learned many algorithms to solve various problems in life.
- The principle of looking up a word in a dictionary is consistent with the binary search algorithm. The binary search algorithm embodies the important algorithmic concept of divide and conquer.
- The process of organizing playing cards is very similar to the insertion sort algorithm. The insertion sort algorithm is suitable for sorting small datasets.
- The steps of making change in currency essentially follow the greedy algorithm, where each step involves making the best possible choice at the moment.
- An algorithm is a set of instructions or steps used to solve a specific problem within a finite amount of time, while a data structure is the way data is organized and stored in a computer.
- Data structures and algorithms are closely linked. Data structures are the foundation of algorithms, and algorithms are the stage to utilize the functions of data structures.
- We can liken data structures and algorithms to building blocks. The blocks represent data, the shape and connection method of the blocks represent data structures, and the steps of assembling the blocks correspond to algorithms.
"},{"location":"chapter_introduction/what_is_dsa/","title":"1.2 \u00a0 What is an Algorithm","text":""},{"location":"chapter_introduction/what_is_dsa/#121-definition-of-an-algorithm","title":"1.2.1 \u00a0 Definition of an Algorithm","text":"An \"algorithm\" is a set of instructions or steps to solve a specific problem within a finite amount of time. It has the following characteristics:
- The problem is clearly defined, including unambiguous definitions of input and output.
- The algorithm is feasible, meaning it can be completed within a finite number of steps, time, and memory space.
- Each step has a definitive meaning. The output is consistently the same under the same inputs and conditions.
"},{"location":"chapter_introduction/what_is_dsa/#122-definition-of-a-data-structure","title":"1.2.2 \u00a0 Definition of a Data Structure","text":"A \"data structure\" is a way of organizing and storing data in a computer, with the following design goals:
- Minimize space occupancy to save computer memory.
- Make data operations as fast as possible, covering data access, addition, deletion, updating, etc.
- Provide concise data representation and logical information to enable efficient algorithm execution.
Designing data structures is a balancing act, often requiring trade-offs. If you want to improve in one aspect, you often need to compromise in another. Here are two examples:
- Compared to arrays, linked lists offer more convenience in data addition and deletion but sacrifice data access speed.
- Graphs, compared to linked lists, provide richer logical information but require more memory space.
"},{"location":"chapter_introduction/what_is_dsa/#123-relationship-between-data-structures-and-algorithms","title":"1.2.3 \u00a0 Relationship Between Data Structures and Algorithms","text":"As shown in the Figure 1-4 , data structures and algorithms are highly related and closely integrated, specifically in the following three aspects:
- Data structures are the foundation of algorithms. They provide structured data storage and methods for manipulating data for algorithms.
- Algorithms are the stage where data structures come into play. The data structure alone only stores data information; it is through the application of algorithms that specific problems can be solved.
- Algorithms can often be implemented based on different data structures, but their execution efficiency can vary greatly. Choosing the right data structure is key.
Figure 1-4 \u00a0 Relationship between data structures and algorithms
Data structures and algorithms can be likened to a set of building blocks, as illustrated in the Figure 1-5 . A building block set includes numerous pieces, accompanied by detailed assembly instructions. Following these instructions step by step allows us to construct an intricate block model.
Figure 1-5 \u00a0 Assembling blocks
The detailed correspondence between the two is shown in the Table 1-1 .
Table 1-1 \u00a0 Comparing Data Structures and Algorithms to Building Blocks
Data Structures and Algorithms Building Blocks Input data Unassembled blocks Data structure Organization of blocks, including shape, size, connections, etc Algorithm A series of steps to assemble the blocks into the desired shape Output data Completed Block model It's worth noting that data structures and algorithms are independent of programming languages. For this reason, this book is able to provide implementations in multiple programming languages.
Conventional Abbreviation
In real-life discussions, we often refer to \"Data Structures and Algorithms\" simply as \"Algorithms\". For example, the well-known LeetCode algorithm problems actually test both data structure and algorithm knowledge.
"},{"location":"chapter_preface/","title":"Chapter 0. \u00a0 Preface","text":"Abstract
Algorithms are like a beautiful symphony, with each line of code flowing like a rhythm.
May this book ring softly in your mind, leaving a unique and profound melody.
"},{"location":"chapter_preface/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 0.1 \u00a0 About This Book
- 0.2 \u00a0 How to Read
- 0.3 \u00a0 Summary
"},{"location":"chapter_preface/about_the_book/","title":"0.1 \u00a0 About This Book","text":"This open-source project aims to create a free, and beginner-friendly crash course on data structures and algorithms.
- Using animated illustrations, it delivers structured insights into data structures and algorithmic concepts, ensuring comprehensibility and a smooth learning curve.
- Run code with just one click, supporting Java, C++, Python, Go, JS, TS, C#, Swift, Rust, Dart, Zig and other languages.
- Readers are encouraged to engage with each other in the discussion area for each section, questions and comments are usually answered within two days.
"},{"location":"chapter_preface/about_the_book/#011-target-audience","title":"0.1.1 \u00a0 Target Audience","text":"If you are new to algorithms with limited exposure, or you have accumulated some experience in algorithms, but you only have a vague understanding of data structures and algorithms, and you are constantly jumping between \"yep\" and \"hmm\", then this book is for you!
If you have already accumulated a certain amount of problem-solving experience, and are familiar with most types of problems, then this book can help you review and organize your algorithm knowledge system. The repository's source code can be used as a \"problem-solving toolkit\" or an \"algorithm cheat sheet\".
If you are an algorithm expert, we look forward to receiving your valuable suggestions, or join us and collaborate.
Prerequisites
You should know how to write and read simple code in at least one programming language.
"},{"location":"chapter_preface/about_the_book/#012-content-structure","title":"0.1.2 \u00a0 Content Structure","text":"The main content of the book is shown in the following figure.
- Complexity Analysis: explores aspects and methods for evaluating data structures and algorithms. Covers methods of deriving time complexity and space complexity, along with common types and examples.
- Data Structures: focuses on fundamental data types, classification methods, definitions, pros and cons, common operations, types, applications, and implementation methods of data structures such as array, linked list, stack, queue, hash table, tree, heap, graph, etc.
- Algorithms: defines algorithms, discusses their pros and cons, efficiency, application scenarios, problem-solving steps, and includes sample questions for various algorithms such as search, sorting, divide and conquer, backtracking, dynamic programming, greedy algorithms, and more.
Figure 0-1 \u00a0 Main Content of the Book
"},{"location":"chapter_preface/about_the_book/#013-acknowledgements","title":"0.1.3 \u00a0 Acknowledgements","text":"Throughout the creation of this book, numerous individuals provided invaluable assistance, including but not limited to:
- Thanks to my mentor at the company, Dr. Xi Li, who encouraged me in a conversation to \"get moving fast,\" which solidified my determination to write this book;
- Thanks to my girlfriend Paopao, as the first reader of this book, for offering many valuable suggestions from the perspective of a beginner in algorithms, making this book more suitable for newbies;
- Thanks to Tengbao, Qibao, and Feibao for coming up with a creative name for this book, evoking everyone's fond memories of writing their first line of code \"Hello World!\";
- Thanks to Xiaoquan for providing professional help in intellectual property, which has played a significant role in the development of this open-source book;
- Thanks to Sutong for designing a beautiful cover and logo for this book, and for patiently making multiple revisions under my insistence;
- Thanks to @squidfunk for providing writing and typesetting suggestions, as well as his developed open-source documentation theme Material-for-MkDocs.
Throughout the writing journey, I delved into numerous textbooks and articles on data structures and algorithms. These works served as exemplary models, ensuring the accuracy and quality of this book's content. I extend my gratitude to all who preceded me for their invaluable contributions!
This book advocates a combination of hands-on and minds-on learning, inspired in this regard by \"Dive into Deep Learning\". I highly recommend this excellent book to all readers.
Heartfelt thanks to my parents, whose ongoing support and encouragement have allowed me to do this interesting work.
"},{"location":"chapter_preface/suggestions/","title":"0.2 \u00a0 How to Read","text":"Tip
For the best reading experience, it is recommended that you read through this section.
"},{"location":"chapter_preface/suggestions/#021-conventions-of-style","title":"0.2.1 \u00a0 Conventions Of Style","text":" - Those labeled
* after the title are optional chapters with relatively difficult content. If you have limited time, it is advisable to skip them. - Proper nouns and words and phrases with specific meanings are marked with
\"double quotes\" to avoid ambiguity. - Important proper nouns and their English translations are marked with
\" \" in parentheses, e.g. \"array array\" . It is recommended to memorize them for reading the literature. - Bolded text Indicates key content or summary statements, which deserve special attention.
- When it comes to terms that are inconsistent between programming languages, this book follows Python, for example using \\(\\text{None}\\) to mean \"empty\".
- This book partially abandons the specification of annotations in programming languages in exchange for a more compact layout of the content. There are three main types of annotations: title annotations, content annotations, and multi-line annotations.
PythonC++JavaC#GoSwiftJSTSDartRustCZig \"\"\"Header comments for labeling functions, classes, test samples, etc.\"\"\"\"\n\n# Content comments for detailed code solutions\n\n\"\"\"\nmulti-line\nmarginal notes\n\"\"\"\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
// Header comments for labeling functions, classes, test samples, etc.\n\n// Content comments for detailed code solutions.\n\n// Multi-line\n// Annotation\n
"},{"location":"chapter_preface/suggestions/#022-learn-efficiently-in-animated-graphic-solutions","title":"0.2.2 \u00a0 Learn Efficiently In Animated Graphic Solutions","text":"Compared with text, videos and pictures have a higher degree of information density and structure and are easier to understand. In this book, key and difficult knowledge will be presented mainly in the form of animations and graphs, while the text serves as an explanation and supplement to the animations and graphs.
If, while reading the book, you find that a particular paragraph provides an animation or a graphic solution as shown below, please use the figure as the primary source and the text as a supplement and synthesize the two to understand the content.
Figure 0-2 \u00a0 Example animation
"},{"location":"chapter_preface/suggestions/#023-deeper-understanding-in-code-practice","title":"0.2.3 \u00a0 Deeper Understanding In Code Practice","text":"The companion code for this book is hosted in the GitHub repository. As shown in the Figure 0-3 , the source code is accompanied by test samples that can be run with a single click.
If time permits, it is recommended that you refer to the code and knock it through on your own. If you have limited time to study, please read through and run all the code at least once.
The process of writing code is often more rewarding than reading it. Learning by doing is really learning.
Figure 0-3 \u00a0 Running code example
The preliminaries for running the code are divided into three main steps.
Step 1: Install the local programming environment. Please refer to Appendix Tutorial for installation, or skip this step if already installed.
Step 2: Clone or download the code repository. If Git is already installed, you can clone this repository with the following command.
git clone https://github.com/krahets/hello-algo.git\n
Of course, you can also in the location shown in the Figure 0-4 , click \"Download ZIP\" directly download the code zip, and then in the local solution.
Figure 0-4 \u00a0 Clone repository with download code
Step 3: Run the source code. As shown in the Figure 0-5 , for the code block labeled with the file name at the top, we can find the corresponding source code file in the codes folder of the repository. The source code files can be run with a single click, which will help you save unnecessary debugging time and allow you to focus on what you are learning.
Figure 0-5 \u00a0 Code block with corresponding source file
"},{"location":"chapter_preface/suggestions/#024-growing-together-in-questioning-and-discussion","title":"0.2.4 \u00a0 Growing Together In Questioning And Discussion","text":"While reading this book, please don't skip over the points that you didn't learn. Feel free to ask your questions in the comment section. We will be happy to answer them and can usually respond within two days.
As you can see in the Figure 0-6 , each post comes with a comment section at the bottom. I hope you'll pay more attention to the comments section. On the one hand, you can learn about the problems that people encounter, so as to check the gaps and stimulate deeper thinking. On the other hand, we expect you to generously answer other partners' questions, share your insights, and help others improve.
Figure 0-6 \u00a0 Example of comment section
"},{"location":"chapter_preface/suggestions/#025-algorithm-learning-route","title":"0.2.5 \u00a0 Algorithm Learning Route","text":"From a general point of view, we can divide the process of learning data structures and algorithms into three stages.
- Introduction to Algorithms. We need to familiarize ourselves with the characteristics and usage of various data structures and learn about the principles, processes, uses and efficiency of different algorithms.
- Brush up on algorithm questions. It is recommended to start brushing from popular topics, such as Sword to Offer and LeetCode Hot 100, first accumulate at least 100 questions to familiarize yourself with mainstream algorithmic problems. Forgetfulness can be a challenge when first brushing up, but rest assured that this is normal. We can follow the \"Ebbinghaus Forgetting Curve\" to review the questions, and usually after 3-5 rounds of repetitions, we will be able to memorize them.
- Build the knowledge system. In terms of learning, we can read algorithm column articles, solution frameworks and algorithm textbooks to continuously enrich the knowledge system. In terms of brushing, we can try to adopt advanced brushing strategies, such as categorizing by topic, multiple solutions, multiple solutions, etc. Related brushing tips can be found in various communities.
As shown in the Figure 0-7 , this book mainly covers \"Phase 1\" and is designed to help you start Phase 2 and 3 more efficiently.
Figure 0-7 \u00a0 algorithm learning route
"},{"location":"chapter_preface/summary/","title":"0.3 \u00a0 Summary","text":" - The main audience of this book is beginners in algorithm. If you already have some basic knowledge, this book can help you systematically review your algorithm knowledge, and the source code in this book can also be used as a \"Coding Toolkit\".
- The book consists of three main sections, Complexity Analysis, Data Structures, and Algorithms, covering most of the topics in the field.
- For newcomers to algorithms, it is crucial to read an introductory book in the beginning stages to avoid many detours or common pitfalls.
- Animations and figures within the book are usually used to introduce key points and difficult knowledge. These should be given more attention when reading the book.
- Practice is the best way to learn programming. It is highly recommended that you run the source code and type in the code yourself.
- Each chapter in the web version of this book features a discussion section, and you are welcome to share your questions and insights at any time.
"}]}
\ No newline at end of file
+{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Home","text":"Hello Algo Data Structures and Algorithms Crash Course with Animated Illustrations and Off-the-Shelf Code
Dive In Clone Repo Get PDF
The English edition is brewing...
Feel free to engage in Chinese-to-English translation and pull request review! For guidelines, please see #914.
Endorsements Quote
\"An easy-to-understand book on data structures and algorithms, which guides readers to learn by minds-on and hands-on. Strongly recommended for algorithm beginners!\"
\u2014\u2014 Junhui Deng, Professor of Computer Science, Tsinghua University
Quote
\"If I had 'Hello Algo' when I was learning data structures and algorithms, it would have been 10 times easier!\"
\u2014\u2014 Mu Li, Senior Principal Scientist, Amazon
Animated illustrations Easy to understandSmooth learning curve
\"A picture is worth a thousand words.\"
Off-the-Shelf Code Multi programming languagesRun with one click
\"Talk is cheap. Show me the code.\"
Learning Together Discussion and questions welcomeReaders progress together
\"Chase the wind and moon, never stopping\"
\"Beyond the plains, there are spring mountains\"
Preface Two years ago, I shared the \"Sword Offer\" series of problem solutions on LeetCode, which received much love and support from many students. During my interactions with readers, the most common question I encountered was \"How to get started with algorithms.\" Gradually, I developed a deep interest in this question.
Blindly solving problems seems to be the most popular method, being simple, direct, and effective. However, problem-solving is like playing a \"Minesweeper\" game, where students with strong self-learning abilities can successfully clear the mines one by one, but those with insufficient foundations may end up bruised from explosions, retreating step by step in frustration. Thoroughly reading textbooks is also common, but for students aiming for job applications, the energy consumed by graduation, resume submissions, and preparing for written tests and interviews makes tackling thick books a daunting challenge.
If you are facing similar troubles, then you are lucky to have found this book. This book is my answer to this question, not necessarily the best solution, but at least an active attempt. Although this book won't directly land you an Offer, it will guide you through the \"knowledge map\" of data structures and algorithms, help you understand the shape, size, and distribution of different \"mines,\" and equip you with various \"demining methods.\" With these skills, I believe you can more comfortably solve problems and read literature, gradually building a complete knowledge system.
I deeply agree with Professor Feynman's saying: \"Knowledge isn't free. You have to pay attention.\" In this sense, this book is not entirely \"free.\" To not disappoint the precious \"attention\" you pay to this book, I will do my utmost, investing the greatest \"attention\" to complete the creation of this book.
Author Yudong Jin(Krahets), Senior Algorithm Engineer in a top tech company, Master's degree from Shanghai Jiao Tong University. The highest-read blogger across the entire LeetCode, his published \"Illustration of Algorithm Data Structures\" has been subscribed to by over 300k.
Contribution This book is continuously improved with the joint efforts of many contributors from the open-source community. Thanks to each writer who invested their time and energy, listed in the order generated by GitHub:
The code review work for this book was completed by Gonglja, gvenusleo, hpstory, justin\u2010tse, krahets, night-cruise, nuomi1, Reanon, and sjinzh (listed in alphabetical order). Thanks to them for their time and effort, ensuring the standardization and uniformity of the code in various languages.
GongljaC, C++ gvenusleoDart hpstoryC# justin-tseJS, TS krahetsJava, Python night-cruiseRust nuomi1Swift ReanonGo, C sjinzhRust, Zig"},{"location":"chapter_array_and_linkedlist/","title":"Chapter 4. \u00a0 Arrays and Linked Lists","text":"Abstract
The world of data structures is like a solid brick wall.
The bricks of an array are neatly arranged, each closely connected to the next. In contrast, the bricks of a linked list are scattered, with vines of connections freely weaving through the gaps between bricks.
"},{"location":"chapter_array_and_linkedlist/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 4.1 \u00a0 Array
- 4.2 \u00a0 Linked List
- 4.3 \u00a0 List
- 4.4 \u00a0 Memory and Cache
- 4.5 \u00a0 Summary
"},{"location":"chapter_array_and_linkedlist/array/","title":"4.1 \u00a0 Arrays","text":"The \"array\" is a linear data structure that stores elements of the same type in contiguous memory locations. We refer to the position of an element in the array as its \"index\". The following image illustrates the main terminology and concepts of an array.
Figure 4-1 \u00a0 Array Definition and Storage Method
"},{"location":"chapter_array_and_linkedlist/array/#411-common-operations-on-arrays","title":"4.1.1 \u00a0 Common Operations on Arrays","text":""},{"location":"chapter_array_and_linkedlist/array/#1-initializing-arrays","title":"1. \u00a0 Initializing Arrays","text":"There are two ways to initialize arrays depending on the requirements: without initial values and with given initial values. In cases where initial values are not specified, most programming languages will initialize the array elements to \\(0\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.py# Initialize array\narr: list[int] = [0] * 5 # [ 0, 0, 0, 0, 0 ]\nnums: list[int] = [1, 3, 2, 5, 4]\n
array.cpp/* Initialize array */\n// Stored on stack\nint arr[5];\nint nums[5] = { 1, 3, 2, 5, 4 };\n// Stored on heap (manual memory release needed)\nint* arr1 = new int[5];\nint* nums1 = new int[5] { 1, 3, 2, 5, 4 };\n
array.java/* Initialize array */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
array.cs/* Initialize array */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = [1, 3, 2, 5, 4];\n
array.go/* Initialize array */\nvar arr [5]int\n// In Go, specifying the length ([5]int) denotes an array, while not specifying it ([]int) denotes a slice.\n// Since Go's arrays are designed to have compile-time fixed length, only constants can be used to specify the length.\n// For convenience in implementing the extend() method, the Slice will be considered as an Array here.\nnums := []int{1, 3, 2, 5, 4}\n
array.swift/* Initialize array */\nlet arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]\nlet nums = [1, 3, 2, 5, 4]\n
array.js/* Initialize array */\nvar arr = new Array(5).fill(0);\nvar nums = [1, 3, 2, 5, 4];\n
array.ts/* Initialize array */\nlet arr: number[] = new Array(5).fill(0);\nlet nums: number[] = [1, 3, 2, 5, 4];\n
array.dart/* Initialize array */\nList<int> arr = List.filled(5, 0); // [0, 0, 0, 0, 0]\nList<int> nums = [1, 3, 2, 5, 4];\n
array.rs/* Initialize array */\nlet arr: Vec<i32> = vec![0; 5]; // [0, 0, 0, 0, 0]\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
array.c/* Initialize array */\nint arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }\nint nums[5] = { 1, 3, 2, 5, 4 };\n
array.zig// Initialize array\nvar arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }\nvar nums = [_]i32{ 1, 3, 2, 5, 4 };\n
"},{"location":"chapter_array_and_linkedlist/array/#2-accessing-elements","title":"2. \u00a0 Accessing Elements","text":"Elements in an array are stored in contiguous memory locations, which makes it easy to compute the memory address of any element. Given the memory address of the array (the address of the first element) and the index of an element, we can calculate the memory address of that element using the formula shown in the following image, allowing direct access to the element.
Figure 4-2 \u00a0 Memory Address Calculation for Array Elements
As observed in the above image, the index of the first element of an array is \\(0\\), which may seem counterintuitive since counting starts from \\(1\\). However, from the perspective of the address calculation formula, an index is essentially an offset from the memory address. The offset for the first element's address is \\(0\\), making its index \\(0\\) logical.
Accessing elements in an array is highly efficient, allowing us to randomly access any element in \\(O(1)\\) time.
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef random_access(nums: list[int]) -> int:\n \"\"\"\u968f\u673a\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u5728\u533a\u95f4 [0, len(nums)-1] \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n random_index = random.randint(0, len(nums) - 1)\n # \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n random_num = nums[random_index]\n return random_num\n
array.cpp/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.java/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = ThreadLocalRandom.current().nextInt(0, nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.cs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint RandomAccess(int[] nums) {\n Random random = new();\n // \u5728\u533a\u95f4 [0, nums.Length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = random.Next(nums.Length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.go/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums []int) (randomNum int) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n randomIndex := rand.Intn(len(nums))\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n randomNum = nums[randomIndex]\n return\n}\n
array.swift/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums: [Int]) -> Int {\n // \u5728\u533a\u95f4 [0, nums.count) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let randomIndex = nums.indices.randomElement()!\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let randomNum = nums[randomIndex]\n return randomNum\n}\n
array.js/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.ts/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums: number[]): number {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.dart/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(List<int> nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = Random().nextInt(nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.rs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfn random_access(nums: &[i32]) -> i32 {\n // \u5728\u533a\u95f4 [0, nums.len()) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let random_index = rand::thread_rng().gen_range(0..nums.len());\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let random_num = nums[random_index];\n random_num\n}\n
array.c/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.zig// \u968f\u673a\u8bbf\u95ee\u5143\u7d20\nfn randomAccess(nums: []i32) i32 {\n // \u5728\u533a\u95f4 [0, nums.len) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6574\u6570\n var randomIndex = std.crypto.random.intRangeLessThan(usize, 0, nums.len);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n var randomNum = nums[randomIndex];\n return randomNum;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#3-inserting-elements","title":"3. \u00a0 Inserting Elements","text":"As shown in the image below, to insert an element in the middle of an array, all elements following the insertion point must be moved one position back to make room for the new element.
Figure 4-3 \u00a0 Array Element Insertion Example
It's important to note that since the length of an array is fixed, inserting an element will inevitably lead to the loss of the last element in the array. We will discuss solutions to this problem in the \"List\" chapter.
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef insert(nums: list[int], num: int, index: int):\n \"\"\"\u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\"\"\"\n # \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in range(len(nums) - 1, index, -1):\n nums[i] = nums[i - 1]\n # \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n
array.cpp/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.java/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.cs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid Insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.Length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.go/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums []int, num int, index int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i := len(nums) - 1; i > index; i-- {\n nums[i] = nums[i-1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.swift/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums: inout [Int], num: Int, index: Int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).reversed() {\n nums[i] = nums[i - 1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.js/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums, num, index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.ts/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums: number[], num: number, index: number): void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.dart/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 _num */\nvoid insert(List<int> nums, int _num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 _num \u8d4b\u7ed9 index \u5904\u5143\u7d20\n nums[index] = _num;\n}\n
array.rs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfn insert(nums: &mut Vec<i32>, num: i32, index: usize) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in (index + 1..nums.len()).rev() {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.c/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.zig// \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\nfn insert(nums: []i32, num: i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var i = nums.len - 1;\n while (i > index) : (i -= 1) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#4-deleting-elements","title":"4. \u00a0 Deleting Elements","text":"Similarly, as illustrated below, to delete an element at index \\(i\\), all elements following index \\(i\\) must be moved forward by one position.
Figure 4-4 \u00a0 Array Element Deletion Example
Note that after deletion, the last element becomes \"meaningless\", so we do not need to specifically modify it.
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef remove(nums: list[int], index: int):\n \"\"\"\u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\"\"\"\n # \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in range(index, len(nums) - 1):\n nums[i] = nums[i + 1]\n
array.cpp/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.java/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.cs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid Remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.Length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.go/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums []int, index int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i := index; i < len(nums)-1; i++ {\n nums[i] = nums[i+1]\n }\n}\n
array.swift/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums: inout [Int], index: Int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).dropLast() {\n nums[i] = nums[i + 1]\n }\n}\n
array.js/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums, index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.ts/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums: number[], index: number): void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.dart/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(List<int> nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.rs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfn remove(nums: &mut Vec<i32>, index: usize) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in index..nums.len() - 1 {\n nums[i] = nums[i + 1];\n }\n}\n
array.c/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.zig// \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\nfn remove(nums: []i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var i = index;\n while (i < nums.len - 1) : (i += 1) {\n nums[i] = nums[i + 1];\n }\n}\n
Overall, the insertion and deletion operations in arrays have the following disadvantages:
- High Time Complexity: Both insertion and deletion in an array have an average time complexity of \\(O(n)\\), where \\(n\\) is the length of the array.
- Loss of Elements: Due to the fixed length of arrays, elements that exceed the array's capacity are lost during insertion.
- Waste of Memory: We can initialize a longer array and use only the front part, allowing the \"lost\" end elements during insertion to be \"meaningless\", but this leads to some wasted memory space.
"},{"location":"chapter_array_and_linkedlist/array/#5-traversing-arrays","title":"5. \u00a0 Traversing Arrays","text":"In most programming languages, we can traverse an array either by indices or by directly iterating over each element:
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef traverse(nums: list[int]):\n \"\"\"\u904d\u5386\u6570\u7ec4\"\"\"\n count = 0\n # \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in range(len(nums)):\n count += nums[i]\n # \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums:\n count += num\n # \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num in enumerate(nums):\n count += nums[i]\n count += num\n
array.cpp/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.java/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int num : nums) {\n count += num;\n }\n}\n
array.cs/* \u904d\u5386\u6570\u7ec4 */\nvoid Traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n foreach (int num in nums) {\n count += num;\n }\n}\n
array.go/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums []int) {\n count := 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i := 0; i < len(nums); i++ {\n count += nums[i]\n }\n count = 0\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for _, num := range nums {\n count += num\n }\n // \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num := range nums {\n count += nums[i]\n count += num\n }\n}\n
array.swift/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums: [Int]) {\n var count = 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in nums.indices {\n count += nums[i]\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n count += num\n }\n}\n
array.js/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums) {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.ts/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums: number[]): void {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.dart/* \u904d\u5386\u6570\u7ec4\u5143\u7d20 */\nvoid traverse(List<int> nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int _num in nums) {\n count += _num;\n }\n // \u901a\u8fc7 forEach \u65b9\u6cd5\u904d\u5386\u6570\u7ec4\n nums.forEach((_num) {\n count += _num;\n });\n}\n
array.rs/* \u904d\u5386\u6570\u7ec4 */\nfn traverse(nums: &[i32]) {\n let mut _count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in 0..nums.len() {\n _count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n _count += num;\n }\n}\n
array.c/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.zig// \u904d\u5386\u6570\u7ec4\nfn traverse(nums: []i32) void {\n var count: i32 = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n var i: i32 = 0;\n while (i < nums.len) : (i += 1) {\n count += nums[i];\n }\n count = 0;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (nums) |num| {\n count += num;\n }\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#6-finding-elements","title":"6. \u00a0 Finding Elements","text":"To find a specific element in an array, we need to iterate through it, checking each element to see if it matches.
Since arrays are linear data structures, this operation is known as \"linear search\".
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef find(nums: list[int], target: int) -> int:\n \"\"\"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\"\"\"\n for i in range(len(nums)):\n if nums[i] == target:\n return i\n return -1\n
array.cpp/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.java/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\n for (int i = 0; i < nums.length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.cs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint Find(int[] nums, int target) {\n for (int i = 0; i < nums.Length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.go/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums []int, target int) (index int) {\n index = -1\n for i := 0; i < len(nums); i++ {\n if nums[i] == target {\n index = i\n break\n }\n }\n return\n}\n
array.swift/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums: [Int], target: Int) -> Int {\n for i in nums.indices {\n if nums[i] == target {\n return i\n }\n }\n return -1\n}\n
array.js/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums, target) {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) return i;\n }\n return -1;\n}\n
array.ts/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums: number[], target: number): number {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) {\n return i;\n }\n }\n return -1;\n}\n
array.dart/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(List<int> nums, int target) {\n for (var i = 0; i < nums.length; i++) {\n if (nums[i] == target) return i;\n }\n return -1;\n}\n
array.rs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfn find(nums: &[i32], target: i32) -> Option<usize> {\n for i in 0..nums.len() {\n if nums[i] == target {\n return Some(i);\n }\n }\n None\n}\n
array.c/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.zig// \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\nfn find(nums: []i32, target: i32) i32 {\n for (nums, 0..) |num, i| {\n if (num == target) return @intCast(i);\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#7-expanding-arrays","title":"7. \u00a0 Expanding Arrays","text":"In complex system environments, it's challenging to ensure that the memory space following an array is available, making it unsafe to extend the array's capacity. Therefore, in most programming languages, the length of an array is immutable.
To expand an array, we need to create a larger array and then copy the elements from the original array. This operation has a time complexity of \\(O(n)\\) and can be time-consuming for large arrays. The code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef extend(nums: list[int], enlarge: int) -> list[int]:\n \"\"\"\u6269\u5c55\u6570\u7ec4\u957f\u5ea6\"\"\"\n # \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res = [0] * (len(nums) + enlarge)\n # \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in range(len(nums)):\n res[i] = nums[i]\n # \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n
array.cpp/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = new int[size + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] nums;\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.java/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.cs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] Extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.Length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.go/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums []int, enlarge int) []int {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res := make([]int, len(nums)+enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i, num := range nums {\n res[i] = num\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.swift/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums: [Int], enlarge: Int) -> [Int] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = Array(repeating: 0, count: nums.count + enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in nums.indices {\n res[i] = nums[i]\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.js/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cJavaScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums, enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.ts/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cTypeScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums: number[], enlarge: number): number[] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.dart/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nList<int> extend(List<int> nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n List<int> res = List.filled(nums.length + enlarge, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.rs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfn extend(nums: Vec<i32>, enlarge: usize) -> Vec<i32> {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n let mut res: Vec<i32> = vec![0; nums.len() + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\n for i in 0..nums.len() {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n res\n}\n
array.c/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = (int *)malloc(sizeof(int) * (size + enlarge));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u521d\u59cb\u5316\u6269\u5c55\u540e\u7684\u7a7a\u95f4\n for (int i = size; i < size + enlarge; i++) {\n res[i] = 0;\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.zig// \u6269\u5c55\u6570\u7ec4\u957f\u5ea6\nfn extend(mem_allocator: std.mem.Allocator, nums: []i32, enlarge: usize) ![]i32 {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = try mem_allocator.alloc(i32, nums.len + enlarge);\n @memset(res, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(i32, res, nums);\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#412-advantages-and-limitations-of-arrays","title":"4.1.2 \u00a0 Advantages and Limitations of Arrays","text":"Arrays are stored in contiguous memory spaces and consist of elements of the same type. This approach includes a wealth of prior information that the system can use to optimize the operation efficiency of the data structure.
- High Space Efficiency: Arrays allocate a contiguous block of memory for data, eliminating the need for additional structural overhead.
- Support for Random Access: Arrays allow \\(O(1)\\) time access to any element.
- Cache Locality: When accessing array elements, the computer not only loads them but also caches the surrounding data, leveraging high-speed cache to improve the speed of subsequent operations.
However, continuous space storage is a double-edged sword, with the following limitations:
- Low Efficiency in Insertion and Deletion: When there are many elements in an array, insertion and deletion operations require moving a large number of elements.
- Fixed Length: The length of an array is fixed after initialization. Expanding an array requires copying all data to a new array, which is costly.
- Space Wastage: If the allocated size of an array exceeds the actual need, the extra space is wasted.
"},{"location":"chapter_array_and_linkedlist/array/#413-typical-applications-of-arrays","title":"4.1.3 \u00a0 Typical Applications of Arrays","text":"Arrays are a fundamental and common data structure, frequently used in various algorithms and in implementing complex data structures.
- Random Access: If we want to randomly sample some data, we can use an array for storage and generate a random sequence to implement random sampling based on indices.
- Sorting and Searching: Arrays are the most commonly used data structure for sorting and searching algorithms. Quick sort, merge sort, binary search, etc., are primarily conducted on arrays.
- Lookup Tables: Arrays can be used as lookup tables for fast element or relationship retrieval. For instance, if we want to implement a mapping from characters to ASCII codes, we can use the ASCII code value of a character as the index, with the corresponding element stored in the corresponding position in the array.
- Machine Learning: Arrays are extensively used in neural networks for linear algebra operations between vectors, matrices, and tensors. Arrays are the most commonly used data structure in neural network programming.
- Data Structure Implementation: Arrays can be used to implement stacks, queues, hash tables, heaps, graphs, etc. For example, the adjacency matrix representation of a graph is essentially a two-dimensional array.
"},{"location":"chapter_array_and_linkedlist/linked_list/","title":"4.2 \u00a0 Linked Lists","text":"Memory space is a common resource for all programs. In a complex system environment, free memory space can be scattered throughout memory. We know that the memory space for storing an array must be contiguous, and when the array is very large, it may not be possible to provide such a large contiguous space. This is where the flexibility advantage of linked lists becomes apparent.
A \"linked list\" is a linear data structure where each element is a node object, and the nodes are connected via \"references\". A reference records the memory address of the next node, allowing access to the next node from the current one.
The design of a linked list allows its nodes to be scattered throughout memory, with no need for contiguous memory addresses.
Figure 4-5 \u00a0 Linked List Definition and Storage Method
Observing the image above, the fundamental unit of a linked list is the \"node\" object. Each node contains two pieces of data: the \"value\" of the node and the \"reference\" to the next node.
- The first node of a linked list is known as the \"head node\", and the last one is called the \"tail node\".
- The tail node points to \"null\", which is represented as
null in Java, nullptr in C++, and None in Python. - In languages that support pointers, like C, C++, Go, and Rust, the aforementioned \"reference\" should be replaced with a \"pointer\".
As shown in the following code, a linked list node ListNode, apart from containing a value, also needs to store a reference (pointer). Therefore, a linked list consumes more memory space than an array for the same amount of data.
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"Linked List Node Class\"\"\"\n def __init__(self, val: int):\n self.val: int = val # Node value\n self.next: ListNode | None = None # Reference to the next node\n
/* Linked List Node Structure */\nstruct ListNode {\n int val; // Node value\n ListNode *next; // Pointer to the next node\n ListNode(int x) : val(x), next(nullptr) {} // Constructor\n};\n
/* Linked List Node Class */\nclass ListNode {\n int val; // Node value\n ListNode next; // Reference to the next node\n ListNode(int x) { val = x; } // Constructor\n}\n
/* Linked List Node Class */\nclass ListNode(int x) { // Constructor\n int val = x; // Node value\n ListNode? next; // Reference to the next node\n}\n
/* Linked List Node Structure */\ntype ListNode struct {\n Val int // Node value\n Next *ListNode // Pointer to the next node\n}\n\n// NewListNode Constructor, creates a new linked list\nfunc NewListNode(val int) *ListNode {\n return &ListNode{\n Val: val,\n Next: nil,\n }\n}\n
/* Linked List Node Class */\nclass ListNode {\n var val: Int // Node value\n var next: ListNode? // Reference to the next node\n\n init(x: Int) { // Constructor\n val = x\n }\n}\n
/* Linked List Node Class */\nclass ListNode {\n constructor(val, next) {\n this.val = (val === undefined ? 0 : val); // Node value\n this.next = (next === undefined ? null : next); // Reference to the next node\n }\n}\n
/* Linked List Node Class */\nclass ListNode {\n val: number;\n next: ListNode | null;\n constructor(val?: number, next?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // Node value\n this.next = next === undefined ? null : next; // Reference to the next node\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // Node value\n ListNode? next; // Reference to the next node\n ListNode(this.val, [this.next]); // Constructor\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n/* Linked List Node Class */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // Node value\n next: Option<Rc<RefCell<ListNode>>>, // Pointer to the next node\n}\n
/* Linked List Node Structure */\ntypedef struct ListNode {\n int val; // Node value\n struct ListNode *next; // Pointer to the next node\n} ListNode;\n\n/* Constructor */\nListNode *newListNode(int val) {\n ListNode *node;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n return node;\n}\n
// Linked List Node Class\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // Node value\n next: ?*Self = null, // Pointer to the next node\n\n // Constructor\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#421-common-operations-on-linked-lists","title":"4.2.1 \u00a0 Common Operations on Linked Lists","text":""},{"location":"chapter_array_and_linkedlist/linked_list/#1-initializing-a-linked-list","title":"1. \u00a0 Initializing a Linked List","text":"Building a linked list involves two steps: initializing each node object and then establishing the references between nodes. Once initialized, we can access all nodes sequentially from the head node via the next reference.
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.py# Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4\n# Initialize each node\nn0 = ListNode(1)\nn1 = ListNode(3)\nn2 = ListNode(2)\nn3 = ListNode(5)\nn4 = ListNode(4)\n# Build references between nodes\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.cpp/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode* n0 = new ListNode(1);\nListNode* n1 = new ListNode(3);\nListNode* n2 = new ListNode(2);\nListNode* n3 = new ListNode(5);\nListNode* n4 = new ListNode(4);\n// Build references between nodes\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.java/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.cs/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode n0 = new(1);\nListNode n1 = new(3);\nListNode n2 = new(2);\nListNode n3 = new(5);\nListNode n4 = new(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.go/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nn0 := NewListNode(1)\nn1 := NewListNode(3)\nn2 := NewListNode(2)\nn3 := NewListNode(5)\nn4 := NewListNode(4)\n// Build references between nodes\nn0.Next = n1\nn1.Next = n2\nn2.Next = n3\nn3.Next = n4\n
linked_list.swift/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nlet n0 = ListNode(x: 1)\nlet n1 = ListNode(x: 3)\nlet n2 = ListNode(x: 2)\nlet n3 = ListNode(x: 5)\nlet n4 = ListNode(x: 4)\n// Build references between nodes\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.js/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.ts/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.dart/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode n0 = ListNode(1);\nListNode n1 = ListNode(3);\nListNode n2 = ListNode(2);\nListNode n3 = ListNode(5);\nListNode n4 = ListNode(4);\n// Build references between nodes\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.rs/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nlet n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));\nlet n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));\nlet n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));\nlet n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));\nlet n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));\n\n// Build references between nodes\nn0.borrow_mut().next = Some(n1.clone());\nn1.borrow_mut().next = Some(n2.clone());\nn2.borrow_mut().next = Some(n3.clone());\nn3.borrow_mut().next = Some(n4.clone());\n
linked_list.c/* Initialize linked list: 1 -> 3 -> 2 -> 5 -> 4 */\n// Initialize each node\nListNode* n0 = newListNode(1);\nListNode* n1 = newListNode(3);\nListNode* n2 = newListNode(2);\nListNode* n3 = newListNode(5);\nListNode* n4 = newListNode(4);\n// Build references between nodes\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.zig// Initialize linked list\n// Initialize each node\nvar n0 = inc.ListNode(i32){.val = 1};\nvar n1 = inc.ListNode(i32){.val = 3};\nvar n2 = inc.ListNode(i32){.val = 2};\nvar n3 = inc.ListNode(i32){.val = 5};\nvar n4 = inc.ListNode(i32){.val = 4};\n// Build references between nodes\nn0.next = &n1;\nn1.next = &n2;\nn2.next = &n3;\nn3.next = &n4;\n
An array is a single variable, such as the array nums containing elements nums[0], nums[1], etc., while a linked list is composed of multiple independent node objects. We usually refer to the linked list by its head node, as in the linked list n0 in the above code.
"},{"location":"chapter_array_and_linkedlist/linked_list/#2-inserting-a-node","title":"2. \u00a0 Inserting a Node","text":"Inserting a node in a linked list is very easy. As shown in the image below, suppose we want to insert a new node P between two adjacent nodes n0 and n1. This requires changing only two node references (pointers), with a time complexity of \\(O(1)\\).
In contrast, the time complexity of inserting an element in an array is \\(O(n)\\), which is less efficient with large data volumes.
Figure 4-6 \u00a0 Linked List Node Insertion Example
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef insert(n0: ListNode, P: ListNode):\n \"\"\"\u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\"\"\"\n n1 = n0.next\n P.next = n1\n n0.next = P\n
linked_list.cpp/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid Insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insertNode(n0 *ListNode, P *ListNode) {\n n1 := n0.Next\n P.Next = n1\n n0.Next = P\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insert(n0: ListNode, P: ListNode) {\n let n1 = n0.next\n P.next = n1\n n0.next = P\n}\n
linked_list.js/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0, P) {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0: ListNode, P: ListNode): void {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\n#[allow(non_snake_case)]\npub fn insert<T>(n0: &Rc<RefCell<ListNode<T>>>, P: Rc<RefCell<ListNode<T>>>) {\n let n1 = n0.borrow_mut().next.take();\n P.borrow_mut().next = n1;\n n0.borrow_mut().next = Some(P);\n}\n
linked_list.c/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\nfn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {\n var n1 = n0.?.next;\n P.?.next = n1;\n n0.?.next = P;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#3-deleting-a-node","title":"3. \u00a0 Deleting a Node","text":"As shown below, deleting a node in a linked list is also very convenient, requiring only the change of one node's reference (pointer).
Note that although node P still points to n1 after the deletion operation is completed, it is no longer accessible when traversing the list, meaning P is no longer part of the list.
Figure 4-7 \u00a0 Linked List Node Deletion
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef remove(n0: ListNode):\n \"\"\"\u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n if not n0.next:\n return\n # n0 -> P -> n1\n P = n0.next\n n1 = P.next\n n0.next = n1\n
linked_list.cpp/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode *n0) {\n if (n0->next == nullptr)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n delete P;\n}\n
linked_list.java/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode n1 = P.next;\n n0.next = n1;\n}\n
linked_list.cs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid Remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.go/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc removeItem(n0 *ListNode) {\n if n0.Next == nil {\n return\n }\n // n0 -> P -> n1\n P := n0.Next\n n1 := P.Next\n n0.Next = n1\n}\n
linked_list.swift/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc remove(n0: ListNode) {\n if n0.next == nil {\n return\n }\n // n0 -> P -> n1\n let P = n0.next\n let n1 = P?.next\n n0.next = n1\n P?.next = nil\n}\n
linked_list.js/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0) {\n if (!n0.next) return;\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.ts/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0: ListNode): void {\n if (!n0.next) {\n return;\n }\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.dart/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null) return;\n // n0 -> P -> n1\n ListNode P = n0.next!;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.rs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n#[allow(non_snake_case)]\npub fn remove<T>(n0: &Rc<RefCell<ListNode<T>>>) {\n if n0.borrow().next.is_none() {return};\n // n0 -> P -> n1\n let P = n0.borrow_mut().next.take();\n if let Some(node) = P {\n let n1 = node.borrow_mut().next.take();\n n0.borrow_mut().next = n1;\n }\n}\n
linked_list.c/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(ListNode *n0) {\n if (!n0->next)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n free(P);\n}\n
linked_list.zig// \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\nfn remove(n0: ?*inc.ListNode(i32)) void {\n if (n0.?.next == null) return;\n // n0 -> P -> n1\n var P = n0.?.next;\n var n1 = P.?.next;\n n0.?.next = n1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#4-accessing-nodes","title":"4. \u00a0 Accessing Nodes","text":"Accessing nodes in a linked list is less efficient. As mentioned earlier, any element in an array can be accessed in \\(O(1)\\) time. However, in a linked list, the program needs to start from the head node and traverse each node sequentially until it finds the target node. That is, accessing the \\(i\\)-th node of a linked list requires \\(i - 1\\) iterations, with a time complexity of \\(O(n)\\).
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef access(head: ListNode, index: int) -> ListNode | None:\n \"\"\"\u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\"\"\"\n for _ in range(index):\n if not head:\n return None\n head = head.next\n return head\n
linked_list.cpp/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == nullptr)\n return nullptr;\n head = head->next;\n }\n return head;\n}\n
linked_list.java/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode access(ListNode head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.cs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? Access(ListNode? head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.go/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head *ListNode, index int) *ListNode {\n for i := 0; i < index; i++ {\n if head == nil {\n return nil\n }\n head = head.Next\n }\n return head\n}\n
linked_list.swift/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head: ListNode, index: Int) -> ListNode? {\n var head: ListNode? = head\n for _ in 0 ..< index {\n if head == nil {\n return nil\n }\n head = head?.next\n }\n return head\n}\n
linked_list.js/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head, index) {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.ts/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head: ListNode | null, index: number): ListNode | null {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.dart/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode? head, int index) {\n for (var i = 0; i < index; i++) {\n if (head == null) return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.rs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\npub fn access<T>(head: Rc<RefCell<ListNode<T>>>, index: i32) -> Rc<RefCell<ListNode<T>>> {\n if index <= 0 {return head};\n if let Some(node) = &head.borrow_mut().next {\n return access(node.clone(), index - 1);\n }\n return head;\n}\n
linked_list.c/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == NULL)\n return NULL;\n head = head->next;\n }\n return head;\n}\n
linked_list.zig// \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\nfn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {\n var head = node;\n var i: i32 = 0;\n while (i < index) : (i += 1) {\n head = head.?.next;\n if (head == null) return null;\n }\n return head;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#5-finding-nodes","title":"5. \u00a0 Finding Nodes","text":"Traverse the linked list to find a node with a value equal to target, and output the index of that node in the linked list. This process also falls under linear search. The code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef find(head: ListNode, target: int) -> int:\n \"\"\"\u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n index = 0\n while head:\n if head.val == target:\n return index\n head = head.next\n index += 1\n return -1\n
linked_list.cpp/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head != nullptr) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint Find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc findNode(head *ListNode, target int) int {\n index := 0\n for head != nil {\n if head.Val == target {\n return index\n }\n head = head.Next\n index++\n }\n return -1\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc find(head: ListNode, target: Int) -> Int {\n var head: ListNode? = head\n var index = 0\n while head != nil {\n if head?.val == target {\n return index\n }\n head = head?.next\n index += 1\n }\n return -1\n}\n
linked_list.js/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head, target) {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head: ListNode | null, target: number): number {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target) {\n return index;\n }\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\npub fn find<T: PartialEq>(head: Rc<RefCell<ListNode<T>>>, target: T, index: i32) -> i32 {\n if head.borrow().val == target {return index};\n if let Some(node) = &head.borrow_mut().next {\n return find(node.clone(), target, index + 1);\n }\n return -1;\n}\n
linked_list.c/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\nfn find(node: ?*inc.ListNode(i32), target: i32) i32 {\n var head = node;\n var index: i32 = 0;\n while (head != null) {\n if (head.?.val == target) return index;\n head = head.?.next;\n index += 1;\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#422-arrays-vs-linked-lists","title":"4.2.2 \u00a0 Arrays vs. Linked Lists","text":"The following table summarizes the characteristics of arrays and linked lists and compares their operational efficiencies. Since they employ two opposite storage strategies, their properties and operational efficiencies also show contrasting features.
Table 4-1 \u00a0 Efficiency Comparison of Arrays and Linked Lists
Arrays Linked Lists Storage Contiguous Memory Space Dispersed Memory Space Capacity Expansion Fixed Length Flexible Expansion Memory Efficiency Less Memory per Element, Potential Space Wastage More Memory per Element Accessing Elements \\(O(1)\\) \\(O(n)\\) Adding Elements \\(O(n)\\) \\(O(1)\\) Deleting Elements \\(O(n)\\) \\(O(1)\\)"},{"location":"chapter_array_and_linkedlist/linked_list/#423-common-types-of-linked-lists","title":"4.2.3 \u00a0 Common Types of Linked Lists","text":"As shown in the following image, there are three common types of linked lists.
- Singly Linked List: This is the regular linked list introduced earlier. The nodes of a singly linked list contain the value and a reference to the next node. The first node is called the head node, and the last node, pointing to null (
None), is the tail node. - Circular Linked List: If the tail node of a singly linked list points back to the head node (forming a loop), it becomes a circular linked list. In a circular linked list, any node can be considered the head node.
- Doubly Linked List: Compared to a singly linked list, a doubly linked list stores references in two directions. Its nodes contain references to both the next (successor) and the previous (predecessor) nodes. Doubly linked lists are more flexible as they allow traversal in both directions but require more memory space.
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"Bidirectional linked list node class\"\"\"\"\n def __init__(self, val: int):\n self.val: int = val # Node value\n self.next: ListNode | None = None # Reference to the successor node\n self.prev: ListNode | None = None # Reference to a predecessor node\n
/* Bidirectional linked list node structure */\nstruct ListNode {\n int val; // Node value\n ListNode *next; // Pointer to the successor node\n ListNode *prev; // Pointer to the predecessor node\n ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // Constructor\n};\n
/* Bidirectional linked list node class */\nclass ListNode {\n int val; // Node value\n ListNode next; // Reference to the next node\n ListNode prev; // Reference to the predecessor node\n ListNode(int x) { val = x; } // Constructor\n}\n
/* Bidirectional linked list node class */\nclass ListNode(int x) { // Constructor\n int val = x; // Node value\n ListNode next; // Reference to the next node\n ListNode prev; // Reference to the predecessor node\n}\n
/* Bidirectional linked list node structure */\ntype DoublyListNode struct {\n Val int // Node value\n Next *DoublyListNode // Pointer to the successor node\n Prev *DoublyListNode // Pointer to the predecessor node\n}\n\n// NewDoublyListNode initialization\nfunc NewDoublyListNode(val int) *DoublyListNode {\n return &DoublyListNode{\n Val: val,\n Next: nil,\n Prev: nil,\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n var val: Int // Node value\n var next: ListNode? // Reference to the next node\n var prev: ListNode? // Reference to the predecessor node\n\n init(x: Int) { // Constructor\n val = x\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n constructor(val, next, prev) {\n this.val = val === undefined ? 0 : val; // Node value\n this.next = next === undefined ? null : next; // Reference to the successor node\n this.prev = prev === undefined ? null : prev; // Reference to the predecessor node\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n val: number;\n next: ListNode | null;\n prev: ListNode | null;\n constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // Node value\n this.next = next === undefined ? null : next; // Reference to the successor node\n this.prev = prev === undefined ? null : prev; // Reference to the predecessor node\n }\n}\n
/* Bidirectional linked list node class */\nclass ListNode {\n int val; // Node value\n ListNode next; // Reference to the next node\n ListNode prev; // Reference to the predecessor node\n ListNode(this.val, [this.next, this.prev]); // Constructor\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* Bidirectional linked list node type */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // Node value\n next: Option<Rc<RefCell<ListNode>>>, // Pointer to successor node\n prev: Option<Rc<RefCell<ListNode>>>, // Pointer to predecessor node\n}\n\n/* Constructors */\nimpl ListNode {\n fn new(val: i32) -> Self {\n ListNode {\n val,\n next: None,\n prev: None,\n }\n }\n}\n
/* Bidirectional linked list node structure */\ntypedef struct ListNode {\n int val; // Node value\n struct ListNode *next; // Pointer to the successor node\n struct ListNode *prev; // Pointer to the predecessor node\n} ListNode;\n\n/* Constructors */\nListNode *newListNode(int val) {\n ListNode *node, *next;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n node->prev = NULL;\n return node;\n}\n
// Bidirectional linked list node class\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // Node value\n next: ?*Self = null, // Pointer to the successor node\n prev: ?*Self = null, // Pointer to the predecessor node\n\n // Constructor\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n self.prev = null;\n }\n };\n}\n
Figure 4-8 \u00a0 Common Types of Linked Lists
"},{"location":"chapter_array_and_linkedlist/linked_list/#424-typical-applications-of-linked-lists","title":"4.2.4 \u00a0 Typical Applications of Linked Lists","text":"Singly linked lists are commonly used to implement stacks, queues, hash tables, and graphs.
- Stacks and Queues: When insertion and deletion operations are performed at one end of the linked list, it exhibits last-in-first-out characteristics, corresponding to a stack. When insertion is at one end and deletion is at the other, it shows first-in-first-out characteristics, corresponding to a queue.
- Hash Tables: Chaining is one of the mainstream solutions to hash collisions, where all colliding elements are placed in a linked list.
- Graphs: Adjacency lists are a common way to represent graphs, where each vertex is associated with a linked list. Each element in the list represents other vertices connected to that vertex.
Doubly linked lists are commonly used in scenarios that require quick access to the previous and next elements.
- Advanced Data Structures: For example, in red-black trees and B-trees, we need to access a node's parent, which can be achieved by storing a reference to the parent node in each node, similar to a doubly linked list.
- Browser History: In web browsers, when a user clicks the forward or backward button, the browser needs to know the previously and next visited web pages. The properties of a doubly linked list make this operation simple.
- LRU Algorithm: In Least Recently Used (LRU) cache eviction algorithms, we need to quickly find the least recently used data and support rapid addition and deletion of nodes. Here, using a doubly linked list is very appropriate.
Circular linked lists are commonly used in scenarios requiring periodic operations, such as resource scheduling in operating systems.
- Round-Robin Scheduling Algorithm: In operating systems, the round-robin scheduling algorithm is a common CPU scheduling algorithm that cycles through a group of processes. Each process is assigned a time slice, and when it expires, the CPU switches to the next process. This circular operation can be implemented using a circular linked list.
- Data Buffers: Circular linked lists may also be used in some data buffer implementations. For instance, in audio and video players, the data stream might be divided into multiple buffer blocks placed in a circular linked list to achieve seamless playback.
"},{"location":"chapter_array_and_linkedlist/list/","title":"4.3 \u00a0 List","text":"A \"list\" is an abstract data structure concept, representing an ordered collection of elements. It supports operations like element access, modification, addition, deletion, and traversal, without requiring users to consider capacity limitations. Lists can be implemented based on linked lists or arrays.
- A linked list naturally functions as a list, supporting operations for adding, deleting, searching, and modifying elements, and can dynamically adjust its size.
- Arrays also support these operations, but due to their fixed length, they can be considered as a list with a length limit.
When using arrays to implement lists, the fixed length property reduces the practicality of the list. This is because we often cannot determine in advance how much data needs to be stored, making it difficult to choose an appropriate list length. If the length is too small, it may not meet the requirements; if too large, it may waste memory space.
To solve this problem, we can use a \"dynamic array\" to implement lists. It inherits the advantages of arrays and can dynamically expand during program execution.
In fact, many programming languages' standard libraries implement lists using dynamic arrays, such as Python's list, Java's ArrayList, C++'s vector, and C#'s List. In the following discussion, we will consider \"list\" and \"dynamic array\" as synonymous concepts.
"},{"location":"chapter_array_and_linkedlist/list/#431-common-list-operations","title":"4.3.1 \u00a0 Common List Operations","text":""},{"location":"chapter_array_and_linkedlist/list/#1-initializing-a-list","title":"1. \u00a0 Initializing a List","text":"We typically use two methods of initialization: \"without initial values\" and \"with initial values\".
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Initialize list\n# Without initial values\nnums1: list[int] = []\n# With initial values\nnums: list[int] = [1, 3, 2, 5, 4]\n
list.cpp/* Initialize list */\n// Note, in C++ the vector is the equivalent of nums described here\n// Without initial values\nvector<int> nums1;\n// With initial values\nvector<int> nums = { 1, 3, 2, 5, 4 };\n
list.java/* Initialize list */\n// Without initial values\nList<Integer> nums1 = new ArrayList<>();\n// With initial values (note the element type should be the wrapper class Integer[] for int[])\nInteger[] numbers = new Integer[] { 1, 3, 2, 5, 4 };\nList<Integer> nums = new ArrayList<>(Arrays.asList(numbers));\n
list.cs/* Initialize list */\n// Without initial values\nList<int> nums1 = [];\n// With initial values\nint[] numbers = [1, 3, 2, 5, 4];\nList<int> nums = [.. numbers];\n
list_test.go/* Initialize list */\n// Without initial values\nnums1 := []int{}\n// With initial values\nnums := []int{1, 3, 2, 5, 4}\n
list.swift/* Initialize list */\n// Without initial values\nlet nums1: [Int] = []\n// With initial values\nvar nums = [1, 3, 2, 5, 4]\n
list.js/* Initialize list */\n// Without initial values\nconst nums1 = [];\n// With initial values\nconst nums = [1, 3, 2, 5, 4];\n
list.ts/* Initialize list */\n// Without initial values\nconst nums1: number[] = [];\n// With initial values\nconst nums: number[] = [1, 3, 2, 5, 4];\n
list.dart/* Initialize list */\n// Without initial values\nList<int> nums1 = [];\n// With initial values\nList<int> nums = [1, 3, 2, 5, 4];\n
list.rs/* Initialize list */\n// Without initial values\nlet nums1: Vec<i32> = Vec::new();\n// With initial values\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Initialize list\nvar nums = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums.deinit();\ntry nums.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });\n
"},{"location":"chapter_array_and_linkedlist/list/#2-accessing-elements","title":"2. \u00a0 Accessing Elements","text":"Lists are essentially arrays, so accessing and updating elements can be done in \\(O(1)\\) time, which is very efficient.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Access elements\nnum: int = nums[1] # Access the element at index 1\n\n# Update elements\nnums[1] = 0 # Update the element at index 1 to 0\n
list.cpp/* Access elements */\nint num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.java/* Access elements */\nint num = nums.get(1); // Access the element at index 1\n\n/* Update elements */\nnums.set(1, 0); // Update the element at index 1 to 0\n
list.cs/* Access elements */\nint num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list_test.go/* Access elements */\nnum := nums[1] // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0 // Update the element at index 1 to 0\n
list.swift/* Access elements */\nlet num = nums[1] // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0 // Update the element at index 1 to 0\n
list.js/* Access elements */\nconst num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.ts/* Access elements */\nconst num: number = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.dart/* Access elements */\nint num = nums[1]; // Access the element at index 1\n\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.rs/* Access elements */\nlet num: i32 = nums[1]; // Access the element at index 1\n/* Update elements */\nnums[1] = 0; // Update the element at index 1 to 0\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Access elements\nvar num = nums.items[1]; // Access the element at index 1\n\n// Update elements\nnums.items[1] = 0; // Update the element at index 1 to 0 \n
"},{"location":"chapter_array_and_linkedlist/list/#3-inserting-and-deleting-elements","title":"3. \u00a0 Inserting and Deleting Elements","text":"Compared to arrays, lists can freely add and remove elements. Adding elements at the end of the list has a time complexity of \\(O(1)\\), but the efficiency of inserting and deleting elements is still the same as in arrays, with a time complexity of \\(O(n)\\).
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Clear list\nnums.clear()\n\n# Append elements at the end\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n# Insert element in the middle\nnums.insert(3, 6) # Insert number 6 at index 3\n\n# Remove elements\nnums.pop(3) # Remove the element at index 3\n
list.cpp/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.push_back(1);\nnums.push_back(3);\nnums.push_back(2);\nnums.push_back(5);\nnums.push_back(4);\n\n/* Insert element in the middle */\nnums.insert(nums.begin() + 3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.erase(nums.begin() + 3); // Remove the element at index 3\n
list.java/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* Insert element in the middle */\nnums.add(3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.remove(3); // Remove the element at index 3\n
list.cs/* Clear list */\nnums.Clear();\n\n/* Append elements at the end */\nnums.Add(1);\nnums.Add(3);\nnums.Add(2);\nnums.Add(5);\nnums.Add(4);\n\n/* Insert element in the middle */\nnums.Insert(3, 6);\n\n/* Remove elements */\nnums.RemoveAt(3);\n
list_test.go/* Clear list */\nnums = nil\n\n/* Append elements at the end */\nnums = append(nums, 1)\nnums = append(nums, 3)\nnums = append(nums, 2)\nnums = append(nums, 5)\nnums = append(nums, 4)\n\n/* Insert element in the middle */\nnums = append(nums[:3], append([]int{6}, nums[3:]...)...) // Insert number 6 at index 3\n\n/* Remove elements */\nnums = append(nums[:3], nums[4:]...) // Remove the element at index 3\n
list.swift/* Clear list */\nnums.removeAll()\n\n/* Append elements at the end */\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n/* Insert element in the middle */\nnums.insert(6, at: 3) // Insert number 6 at index 3\n\n/* Remove elements */\nnums.remove(at: 3) // Remove the element at index 3\n
list.js/* Clear list */\nnums.length = 0;\n\n/* Append elements at the end */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* Insert element in the middle */\nnums.splice(3, 0, 6);\n\n/* Remove elements */\nnums.splice(3, 1);\n
list.ts/* Clear list */\nnums.length = 0;\n\n/* Append elements at the end */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* Insert element in the middle */\nnums.splice(3, 0, 6);\n\n/* Remove elements */\nnums.splice(3, 1);\n
list.dart/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* Insert element in the middle */\nnums.insert(3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.removeAt(3); // Remove the element at index 3\n
list.rs/* Clear list */\nnums.clear();\n\n/* Append elements at the end */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* Insert element in the middle */\nnums.insert(3, 6); // Insert number 6 at index 3\n\n/* Remove elements */\nnums.remove(3); // Remove the element at index 3\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Clear list\nnums.clearRetainingCapacity();\n\n// Append elements at the end\ntry nums.append(1);\ntry nums.append(3);\ntry nums.append(2);\ntry nums.append(5);\ntry nums.append(4);\n\n// Insert element in the middle\ntry nums.insert(3, 6); // Insert number 6 at index 3\n\n// Remove elements\n_ = nums.orderedRemove(3); // Remove the element at index 3\n
"},{"location":"chapter_array_and_linkedlist/list/#4-traversing-the-list","title":"4. \u00a0 Traversing the List","text":"Like arrays, lists can be traversed based on index, or by directly iterating over each element.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Iterate through the list by index\ncount = 0\nfor i in range(len(nums)):\n count += nums[i]\n\n# Iterate directly through list elements\nfor num in nums:\n count += num\n
list.cpp/* Iterate through the list by index */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (int num : nums) {\n count += num;\n}\n
list.java/* Iterate through the list by index */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums.get(i);\n}\n\n/* Iterate directly through list elements */\nfor (int num : nums) {\n count += num;\n}\n
list.cs/* Iterate through the list by index */\nint count = 0;\nfor (int i = 0; i < nums.Count; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nforeach (int num in nums) {\n count += num;\n}\n
list_test.go/* Iterate through the list by index */\ncount := 0\nfor i := 0; i < len(nums); i++ {\n count += nums[i]\n}\n\n/* Iterate directly through list elements */\ncount = 0\nfor _, num := range nums {\n count += num\n}\n
list.swift/* Iterate through the list by index */\nvar count = 0\nfor i in nums.indices {\n count += nums[i]\n}\n\n/* Iterate directly through list elements */\ncount = 0\nfor num in nums {\n count += num\n}\n
list.js/* Iterate through the list by index */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.ts/* Iterate through the list by index */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.dart/* Iterate through the list by index */\nint count = 0;\nfor (var i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* Iterate directly through list elements */\ncount = 0;\nfor (var num in nums) {\n count += num;\n}\n
list.rs// Iterate through the list by index\nlet mut _count = 0;\nfor i in 0..nums.len() {\n _count += nums[i];\n}\n\n// Iterate directly through list elements\n_count = 0;\nfor num in &nums {\n _count += num;\n}\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Iterate through the list by index\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < nums.items.len) : (i += 1) {\n count += nums[i];\n}\n\n// Iterate directly through list elements\ncount = 0;\nfor (nums.items) |num| {\n count += num;\n}\n
"},{"location":"chapter_array_and_linkedlist/list/#5-concatenating-lists","title":"5. \u00a0 Concatenating Lists","text":"Given a new list nums1, we can append it to the end of the original list.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Concatenate two lists\nnums1: list[int] = [6, 8, 7, 10, 9]\nnums += nums1 # Concatenate nums1 to the end of nums\n
list.cpp/* Concatenate two lists */\nvector<int> nums1 = { 6, 8, 7, 10, 9 };\n// Concatenate nums1 to the end of nums\nnums.insert(nums.end(), nums1.begin(), nums1.end());\n
list.java/* Concatenate two lists */\nList<Integer> nums1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));\nnums.addAll(nums1); // Concatenate nums1 to the end of nums\n
list.cs/* Concatenate two lists */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.AddRange(nums1); // Concatenate nums1 to the end of nums\n
list_test.go/* Concatenate two lists */\nnums1 := []int{6, 8, 7, 10, 9}\nnums = append(nums, nums1...) // Concatenate nums1 to the end of nums\n
list.swift/* Concatenate two lists */\nlet nums1 = [6, 8, 7, 10, 9]\nnums.append(contentsOf: nums1) // Concatenate nums1 to the end of nums\n
list.js/* Concatenate two lists */\nconst nums1 = [6, 8, 7, 10, 9];\nnums.push(...nums1); // Concatenate nums1 to the end of nums\n
list.ts/* Concatenate two lists */\nconst nums1: number[] = [6, 8, 7, 10, 9];\nnums.push(...nums1); // Concatenate nums1 to the end of nums\n
list.dart/* Concatenate two lists */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.addAll(nums1); // Concatenate nums1 to the end of nums\n
list.rs/* Concatenate two lists */\nlet nums1: Vec<i32> = vec![6, 8, 7, 10, 9];\nnums.extend(nums1);\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Concatenate two lists\nvar nums1 = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums1.deinit();\ntry nums1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });\ntry nums.insertSlice(nums.items.len, nums1.items); // Concatenate nums1 to the end of nums\n
"},{"location":"chapter_array_and_linkedlist/list/#6-sorting-the-list","title":"6. \u00a0 Sorting the List","text":"After sorting the list, we can use algorithms often tested in array-related algorithm problems, such as \"binary search\" and \"two-pointer\" algorithms.
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# Sort the list\nnums.sort() # After sorting, the list elements are in ascending order\n
list.cpp/* Sort the list */\nsort(nums.begin(), nums.end()); // After sorting, the list elements are in ascending order\n
list.java/* Sort the list */\nCollections.sort(nums); // After sorting, the list elements are in ascending order\n
list.cs/* Sort the list */\nnums.Sort(); // After sorting, the list elements are in ascending order\n
list_test.go/* Sort the list */\nsort.Ints(nums) // After sorting, the list elements are in ascending order\n
list.swift/* Sort the list */\nnums.sort() // After sorting, the list elements are in ascending order\n
list.js/* Sort the list */ \nnums.sort((a, b) => a - b); // After sorting, the list elements are in ascending order\n
list.ts/* Sort the list */\nnums.sort((a, b) => a - b); // After sorting, the list elements are in ascending order\n
list.dart/* Sort the list */\nnums.sort(); // After sorting, the list elements are in ascending order\n
list.rs/* Sort the list */\nnums.sort(); // After sorting, the list elements are in ascending order\n
list.c// C does not provide built-in dynamic arrays\n
list.zig// Sort the list\nstd.sort.sort(i32, nums.items, {}, comptime std.sort.asc(i32));\n
"},{"location":"chapter_array_and_linkedlist/list/#432-list-implementation","title":"4.3.2 \u00a0 List Implementation","text":"Many programming languages have built-in lists, such as Java, C++, Python, etc. Their implementations are quite complex, with very meticulous settings for parameters such as initial capacity and expansion multiplier. Interested readers can refer to the source code for learning.
To deepen the understanding of how lists work, let's try implementing a simple version of a list, focusing on three key designs.
- Initial Capacity: Choose a reasonable initial capacity for the array. In this example, we choose 10 as the initial capacity.
- Size Recording: Declare a variable
size to record the current number of elements in the list, updating in real-time with element insertion and deletion. With this variable, we can locate the end of the list and determine whether expansion is needed. - Expansion Mechanism: If the list's capacity is full when inserting an element, expansion is necessary. First, create a larger array based on the expansion multiplier, then move all elements of the current array to the new array. In this example, we define that each time the array will expand to twice its previous size.
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_list.pyclass MyList:\n \"\"\"\u5217\u8868\u7c7b\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._capacity: int = 10 # \u5217\u8868\u5bb9\u91cf\n self._arr: list[int] = [0] * self._capacity # \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n self._size: int = 0 # \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n self._extend_ratio: int = 2 # \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\"\"\"\n return self._size\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u5bb9\u91cf\"\"\"\n return self._capacity\n\n def get(self, index: int) -> int:\n \"\"\"\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n return self._arr[index]\n\n def set(self, num: int, index: int):\n \"\"\"\u66f4\u65b0\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n self._arr[index] = num\n\n def add(self, num: int):\n \"\"\"\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\"\"\"\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size() == self.capacity():\n self.extend_capacity()\n self._arr[self._size] = num\n self._size += 1\n\n def insert(self, num: int, index: int):\n \"\"\"\u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self._size == self.capacity():\n self.extend_capacity()\n # \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in range(self._size - 1, index - 1, -1):\n self._arr[j + 1] = self._arr[j]\n self._arr[index] = num\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size += 1\n\n def remove(self, index: int) -> int:\n \"\"\"\u5220\u9664\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n num = self._arr[index]\n # \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in range(index, self._size - 1):\n self._arr[j] = self._arr[j + 1]\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size -= 1\n # \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num\n\n def extend_capacity(self):\n \"\"\"\u5217\u8868\u6269\u5bb9\"\"\"\n # \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n self._arr = self._arr + [0] * self.capacity() * (self._extend_ratio - 1)\n # \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self._capacity = len(self._arr)\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868\"\"\"\n return self._arr[: self._size]\n
my_list.cpp/* \u5217\u8868\u7c7b */\nclass MyList {\n private:\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~MyList() {\n delete[] arr;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n arr[size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size() - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size() - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n int newCapacity = capacity() * extendRatio;\n int *tmp = arr;\n arr = new int[newCapacity];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n arr[i] = tmp[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] tmp;\n arrCapacity = newCapacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Vector \u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> vec(size());\n for (int i = 0; i < size(); i++) {\n vec[i] = arr[i];\n }\n return vec;\n }\n};\n
my_list.java/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int capacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[capacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\n public int size() {\n return size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int capacity() {\n return capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void set(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n arr[size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void insert(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int remove(int index) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n arr = Arrays.copyOf(arr, capacity() * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n capacity = arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] toArray() {\n int size = size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[size];\n for (int i = 0; i < size; i++) {\n arr[i] = get(i);\n }\n return arr;\n }\n}\n
my_list.cs/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private readonly int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public int Size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int Capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int Get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void Set(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void Add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n arr[arrSize] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void Insert(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = arrSize - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int Remove(int index) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < arrSize - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void ExtendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a arrCapacity * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n Array.Resize(ref arr, arrCapacity * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n arrCapacity = arr.Length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[arrSize];\n for (int i = 0; i < arrSize; i++) {\n arr[i] = Get(i);\n }\n return arr;\n }\n}\n
my_list.go/* \u5217\u8868\u7c7b */\ntype myList struct {\n arrCapacity int\n arr []int\n arrSize int\n extendRatio int\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newMyList() *myList {\n return &myList{\n arrCapacity: 10, // \u5217\u8868\u5bb9\u91cf\n arr: make([]int, 10), // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrSize: 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n }\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\nfunc (l *myList) size() int {\n return l.arrSize\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc (l *myList) capacity() int {\n return l.arrCapacity\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc (l *myList) get(index int) int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return l.arr[index]\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc (l *myList) set(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n l.arr[index] = num\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc (l *myList) add(num int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n l.arr[l.arrSize] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc (l *myList) insert(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j := l.arrSize - 1; j >= index; j-- {\n l.arr[j+1] = l.arr[j]\n }\n l.arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5220\u9664\u5143\u7d20 */\nfunc (l *myList) remove(index int) int {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n num := l.arr[index]\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j := index; j < l.arrSize-1; j++ {\n l.arr[j] = l.arr[j+1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize--\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nfunc (l *myList) extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n l.arr = append(l.arr, make([]int, l.arrCapacity*(l.extendRatio-1))...)\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n l.arrCapacity = len(l.arr)\n}\n\n/* \u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868 */\nfunc (l *myList) toArray() []int {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n return l.arr[:l.arrSize]\n}\n
my_list.swift/* \u5217\u8868\u7c7b */\nclass MyList {\n private var arr: [Int] // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private var _capacity = 10 // \u5217\u8868\u5bb9\u91cf\n private var _size = 0 // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private let extendRatio = 2 // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n arr = Array(repeating: 0, count: _capacity)\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n func size() -> Int {\n _size\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n func capacity() -> Int {\n _capacity\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n func get(index: Int) -> Int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u9519\u8bef\uff0c\u4e0b\u540c\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return arr[index]\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n func set(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n arr[index] = num\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n func add(num: Int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n arr[_size] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n func insert(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in sequence(first: _size - 1, next: { $0 >= index + 1 ? $0 - 1 : nil }) {\n arr[j + 1] = arr[j]\n }\n arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n @discardableResult\n func remove(index: Int) -> Int {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n let num = arr[index]\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in index ..< (_size - 1) {\n arr[j] = arr[j + 1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size -= 1\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n func extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n arr = arr + Array(repeating: 0, count: _capacity * (extendRatio - 1))\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = arr.count\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n func toArray() -> [Int] {\n var arr = Array(repeating: 0, count: _size)\n for i in 0 ..< _size {\n arr[i] = get(index: i)\n }\n return arr\n }\n}\n
my_list.js/* \u5217\u8868\u7c7b */\nclass MyList {\n #arr = new Array(); // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n #capacity = 10; // \u5217\u8868\u5bb9\u91cf\n #size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n #extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#arr = new Array(this.#capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n size() {\n return this.#size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n capacity() {\n return this.#capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n get(index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.#arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n set(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.#arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n add(num) {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.#arr[this.#size] = num;\n this.#size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n insert(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this.#size - 1; j >= index; j--) {\n this.#arr[j + 1] = this.#arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#arr[index] = num;\n this.#size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n remove(index) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.#arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this.#size - 1; j++) {\n this.#arr[j] = this.#arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n this.#arr = this.#arr.concat(\n new Array(this.capacity() * (this.#extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this.#capacity = this.#arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n toArray() {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.ts/* \u5217\u8868\u7c7b */\nclass MyList {\n private arr: Array<number>; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private _capacity: number = 10; // \u5217\u8868\u5bb9\u91cf\n private _size: number = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private extendRatio: number = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.arr = new Array(this._capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public size(): number {\n return this._size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public capacity(): number {\n return this._capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public get(index: number): number {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public set(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public add(num: number): void {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this._size === this._capacity) this.extendCapacity();\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.arr[this._size] = num;\n this._size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public insert(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this._size === this._capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this._size - 1; j >= index; j--) {\n this.arr[j + 1] = this.arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.arr[index] = num;\n this._size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public remove(index: number): number {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this._size - 1; j++) {\n this.arr[j] = this.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this._size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public extendCapacity(): void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n this.arr = this.arr.concat(\n new Array(this.capacity() * (this.extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this._capacity = this.arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public toArray(): number[] {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.dart/* \u5217\u8868\u7c7b */\nclass MyList {\n late List<int> _arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int _capacity = 10; // \u5217\u8868\u5bb9\u91cf\n int _size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int _extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n _arr = List.filled(_capacity, 0);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() => _size;\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() => _capacity;\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n return _arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n _arr[index] = _num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int _num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n _arr[_size] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var j = _size - 1; j >= index; j--) {\n _arr[j + 1] = _arr[j];\n }\n _arr[index] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n int _num = _arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var j = index; j < _size - 1; j++) {\n _arr[j] = _arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return _num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n final _newNums = List.filled(_capacity * _extendRatio, 0);\n // \u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n List.copyRange(_newNums, 0, _arr);\n // \u66f4\u65b0 _arr \u7684\u5f15\u7528\n _arr = _newNums;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = _arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n List<int> toArray() {\n List<int> arr = [];\n for (var i = 0; i < _size; i++) {\n arr.add(get(i));\n }\n return arr;\n }\n}\n
my_list.rs/* \u5217\u8868\u7c7b */\n#[allow(dead_code)]\nstruct MyList {\n arr: Vec<i32>, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n capacity: usize, // \u5217\u8868\u5bb9\u91cf\n size: usize, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extend_ratio: usize, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n\n#[allow(unused,unused_comparisons)]\nimpl MyList {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(capacity: usize) -> Self {\n let mut vec = Vec::new(); \n vec.resize(capacity, 0);\n Self {\n arr: vec,\n capacity,\n size: 0,\n extend_ratio: 2,\n }\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n pub fn size(&self) -> usize {\n return self.size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n pub fn capacity(&self) -> usize {\n return self.capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n pub fn get(&self, index: usize) -> i32 {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n return self.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n pub fn set(&mut self, index: usize, num: i32) {\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n self.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n pub fn add(&mut self, num: i32) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n self.arr[self.size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n pub fn insert(&mut self, index: usize, num: i32) {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size).rev() {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n pub fn remove(&mut self, index: usize) -> i32 {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n let num = self.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size - 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n pub fn extend_capacity(&mut self) {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n let new_capacity = self.capacity * self.extend_ratio;\n self.arr.resize(new_capacity, 0);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.capacity = new_capacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n pub fn to_array(&mut self) -> Vec<i32> {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n let mut arr = Vec::new();\n for i in 0..self.size {\n arr.push(self.get(i));\n }\n arr\n }\n}\n
my_list.c/* \u5217\u8868\u7c7b */\ntypedef struct {\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int capacity; // \u5217\u8868\u5bb9\u91cf\n int size; // \u5217\u8868\u5927\u5c0f\n int extendRatio; // \u5217\u8868\u6bcf\u6b21\u6269\u5bb9\u7684\u500d\u6570\n} MyList;\n\n/* \u6784\u9020\u51fd\u6570 */\nMyList *newMyList() {\n MyList *nums = malloc(sizeof(MyList));\n nums->capacity = 10;\n nums->arr = malloc(sizeof(int) * nums->capacity);\n nums->size = 0;\n nums->extendRatio = 2;\n return nums;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delMyList(MyList *nums) {\n free(nums->arr);\n free(nums);\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6 */\nint size(MyList *nums) {\n return nums->size;\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity(MyList *nums) {\n return nums->capacity;\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(MyList *nums, int index) {\n assert(index >= 0 && index < nums->size);\n return nums->arr[index];\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(MyList *nums, int index, int num) {\n assert(index >= 0 && index < nums->size);\n nums->arr[index] = num;\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(MyList *nums, int num) {\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n nums->arr[size(nums)] = num;\n nums->size++;\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(MyList *nums, int index, int num) {\n assert(index >= 0 && index < size(nums));\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n for (int i = size(nums); i > index; --i) {\n nums->arr[i] = nums->arr[i - 1];\n }\n nums->arr[index] = num;\n nums->size++;\n}\n\n/* \u5220\u9664\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nint removeItem(MyList *nums, int index) {\n assert(index >= 0 && index < size(nums));\n int num = nums->arr[index];\n for (int i = index; i < size(nums) - 1; i++) {\n nums->arr[i] = nums->arr[i + 1];\n }\n nums->size--;\n return num;\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity(MyList *nums) {\n // \u5148\u5206\u914d\u7a7a\u95f4\n int newCapacity = capacity(nums) * nums->extendRatio;\n int *extend = (int *)malloc(sizeof(int) * newCapacity);\n int *temp = nums->arr;\n\n // \u62f7\u8d1d\u65e7\u6570\u636e\u5230\u65b0\u6570\u636e\n for (int i = 0; i < size(nums); i++)\n extend[i] = nums->arr[i];\n\n // \u91ca\u653e\u65e7\u6570\u636e\n free(temp);\n\n // \u66f4\u65b0\u65b0\u6570\u636e\n nums->arr = extend;\n nums->capacity = newCapacity;\n}\n\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Array \u7528\u4e8e\u6253\u5370 */\nint *toArray(MyList *nums) {\n return nums->arr;\n}\n
my_list.zig// \u5217\u8868\u7c7b\nfn MyList(comptime T: type) type {\n return struct {\n const Self = @This();\n\n arr: []T = undefined, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrCapacity: usize = 10, // \u5217\u8868\u5bb9\u91cf\n numSize: usize = 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: usize = 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u5217\u8868\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.arr = try self.mem_allocator.alloc(T, self.arrCapacity);\n @memset(self.arr, @as(T, 0));\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n pub fn size(self: *Self) usize {\n return self.numSize;\n }\n\n // \u83b7\u53d6\u5217\u8868\u5bb9\u91cf\n pub fn capacity(self: *Self) usize {\n return self.arrCapacity;\n }\n\n // \u8bbf\u95ee\u5143\u7d20\n pub fn get(self: *Self, index: usize) T {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n return self.arr[index];\n } \n\n // \u66f4\u65b0\u5143\u7d20\n pub fn set(self: *Self, index: usize, num: T) void {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n self.arr[index] = num;\n } \n\n // \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\n pub fn add(self: *Self, num: T) !void {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n self.arr[self.size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n } \n\n // \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\n pub fn insert(self: *Self, index: usize, num: T) !void {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var j = self.size() - 1;\n while (j >= index) : (j -= 1) {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n }\n\n // \u5220\u9664\u5143\u7d20\n pub fn remove(self: *Self, index: usize) T {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n var num = self.arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var j = index;\n while (j < self.size() - 1) : (j += 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n // \u5217\u8868\u6269\u5bb9\n pub fn extendCapacity(self: *Self) !void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n var newCapacity = self.capacity() * self.extendRatio;\n var extend = try self.mem_allocator.alloc(T, newCapacity);\n @memset(extend, @as(T, 0));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(T, extend, self.arr);\n self.arr = extend;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.arrCapacity = newCapacity;\n }\n\n // \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var arr = try self.mem_allocator.alloc(T, self.size());\n @memset(arr, @as(T, 0));\n for (arr, 0..) |*num, i| {\n num.* = self.get(i);\n }\n return arr;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/","title":"4.4 \u00a0 Memory and Cache *","text":"In the first two sections of this chapter, we explored arrays and linked lists, two fundamental and important data structures, representing \"continuous storage\" and \"dispersed storage\" respectively.
In fact, the physical structure largely determines the efficiency of a program's use of memory and cache, which in turn affects the overall performance of the algorithm.
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#441-computer-storage-devices","title":"4.4.1 \u00a0 Computer Storage Devices","text":"There are three types of storage devices in computers: \"hard disk,\" \"random-access memory (RAM),\" and \"cache memory.\" The following table shows their different roles and performance characteristics in computer systems.
Table 4-2 \u00a0 Computer Storage Devices
Hard Disk Memory Cache Usage Long-term storage of data, including OS, programs, files, etc. Temporary storage of currently running programs and data being processed Stores frequently accessed data and instructions, reducing the number of CPU accesses to memory Volatility Data is not lost after power off Data is lost after power off Data is lost after power off Capacity Larger, TB level Smaller, GB level Very small, MB level Speed Slower, several hundred to thousands MB/s Faster, several tens of GB/s Very fast, several tens to hundreds of GB/s Price Cheaper, several cents to yuan / GB More expensive, tens to hundreds of yuan / GB Very expensive, priced with CPU We can imagine the computer storage system as a pyramid structure shown in the Figure 4-9 . The storage devices closer to the top of the pyramid are faster, have smaller capacity, and are more costly. This multi-level design is not accidental, but the result of careful consideration by computer scientists and engineers.
- Hard disks are difficult to replace with memory. Firstly, data in memory is lost after power off, making it unsuitable for long-term data storage; secondly, the cost of memory is dozens of times that of hard disks, making it difficult to popularize in the consumer market.
- It is difficult for caches to have both large capacity and high speed. As the capacity of L1, L2, L3 caches gradually increases, their physical size becomes larger, increasing the physical distance from the CPU core, leading to increased data transfer time and higher element access latency. Under current technology, a multi-level cache structure is the best balance between capacity, speed, and cost.
Figure 4-9 \u00a0 Computer Storage System
Note
The storage hierarchy of computers reflects a delicate balance between speed, capacity, and cost. In fact, this kind of trade-off is common in all industrial fields, requiring us to find the best balance between different advantages and limitations.
Overall, hard disks are used for long-term storage of large amounts of data, memory is used for temporary storage of data being processed during program execution, and cache is used to store frequently accessed data and instructions to improve program execution efficiency. Together, they ensure the efficient operation of computer systems.
As shown in the Figure 4-10 , during program execution, data is read from the hard disk into memory for CPU computation. The cache can be considered a part of the CPU, smartly loading data from memory to provide fast data access to the CPU, significantly enhancing program execution efficiency and reducing reliance on slower memory.
Figure 4-10 \u00a0 Data Flow Between Hard Disk, Memory, and Cache
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#442-memory-efficiency-of-data-structures","title":"4.4.2 \u00a0 Memory Efficiency of Data Structures","text":"In terms of memory space utilization, arrays and linked lists have their advantages and limitations.
On one hand, memory is limited and cannot be shared by multiple programs, so we hope that data structures can use space as efficiently as possible. The elements of an array are tightly packed without extra space for storing references (pointers) between linked list nodes, making them more space-efficient. However, arrays require allocating sufficient continuous memory space at once, which may lead to memory waste, and array expansion also requires additional time and space costs. In contrast, linked lists allocate and reclaim memory dynamically on a per-node basis, providing greater flexibility.
On the other hand, during program execution, as memory is repeatedly allocated and released, the degree of fragmentation of free memory becomes higher, leading to reduced memory utilization efficiency. Arrays, due to their continuous storage method, are relatively less likely to cause memory fragmentation. In contrast, the elements of a linked list are dispersedly stored, and frequent insertion and deletion operations make memory fragmentation more likely.
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#443-cache-efficiency-of-data-structures","title":"4.4.3 \u00a0 Cache Efficiency of Data Structures","text":"Although caches are much smaller in space capacity than memory, they are much faster and play a crucial role in program execution speed. Since the cache's capacity is limited and can only store a small part of frequently accessed data, when the CPU tries to access data not in the cache, a \"cache miss\" occurs, forcing the CPU to load the needed data from slower memory.
Clearly, the fewer the cache misses, the higher the CPU's data read-write efficiency, and the better the program performance. The proportion of successful data retrieval from the cache by the CPU is called the \"cache hit rate,\" a metric often used to measure cache efficiency.
To achieve higher efficiency, caches adopt the following data loading mechanisms.
- Cache Lines: Caches don't store and load data byte by byte but in units of cache lines. Compared to byte-by-byte transfer, the transmission of cache lines is more efficient.
- Prefetch Mechanism: Processors try to predict data access patterns (such as sequential access, fixed stride jumping access, etc.) and load data into the cache according to specific patterns to improve the hit rate.
- Spatial Locality: If data is accessed, data nearby is likely to be accessed in the near future. Therefore, when loading certain data, the cache also loads nearby data to improve the hit rate.
- Temporal Locality: If data is accessed, it's likely to be accessed again in the near future. Caches use this principle to retain recently accessed data to improve the hit rate.
In fact, arrays and linked lists have different cache utilization efficiencies, mainly reflected in the following aspects.
- Occupied Space: Linked list elements occupy more space than array elements, resulting in less effective data volume in the cache.
- Cache Lines: Linked list data is scattered throughout memory, and since caches load \"by line,\" the proportion of loading invalid data is higher.
- Prefetch Mechanism: The data access pattern of arrays is more \"predictable\" than that of linked lists, meaning the system is more likely to guess which data will be loaded next.
- Spatial Locality: Arrays are stored in concentrated memory spaces, so the data near the loaded data is more likely to be accessed next.
Overall, arrays have a higher cache hit rate and are generally more efficient in operation than linked lists. This makes data structures based on arrays more popular in solving algorithmic problems.
It should be noted that high cache efficiency does not mean that arrays are always better than linked lists. Which data structure to choose in actual applications should be based on specific requirements. For example, both arrays and linked lists can implement the \"stack\" data structure (which will be detailed in the next chapter), but they are suitable for different scenarios.
- In algorithm problems, we tend to choose stacks based on arrays because they provide higher operational efficiency and random access capabilities, with the only cost being the need to pre-allocate a certain amount of memory space for the array.
- If the data volume is very large, highly dynamic, and the expected size of the stack is difficult to estimate, then a stack based on a linked list is more appropriate. Linked lists can disperse a large amount of data in different parts of the memory and avoid the additional overhead of array expansion.
"},{"location":"chapter_array_and_linkedlist/summary/","title":"4.5 \u00a0 Summary","text":""},{"location":"chapter_array_and_linkedlist/summary/#1-key-review","title":"1. \u00a0 Key Review","text":" - Arrays and linked lists are two fundamental data structures, representing two storage methods in computer memory: continuous space storage and dispersed space storage. Their characteristics complement each other.
- Arrays support random access and use less memory; however, they are inefficient in inserting and deleting elements and have a fixed length after initialization.
- Linked lists implement efficient node insertion and deletion through changing references (pointers) and can flexibly adjust their length; however, they have lower node access efficiency and use more memory.
- Common types of linked lists include singly linked lists, circular linked lists, and doubly linked lists, each with its own application scenarios.
- Lists are ordered collections of elements that support addition, deletion, and modification, typically implemented based on dynamic arrays, retaining the advantages of arrays while allowing flexible length adjustment.
- The advent of lists significantly enhanced the practicality of arrays but may lead to some memory space wastage.
- During program execution, data is mainly stored in memory. Arrays provide higher memory space efficiency, while linked lists are more flexible in memory usage.
- Caches provide fast data access to CPUs through mechanisms like cache lines, prefetching, spatial locality, and temporal locality, significantly enhancing program execution efficiency.
- Due to higher cache hit rates, arrays are generally more efficient than linked lists. When choosing a data structure, the appropriate choice should be made based on specific needs and scenarios.
"},{"location":"chapter_array_and_linkedlist/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"Does storing arrays on the stack versus the heap affect time and space efficiency?
Arrays stored on both the stack and heap are stored in continuous memory spaces, and data operation efficiency is essentially the same. However, stacks and heaps have their own characteristics, leading to the following differences.
- Allocation and release efficiency: The stack is a smaller memory block, allocated automatically by the compiler; the heap memory is relatively larger and can be dynamically allocated in the code, more prone to fragmentation. Therefore, allocation and release operations on the heap are generally slower than on the stack.
- Size limitation: Stack memory is relatively small, while the heap size is generally limited by available memory. Therefore, the heap is more suitable for storing large arrays.
- Flexibility: The size of arrays on the stack needs to be determined at compile-time, while the size of arrays on the heap can be dynamically determined at runtime.
Why do arrays require elements of the same type, while linked lists do not emphasize same-type elements?
Linked lists consist of nodes connected by references (pointers), and each node can store data of different types, such as int, double, string, object, etc.
In contrast, array elements must be of the same type, allowing the calculation of offsets to access the corresponding element positions. For example, an array containing both int and long types, with single elements occupying 4 bytes and 8 bytes respectively, cannot use the following formula to calculate offsets, as the array contains elements of two different lengths.
# Element memory address = Array memory address + Element length * Element index\n
After deleting a node, is it necessary to set P.next to None?
Not modifying P.next is also acceptable. From the perspective of the linked list, traversing from the head node to the tail node will no longer encounter P. This means that node P has been effectively removed from the list, and where P points no longer affects the list.
From a garbage collection perspective, for languages with automatic garbage collection mechanisms like Java, Python, and Go, whether node P is collected depends on whether there are still references pointing to it, not on the value of P.next. In languages like C and C++, we need to manually free the node's memory.
In linked lists, the time complexity for insertion and deletion operations is O(1). But searching for the element before insertion or deletion takes O(n) time, so why isn't the time complexity O(n)?
If an element is searched first and then deleted, the time complexity is indeed O(n). However, the O(1) advantage of linked lists in insertion and deletion can be realized in other applications. For example, in the implementation of double-ended queues using linked lists, we maintain pointers always pointing to the head and tail nodes, making each insertion and deletion operation O(1).
In the image 'Linked List Definition and Storage Method', do the light blue storage nodes occupy a single memory address, or do they share half with the node value?
The diagram is just a qualitative representation; quantitative analysis depends on specific situations.
- Different types of node values occupy different amounts of space, such as int, long, double, and object instances.
- The memory space occupied by pointer variables depends on the operating system and compilation environment used, usually 8 bytes or 4 bytes.
Is adding elements to the end of a list always O(1)?
If adding an element exceeds the list length, the list needs to be expanded first. The system will request a new memory block and move all elements of the original list over, in which case the time complexity becomes O(n).
The statement 'The emergence of lists greatly improves the practicality of arrays, but may lead to some memory space wastage' - does this refer to the memory occupied by additional variables like capacity, length, and expansion multiplier?
The space wastage here mainly refers to two aspects: on the one hand, lists are set with an initial length, which we may not always need; on the other hand, to prevent frequent expansion, expansion usually multiplies by a coefficient, such as \\(\\times 1.5\\). This results in many empty slots, which we typically cannot fully fill.
In Python, after initializing n = [1, 2, 3], the addresses of these 3 elements are contiguous, but initializing m = [2, 1, 3] shows that each element's id is not consecutive but identical to those in n. If the addresses of these elements are not contiguous, is m still an array?
If we replace list elements with linked list nodes n = [n1, n2, n3, n4, n5], these 5 node objects are also typically dispersed throughout memory. However, given a list index, we can still access the node's memory address in O(1) time, thereby accessing the corresponding node. This is because the array stores references to the nodes, not the nodes themselves.
Unlike many languages, in Python, numbers are also wrapped as objects, and lists store references to these numbers, not the numbers themselves. Therefore, we find that the same number in two arrays has the same id, and these numbers' memory addresses need not be contiguous.
The std::list in C++ STL has already implemented a doubly linked list, but it seems that some algorithm books don't directly use it. Is there any limitation?
On the one hand, we often prefer to use arrays to implement algorithms, only using linked lists when necessary, mainly for two reasons.
- Space overhead: Since each element requires two additional pointers (one for the previous element and one for the next),
std::list usually occupies more space than std::vector. - Cache unfriendly: As the data is not stored continuously,
std::list has a lower cache utilization rate. Generally, std::vector performs better.
On the other hand, linked lists are primarily necessary for binary trees and graphs. Stacks and queues are often implemented using the programming language's stack and queue classes, rather than linked lists.
Does initializing a list res = [0] * self.size() result in each element of res referencing the same address?
No. However, this issue arises with two-dimensional arrays, for example, initializing a two-dimensional list res = [[0] * self.size()] would reference the same list [0] multiple times.
In deleting a node, is it necessary to break the reference to its successor node?
From the perspective of data structures and algorithms (problem-solving), it's okay not to break the link, as long as the program's logic is correct. From the perspective of standard libraries, breaking the link is safer and more logically clear. If the link is not broken, and the deleted node is not properly recycled, it could affect the recycling of the successor node's memory.
"},{"location":"chapter_computational_complexity/","title":"Chapter 2. \u00a0 Complexity Analysis","text":"Abstract
Complexity analysis is like a space-time navigator in the vast universe of algorithms.
It guides us in exploring deeper within the the dimensions of time and space, seeking more elegant solutions.
"},{"location":"chapter_computational_complexity/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 2.1 \u00a0 Algorithm Efficiency Assessment
- 2.2 \u00a0 Iteration and Recursion
- 2.3 \u00a0 Time Complexity
- 2.4 \u00a0 Space Complexity
- 2.5 \u00a0 Summary
"},{"location":"chapter_computational_complexity/iteration_and_recursion/","title":"2.2 \u00a0 Iteration and Recursion","text":"In algorithms, repeatedly performing a task is common and closely related to complexity analysis. Therefore, before introducing time complexity and space complexity, let's first understand how to implement task repetition in programs, focusing on two basic programming control structures: iteration and recursion.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#221-iteration","title":"2.2.1 \u00a0 Iteration","text":"\"Iteration\" is a control structure for repeatedly performing a task. In iteration, a program repeats a block of code as long as a certain condition is met, until this condition is no longer satisfied.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1-for-loop","title":"1. \u00a0 for Loop","text":"The for loop is one of the most common forms of iteration, suitable for use when the number of iterations is known in advance.
The following function implements the sum \\(1 + 2 + \\dots + n\\) using a for loop, with the sum result recorded in the variable res. Note that in Python, range(a, b) corresponds to a \"left-closed, right-open\" interval, covering \\(a, a + 1, \\dots, b-1\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef for_loop(n: int) -> int:\n \"\"\"for \u5faa\u73af\"\"\"\n res = 0\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n res += i\n return res\n
iteration.cpp/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n res += i;\n }\n return res;\n}\n
iteration.java/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.cs/* for \u5faa\u73af */\nint ForLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.go/* for \u5faa\u73af */\nfunc forLoop(n int) int {\n res := 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n res += i\n }\n return res\n}\n
iteration.swift/* for \u5faa\u73af */\nfunc forLoop(n: Int) -> Int {\n var res = 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1 ... n {\n res += i\n }\n return res\n}\n
iteration.js/* for \u5faa\u73af */\nfunction forLoop(n) {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.ts/* for \u5faa\u73af */\nfunction forLoop(n: number): number {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.dart/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.rs/* for \u5faa\u73af */\nfn for_loop(n: i32) -> i32 {\n let mut res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1..=n {\n res += i;\n }\n res\n} \n
iteration.c/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.zig// for \u5faa\u73af\nfn forLoop(n: usize) i32 {\n var res: i32 = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n res = res + @as(i32, @intCast(i));\n }\n return res;\n} \n
The flowchart below represents this sum function.
Figure 2-1 \u00a0 Flowchart of the Sum Function
The number of operations in this sum function is proportional to the input data size \\(n\\), or in other words, it has a \"linear relationship\". This is actually what time complexity describes. This topic will be detailed in the next section.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2-while-loop","title":"2. \u00a0 while Loop","text":"Similar to the for loop, the while loop is another method to implement iteration. In a while loop, the program checks the condition in each round; if the condition is true, it continues, otherwise, the loop ends.
Below we use a while loop to implement the sum \\(1 + 2 + \\dots + n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop(n: int) -> int:\n \"\"\"while \u5faa\u73af\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n:\n res += i\n i += 1 # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n return res\n
iteration.cpp/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af */\nint WhileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af */\nfunc whileLoop(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af */\nfunc whileLoop(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i\n i += 1 // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af */\nfunction whileLoop(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af */\nfunction whileLoop(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af */\nfn while_loop(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n res\n}\n
iteration.c/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\nfn whileLoop(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += @intCast(i);\n i += 1;\n }\n return res;\n}\n
The while loop is more flexible than the for loop. In a while loop, we can freely design the initialization and update steps of the condition variable.
For example, in the following code, the condition variable \\(i\\) is updated twice in each round, which would be inconvenient to implement with a for loop:
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop_ii(n: int) -> int:\n \"\"\"while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n:\n res += i\n # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n return res\n
iteration.cpp/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint WhileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, 4, 5...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1; \n i *= 2;\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n i *= 2\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfn while_loop_ii(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n res\n}\n
iteration.c/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\nfn whileLoopII(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += @intCast(i);\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n return res;\n}\n
Overall, for loops are more concise, while while loops are more flexible. Both can implement iterative structures. Which one to use should be determined based on the specific requirements of the problem.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3-nested-loops","title":"3. \u00a0 Nested Loops","text":"We can nest one loop structure within another. Below is an example using for loops:
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef nested_for_loop(n: int) -> str:\n \"\"\"\u53cc\u5c42 for \u5faa\u73af\"\"\"\n res = \"\"\n # \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n # \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in range(1, n + 1):\n res += f\"({i}, {j}), \"\n return res\n
iteration.cpp/* \u53cc\u5c42 for \u5faa\u73af */\nstring nestedForLoop(int n) {\n ostringstream res;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; ++j) {\n res << \"(\" << i << \", \" << j << \"), \";\n }\n }\n return res.str();\n}\n
iteration.java/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n StringBuilder res = new StringBuilder();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.append(\"(\" + i + \", \" + j + \"), \");\n }\n }\n return res.toString();\n}\n
iteration.cs/* \u53cc\u5c42 for \u5faa\u73af */\nstring NestedForLoop(int n) {\n StringBuilder res = new();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.Append($\"({i}, {j}), \");\n }\n }\n return res.ToString();\n}\n
iteration.go/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n int) string {\n res := \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n for j := 1; j <= n; j++ {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n res += fmt.Sprintf(\"(%d, %d), \", i, j)\n }\n }\n return res\n}\n
iteration.swift/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n: Int) -> String {\n var res = \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1 ... n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1 ... n {\n res.append(\"(\\(i), \\(j)), \")\n }\n }\n return res\n}\n
iteration.js/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n) {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.ts/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n: number): string {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.dart/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n String res = \"\";\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res += \"($i, $j), \";\n }\n }\n return res;\n}\n
iteration.rs/* \u53cc\u5c42 for \u5faa\u73af */\nfn nested_for_loop(n: i32) -> String {\n let mut res = vec![];\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1..=n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1..=n {\n res.push(format!(\"({}, {}), \", i, j));\n }\n }\n res.join(\"\")\n}\n
iteration.c/* \u53cc\u5c42 for \u5faa\u73af */\nchar *nestedForLoop(int n) {\n // n * n \u4e3a\u5bf9\u5e94\u70b9\u6570\u91cf\uff0c\"(i, j), \" \u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u6700\u5927\u4e3a 6+10*2\uff0c\u52a0\u4e0a\u6700\u540e\u4e00\u4e2a\u7a7a\u5b57\u7b26 \\0 \u7684\u989d\u5916\u7a7a\u95f4\n int size = n * n * 26 + 1;\n char *res = malloc(size * sizeof(char));\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n char tmp[26];\n snprintf(tmp, sizeof(tmp), \"(%d, %d), \", i, j);\n strncat(res, tmp, size - strlen(res) - 1);\n }\n }\n return res;\n}\n
iteration.zig// \u53cc\u5c42 for \u5faa\u73af\nfn nestedForLoop(allocator: Allocator, n: usize) ![]const u8 {\n var res = std.ArrayList(u8).init(allocator);\n defer res.deinit();\n var buffer: [20]u8 = undefined;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (1..n+1) |j| {\n var _str = try std.fmt.bufPrint(&buffer, \"({d}, {d}), \", .{i, j});\n try res.appendSlice(_str);\n }\n }\n return res.toOwnedSlice();\n}\n
The flowchart below represents this nested loop.
Figure 2-2 \u00a0 Flowchart of the Nested Loop
In this case, the number of operations in the function is proportional to \\(n^2\\), or the algorithm's running time and the input data size \\(n\\) have a \"quadratic relationship\".
We can continue adding nested loops, each nesting is a \"dimensional escalation,\" which will increase the time complexity to \"cubic,\" \"quartic,\" and so on.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#222-recursion","title":"2.2.2 \u00a0 Recursion","text":"\"Recursion\" is an algorithmic strategy that solves problems by having a function call itself. It mainly consists of two phases.
- Recursion: The program continuously calls itself, usually with smaller or more simplified parameters, until reaching a \"termination condition.\"
- Return: Upon triggering the \"termination condition,\" the program begins to return from the deepest recursive function, aggregating the results of each layer.
From an implementation perspective, recursive code mainly includes three elements.
- Termination Condition: Determines when to switch from \"recursion\" to \"return.\"
- Recursive Call: Corresponds to \"recursion,\" where the function calls itself, usually with smaller or more simplified parameters.
- Return Result: Corresponds to \"return,\" where the result of the current recursion level is returned to the previous layer.
Observe the following code, where calling the function recur(n) completes the computation of \\(1 + 2 + \\dots + n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef recur(n: int) -> int:\n \"\"\"\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 1:\n return 1\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res = recur(n - 1)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n
recursion.cpp/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.java/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.cs/* \u9012\u5f52 */\nint Recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = Recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.go/* \u9012\u5f52 */\nfunc recur(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res := recur(n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.swift/* \u9012\u5f52 */\nfunc recur(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n: n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.js/* \u9012\u5f52 */\nfunction recur(n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.ts/* \u9012\u5f52 */\nfunction recur(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.dart/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.rs/* \u9012\u5f52 */\nfn recur(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n n + res\n}\n
recursion.c/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.zig// \u9012\u5f52\u51fd\u6570\nfn recur(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var res: i32 = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
The Figure 2-3 shows the recursive process of this function.
Figure 2-3 \u00a0 Recursive Process of the Sum Function
Although iteration and recursion can achieve the same results from a computational standpoint, they represent two entirely different paradigms of thinking and solving problems.
- Iteration: Solves problems \"from the bottom up.\" It starts with the most basic steps, then repeatedly adds or accumulates these steps until the task is complete.
- Recursion: Solves problems \"from the top down.\" It breaks down the original problem into smaller sub-problems, each of which has the same form as the original problem. These sub-problems are then further decomposed into even smaller sub-problems, stopping at the base case (whose solution is known).
Taking the sum function as an example, let's define the problem as \\(f(n) = 1 + 2 + \\dots + n\\).
- Iteration: In a loop, simulate the summing process, iterating from \\(1\\) to \\(n\\), performing the sum operation in each round, to obtain \\(f(n)\\).
- Recursion: Break down the problem into sub-problems \\(f(n) = n + f(n-1)\\), continuously (recursively) decomposing until reaching the base case \\(f(1) = 1\\) and then stopping.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1-call-stack","title":"1. \u00a0 Call Stack","text":"Each time a recursive function calls itself, the system allocates memory for the newly initiated function to store local variables, call addresses, and other information. This leads to two main consequences.
- The function's context data is stored in a memory area called \"stack frame space\" and is only released after the function returns. Therefore, recursion generally consumes more memory space than iteration.
- Recursive calls introduce additional overhead. Hence, recursion is usually less time-efficient than loops.
As shown in the Figure 2-4 , there are \\(n\\) unreturned recursive functions before triggering the termination condition, indicating a recursion depth of \\(n\\).
Figure 2-4 \u00a0 Recursion Call Depth
In practice, the depth of recursion allowed by programming languages is usually limited, and excessively deep recursion can lead to stack overflow errors.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2-tail-recursion","title":"2. \u00a0 Tail Recursion","text":"Interestingly, if a function makes its recursive call as the last step before returning, it can be optimized by compilers or interpreters to be as space-efficient as iteration. This scenario is known as \"tail recursion\".
- Regular Recursion: The function needs to perform more code after returning to the previous level, so the system needs to save the context of the previous call.
- Tail Recursion: The recursive call is the last operation before the function returns, meaning no further actions are required upon returning to the previous level, so the system doesn't need to save the context of the previous level's function.
For example, in calculating \\(1 + 2 + \\dots + n\\), we can make the result variable res a parameter of the function, thereby achieving tail recursion:
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef tail_recur(n, res):\n \"\"\"\u5c3e\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 0:\n return res\n # \u5c3e\u9012\u5f52\u8c03\u7528\n return tail_recur(n - 1, res + n)\n
recursion.cpp/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.java/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.cs/* \u5c3e\u9012\u5f52 */\nint TailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return TailRecur(n - 1, res + n);\n}\n
recursion.go/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n int, res int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n-1, res+n)\n}\n
recursion.swift/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n: Int, res: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n: n - 1, res: res + n)\n}\n
recursion.js/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n, res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.ts/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n: number, res: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.dart/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.rs/* \u5c3e\u9012\u5f52 */\nfn tail_recur(n: i32, res: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n tail_recur(n - 1, res + n)\n}\n
recursion.c/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.zig// \u5c3e\u9012\u5f52\u51fd\u6570\nfn tailRecur(n: i32, res: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
The execution process of tail recursion is shown in the following figure. Comparing regular recursion and tail recursion, the point of the summation operation is different.
- Regular Recursion: The summation operation occurs during the \"return\" phase, requiring another summation after each layer returns.
- Tail Recursion: The summation operation occurs during the \"recursion\" phase, and the \"return\" phase only involves returning through each layer.
Figure 2-5 \u00a0 Tail Recursion Process
Tip
Note that many compilers or interpreters do not support tail recursion optimization. For example, Python does not support tail recursion optimization by default, so even if the function is in the form of tail recursion, it may still encounter stack overflow issues.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3-recursion-tree","title":"3. \u00a0 Recursion Tree","text":"When dealing with algorithms related to \"divide and conquer\", recursion often offers a more intuitive approach and more readable code than iteration. Take the \"Fibonacci sequence\" as an example.
Question
Given a Fibonacci sequence \\(0, 1, 1, 2, 3, 5, 8, 13, \\dots\\), find the \\(n\\)th number in the sequence.
Let the \\(n\\)th number of the Fibonacci sequence be \\(f(n)\\), it's easy to deduce two conclusions:
- The first two numbers of the sequence are \\(f(1) = 0\\) and \\(f(2) = 1\\).
- Each number in the sequence is the sum of the two preceding ones, that is, \\(f(n) = f(n - 1) + f(n - 2)\\).
Using the recursive relation, and considering the first two numbers as termination conditions, we can write the recursive code. Calling fib(n) will yield the \\(n\\)th number of the Fibonacci sequence:
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef fib(n: int) -> int:\n \"\"\"\u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 or n == 2:\n return n - 1\n # \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res = fib(n - 1) + fib(n - 2)\n # \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n
recursion.cpp/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.java/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.cs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint Fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = Fib(n - 1) + Fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.go/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res := fib(n-1) + fib(n-2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.swift/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n: n - 1) + fib(n: n - 2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.js/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.ts/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.dart/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.rs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfn fib(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c\n res\n}\n
recursion.c/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.zig// \u6590\u6ce2\u90a3\u5951\u6570\u5217\nfn fib(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 or n == 2) {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n var res: i32 = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
Observing the above code, we see that it recursively calls two functions within itself, meaning that one call generates two branching calls. As illustrated below, this continuous recursive calling eventually creates a \"recursion tree\" with a depth of \\(n\\).
Figure 2-6 \u00a0 Fibonacci Sequence Recursion Tree
Fundamentally, recursion embodies the paradigm of \"breaking down a problem into smaller sub-problems.\" This divide-and-conquer strategy is crucial.
- From an algorithmic perspective, many important strategies like searching, sorting, backtracking, divide-and-conquer, and dynamic programming directly or indirectly use this way of thinking.
- From a data structure perspective, recursion is naturally suited for dealing with linked lists, trees, and graphs, as they are well suited for analysis using the divide-and-conquer approach.
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#223-comparison","title":"2.2.3 \u00a0 Comparison","text":"Summarizing the above content, the following table shows the differences between iteration and recursion in terms of implementation, performance, and applicability.
Table: Comparison of Iteration and Recursion Characteristics
Iteration Recursion Approach Loop structure Function calls itself Time Efficiency Generally higher efficiency, no function call overhead Each function call generates overhead Memory Usage Typically uses a fixed size of memory space Accumulative function calls can use a substantial amount of stack frame space Suitable Problems Suitable for simple loop tasks, intuitive and readable code Suitable for problem decomposition, like trees, graphs, divide-and-conquer, backtracking, etc., concise and clear code structure Tip
If you find the following content difficult to understand, consider revisiting it after reading the \"Stack\" chapter.
So, what is the intrinsic connection between iteration and recursion? Taking the above recursive function as an example, the summation operation occurs during the recursion's \"return\" phase. This means that the initially called function is actually the last to complete its summation operation, mirroring the \"last in, first out\" principle of a stack.
In fact, recursive terms like \"call stack\" and \"stack frame space\" hint at the close relationship between recursion and stacks.
- Recursion: When a function is called, the system allocates a new stack frame on the \"call stack\" for that function, storing local variables, parameters, return addresses, and other data.
- Return: When a function completes execution and returns, the corresponding stack frame is removed from the \"call stack,\" restoring the execution environment of the previous function.
Therefore, we can use an explicit stack to simulate the behavior of the call stack, thus transforming recursion into an iterative form:
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef for_loop_recur(n: int) -> int:\n \"\"\"\u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\"\"\"\n # \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack = []\n res = 0\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in range(n, 0, -1):\n # \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while stack:\n # \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop()\n # res = 1+2+3+...+n\n return res\n
recursion.cpp/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack<int> stack;\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.empty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.top();\n stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.java/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<Integer> stack = new Stack<>();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.cs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint ForLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<int> stack = new();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.Push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.Count > 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.go/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n int) int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack := list.New()\n res := 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i := n; i > 0; i-- {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.PushBack(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n for stack.Len() != 0 {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Back().Value.(int)\n stack.Remove(stack.Back())\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.swift/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n: Int) -> Int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [Int] = []\n var res = 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in stride(from: n, to: 0, by: -1) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.isEmpty {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast()\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.js/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n const stack = [];\n let res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.ts/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n: number): number {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808 \n const stack: number[] = [];\n let res: number = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.dart/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n List<int> stack = [];\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.add(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.rs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfn for_loop_recur(n: i32) -> i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n let mut stack = Vec::new();\n let mut res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in (1..=n).rev() {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.is_empty() {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop().unwrap();\n }\n // res = 1+2+3+...+n\n res\n}\n
recursion.c/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n int stack[1000]; // \u501f\u52a9\u4e00\u4e2a\u5927\u6570\u7ec4\u6765\u6a21\u62df\u6808\n int top = -1; // \u6808\u9876\u7d22\u5f15\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack[1 + top++] = i;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (top >= 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack[top--];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.zig// \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\nfn forLoopRecur(comptime n: i32) i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [n]i32 = undefined;\n var res: i32 = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var i: usize = n;\n while (i > 0) {\n stack[i - 1] = @intCast(i);\n i -= 1;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n var index: usize = n;\n while (index > 0) {\n index -= 1;\n res += stack[index];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
Observing the above code, when recursion is transformed into iteration, the code becomes more complex. Although iteration and recursion can often be transformed into each other, it's not always advisable to do so for two reasons:
- The transformed code may become harder to understand and less readable.
- For some complex problems, simulating the behavior of the system's call stack can be quite challenging.
In summary, choosing between iteration and recursion depends on the nature of the specific problem. In programming practice, weighing the pros and cons of each and choosing the appropriate method for the situation is essential.
"},{"location":"chapter_computational_complexity/performance_evaluation/","title":"2.1 \u00a0 Algorithm Efficiency Assessment","text":"In algorithm design, we pursue the following two objectives in sequence.
- Finding a Solution to the Problem: The algorithm should reliably find the correct solution within the stipulated range of inputs.
- Seeking the Optimal Solution: For the same problem, multiple solutions might exist, and we aim to find the most efficient algorithm possible.
In other words, under the premise of being able to solve the problem, algorithm efficiency has become the main criterion for evaluating the merits of an algorithm, which includes the following two dimensions.
- Time Efficiency: The speed at which an algorithm runs.
- Space Efficiency: The size of the memory space occupied by an algorithm.
In short, our goal is to design data structures and algorithms that are both fast and memory-efficient. Effectively assessing algorithm efficiency is crucial because only then can we compare various algorithms and guide the process of algorithm design and optimization.
There are mainly two methods of efficiency assessment: actual testing and theoretical estimation.
"},{"location":"chapter_computational_complexity/performance_evaluation/#211-actual-testing","title":"2.1.1 \u00a0 Actual Testing","text":"Suppose we have algorithms A and B, both capable of solving the same problem, and we need to compare their efficiencies. The most direct method is to use a computer to run these two algorithms and monitor and record their runtime and memory usage. This assessment method reflects the actual situation but has significant limitations.
On one hand, it's difficult to eliminate interference from the testing environment. Hardware configurations can affect algorithm performance. For example, algorithm A might run faster than B on one computer, but the opposite result may occur on another computer with different configurations. This means we would need to test on a variety of machines to calculate average efficiency, which is impractical.
On the other hand, conducting a full test is very resource-intensive. As the volume of input data changes, the efficiency of the algorithms may vary. For example, with smaller data volumes, algorithm A might run faster than B, but the opposite might be true with larger data volumes. Therefore, to draw convincing conclusions, we need to test a wide range of input data sizes, which requires significant computational resources.
"},{"location":"chapter_computational_complexity/performance_evaluation/#212-theoretical-estimation","title":"2.1.2 \u00a0 Theoretical Estimation","text":"Due to the significant limitations of actual testing, we can consider evaluating algorithm efficiency solely through calculations. This estimation method is known as \"asymptotic complexity analysis,\" or simply \"complexity analysis.\"
Complexity analysis reflects the relationship between the time and space resources required for algorithm execution and the size of the input data. It describes the trend of growth in the time and space required by the algorithm as the size of the input data increases. This definition might sound complex, but we can break it down into three key points to understand it better.
- \"Time and space resources\" correspond to \"time complexity\" and \"space complexity,\" respectively.
- \"As the size of input data increases\" means that complexity reflects the relationship between algorithm efficiency and the volume of input data.
- \"The trend of growth in time and space\" indicates that complexity analysis focuses not on the specific values of runtime or space occupied but on the \"rate\" at which time or space grows.
Complexity analysis overcomes the disadvantages of actual testing methods, reflected in the following aspects:
- It is independent of the testing environment and applicable to all operating platforms.
- It can reflect algorithm efficiency under different data volumes, especially in the performance of algorithms with large data volumes.
Tip
If you're still confused about the concept of complexity, don't worry. We will introduce it in detail in subsequent chapters.
Complexity analysis provides us with a \"ruler\" to measure the time and space resources needed to execute an algorithm and compare the efficiency between different algorithms.
Complexity is a mathematical concept and may be abstract and challenging for beginners. From this perspective, complexity analysis might not be the best content to introduce first. However, when discussing the characteristics of a particular data structure or algorithm, it's hard to avoid analyzing its speed and space usage.
In summary, it's recommended that you establish a preliminary understanding of complexity analysis before diving deep into data structures and algorithms, so that you can carry out simple complexity analyses of algorithms.
"},{"location":"chapter_computational_complexity/space_complexity/","title":"2.4 \u00a0 Space Complexity","text":"\"Space complexity\" is used to measure the growth trend of the memory space occupied by an algorithm as the amount of data increases. This concept is very similar to time complexity, except that \"running time\" is replaced with \"occupied memory space\".
"},{"location":"chapter_computational_complexity/space_complexity/#241-space-related-to-algorithms","title":"2.4.1 \u00a0 Space Related to Algorithms","text":"The memory space used by an algorithm during its execution mainly includes the following types.
- Input Space: Used to store the input data of the algorithm.
- Temporary Space: Used to store variables, objects, function contexts, and other data during the algorithm's execution.
- Output Space: Used to store the output data of the algorithm.
Generally, the scope of space complexity statistics includes both \"Temporary Space\" and \"Output Space\".
Temporary space can be further divided into three parts.
- Temporary Data: Used to save various constants, variables, objects, etc., during the algorithm's execution.
- Stack Frame Space: Used to save the context data of the called function. The system creates a stack frame at the top of the stack each time a function is called, and the stack frame space is released after the function returns.
- Instruction Space: Used to store compiled program instructions, which are usually negligible in actual statistics.
When analyzing the space complexity of a program, we typically count the Temporary Data, Stack Frame Space, and Output Data, as shown in the Figure 2-15 .
Figure 2-15 \u00a0 Space Types Used in Algorithms
The relevant code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig class Node:\n \"\"\"Classes\"\"\"\"\n def __init__(self, x: int):\n self.val: int = x # node value\n self.next: Node | None = None # reference to the next node\n\ndef function() -> int:\n \"\"\"\"Functions\"\"\"\"\"\n # Perform certain operations...\n return 0\n\ndef algorithm(n) -> int: # input data\n A = 0 # temporary data (constant, usually in uppercase)\n b = 0 # temporary data (variable)\n node = Node(0) # temporary data (object)\n c = function() # Stack frame space (call function)\n return A + b + c # output data\n
/* Structures */\nstruct Node {\n int val;\n Node *next;\n Node(int x) : val(x), next(nullptr) {}\n};\n\n/* Functions */\nint func() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node* node = new Node(0); // temporary data (object)\n int c = func(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n int val;\n Node next;\n Node(int x) { val = x; }\n}\n\n/* Functions */\nint function() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n final int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node node = new Node(0); // temporary data (object)\n int c = function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n int val;\n Node next;\n Node(int x) { val = x; }\n}\n\n/* Functions */\nint Function() {\n // Perform certain operations...\n return 0;\n}\n\nint Algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node node = new(0); // temporary data (object)\n int c = Function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Structures */\ntype node struct {\n val int\n next *node\n}\n\n/* Create node structure */\nfunc newNode(val int) *node {\n return &node{val: val}\n}\n\n/* Functions */\nfunc function() int {\n // Perform certain operations...\n return 0\n}\n\nfunc algorithm(n int) int { // input data\n const a = 0 // temporary data (constant)\n b := 0 // temporary storage of data (variable)\n newNode(0) // temporary data (object)\n c := function() // stack frame space (call function)\n return a + b + c // output data\n}\n
/* Classes */\nclass Node {\n var val: Int\n var next: Node?\n\n init(x: Int) {\n val = x\n }\n}\n\n/* Functions */\nfunc function() -> Int {\n // Perform certain operations...\n return 0\n}\n\nfunc algorithm(n: Int) -> Int { // input data\n let a = 0 // temporary data (constant)\n var b = 0 // temporary data (variable)\n let node = Node(x: 0) // temporary data (object)\n let c = function() // stack frame space (call function)\n return a + b + c // output data\n}\n
/* Classes */\nclass Node {\n val;\n next;\n constructor(val) {\n this.val = val === undefined ? 0 : val; // node value\n this.next = null; // reference to the next node\n }\n}\n\n/* Functions */\nfunction constFunc() {\n // Perform certain operations\n return 0;\n}\n\nfunction algorithm(n) { // input data\n const a = 0; // temporary data (constant)\n let b = 0; // temporary data (variable)\n const node = new Node(0); // temporary data (object)\n const c = constFunc(); // Stack frame space (calling function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n val: number;\n next: Node | null;\n constructor(val?: number) {\n this.val = val === undefined ? 0 : val; // node value\n this.next = null; // reference to the next node\n }\n}\n\n/* Functions */\nfunction constFunc(): number {\n // Perform certain operations\n return 0;\n}\n\nfunction algorithm(n: number): number { // input data\n const a = 0; // temporary data (constant)\n let b = 0; // temporary data (variable)\n const node = new Node(0); // temporary data (object)\n const c = constFunc(); // Stack frame space (calling function)\n return a + b + c; // output data\n}\n
/* Classes */\nclass Node {\n int val;\n Node next;\n Node(this.val, [this.next]);\n}\n\n/* Functions */\nint function() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n Node node = Node(0); // temporary data (object)\n int c = function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* Structures */\nstruct Node {\n val: i32,\n next: Option<Rc<RefCell<Node>>>,\n}\n\n/* Creating a Node structure */\nimpl Node {\n fn new(val: i32) -> Self {\n Self { val: val, next: None }\n }\n}\n\n/* Functions */\nfn function() -> i32 { \n // Perform certain operations...\n return 0;\n}\n\nfn algorithm(n: i32) -> i32 { // input data\n const a: i32 = 0; // temporary data (constant)\n let mut b = 0; // temporary data (variable)\n let node = Node::new(0); // temporary data (object)\n let c = function(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
/* Functions */\nint func() {\n // Perform certain operations...\n return 0;\n}\n\nint algorithm(int n) { // input data\n const int a = 0; // temporary data (constant)\n int b = 0; // temporary data (variable)\n int c = func(); // stack frame space (call function)\n return a + b + c; // output data\n}\n
\n
"},{"location":"chapter_computational_complexity/space_complexity/#242-calculation-method","title":"2.4.2 \u00a0 Calculation Method","text":"The method for calculating space complexity is roughly similar to that of time complexity, with the only change being the shift of the statistical object from \"number of operations\" to \"size of used space\".
However, unlike time complexity, we usually only focus on the worst-case space complexity. This is because memory space is a hard requirement, and we must ensure that there is enough memory space reserved under all input data.
Consider the following code, the term \"worst-case\" in worst-case space complexity has two meanings.
- Based on the worst input data: When \\(n < 10\\), the space complexity is \\(O(1)\\); but when \\(n > 10\\), the initialized array
nums occupies \\(O(n)\\) space, thus the worst-case space complexity is \\(O(n)\\). - Based on the peak memory used during the algorithm's execution: For example, before executing the last line, the program occupies \\(O(1)\\) space; when initializing the array
nums, the program occupies \\(O(n)\\) space, hence the worst-case space complexity is \\(O(n)\\).
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 0 # O(1)\n b = [0] * 10000 # O(1)\n if n > 10:\n nums = [0] * n # O(n)\n
void algorithm(int n) {\n int a = 0; // O(1)\n vector<int> b(10000); // O(1)\n if (n > 10)\n vector<int> nums(n); // O(n)\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10)\n int[] nums = new int[n]; // O(n)\n}\n
void Algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10) {\n int[] nums = new int[n]; // O(n)\n }\n}\n
func algorithm(n int) {\n a := 0 // O(1)\n b := make([]int, 10000) // O(1)\n var nums []int\n if n > 10 {\n nums := make([]int, n) // O(n)\n }\n fmt.Println(a, b, nums)\n}\n
func algorithm(n: Int) {\n let a = 0 // O(1)\n let b = Array(repeating: 0, count: 10000) // O(1)\n if n > 10 {\n let nums = Array(repeating: 0, count: n) // O(n)\n }\n}\n
function algorithm(n) {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
function algorithm(n: number): void {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n List<int> b = List.filled(10000, 0); // O(1)\n if (n > 10) {\n List<int> nums = List.filled(n, 0); // O(n)\n }\n}\n
fn algorithm(n: i32) {\n let a = 0; // O(1)\n let b = [0; 10000]; // O(1)\n if n > 10 {\n let nums = vec![0; n as usize]; // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int b[10000]; // O(1)\n if (n > 10)\n int nums[n] = {0}; // O(n)\n}\n
\n
In recursive functions, stack frame space must be taken into count. Consider the following code:
PythonC++JavaC#GoSwiftJSTSDartRustCZig def function() -> int:\n # Perform certain operations\n return 0\n\ndef loop(n: int):\n \"\"\"Loop O(1)\"\"\"\"\"\n for _ in range(n):\n function()\n\ndef recur(n: int) -> int:\n \"\"\"Recursion O(n)\"\"\"\"\"\n if n == 1: return\n return recur(n - 1)\n
int func() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int function() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int Function() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid Loop(int n) {\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n/* Recursion O(n) */\nint Recur(int n) {\n if (n == 1) return 1;\n return Recur(n - 1);\n}\n
func function() int {\n // Perform certain operations\n return 0\n}\n\n/* Cycle O(1) */\nfunc loop(n int) {\n for i := 0; i < n; i++ {\n function()\n }\n}\n\n/* Recursion O(n) */\nfunc recur(n int) {\n if n == 1 {\n return\n }\n recur(n - 1)\n}\n
@discardableResult\nfunc function() -> Int {\n // Perform certain operations\n return 0\n}\n\n/* Cycle O(1) */\nfunc loop(n: Int) {\n for _ in 0 ..< n {\n function()\n }\n}\n\n/* Recursion O(n) */\nfunc recur(n: Int) {\n if n == 1 {\n return\n }\n recur(n: n - 1)\n}\n
function constFunc() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nfunction loop(n) {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* Recursion O(n) */\nfunction recur(n) {\n if (n === 1) return;\n return recur(n - 1);\n}\n
function constFunc(): number {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nfunction loop(n: number): void {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* Recursion O(n) */\nfunction recur(n: number): void {\n if (n === 1) return;\n return recur(n - 1);\n}\n
int function() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
fn function() -> i32 {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nfn loop(n: i32) {\n for i in 0..n {\n function();\n }\n}\n/* Recursion O(n) */\nvoid recur(n: i32) {\n if n == 1 {\n return;\n }\n recur(n - 1);\n}\n
int func() {\n // Perform certain operations\n return 0;\n}\n/* Cycle O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* Recursion O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
\n
The time complexity of both loop() and recur() functions is \\(O(n)\\), but their space complexities differ.
- The
loop() function calls function() \\(n\\) times in a loop, where each iteration's function() returns and releases its stack frame space, so the space complexity remains \\(O(1)\\). - The recursive function
recur() will have \\(n\\) instances of unreturned recur() existing simultaneously during its execution, thus occupying \\(O(n)\\) stack frame space.
"},{"location":"chapter_computational_complexity/space_complexity/#243-common-types","title":"2.4.3 \u00a0 Common Types","text":"Let the size of the input data be \\(n\\), the following chart displays common types of space complexities (arranged from low to high).
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n^2) < O(2^n) \\newline \\text{Constant Order} < \\text{Logarithmic Order} < \\text{Linear Order} < \\text{Quadratic Order} < \\text{Exponential Order} \\end{aligned} \\] Figure 2-16 \u00a0 Common Types of Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#1-constant-order-o1","title":"1. \u00a0 Constant Order \\(O(1)\\)","text":"Constant order is common in constants, variables, objects that are independent of the size of input data \\(n\\).
Note that memory occupied by initializing variables or calling functions in a loop, which is released upon entering the next cycle, does not accumulate over space, thus the space complexity remains \\(O(1)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef function() -> int:\n \"\"\"\u51fd\u6570\"\"\"\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n\ndef constant(n: int):\n \"\"\"\u5e38\u6570\u9636\"\"\"\n # \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n a = 0\n nums = [0] * 10000\n node = ListNode(0)\n # \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n c = 0\n # \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n function()\n
space_complexity.cpp/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n vector<int> nums(10000);\n ListNode node(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.java/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.cs/* \u51fd\u6570 */\nint Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid Constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n
space_complexity.go/* \u51fd\u6570 */\nfunc function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc spaceConstant(n int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0\n b := 0\n nums := make([]int, 10000)\n ListNode := newNode(0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n var c int\n for i := 0; i < n; i++ {\n c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i := 0; i < n; i++ {\n function()\n }\n fmt.Println(a, b, nums, c, ListNode)\n}\n
space_complexity.swift/* \u51fd\u6570 */\n@discardableResult\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n let a = 0\n var b = 0\n let nums = Array(repeating: 0, count: 10000)\n let node = ListNode(x: 0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n let c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n function()\n }\n}\n
space_complexity.js/* \u51fd\u6570 */\nfunction constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.ts/* \u51fd\u6570 */\nfunction constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n: number): void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.dart/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n List<int> nums = List.filled(10000, 0);\n ListNode node = ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.rs/* \u51fd\u6570 */\nfn function() ->i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\n#[allow(unused)]\nfn constant(n: i32) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const A: i32 = 0;\n let b = 0;\n let nums = vec![0; 10000];\n let node = ListNode::new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n let c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n function();\n }\n}\n
space_complexity.c/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n int nums[1000];\n ListNode *node = newListNode(0);\n free(node);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.zig// \u51fd\u6570\nfn function() i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n// \u5e38\u6570\u9636\nfn constant(n: i32) void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a: i32 = 0;\n var b: i32 = 0;\n var nums = [_]i32{0}**10000;\n var node = inc.ListNode(i32){.val = 0};\n var i: i32 = 0;\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n while (i < n) : (i += 1) {\n var c: i32 = 0;\n _ = c;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n i = 0;\n while (i < n) : (i += 1) {\n _ = function();\n }\n _ = a;\n _ = b;\n _ = nums;\n _ = node;\n}\n
"},{"location":"chapter_computational_complexity/space_complexity/#2-linear-order-on","title":"2. \u00a0 Linear Order \\(O(n)\\)","text":"Linear order is common in arrays, linked lists, stacks, queues, etc., where the number of elements is proportional to \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear(n: int):\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n # \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n nums = [0] * n\n # \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n hmap = dict[int, str]()\n for i in range(n):\n hmap[i] = str(i)\n
space_complexity.cpp/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n vector<int> nums(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n vector<ListNode> nodes;\n for (int i = 0; i < n; i++) {\n nodes.push_back(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n unordered_map<int, string> map;\n for (int i = 0; i < n; i++) {\n map[i] = to_string(i);\n }\n}\n
space_complexity.java/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n nodes.add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<Integer, String> map = new HashMap<>();\n for (int i = 0; i < n; i++) {\n map.put(i, String.valueOf(i));\n }\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636 */\nvoid Linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (int i = 0; i < n; i++) {\n nodes.Add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Dictionary<int, string> map = [];\n for (int i = 0; i < n; i++) {\n map.Add(i, i.ToString());\n }\n}\n
space_complexity.go/* \u7ebf\u6027\u9636 */\nfunc spaceLinear(n int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n _ = make([]int, n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes []*node\n for i := 0; i < n; i++ {\n nodes = append(nodes, newNode(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n m := make(map[int]string, n)\n for i := 0; i < n; i++ {\n m[i] = strconv.Itoa(i)\n }\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let nums = Array(repeating: 0, count: n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let nodes = (0 ..< n).map { ListNode(x: $0) }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, \"\\($0)\") })\n}\n
space_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes: ListNode[] = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n List<int> nums = List.filled(n, 0);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (var i = 0; i < n; i++) {\n nodes.add(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<int, String> map = HashMap();\n for (var i = 0; i < n; i++) {\n map.putIfAbsent(i, () => i.toString());\n }\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636 */\n#[allow(unused)]\nfn linear(n: i32) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nums = vec![0; n as usize];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nodes = Vec::new();\n for i in 0..n {\n nodes.push(ListNode::new(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut map = HashMap::new();\n for i in 0..n {\n map.insert(i, i.to_string());\n }\n}\n
space_complexity.c/* \u54c8\u5e0c\u8868 */\ntypedef struct {\n int key;\n int val;\n UT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n} HashTable;\n\n/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int *nums = malloc(sizeof(int) * n);\n free(nums);\n\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n ListNode **nodes = malloc(sizeof(ListNode *) * n);\n for (int i = 0; i < n; i++) {\n nodes[i] = newListNode(i);\n }\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(nodes[i]);\n }\n free(nodes);\n\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n HashTable *h = NULL;\n for (int i = 0; i < n; i++) {\n HashTable *tmp = malloc(sizeof(HashTable));\n tmp->key = i;\n tmp->val = i;\n HASH_ADD_INT(h, key, tmp);\n }\n\n // \u5185\u5b58\u91ca\u653e\n HashTable *curr, *tmp;\n HASH_ITER(hh, h, curr, tmp) {\n HASH_DEL(h, curr);\n free(curr);\n }\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\nfn linear(comptime n: i32) !void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n var nums = [_]i32{0}**n;\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes = std.ArrayList(i32).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n try nodes.append(i);\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var map = std.AutoArrayHashMap(i32, []const u8).init(std.heap.page_allocator);\n defer map.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n const string = try std.fmt.allocPrint(std.heap.page_allocator, \"{d}\", .{j});\n defer std.heap.page_allocator.free(string);\n try map.put(i, string);\n }\n _ = nums;\n}\n
As shown below, this function's recursive depth is \\(n\\), meaning there are \\(n\\) instances of unreturned linear_recur() function, using \\(O(n)\\) size of stack frame space:
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear_recur(n: int):\n \"\"\"\u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n print(\"\u9012\u5f52 n =\", n)\n if n == 1:\n return\n linear_recur(n - 1)\n
space_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n cout << \"\u9012\u5f52 n = \" << n << endl;\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.java/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n System.out.println(\"\u9012\u5f52 n = \" + n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid LinearRecur(int n) {\n Console.WriteLine(\"\u9012\u5f52 n = \" + n);\n if (n == 1) return;\n LinearRecur(n - 1);\n}\n
space_complexity.go/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceLinearRecur(n int) {\n fmt.Println(\"\u9012\u5f52 n =\", n)\n if n == 1 {\n return\n }\n spaceLinearRecur(n - 1)\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc linearRecur(n: Int) {\n print(\"\u9012\u5f52 n = \\(n)\")\n if n == 1 {\n return\n }\n linearRecur(n: n - 1)\n}\n
space_complexity.js/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n) {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n: number): void {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n print('\u9012\u5f52 n = $n');\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn linear_recur(n: i32) {\n println!(\"\u9012\u5f52 n = {}\", n);\n if n == 1 {return};\n linear_recur(n - 1);\n}\n
space_complexity.c/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n printf(\"\u9012\u5f52 n = %d\\r\\n\", n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn linearRecur(comptime n: i32) void {\n std.debug.print(\"\u9012\u5f52 n = {}\\n\", .{n});\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
Figure 2-17 \u00a0 Recursive Function Generating Linear Order Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#3-quadratic-order-on2","title":"3. \u00a0 Quadratic Order \\(O(n^2)\\)","text":"Quadratic order is common in matrices and graphs, where the number of elements is quadratic to \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic(n: int):\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n # \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n num_matrix = [[0] * n for _ in range(n)]\n
space_complexity.cpp/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n vector<vector<int>> numMatrix;\n for (int i = 0; i < n; i++) {\n vector<int> tmp;\n for (int j = 0; j < n; j++) {\n tmp.push_back(0);\n }\n numMatrix.push_back(tmp);\n }\n}\n
space_complexity.java/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[][] numMatrix = new int[n][n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<Integer>> numList = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n List<Integer> tmp = new ArrayList<>();\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636 */\nvoid Quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[,] numMatrix = new int[n, n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (int i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.Add(0);\n }\n numList.Add(tmp);\n }\n}\n
space_complexity.go/* \u5e73\u65b9\u9636 */\nfunc spaceQuadratic(n int) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n numMatrix := make([][]int, n)\n for i := 0; i < n; i++ {\n numMatrix[i] = make([]int, n)\n }\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let numList = Array(repeating: Array(repeating: 0, count: n), count: n)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): void {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numMatrix = List.generate(n, (_) => List.filled(n, 0));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (var i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636 */\n#[allow(unused)]\nfn quadratic(n: i32) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n let num_matrix = vec![vec![0; n as usize]; n as usize];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let mut num_list = Vec::new();\n for i in 0..n {\n let mut tmp = Vec::new();\n for j in 0..n {\n tmp.push(0);\n }\n num_list.push(tmp);\n }\n}\n
space_complexity.c/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n int **numMatrix = malloc(sizeof(int *) * n);\n for (int i = 0; i < n; i++) {\n int *tmp = malloc(sizeof(int) * n);\n for (int j = 0; j < n; j++) {\n tmp[j] = 0;\n }\n numMatrix[i] = tmp;\n }\n\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(numMatrix[i]);\n }\n free(numMatrix);\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) !void {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n var nodes = std.ArrayList(std.ArrayList(i32)).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n var tmp = std.ArrayList(i32).init(std.heap.page_allocator);\n defer tmp.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n try tmp.append(0);\n }\n try nodes.append(tmp);\n }\n}\n
As shown below, the recursive depth of this function is \\(n\\), and in each recursive call, an array is initialized with lengths \\(n\\), \\(n-1\\), \\(\\dots\\), \\(2\\), \\(1\\), averaging \\(n/2\\), thus overall occupying \\(O(n^2)\\) space:
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic_recur(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 0:\n return 0\n # \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n nums = [0] * n\n return quadratic_recur(n - 1)\n
space_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n vector<int> nums(n);\n cout << \"\u9012\u5f52 n = \" << n << \" \u4e2d\u7684 nums \u957f\u5ea6 = \" << nums.size() << endl;\n return quadraticRecur(n - 1);\n}\n
space_complexity.java/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n int[] nums = new int[n];\n System.out.println(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.length);\n return quadraticRecur(n - 1);\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint QuadraticRecur(int n) {\n if (n <= 0) return 0;\n int[] nums = new int[n];\n Console.WriteLine(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.Length);\n return QuadraticRecur(n - 1);\n}\n
space_complexity.go/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceQuadraticRecur(n int) int {\n if n <= 0 {\n return 0\n }\n nums := make([]int, n)\n fmt.Printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d \\n\", n, len(nums))\n return spaceQuadraticRecur(n - 1)\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\n@discardableResult\nfunc quadraticRecur(n: Int) -> Int {\n if n <= 0 {\n return 0\n }\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = Array(repeating: 0, count: n)\n print(\"\u9012\u5f52 n = \\(n) \u4e2d\u7684 nums \u957f\u5ea6 = \\(nums.count)\")\n return quadraticRecur(n: n - 1)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n) {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n: number): number {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0) return 0;\n List<int> nums = List.filled(n, 0);\n print('\u9012\u5f52 n = $n \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}');\n return quadraticRecur(n - 1);\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn quadratic_recur(n: i32) -> i32 {\n if n <= 0 {return 0};\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = vec![0; n as usize];\n println!(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\", n, nums.len());\n return quadratic_recur(n - 1);\n}\n
space_complexity.c/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n int *nums = malloc(sizeof(int) * n);\n printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d\\r\\n\", n, n);\n int res = quadraticRecur(n - 1);\n free(nums);\n return res;\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn quadraticRecur(comptime n: i32) i32 {\n if (n <= 0) return 0;\n var nums = [_]i32{0}**n;\n std.debug.print(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\\n\", .{n, nums.len});\n return quadraticRecur(n - 1);\n}\n
Figure 2-18 \u00a0 Recursive Function Generating Quadratic Order Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#4-exponential-order-o2n","title":"4. \u00a0 Exponential Order \\(O(2^n)\\)","text":"Exponential order is common in binary trees. Observe the below image, a \"full binary tree\" with \\(n\\) levels has \\(2^n - 1\\) nodes, occupying \\(O(2^n)\\) space:
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef build_tree(n: int) -> TreeNode | None:\n \"\"\"\u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\"\"\"\n if n == 0:\n return None\n root = TreeNode(0)\n root.left = build_tree(n - 1)\n root.right = build_tree(n - 1)\n return root\n
space_complexity.cpp/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return nullptr;\n TreeNode *root = new TreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.java/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode buildTree(int n) {\n if (n == 0)\n return null;\n TreeNode root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.cs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? BuildTree(int n) {\n if (n == 0) return null;\n TreeNode root = new(0) {\n left = BuildTree(n - 1),\n right = BuildTree(n - 1)\n };\n return root;\n}\n
space_complexity.go/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n int) *treeNode {\n if n == 0 {\n return nil\n }\n root := newTreeNode(0)\n root.left = buildTree(n - 1)\n root.right = buildTree(n - 1)\n return root\n}\n
space_complexity.swift/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n: Int) -> TreeNode? {\n if n == 0 {\n return nil\n }\n let root = TreeNode(x: 0)\n root.left = buildTree(n: n - 1)\n root.right = buildTree(n: n - 1)\n return root\n}\n
space_complexity.js/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n) {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.ts/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n: number): TreeNode | null {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.dart/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\n if (n == 0) return null;\n TreeNode root = TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.rs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {\n if n == 0 {return None};\n let root = TreeNode::new(0);\n root.borrow_mut().left = build_tree(n - 1);\n root.borrow_mut().right = build_tree(n - 1);\n return Some(root);\n}\n
space_complexity.c/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return NULL;\n TreeNode *root = newTreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.zig// \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\nfn buildTree(mem_allocator: std.mem.Allocator, n: i32) !?*inc.TreeNode(i32) {\n if (n == 0) return null;\n const root = try mem_allocator.create(inc.TreeNode(i32));\n root.init(0);\n root.left = try buildTree(mem_allocator, n - 1);\n root.right = try buildTree(mem_allocator, n - 1);\n return root;\n}\n
Figure 2-19 \u00a0 Full Binary Tree Generating Exponential Order Space Complexity
"},{"location":"chapter_computational_complexity/space_complexity/#5-logarithmic-order-olog-n","title":"5. \u00a0 Logarithmic Order \\(O(\\log n)\\)","text":"Logarithmic order is common in divide-and-conquer algorithms. For example, in merge sort, an array of length \\(n\\) is recursively divided in half each round, forming a recursion tree of height \\(\\log n\\), using \\(O(\\log n)\\) stack frame space.
Another example is converting a number to a string. Given a positive integer \\(n\\), its number of digits is \\(\\log_{10} n + 1\\), corresponding to the length of the string, thus the space complexity is \\(O(\\log_{10} n + 1) = O(\\log n)\\).
"},{"location":"chapter_computational_complexity/space_complexity/#244-balancing-time-and-space","title":"2.4.4 \u00a0 Balancing Time and Space","text":"Ideally, we aim for both time complexity and space complexity to be optimal. However, in practice, optimizing both simultaneously is often difficult.
Lowering time complexity usually comes at the cost of increased space complexity, and vice versa. The approach of sacrificing memory space to improve algorithm speed is known as \"space-time tradeoff\"; the reverse is known as \"time-space tradeoff\".
The choice depends on which aspect we value more. In most cases, time is more precious than space, so \"space-time tradeoff\" is often the more common strategy. Of course, controlling space complexity is also very important when dealing with large volumes of data.
"},{"location":"chapter_computational_complexity/summary/","title":"2.5 \u00a0 Summary","text":""},{"location":"chapter_computational_complexity/summary/#1-key-review","title":"1. \u00a0 Key Review","text":"Algorithm Efficiency Assessment
- Time efficiency and space efficiency are the two main criteria for assessing the merits of an algorithm.
- We can assess algorithm efficiency through actual testing, but it's challenging to eliminate the influence of the test environment, and it consumes substantial computational resources.
- Complexity analysis can overcome the disadvantages of actual testing. Its results are applicable across all operating platforms and can reveal the efficiency of algorithms at different data scales.
Time Complexity
- Time complexity measures the trend of an algorithm's running time with the increase in data volume, effectively assessing algorithm efficiency. However, it can fail in certain cases, such as with small input data volumes or when time complexities are the same, making it challenging to precisely compare the efficiency of algorithms.
- Worst-case time complexity is denoted using big O notation, representing the asymptotic upper bound, reflecting the growth level of the number of operations \\(T(n)\\) as \\(n\\) approaches infinity.
- Calculating time complexity involves two steps: first counting the number of operations, then determining the asymptotic upper bound.
- Common time complexities, arranged from low to high, include \\(O(1)\\), \\(O(\\log n)\\), \\(O(n)\\), \\(O(n \\log n)\\), \\(O(n^2)\\), \\(O(2^n)\\), and \\(O(n!)\\), among others.
- The time complexity of some algorithms is not fixed and depends on the distribution of input data. Time complexities are divided into worst, best, and average cases. The best case is rarely used because input data generally needs to meet strict conditions to achieve the best case.
- Average time complexity reflects the efficiency of an algorithm under random data inputs, closely resembling the algorithm's performance in actual applications. Calculating average time complexity requires accounting for the distribution of input data and the subsequent mathematical expectation.
Space Complexity
- Space complexity, similar to time complexity, measures the trend of memory space occupied by an algorithm with the increase in data volume.
- The relevant memory space used during the algorithm's execution can be divided into input space, temporary space, and output space. Generally, input space is not included in space complexity calculations. Temporary space can be divided into temporary data, stack frame space, and instruction space, where stack frame space usually affects space complexity only in recursive functions.
- We usually focus only on the worst-case space complexity, which means calculating the space complexity of the algorithm under the worst input data and at the worst moment of operation.
- Common space complexities, arranged from low to high, include \\(O(1)\\), \\(O(\\log n)\\), \\(O(n)\\), \\(O(n^2)\\), and \\(O(2^n)\\), among others.
"},{"location":"chapter_computational_complexity/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"Is the space complexity of tail recursion \\(O(1)\\)?
Theoretically, the space complexity of a tail-recursive function can be optimized to \\(O(1)\\). However, most programming languages (such as Java, Python, C++, Go, C#) do not support automatic optimization of tail recursion, so it's generally considered to have a space complexity of \\(O(n)\\).
What is the difference between the terms 'function' and 'method'?
A \"function\" can be executed independently, with all parameters passed explicitly. A \"method\" is associated with an object and is implicitly passed to the object calling it, able to operate on the data contained within an instance of a class.
Here are some examples from common programming languages:
- C is a procedural programming language without object-oriented concepts, so it only has functions. However, we can simulate object-oriented programming by creating structures (struct), and functions associated with these structures are equivalent to methods in other programming languages.
- Java and C# are object-oriented programming languages where code blocks (methods) are typically part of a class. Static methods behave like functions because they are bound to the class and cannot access specific instance variables.
- C++ and Python support both procedural programming (functions) and object-oriented programming (methods).
Does the 'Common Types of Space Complexity' figure reflect the absolute size of occupied space?
No, the figure shows space complexities, which reflect growth trends, not the absolute size of the occupied space.
If you take \\(n = 8\\), you might find that the values of each curve don't correspond to their functions. This is because each curve includes a constant term, intended to compress the value range into a visually comfortable range.
In practice, since we usually don't know the \"constant term\" complexity of each method, it's generally not possible to choose the best solution for \\(n = 8\\) based solely on complexity. However, for \\(n = 8^5\\), it's much easier to choose, as the growth trend becomes dominant.
"},{"location":"chapter_computational_complexity/time_complexity/","title":"2.3 \u00a0 Time Complexity","text":"Time complexity is a concept used to measure how the run time of an algorithm increases with the size of the input data. Understanding time complexity is crucial for accurately assessing the efficiency of an algorithm.
- Determining the Running Platform: This includes hardware configuration, programming language, system environment, etc., all of which can affect the efficiency of code execution.
- Evaluating the Run Time for Various Computational Operations: For instance, an addition operation
+ might take 1 ns, a multiplication operation * might take 10 ns, a print operation print() might take 5 ns, etc. - Counting All the Computational Operations in the Code: Summing the execution times of all these operations gives the total run time.
For example, consider the following code with an input size of \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig # Under an operating platform\ndef algorithm(n: int):\n a = 2 # 1 ns\n a = a + 1 # 1 ns\n a = a * 2 # 10 ns\n # Cycle n times\n for _ in range(n): # 1 ns\n print(0) # 5 ns\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n cout << 0 << endl; // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n System.out.println(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid Algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n Console.WriteLine(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfunc algorithm(n int) {\n a := 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // Loop n times\n for i := 0; i < n; i++ { // 1 ns\n fmt.Println(a) // 5 ns\n }\n}\n
// Under a particular operating platform\nfunc algorithm(n: Int) {\n var a = 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // Loop n times\n for _ in 0 ..< n { // 1 ns\n print(0) // 5 ns\n }\n}\n
// Under a particular operating platform\nfunction algorithm(n) {\n var a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for(let i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n console.log(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfunction algorithm(n: number): void {\n var a: number = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for(let i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n console.log(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n print(0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfn algorithm(n: i32) {\n let mut a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for _ in 0..n { // 1 ns for each round i++\n println!(\"{}\", 0); // 5 ns\n }\n}\n
// Under a particular operating platform\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // Loop n times\n for (int i = 0; i < n; i++) { // 1 ns , every round i++ is executed\n printf(\"%d\", 0); // 5 ns\n }\n}\n
// Under a particular operating platform\nfn algorithm(n: usize) void {\n var a: i32 = 2; // 1 ns\n a += 1; // 1 ns\n a *= 2; // 10 ns\n // Loop n times\n for (0..n) |_| { // 1 ns\n std.debug.print(\"{}\\n\", .{0}); // 5 ns\n }\n}\n
Using the above method, the run time of the algorithm can be calculated as \\((6n + 12)\\) ns:
\\[ 1 + 1 + 10 + (1 + 5) \\times n = 6n + 12 \\] However, in practice, counting the run time of an algorithm is neither practical nor reasonable. First, we don't want to tie the estimated time to the running platform, as algorithms need to run on various platforms. Second, it's challenging to know the run time for each type of operation, making the estimation process difficult.
"},{"location":"chapter_computational_complexity/time_complexity/#231-assessing-time-growth-trend","title":"2.3.1 \u00a0 Assessing Time Growth Trend","text":"Time complexity analysis does not count the algorithm's run time, but rather the growth trend of the run time as the data volume increases.
Let's understand this concept of \"time growth trend\" with an example. Assume the input data size is \\(n\\), and consider three algorithms A, B, and C:
PythonC++JavaC#GoSwiftJSTSDartRustCZig # Time complexity of algorithm A: constant order\ndef algorithm_A(n: int):\n print(0)\n# Time complexity of algorithm B: linear order\ndef algorithm_B(n: int):\n for _ in range(n):\n print(0)\n# Time complexity of algorithm C: constant order\ndef algorithm_C(n: int):\n for _ in range(1000000):\n print(0)\n
// Time complexity of algorithm A: constant order\nvoid algorithm_A(int n) {\n cout << 0 << endl;\n}\n// Time complexity of algorithm B: linear order\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n cout << 0 << endl;\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n cout << 0 << endl;\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid algorithm_A(int n) {\n System.out.println(0);\n}\n// Time complexity of algorithm B: linear order\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n System.out.println(0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n System.out.println(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid AlgorithmA(int n) {\n Console.WriteLine(0);\n}\n// Time complexity of algorithm B: linear order\nvoid AlgorithmB(int n) {\n for (int i = 0; i < n; i++) {\n Console.WriteLine(0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid AlgorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n Console.WriteLine(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfunc algorithm_A(n int) {\n fmt.Println(0)\n}\n// Time complexity of algorithm B: linear order\nfunc algorithm_B(n int) {\n for i := 0; i < n; i++ {\n fmt.Println(0)\n }\n}\n// Time complexity of algorithm C: constant order\nfunc algorithm_C(n int) {\n for i := 0; i < 1000000; i++ {\n fmt.Println(0)\n }\n}\n
// Time complexity of algorithm A: constant order\nfunc algorithmA(n: Int) {\n print(0)\n}\n\n// Time complexity of algorithm B: linear order\nfunc algorithmB(n: Int) {\n for _ in 0 ..< n {\n print(0)\n }\n}\n\n// Time complexity of algorithm C: constant order\nfunc algorithmC(n: Int) {\n for _ in 0 ..< 1000000 {\n print(0)\n }\n}\n
// Time complexity of algorithm A: constant order\nfunction algorithm_A(n) {\n console.log(0);\n}\n// Time complexity of algorithm B: linear order\nfunction algorithm_B(n) {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// Time complexity of algorithm C: constant order\nfunction algorithm_C(n) {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfunction algorithm_A(n: number): void {\n console.log(0);\n}\n// Time complexity of algorithm B: linear order\nfunction algorithm_B(n: number): void {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// Time complexity of algorithm C: constant order\nfunction algorithm_C(n: number): void {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid algorithmA(int n) {\n print(0);\n}\n// Time complexity of algorithm B: linear order\nvoid algorithmB(int n) {\n for (int i = 0; i < n; i++) {\n print(0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n print(0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfn algorithm_A(n: i32) {\n println!(\"{}\", 0);\n}\n// Time complexity of algorithm B: linear order\nfn algorithm_B(n: i32) {\n for _ in 0..n {\n println!(\"{}\", 0);\n }\n}\n// Time complexity of algorithm C: constant order\nfn algorithm_C(n: i32) {\n for _ in 0..1000000 {\n println!(\"{}\", 0);\n }\n}\n
// Time complexity of algorithm A: constant order\nvoid algorithm_A(int n) {\n printf(\"%d\", 0);\n}\n// Time complexity of algorithm B: linear order\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n printf(\"%d\", 0);\n }\n}\n// Time complexity of algorithm C: constant order\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n printf(\"%d\", 0);\n }\n}\n
// Time complexity of algorithm A: constant order\nfn algorithm_A(n: usize) void {\n _ = n;\n std.debug.print(\"{}\\n\", .{0});\n}\n// Time complexity of algorithm B: linear order\nfn algorithm_B(n: i32) void {\n for (0..n) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n}\n// Time complexity of algorithm C: constant order\nfn algorithm_C(n: i32) void {\n _ = n;\n for (0..1000000) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n}\n
The following figure shows the time complexities of these three algorithms.
- Algorithm
A has just one print operation, and its run time does not grow with \\(n\\). Its time complexity is considered \"constant order.\" - Algorithm
B involves a print operation looping \\(n\\) times, and its run time grows linearly with \\(n\\). Its time complexity is \"linear order.\" - Algorithm
C has a print operation looping 1,000,000 times. Although it takes a long time, it is independent of the input data size \\(n\\). Therefore, the time complexity of C is the same as A, which is \"constant order.\"
Figure 2-7 \u00a0 Time Growth Trend of Algorithms A, B, and C
Compared to directly counting the run time of an algorithm, what are the characteristics of time complexity analysis?
- Time complexity effectively assesses algorithm efficiency. For instance, algorithm
B has linearly growing run time, which is slower than algorithm A when \\(n > 1\\) and slower than C when \\(n > 1,000,000\\). In fact, as long as the input data size \\(n\\) is sufficiently large, a \"constant order\" complexity algorithm will always be better than a \"linear order\" one, demonstrating the essence of time growth trend. - Time complexity analysis is more straightforward. Obviously, the running platform and the types of computational operations are irrelevant to the trend of run time growth. Therefore, in time complexity analysis, we can simply treat the execution time of all computational operations as the same \"unit time,\" simplifying the \"computational operation run time count\" to a \"computational operation count.\" This significantly reduces the complexity of estimation.
- Time complexity has its limitations. For example, although algorithms
A and C have the same time complexity, their actual run times can be quite different. Similarly, even though algorithm B has a higher time complexity than C, it is clearly superior when the input data size \\(n\\) is small. In these cases, it's difficult to judge the efficiency of algorithms based solely on time complexity. Nonetheless, despite these issues, complexity analysis remains the most effective and commonly used method for evaluating algorithm efficiency.
"},{"location":"chapter_computational_complexity/time_complexity/#232-asymptotic-upper-bound","title":"2.3.2 \u00a0 Asymptotic Upper Bound","text":"Consider a function with an input size of \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +1\n a = a + 1 # +1\n a = a * 2 # +1\n # Cycle n times\n for i in range(n): # +1\n print(0) # +1\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n cout << 0 << endl; // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n System.out.println(0); // +1\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n Console.WriteLine(0); // +1\n }\n}\n
func algorithm(n int) {\n a := 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // Loop n times\n for i := 0; i < n; i++ { // +1\n fmt.Println(a) // +1\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // Loop n times\n for _ in 0 ..< n { // +1\n print(0) // +1\n }\n}\n
function algorithm(n) {\n var a = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // Loop n times\n for(let i = 0; i < n; i++){ // +1 (execute i ++ every round)\n console.log(0); // +1\n }\n}\n
function algorithm(n: number): void{\n var a: number = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // Loop n times\n for(let i = 0; i < n; i++){ // +1 (execute i ++ every round)\n console.log(0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n print(0); // +1\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n\n // Loop n times\n for _ in 0..n { // +1 (execute i ++ every round)\n println!(\"{}\", 0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // Loop n times\n for (int i = 0; i < n; i++) { // +1 (execute i ++ every round)\n printf(\"%d\", 0); // +1\n }\n} \n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // Loop n times\n for (0..n) |_| { // +1 (execute i ++ every round)\n std.debug.print(\"{}\\n\", .{0}); // +1\n }\n}\n
Given a function that represents the number of operations of an algorithm as a function of the input size \\(n\\), denoted as \\(T(n)\\), consider the following example:
\\[ T(n) = 3 + 2n \\] Since \\(T(n)\\) is a linear function, its growth trend is linear, and therefore, its time complexity is of linear order, denoted as \\(O(n)\\). This mathematical notation, known as \"big-O notation,\" represents the \"asymptotic upper bound\" of the function \\(T(n)\\).
In essence, time complexity analysis is about finding the asymptotic upper bound of the \"number of operations \\(T(n)\\)\". It has a precise mathematical definition.
Asymptotic Upper Bound
If there exist positive real numbers \\(c\\) and \\(n_0\\) such that for all \\(n > n_0\\), \\(T(n) \\leq c \\cdot f(n)\\), then \\(f(n)\\) is considered an asymptotic upper bound of \\(T(n)\\), denoted as \\(T(n) = O(f(n))\\).
As illustrated below, calculating the asymptotic upper bound involves finding a function \\(f(n)\\) such that, as \\(n\\) approaches infinity, \\(T(n)\\) and \\(f(n)\\) have the same growth order, differing only by a constant factor \\(c\\).
Figure 2-8 \u00a0 Asymptotic Upper Bound of a Function
"},{"location":"chapter_computational_complexity/time_complexity/#233-calculation-method","title":"2.3.3 \u00a0 Calculation Method","text":"While the concept of asymptotic upper bound might seem mathematically dense, you don't need to fully grasp it right away. Let's first understand the method of calculation, which can be practiced and comprehended over time.
Once \\(f(n)\\) is determined, we obtain the time complexity \\(O(f(n))\\). But how do we determine the asymptotic upper bound \\(f(n)\\)? This process generally involves two steps: counting the number of operations and determining the asymptotic upper bound.
"},{"location":"chapter_computational_complexity/time_complexity/#1-step-1-counting-the-number-of-operations","title":"1. \u00a0 Step 1: Counting the Number of Operations","text":"This step involves going through the code line by line. However, due to the presence of the constant \\(c\\) in \\(c \\cdot f(n)\\), all coefficients and constant terms in \\(T(n)\\) can be ignored. This principle allows for simplification techniques in counting operations.
- Ignore constant terms in \\(T(n)\\), as they do not affect the time complexity being independent of \\(n\\).
- Omit all coefficients. For example, looping \\(2n\\), \\(5n + 1\\) times, etc., can be simplified to \\(n\\) times since the coefficient before \\(n\\) does not impact the time complexity.
- Use multiplication for nested loops. The total number of operations equals the product of the number of operations in each loop, applying the simplification techniques from points 1 and 2 for each loop level.
Given a function, we can use these techniques to count operations:
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +0 (trick 1)\n a = a + n # +0 (trick 1)\n # +n (technique 2)\n for i in range(5 * n + 1):\n print(0)\n # +n*n (technique 3)\n for i in range(2 * n):\n for j in range(n + 1):\n print(0)\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n cout << 0 << endl;\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n cout << 0 << endl;\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n System.out.println(0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n System.out.println(0);\n }\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n Console.WriteLine(0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n Console.WriteLine(0);\n }\n }\n}\n
func algorithm(n int) {\n a := 1 // +0 (trick 1)\n a = a + n // +0 (trick 1)\n // +n (technique 2)\n for i := 0; i < 5 * n + 1; i++ {\n fmt.Println(0)\n }\n // +n*n (technique 3)\n for i := 0; i < 2 * n; i++ {\n for j := 0; j < n + 1; j++ {\n fmt.Println(0)\n }\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +0 (trick 1)\n a = a + n // +0 (trick 1)\n // +n (technique 2)\n for _ in 0 ..< (5 * n + 1) {\n print(0)\n }\n // +n*n (technique 3)\n for _ in 0 ..< (2 * n) {\n for _ in 0 ..< (n + 1) {\n print(0)\n }\n }\n}\n
function algorithm(n) {\n let a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n (technique 3)\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
function algorithm(n: number): void {\n let a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n (technique 3)\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n print(0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n print(0);\n }\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n\n // +n (technique 2)\n for i in 0..(5 * n + 1) {\n println!(\"{}\", 0);\n }\n\n // +n*n (technique 3)\n for i in 0..(2 * n) {\n for j in 0..(n + 1) {\n println!(\"{}\", 0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0 (trick 1)\n a = a + n; // +0 (trick 1)\n // +n (technique 2)\n for (int i = 0; i < 5 * n + 1; i++) {\n printf(\"%d\", 0);\n }\n // +n*n (technique 3)\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n printf(\"%d\", 0);\n }\n }\n}\n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +0 (trick 1)\n a = a + @as(i32, @intCast(n)); // +0 (trick 1)\n\n // +n (technique 2)\n for(0..(5 * n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n\n // +n*n (technique 3)\n for(0..(2 * n)) |_| {\n for(0..(n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n }\n}\n
The formula below shows the counting results before and after simplification, both leading to a time complexity of \\(O(n^2)\\):
\\[ \\begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \\text{Complete Count (-.-|||)} \\newline & = 2n^2 + 7n + 3 \\newline T(n) & = n^2 + n & \\text{Simplified Count (o.O)} \\end{aligned} \\]"},{"location":"chapter_computational_complexity/time_complexity/#2-step-2-determining-the-asymptotic-upper-bound","title":"2. \u00a0 Step 2: Determining the Asymptotic Upper Bound","text":"The time complexity is determined by the highest order term in \\(T(n)\\). This is because, as \\(n\\) approaches infinity, the highest order term dominates, rendering the influence of other terms negligible.
The following table illustrates examples of different operation counts and their corresponding time complexities. Some exaggerated values are used to emphasize that coefficients cannot alter the order of growth. When \\(n\\) becomes very large, these constants become insignificant.
Table: Time Complexity for Different Operation Counts
Operation Count \\(T(n)\\) Time Complexity \\(O(f(n))\\) \\(100000\\) \\(O(1)\\) \\(3n + 2\\) \\(O(n)\\) \\(2n^2 + 3n + 2\\) \\(O(n^2)\\) \\(n^3 + 10000n^2\\) \\(O(n^3)\\) \\(2^n + 10000n^{10000}\\) \\(O(2^n)\\)"},{"location":"chapter_computational_complexity/time_complexity/#234-common-types-of-time-complexity","title":"2.3.4 \u00a0 Common Types of Time Complexity","text":"Let's consider the input data size as \\(n\\). The common types of time complexities are illustrated below, arranged from lowest to highest:
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n \\log n) < O(n^2) < O(2^n) < O(n!) \\newline \\text{Constant Order} < \\text{Logarithmic Order} < \\text{Linear Order} < \\text{Linear-Logarithmic Order} < \\text{Quadratic Order} < \\text{Exponential Order} < \\text{Factorial Order} \\end{aligned} \\] Figure 2-9 \u00a0 Common Types of Time Complexity
"},{"location":"chapter_computational_complexity/time_complexity/#1-constant-order-o1","title":"1. \u00a0 Constant Order \\(O(1)\\)","text":"Constant order means the number of operations is independent of the input data size \\(n\\). In the following function, although the number of operations size might be large, the time complexity remains \\(O(1)\\) as it's unrelated to \\(n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef constant(n: int) -> int:\n \"\"\"\u5e38\u6570\u9636\"\"\"\n count = 0\n size = 100000\n for _ in range(size):\n count += 1\n return count\n
time_complexity.cpp/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u5e38\u6570\u9636 */\nint Constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u5e38\u6570\u9636 */\nfunc constant(n int) int {\n count := 0\n size := 100000\n for i := 0; i < size; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) -> Int {\n var count = 0\n let size = 100_000\n for _ in 0 ..< size {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u5e38\u6570\u9636 */\nfunction constant(n: number): number {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (var i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5e38\u6570\u9636 */\nfn constant(n: i32) -> i32 {\n _ = n;\n let mut count = 0;\n let size = 100_000;\n for _ in 0..size {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n int i = 0;\n for (int i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5e38\u6570\u9636\nfn constant(n: i32) i32 {\n _ = n;\n var count: i32 = 0;\n const size: i32 = 100_000;\n var i: i32 = 0;\n while(i<size) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#2-linear-order-on","title":"2. \u00a0 Linear Order \\(O(n)\\)","text":"Linear order indicates the number of operations grows linearly with the input data size \\(n\\). Linear order commonly appears in single-loop structures:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear(n: int) -> int:\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n count = 0\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636 */\nint Linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636 */\nfunc linear(n int) int {\n count := 0\n for i := 0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) -> Int {\n var count = 0\n for _ in 0 ..< n {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): number {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636 */\nfn linear(n: i32) -> i32 {\n let mut count = 0;\n for _ in 0..n {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\nfn linear(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
Operations like array traversal and linked list traversal have a time complexity of \\(O(n)\\), where \\(n\\) is the length of the array or list:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef array_traversal(nums: list[int]) -> int:\n \"\"\"\u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for num in nums:\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(vector<int> &nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint ArrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n foreach (int num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums []int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for range nums {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums: [Int]) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums: number[]): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(List<int> nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (var _num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfn array_traversal(nums: &[i32]) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int *nums, int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\nfn arrayTraversal(nums: []i32) i32 {\n var count: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (nums) |_| {\n count += 1;\n }\n return count;\n}\n
It's important to note that the input data size \\(n\\) should be determined based on the type of input data. For example, in the first example, \\(n\\) represents the input data size, while in the second example, the length of the array \\(n\\) is the data size.
"},{"location":"chapter_computational_complexity/time_complexity/#3-quadratic-order-on2","title":"3. \u00a0 Quadratic Order \\(O(n^2)\\)","text":"Quadratic order means the number of operations grows quadratically with the input data size \\(n\\). Quadratic order typically appears in nested loops, where both the outer and inner loops have a time complexity of \\(O(n)\\), resulting in an overall complexity of \\(O(n^2)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef quadratic(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i in range(n):\n for j in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636 */\nint Quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636 */\nfunc quadratic(n int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i := 0; i < n; i++ {\n for j := 0; j < n; j++ {\n count++\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0 ..< n {\n for _ in 0 ..< n {\n count += 1\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636 */\nfn quadratic(n: i32) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0..n {\n for _ in 0..n {\n count += 1;\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n count += 1;\n }\n }\n return count;\n}\n
The following image compares constant order, linear order, and quadratic order time complexities.
Figure 2-10 \u00a0 Constant, Linear, and Quadratic Order Time Complexities
For instance, in bubble sort, the outer loop runs \\(n - 1\\) times, and the inner loop runs \\(n-1\\), \\(n-2\\), ..., \\(2\\), \\(1\\) times, averaging \\(n / 2\\) times, resulting in a time complexity of \\(O((n - 1) n / 2) = O(n^2)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef bubble_sort(nums: list[int]) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\"\"\"\n count = 0 # \u8ba1\u6570\u5668\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(len(nums) - 1, 0, -1):\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp: int = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 # \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(vector<int> &nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint BubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums []int) int {\n count := 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp := nums[j]\n nums[j] = nums[j+1]\n nums[j+1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums: inout [Int]) -> Int {\n var count = 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0 ..< i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums) {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums: number[]): number {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(List<int> nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (var i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (var j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfn bubble_sort(nums: &mut [i32]) -> i32 {\n let mut count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int *nums, int n) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = n - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\nfn bubbleSort(nums: []i32) i32 {\n var count: i32 = 0; // \u8ba1\u6570\u5668 \n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: i32 = @as(i32, @intCast(nums.len)) - 1;\n while (i > 0) : (i -= 1) {\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#4-exponential-order-o2n","title":"4. \u00a0 Exponential Order \\(O(2^n)\\)","text":"Biological \"cell division\" is a classic example of exponential order growth: starting with one cell, it becomes two after one division, four after two divisions, and so on, resulting in \\(2^n\\) cells after \\(n\\) divisions.
The following image and code simulate the cell division process, with a time complexity of \\(O(2^n)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exponential(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n base = 1\n # \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in range(n):\n for _ in range(base):\n count += 1\n base *= 2\n # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Exponential(int n) {\n int count = 0, bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc exponential(n int) int {\n count, base := 0, 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for i := 0; i < n; i++ {\n for j := 0; j < base; j++ {\n count++\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc exponential(n: Int) -> Int {\n var count = 0\n var base = 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0 ..< n {\n for _ in 0 ..< base {\n count += 1\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n) {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n: number): number {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (var i = 0; i < n; i++) {\n for (var j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn exponential(n: i32) -> i32 {\n let mut count = 0;\n let mut base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0..n {\n for _ in 0..base {\n count += 1\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n count\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0;\n int bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn exponential(n: i32) i32 {\n var count: i32 = 0;\n var bas: i32 = 1;\n var i: i32 = 0;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < bas) : (j += 1) {\n count += 1;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
Figure 2-11 \u00a0 Exponential Order Time Complexity
In practice, exponential order often appears in recursive functions. For example, in the code below, it recursively splits into two halves, stopping after \\(n\\) divisions:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exp_recur(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 1:\n return 1\n return exp_recur(n - 1) + exp_recur(n - 1) + 1\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint ExpRecur(int n) {\n if (n == 1) return 1;\n return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc expRecur(n int) int {\n if n == 1 {\n return 1\n }\n return expRecur(n-1) + expRecur(n-1) + 1\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc expRecur(n: Int) -> Int {\n if n == 1 {\n return 1\n }\n return expRecur(n: n - 1) + expRecur(n: n - 1) + 1\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n) {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n: number): number {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn exp_recur(n: i32) -> i32 {\n if n == 1 {\n return 1;\n }\n exp_recur(n - 1) + exp_recur(n - 1) + 1\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn expRecur(n: i32) i32 {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
Exponential order growth is extremely rapid and is commonly seen in exhaustive search methods (brute force, backtracking, etc.). For large-scale problems, exponential order is unacceptable, often requiring dynamic programming or greedy algorithms as solutions.
"},{"location":"chapter_computational_complexity/time_complexity/#5-logarithmic-order-olog-n","title":"5. \u00a0 Logarithmic Order \\(O(\\log n)\\)","text":"In contrast to exponential order, logarithmic order reflects situations where \"the size is halved each round.\" Given an input data size \\(n\\), since the size is halved each round, the number of iterations is \\(\\log_2 n\\), the inverse function of \\(2^n\\).
The following image and code simulate the \"halving each round\" process, with a time complexity of \\(O(\\log_2 n)\\), commonly abbreviated as \\(O(\\log n)\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef logarithmic(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n while n > 1:\n n = n / 2\n count += 1\n return count\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n /= 2;\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc logarithmic(n float64) int {\n count := 0\n for n > 1 {\n n = n / 2\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc logarithmic(n: Double) -> Int {\n var count = 0\n var n = n\n while n > 1 {\n n = n / 2\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n) {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n: number): number {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(num n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn logarithmic(mut n: f32) -> i32 {\n let mut count = 0;\n while n > 1.0 {\n n = n / 2.0;\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn logarithmic(n: f32) i32 {\n var count: i32 = 0;\n var n_var = n;\n while (n_var > 1)\n {\n n_var = n_var / 2;\n count +=1;\n }\n return count;\n}\n
Figure 2-12 \u00a0 Logarithmic Order Time Complexity
Like exponential order, logarithmic order also frequently appears in recursive functions. The code below forms a recursive tree of height \\(\\log_2 n\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef log_recur(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 1:\n return 0\n return log_recur(n / 2) + 1\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint LogRecur(float n) {\n if (n <= 1) return 0;\n return LogRecur(n / 2) + 1;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc logRecur(n float64) int {\n if n <= 1 {\n return 0\n }\n return logRecur(n/2) + 1\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc logRecur(n: Double) -> Int {\n if n <= 1 {\n return 0\n }\n return logRecur(n: n / 2) + 1\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n: number): number {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(num n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 0;\n }\n log_recur(n / 2.0) + 1\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn logRecur(n: f32) i32 {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
Logarithmic order is typical in algorithms based on the divide-and-conquer strategy, embodying the \"split into many\" and \"simplify complex problems\" approach. It's slow-growing and is the most ideal time complexity after constant order.
What is the base of \\(O(\\log n)\\)?
Technically, \"splitting into \\(m\\)\" corresponds to a time complexity of \\(O(\\log_m n)\\). Using the logarithm base change formula, we can equate different logarithmic complexities:
\\[ O(\\log_m n) = O(\\log_k n / \\log_k m) = O(\\log_k n) \\] This means the base \\(m\\) can be changed without affecting the complexity. Therefore, we often omit the base \\(m\\) and simply denote logarithmic order as \\(O(\\log n)\\).
"},{"location":"chapter_computational_complexity/time_complexity/#6-linear-logarithmic-order-on-log-n","title":"6. \u00a0 Linear-Logarithmic Order \\(O(n \\log n)\\)","text":"Linear-logarithmic order often appears in nested loops, with the complexities of the two loops being \\(O(\\log n)\\) and \\(O(n)\\) respectively. The related code is as follows:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear_log_recur(n: float) -> int:\n \"\"\"\u7ebf\u6027\u5bf9\u6570\u9636\"\"\"\n if n <= 1:\n return 1\n count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint LinearLogRecur(float n) {\n if (n <= 1) return 1;\n int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n float64) int {\n if n <= 1 {\n return 1\n }\n count := linearLogRecur(n/2) + linearLogRecur(n/2)\n for i := 0.0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n: Double) -> Int {\n if n <= 1 {\n return 1\n }\n var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)\n for _ in stride(from: 0, to: n, by: 1) {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n) {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n: number): number {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(num n) {\n if (n <= 1) return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfn linear_log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 1;\n }\n let mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);\n for _ in 0 ..n as i32 {\n count += 1;\n }\n return count\n}\n
time_complexity.c/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u5bf9\u6570\u9636\nfn linearLogRecur(n: f32) i32 {\n if (n <= 1) return 1;\n var count: i32 = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n var i: f32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
The image below demonstrates how linear-logarithmic order is generated. Each level of a binary tree has \\(n\\) operations, and the tree has \\(\\log_2 n + 1\\) levels, resulting in a time complexity of \\(O(n \\log n)\\).
Figure 2-13 \u00a0 Linear-Logarithmic Order Time Complexity
Mainstream sorting algorithms typically have a time complexity of \\(O(n \\log n)\\), such as quicksort, mergesort, and heapsort.
"},{"location":"chapter_computational_complexity/time_complexity/#7-factorial-order-on","title":"7. \u00a0 Factorial Order \\(O(n!)\\)","text":"Factorial order corresponds to the mathematical problem of \"full permutation.\" Given \\(n\\) distinct elements, the total number of possible permutations is:
\\[ n! = n \\times (n - 1) \\times (n - 2) \\times \\dots \\times 2 \\times 1 \\] Factorials are typically implemented using recursion. As shown in the image and code below, the first level splits into \\(n\\) branches, the second level into \\(n - 1\\) branches, and so on, stopping after the \\(n\\)th level:
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef factorial_recur(n: int) -> int:\n \"\"\"\u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 0:\n return 1\n count = 0\n # \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in range(n):\n count += factorial_recur(n - 1)\n return count\n
time_complexity.cpp/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.java/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.cs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint FactorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += FactorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.go/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n int) int {\n if n == 0 {\n return 1\n }\n count := 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for i := 0; i < n; i++ {\n count += factorialRecur(n - 1)\n }\n return count\n}\n
time_complexity.swift/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n: Int) -> Int {\n if n == 0 {\n return 1\n }\n var count = 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0 ..< n {\n count += factorialRecur(n: n - 1)\n }\n return count\n}\n
time_complexity.js/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n) {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.ts/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n: number): number {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.dart/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (var i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.rs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn factorial_recur(n: i32) -> i32 {\n if n == 0 {\n return 1;\n }\n let mut count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0..n {\n count += factorial_recur(n - 1);\n }\n count\n}\n
time_complexity.c/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.zig// \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn factorialRecur(n: i32) i32 {\n if (n == 0) return 1;\n var count: i32 = 0;\n var i: i32 = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n while (i < n) : (i += 1) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
Figure 2-14 \u00a0 Factorial Order Time Complexity
Note that factorial order grows even faster than exponential order; it's unacceptable for larger \\(n\\) values.
"},{"location":"chapter_computational_complexity/time_complexity/#235-worst-best-and-average-time-complexities","title":"2.3.5 \u00a0 Worst, Best, and Average Time Complexities","text":"The time efficiency of an algorithm is often not fixed but depends on the distribution of the input data. Assume we have an array nums of length \\(n\\), consisting of numbers from \\(1\\) to \\(n\\), each appearing only once, but in a randomly shuffled order. The task is to return the index of the element \\(1\\). We can draw the following conclusions:
- When
nums = [?, ?, ..., 1], that is, when the last element is \\(1\\), it requires a complete traversal of the array, achieving the worst-case time complexity of \\(O(n)\\). - When
nums = [1, ?, ?, ...], that is, when the first element is \\(1\\), no matter the length of the array, no further traversal is needed, achieving the best-case time complexity of \\(\\Omega(1)\\).
The \"worst-case time complexity\" corresponds to the asymptotic upper bound, denoted by the big \\(O\\) notation. Correspondingly, the \"best-case time complexity\" corresponds to the asymptotic lower bound, denoted by \\(\\Omega\\):
PythonC++JavaC#GoSwiftJSTSDartRustCZig worst_best_time_complexity.pydef random_numbers(n: int) -> list[int]:\n \"\"\"\u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a: 1, 2, ..., n \uff0c\u987a\u5e8f\u88ab\u6253\u4e71\"\"\"\n # \u751f\u6210\u6570\u7ec4 nums =: 1, 2, 3, ..., n\n nums = [i for i in range(1, n + 1)]\n # \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n random.shuffle(nums)\n return nums\n\ndef find_one(nums: list[int]) -> int:\n \"\"\"\u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\"\"\"\n for i in range(len(nums)):\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1:\n return i\n return -1\n
worst_best_time_complexity.cpp/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nvector<int> randomNumbers(int n) {\n vector<int> nums(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u4f7f\u7528\u7cfb\u7edf\u65f6\u95f4\u751f\u6210\u968f\u673a\u79cd\u5b50\n unsigned seed = chrono::system_clock::now().time_since_epoch().count();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n shuffle(nums.begin(), nums.end(), default_random_engine(seed));\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(vector<int> &nums) {\n for (int i = 0; i < nums.size(); i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.java/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\n Integer[] nums = new Integer[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n Collections.shuffle(Arrays.asList(nums));\n // Integer[] -> int[]\n int[] res = new int[n];\n for (int i = 0; i < n; i++) {\n res[i] = nums[i];\n }\n return res;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\n for (int i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.cs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] RandomNumbers(int n) {\n int[] nums = new int[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = 0; i < nums.Length; i++) {\n int index = new Random().Next(i, nums.Length);\n (nums[i], nums[index]) = (nums[index], nums[i]);\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint FindOne(int[] nums) {\n for (int i = 0; i < nums.Length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.go/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n int) []int {\n nums := make([]int, n)\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for i := 0; i < n; i++ {\n nums[i] = i + 1\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n rand.Shuffle(len(nums), func(i, j int) {\n nums[i], nums[j] = nums[j], nums[i]\n })\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums []int) int {\n for i := 0; i < len(nums); i++ {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.swift/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n: Int) -> [Int] {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n var nums = Array(1 ... n)\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle()\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums: [Int]) -> Int {\n for i in nums.indices {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.js/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n) {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums) {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.ts/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n: number): number[] {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums: number[]): number {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.dart/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nList<int> randomNumbers(int n) {\n final nums = List.filled(n, 0);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (var i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle();\n\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(List<int> nums) {\n for (var i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1) return i;\n }\n\n return -1;\n}\n
worst_best_time_complexity.rs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfn random_numbers(n: i32) -> Vec<i32> {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n let mut nums = (1..=n).collect::<Vec<i32>>();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle(&mut thread_rng());\n nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfn find_one(nums: &[i32]) -> Option<usize> {\n for i in 0..nums.len() {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return Some(i);\n }\n }\n None\n}\n
worst_best_time_complexity.c/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint *randomNumbers(int n) {\n // \u5206\u914d\u5806\u533a\u5185\u5b58\uff08\u521b\u5efa\u4e00\u7ef4\u53ef\u53d8\u957f\u6570\u7ec4\uff1a\u6570\u7ec4\u4e2d\u5143\u7d20\u6570\u91cf\u4e3a n \uff0c\u5143\u7d20\u7c7b\u578b\u4e3a int \uff09\n int *nums = (int *)malloc(n * sizeof(int));\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = n - 1; i > 0; i--) {\n int j = rand() % (i + 1);\n int temp = nums[i];\n nums[i] = nums[j];\n nums[j] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int *nums, int n) {\n for (int i = 0; i < n; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.zig// \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71\nfn randomNumbers(comptime n: usize) [n]i32 {\n var nums: [n]i32 = undefined;\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (&nums, 0..) |*num, i| {\n num.* = @as(i32, @intCast(i)) + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n const rand = std.crypto.random;\n rand.shuffle(i32, &nums);\n return nums;\n}\n\n// \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\nfn findOne(nums: []i32) i32 {\n for (nums, 0..) |num, i| {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (num == 1) return @intCast(i);\n }\n return -1;\n}\n
It's important to note that the best-case time complexity is rarely used in practice, as it is usually only achievable under very low probabilities and might be misleading. The worst-case time complexity is more practical as it provides a safety value for efficiency, allowing us to confidently use the algorithm.
From the above example, it's clear that both the worst-case and best-case time complexities only occur under \"special data distributions,\" which may have a small probability of occurrence and may not accurately reflect the algorithm's run efficiency. In contrast, the average time complexity can reflect the algorithm's efficiency under random input data, denoted by the \\(\\Theta\\) notation.
For some algorithms, we can simply estimate the average case under a random data distribution. For example, in the aforementioned example, since the input array is shuffled, the probability of element \\(1\\) appearing at any index is equal. Therefore, the average number of loops for the algorithm is half the length of the array \\(n / 2\\), giving an average time complexity of \\(\\Theta(n / 2) = \\Theta(n)\\).
However, calculating the average time complexity for more complex algorithms can be quite difficult, as it's challenging to analyze the overall mathematical expectation under the data distribution. In such cases, we usually use the worst-case time complexity as the standard for judging the efficiency of the algorithm.
Why is the \\(\\Theta\\) symbol rarely seen?
Possibly because the \\(O\\) notation is more commonly spoken, it is often used to represent the average time complexity. However, strictly speaking, this practice is not accurate. In this book and other materials, if you encounter statements like \"average time complexity \\(O(n)\\)\", please understand it directly as \\(\\Theta(n)\\).
"},{"location":"chapter_data_structure/","title":"Chapter 3. \u00a0 Data Structures","text":"Abstract
Data structures serve as a robust and diverse framework.
They offer a blueprint for the orderly organization of data, upon which algorithms come to life.
"},{"location":"chapter_data_structure/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 3.1 \u00a0 Classification of Data Structures
- 3.2 \u00a0 Fundamental Data Types
- 3.3 \u00a0 Number Encoding *
- 3.4 \u00a0 Character Encoding *
- 3.5 \u00a0 Summary
"},{"location":"chapter_data_structure/basic_data_types/","title":"3.2 \u00a0 Fundamental Data Types","text":"When we think of data in computers, we imagine various forms like text, images, videos, voice, 3D models, etc. Despite their different organizational forms, they are all composed of various fundamental data types.
Fundamental data types are those that the CPU can directly operate on and are directly used in algorithms, mainly including the following.
- Integer types:
byte, short, int, long. - Floating-point types:
float, double, used to represent decimals. - Character type:
char, used to represent letters, punctuation, and even emojis in various languages. - Boolean type:
bool, used for \"yes\" or \"no\" decisions.
Fundamental data types are stored in computers in binary form. One binary digit is equal to 1 bit. In most modern operating systems, 1 byte consists of 8 bits.
The range of values for fundamental data types depends on the size of the space they occupy. Below, we take Java as an example.
- The integer type
byte occupies 1 byte = 8 bits and can represent \\(2^8\\) numbers. - The integer type
int occupies 4 bytes = 32 bits and can represent \\(2^{32}\\) numbers.
The following table lists the space occupied, value range, and default values of various fundamental data types in Java. This table does not need to be memorized, but understood roughly and referred to when needed.
Table 3-1 \u00a0 Space Occupied and Value Range of Fundamental Data Types
Type Symbol Space Occupied Minimum Value Maximum Value Default Value Integer byte 1 byte \\(-2^7\\) (\\(-128\\)) \\(2^7 - 1\\) (\\(127\\)) 0 short 2 bytes \\(-2^{15}\\) \\(2^{15} - 1\\) 0 int 4 bytes \\(-2^{31}\\) \\(2^{31} - 1\\) 0 long 8 bytes \\(-2^{63}\\) \\(2^{63} - 1\\) 0 Float float 4 bytes \\(1.175 \\times 10^{-38}\\) \\(3.403 \\times 10^{38}\\) \\(0.0\\text{f}\\) double 8 bytes \\(2.225 \\times 10^{-308}\\) \\(1.798 \\times 10^{308}\\) 0.0 Char char 2 bytes 0 \\(2^{16} - 1\\) 0 Boolean bool 1 byte \\(\\text{false}\\) \\(\\text{true}\\) \\(\\text{false}\\) Please note that the above table is specific to Java's fundamental data types. Each programming language has its own data type definitions, and their space occupied, value ranges, and default values may differ.
- In Python, the integer type
int can be of any size, limited only by available memory; the floating-point float is double precision 64-bit; there is no char type, as a single character is actually a string str of length 1. - C and C++ do not specify the size of fundamental data types, which varies with implementation and platform. The above table follows the LP64 data model, used for Unix 64-bit operating systems including Linux and macOS.
- The size of
char in C and C++ is 1 byte, while in most programming languages, it depends on the specific character encoding method, as detailed in the \"Character Encoding\" chapter. - Even though representing a boolean only requires 1 bit (0 or 1), it is usually stored in memory as 1 byte. This is because modern computer CPUs typically use 1 byte as the smallest addressable memory unit.
So, what is the connection between fundamental data types and data structures? We know that data structures are ways to organize and store data in computers. The focus here is on \"structure\" rather than \"data\".
If we want to represent \"a row of numbers\", we naturally think of using an array. This is because the linear structure of an array can represent the adjacency and order of numbers, but whether the stored content is an integer int, a decimal float, or a character char, is irrelevant to the \"data structure\".
In other words, fundamental data types provide the \"content type\" of data, while data structures provide the \"way of organizing\" data. For example, in the following code, we use the same data structure (array) to store and represent different fundamental data types, including int, float, char, bool, etc.
PythonC++JavaC#GoSwiftJSTSDartRustCZig # Using various fundamental data types to initialize arrays\nnumbers: list[int] = [0] * 5\ndecimals: list[float] = [0.0] * 5\n# Python's characters are actually strings of length 1\ncharacters: list[str] = ['0'] * 5\nbools: list[bool] = [False] * 5\n# Python's lists can freely store various fundamental data types and object references\ndata = [0, 0.0, 'a', False, ListNode(0)]\n
// Using various fundamental data types to initialize arrays\nint numbers[5];\nfloat decimals[5];\nchar characters[5];\nbool bools[5];\n
// Using various fundamental data types to initialize arrays\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nboolean[] bools = new boolean[5];\n
// Using various fundamental data types to initialize arrays\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nbool[] bools = new bool[5];\n
// Using various fundamental data types to initialize arrays\nvar numbers = [5]int{}\nvar decimals = [5]float64{}\nvar characters = [5]byte{}\nvar bools = [5]bool{}\n
// Using various fundamental data types to initialize arrays\nlet numbers = Array(repeating: Int(), count: 5)\nlet decimals = Array(repeating: Double(), count: 5)\nlet characters = Array(repeating: Character(\"a\"), count: 5)\nlet bools = Array(repeating: Bool(), count: 5)\n
// JavaScript's arrays can freely store various fundamental data types and objects\nconst array = [0, 0.0, 'a', false];\n
// Using various fundamental data types to initialize arrays\nconst numbers: number[] = [];\nconst characters: string[] = [];\nconst bools: boolean[] = [];\n
// Using various fundamental data types to initialize arrays\nList<int> numbers = List.filled(5, 0);\nList<double> decimals = List.filled(5, 0.0);\nList<String> characters = List.filled(5, 'a');\nList<bool> bools = List.filled(5, false);\n
// Using various fundamental data types to initialize arrays\nlet numbers: Vec<i32> = vec![0; 5];\nlet decimals: Vec<f32> = vec![0.0, 5];\nlet characters: Vec<char> = vec!['0'; 5];\nlet bools: Vec<bool> = vec![false; 5];\n
// Using various fundamental data types to initialize arrays\nint numbers[10];\nfloat decimals[10];\nchar characters[10];\nbool bools[10];\n
// Using various fundamental data types to initialize arrays\nvar numbers: [5]i32 = undefined;\nvar decimals: [5]f32 = undefined;\nvar characters: [5]u8 = undefined;\nvar bools: [5]bool = undefined;\n
"},{"location":"chapter_data_structure/character_encoding/","title":"3.4 \u00a0 Character Encoding *","text":"In computers, all data is stored in binary form, and the character char is no exception. To represent characters, we need to establish a \"character set\" that defines a one-to-one correspondence between each character and binary numbers. With a character set, computers can convert binary numbers to characters by looking up a table.
"},{"location":"chapter_data_structure/character_encoding/#341-ascii-character-set","title":"3.4.1 \u00a0 ASCII Character Set","text":"The \"ASCII code\" is one of the earliest character sets, officially known as the American Standard Code for Information Interchange. It uses 7 binary digits (the lower 7 bits of a byte) to represent a character, allowing for a maximum of 128 different characters. As shown in the Figure 3-6 , ASCII includes uppercase and lowercase English letters, numbers 0 ~ 9, some punctuation marks, and some control characters (such as newline and tab).
Figure 3-6 \u00a0 ASCII Code
However, ASCII can only represent English characters. With the globalization of computers, a character set called \"EASCII\" was developed to represent more languages. It expands on the 7-bit basis of ASCII to 8 bits, enabling the representation of 256 different characters.
Globally, a series of EASCII character sets for different regions emerged. The first 128 characters of these sets are uniformly ASCII, while the remaining 128 characters are defined differently to cater to various language requirements.
"},{"location":"chapter_data_structure/character_encoding/#342-gbk-character-set","title":"3.4.2 \u00a0 GBK Character Set","text":"Later, it was found that EASCII still could not meet the character requirements of many languages. For instance, there are nearly a hundred thousand Chinese characters, with several thousand used in everyday life. In 1980, China's National Standards Bureau released the \"GB2312\" character set, which included 6763 Chinese characters, essentially meeting the computer processing needs for Chinese.
However, GB2312 could not handle some rare and traditional characters. The \"GBK\" character set, an expansion of GB2312, includes a total of 21886 Chinese characters. In the GBK encoding scheme, ASCII characters are represented with one byte, while Chinese characters use two bytes.
"},{"location":"chapter_data_structure/character_encoding/#343-unicode-character-set","title":"3.4.3 \u00a0 Unicode Character Set","text":"With the rapid development of computer technology and a plethora of character sets and encoding standards, numerous problems arose. On one hand, these character sets generally only defined characters for specific languages and could not function properly in multilingual environments. On the other hand, the existence of multiple character set standards for the same language caused garbled text when information was exchanged between computers using different encoding standards.
Researchers of that era thought: What if we introduced a comprehensive character set that included all languages and symbols worldwide, wouldn't that solve the problems of cross-language environments and garbled text? Driven by this idea, the extensive character set, Unicode, was born.
The Chinese name for \"Unicode\" is \"\u7edf\u4e00\u7801\" (Unified Code), theoretically capable of accommodating over a million characters. It aims to incorporate characters from all over the world into a single set, providing a universal character set for processing and displaying various languages and reducing the issues of garbled text due to different encoding standards.
Since its release in 1991, Unicode has continually expanded to include new languages and characters. As of September 2022, Unicode contains 149,186 characters, including characters, symbols, and even emojis from various languages. In the vast Unicode character set, commonly used characters occupy 2 bytes, while some rare characters take up 3 or even 4 bytes.
Unicode is a universal character set that assigns a number (called a \"code point\") to each character, but it does not specify how these character code points should be stored in a computer. One might ask: When Unicode code points of varying lengths appear in a text, how does the system parse the characters? For example, given a 2-byte code, how does the system determine if it represents a single 2-byte character or two 1-byte characters?
A straightforward solution to this problem is to store all characters as equal-length encodings. As shown in the Figure 3-7 , each character in \"Hello\" occupies 1 byte, while each character in \"\u7b97\u6cd5\" (algorithm) occupies 2 bytes. We could encode all characters in \"Hello \u7b97\u6cd5\" as 2 bytes by padding the higher bits with zeros. This way, the system can parse a character every 2 bytes, recovering the content of the phrase.
Figure 3-7 \u00a0 Unicode Encoding Example
However, as ASCII has shown us, encoding English only requires 1 byte. Using the above approach would double the space occupied by English text compared to ASCII encoding, which is a waste of memory space. Therefore, a more efficient Unicode encoding method is needed.
"},{"location":"chapter_data_structure/character_encoding/#344-utf-8-encoding","title":"3.4.4 \u00a0 UTF-8 Encoding","text":"Currently, UTF-8 has become the most widely used Unicode encoding method internationally. It is a variable-length encoding, using 1 to 4 bytes to represent a character, depending on the complexity of the character. ASCII characters need only 1 byte, Latin and Greek letters require 2 bytes, commonly used Chinese characters need 3 bytes, and some other rare characters need 4 bytes.
The encoding rules for UTF-8 are not complex and can be divided into two cases:
- For 1-byte characters, set the highest bit to \\(0\\), and the remaining 7 bits to the Unicode code point. Notably, ASCII characters occupy the first 128 code points in the Unicode set. This means that UTF-8 encoding is backward compatible with ASCII. This implies that UTF-8 can be used to parse ancient ASCII text.
- For characters of length \\(n\\) bytes (where \\(n > 1\\)), set the highest \\(n\\) bits of the first byte to \\(1\\), and the \\((n + 1)^{\\text{th}}\\) bit to \\(0\\); starting from the second byte, set the highest 2 bits of each byte to \\(10\\); the rest of the bits are used to fill the Unicode code point.
The Figure 3-8 shows the UTF-8 encoding for \"Hello\u7b97\u6cd5\". It can be observed that since the highest \\(n\\) bits are set to \\(1\\), the system can determine the length of the character as \\(n\\) by counting the number of highest bits set to \\(1\\).
But why set the highest 2 bits of the remaining bytes to \\(10\\)? Actually, this \\(10\\) serves as a kind of checksum. If the system starts parsing text from an incorrect byte, the \\(10\\) at the beginning of the byte can help the system quickly detect an anomaly.
The reason for using \\(10\\) as a checksum is that, under UTF-8 encoding rules, it's impossible for the highest two bits of a character to be \\(10\\). This can be proven by contradiction: If the highest two bits of a character are \\(10\\), it indicates that the character's length is \\(1\\), corresponding to ASCII. However, the highest bit of an ASCII character should be \\(0\\), contradicting the assumption.
Figure 3-8 \u00a0 UTF-8 Encoding Example
Apart from UTF-8, other common encoding methods include:
- UTF-16 Encoding: Uses 2 or 4 bytes to represent a character. All ASCII characters and commonly used non-English characters are represented with 2 bytes; a few characters require 4 bytes. For 2-byte characters, the UTF-16 encoding is equal to the Unicode code point.
- UTF-32 Encoding: Every character uses 4 bytes. This means UTF-32 occupies more space than UTF-8 and UTF-16, especially for texts with a high proportion of ASCII characters.
From the perspective of storage space, UTF-8 is highly efficient for representing English characters, requiring only 1 byte; UTF-16 might be more efficient for encoding some non-English characters (like Chinese), as it requires only 2 bytes, while UTF-8 might need 3 bytes.
From a compatibility standpoint, UTF-8 is the most versatile, with many tools and libraries supporting UTF-8 as a priority.
"},{"location":"chapter_data_structure/character_encoding/#345-character-encoding-in-programming-languages","title":"3.4.5 \u00a0 Character Encoding in Programming Languages","text":"In many classic programming languages, strings during program execution are encoded using fixed-length encodings like UTF-16 or UTF-32. This allows strings to be treated as arrays, offering several advantages:
- Random Access: Strings encoded in UTF-16 can be accessed randomly with ease. For UTF-8, which is a variable-length encoding, locating the \\(i^{th}\\) character requires traversing the string from the start to the \\(i^{th}\\) position, taking \\(O(n)\\) time.
- Character Counting: Similar to random access, counting the number of characters in a UTF-16 encoded string is an \\(O(1)\\) operation. However, counting characters in a UTF-8 encoded string requires traversing the entire string.
- String Operations: Many string operations like splitting, concatenating, inserting, and deleting are easier on UTF-16 encoded strings. These operations generally require additional computation on UTF-8 encoded strings to ensure the validity of the UTF-8 encoding.
The design of character encoding schemes in programming languages is an interesting topic involving various factors:
- Java\u2019s
String type uses UTF-16 encoding, with each character occupying 2 bytes. This was based on the initial belief that 16 bits were sufficient to represent all possible characters, a judgment later proven incorrect. As the Unicode standard expanded beyond 16 bits, characters in Java may now be represented by a pair of 16-bit values, known as \u201csurrogate pairs.\u201d - JavaScript and TypeScript use UTF-16 encoding for similar reasons as Java. When JavaScript was first introduced by Netscape in 1995, Unicode was still in its early stages, and 16-bit encoding was sufficient to represent all Unicode characters.
- C# uses UTF-16 encoding, largely because the .NET platform, designed by Microsoft, and many Microsoft technologies, including the Windows operating system, extensively use UTF-16 encoding.
Due to the underestimation of character counts, these languages had to resort to using \"surrogate pairs\" to represent Unicode characters exceeding 16 bits. This approach has its drawbacks: strings containing surrogate pairs may have characters occupying 2 or 4 bytes, losing the advantage of fixed-length encoding, and handling surrogate pairs adds to the complexity and debugging difficulty of programming.
Owing to these reasons, some programming languages have adopted different encoding schemes:
- Python\u2019s
str type uses Unicode encoding with a flexible representation where the storage length of characters depends on the largest Unicode code point in the string. If all characters are ASCII, each character occupies 1 byte; if characters exceed ASCII but are within the Basic Multilingual Plane (BMP), each occupies 2 bytes; if characters exceed the BMP, each occupies 4 bytes. - Go\u2019s
string type internally uses UTF-8 encoding. Go also provides the rune type for representing individual Unicode code points. - Rust\u2019s
str and String types use UTF-8 encoding internally. Rust also offers the char type for individual Unicode code points.
It\u2019s important to note that the above discussion pertains to how strings are stored in programming languages, which is a different issue from how strings are stored in files or transmitted over networks. For file storage or network transmission, strings are usually encoded in UTF-8 format for optimal compatibility and space efficiency.
"},{"location":"chapter_data_structure/classification_of_data_structure/","title":"3.1 \u00a0 Classification of Data Structures","text":"Common data structures include arrays, linked lists, stacks, queues, hash tables, trees, heaps, and graphs. They can be classified into two dimensions: \"Logical Structure\" and \"Physical Structure\".
"},{"location":"chapter_data_structure/classification_of_data_structure/#311-logical-structure-linear-and-non-linear","title":"3.1.1 \u00a0 Logical Structure: Linear and Non-Linear","text":"The logical structure reveals the logical relationships between data elements. In arrays and linked lists, data is arranged in a certain order, reflecting a linear relationship between them. In trees, data is arranged from top to bottom in layers, showing a \"ancestor-descendant\" hierarchical relationship. Graphs, consisting of nodes and edges, represent complex network relationships.
As shown in the Figure 3-1 , logical structures can be divided into two major categories: \"Linear\" and \"Non-linear\". Linear structures are more intuitive, indicating data is arranged linearly in logical relationships; non-linear structures, conversely, are arranged non-linearly.
- Linear Data Structures: Arrays, Linked Lists, Stacks, Queues, Hash Tables.
- Non-Linear Data Structures: Trees, Heaps, Graphs, Hash Tables.
Figure 3-1 \u00a0 Linear and Non-Linear Data Structures
Non-linear data structures can be further divided into tree structures and network structures.
- Tree Structures: Trees, Heaps, Hash Tables, where elements have one-to-many relationships.
- Network Structures: Graphs, where elements have many-to-many relationships.
"},{"location":"chapter_data_structure/classification_of_data_structure/#312-physical-structure-contiguous-and-dispersed","title":"3.1.2 \u00a0 Physical Structure: Contiguous and Dispersed","text":"When an algorithm program runs, the data being processed is mainly stored in memory. The following figure shows a computer memory stick, each black block containing a memory space. We can imagine memory as a huge Excel spreadsheet, where each cell can store a certain amount of data.
The system accesses data at the target location through memory addresses. As shown in the Figure 3-2 , the computer allocates numbers to each cell in the table according to specific rules, ensuring each memory space has a unique memory address. With these addresses, programs can access data in memory.
Figure 3-2 \u00a0 Memory Stick, Memory Spaces, Memory Addresses
Tip
It's worth noting that comparing memory to an Excel spreadsheet is a simplified analogy. The actual working mechanism of memory is more complex, involving concepts like address space, memory management, cache mechanisms, virtual memory, and physical memory.
Memory is a shared resource for all programs. When a block of memory is occupied by one program, it cannot be used by others simultaneously. Therefore, memory resources are an important consideration in the design of data structures and algorithms. For example, the peak memory usage of an algorithm should not exceed the system's remaining free memory. If there is a lack of contiguous large memory spaces, the chosen data structure must be able to store data in dispersed memory spaces.
As shown in the Figure 3-3 , the physical structure reflects how data is stored in computer memory, which can be divided into contiguous space storage (arrays) and dispersed space storage (linked lists). The physical structure determines from the bottom level how data is accessed, updated, added, or deleted. Both types of physical structures exhibit complementary characteristics in terms of time efficiency and space efficiency.
Figure 3-3 \u00a0 Contiguous Space Storage and Dispersed Space Storage
It's important to note that all data structures are implemented based on arrays, linked lists, or a combination of both. For example, stacks and queues can be implemented using either arrays or linked lists; while hash tables may include both arrays and linked lists.
- Array-based Implementations: Stacks, Queues, Hash Tables, Trees, Heaps, Graphs, Matrices, Tensors (arrays with dimensions \\(\\geq 3\\)).
- Linked List-based Implementations: Stacks, Queues, Hash Tables, Trees, Heaps, Graphs, etc.
Data structures implemented based on arrays are also called \u201cStatic Data Structures,\u201d meaning their length cannot be changed after initialization. Conversely, those based on linked lists are called \u201cDynamic Data Structures,\u201d which can still adjust their size during program execution.
Tip
If you find it difficult to understand the physical structure, it's recommended to read the next chapter first and then revisit this section.
"},{"location":"chapter_data_structure/number_encoding/","title":"3.3 \u00a0 Number Encoding *","text":"Note
In this book, chapters marked with an * symbol are optional reads. If you are short on time or find them challenging, you may skip these initially and return to them after completing the essential chapters.
"},{"location":"chapter_data_structure/number_encoding/#331-integer-encoding","title":"3.3.1 \u00a0 Integer Encoding","text":"In the table from the previous section, we noticed that all integer types can represent one more negative number than positive numbers, such as the byte range of \\([-128, 127]\\). This phenomenon, somewhat counterintuitive, is rooted in the concepts of sign-magnitude, one's complement, and two's complement encoding.
Firstly, it's important to note that numbers are stored in computers using the two's complement form. Before analyzing why this is the case, let's define these three encoding methods:
- Sign-magnitude: The highest bit of a binary representation of a number is considered the sign bit, where \\(0\\) represents a positive number and \\(1\\) represents a negative number. The remaining bits represent the value of the number.
- One's complement: The one's complement of a positive number is the same as its sign-magnitude. For negative numbers, it's obtained by inverting all bits except the sign bit.
- Two's complement: The two's complement of a positive number is the same as its sign-magnitude. For negative numbers, it's obtained by adding \\(1\\) to their one's complement.
The following diagram illustrates the conversions among sign-magnitude, one's complement, and two's complement:
Figure 3-4 \u00a0 Conversions between Sign-Magnitude, One's Complement, and Two's Complement
Although sign-magnitude is the most intuitive, it has limitations. For one, negative numbers in sign-magnitude cannot be directly used in calculations. For example, in sign-magnitude, calculating \\(1 + (-2)\\) results in \\(-3\\), which is incorrect.
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 + 1000 \\; 0010 \\newline & = 1000 \\; 0011 \\newline & \\rightarrow -3 \\end{aligned} \\] To address this, computers introduced the one's complement. If we convert to one's complement and calculate \\(1 + (-2)\\), then convert the result back to sign-magnitude, we get the correct result of \\(-1\\).
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 \\; \\text{(Sign-magnitude)} + 1000 \\; 0010 \\; \\text{(Sign-magnitude)} \\newline & = 0000 \\; 0001 \\; \\text{(One's complement)} + 1111 \\; 1101 \\; \\text{(One's complement)} \\newline & = 1111 \\; 1110 \\; \\text{(One's complement)} \\newline & = 1000 \\; 0001 \\; \\text{(Sign-magnitude)} \\newline & \\rightarrow -1 \\end{aligned} \\] Additionally, there are two representations of zero in sign-magnitude: \\(+0\\) and \\(-0\\). This means two different binary encodings for zero, which could lead to ambiguity. For example, in conditional checks, not differentiating between positive and negative zero might result in incorrect outcomes. Addressing this ambiguity would require additional checks, potentially reducing computational efficiency.
\\[ \\begin{aligned} +0 & \\rightarrow 0000 \\; 0000 \\newline -0 & \\rightarrow 1000 \\; 0000 \\end{aligned} \\] Like sign-magnitude, one's complement also suffers from the positive and negative zero ambiguity. Therefore, computers further introduced the two's complement. Let's observe the conversion process for negative zero in sign-magnitude, one's complement, and two's complement:
\\[ \\begin{aligned} -0 \\rightarrow \\; & 1000 \\; 0000 \\; \\text{(Sign-magnitude)} \\newline = \\; & 1111 \\; 1111 \\; \\text{(One's complement)} \\newline = 1 \\; & 0000 \\; 0000 \\; \\text{(Two's complement)} \\newline \\end{aligned} \\] Adding \\(1\\) to the one's complement of negative zero produces a carry, but with byte length being only 8 bits, the carried-over \\(1\\) to the 9th bit is discarded. Therefore, the two's complement of negative zero is \\(0000 \\; 0000\\), the same as positive zero, thus resolving the ambiguity.
One last puzzle is the \\([-128, 127]\\) range for byte, with an additional negative number, \\(-128\\). We observe that for the interval \\([-127, +127]\\), all integers have corresponding sign-magnitude, one's complement, and two's complement, and these can be converted between each other.
However, the two's complement \\(1000 \\; 0000\\) is an exception without a corresponding sign-magnitude. According to the conversion method, its sign-magnitude would be \\(0000 \\; 0000\\), which is a contradiction since this represents zero, and its two's complement should be itself. Computers designate this special two's complement \\(1000 \\; 0000\\) as representing \\(-128\\). In fact, the calculation of \\((-1) + (-127)\\) in two's complement results in \\(-128\\).
\\[ \\begin{aligned} & (-127) + (-1) \\newline & \\rightarrow 1111 \\; 1111 \\; \\text{(Sign-magnitude)} + 1000 \\; 0001 \\; \\text{(Sign-magnitude)} \\newline & = 1000 \\; 0000 \\; \\text{(One's complement)} + 1111 \\; 1110 \\; \\text{(One's complement)} \\newline & = 1000 \\; 0001 \\; \\text{(Two's complement)} + 1111 \\; 1111 \\; \\text{(Two's complement)} \\newline & = 1000 \\; 0000 \\; \\text{(Two's complement)} \\newline & \\rightarrow -128 \\end{aligned} \\] As you might have noticed, all these calculations are additions, hinting at an important fact: computers' internal hardware circuits are primarily designed around addition operations. This is because addition is simpler to implement in hardware compared to other operations like multiplication, division, and subtraction, allowing for easier parallelization and faster computation.
It's important to note that this doesn't mean computers can only perform addition. By combining addition with basic logical operations, computers can execute a variety of other mathematical operations. For example, the subtraction \\(a - b\\) can be translated into \\(a + (-b)\\); multiplication and division can be translated into multiple additions or subtractions.
We can now summarize the reason for using two's complement in computers: with two's complement representation, computers can use the same circuits and operations to handle both positive and negative number addition, eliminating the need for special hardware circuits for subtraction and avoiding the ambiguity of positive and negative zero. This greatly simplifies hardware design and enhances computational efficiency.
The design of two's complement is quite ingenious, and due to space constraints, we'll stop here. Interested readers are encouraged to explore further.
"},{"location":"chapter_data_structure/number_encoding/#332-floating-point-number-encoding","title":"3.3.2 \u00a0 Floating-Point Number Encoding","text":"You might have noticed something intriguing: despite having the same length of 4 bytes, why does a float have a much larger range of values compared to an int? This seems counterintuitive, as one would expect the range to shrink for float since it needs to represent fractions.
In fact, this is due to the different representation method used by floating-point numbers (float). Let's consider a 32-bit binary number as:
\\[ b_{31} b_{30} b_{29} \\ldots b_2 b_1 b_0 \\] According to the IEEE 754 standard, a 32-bit float consists of the following three parts:
- Sign bit \\(\\mathrm{S}\\): Occupies 1 bit, corresponding to \\(b_{31}\\).
- Exponent bit \\(\\mathrm{E}\\): Occupies 8 bits, corresponding to \\(b_{30} b_{29} \\ldots b_{23}\\).
- Fraction bit \\(\\mathrm{N}\\): Occupies 23 bits, corresponding to \\(b_{22} b_{21} \\ldots b_0\\).
The value of a binary float number is calculated as:
\\[ \\text{val} = (-1)^{b_{31}} \\times 2^{\\left(b_{30} b_{29} \\ldots b_{23}\\right)_2 - 127} \\times \\left(1 . b_{22} b_{21} \\ldots b_0\\right)_2 \\] Converted to a decimal formula, this becomes:
\\[ \\text{val} = (-1)^{\\mathrm{S}} \\times 2^{\\mathrm{E} - 127} \\times (1 + \\mathrm{N}) \\] The range of each component is:
\\[ \\begin{aligned} \\mathrm{S} \\in & \\{ 0, 1\\}, \\quad \\mathrm{E} \\in \\{ 1, 2, \\dots, 254 \\} \\newline (1 + \\mathrm{N}) = & (1 + \\sum_{i=1}^{23} b_{23-i} \\times 2^{-i}) \\subset [1, 2 - 2^{-23}] \\end{aligned} \\] Figure 3-5 \u00a0 Example Calculation of a float in IEEE 754 Standard
Observing the diagram, given an example data \\(\\mathrm{S} = 0\\), \\(\\mathrm{E} = 124\\), \\(\\mathrm{N} = 2^{-2} + 2^{-3} = 0.375\\), we have:
\\[ \\text{val} = (-1)^0 \\times 2^{124 - 127} \\times (1 + 0.375) = 0.171875 \\] Now we can answer the initial question: The representation of float includes an exponent bit, leading to a much larger range than int. Based on the above calculation, the maximum positive number representable by float is approximately \\(2^{254 - 127} \\times (2 - 2^{-23}) \\approx 3.4 \\times 10^{38}\\), and the minimum negative number is obtained by switching the sign bit.
However, the trade-off for float's expanded range is a sacrifice in precision. The integer type int uses all 32 bits to represent the number, with values evenly distributed; but due to the exponent bit, the larger the value of a float, the greater the difference between adjacent numbers.
As shown in the Table 3-2 , exponent bits \\(E = 0\\) and \\(E = 255\\) have special meanings, used to represent zero, infinity, \\(\\mathrm{NaN}\\), etc.
Table 3-2 \u00a0 Meaning of Exponent Bits
Exponent Bit E Fraction Bit \\(\\mathrm{N} = 0\\) Fraction Bit \\(\\mathrm{N} \\ne 0\\) Calculation Formula \\(0\\) \\(\\pm 0\\) Subnormal Numbers \\((-1)^{\\mathrm{S}} \\times 2^{-126} \\times (0.\\mathrm{N})\\) \\(1, 2, \\dots, 254\\) Normal Numbers Normal Numbers \\((-1)^{\\mathrm{S}} \\times 2^{(\\mathrm{E} -127)} \\times (1.\\mathrm{N})\\) \\(255\\) \\(\\pm \\infty\\) \\(\\mathrm{NaN}\\) It's worth noting that subnormal numbers significantly improve the precision of floating-point numbers. The smallest positive normal number is \\(2^{-126}\\), and the smallest positive subnormal number is \\(2^{-126} \\times 2^{-23}\\).
Double-precision double also uses a similar representation method to float, which is not elaborated here for brevity.
"},{"location":"chapter_data_structure/summary/","title":"3.5 \u00a0 Summary","text":""},{"location":"chapter_data_structure/summary/#1-key-review","title":"1. \u00a0 Key Review","text":" - Data structures can be categorized from two perspectives: logical structure and physical structure. Logical structure describes the logical relationships between data elements, while physical structure describes how data is stored in computer memory.
- Common logical structures include linear, tree-like, and network structures. We generally classify data structures into linear (arrays, linked lists, stacks, queues) and non-linear (trees, graphs, heaps) based on their logical structure. The implementation of hash tables may involve both linear and non-linear data structures.
- When a program runs, data is stored in computer memory. Each memory space has a corresponding memory address, and the program accesses data through these addresses.
- Physical structures are primarily divided into contiguous space storage (arrays) and dispersed space storage (linked lists). All data structures are implemented using arrays, linked lists, or a combination of both.
- Basic data types in computers include integers (
byte, short, int, long), floating-point numbers (float, double), characters (char), and booleans (boolean). Their range depends on the size of the space occupied and the representation method. - Original code, complement code, and two's complement code are three methods of encoding numbers in computers, and they can be converted into each other. The highest bit of the original code of an integer is the sign bit, and the remaining bits represent the value of the number.
- Integers are stored in computers in the form of two's complement. In this representation, the computer can treat the addition of positive and negative numbers uniformly, without the need for special hardware circuits for subtraction, and there is no ambiguity of positive and negative zero.
- The encoding of floating-point numbers consists of 1 sign bit, 8 exponent bits, and 23 fraction bits. Due to the presence of the exponent bit, the range of floating-point numbers is much greater than that of integers, but at the cost of sacrificing precision.
- ASCII is the earliest English character set, 1 byte in length, and includes 127 characters. The GBK character set is a commonly used Chinese character set, including more than 20,000 Chinese characters. Unicode strives to provide a complete character set standard, including characters from various languages worldwide, thus solving the problem of garbled characters caused by inconsistent character encoding methods.
- UTF-8 is the most popular Unicode encoding method, with excellent universality. It is a variable-length encoding method with good scalability and effectively improves the efficiency of space usage. UTF-16 and UTF-32 are fixed-length encoding methods. When encoding Chinese characters, UTF-16 occupies less space than UTF-8. Programming languages like Java and C# use UTF-16 encoding by default.
"},{"location":"chapter_data_structure/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"Why does a hash table contain both linear and non-linear data structures?
The underlying structure of a hash table is an array. To resolve hash collisions, we may use \"chaining\": each bucket in the array points to a linked list, which, when exceeding a certain threshold, might be transformed into a tree (usually a red-black tree). From a storage perspective, the foundation of a hash table is an array, where each bucket slot might contain a value, a linked list, or a tree. Therefore, hash tables may contain both linear data structures (arrays, linked lists) and non-linear data structures (trees).
Is the length of the char type 1 byte?
The length of the char type is determined by the encoding method used by the programming language. For example, Java, JavaScript, TypeScript, and C# all use UTF-16 encoding (to save Unicode code points), so the length of the char type is 2 bytes.
Is there ambiguity in calling data structures based on arrays 'static data structures'? Because operations like push and pop on stacks are 'dynamic.'
While stacks indeed allow for dynamic data operations, the data structure itself remains \"static\" (with unchangeable length). Even though data structures based on arrays can dynamically add or remove elements, their capacity is fixed. If the data volume exceeds the pre-allocated size, a new, larger array needs to be created, and the contents of the old array copied into it.
When building stacks (queues) without specifying their size, why are they considered 'static data structures'?
In high-level programming languages, we don't need to manually specify the initial capacity of stacks (queues); this task is automatically handled internally by the class. For example, the initial capacity of Java's ArrayList is usually 10. Furthermore, the expansion operation is also implemented automatically. See the subsequent \"List\" chapter for details.
"},{"location":"chapter_introduction/","title":"Chapter 1. \u00a0 Introduction to Algorithms","text":"Abstract
A graceful maiden dances, intertwined with the data, her skirt swaying to the melody of algorithms.
She invites you to a dance, follow her steps, and enter the world of algorithms full of logic and beauty.
"},{"location":"chapter_introduction/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 1.1 \u00a0 Algorithms are Everywhere
- 1.2 \u00a0 What is an Algorithm
- 1.3 \u00a0 Summary
"},{"location":"chapter_introduction/algorithms_are_everywhere/","title":"1.1 \u00a0 Algorithms are Everywhere","text":"When we hear the word \"algorithm,\" we naturally think of mathematics. However, many algorithms do not involve complex mathematics but rely more on basic logic, which can be seen everywhere in our daily lives.
Before formally discussing algorithms, there's an interesting fact worth sharing: you have already unconsciously learned many algorithms and have become accustomed to applying them in your daily life. Here, I will give a few specific examples to prove this point.
Example 1: Looking Up a Dictionary. In an English dictionary, words are listed alphabetically. Suppose we're searching for a word that starts with the letter \\(r\\). This is typically done in the following way:
- Open the dictionary to about halfway and check the first letter on the page, let's say the letter is \\(m\\).
- Since \\(r\\) comes after \\(m\\) in the alphabet, we can ignore the first half of the dictionary and focus on the latter half.
- Repeat steps
1. and 2. until you find the page where the word starts with \\(r\\).
<1><2><3><4><5> Figure 1-1 \u00a0 Process of Looking Up a Dictionary
This essential skill for elementary students, looking up a dictionary, is actually the famous \"Binary Search\" algorithm. From a data structure perspective, we can consider the dictionary as a sorted \"array\"; from an algorithmic perspective, the series of actions taken to look up a word in the dictionary can be viewed as \"Binary Search.\"
Example 2: Organizing Playing Cards. When playing cards, we need to arrange the cards in our hand in ascending order, as shown in the following process.
- Divide the playing cards into \"ordered\" and \"unordered\" sections, assuming initially the leftmost card is already in order.
- Take out a card from the unordered section and insert it into the correct position in the ordered section; after this, the leftmost two cards are in order.
- Continue to repeat step
2. until all cards are in order.
Figure 1-2 \u00a0 Playing Cards Sorting Process
The above method of organizing playing cards is essentially the \"Insertion Sort\" algorithm, which is very efficient for small datasets. Many programming languages' sorting functions include the insertion sort.
Example 3: Making Change. Suppose we buy goods worth \\(69\\) yuan at a supermarket and give the cashier \\(100\\) yuan, then the cashier needs to give us \\(31\\) yuan in change. They would naturally complete the thought process as shown below.
- The options are currencies smaller than \\(31\\), including \\(1\\), \\(5\\), \\(10\\), and \\(20\\).
- Take out the largest \\(20\\) from the options, leaving \\(31 - 20 = 11\\).
- Take out the largest \\(10\\) from the remaining options, leaving \\(11 - 10 = 1\\).
- Take out the largest \\(1\\) from the remaining options, leaving \\(1 - 1 = 0\\).
- Complete the change-making, with the solution being \\(20 + 10 + 1 = 31\\).
Figure 1-3 \u00a0 Change making process
In the above steps, we make the best choice at each step (using the largest denomination possible), ultimately resulting in a feasible change-making plan. From the perspective of data structures and algorithms, this method is essentially a \"Greedy\" algorithm.
From cooking a meal to interstellar travel, almost all problem-solving involves algorithms. The advent of computers allows us to store data structures in memory and write code to call the CPU and GPU to execute algorithms. In this way, we can transfer real-life problems to computers, solving various complex issues more efficiently.
Tip
If concepts such as data structures, algorithms, arrays, and binary search still seem somewhat obsecure, I encourage you to continue reading. This book will gently guide you into the realm of understanding data structures and algorithms.
"},{"location":"chapter_introduction/summary/","title":"1.3 \u00a0 Summary","text":" - Algorithms are ubiquitous in daily life and are not as inaccessible and complex as they might seem. In fact, we have already unconsciously learned many algorithms to solve various problems in life.
- The principle of looking up a word in a dictionary is consistent with the binary search algorithm. The binary search algorithm embodies the important algorithmic concept of divide and conquer.
- The process of organizing playing cards is very similar to the insertion sort algorithm. The insertion sort algorithm is suitable for sorting small datasets.
- The steps of making change in currency essentially follow the greedy algorithm, where each step involves making the best possible choice at the moment.
- An algorithm is a set of instructions or steps used to solve a specific problem within a finite amount of time, while a data structure is the way data is organized and stored in a computer.
- Data structures and algorithms are closely linked. Data structures are the foundation of algorithms, and algorithms are the stage to utilize the functions of data structures.
- We can liken data structures and algorithms to building blocks. The blocks represent data, the shape and connection method of the blocks represent data structures, and the steps of assembling the blocks correspond to algorithms.
"},{"location":"chapter_introduction/what_is_dsa/","title":"1.2 \u00a0 What is an Algorithm","text":""},{"location":"chapter_introduction/what_is_dsa/#121-definition-of-an-algorithm","title":"1.2.1 \u00a0 Definition of an Algorithm","text":"An \"algorithm\" is a set of instructions or steps to solve a specific problem within a finite amount of time. It has the following characteristics:
- The problem is clearly defined, including unambiguous definitions of input and output.
- The algorithm is feasible, meaning it can be completed within a finite number of steps, time, and memory space.
- Each step has a definitive meaning. The output is consistently the same under the same inputs and conditions.
"},{"location":"chapter_introduction/what_is_dsa/#122-definition-of-a-data-structure","title":"1.2.2 \u00a0 Definition of a Data Structure","text":"A \"data structure\" is a way of organizing and storing data in a computer, with the following design goals:
- Minimize space occupancy to save computer memory.
- Make data operations as fast as possible, covering data access, addition, deletion, updating, etc.
- Provide concise data representation and logical information to enable efficient algorithm execution.
Designing data structures is a balancing act, often requiring trade-offs. If you want to improve in one aspect, you often need to compromise in another. Here are two examples:
- Compared to arrays, linked lists offer more convenience in data addition and deletion but sacrifice data access speed.
- Graphs, compared to linked lists, provide richer logical information but require more memory space.
"},{"location":"chapter_introduction/what_is_dsa/#123-relationship-between-data-structures-and-algorithms","title":"1.2.3 \u00a0 Relationship Between Data Structures and Algorithms","text":"As shown in the Figure 1-4 , data structures and algorithms are highly related and closely integrated, specifically in the following three aspects:
- Data structures are the foundation of algorithms. They provide structured data storage and methods for manipulating data for algorithms.
- Algorithms are the stage where data structures come into play. The data structure alone only stores data information; it is through the application of algorithms that specific problems can be solved.
- Algorithms can often be implemented based on different data structures, but their execution efficiency can vary greatly. Choosing the right data structure is key.
Figure 1-4 \u00a0 Relationship between data structures and algorithms
Data structures and algorithms can be likened to a set of building blocks, as illustrated in the Figure 1-5 . A building block set includes numerous pieces, accompanied by detailed assembly instructions. Following these instructions step by step allows us to construct an intricate block model.
Figure 1-5 \u00a0 Assembling blocks
The detailed correspondence between the two is shown in the Table 1-1 .
Table 1-1 \u00a0 Comparing Data Structures and Algorithms to Building Blocks
Data Structures and Algorithms Building Blocks Input data Unassembled blocks Data structure Organization of blocks, including shape, size, connections, etc Algorithm A series of steps to assemble the blocks into the desired shape Output data Completed Block model It's worth noting that data structures and algorithms are independent of programming languages. For this reason, this book is able to provide implementations in multiple programming languages.
Conventional Abbreviation
In real-life discussions, we often refer to \"Data Structures and Algorithms\" simply as \"Algorithms\". For example, the well-known LeetCode algorithm problems actually test both data structure and algorithm knowledge.
"},{"location":"chapter_preface/","title":"Chapter 0. \u00a0 Preface","text":"Abstract
Algorithms are like a beautiful symphony, with each line of code flowing like a rhythm.
May this book ring softly in your mind, leaving a unique and profound melody.
"},{"location":"chapter_preface/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 0.1 \u00a0 About This Book
- 0.2 \u00a0 How to Read
- 0.3 \u00a0 Summary
"},{"location":"chapter_preface/about_the_book/","title":"0.1 \u00a0 About This Book","text":"This open-source project aims to create a free, and beginner-friendly crash course on data structures and algorithms.
- Using animated illustrations, it delivers structured insights into data structures and algorithmic concepts, ensuring comprehensibility and a smooth learning curve.
- Run code with just one click, supporting Java, C++, Python, Go, JS, TS, C#, Swift, Rust, Dart, Zig and other languages.
- Readers are encouraged to engage with each other in the discussion area for each section, questions and comments are usually answered within two days.
"},{"location":"chapter_preface/about_the_book/#011-target-audience","title":"0.1.1 \u00a0 Target Audience","text":"If you are new to algorithms with limited exposure, or you have accumulated some experience in algorithms, but you only have a vague understanding of data structures and algorithms, and you are constantly jumping between \"yep\" and \"hmm\", then this book is for you!
If you have already accumulated a certain amount of problem-solving experience, and are familiar with most types of problems, then this book can help you review and organize your algorithm knowledge system. The repository's source code can be used as a \"problem-solving toolkit\" or an \"algorithm cheat sheet\".
If you are an algorithm expert, we look forward to receiving your valuable suggestions, or join us and collaborate.
Prerequisites
You should know how to write and read simple code in at least one programming language.
"},{"location":"chapter_preface/about_the_book/#012-content-structure","title":"0.1.2 \u00a0 Content Structure","text":"The main content of the book is shown in the following figure.
- Complexity Analysis: explores aspects and methods for evaluating data structures and algorithms. Covers methods of deriving time complexity and space complexity, along with common types and examples.
- Data Structures: focuses on fundamental data types, classification methods, definitions, pros and cons, common operations, types, applications, and implementation methods of data structures such as array, linked list, stack, queue, hash table, tree, heap, graph, etc.
- Algorithms: defines algorithms, discusses their pros and cons, efficiency, application scenarios, problem-solving steps, and includes sample questions for various algorithms such as search, sorting, divide and conquer, backtracking, dynamic programming, greedy algorithms, and more.
Figure 0-1 \u00a0 Main Content of the Book
"},{"location":"chapter_preface/about_the_book/#013-acknowledgements","title":"0.1.3 \u00a0 Acknowledgements","text":"Throughout the creation of this book, numerous individuals provided invaluable assistance, including but not limited to:
- Thanks to my mentor at the company, Dr. Xi Li, who encouraged me in a conversation to \"get moving fast,\" which solidified my determination to write this book;
- Thanks to my girlfriend Paopao, as the first reader of this book, for offering many valuable suggestions from the perspective of a beginner in algorithms, making this book more suitable for newbies;
- Thanks to Tengbao, Qibao, and Feibao for coming up with a creative name for this book, evoking everyone's fond memories of writing their first line of code \"Hello World!\";
- Thanks to Xiaoquan for providing professional help in intellectual property, which has played a significant role in the development of this open-source book;
- Thanks to Sutong for designing a beautiful cover and logo for this book, and for patiently making multiple revisions under my insistence;
- Thanks to @squidfunk for providing writing and typesetting suggestions, as well as his developed open-source documentation theme Material-for-MkDocs.
Throughout the writing journey, I delved into numerous textbooks and articles on data structures and algorithms. These works served as exemplary models, ensuring the accuracy and quality of this book's content. I extend my gratitude to all who preceded me for their invaluable contributions!
This book advocates a combination of hands-on and minds-on learning, inspired in this regard by \"Dive into Deep Learning\". I highly recommend this excellent book to all readers.
Heartfelt thanks to my parents, whose ongoing support and encouragement have allowed me to do this interesting work.
"},{"location":"chapter_preface/suggestions/","title":"0.2 \u00a0 How to Read","text":"Tip
For the best reading experience, it is recommended that you read through this section.
"},{"location":"chapter_preface/suggestions/#021-conventions-of-style","title":"0.2.1 \u00a0 Conventions Of Style","text":" - Those labeled
* after the title are optional chapters with relatively difficult content. If you have limited time, it is advisable to skip them. - Proper nouns and words and phrases with specific meanings are marked with
\"double quotes\" to avoid ambiguity. - Important proper nouns and their English translations are marked with
\" \" in parentheses, e.g. \"array array\" . It is recommended to memorize them for reading the literature. - Bolded text Indicates key content or summary statements, which deserve special attention.
- When it comes to terms that are inconsistent between programming languages, this book follows Python, for example using
None to mean \"empty\". - This book partially abandons the specification of annotations in programming languages in exchange for a more compact layout of the content. There are three main types of annotations: title annotations, content annotations, and multi-line annotations.
PythonC++JavaC#GoSwiftJSTSDartRustCZig \"\"\"Header comments for labeling functions, classes, test samples, etc.\"\"\"\"\n\n# Content comments for detailed code solutions\n\n\"\"\"\nmulti-line\nmarginal notes\n\"\"\"\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
/* Header comments for labeling functions, classes, test samples, etc. */\n\n// Content comments for detailed code solutions.\n\n/**\n * multi-line\n * marginal notes\n */\n
// Header comments for labeling functions, classes, test samples, etc.\n\n// Content comments for detailed code solutions.\n\n// Multi-line\n// Annotation\n
"},{"location":"chapter_preface/suggestions/#022-learn-efficiently-in-animated-graphic-solutions","title":"0.2.2 \u00a0 Learn Efficiently In Animated Graphic Solutions","text":"Compared with text, videos and pictures have a higher degree of information density and structure and are easier to understand. In this book, key and difficult knowledge will be presented mainly in the form of animations and graphs, while the text serves as an explanation and supplement to the animations and graphs.
If, while reading the book, you find that a particular paragraph provides an animation or a graphic solution as shown below, please use the figure as the primary source and the text as a supplement and synthesize the two to understand the content.
Figure 0-2 \u00a0 Example animation
"},{"location":"chapter_preface/suggestions/#023-deeper-understanding-in-code-practice","title":"0.2.3 \u00a0 Deeper Understanding In Code Practice","text":"The companion code for this book is hosted in the GitHub repository. As shown in the Figure 0-3 , the source code is accompanied by test samples that can be run with a single click.
If time permits, it is recommended that you refer to the code and knock it through on your own. If you have limited time to study, please read through and run all the code at least once.
The process of writing code is often more rewarding than reading it. Learning by doing is really learning.
Figure 0-3 \u00a0 Running code example
The preliminaries for running the code are divided into three main steps.
Step 1: Install the local programming environment. Please refer to Appendix Tutorial for installation, or skip this step if already installed.
Step 2: Clone or download the code repository. If Git is already installed, you can clone this repository with the following command.
git clone https://github.com/krahets/hello-algo.git\n
Of course, you can also in the location shown in the Figure 0-4 , click \"Download ZIP\" directly download the code zip, and then in the local solution.
Figure 0-4 \u00a0 Clone repository with download code
Step 3: Run the source code. As shown in the Figure 0-5 , for the code block labeled with the file name at the top, we can find the corresponding source code file in the codes folder of the repository. The source code files can be run with a single click, which will help you save unnecessary debugging time and allow you to focus on what you are learning.
Figure 0-5 \u00a0 Code block with corresponding source file
"},{"location":"chapter_preface/suggestions/#024-growing-together-in-questioning-and-discussion","title":"0.2.4 \u00a0 Growing Together In Questioning And Discussion","text":"While reading this book, please don't skip over the points that you didn't learn. Feel free to ask your questions in the comment section. We will be happy to answer them and can usually respond within two days.
As you can see in the Figure 0-6 , each post comes with a comment section at the bottom. I hope you'll pay more attention to the comments section. On the one hand, you can learn about the problems that people encounter, so as to check the gaps and stimulate deeper thinking. On the other hand, we expect you to generously answer other partners' questions, share your insights, and help others improve.
Figure 0-6 \u00a0 Example of comment section
"},{"location":"chapter_preface/suggestions/#025-algorithm-learning-route","title":"0.2.5 \u00a0 Algorithm Learning Route","text":"From a general point of view, we can divide the process of learning data structures and algorithms into three stages.
- Introduction to Algorithms. We need to familiarize ourselves with the characteristics and usage of various data structures and learn about the principles, processes, uses and efficiency of different algorithms.
- Brush up on algorithm questions. It is recommended to start brushing from popular topics, such as Sword to Offer and LeetCode Hot 100, first accumulate at least 100 questions to familiarize yourself with mainstream algorithmic problems. Forgetfulness can be a challenge when first brushing up, but rest assured that this is normal. We can follow the \"Ebbinghaus Forgetting Curve\" to review the questions, and usually after 3-5 rounds of repetitions, we will be able to memorize them.
- Build the knowledge system. In terms of learning, we can read algorithm column articles, solution frameworks and algorithm textbooks to continuously enrich the knowledge system. In terms of brushing, we can try to adopt advanced brushing strategies, such as categorizing by topic, multiple solutions, multiple solutions, etc. Related brushing tips can be found in various communities.
As shown in the Figure 0-7 , this book mainly covers \"Phase 1\" and is designed to help you start Phase 2 and 3 more efficiently.
Figure 0-7 \u00a0 algorithm learning route
"},{"location":"chapter_preface/summary/","title":"0.3 \u00a0 Summary","text":" - The main audience of this book is beginners in algorithm. If you already have some basic knowledge, this book can help you systematically review your algorithm knowledge, and the source code in this book can also be used as a \"Coding Toolkit\".
- The book consists of three main sections, Complexity Analysis, Data Structures, and Algorithms, covering most of the topics in the field.
- For newcomers to algorithms, it is crucial to read an introductory book in the beginning stages to avoid many detours or common pitfalls.
- Animations and figures within the book are usually used to introduce key points and difficult knowledge. These should be given more attention when reading the book.
- Practice is the best way to learn programming. It is highly recommended that you run the source code and type in the code yourself.
- Each chapter in the web version of this book features a discussion section, and you are welcome to share your questions and insights at any time.
"}]}
\ No newline at end of file
diff --git a/en/sitemap.xml b/en/sitemap.xml
index 11cf79e31..d439efe24 100644
--- a/en/sitemap.xml
+++ b/en/sitemap.xml
@@ -2,137 +2,137 @@
https://www.hello-algo.com/en/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_array_and_linkedlist/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_array_and_linkedlist/array/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_array_and_linkedlist/linked_list/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_array_and_linkedlist/list/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_array_and_linkedlist/ram_and_cache/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_array_and_linkedlist/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_computational_complexity/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_computational_complexity/iteration_and_recursion/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_computational_complexity/performance_evaluation/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_computational_complexity/space_complexity/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_computational_complexity/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_computational_complexity/time_complexity/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_data_structure/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_data_structure/basic_data_types/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_data_structure/character_encoding/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_data_structure/classification_of_data_structure/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_data_structure/number_encoding/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_data_structure/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_introduction/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_introduction/algorithms_are_everywhere/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_introduction/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_introduction/what_is_dsa/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_preface/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_preface/about_the_book/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_preface/suggestions/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/en/chapter_preface/summary/
- 2023-12-26
+ 2023-12-28
daily
\ No newline at end of file
diff --git a/en/sitemap.xml.gz b/en/sitemap.xml.gz
index 3e964b886..36b6c03d4 100644
Binary files a/en/sitemap.xml.gz and b/en/sitemap.xml.gz differ
diff --git a/index.html b/index.html
index 02d0c4e98..4fa9f61d5 100644
--- a/index.html
+++ b/index.html
@@ -1701,7 +1701,7 @@
- 8.3 Top-K 问题
+ 8.3 Top-k 问题
diff --git a/search/search_index.json b/search/search_index.json
index 501aa174c..21a2dccb2 100644
--- a/search/search_index.json
+++ b/search/search_index.json
@@ -1 +1 @@
-{"config":{"lang":["en"],"separator":"[\\s\\u200b\\u3000\\-\u3001\u3002\uff0c\uff0e\uff1f\uff01\uff1b]+","pipeline":["stemmer"]},"docs":[{"location":"","title":"Home","text":"\u300a Hello \u7b97\u6cd5 \u300b \u52a8\u753b\u56fe\u89e3\u3001\u4e00\u952e\u8fd0\u884c\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6559\u7a0b
\u5f00\u59cb\u9605\u8bfb \u4e0b\u8f7d\u4ee3\u7801 \u4e0b\u8f7d PDF
\u63a8\u8350\u8bed Quote
\u201c\u4e00\u672c\u901a\u4fd7\u6613\u61c2\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u4e66\uff0c\u5f15\u5bfc\u8bfb\u8005\u624b\u8111\u5e76\u7528\u5730\u5b66\u4e60\uff0c\u5f3a\u70c8\u63a8\u8350\u7b97\u6cd5\u521d\u5b66\u8005\u9605\u8bfb\u3002\u201d
\u2014\u2014 \u9093\u4fca\u8f89\uff0c\u6e05\u534e\u5927\u5b66\u8ba1\u7b97\u673a\u7cfb\u6559\u6388
Quote
\u201c\u5982\u679c\u6211\u5f53\u5e74\u5b66\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u65f6\u5019\u6709\u300aHello \u7b97\u6cd5\u300b\uff0c\u5b66\u8d77\u6765\u5e94\u8be5\u4f1a\u7b80\u5355 10 \u500d\uff01\u201d
\u2014\u2014 \u674e\u6c90\uff0c\u4e9a\u9a6c\u900a\u8d44\u6df1\u9996\u5e2d\u79d1\u5b66\u5bb6
\u52a8\u753b\u56fe\u89e3 \u5185\u5bb9\u6e05\u6670\u6613\u61c2\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1
\"A picture is worth a thousand words.\"
\u201c\u4e00\u56fe\u80dc\u5343\u8a00\u201d
\u4e00\u952e\u8fd0\u884c \u5341\u4f59\u79cd\u7f16\u7a0b\u8bed\u8a00\u4ee3\u7801\u53ef\u76f4\u63a5\u8fd0\u884c
\"Talk is cheap. Show me the code.\"
\u201c\u5c11\u5439\u725b\uff0c\u770b\u4ee3\u7801\u201d
\u4e92\u52a9\u5b66\u4e60 \u6b22\u8fce\u8ba8\u8bba\u4e0e\u63d0\u95ee\u8bfb\u8005\u95f4\u643a\u624b\u5171\u8fdb
\"\u8ffd\u98ce\u8d76\u6708\u83ab\u505c\u7559\"
\u201c\u5e73\u829c\u5c3d\u5904\u662f\u6625\u5c71\u201d
\u5e8f \u4e24\u5e74\u524d\uff0c\u6211\u5728\u529b\u6263\u4e0a\u5206\u4eab\u4e86\u201c\u5251\u6307 Offer\u201d\u7cfb\u5217\u9898\u89e3\uff0c\u53d7\u5230\u4e86\u8bb8\u591a\u540c\u5b66\u7684\u559c\u7231\u548c\u652f\u6301\u3002\u5728\u4e0e\u8bfb\u8005\u4ea4\u6d41\u671f\u95f4\uff0c\u6211\u6700\u5e38\u6536\u5230\u7684\u4e00\u4e2a\u95ee\u9898\u662f\u201c\u5982\u4f55\u5165\u95e8\u7b97\u6cd5\u201d\u3002\u9010\u6e10\u5730\uff0c\u6211\u5bf9\u8fd9\u4e2a\u95ee\u9898\u4ea7\u751f\u4e86\u6d53\u539a\u7684\u5174\u8da3\u3002
\u4e24\u773c\u4e00\u62b9\u9ed1\u5730\u5237\u9898\u4f3c\u4e4e\u662f\u6700\u53d7\u6b22\u8fce\u7684\u65b9\u6cd5\uff0c\u7b80\u5355\u76f4\u63a5\u4e14\u6709\u6548\u3002\u7136\u800c\u5237\u9898\u5c31\u5982\u540c\u73a9\u201c\u626b\u96f7\u201d\u6e38\u620f\uff0c\u81ea\u5b66\u80fd\u529b\u5f3a\u7684\u540c\u5b66\u80fd\u591f\u987a\u5229\u5c06\u5730\u96f7\u9010\u4e2a\u6392\u6389\uff0c\u800c\u57fa\u7840\u4e0d\u8db3\u7684\u540c\u5b66\u5f88\u53ef\u80fd\u88ab\u70b8\u7684\u6ee1\u5934\u662f\u5305\uff0c\u5e76\u5728\u632b\u6298\u4e2d\u6b65\u6b65\u9000\u7f29\u3002\u901a\u8bfb\u6559\u6750\u4e5f\u662f\u4e00\u79cd\u5e38\u89c1\u505a\u6cd5\uff0c\u4f46\u5bf9\u4e8e\u9762\u5411\u6c42\u804c\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u6bd5\u4e1a\u5b63\u3001\u6295\u9012\u7b80\u5386\u3001\u51c6\u5907\u7b14\u8bd5\u9762\u8bd5\u5df2\u7ecf\u6d88\u8017\u4e86\u5927\u90e8\u5206\u7cbe\u529b\uff0c\u5543\u539a\u91cd\u7684\u4e66\u5f80\u5f80\u53d8\u6210\u4e86\u4e00\u9879\u8270\u5de8\u7684\u6311\u6218\u3002
\u5982\u679c\u4f60\u4e5f\u9762\u4e34\u7c7b\u4f3c\u7684\u56f0\u6270\uff0c\u90a3\u4e48\u5f88\u5e78\u8fd0\u8fd9\u672c\u4e66\u627e\u5230\u4e86\u4f60\u3002\u672c\u4e66\u662f\u6211\u5bf9\u8fd9\u4e2a\u95ee\u9898\u7ed9\u51fa\u7684\u7b54\u6848\uff0c\u5373\u4f7f\u4e0d\u662f\u6700\u4f18\u89e3\uff0c\u4e5f\u81f3\u5c11\u662f\u4e00\u6b21\u79ef\u6781\u7684\u5c1d\u8bd5\u3002\u672c\u4e66\u867d\u7136\u4e0d\u8db3\u4ee5\u8ba9\u4f60\u76f4\u63a5\u62ff\u5230 Offer \uff0c\u4f46\u4f1a\u5f15\u5bfc\u4f60\u63a2\u7d22\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u201c\u77e5\u8bc6\u5730\u56fe\u201d\uff0c\u5e26\u4f60\u4e86\u89e3\u4e0d\u540c\u201c\u5730\u96f7\u201d\u7684\u5f62\u72b6\u3001\u5927\u5c0f\u548c\u5206\u5e03\u4f4d\u7f6e\uff0c\u8ba9\u4f60\u638c\u63e1\u5404\u79cd\u201c\u6392\u96f7\u65b9\u6cd5\u201d\u3002\u6709\u4e86\u8fd9\u4e9b\u672c\u9886\uff0c\u76f8\u4fe1\u4f60\u53ef\u4ee5\u66f4\u52a0\u81ea\u5982\u5730\u5237\u9898\u548c\u9605\u8bfb\u6587\u732e\uff0c\u9010\u6b65\u6784\u5efa\u8d77\u5b8c\u6574\u7684\u77e5\u8bc6\u4f53\u7cfb\u3002
\u6211\u6df1\u6df1\u8d5e\u540c\u8d39\u66fc\u6559\u6388\u6240\u8a00\uff1a\u201cKnowledge isn't free. You have to pay attention.\u201d\u4ece\u8fd9\u4e2a\u610f\u4e49\u4e0a\u770b\uff0c\u8fd9\u672c\u4e66\u5e76\u975e\u5b8c\u5168\u201c\u514d\u8d39\u201d\u3002\u4e3a\u4e86\u4e0d\u8f9c\u8d1f\u4f60\u4e3a\u672c\u4e66\u6240\u4ed8\u51fa\u7684\u5b9d\u8d35\u201c\u6ce8\u610f\u529b\u201d\uff0c\u6211\u4f1a\u5c3d\u6211\u6240\u80fd\uff0c\u6295\u5165\u6700\u5927\u7684\u201c\u6ce8\u610f\u529b\u201d\u6765\u5b8c\u6210\u8fd9\u672c\u4e66\u7684\u521b\u4f5c\u3002
\u4f5c\u8005 \u9773\u5b87\u680b (Krahets)\uff0c\u5927\u5382\u9ad8\u7ea7\u7b97\u6cd5\u5de5\u7a0b\u5e08\uff0c\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\u7855\u58eb\u3002\u529b\u6263\uff08LeetCode\uff09\u5168\u7f51\u9605\u8bfb\u91cf\u6700\u9ad8\u535a\u4e3b\uff0c\u53d1\u8868\u7684\u300a\u56fe\u89e3\u7b97\u6cd5\u6570\u636e\u7ed3\u6784\u300b\u5df2\u88ab\u8ba2\u9605 30 \u4e07\u672c\u3002
\u8d21\u732e \u672c\u4e66\u5728\u5f00\u6e90\u793e\u533a\u4f17\u591a\u8d21\u732e\u8005\u7684\u5171\u540c\u52aa\u529b\u4e0b\u4e0d\u65ad\u5b8c\u5584\u3002\u611f\u8c22\u6bcf\u4e00\u4f4d\u6295\u5165\u65f6\u95f4\u4e0e\u7cbe\u529b\u7684\u64b0\u7a3f\u4eba\uff0c\u4ed6\u4eec\u662f\uff08\u6309\u7167 GitHub \u81ea\u52a8\u751f\u6210\u7684\u987a\u5e8f\u6392\u5217\uff09\uff1a
\u672c\u4e66\u7684\u4ee3\u7801\u5ba1\u9605\u5de5\u4f5c\u7531 Gonglja\u3001gvenusleo\u3001hpstory\u3001justin\u2010tse\u3001krahets\u3001night-cruise\u3001nuomi1\u3001Reanon \u548c sjinzh \u5b8c\u6210\uff08\u6309\u7167\u9996\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\uff09\u3002\u611f\u8c22\u4ed6\u4eec\u4ed8\u51fa\u7684\u65f6\u95f4\u4e0e\u7cbe\u529b\uff0c\u6b63\u662f\u4ed6\u4eec\u786e\u4fdd\u4e86\u5404\u8bed\u8a00\u4ee3\u7801\u7684\u89c4\u8303\u4e0e\u7edf\u4e00\u3002
GongljaC, C++ gvenusleoDart hpstoryC# justin-tseJS, TS krahetsJava, Python night-cruiseRust nuomi1Swift ReanonGo, C sjinzhRust, Zig"},{"location":"chapter_appendix/","title":"\u7b2c 16 \u7ae0 \u00a0 \u9644\u5f55","text":""},{"location":"chapter_appendix/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5
- 16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c
- 16.3 \u00a0 \u672f\u8bed\u8868
"},{"location":"chapter_appendix/contribution/","title":"16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c","text":"\u7531\u4e8e\u7b14\u8005\u80fd\u529b\u6709\u9650\uff0c\u4e66\u4e2d\u96be\u514d\u5b58\u5728\u4e00\u4e9b\u9057\u6f0f\u548c\u9519\u8bef\uff0c\u8bf7\u60a8\u8c05\u89e3\u3002\u5982\u679c\u60a8\u53d1\u73b0\u4e86\u7b14\u8bef\u3001\u94fe\u63a5\u5931\u6548\u3001\u5185\u5bb9\u7f3a\u5931\u3001\u6587\u5b57\u6b67\u4e49\u3001\u89e3\u91ca\u4e0d\u6e05\u6670\u6216\u884c\u6587\u7ed3\u6784\u4e0d\u5408\u7406\u7b49\u95ee\u9898\uff0c\u8bf7\u534f\u52a9\u6211\u4eec\u8fdb\u884c\u4fee\u6b63\uff0c\u4ee5\u7ed9\u8bfb\u8005\u63d0\u4f9b\u66f4\u4f18\u8d28\u7684\u5b66\u4e60\u8d44\u6e90\u3002
\u6240\u6709\u64b0\u7a3f\u4eba\u7684 GitHub ID \u5c06\u5728\u672c\u4e66\u4ed3\u5e93\u3001\u7f51\u9875\u7248\u548c PDF \u7248\u7684\u4e3b\u9875\u4e0a\u8fdb\u884c\u5c55\u793a\uff0c\u4ee5\u611f\u8c22\u4ed6\u4eec\u5bf9\u5f00\u6e90\u793e\u533a\u7684\u65e0\u79c1\u5949\u732e\u3002
\u5f00\u6e90\u7684\u9b45\u529b
\u7eb8\u8d28\u56fe\u4e66\u7684\u4e24\u6b21\u5370\u5237\u7684\u95f4\u9694\u65f6\u95f4\u5f80\u5f80\u8f83\u4e45\uff0c\u5185\u5bb9\u66f4\u65b0\u975e\u5e38\u4e0d\u65b9\u4fbf\u3002
\u800c\u5728\u672c\u5f00\u6e90\u4e66\u4e2d\uff0c\u5185\u5bb9\u66f4\u8fed\u7684\u65f6\u95f4\u88ab\u7f29\u77ed\u81f3\u6570\u65e5\u751a\u81f3\u51e0\u4e2a\u5c0f\u65f6\u3002
"},{"location":"chapter_appendix/contribution/#1","title":"1. \u00a0 \u5185\u5bb9\u5fae\u8c03","text":"\u5982\u56fe 16-3 \u6240\u793a\uff0c\u6bcf\u4e2a\u9875\u9762\u7684\u53f3\u4e0a\u89d2\u90fd\u6709\u201c\u7f16\u8f91\u56fe\u6807\u201d\u3002\u60a8\u53ef\u4ee5\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u4fee\u6539\u6587\u672c\u6216\u4ee3\u7801\u3002
- \u70b9\u51fb\u201c\u7f16\u8f91\u56fe\u6807\u201d\uff0c\u5982\u679c\u9047\u5230\u201c\u9700\u8981 Fork \u6b64\u4ed3\u5e93\u201d\u7684\u63d0\u793a\uff0c\u8bf7\u540c\u610f\u8be5\u64cd\u4f5c\u3002
- \u4fee\u6539 Markdown \u6e90\u6587\u4ef6\u5185\u5bb9\uff0c\u68c0\u67e5\u5185\u5bb9\u7684\u6b63\u786e\u6027\uff0c\u5e76\u5c3d\u91cf\u4fdd\u6301\u6392\u7248\u683c\u5f0f\u7684\u7edf\u4e00\u3002
- \u5728\u9875\u9762\u5e95\u90e8\u586b\u5199\u4fee\u6539\u8bf4\u660e\uff0c\u7136\u540e\u70b9\u51fb\u201cPropose file change\u201d\u6309\u94ae\u3002\u9875\u9762\u8df3\u8f6c\u540e\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002
\u56fe 16-3 \u00a0 \u9875\u9762\u7f16\u8f91\u6309\u952e
\u56fe\u7247\u65e0\u6cd5\u76f4\u63a5\u4fee\u6539\uff0c\u9700\u8981\u901a\u8fc7\u65b0\u5efa Issue \u6216\u8bc4\u8bba\u7559\u8a00\u6765\u63cf\u8ff0\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5c3d\u5feb\u91cd\u65b0\u7ed8\u5236\u5e76\u66ff\u6362\u56fe\u7247\u3002
"},{"location":"chapter_appendix/contribution/#2","title":"2. \u00a0 \u5185\u5bb9\u521b\u4f5c","text":"\u5982\u679c\u60a8\u6709\u5174\u8da3\u53c2\u4e0e\u6b64\u5f00\u6e90\u9879\u76ee\uff0c\u5305\u62ec\u5c06\u4ee3\u7801\u7ffb\u8bd1\u6210\u5176\u4ed6\u7f16\u7a0b\u8bed\u8a00\u3001\u6269\u5c55\u6587\u7ae0\u5185\u5bb9\u7b49\uff0c\u90a3\u4e48\u9700\u8981\u5b9e\u65bd\u4ee5\u4e0b Pull Request \u5de5\u4f5c\u6d41\u7a0b\u3002
- \u767b\u5f55 GitHub \uff0c\u5c06\u672c\u4e66\u7684\u4ee3\u7801\u4ed3\u5e93 Fork \u5230\u4e2a\u4eba\u8d26\u53f7\u4e0b\u3002
- \u8fdb\u5165\u60a8\u7684 Fork \u4ed3\u5e93\u7f51\u9875\uff0c\u4f7f\u7528
git clone \u547d\u4ee4\u5c06\u4ed3\u5e93\u514b\u9686\u81f3\u672c\u5730\u3002 - \u5728\u672c\u5730\u8fdb\u884c\u5185\u5bb9\u521b\u4f5c\uff0c\u5e76\u8fdb\u884c\u5b8c\u6574\u6d4b\u8bd5\uff0c\u9a8c\u8bc1\u4ee3\u7801\u7684\u6b63\u786e\u6027\u3002
- \u5c06\u672c\u5730\u6240\u505a\u66f4\u6539 Commit \uff0c\u7136\u540e Push \u81f3\u8fdc\u7a0b\u4ed3\u5e93\u3002
- \u5237\u65b0\u4ed3\u5e93\u7f51\u9875\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002
"},{"location":"chapter_appendix/contribution/#3-docker","title":"3. \u00a0 Docker \u90e8\u7f72","text":"\u5728 hello-algo \u6839\u76ee\u5f55\u4e0b\uff0c\u6267\u884c\u4ee5\u4e0b Docker \u811a\u672c\uff0c\u5373\u53ef\u5728 http://localhost:8000 \u8bbf\u95ee\u672c\u9879\u76ee\uff1a
docker-compose up -d\n
\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u5373\u53ef\u5220\u9664\u90e8\u7f72\uff1a
docker-compose down\n
"},{"location":"chapter_appendix/installation/","title":"16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5","text":""},{"location":"chapter_appendix/installation/#1611-ide","title":"16.1.1 \u00a0 \u5b89\u88c5 IDE","text":"\u63a8\u8350\u4f7f\u7528\u5f00\u6e90\u3001\u8f7b\u91cf\u7684 VS Code \u4f5c\u4e3a\u672c\u5730\u96c6\u6210\u5f00\u53d1\u73af\u5883\uff08IDE\uff09\u3002\u8bbf\u95ee VS Code \u5b98\u7f51\uff0c\u6839\u636e\u64cd\u4f5c\u7cfb\u7edf\u9009\u62e9\u76f8\u5e94\u7248\u672c\u7684 VS Code \u8fdb\u884c\u4e0b\u8f7d\u548c\u5b89\u88c5\u3002
\u56fe 16-1 \u00a0 \u4ece\u5b98\u7f51\u4e0b\u8f7d VS Code
VS Code \u62e5\u6709\u5f3a\u5927\u7684\u6269\u5c55\u5305\u751f\u6001\u7cfb\u7edf\uff0c\u652f\u6301\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u7684\u8fd0\u884c\u548c\u8c03\u8bd5\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u5b89\u88c5\u201cPython Extension Pack\u201d\u6269\u5c55\u5305\u4e4b\u540e\uff0c\u5373\u53ef\u8fdb\u884c Python \u4ee3\u7801\u8c03\u8bd5\u3002\u5b89\u88c5\u6b65\u9aa4\u5982\u56fe 16-2 \u6240\u793a\u3002
\u56fe 16-2 \u00a0 \u5b89\u88c5 VS Code \u6269\u5c55\u5305
"},{"location":"chapter_appendix/installation/#1612","title":"16.1.2 \u00a0 \u5b89\u88c5\u8bed\u8a00\u73af\u5883","text":""},{"location":"chapter_appendix/installation/#1-python","title":"1. \u00a0 Python \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Miniconda3 \uff0c\u9700\u8981 Python 3.10 \u6216\u66f4\u65b0\u7248\u672c\u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
python \uff0c\u5b89\u88c5 Python Extension Pack \u3002 - \uff08\u53ef\u9009\uff09\u5728\u547d\u4ee4\u884c\u8f93\u5165
pip install black \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
"},{"location":"chapter_appendix/installation/#2-cc","title":"2. \u00a0 C/C++ \u73af\u5883","text":" - Windows \u7cfb\u7edf\u9700\u8981\u5b89\u88c5 MinGW\uff08\u914d\u7f6e\u6559\u7a0b\uff09\uff1bMacOS \u81ea\u5e26 Clang \uff0c\u65e0\u987b\u5b89\u88c5\u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
c++ \uff0c\u5b89\u88c5 C/C++ Extension Pack \u3002 - \uff08\u53ef\u9009\uff09\u6253\u5f00 Settings \u9875\u9762\uff0c\u641c\u7d22
Clang_format_fallback Style \u4ee3\u7801\u683c\u5f0f\u5316\u9009\u9879\uff0c\u8bbe\u7f6e\u4e3a { BasedOnStyle: Microsoft, BreakBeforeBraces: Attach } \u3002
"},{"location":"chapter_appendix/installation/#3-java","title":"3. \u00a0 Java \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 OpenJDK\uff08\u7248\u672c\u9700\u6ee1\u8db3 > JDK 9\uff09\u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
java \uff0c\u5b89\u88c5 Extension Pack for Java \u3002
"},{"location":"chapter_appendix/installation/#4-c","title":"4. \u00a0 C# \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 .Net 8.0 \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
C# Dev Kit \uff0c\u5b89\u88c5 C# Dev Kit \uff08\u914d\u7f6e\u6559\u7a0b\uff09\u3002 - \u4e5f\u53ef\u4f7f\u7528 Visual Studio\uff08\u5b89\u88c5\u6559\u7a0b\uff09\u3002
"},{"location":"chapter_appendix/installation/#5-go","title":"5. \u00a0 Go \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 go \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
go \uff0c\u5b89\u88c5 Go \u3002 - \u6309\u5feb\u6377\u952e
Ctrl + Shift + P \u547c\u51fa\u547d\u4ee4\u680f\uff0c\u8f93\u5165 go \uff0c\u9009\u62e9 Go: Install/Update Tools \uff0c\u5168\u90e8\u52fe\u9009\u5e76\u5b89\u88c5\u5373\u53ef\u3002
"},{"location":"chapter_appendix/installation/#6-swift","title":"6. \u00a0 Swift \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Swift \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
swift \uff0c\u5b89\u88c5 Swift for Visual Studio Code \u3002
"},{"location":"chapter_appendix/installation/#7-javascript","title":"7. \u00a0 JavaScript \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 node.js \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
javascript \uff0c\u5b89\u88c5 JavaScript (ES6) code snippets \u3002 - \uff08\u53ef\u9009\uff09\u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
Prettier \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
"},{"location":"chapter_appendix/installation/#8-dart","title":"8. \u00a0 Dart \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Dart \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
dart \uff0c\u5b89\u88c5 Dart \u3002
"},{"location":"chapter_appendix/installation/#9-rust","title":"9. \u00a0 Rust \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Rust \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
rust \uff0c\u5b89\u88c5 rust-analyzer \u3002
"},{"location":"chapter_appendix/terminology/","title":"16.3 \u00a0 \u672f\u8bed\u8868","text":"\u8868 16-1 \u5217\u51fa\u4e86\u4e66\u4e2d\u51fa\u73b0\u7684\u91cd\u8981\u672f\u8bed\u3002\u5efa\u8bae\u8bfb\u8005\u540c\u65f6\u8bb0\u4f4f\u5b83\u4eec\u7684\u4e2d\u82f1\u6587\u53eb\u6cd5\uff0c\u4ee5\u4fbf\u9605\u8bfb\u82f1\u6587\u6587\u732e\u3002
\u8868 16-1 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u91cd\u8981\u540d\u8bcd
\u4e2d\u6587 English \u4e2d\u6587 English \u7b97\u6cd5 algorithm \u5c42\u5e8f\u904d\u5386 level-order traversal \u6570\u636e\u7ed3\u6784 data structure \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 breadth-first traversal \u6e10\u8fd1\u590d\u6742\u5ea6\u5206\u6790 asymptotic complexity analysis \u6df1\u5ea6\u4f18\u5148\u904d\u5386 depth-first traversal \u65f6\u95f4\u590d\u6742\u5ea6 time complexity \u4e8c\u53c9\u641c\u7d22\u6811 binary search tree \u7a7a\u95f4\u590d\u6742\u5ea6 space complexity \u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811 balanced binary search tree \u8fed\u4ee3 iteration \u5e73\u8861\u56e0\u5b50 balance factor \u9012\u5f52 recursion \u5806 heap \u5c3e\u9012\u5f52 tail recursion \u5927\u9876\u5806 max heap \u9012\u5f52\u6811 recursion tree \u5c0f\u9876\u5806 min heap \u5927 \\(O\\) \u8bb0\u53f7 big-\\(O\\) notation \u4f18\u5148\u961f\u5217 priority queue \u6e10\u8fd1\u4e0a\u754c asymptotic upper bound \u5806\u5316 heapify \u539f\u7801 sign-magnitude \u56fe graph \u53cd\u7801 1\u2019s complement \u9876\u70b9 vertex \u8865\u7801 2\u2019s complement \u65e0\u5411\u56fe undirected graph \u6570\u7ec4 array \u6709\u5411\u56fe directed graph \u7d22\u5f15 index \u8fde\u901a\u56fe connected graph \u94fe\u8868 linked list \u975e\u8fde\u901a\u56fe disconnected graph \u94fe\u8868\u8282\u70b9 linked list node, list node \u6709\u6743\u56fe weighted graph \u5217\u8868 list \u90bb\u63a5 adjacency \u52a8\u6001\u6570\u7ec4 dynamic array \u8def\u5f84 path \u786c\u76d8 hard disk \u5165\u5ea6 in-degree \u5185\u5b58 random-access memory (RAM) \u51fa\u5ea6 out-degree \u7f13\u5b58 cache memory \u90bb\u63a5\u77e9\u9635 adjacency matrix \u7f13\u5b58\u672a\u547d\u4e2d cache miss \u90bb\u63a5\u8868 adjacency list \u7f13\u5b58\u547d\u4e2d\u7387 cache hit rate \u5e7f\u5ea6\u4f18\u5148\u641c\u7d22 breadth-first search \u6808 stack \u6df1\u5ea6\u4f18\u5148\u641c\u7d22 depth-first search \u961f\u5217 queue \u4e8c\u5206\u67e5\u627e binary search \u53cc\u5411\u961f\u5217 double-ended queue \u641c\u7d22\u7b97\u6cd5 searching algorithm \u54c8\u5e0c\u8868 hash table \u6392\u5e8f\u7b97\u6cd5 sorting algorithm \u6876 bucket \u9009\u62e9\u6392\u5e8f selection sort \u54c8\u5e0c\u51fd\u6570 hash function \u5192\u6ce1\u6392\u5e8f bubble sort \u54c8\u5e0c\u51b2\u7a81 hash collision \u63d2\u5165\u6392\u5e8f insertion sort \u8d1f\u8f7d\u56e0\u5b50 load factor \u5feb\u901f\u6392\u5e8f quick sort \u94fe\u5f0f\u5730\u5740 separate chaining \u5f52\u5e76\u6392\u5e8f merge sort \u5f00\u653e\u5bfb\u5740 open addressing \u5806\u6392\u5e8f heap sort \u7ebf\u6027\u63a2\u6d4b linear probing \u6876\u6392\u5e8f bucket sort \u61d2\u5220\u9664 lazy deletion \u8ba1\u6570\u6392\u5e8f counting sort \u4e8c\u53c9\u6811 binary tree \u57fa\u6570\u6392\u5e8f radix sort \u6811\u8282\u70b9 tree node \u5206\u6cbb divide and conquer \u5de6\u5b50\u8282\u70b9 left-child node \u6c49\u8bfa\u5854\u95ee\u9898 hanota problem \u53f3\u5b50\u8282\u70b9 right-child node \u56de\u6eaf\u7b97\u6cd5 backtracking algorithm \u7236\u8282\u70b9 parent node \u7ea6\u675f constraint \u5de6\u5b50\u6811 left subtree \u89e3 solution \u53f3\u5b50\u6811 right subtree \u72b6\u6001 state \u6839\u8282\u70b9 root node \u526a\u679d pruning \u53f6\u8282\u70b9 leaf node \u5168\u6392\u5217\u95ee\u9898 permutations problem \u8fb9 edge \u5b50\u96c6\u548c\u95ee\u9898 subset-sum problem \u5c42 level N \u7687\u540e\u95ee\u9898 N-queens problem \u5ea6 degree \u52a8\u6001\u89c4\u5212 dynamic programming \u9ad8\u5ea6 height \u521d\u59cb\u72b6\u6001 initial state \u6df1\u5ea6 depth \u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b state-trasition equation \u5b8c\u7f8e\u4e8c\u53c9\u6811 perfect binary tree \u80cc\u5305\u95ee\u9898 knapsack problem \u5b8c\u5168\u4e8c\u53c9\u6811 complete binary tree \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898 edit distance problem \u5b8c\u6ee1\u4e8c\u53c9\u6811 full binary tree \u8d2a\u5fc3\u7b97\u6cd5 greedy algorithm \u5e73\u8861\u4e8c\u53c9\u6811 balanced binary tree AVL \u6811 AVL tree \u7ea2\u9ed1\u6811 red-black tree"},{"location":"chapter_array_and_linkedlist/","title":"\u7b2c 4 \u7ae0 \u00a0 \u6570\u7ec4\u4e0e\u94fe\u8868","text":"Abstract
\u6570\u636e\u7ed3\u6784\u7684\u4e16\u754c\u5982\u540c\u4e00\u5835\u539a\u5b9e\u7684\u7816\u5899\u3002
\u6570\u7ec4\u7684\u7816\u5757\u6574\u9f50\u6392\u5217\uff0c\u9010\u4e2a\u7d27\u8d34\u3002\u94fe\u8868\u7684\u7816\u5757\u5206\u6563\u5404\u5904\uff0c\u8fde\u63a5\u7684\u85e4\u8513\u81ea\u7531\u5730\u7a7f\u68ad\u4e8e\u7816\u7f1d\u4e4b\u95f4\u3002
"},{"location":"chapter_array_and_linkedlist/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 4.1 \u00a0 \u6570\u7ec4
- 4.2 \u00a0 \u94fe\u8868
- 4.3 \u00a0 \u5217\u8868
- 4.4 \u00a0 \u5185\u5b58\u4e0e\u7f13\u5b58 *
- 4.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_array_and_linkedlist/array/","title":"4.1 \u00a0 \u6570\u7ec4","text":"\u300c\u6570\u7ec4 array\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5c06\u76f8\u540c\u7c7b\u578b\u7684\u5143\u7d20\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\u3002\u6211\u4eec\u5c06\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u4f4d\u7f6e\u79f0\u4e3a\u8be5\u5143\u7d20\u7684\u300c\u7d22\u5f15 index\u300d\u3002\u56fe 4-1 \u5c55\u793a\u4e86\u6570\u7ec4\u7684\u4e3b\u8981\u672f\u8bed\u548c\u6982\u5ff5\u3002
\u56fe 4-1 \u00a0 \u6570\u7ec4\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f
"},{"location":"chapter_array_and_linkedlist/array/#411","title":"4.1.1 \u00a0 \u6570\u7ec4\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/array/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u6570\u7ec4","text":"\u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9700\u6c42\u9009\u7528\u6570\u7ec4\u7684\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\uff1a\u65e0\u521d\u59cb\u503c\u3001\u7ed9\u5b9a\u521d\u59cb\u503c\u3002\u5728\u672a\u6307\u5b9a\u521d\u59cb\u503c\u7684\u60c5\u51b5\u4e0b\uff0c\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4f1a\u5c06\u6570\u7ec4\u5143\u7d20\u521d\u59cb\u5316\u4e3a \\(0\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.py# \u521d\u59cb\u5316\u6570\u7ec4\narr: list[int] = [0] * 5 # [ 0, 0, 0, 0, 0 ]\nnums: list[int] = [1, 3, 2, 5, 4] \n
array.cpp/* \u521d\u59cb\u5316\u6570\u7ec4 */\n// \u5b58\u50a8\u5728\u6808\u4e0a\nint arr[5];\nint nums[5] = { 1, 3, 2, 5, 4 };\n// \u5b58\u50a8\u5728\u5806\u4e0a\uff08\u9700\u8981\u624b\u52a8\u91ca\u653e\u7a7a\u95f4\uff09\nint* arr1 = new int[5];\nint* nums1 = new int[5] { 1, 3, 2, 5, 4 };\n
array.java/* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
array.cs/* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = [1, 3, 2, 5, 4];\n
array.go/* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr [5]int\n// \u5728 Go \u4e2d\uff0c\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[5]int\uff09\u4e3a\u6570\u7ec4\uff0c\u4e0d\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[]int\uff09\u4e3a\u5207\u7247\n// \u7531\u4e8e Go \u7684\u6570\u7ec4\u88ab\u8bbe\u8ba1\u4e3a\u5728\u7f16\u8bd1\u671f\u786e\u5b9a\u957f\u5ea6\uff0c\u56e0\u6b64\u53ea\u80fd\u4f7f\u7528\u5e38\u91cf\u6765\u6307\u5b9a\u957f\u5ea6\n// \u4e3a\u4e86\u65b9\u4fbf\u5b9e\u73b0\u6269\u5bb9 extend() \u65b9\u6cd5\uff0c\u4ee5\u4e0b\u5c06\u5207\u7247\uff08Slice\uff09\u770b\u4f5c\u6570\u7ec4\uff08Array\uff09\nnums := []int{1, 3, 2, 5, 4}\n
array.swift/* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]\nlet nums = [1, 3, 2, 5, 4]\n
array.js/* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr = new Array(5).fill(0);\nvar nums = [1, 3, 2, 5, 4];\n
array.ts/* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: number[] = new Array(5).fill(0);\nlet nums: number[] = [1, 3, 2, 5, 4];\n
array.dart/* \u521d\u59cb\u5316\u6570\u7ec4 */\nList<int> arr = List.filled(5, 0); // [0, 0, 0, 0, 0]\nList<int> nums = [1, 3, 2, 5, 4];\n
array.rs/* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: Vec<i32> = vec![0; 5]; // [0, 0, 0, 0, 0]\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
array.c/* \u521d\u59cb\u5316\u6570\u7ec4 */\nint arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }\nint nums[5] = { 1, 3, 2, 5, 4 };\n
array.zig// \u521d\u59cb\u5316\u6570\u7ec4\nvar arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }\nvar nums = [_]i32{ 1, 3, 2, 5, 4 };\n
"},{"location":"chapter_array_and_linkedlist/array/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"\u6570\u7ec4\u5143\u7d20\u88ab\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u8fd9\u610f\u5473\u7740\u8ba1\u7b97\u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u975e\u5e38\u5bb9\u6613\u3002\u7ed9\u5b9a\u6570\u7ec4\u5185\u5b58\u5730\u5740\uff08\u9996\u5143\u7d20\u5185\u5b58\u5730\u5740\uff09\u548c\u67d0\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u56fe 4-2 \u6240\u793a\u7684\u516c\u5f0f\u8ba1\u7b97\u5f97\u5230\u8be5\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u76f4\u63a5\u8bbf\u95ee\u8be5\u5143\u7d20\u3002
\u56fe 4-2 \u00a0 \u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u8ba1\u7b97
\u89c2\u5bdf\u56fe 4-2 \uff0c\u6211\u4eec\u53d1\u73b0\u6570\u7ec4\u9996\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u4e3a \\(0\\) \uff0c\u8fd9\u4f3c\u4e4e\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\u4f1a\u66f4\u81ea\u7136\u3002\u4f46\u4ece\u5730\u5740\u8ba1\u7b97\u516c\u5f0f\u7684\u89d2\u5ea6\u770b\uff0c\u7d22\u5f15\u672c\u8d28\u4e0a\u662f\u5185\u5b58\u5730\u5740\u7684\u504f\u79fb\u91cf\u3002\u9996\u4e2a\u5143\u7d20\u7684\u5730\u5740\u504f\u79fb\u91cf\u662f \\(0\\) \uff0c\u56e0\u6b64\u5b83\u7684\u7d22\u5f15\u4e3a \\(0\\) \u662f\u5408\u7406\u7684\u3002
\u5728\u6570\u7ec4\u4e2d\u8bbf\u95ee\u5143\u7d20\u975e\u5e38\u9ad8\u6548\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u968f\u673a\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u5143\u7d20\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef random_access(nums: list[int]) -> int:\n \"\"\"\u968f\u673a\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u5728\u533a\u95f4 [0, len(nums)-1] \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n random_index = random.randint(0, len(nums) - 1)\n # \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n random_num = nums[random_index]\n return random_num\n
array.cpp/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.java/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = ThreadLocalRandom.current().nextInt(0, nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.cs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint RandomAccess(int[] nums) {\n Random random = new();\n // \u5728\u533a\u95f4 [0, nums.Length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = random.Next(nums.Length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.go/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums []int) (randomNum int) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n randomIndex := rand.Intn(len(nums))\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n randomNum = nums[randomIndex]\n return\n}\n
array.swift/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums: [Int]) -> Int {\n // \u5728\u533a\u95f4 [0, nums.count) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let randomIndex = nums.indices.randomElement()!\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let randomNum = nums[randomIndex]\n return randomNum\n}\n
array.js/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.ts/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums: number[]): number {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.dart/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(List<int> nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = Random().nextInt(nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.rs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfn random_access(nums: &[i32]) -> i32 {\n // \u5728\u533a\u95f4 [0, nums.len()) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let random_index = rand::thread_rng().gen_range(0..nums.len());\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let random_num = nums[random_index];\n random_num\n}\n
array.c/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.zig// \u968f\u673a\u8bbf\u95ee\u5143\u7d20\nfn randomAccess(nums: []i32) i32 {\n // \u5728\u533a\u95f4 [0, nums.len) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6574\u6570\n var randomIndex = std.crypto.random.intRangeLessThan(usize, 0, nums.len);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n var randomNum = nums[randomIndex];\n return randomNum;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#3","title":"3. \u00a0 \u63d2\u5165\u5143\u7d20","text":"\u6570\u7ec4\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u662f\u201c\u7d27\u6328\u7740\u7684\u201d\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u7a7a\u95f4\u518d\u5b58\u653e\u4efb\u4f55\u6570\u636e\u3002\u5982\u56fe 4-3 \u6240\u793a\uff0c\u5982\u679c\u60f3\u5728\u6570\u7ec4\u4e2d\u95f4\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\uff0c\u5219\u9700\u8981\u5c06\u8be5\u5143\u7d20\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u4e4b\u540e\u518d\u628a\u5143\u7d20\u8d4b\u503c\u7ed9\u8be5\u7d22\u5f15\u3002
\u56fe 4-3 \u00a0 \u6570\u7ec4\u63d2\u5165\u5143\u7d20\u793a\u4f8b
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u56fa\u5b9a\u7684\uff0c\u56e0\u6b64\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u4f1a\u5bfc\u81f4\u6570\u7ec4\u5c3e\u90e8\u5143\u7d20\u201c\u4e22\u5931\u201d\u3002\u6211\u4eec\u5c06\u8fd9\u4e2a\u95ee\u9898\u7684\u89e3\u51b3\u65b9\u6848\u7559\u5728\u201c\u5217\u8868\u201d\u7ae0\u8282\u4e2d\u8ba8\u8bba\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef insert(nums: list[int], num: int, index: int):\n \"\"\"\u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\"\"\"\n # \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in range(len(nums) - 1, index, -1):\n nums[i] = nums[i - 1]\n # \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n
array.cpp/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.java/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.cs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid Insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.Length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.go/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums []int, num int, index int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i := len(nums) - 1; i > index; i-- {\n nums[i] = nums[i-1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.swift/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums: inout [Int], num: Int, index: Int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).reversed() {\n nums[i] = nums[i - 1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.js/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums, num, index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.ts/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums: number[], num: number, index: number): void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.dart/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 _num */\nvoid insert(List<int> nums, int _num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 _num \u8d4b\u7ed9 index \u5904\u5143\u7d20\n nums[index] = _num;\n}\n
array.rs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfn insert(nums: &mut Vec<i32>, num: i32, index: usize) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in (index + 1..nums.len()).rev() {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.c/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.zig// \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\nfn insert(nums: []i32, num: i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var i = nums.len - 1;\n while (i > index) : (i -= 1) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#4","title":"4. \u00a0 \u5220\u9664\u5143\u7d20","text":"\u540c\u7406\uff0c\u5982\u56fe 4-4 \u6240\u793a\uff0c\u82e5\u60f3\u5220\u9664\u7d22\u5f15 \\(i\\) \u5904\u7684\u5143\u7d20\uff0c\u5219\u9700\u8981\u628a\u7d22\u5f15 \\(i\\) \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\u3002
\u56fe 4-4 \u00a0 \u6570\u7ec4\u5220\u9664\u5143\u7d20\u793a\u4f8b
\u8bf7\u6ce8\u610f\uff0c\u5220\u9664\u5143\u7d20\u5b8c\u6210\u540e\uff0c\u539f\u5148\u672b\u5c3e\u7684\u5143\u7d20\u53d8\u5f97\u201c\u65e0\u610f\u4e49\u201d\u4e86\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u987b\u7279\u610f\u53bb\u4fee\u6539\u5b83\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef remove(nums: list[int], index: int):\n \"\"\"\u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\"\"\"\n # \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in range(index, len(nums) - 1):\n nums[i] = nums[i + 1]\n
array.cpp/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.java/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.cs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid Remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.Length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.go/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums []int, index int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i := index; i < len(nums)-1; i++ {\n nums[i] = nums[i+1]\n }\n}\n
array.swift/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums: inout [Int], index: Int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).dropLast() {\n nums[i] = nums[i + 1]\n }\n}\n
array.js/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums, index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.ts/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums: number[], index: number): void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.dart/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(List<int> nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.rs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfn remove(nums: &mut Vec<i32>, index: usize) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in index..nums.len() - 1 {\n nums[i] = nums[i + 1];\n }\n}\n
array.c/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.zig// \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\nfn remove(nums: []i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var i = index;\n while (i < nums.len - 1) : (i += 1) {\n nums[i] = nums[i + 1];\n }\n}\n
\u603b\u7684\u6765\u770b\uff0c\u6570\u7ec4\u7684\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u6709\u4ee5\u4e0b\u7f3a\u70b9\u3002
- \u65f6\u95f4\u590d\u6742\u5ea6\u9ad8\uff1a\u6570\u7ec4\u7684\u63d2\u5165\u548c\u5220\u9664\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u957f\u5ea6\u3002
- \u4e22\u5931\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u53ef\u53d8\uff0c\u56e0\u6b64\u5728\u63d2\u5165\u5143\u7d20\u540e\uff0c\u8d85\u51fa\u6570\u7ec4\u957f\u5ea6\u8303\u56f4\u7684\u5143\u7d20\u4f1a\u4e22\u5931\u3002
- \u5185\u5b58\u6d6a\u8d39\uff1a\u6211\u4eec\u53ef\u4ee5\u521d\u59cb\u5316\u4e00\u4e2a\u6bd4\u8f83\u957f\u7684\u6570\u7ec4\uff0c\u53ea\u7528\u524d\u9762\u4e00\u90e8\u5206\uff0c\u8fd9\u6837\u5728\u63d2\u5165\u6570\u636e\u65f6\uff0c\u4e22\u5931\u7684\u672b\u5c3e\u5143\u7d20\u90fd\u662f\u201c\u65e0\u610f\u4e49\u201d\u7684\uff0c\u4f46\u8fd9\u6837\u505a\u4f1a\u9020\u6210\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
"},{"location":"chapter_array_and_linkedlist/array/#5","title":"5. \u00a0 \u904d\u5386\u6570\u7ec4","text":"\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u65e2\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u83b7\u53d6\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef traverse(nums: list[int]):\n \"\"\"\u904d\u5386\u6570\u7ec4\"\"\"\n count = 0\n # \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in range(len(nums)):\n count += nums[i]\n # \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums:\n count += num\n # \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num in enumerate(nums):\n count += nums[i]\n count += num\n
array.cpp/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.java/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int num : nums) {\n count += num;\n }\n}\n
array.cs/* \u904d\u5386\u6570\u7ec4 */\nvoid Traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n foreach (int num in nums) {\n count += num;\n }\n}\n
array.go/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums []int) {\n count := 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i := 0; i < len(nums); i++ {\n count += nums[i]\n }\n count = 0\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for _, num := range nums {\n count += num\n }\n // \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num := range nums {\n count += nums[i]\n count += num\n }\n}\n
array.swift/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums: [Int]) {\n var count = 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in nums.indices {\n count += nums[i]\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n count += num\n }\n}\n
array.js/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums) {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.ts/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums: number[]): void {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.dart/* \u904d\u5386\u6570\u7ec4\u5143\u7d20 */\nvoid traverse(List<int> nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int _num in nums) {\n count += _num;\n }\n // \u901a\u8fc7 forEach \u65b9\u6cd5\u904d\u5386\u6570\u7ec4\n nums.forEach((_num) {\n count += _num;\n });\n}\n
array.rs/* \u904d\u5386\u6570\u7ec4 */\nfn traverse(nums: &[i32]) {\n let mut _count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in 0..nums.len() {\n _count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n _count += num;\n }\n}\n
array.c/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.zig// \u904d\u5386\u6570\u7ec4\nfn traverse(nums: []i32) void {\n var count: i32 = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n var i: i32 = 0;\n while (i < nums.len) : (i += 1) {\n count += nums[i];\n }\n count = 0;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (nums) |num| {\n count += num;\n }\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#6","title":"6. \u00a0 \u67e5\u627e\u5143\u7d20","text":"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\u9700\u8981\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u5224\u65ad\u5143\u7d20\u503c\u662f\u5426\u5339\u914d\uff0c\u82e5\u5339\u914d\u5219\u8f93\u51fa\u5bf9\u5e94\u7d22\u5f15\u3002
\u56e0\u4e3a\u6570\u7ec4\u662f\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u6240\u4ee5\u4e0a\u8ff0\u67e5\u627e\u64cd\u4f5c\u88ab\u79f0\u4e3a\u201c\u7ebf\u6027\u67e5\u627e\u201d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef find(nums: list[int], target: int) -> int:\n \"\"\"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\"\"\"\n for i in range(len(nums)):\n if nums[i] == target:\n return i\n return -1\n
array.cpp/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.java/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\n for (int i = 0; i < nums.length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.cs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint Find(int[] nums, int target) {\n for (int i = 0; i < nums.Length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.go/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums []int, target int) (index int) {\n index = -1\n for i := 0; i < len(nums); i++ {\n if nums[i] == target {\n index = i\n break\n }\n }\n return\n}\n
array.swift/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums: [Int], target: Int) -> Int {\n for i in nums.indices {\n if nums[i] == target {\n return i\n }\n }\n return -1\n}\n
array.js/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums, target) {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) return i;\n }\n return -1;\n}\n
array.ts/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums: number[], target: number): number {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) {\n return i;\n }\n }\n return -1;\n}\n
array.dart/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(List<int> nums, int target) {\n for (var i = 0; i < nums.length; i++) {\n if (nums[i] == target) return i;\n }\n return -1;\n}\n
array.rs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfn find(nums: &[i32], target: i32) -> Option<usize> {\n for i in 0..nums.len() {\n if nums[i] == target {\n return Some(i);\n }\n }\n None\n}\n
array.c/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.zig// \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\nfn find(nums: []i32, target: i32) i32 {\n for (nums, 0..) |num, i| {\n if (num == target) return @intCast(i);\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#7","title":"7. \u00a0 \u6269\u5bb9\u6570\u7ec4","text":"\u5728\u590d\u6742\u7684\u7cfb\u7edf\u73af\u5883\u4e2d\uff0c\u7a0b\u5e8f\u96be\u4ee5\u4fdd\u8bc1\u6570\u7ec4\u4e4b\u540e\u7684\u5185\u5b58\u7a7a\u95f4\u662f\u53ef\u7528\u7684\uff0c\u4ece\u800c\u65e0\u6cd5\u5b89\u5168\u5730\u6269\u5c55\u6570\u7ec4\u5bb9\u91cf\u3002\u56e0\u6b64\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u4e0d\u53ef\u53d8\u7684\u3002
\u5982\u679c\u6211\u4eec\u5e0c\u671b\u6269\u5bb9\u6570\u7ec4\uff0c\u5219\u9700\u91cd\u65b0\u5efa\u7acb\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u7136\u540e\u628a\u539f\u6570\u7ec4\u5143\u7d20\u4f9d\u6b21\u590d\u5236\u5230\u65b0\u6570\u7ec4\u3002\u8fd9\u662f\u4e00\u4e2a \\(O(n)\\) \u7684\u64cd\u4f5c\uff0c\u5728\u6570\u7ec4\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\u975e\u5e38\u8017\u65f6\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef extend(nums: list[int], enlarge: int) -> list[int]:\n \"\"\"\u6269\u5c55\u6570\u7ec4\u957f\u5ea6\"\"\"\n # \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res = [0] * (len(nums) + enlarge)\n # \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in range(len(nums)):\n res[i] = nums[i]\n # \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n
array.cpp/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = new int[size + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] nums;\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.java/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.cs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] Extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.Length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.go/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums []int, enlarge int) []int {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res := make([]int, len(nums)+enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i, num := range nums {\n res[i] = num\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.swift/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums: [Int], enlarge: Int) -> [Int] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = Array(repeating: 0, count: nums.count + enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in nums.indices {\n res[i] = nums[i]\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.js/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cJavaScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums, enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.ts/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cTypeScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums: number[], enlarge: number): number[] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.dart/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nList<int> extend(List<int> nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n List<int> res = List.filled(nums.length + enlarge, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.rs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfn extend(nums: Vec<i32>, enlarge: usize) -> Vec<i32> {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n let mut res: Vec<i32> = vec![0; nums.len() + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\n for i in 0..nums.len() {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n res\n}\n
array.c/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = (int *)malloc(sizeof(int) * (size + enlarge));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u521d\u59cb\u5316\u6269\u5c55\u540e\u7684\u7a7a\u95f4\n for (int i = size; i < size + enlarge; i++) {\n res[i] = 0;\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.zig// \u6269\u5c55\u6570\u7ec4\u957f\u5ea6\nfn extend(mem_allocator: std.mem.Allocator, nums: []i32, enlarge: usize) ![]i32 {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = try mem_allocator.alloc(i32, nums.len + enlarge);\n @memset(res, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(i32, res, nums);\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#412","title":"4.1.2 \u00a0 \u6570\u7ec4\u7684\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u5185\uff0c\u4e14\u5143\u7d20\u7c7b\u578b\u76f8\u540c\u3002\u8fd9\u79cd\u505a\u6cd5\u5305\u542b\u4e30\u5bcc\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u7cfb\u7edf\u53ef\u4ee5\u5229\u7528\u8fd9\u4e9b\u4fe1\u606f\u6765\u4f18\u5316\u6570\u636e\u7ed3\u6784\u7684\u64cd\u4f5c\u6548\u7387\u3002
- \u7a7a\u95f4\u6548\u7387\u9ad8\uff1a\u6570\u7ec4\u4e3a\u6570\u636e\u5206\u914d\u4e86\u8fde\u7eed\u7684\u5185\u5b58\u5757\uff0c\u65e0\u987b\u989d\u5916\u7684\u7ed3\u6784\u5f00\u9500\u3002
- \u652f\u6301\u968f\u673a\u8bbf\u95ee\uff1a\u6570\u7ec4\u5141\u8bb8\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u4efb\u4f55\u5143\u7d20\u3002
- \u7f13\u5b58\u5c40\u90e8\u6027\uff1a\u5f53\u8bbf\u95ee\u6570\u7ec4\u5143\u7d20\u65f6\uff0c\u8ba1\u7b97\u673a\u4e0d\u4ec5\u4f1a\u52a0\u8f7d\u5b83\uff0c\u8fd8\u4f1a\u7f13\u5b58\u5176\u5468\u56f4\u7684\u5176\u4ed6\u6570\u636e\uff0c\u4ece\u800c\u501f\u52a9\u9ad8\u901f\u7f13\u5b58\u6765\u63d0\u5347\u540e\u7eed\u64cd\u4f5c\u7684\u6267\u884c\u901f\u5ea6\u3002
\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u662f\u4e00\u628a\u53cc\u5203\u5251\uff0c\u5176\u5b58\u5728\u4ee5\u4e0b\u5c40\u9650\u6027\u3002
- \u63d2\u5165\u4e0e\u5220\u9664\u6548\u7387\u4f4e\uff1a\u5f53\u6570\u7ec4\u4e2d\u5143\u7d20\u8f83\u591a\u65f6\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u9700\u8981\u79fb\u52a8\u5927\u91cf\u7684\u5143\u7d20\u3002
- \u957f\u5ea6\u4e0d\u53ef\u53d8\uff1a\u6570\u7ec4\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u5c31\u56fa\u5b9a\u4e86\uff0c\u6269\u5bb9\u6570\u7ec4\u9700\u8981\u5c06\u6240\u6709\u6570\u636e\u590d\u5236\u5230\u65b0\u6570\u7ec4\uff0c\u5f00\u9500\u5f88\u5927\u3002
- \u7a7a\u95f4\u6d6a\u8d39\uff1a\u5982\u679c\u6570\u7ec4\u5206\u914d\u7684\u5927\u5c0f\u8d85\u8fc7\u5b9e\u9645\u6240\u9700\uff0c\u90a3\u4e48\u591a\u4f59\u7684\u7a7a\u95f4\u5c31\u88ab\u6d6a\u8d39\u4e86\u3002
"},{"location":"chapter_array_and_linkedlist/array/#413","title":"4.1.3 \u00a0 \u6570\u7ec4\u5178\u578b\u5e94\u7528","text":"\u6570\u7ec4\u662f\u4e00\u79cd\u57fa\u7840\u4e14\u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\uff0c\u65e2\u9891\u7e41\u5e94\u7528\u5728\u5404\u7c7b\u7b97\u6cd5\u4e4b\u4e2d\uff0c\u4e5f\u53ef\u7528\u4e8e\u5b9e\u73b0\u5404\u79cd\u590d\u6742\u6570\u636e\u7ed3\u6784\u3002
- \u968f\u673a\u8bbf\u95ee\uff1a\u5982\u679c\u6211\u4eec\u60f3\u968f\u673a\u62bd\u53d6\u4e00\u4e9b\u6837\u672c\uff0c\u90a3\u4e48\u53ef\u4ee5\u7528\u6570\u7ec4\u5b58\u50a8\uff0c\u5e76\u751f\u6210\u4e00\u4e2a\u968f\u673a\u5e8f\u5217\uff0c\u6839\u636e\u7d22\u5f15\u5b9e\u73b0\u968f\u673a\u62bd\u6837\u3002
- \u6392\u5e8f\u548c\u641c\u7d22\uff1a\u6570\u7ec4\u662f\u6392\u5e8f\u548c\u641c\u7d22\u7b97\u6cd5\u6700\u5e38\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u4e8c\u5206\u67e5\u627e\u7b49\u90fd\u4e3b\u8981\u5728\u6570\u7ec4\u4e0a\u8fdb\u884c\u3002
- \u67e5\u627e\u8868\uff1a\u5f53\u9700\u8981\u5feb\u901f\u67e5\u627e\u4e00\u4e2a\u5143\u7d20\u6216\u5176\u5bf9\u5e94\u5173\u7cfb\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u4f5c\u4e3a\u67e5\u627e\u8868\u3002\u5047\u5982\u6211\u4eec\u60f3\u5b9e\u73b0\u5b57\u7b26\u5230 ASCII \u7801\u7684\u6620\u5c04\uff0c\u5219\u53ef\u4ee5\u5c06\u5b57\u7b26\u7684 ASCII \u7801\u503c\u4f5c\u4e3a\u7d22\u5f15\uff0c\u5bf9\u5e94\u7684\u5143\u7d20\u5b58\u653e\u5728\u6570\u7ec4\u4e2d\u7684\u5bf9\u5e94\u4f4d\u7f6e\u3002
- \u673a\u5668\u5b66\u4e60\uff1a\u795e\u7ecf\u7f51\u7edc\u4e2d\u5927\u91cf\u4f7f\u7528\u4e86\u5411\u91cf\u3001\u77e9\u9635\u3001\u5f20\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97\uff0c\u8fd9\u4e9b\u6570\u636e\u90fd\u662f\u4ee5\u6570\u7ec4\u7684\u5f62\u5f0f\u6784\u5efa\u7684\u3002\u6570\u7ec4\u662f\u795e\u7ecf\u7f51\u7edc\u7f16\u7a0b\u4e2d\u6700\u5e38\u4f7f\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002
- \u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff1a\u6570\u7ec4\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002\u4f8b\u5982\uff0c\u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u4e8c\u7ef4\u6570\u7ec4\u3002
"},{"location":"chapter_array_and_linkedlist/linked_list/","title":"4.2 \u00a0 \u94fe\u8868","text":"\u5185\u5b58\u7a7a\u95f4\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u516c\u5171\u8d44\u6e90\uff0c\u5728\u4e00\u4e2a\u590d\u6742\u7684\u7cfb\u7edf\u8fd0\u884c\u73af\u5883\u4e0b\uff0c\u7a7a\u95f2\u7684\u5185\u5b58\u7a7a\u95f4\u53ef\u80fd\u6563\u843d\u5728\u5185\u5b58\u5404\u5904\u3002\u6211\u4eec\u77e5\u9053\uff0c\u5b58\u50a8\u6570\u7ec4\u7684\u5185\u5b58\u7a7a\u95f4\u5fc5\u987b\u662f\u8fde\u7eed\u7684\uff0c\u800c\u5f53\u6570\u7ec4\u975e\u5e38\u5927\u65f6\uff0c\u5185\u5b58\u53ef\u80fd\u65e0\u6cd5\u63d0\u4f9b\u5982\u6b64\u5927\u7684\u8fde\u7eed\u7a7a\u95f4\u3002\u6b64\u65f6\u94fe\u8868\u7684\u7075\u6d3b\u6027\u4f18\u52bf\u5c31\u4f53\u73b0\u51fa\u6765\u4e86\u3002
\u300c\u94fe\u8868 linked list\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u662f\u4e00\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u5404\u4e2a\u8282\u70b9\u901a\u8fc7\u201c\u5f15\u7528\u201d\u76f8\u8fde\u63a5\u3002\u5f15\u7528\u8bb0\u5f55\u4e86\u4e0b\u4e00\u4e2a\u8282\u70b9\u7684\u5185\u5b58\u5730\u5740\uff0c\u901a\u8fc7\u5b83\u53ef\u4ee5\u4ece\u5f53\u524d\u8282\u70b9\u8bbf\u95ee\u5230\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002
\u94fe\u8868\u7684\u8bbe\u8ba1\u4f7f\u5f97\u5404\u4e2a\u8282\u70b9\u53ef\u4ee5\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\uff0c\u5b83\u4eec\u7684\u5185\u5b58\u5730\u5740\u65e0\u987b\u8fde\u7eed\u3002
\u56fe 4-5 \u00a0 \u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f
\u89c2\u5bdf\u56fe 4-5 \uff0c\u94fe\u8868\u7684\u7ec4\u6210\u5355\u4f4d\u662f\u300c\u8282\u70b9 node\u300d\u5bf9\u8c61\u3002\u6bcf\u4e2a\u8282\u70b9\u90fd\u5305\u542b\u4e24\u9879\u6570\u636e\uff1a\u8282\u70b9\u7684\u201c\u503c\u201d\u548c\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u201c\u5f15\u7528\u201d\u3002
- \u94fe\u8868\u7684\u9996\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5934\u8282\u70b9\u201d\uff0c\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5c3e\u8282\u70b9\u201d\u3002
- \u5c3e\u8282\u70b9\u6307\u5411\u7684\u662f\u201c\u7a7a\u201d\uff0c\u5b83\u5728 Java\u3001C++ \u548c Python \u4e2d\u5206\u522b\u88ab\u8bb0\u4e3a \\(\\text{null}\\)\u3001\\(\\text{nullptr}\\) \u548c \\(\\text{None}\\) \u3002
- \u5728 C\u3001C++\u3001Go \u548c Rust \u7b49\u652f\u6301\u6307\u9488\u7684\u8bed\u8a00\u4e2d\uff0c\u4e0a\u8ff0\u7684\u201c\u5f15\u7528\u201d\u5e94\u88ab\u66ff\u6362\u4e3a\u201c\u6307\u9488\u201d\u3002
\u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff0c\u94fe\u8868\u8282\u70b9 ListNode \u9664\u4e86\u5305\u542b\u503c\uff0c\u8fd8\u9700\u989d\u5916\u4fdd\u5b58\u4e00\u4e2a\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u56e0\u6b64\u5728\u76f8\u540c\u6570\u636e\u91cf\u4e0b\uff0c\u94fe\u8868\u6bd4\u6570\u7ec4\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.next: ListNode | None = None # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n
/* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode *next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n ListNode(int x) : val(x), next(nullptr) {} // \u6784\u9020\u51fd\u6570\n};\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n ListNode(int x) { val = x; } // \u6784\u9020\u51fd\u6570\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode(int x) { //\u6784\u9020\u51fd\u6570\n int val = x; // \u8282\u70b9\u503c\n ListNode? next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n
/* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype ListNode struct {\n Val int // \u8282\u70b9\u503c\n Next *ListNode // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n\n// NewListNode \u6784\u9020\u51fd\u6570\uff0c\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u94fe\u8868\nfunc NewListNode(val int) *ListNode {\n return &ListNode{\n Val: val,\n Next: nil,\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n var val: Int // \u8282\u70b9\u503c\n var next: ListNode? // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n\n init(x: Int) { // \u6784\u9020\u51fd\u6570\n val = x\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n constructor(val, next) {\n this.val = (val === undefined ? 0 : val); // \u8282\u70b9\u503c\n this.next = (next === undefined ? null : next); // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n val: number;\n next: ListNode | null;\n constructor(val?: number, next?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = next === undefined ? null : next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode? next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n ListNode(this.val, [this.next]); // \u6784\u9020\u51fd\u6570\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n/* \u94fe\u8868\u8282\u70b9\u7c7b */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // \u8282\u70b9\u503c\n next: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n
/* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct ListNode {\n int val; // \u8282\u70b9\u503c\n struct ListNode *next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n} ListNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\n ListNode *node;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n return node;\n}\n
// \u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // \u8282\u70b9\u503c\n next: ?*Self = null, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n\n // \u6784\u9020\u51fd\u6570\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#421","title":"4.2.1 \u00a0 \u94fe\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/linked_list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u94fe\u8868","text":"\u5efa\u7acb\u94fe\u8868\u5206\u4e3a\u4e24\u6b65\uff0c\u7b2c\u4e00\u6b65\u662f\u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u7b2c\u4e8c\u6b65\u662f\u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\u5173\u7cfb\u3002\u521d\u59cb\u5316\u5b8c\u6210\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u4ece\u94fe\u8868\u7684\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u901a\u8fc7\u5f15\u7528\u6307\u5411 next \u4f9d\u6b21\u8bbf\u95ee\u6240\u6709\u8282\u70b9\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.py# \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4\n# \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 = ListNode(1)\nn1 = ListNode(3)\nn2 = ListNode(2)\nn3 = ListNode(5)\nn4 = ListNode(4)\n# \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.cpp/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = new ListNode(1);\nListNode* n1 = new ListNode(3);\nListNode* n2 = new ListNode(2);\nListNode* n3 = new ListNode(5);\nListNode* n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.java/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.cs/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new(1);\nListNode n1 = new(3);\nListNode n2 = new(2);\nListNode n3 = new(5);\nListNode n4 = new(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.go/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 := NewListNode(1)\nn1 := NewListNode(3)\nn2 := NewListNode(2)\nn3 := NewListNode(5)\nn4 := NewListNode(4)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.Next = n1\nn1.Next = n2\nn2.Next = n3\nn3.Next = n4\n
linked_list.swift/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = ListNode(x: 1)\nlet n1 = ListNode(x: 3)\nlet n2 = ListNode(x: 2)\nlet n3 = ListNode(x: 5)\nlet n4 = ListNode(x: 4)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.js/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.ts/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.dart/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\\\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = ListNode(1);\nListNode n1 = ListNode(3);\nListNode n2 = ListNode(2);\nListNode n3 = ListNode(5);\nListNode n4 = ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.rs/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));\nlet n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));\nlet n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));\nlet n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));\nlet n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));\n\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.borrow_mut().next = Some(n1.clone());\nn1.borrow_mut().next = Some(n2.clone());\nn2.borrow_mut().next = Some(n3.clone());\nn3.borrow_mut().next = Some(n4.clone());\n
linked_list.c/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = newListNode(1);\nListNode* n1 = newListNode(3);\nListNode* n2 = newListNode(2);\nListNode* n3 = newListNode(5);\nListNode* n4 = newListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.zig// \u521d\u59cb\u5316\u94fe\u8868\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nvar n0 = inc.ListNode(i32){.val = 1};\nvar n1 = inc.ListNode(i32){.val = 3};\nvar n2 = inc.ListNode(i32){.val = 2};\nvar n3 = inc.ListNode(i32){.val = 5};\nvar n4 = inc.ListNode(i32){.val = 4};\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = &n1;\nn1.next = &n2;\nn2.next = &n3;\nn3.next = &n4;\n
\u6570\u7ec4\u6574\u4f53\u662f\u4e00\u4e2a\u53d8\u91cf\uff0c\u6bd4\u5982\u6570\u7ec4 nums \u5305\u542b\u5143\u7d20 nums[0] \u548c nums[1] \u7b49\uff0c\u800c\u94fe\u8868\u662f\u7531\u591a\u4e2a\u72ec\u7acb\u7684\u8282\u70b9\u5bf9\u8c61\u7ec4\u6210\u7684\u3002\u6211\u4eec\u901a\u5e38\u5c06\u5934\u8282\u70b9\u5f53\u4f5c\u94fe\u8868\u7684\u4ee3\u79f0\uff0c\u6bd4\u5982\u4ee5\u4e0a\u4ee3\u7801\u4e2d\u7684\u94fe\u8868\u53ef\u8bb0\u4f5c\u94fe\u8868 n0 \u3002
"},{"location":"chapter_array_and_linkedlist/linked_list/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"\u5728\u94fe\u8868\u4e2d\u63d2\u5165\u8282\u70b9\u975e\u5e38\u5bb9\u6613\u3002\u5982\u56fe 4-6 \u6240\u793a\uff0c\u5047\u8bbe\u6211\u4eec\u60f3\u5728\u76f8\u90bb\u7684\u4e24\u4e2a\u8282\u70b9 n0 \u548c n1 \u4e4b\u95f4\u63d2\u5165\u4e00\u4e2a\u65b0\u8282\u70b9 P \uff0c\u5219\u53ea\u9700\u6539\u53d8\u4e24\u4e2a\u8282\u70b9\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u5728\u6570\u7ec4\u4e2d\u63d2\u5165\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u6548\u7387\u8f83\u4f4e\u3002
\u56fe 4-6 \u00a0 \u94fe\u8868\u63d2\u5165\u8282\u70b9\u793a\u4f8b
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef insert(n0: ListNode, P: ListNode):\n \"\"\"\u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\"\"\"\n n1 = n0.next\n P.next = n1\n n0.next = P\n
linked_list.cpp/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid Insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insertNode(n0 *ListNode, P *ListNode) {\n n1 := n0.Next\n P.Next = n1\n n0.Next = P\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insert(n0: ListNode, P: ListNode) {\n let n1 = n0.next\n P.next = n1\n n0.next = P\n}\n
linked_list.js/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0, P) {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0: ListNode, P: ListNode): void {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\n#[allow(non_snake_case)]\npub fn insert<T>(n0: &Rc<RefCell<ListNode<T>>>, P: Rc<RefCell<ListNode<T>>>) {\n let n1 = n0.borrow_mut().next.take();\n P.borrow_mut().next = n1;\n n0.borrow_mut().next = Some(P);\n}\n
linked_list.c/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\nfn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {\n var n1 = n0.?.next;\n P.?.next = n1;\n n0.?.next = P;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"\u5982\u56fe 4-7 \u6240\u793a\uff0c\u5728\u94fe\u8868\u4e2d\u5220\u9664\u8282\u70b9\u4e5f\u975e\u5e38\u65b9\u4fbf\uff0c\u53ea\u9700\u6539\u53d8\u4e00\u4e2a\u8282\u70b9\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\u3002
\u8bf7\u6ce8\u610f\uff0c\u5c3d\u7ba1\u5728\u5220\u9664\u64cd\u4f5c\u5b8c\u6210\u540e\u8282\u70b9 P \u4ecd\u7136\u6307\u5411 n1 \uff0c\u4f46\u5b9e\u9645\u4e0a\u904d\u5386\u6b64\u94fe\u8868\u5df2\u7ecf\u65e0\u6cd5\u8bbf\u95ee\u5230 P \uff0c\u8fd9\u610f\u5473\u7740 P \u5df2\u7ecf\u4e0d\u518d\u5c5e\u4e8e\u8be5\u94fe\u8868\u4e86\u3002
\u56fe 4-7 \u00a0 \u94fe\u8868\u5220\u9664\u8282\u70b9
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef remove(n0: ListNode):\n \"\"\"\u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n if not n0.next:\n return\n # n0 -> P -> n1\n P = n0.next\n n1 = P.next\n n0.next = n1\n
linked_list.cpp/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode *n0) {\n if (n0->next == nullptr)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n delete P;\n}\n
linked_list.java/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode n1 = P.next;\n n0.next = n1;\n}\n
linked_list.cs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid Remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.go/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc removeItem(n0 *ListNode) {\n if n0.Next == nil {\n return\n }\n // n0 -> P -> n1\n P := n0.Next\n n1 := P.Next\n n0.Next = n1\n}\n
linked_list.swift/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc remove(n0: ListNode) {\n if n0.next == nil {\n return\n }\n // n0 -> P -> n1\n let P = n0.next\n let n1 = P?.next\n n0.next = n1\n P?.next = nil\n}\n
linked_list.js/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0) {\n if (!n0.next) return;\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.ts/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0: ListNode): void {\n if (!n0.next) {\n return;\n }\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.dart/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null) return;\n // n0 -> P -> n1\n ListNode P = n0.next!;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.rs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n#[allow(non_snake_case)]\npub fn remove<T>(n0: &Rc<RefCell<ListNode<T>>>) {\n if n0.borrow().next.is_none() {return};\n // n0 -> P -> n1\n let P = n0.borrow_mut().next.take();\n if let Some(node) = P {\n let n1 = node.borrow_mut().next.take();\n n0.borrow_mut().next = n1;\n }\n}\n
linked_list.c/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(ListNode *n0) {\n if (!n0->next)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n free(P);\n}\n
linked_list.zig// \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\nfn remove(n0: ?*inc.ListNode(i32)) void {\n if (n0.?.next == null) return;\n // n0 -> P -> n1\n var P = n0.?.next;\n var n1 = P.?.next;\n n0.?.next = n1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#4","title":"4. \u00a0 \u8bbf\u95ee\u8282\u70b9","text":"\u5728\u94fe\u8868\u4e2d\u8bbf\u95ee\u8282\u70b9\u7684\u6548\u7387\u8f83\u4f4e\u3002\u5982\u4e0a\u4e00\u8282\u6240\u8ff0\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u4e0b\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u5143\u7d20\u3002\u94fe\u8868\u5219\u4e0d\u7136\uff0c\u7a0b\u5e8f\u9700\u8981\u4ece\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u9010\u4e2a\u5411\u540e\u904d\u5386\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u8282\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8bbf\u95ee\u94fe\u8868\u7684\u7b2c \\(i\\) \u4e2a\u8282\u70b9\u9700\u8981\u5faa\u73af \\(i - 1\\) \u8f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef access(head: ListNode, index: int) -> ListNode | None:\n \"\"\"\u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\"\"\"\n for _ in range(index):\n if not head:\n return None\n head = head.next\n return head\n
linked_list.cpp/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == nullptr)\n return nullptr;\n head = head->next;\n }\n return head;\n}\n
linked_list.java/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode access(ListNode head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.cs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? Access(ListNode? head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.go/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head *ListNode, index int) *ListNode {\n for i := 0; i < index; i++ {\n if head == nil {\n return nil\n }\n head = head.Next\n }\n return head\n}\n
linked_list.swift/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head: ListNode, index: Int) -> ListNode? {\n var head: ListNode? = head\n for _ in 0 ..< index {\n if head == nil {\n return nil\n }\n head = head?.next\n }\n return head\n}\n
linked_list.js/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head, index) {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.ts/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head: ListNode | null, index: number): ListNode | null {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.dart/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode? head, int index) {\n for (var i = 0; i < index; i++) {\n if (head == null) return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.rs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\npub fn access<T>(head: Rc<RefCell<ListNode<T>>>, index: i32) -> Rc<RefCell<ListNode<T>>> {\n if index <= 0 {return head};\n if let Some(node) = &head.borrow_mut().next {\n return access(node.clone(), index - 1);\n }\n return head;\n}\n
linked_list.c/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == NULL)\n return NULL;\n head = head->next;\n }\n return head;\n}\n
linked_list.zig// \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\nfn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {\n var head = node;\n var i: i32 = 0;\n while (i < index) : (i += 1) {\n head = head.?.next;\n if (head == null) return null;\n }\n return head;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#5","title":"5. \u00a0 \u67e5\u627e\u8282\u70b9","text":"\u904d\u5386\u94fe\u8868\uff0c\u67e5\u627e\u5176\u4e2d\u503c\u4e3a target \u7684\u8282\u70b9\uff0c\u8f93\u51fa\u8be5\u8282\u70b9\u5728\u94fe\u8868\u4e2d\u7684\u7d22\u5f15\u3002\u6b64\u8fc7\u7a0b\u4e5f\u5c5e\u4e8e\u7ebf\u6027\u67e5\u627e\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef find(head: ListNode, target: int) -> int:\n \"\"\"\u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n index = 0\n while head:\n if head.val == target:\n return index\n head = head.next\n index += 1\n return -1\n
linked_list.cpp/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head != nullptr) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint Find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc findNode(head *ListNode, target int) int {\n index := 0\n for head != nil {\n if head.Val == target {\n return index\n }\n head = head.Next\n index++\n }\n return -1\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc find(head: ListNode, target: Int) -> Int {\n var head: ListNode? = head\n var index = 0\n while head != nil {\n if head?.val == target {\n return index\n }\n head = head?.next\n index += 1\n }\n return -1\n}\n
linked_list.js/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head, target) {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head: ListNode | null, target: number): number {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target) {\n return index;\n }\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\npub fn find<T: PartialEq>(head: Rc<RefCell<ListNode<T>>>, target: T, index: i32) -> i32 {\n if head.borrow().val == target {return index};\n if let Some(node) = &head.borrow_mut().next {\n return find(node.clone(), target, index + 1);\n }\n return -1;\n}\n
linked_list.c/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\nfn find(node: ?*inc.ListNode(i32), target: i32) i32 {\n var head = node;\n var index: i32 = 0;\n while (head != null) {\n if (head.?.val == target) return index;\n head = head.?.next;\n index += 1;\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#422-vs","title":"4.2.2 \u00a0 \u6570\u7ec4 vs. \u94fe\u8868","text":"\u8868 4-1 \u603b\u7ed3\u4e86\u6570\u7ec4\u548c\u94fe\u8868\u7684\u5404\u9879\u7279\u70b9\u5e76\u5bf9\u6bd4\u4e86\u64cd\u4f5c\u6548\u7387\u3002\u7531\u4e8e\u5b83\u4eec\u91c7\u7528\u4e24\u79cd\u76f8\u53cd\u7684\u5b58\u50a8\u7b56\u7565\uff0c\u56e0\u6b64\u5404\u79cd\u6027\u8d28\u548c\u64cd\u4f5c\u6548\u7387\u4e5f\u5448\u73b0\u5bf9\u7acb\u7684\u7279\u70b9\u3002
\u8868 4-1 \u00a0 \u6570\u7ec4\u4e0e\u94fe\u8868\u7684\u6548\u7387\u5bf9\u6bd4
\u6570\u7ec4 \u94fe\u8868 \u5b58\u50a8\u65b9\u5f0f \u8fde\u7eed\u5185\u5b58\u7a7a\u95f4 \u5206\u6563\u5185\u5b58\u7a7a\u95f4 \u5bb9\u91cf\u6269\u5c55 \u957f\u5ea6\u4e0d\u53ef\u53d8 \u53ef\u7075\u6d3b\u6269\u5c55 \u5185\u5b58\u6548\u7387 \u5143\u7d20\u5360\u7528\u5185\u5b58\u5c11\u3001\u4f46\u53ef\u80fd\u6d6a\u8d39\u7a7a\u95f4 \u5143\u7d20\u5360\u7528\u5185\u5b58\u591a \u8bbf\u95ee\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(1)\\)"},{"location":"chapter_array_and_linkedlist/linked_list/#423","title":"4.2.3 \u00a0 \u5e38\u89c1\u94fe\u8868\u7c7b\u578b","text":"\u5982\u56fe 4-8 \u6240\u793a\uff0c\u5e38\u89c1\u7684\u94fe\u8868\u7c7b\u578b\u5305\u62ec\u4e09\u79cd\u3002
- \u5355\u5411\u94fe\u8868\uff1a\u5373\u524d\u9762\u4ecb\u7ecd\u7684\u666e\u901a\u94fe\u8868\u3002\u5355\u5411\u94fe\u8868\u7684\u8282\u70b9\u5305\u542b\u503c\u548c\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\u4e24\u9879\u6570\u636e\u3002\u6211\u4eec\u5c06\u9996\u4e2a\u8282\u70b9\u79f0\u4e3a\u5934\u8282\u70b9\uff0c\u5c06\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u79f0\u4e3a\u5c3e\u8282\u70b9\uff0c\u5c3e\u8282\u70b9\u6307\u5411\u7a7a \\(\\text{None}\\) \u3002
- \u73af\u5f62\u94fe\u8868\uff1a\u5982\u679c\u6211\u4eec\u4ee4\u5355\u5411\u94fe\u8868\u7684\u5c3e\u8282\u70b9\u6307\u5411\u5934\u8282\u70b9\uff08\u9996\u5c3e\u76f8\u63a5\uff09\uff0c\u5219\u5f97\u5230\u4e00\u4e2a\u73af\u5f62\u94fe\u8868\u3002\u5728\u73af\u5f62\u94fe\u8868\u4e2d\uff0c\u4efb\u610f\u8282\u70b9\u90fd\u53ef\u4ee5\u89c6\u4f5c\u5934\u8282\u70b9\u3002
- \u53cc\u5411\u94fe\u8868\uff1a\u4e0e\u5355\u5411\u94fe\u8868\u76f8\u6bd4\uff0c\u53cc\u5411\u94fe\u8868\u8bb0\u5f55\u4e86\u4e24\u4e2a\u65b9\u5411\u7684\u5f15\u7528\u3002\u53cc\u5411\u94fe\u8868\u7684\u8282\u70b9\u5b9a\u4e49\u540c\u65f6\u5305\u542b\u6307\u5411\u540e\u7ee7\u8282\u70b9\uff08\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\u548c\u524d\u9a71\u8282\u70b9\uff08\u4e0a\u4e00\u4e2a\u8282\u70b9\uff09\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u76f8\u8f83\u4e8e\u5355\u5411\u94fe\u8868\uff0c\u53cc\u5411\u94fe\u8868\u66f4\u5177\u7075\u6d3b\u6027\uff0c\u53ef\u4ee5\u671d\u4e24\u4e2a\u65b9\u5411\u904d\u5386\u94fe\u8868\uff0c\u4f46\u76f8\u5e94\u5730\u4e5f\u9700\u8981\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.next: ListNode | None = None # \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n self.prev: ListNode | None = None # \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode *next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n ListNode *prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // \u6784\u9020\u51fd\u6570\n};\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n ListNode prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n ListNode(int x) { val = x; } // \u6784\u9020\u51fd\u6570\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode(int x) { // \u6784\u9020\u51fd\u6570\n int val = x; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n ListNode prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype DoublyListNode struct {\n Val int // \u8282\u70b9\u503c\n Next *DoublyListNode // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n Prev *DoublyListNode // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n\n// NewDoublyListNode \u521d\u59cb\u5316\nfunc NewDoublyListNode(val int) *DoublyListNode {\n return &DoublyListNode{\n Val: val,\n Next: nil,\n Prev: nil,\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n var val: Int // \u8282\u70b9\u503c\n var next: ListNode? // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n var prev: ListNode? // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n\n init(x: Int) { // \u6784\u9020\u51fd\u6570\n val = x\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n constructor(val, next, prev) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = next === undefined ? null : next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n this.prev = prev === undefined ? null : prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n val: number;\n next: ListNode | null;\n prev: ListNode | null;\n constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = next === undefined ? null : next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n this.prev = prev === undefined ? null : prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n ListNode prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n ListNode(this.val, [this.next, this.prev]); // \u6784\u9020\u51fd\u6570\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\u578b */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // \u8282\u70b9\u503c\n next: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n prev: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nimpl ListNode {\n fn new(val: i32) -> Self {\n ListNode {\n val,\n next: None,\n prev: None,\n }\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct ListNode {\n int val; // \u8282\u70b9\u503c\n struct ListNode *next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n struct ListNode *prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n} ListNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\n ListNode *node;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n node->prev = NULL;\n return node;\n}\n
// \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // \u8282\u70b9\u503c\n next: ?*Self = null, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n prev: ?*Self = null, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n\n // \u6784\u9020\u51fd\u6570\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n self.prev = null;\n }\n };\n}\n
\u56fe 4-8 \u00a0 \u5e38\u89c1\u94fe\u8868\u79cd\u7c7b
"},{"location":"chapter_array_and_linkedlist/linked_list/#424","title":"4.2.4 \u00a0 \u94fe\u8868\u5178\u578b\u5e94\u7528","text":"\u5355\u5411\u94fe\u8868\u901a\u5e38\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u548c\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002
- \u6808\u4e0e\u961f\u5217\uff1a\u5f53\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u90fd\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\u65f6\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u540e\u51fa\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u6808\uff1b\u5f53\u63d2\u5165\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\uff0c\u5220\u9664\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u53e6\u4e00\u7aef\u8fdb\u884c\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u5148\u51fa\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u961f\u5217\u3002
- \u54c8\u5e0c\u8868\uff1a\u94fe\u5f0f\u5730\u5740\u662f\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\u7684\u4e3b\u6d41\u65b9\u6848\u4e4b\u4e00\uff0c\u5728\u8be5\u65b9\u6848\u4e2d\uff0c\u6240\u6709\u51b2\u7a81\u7684\u5143\u7d20\u90fd\u4f1a\u88ab\u653e\u5230\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002
- \u56fe\uff1a\u90bb\u63a5\u8868\u662f\u8868\u793a\u56fe\u7684\u4e00\u79cd\u5e38\u7528\u65b9\u5f0f\uff0c\u5176\u4e2d\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u90fd\u4e0e\u4e00\u4e2a\u94fe\u8868\u76f8\u5173\u8054\uff0c\u94fe\u8868\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u4ee3\u8868\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u5176\u4ed6\u9876\u70b9\u3002
\u53cc\u5411\u94fe\u8868\u5e38\u7528\u4e8e\u9700\u8981\u5feb\u901f\u67e5\u627e\u524d\u4e00\u4e2a\u548c\u540e\u4e00\u4e2a\u5143\u7d20\u7684\u573a\u666f\u3002
- \u9ad8\u7ea7\u6570\u636e\u7ed3\u6784\uff1a\u6bd4\u5982\u5728\u7ea2\u9ed1\u6811\u3001B \u6811\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u8bbf\u95ee\u8282\u70b9\u7684\u7236\u8282\u70b9\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u5728\u8282\u70b9\u4e2d\u4fdd\u5b58\u4e00\u4e2a\u6307\u5411\u7236\u8282\u70b9\u7684\u5f15\u7528\u6765\u5b9e\u73b0\uff0c\u7c7b\u4f3c\u4e8e\u53cc\u5411\u94fe\u8868\u3002
- \u6d4f\u89c8\u5668\u5386\u53f2\uff1a\u5728\u7f51\u9875\u6d4f\u89c8\u5668\u4e2d\uff0c\u5f53\u7528\u6237\u70b9\u51fb\u524d\u8fdb\u6216\u540e\u9000\u6309\u94ae\u65f6\uff0c\u6d4f\u89c8\u5668\u9700\u8981\u77e5\u9053\u7528\u6237\u8bbf\u95ee\u8fc7\u7684\u524d\u4e00\u4e2a\u548c\u540e\u4e00\u4e2a\u7f51\u9875\u3002\u53cc\u5411\u94fe\u8868\u7684\u7279\u6027\u4f7f\u5f97\u8fd9\u79cd\u64cd\u4f5c\u53d8\u5f97\u7b80\u5355\u3002
- LRU \u7b97\u6cd5\uff1a\u5728\u7f13\u5b58\u6dd8\u6c70\uff08LRU\uff09\u7b97\u6cd5\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5feb\u901f\u627e\u5230\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u652f\u6301\u5feb\u901f\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u3002\u8fd9\u65f6\u5019\u4f7f\u7528\u53cc\u5411\u94fe\u8868\u5c31\u975e\u5e38\u5408\u9002\u3002
\u73af\u5f62\u94fe\u8868\u5e38\u7528\u4e8e\u9700\u8981\u5468\u671f\u6027\u64cd\u4f5c\u7684\u573a\u666f\uff0c\u6bd4\u5982\u64cd\u4f5c\u7cfb\u7edf\u7684\u8d44\u6e90\u8c03\u5ea6\u3002
- \u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\uff1a\u5728\u64cd\u4f5c\u7cfb\u7edf\u4e2d\uff0c\u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684 CPU \u8c03\u5ea6\u7b97\u6cd5\uff0c\u5b83\u9700\u8981\u5bf9\u4e00\u7ec4\u8fdb\u7a0b\u8fdb\u884c\u5faa\u73af\u3002\u6bcf\u4e2a\u8fdb\u7a0b\u88ab\u8d4b\u4e88\u4e00\u4e2a\u65f6\u95f4\u7247\uff0c\u5f53\u65f6\u95f4\u7247\u7528\u5b8c\u65f6\uff0cCPU \u5c06\u5207\u6362\u5230\u4e0b\u4e00\u4e2a\u8fdb\u7a0b\u3002\u8fd9\u79cd\u5faa\u73af\u64cd\u4f5c\u53ef\u4ee5\u901a\u8fc7\u73af\u5f62\u94fe\u8868\u6765\u5b9e\u73b0\u3002
- \u6570\u636e\u7f13\u51b2\u533a\uff1a\u5728\u67d0\u4e9b\u6570\u636e\u7f13\u51b2\u533a\u7684\u5b9e\u73b0\u4e2d\uff0c\u4e5f\u53ef\u80fd\u4f1a\u4f7f\u7528\u73af\u5f62\u94fe\u8868\u3002\u6bd4\u5982\u5728\u97f3\u9891\u3001\u89c6\u9891\u64ad\u653e\u5668\u4e2d\uff0c\u6570\u636e\u6d41\u53ef\u80fd\u4f1a\u88ab\u5206\u6210\u591a\u4e2a\u7f13\u51b2\u5757\u5e76\u653e\u5165\u4e00\u4e2a\u73af\u5f62\u94fe\u8868\uff0c\u4ee5\u4fbf\u5b9e\u73b0\u65e0\u7f1d\u64ad\u653e\u3002
"},{"location":"chapter_array_and_linkedlist/list/","title":"4.3 \u00a0 \u5217\u8868","text":"\u300c\u5217\u8868 list\u300d\u662f\u4e00\u4e2a\u62bd\u8c61\u7684\u6570\u636e\u7ed3\u6784\u6982\u5ff5\uff0c\u5b83\u8868\u793a\u5143\u7d20\u7684\u6709\u5e8f\u96c6\u5408\uff0c\u652f\u6301\u5143\u7d20\u8bbf\u95ee\u3001\u4fee\u6539\u3001\u6dfb\u52a0\u3001\u5220\u9664\u548c\u904d\u5386\u7b49\u64cd\u4f5c\uff0c\u65e0\u987b\u4f7f\u7528\u8005\u8003\u8651\u5bb9\u91cf\u9650\u5236\u7684\u95ee\u9898\u3002\u5217\u8868\u53ef\u4ee5\u57fa\u4e8e\u94fe\u8868\u6216\u6570\u7ec4\u5b9e\u73b0\u3002
- \u94fe\u8868\u5929\u7136\u53ef\u4ee5\u770b\u4f5c\u4e00\u4e2a\u5217\u8868\uff0c\u5176\u652f\u6301\u5143\u7d20\u589e\u5220\u67e5\u6539\u64cd\u4f5c\uff0c\u5e76\u4e14\u53ef\u4ee5\u7075\u6d3b\u52a8\u6001\u6269\u5bb9\u3002
- \u6570\u7ec4\u4e5f\u652f\u6301\u5143\u7d20\u589e\u5220\u67e5\u6539\uff0c\u4f46\u7531\u4e8e\u5176\u957f\u5ea6\u4e0d\u53ef\u53d8\uff0c\u56e0\u6b64\u53ea\u80fd\u770b\u4f5c\u4e00\u4e2a\u5177\u6709\u957f\u5ea6\u9650\u5236\u7684\u5217\u8868\u3002
\u5f53\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u5217\u8868\u65f6\uff0c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6027\u8d28\u4f1a\u5bfc\u81f4\u5217\u8868\u7684\u5b9e\u7528\u6027\u964d\u4f4e\u3002\u8fd9\u662f\u56e0\u4e3a\u6211\u4eec\u901a\u5e38\u65e0\u6cd5\u4e8b\u5148\u786e\u5b9a\u9700\u8981\u5b58\u50a8\u591a\u5c11\u6570\u636e\uff0c\u4ece\u800c\u96be\u4ee5\u9009\u62e9\u5408\u9002\u7684\u5217\u8868\u957f\u5ea6\u3002\u82e5\u957f\u5ea6\u8fc7\u5c0f\uff0c\u5219\u5f88\u53ef\u80fd\u65e0\u6cd5\u6ee1\u8db3\u4f7f\u7528\u9700\u6c42\uff1b\u82e5\u957f\u5ea6\u8fc7\u5927\uff0c\u5219\u4f1a\u9020\u6210\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
\u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u300c\u52a8\u6001\u6570\u7ec4 dynamic array\u300d\u6765\u5b9e\u73b0\u5217\u8868\u3002\u5b83\u7ee7\u627f\u4e86\u6570\u7ec4\u7684\u5404\u9879\u4f18\u70b9\uff0c\u5e76\u4e14\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u52a8\u6001\u6269\u5bb9\u3002
\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u6807\u51c6\u5e93\u63d0\u4f9b\u7684\u5217\u8868\u662f\u57fa\u4e8e\u52a8\u6001\u6570\u7ec4\u5b9e\u73b0\u7684\uff0c\u4f8b\u5982 Python \u4e2d\u7684 list \u3001Java \u4e2d\u7684 ArrayList \u3001C++ \u4e2d\u7684 vector \u548c C# \u4e2d\u7684 List \u7b49\u3002\u5728\u63a5\u4e0b\u6765\u7684\u8ba8\u8bba\u4e2d\uff0c\u6211\u4eec\u5c06\u628a\u201c\u5217\u8868\u201d\u548c\u201c\u52a8\u6001\u6570\u7ec4\u201d\u89c6\u4e3a\u7b49\u540c\u7684\u6982\u5ff5\u3002
"},{"location":"chapter_array_and_linkedlist/list/#431","title":"4.3.1 \u00a0 \u5217\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u5217\u8868","text":"\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u201c\u65e0\u521d\u59cb\u503c\u201d\u548c\u201c\u6709\u521d\u59cb\u503c\u201d\u8fd9\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u6cd5\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u521d\u59cb\u5316\u5217\u8868\n# \u65e0\u521d\u59cb\u503c\nnums1: list[int] = []\n# \u6709\u521d\u59cb\u503c\nnums: list[int] = [1, 3, 2, 5, 4]\n
list.cpp/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u9700\u6ce8\u610f\uff0cC++ \u4e2d vector \u5373\u662f\u672c\u6587\u63cf\u8ff0\u7684 nums\n// \u65e0\u521d\u59cb\u503c\nvector<int> nums1;\n// \u6709\u521d\u59cb\u503c\nvector<int> nums = { 1, 3, 2, 5, 4 };\n
list.java/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<Integer> nums1 = new ArrayList<>();\n// \u6709\u521d\u59cb\u503c\uff08\u6ce8\u610f\u6570\u7ec4\u7684\u5143\u7d20\u7c7b\u578b\u9700\u4e3a int[] \u7684\u5305\u88c5\u7c7b Integer[]\uff09\nInteger[] numbers = new Integer[] { 1, 3, 2, 5, 4 };\nList<Integer> nums = new ArrayList<>(Arrays.asList(numbers));\n
list.cs/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> nums1 = [];\n// \u6709\u521d\u59cb\u503c\nint[] numbers = [1, 3, 2, 5, 4];\nList<int> nums = [.. numbers];\n
list_test.go/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nnums1 := []int{}\n// \u6709\u521d\u59cb\u503c\nnums := []int{1, 3, 2, 5, 4}\n
list.swift/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet nums1: [Int] = []\n// \u6709\u521d\u59cb\u503c\nvar nums = [1, 3, 2, 5, 4]\n
list.js/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst nums1 = [];\n// \u6709\u521d\u59cb\u503c\nconst nums = [1, 3, 2, 5, 4];\n
list.ts/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst nums1: number[] = [];\n// \u6709\u521d\u59cb\u503c\nconst nums: number[] = [1, 3, 2, 5, 4];\n
list.dart/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> nums1 = [];\n// \u6709\u521d\u59cb\u503c\nList<int> nums = [1, 3, 2, 5, 4];\n
list.rs/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet nums1: Vec<i32> = Vec::new();\n// \u6709\u521d\u59cb\u503c\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u521d\u59cb\u5316\u5217\u8868\nvar nums = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums.deinit();\ntry nums.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });\n
"},{"location":"chapter_array_and_linkedlist/list/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"\u5217\u8868\u672c\u8d28\u4e0a\u662f\u6570\u7ec4\uff0c\u56e0\u6b64\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u548c\u66f4\u65b0\u5143\u7d20\uff0c\u6548\u7387\u5f88\u9ad8\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u8bbf\u95ee\u5143\u7d20\nnum: int = nums[1] # \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n# \u66f4\u65b0\u5143\u7d20\nnums[1] = 0 # \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.cpp/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.java/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums.get(1); // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums.set(1, 0); // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.cs/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list_test.go/* \u8bbf\u95ee\u5143\u7d20 */\nnum := nums[1] // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0 // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.swift/* \u8bbf\u95ee\u5143\u7d20 */\nlet num = nums[1] // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0 // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.js/* \u8bbf\u95ee\u5143\u7d20 */\nconst num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.ts/* \u8bbf\u95ee\u5143\u7d20 */\nconst num: number = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.dart/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.rs/* \u8bbf\u95ee\u5143\u7d20 */\nlet num: i32 = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u8bbf\u95ee\u5143\u7d20\nvar num = nums.items[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n// \u66f4\u65b0\u5143\u7d20\nnums.items[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0 \n
"},{"location":"chapter_array_and_linkedlist/list/#3","title":"3. \u00a0 \u63d2\u5165\u4e0e\u5220\u9664\u5143\u7d20","text":"\u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5730\u6dfb\u52a0\u4e0e\u5220\u9664\u5143\u7d20\u3002\u5728\u5217\u8868\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u7684\u6548\u7387\u4ecd\u4e0e\u6570\u7ec4\u76f8\u540c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u6e05\u7a7a\u5217\u8868\nnums.clear()\n\n# \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n# \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\nnums.insert(3, 6) # \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n# \u5220\u9664\u5143\u7d20\nnums.pop(3) # \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.cpp/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push_back(1);\nnums.push_back(3);\nnums.push_back(2);\nnums.push_back(5);\nnums.push_back(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(nums.begin() + 3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.erase(nums.begin() + 3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.java/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.add(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.remove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.cs/* \u6e05\u7a7a\u5217\u8868 */\nnums.Clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.Add(1);\nnums.Add(3);\nnums.Add(2);\nnums.Add(5);\nnums.Add(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.Insert(3, 6);\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.RemoveAt(3);\n
list_test.go/* \u6e05\u7a7a\u5217\u8868 */\nnums = nil\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums = append(nums, 1)\nnums = append(nums, 3)\nnums = append(nums, 2)\nnums = append(nums, 5)\nnums = append(nums, 4)\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums = append(nums[:3], append([]int{6}, nums[3:]...)...) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums = append(nums[:3], nums[4:]...) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.swift/* \u6e05\u7a7a\u5217\u8868 */\nnums.removeAll()\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(6, at: 3) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.remove(at: 3) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.js/* \u6e05\u7a7a\u5217\u8868 */\nnums.length = 0;\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.splice(3, 0, 6);\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.splice(3, 1);\n
list.ts/* \u6e05\u7a7a\u5217\u8868 */\nnums.length = 0;\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.splice(3, 0, 6);\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.splice(3, 1);\n
list.dart/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.removeAt(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.rs/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.remove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u6e05\u7a7a\u5217\u8868\nnums.clearRetainingCapacity();\n\n// \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\ntry nums.append(1);\ntry nums.append(3);\ntry nums.append(2);\ntry nums.append(5);\ntry nums.append(4);\n\n// \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\ntry nums.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n// \u5220\u9664\u5143\u7d20\n_ = nums.orderedRemove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
"},{"location":"chapter_array_and_linkedlist/list/#4","title":"4. \u00a0 \u904d\u5386\u5217\u8868","text":"\u4e0e\u6570\u7ec4\u4e00\u6837\uff0c\u5217\u8868\u53ef\u4ee5\u6839\u636e\u7d22\u5f15\u904d\u5386\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u5404\u5143\u7d20\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\ncount = 0\nfor i in range(len(nums)):\n count += nums[i]\n\n# \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\nfor num in nums:\n count += num\n
list.cpp/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int num : nums) {\n count += num;\n}\n
list.java/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums.get(i);\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\nfor (int num : nums) {\n count += num;\n}\n
list.cs/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < nums.Count; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nforeach (int num in nums) {\n count += num;\n}\n
list_test.go/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\ncount := 0\nfor i := 0; i < len(nums); i++ {\n count += nums[i]\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor _, num := range nums {\n count += num\n}\n
list.swift/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nvar count = 0\nfor i in nums.indices {\n count += nums[i]\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor num in nums {\n count += num\n}\n
list.js/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.ts/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.dart/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (var i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (var num in nums) {\n count += num;\n}\n
list.rs// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\nlet mut _count = 0;\nfor i in 0..nums.len() {\n _count += nums[i];\n}\n\n// \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\n_count = 0;\nfor num in &nums {\n _count += num;\n}\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < nums.items.len) : (i += 1) {\n count += nums[i];\n}\n\n// \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\ncount = 0;\nfor (nums.items) |num| {\n count += num;\n}\n
"},{"location":"chapter_array_and_linkedlist/list/#5","title":"5. \u00a0 \u62fc\u63a5\u5217\u8868","text":"\u7ed9\u5b9a\u4e00\u4e2a\u65b0\u5217\u8868 nums1 \uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5176\u62fc\u63a5\u5230\u539f\u5217\u8868\u7684\u5c3e\u90e8\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nnums1: list[int] = [6, 8, 7, 10, 9]\nnums += nums1 # \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.cpp/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nvector<int> nums1 = { 6, 8, 7, 10, 9 };\n// \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\nnums.insert(nums.end(), nums1.begin(), nums1.end());\n
list.java/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<Integer> nums1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));\nnums.addAll(nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.cs/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.AddRange(nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list_test.go/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nnums1 := []int{6, 8, 7, 10, 9}\nnums = append(nums, nums1...) // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.swift/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet nums1 = [6, 8, 7, 10, 9]\nnums.append(contentsOf: nums1) // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.js/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst nums1 = [6, 8, 7, 10, 9];\nnums.push(...nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.ts/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst nums1: number[] = [6, 8, 7, 10, 9];\nnums.push(...nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.dart/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.addAll(nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.rs/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet nums1: Vec<i32> = vec![6, 8, 7, 10, 9];\nnums.extend(nums1);\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nvar nums1 = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums1.deinit();\ntry nums1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });\ntry nums.insertSlice(nums.items.len, nums1.items); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
"},{"location":"chapter_array_and_linkedlist/list/#6","title":"6. \u00a0 \u6392\u5e8f\u5217\u8868","text":"\u5b8c\u6210\u5217\u8868\u6392\u5e8f\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u4ee5\u4f7f\u7528\u5728\u6570\u7ec4\u7c7b\u7b97\u6cd5\u9898\u4e2d\u7ecf\u5e38\u8003\u67e5\u7684\u201c\u4e8c\u5206\u67e5\u627e\u201d\u548c\u201c\u53cc\u6307\u9488\u201d\u7b97\u6cd5\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u6392\u5e8f\u5217\u8868\nnums.sort() # \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.cpp/* \u6392\u5e8f\u5217\u8868 */\nsort(nums.begin(), nums.end()); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.java/* \u6392\u5e8f\u5217\u8868 */\nCollections.sort(nums); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.cs/* \u6392\u5e8f\u5217\u8868 */\nnums.Sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list_test.go/* \u6392\u5e8f\u5217\u8868 */\nsort.Ints(nums) // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.swift/* \u6392\u5e8f\u5217\u8868 */\nnums.sort() // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.js/* \u6392\u5e8f\u5217\u8868 */ \nnums.sort((a, b) => a - b); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.ts/* \u6392\u5e8f\u5217\u8868 */\nnums.sort((a, b) => a - b); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.dart/* \u6392\u5e8f\u5217\u8868 */\nnums.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.rs/* \u6392\u5e8f\u5217\u8868 */\nnums.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u6392\u5e8f\u5217\u8868\nstd.sort.sort(i32, nums.items, {}, comptime std.sort.asc(i32));\n
"},{"location":"chapter_array_and_linkedlist/list/#432","title":"4.3.2 \u00a0 \u5217\u8868\u5b9e\u73b0","text":"\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u4e86\u5217\u8868\uff0c\u4f8b\u5982 Java\u3001C++\u3001Python \u7b49\u3002\u5b83\u4eec\u7684\u5b9e\u73b0\u6bd4\u8f83\u590d\u6742\uff0c\u5404\u4e2a\u53c2\u6570\u7684\u8bbe\u5b9a\u4e5f\u975e\u5e38\u8003\u7a76\uff0c\u4f8b\u5982\u521d\u59cb\u5bb9\u91cf\u3001\u6269\u5bb9\u500d\u6570\u7b49\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u67e5\u9605\u6e90\u7801\u8fdb\u884c\u5b66\u4e60\u3002
\u4e3a\u4e86\u52a0\u6df1\u5bf9\u5217\u8868\u5de5\u4f5c\u539f\u7406\u7684\u7406\u89e3\uff0c\u6211\u4eec\u5c1d\u8bd5\u5b9e\u73b0\u4e00\u4e2a\u7b80\u6613\u7248\u5217\u8868\uff0c\u5305\u62ec\u4ee5\u4e0b\u4e09\u4e2a\u91cd\u70b9\u8bbe\u8ba1\u3002
- \u521d\u59cb\u5bb9\u91cf\uff1a\u9009\u53d6\u4e00\u4e2a\u5408\u7406\u7684\u6570\u7ec4\u521d\u59cb\u5bb9\u91cf\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u9009\u62e9 10 \u4f5c\u4e3a\u521d\u59cb\u5bb9\u91cf\u3002
- \u6570\u91cf\u8bb0\u5f55\uff1a\u58f0\u660e\u4e00\u4e2a\u53d8\u91cf
size \uff0c\u7528\u4e8e\u8bb0\u5f55\u5217\u8868\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff0c\u5e76\u968f\u7740\u5143\u7d20\u63d2\u5165\u548c\u5220\u9664\u5b9e\u65f6\u66f4\u65b0\u3002\u6839\u636e\u6b64\u53d8\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u5b9a\u4f4d\u5217\u8868\u5c3e\u90e8\uff0c\u4ee5\u53ca\u5224\u65ad\u662f\u5426\u9700\u8981\u6269\u5bb9\u3002 - \u6269\u5bb9\u673a\u5236\uff1a\u82e5\u63d2\u5165\u5143\u7d20\u65f6\u5217\u8868\u5bb9\u91cf\u5df2\u6ee1\uff0c\u5219\u9700\u8981\u8fdb\u884c\u6269\u5bb9\u3002\u5148\u6839\u636e\u6269\u5bb9\u500d\u6570\u521b\u5efa\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u518d\u5c06\u5f53\u524d\u6570\u7ec4\u7684\u6240\u6709\u5143\u7d20\u4f9d\u6b21\u79fb\u52a8\u81f3\u65b0\u6570\u7ec4\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u89c4\u5b9a\u6bcf\u6b21\u5c06\u6570\u7ec4\u6269\u5bb9\u81f3\u4e4b\u524d\u7684 2 \u500d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_list.pyclass MyList:\n \"\"\"\u5217\u8868\u7c7b\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._capacity: int = 10 # \u5217\u8868\u5bb9\u91cf\n self._arr: list[int] = [0] * self._capacity # \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n self._size: int = 0 # \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n self._extend_ratio: int = 2 # \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\"\"\"\n return self._size\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u5bb9\u91cf\"\"\"\n return self._capacity\n\n def get(self, index: int) -> int:\n \"\"\"\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n return self._arr[index]\n\n def set(self, num: int, index: int):\n \"\"\"\u66f4\u65b0\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n self._arr[index] = num\n\n def add(self, num: int):\n \"\"\"\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\"\"\"\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size() == self.capacity():\n self.extend_capacity()\n self._arr[self._size] = num\n self._size += 1\n\n def insert(self, num: int, index: int):\n \"\"\"\u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self._size == self.capacity():\n self.extend_capacity()\n # \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in range(self._size - 1, index - 1, -1):\n self._arr[j + 1] = self._arr[j]\n self._arr[index] = num\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size += 1\n\n def remove(self, index: int) -> int:\n \"\"\"\u5220\u9664\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n num = self._arr[index]\n # \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in range(index, self._size - 1):\n self._arr[j] = self._arr[j + 1]\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size -= 1\n # \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num\n\n def extend_capacity(self):\n \"\"\"\u5217\u8868\u6269\u5bb9\"\"\"\n # \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 __extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n self._arr = self._arr + [0] * self.capacity() * (self._extend_ratio - 1)\n # \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self._capacity = len(self._arr)\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868\"\"\"\n return self._arr[: self._size]\n
my_list.cpp/* \u5217\u8868\u7c7b */\nclass MyList {\n private:\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~MyList() {\n delete[] arr;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n arr[size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size() - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size() - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n int newCapacity = capacity() * extendRatio;\n int *tmp = arr;\n arr = new int[newCapacity];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n arr[i] = tmp[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] tmp;\n arrCapacity = newCapacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Vector \u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> vec(size());\n for (int i = 0; i < size(); i++) {\n vec[i] = arr[i];\n }\n return vec;\n }\n};\n
my_list.java/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int capacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[capacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\n public int size() {\n return size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int capacity() {\n return capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void set(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n arr[size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void insert(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int remove(int index) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n arr = Arrays.copyOf(arr, capacity() * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n capacity = arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] toArray() {\n int size = size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[size];\n for (int i = 0; i < size; i++) {\n arr[i] = get(i);\n }\n return arr;\n }\n}\n
my_list.cs/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private readonly int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public int Size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int Capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int Get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void Set(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void Add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n arr[arrSize] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void Insert(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = arrSize - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int Remove(int index) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < arrSize - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void ExtendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a arrCapacity * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n Array.Resize(ref arr, arrCapacity * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n arrCapacity = arr.Length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[arrSize];\n for (int i = 0; i < arrSize; i++) {\n arr[i] = Get(i);\n }\n return arr;\n }\n}\n
my_list.go/* \u5217\u8868\u7c7b */\ntype myList struct {\n arrCapacity int\n arr []int\n arrSize int\n extendRatio int\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newMyList() *myList {\n return &myList{\n arrCapacity: 10, // \u5217\u8868\u5bb9\u91cf\n arr: make([]int, 10), // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrSize: 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n }\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\nfunc (l *myList) size() int {\n return l.arrSize\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc (l *myList) capacity() int {\n return l.arrCapacity\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc (l *myList) get(index int) int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return l.arr[index]\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc (l *myList) set(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n l.arr[index] = num\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc (l *myList) add(num int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n l.arr[l.arrSize] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc (l *myList) insert(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j := l.arrSize - 1; j >= index; j-- {\n l.arr[j+1] = l.arr[j]\n }\n l.arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5220\u9664\u5143\u7d20 */\nfunc (l *myList) remove(index int) int {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n num := l.arr[index]\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j := index; j < l.arrSize-1; j++ {\n l.arr[j] = l.arr[j+1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize--\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nfunc (l *myList) extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n l.arr = append(l.arr, make([]int, l.arrCapacity*(l.extendRatio-1))...)\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n l.arrCapacity = len(l.arr)\n}\n\n/* \u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868 */\nfunc (l *myList) toArray() []int {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n return l.arr[:l.arrSize]\n}\n
my_list.swift/* \u5217\u8868\u7c7b */\nclass MyList {\n private var arr: [Int] // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private var _capacity = 10 // \u5217\u8868\u5bb9\u91cf\n private var _size = 0 // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private let extendRatio = 2 // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n arr = Array(repeating: 0, count: _capacity)\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n func size() -> Int {\n _size\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n func capacity() -> Int {\n _capacity\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n func get(index: Int) -> Int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u9519\u8bef\uff0c\u4e0b\u540c\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return arr[index]\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n func set(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n arr[index] = num\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n func add(num: Int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n arr[_size] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n func insert(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in sequence(first: _size - 1, next: { $0 >= index + 1 ? $0 - 1 : nil }) {\n arr[j + 1] = arr[j]\n }\n arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n @discardableResult\n func remove(index: Int) -> Int {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n let num = arr[index]\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in index ..< (_size - 1) {\n arr[j] = arr[j + 1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size -= 1\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n func extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n arr = arr + Array(repeating: 0, count: _capacity * (extendRatio - 1))\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = arr.count\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n func toArray() -> [Int] {\n var arr = Array(repeating: 0, count: _size)\n for i in 0 ..< _size {\n arr[i] = get(index: i)\n }\n return arr\n }\n}\n
my_list.js/* \u5217\u8868\u7c7b */\nclass MyList {\n #arr = new Array(); // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n #capacity = 10; // \u5217\u8868\u5bb9\u91cf\n #size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n #extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#arr = new Array(this.#capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n size() {\n return this.#size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n capacity() {\n return this.#capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n get(index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.#arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n set(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.#arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n add(num) {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.#arr[this.#size] = num;\n this.#size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n insert(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this.#size - 1; j >= index; j--) {\n this.#arr[j + 1] = this.#arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#arr[index] = num;\n this.#size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n remove(index) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.#arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this.#size - 1; j++) {\n this.#arr[j] = this.#arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n this.#arr = this.#arr.concat(\n new Array(this.capacity() * (this.#extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this.#capacity = this.#arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n toArray() {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.ts/* \u5217\u8868\u7c7b */\nclass MyList {\n private arr: Array<number>; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private _capacity: number = 10; // \u5217\u8868\u5bb9\u91cf\n private _size: number = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private extendRatio: number = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.arr = new Array(this._capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public size(): number {\n return this._size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public capacity(): number {\n return this._capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public get(index: number): number {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public set(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public add(num: number): void {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this._size === this._capacity) this.extendCapacity();\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.arr[this._size] = num;\n this._size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public insert(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this._size === this._capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this._size - 1; j >= index; j--) {\n this.arr[j + 1] = this.arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.arr[index] = num;\n this._size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public remove(index: number): number {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this._size - 1; j++) {\n this.arr[j] = this.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this._size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public extendCapacity(): void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n this.arr = this.arr.concat(\n new Array(this.capacity() * (this.extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this._capacity = this.arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public toArray(): number[] {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.dart/* \u5217\u8868\u7c7b */\nclass MyList {\n late List<int> _arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int _capacity = 10; // \u5217\u8868\u5bb9\u91cf\n int _size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int _extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n _arr = List.filled(_capacity, 0);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() => _size;\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() => _capacity;\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n return _arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n _arr[index] = _num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int _num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n _arr[_size] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var j = _size - 1; j >= index; j--) {\n _arr[j + 1] = _arr[j];\n }\n _arr[index] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n int _num = _arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var j = index; j < _size - 1; j++) {\n _arr[j] = _arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return _num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n final _newNums = List.filled(_capacity * _extendRatio, 0);\n // \u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n List.copyRange(_newNums, 0, _arr);\n // \u66f4\u65b0 _arr \u7684\u5f15\u7528\n _arr = _newNums;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = _arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n List<int> toArray() {\n List<int> arr = [];\n for (var i = 0; i < _size; i++) {\n arr.add(get(i));\n }\n return arr;\n }\n}\n
my_list.rs/* \u5217\u8868\u7c7b */\n#[allow(dead_code)]\nstruct MyList {\n arr: Vec<i32>, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n capacity: usize, // \u5217\u8868\u5bb9\u91cf\n size: usize, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extend_ratio: usize, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n\n#[allow(unused,unused_comparisons)]\nimpl MyList {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(capacity: usize) -> Self {\n let mut vec = Vec::new(); \n vec.resize(capacity, 0);\n Self {\n arr: vec,\n capacity,\n size: 0,\n extend_ratio: 2,\n }\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n pub fn size(&self) -> usize {\n return self.size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n pub fn capacity(&self) -> usize {\n return self.capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n pub fn get(&self, index: usize) -> i32 {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n return self.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n pub fn set(&mut self, index: usize, num: i32) {\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n self.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n pub fn add(&mut self, num: i32) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n self.arr[self.size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n pub fn insert(&mut self, index: usize, num: i32) {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size).rev() {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n pub fn remove(&mut self, index: usize) -> i32 {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n let num = self.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size - 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n pub fn extend_capacity(&mut self) {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n let new_capacity = self.capacity * self.extend_ratio;\n self.arr.resize(new_capacity, 0);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.capacity = new_capacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n pub fn to_array(&mut self) -> Vec<i32> {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n let mut arr = Vec::new();\n for i in 0..self.size {\n arr.push(self.get(i));\n }\n arr\n }\n}\n
my_list.c/* \u5217\u8868\u7c7b */\ntypedef struct {\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int capacity; // \u5217\u8868\u5bb9\u91cf\n int size; // \u5217\u8868\u5927\u5c0f\n int extendRatio; // \u5217\u8868\u6bcf\u6b21\u6269\u5bb9\u7684\u500d\u6570\n} MyList;\n\n/* \u6784\u9020\u51fd\u6570 */\nMyList *newMyList() {\n MyList *nums = malloc(sizeof(MyList));\n nums->capacity = 10;\n nums->arr = malloc(sizeof(int) * nums->capacity);\n nums->size = 0;\n nums->extendRatio = 2;\n return nums;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delMyList(MyList *nums) {\n free(nums->arr);\n free(nums);\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6 */\nint size(MyList *nums) {\n return nums->size;\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity(MyList *nums) {\n return nums->capacity;\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(MyList *nums, int index) {\n assert(index >= 0 && index < nums->size);\n return nums->arr[index];\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(MyList *nums, int index, int num) {\n assert(index >= 0 && index < nums->size);\n nums->arr[index] = num;\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(MyList *nums, int num) {\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n nums->arr[size(nums)] = num;\n nums->size++;\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(MyList *nums, int index, int num) {\n assert(index >= 0 && index < size(nums));\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n for (int i = size(nums); i > index; --i) {\n nums->arr[i] = nums->arr[i - 1];\n }\n nums->arr[index] = num;\n nums->size++;\n}\n\n/* \u5220\u9664\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nint removeItem(MyList *nums, int index) {\n assert(index >= 0 && index < size(nums));\n int num = nums->arr[index];\n for (int i = index; i < size(nums) - 1; i++) {\n nums->arr[i] = nums->arr[i + 1];\n }\n nums->size--;\n return num;\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity(MyList *nums) {\n // \u5148\u5206\u914d\u7a7a\u95f4\n int newCapacity = capacity(nums) * nums->extendRatio;\n int *extend = (int *)malloc(sizeof(int) * newCapacity);\n int *temp = nums->arr;\n\n // \u62f7\u8d1d\u65e7\u6570\u636e\u5230\u65b0\u6570\u636e\n for (int i = 0; i < size(nums); i++)\n extend[i] = nums->arr[i];\n\n // \u91ca\u653e\u65e7\u6570\u636e\n free(temp);\n\n // \u66f4\u65b0\u65b0\u6570\u636e\n nums->arr = extend;\n nums->capacity = newCapacity;\n}\n\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Array \u7528\u4e8e\u6253\u5370 */\nint *toArray(MyList *nums) {\n return nums->arr;\n}\n
my_list.zig// \u5217\u8868\u7c7b\nfn MyList(comptime T: type) type {\n return struct {\n const Self = @This();\n\n arr: []T = undefined, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrCapacity: usize = 10, // \u5217\u8868\u5bb9\u91cf\n numSize: usize = 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: usize = 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u5217\u8868\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.arr = try self.mem_allocator.alloc(T, self.arrCapacity);\n @memset(self.arr, @as(T, 0));\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n pub fn size(self: *Self) usize {\n return self.numSize;\n }\n\n // \u83b7\u53d6\u5217\u8868\u5bb9\u91cf\n pub fn capacity(self: *Self) usize {\n return self.arrCapacity;\n }\n\n // \u8bbf\u95ee\u5143\u7d20\n pub fn get(self: *Self, index: usize) T {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n return self.arr[index];\n } \n\n // \u66f4\u65b0\u5143\u7d20\n pub fn set(self: *Self, index: usize, num: T) void {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n self.arr[index] = num;\n } \n\n // \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\n pub fn add(self: *Self, num: T) !void {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n self.arr[self.size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n } \n\n // \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\n pub fn insert(self: *Self, index: usize, num: T) !void {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var j = self.size() - 1;\n while (j >= index) : (j -= 1) {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n }\n\n // \u5220\u9664\u5143\u7d20\n pub fn remove(self: *Self, index: usize) T {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n var num = self.arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var j = index;\n while (j < self.size() - 1) : (j += 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\n return num;\n }\n\n // \u5217\u8868\u6269\u5bb9\n pub fn extendCapacity(self: *Self) !void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\n var newCapacity = self.capacity() * self.extendRatio;\n var extend = try self.mem_allocator.alloc(T, newCapacity);\n @memset(extend, @as(T, 0));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(T, extend, self.arr);\n self.arr = extend;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.arrCapacity = newCapacity;\n }\n\n // \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var arr = try self.mem_allocator.alloc(T, self.size());\n @memset(arr, @as(T, 0));\n for (arr, 0..) |*num, i| {\n num.* = self.get(i);\n }\n return arr;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/","title":"4.4 \u00a0 \u5185\u5b58\u4e0e\u7f13\u5b58 *","text":"\u5728\u672c\u7ae0\u7684\u524d\u4e24\u8282\u4e2d\uff0c\u6211\u4eec\u63a2\u8ba8\u4e86\u6570\u7ec4\u548c\u94fe\u8868\u8fd9\u4e24\u79cd\u57fa\u7840\u4e14\u91cd\u8981\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5b83\u4eec\u5206\u522b\u4ee3\u8868\u4e86\u201c\u8fde\u7eed\u5b58\u50a8\u201d\u548c\u201c\u5206\u6563\u5b58\u50a8\u201d\u4e24\u79cd\u7269\u7406\u7ed3\u6784\u3002
\u5b9e\u9645\u4e0a\uff0c\u7269\u7406\u7ed3\u6784\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u51b3\u5b9a\u4e86\u7a0b\u5e8f\u5bf9\u5185\u5b58\u548c\u7f13\u5b58\u7684\u4f7f\u7528\u6548\u7387\uff0c\u8fdb\u800c\u5f71\u54cd\u7b97\u6cd5\u7a0b\u5e8f\u7684\u6574\u4f53\u6027\u80fd\u3002
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#441","title":"4.4.1 \u00a0 \u8ba1\u7b97\u673a\u5b58\u50a8\u8bbe\u5907","text":"\u8ba1\u7b97\u673a\u4e2d\u5305\u62ec\u4e09\u79cd\u7c7b\u578b\u7684\u5b58\u50a8\u8bbe\u5907\uff1a\u300c\u786c\u76d8 hard disk\u300d\u3001\u300c\u5185\u5b58 random-access memory, RAM\u300d\u3001\u300c\u7f13\u5b58 cache memory\u300d\u3002\u8868 4-2 \u5c55\u793a\u4e86\u5b83\u4eec\u5728\u8ba1\u7b97\u673a\u7cfb\u7edf\u4e2d\u7684\u4e0d\u540c\u89d2\u8272\u548c\u6027\u80fd\u7279\u70b9\u3002
\u8868 4-2 \u00a0 \u8ba1\u7b97\u673a\u7684\u5b58\u50a8\u8bbe\u5907
\u786c\u76d8 \u5185\u5b58 \u7f13\u5b58 \u7528\u9014 \u957f\u671f\u5b58\u50a8\u6570\u636e\uff0c\u5305\u62ec\u64cd\u4f5c\u7cfb\u7edf\u3001\u7a0b\u5e8f\u3001\u6587\u4ef6\u7b49 \u4e34\u65f6\u5b58\u50a8\u5f53\u524d\u8fd0\u884c\u7684\u7a0b\u5e8f\u548c\u6b63\u5728\u5904\u7406\u7684\u6570\u636e \u5b58\u50a8\u7ecf\u5e38\u8bbf\u95ee\u7684\u6570\u636e\u548c\u6307\u4ee4\uff0c\u51cf\u5c11 CPU \u8bbf\u95ee\u5185\u5b58\u7684\u6b21\u6570 \u6613\u5931\u6027 \u65ad\u7535\u540e\u6570\u636e\u4e0d\u4f1a\u4e22\u5931 \u65ad\u7535\u540e\u6570\u636e\u4f1a\u4e22\u5931 \u65ad\u7535\u540e\u6570\u636e\u4f1a\u4e22\u5931 \u5bb9\u91cf \u8f83\u5927\uff0cTB \u7ea7\u522b \u8f83\u5c0f\uff0cGB \u7ea7\u522b \u975e\u5e38\u5c0f\uff0cMB \u7ea7\u522b \u901f\u5ea6 \u8f83\u6162\uff0c\u51e0\u767e\u5230\u51e0\u5343 MB/s \u8f83\u5feb\uff0c\u51e0\u5341 GB/s \u975e\u5e38\u5feb\uff0c\u51e0\u5341\u5230\u51e0\u767e GB/s \u4ef7\u683c \u8f83\u4fbf\u5b9c\uff0c\u51e0\u6bdb\u5230\u51e0\u5143 / GB \u8f83\u8d35\uff0c\u51e0\u5341\u5230\u51e0\u767e\u5143 / GB \u975e\u5e38\u8d35\uff0c\u968f CPU \u6253\u5305\u8ba1\u4ef7 \u6211\u4eec\u53ef\u4ee5\u5c06\u8ba1\u7b97\u673a\u5b58\u50a8\u7cfb\u7edf\u60f3\u8c61\u4e3a\u56fe 4-9 \u6240\u793a\u7684\u91d1\u5b57\u5854\u7ed3\u6784\u3002\u8d8a\u9760\u8fd1\u91d1\u5b57\u5854\u9876\u7aef\u7684\u5b58\u50a8\u8bbe\u5907\u7684\u901f\u5ea6\u8d8a\u5feb\u3001\u5bb9\u91cf\u8d8a\u5c0f\u3001\u6210\u672c\u8d8a\u9ad8\u3002\u8fd9\u79cd\u591a\u5c42\u7ea7\u7684\u8bbe\u8ba1\u5e76\u975e\u5076\u7136\uff0c\u800c\u662f\u8ba1\u7b97\u673a\u79d1\u5b66\u5bb6\u548c\u5de5\u7a0b\u5e08\u4eec\u7ecf\u8fc7\u6df1\u601d\u719f\u8651\u7684\u7ed3\u679c\u3002
- \u786c\u76d8\u96be\u4ee5\u88ab\u5185\u5b58\u53d6\u4ee3\u3002\u9996\u5148\uff0c\u5185\u5b58\u4e2d\u7684\u6570\u636e\u5728\u65ad\u7535\u540e\u4f1a\u4e22\u5931\uff0c\u56e0\u6b64\u5b83\u4e0d\u9002\u5408\u957f\u671f\u5b58\u50a8\u6570\u636e\uff1b\u5176\u6b21\uff0c\u5185\u5b58\u7684\u6210\u672c\u662f\u786c\u76d8\u7684\u51e0\u5341\u500d\uff0c\u8fd9\u4f7f\u5f97\u5b83\u96be\u4ee5\u5728\u6d88\u8d39\u8005\u5e02\u573a\u666e\u53ca\u3002
- \u7f13\u5b58\u7684\u5927\u5bb9\u91cf\u548c\u9ad8\u901f\u5ea6\u96be\u4ee5\u517c\u5f97\u3002\u968f\u7740 L1\u3001L2\u3001L3 \u7f13\u5b58\u7684\u5bb9\u91cf\u9010\u6b65\u589e\u5927\uff0c\u5176\u7269\u7406\u5c3a\u5bf8\u4f1a\u53d8\u5927\uff0c\u4e0e CPU \u6838\u5fc3\u4e4b\u95f4\u7684\u7269\u7406\u8ddd\u79bb\u4f1a\u53d8\u8fdc\uff0c\u4ece\u800c\u5bfc\u81f4\u6570\u636e\u4f20\u8f93\u65f6\u95f4\u589e\u52a0\uff0c\u5143\u7d20\u8bbf\u95ee\u5ef6\u8fdf\u53d8\u9ad8\u3002\u5728\u5f53\u524d\u6280\u672f\u4e0b\uff0c\u591a\u5c42\u7ea7\u7684\u7f13\u5b58\u7ed3\u6784\u662f\u5bb9\u91cf\u3001\u901f\u5ea6\u548c\u6210\u672c\u4e4b\u95f4\u7684\u6700\u4f73\u5e73\u8861\u70b9\u3002
\u56fe 4-9 \u00a0 \u8ba1\u7b97\u673a\u5b58\u50a8\u7cfb\u7edf
Note
\u8ba1\u7b97\u673a\u7684\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784\u4f53\u73b0\u4e86\u901f\u5ea6\u3001\u5bb9\u91cf\u548c\u6210\u672c\u4e09\u8005\u4e4b\u95f4\u7684\u7cbe\u5999\u5e73\u8861\u3002\u5b9e\u9645\u4e0a\uff0c\u8fd9\u79cd\u6743\u8861\u666e\u904d\u5b58\u5728\u4e8e\u6240\u6709\u5de5\u4e1a\u9886\u57df\uff0c\u5b83\u8981\u6c42\u6211\u4eec\u5728\u4e0d\u540c\u7684\u4f18\u52bf\u548c\u9650\u5236\u4e4b\u95f4\u627e\u5230\u6700\u4f73\u5e73\u8861\u70b9\u3002
\u603b\u7684\u6765\u8bf4\uff0c\u786c\u76d8\u7528\u4e8e\u957f\u671f\u5b58\u50a8\u5927\u91cf\u6570\u636e\uff0c\u5185\u5b58\u7528\u4e8e\u4e34\u65f6\u5b58\u50a8\u7a0b\u5e8f\u8fd0\u884c\u4e2d\u6b63\u5728\u5904\u7406\u7684\u6570\u636e\uff0c\u800c\u7f13\u5b58\u5219\u7528\u4e8e\u5b58\u50a8\u7ecf\u5e38\u8bbf\u95ee\u7684\u6570\u636e\u548c\u6307\u4ee4\uff0c\u4ee5\u63d0\u9ad8\u7a0b\u5e8f\u8fd0\u884c\u6548\u7387\u3002\u4e09\u8005\u5171\u540c\u534f\u4f5c\uff0c\u786e\u4fdd\u8ba1\u7b97\u673a\u7cfb\u7edf\u9ad8\u6548\u8fd0\u884c\u3002
\u5982\u56fe 4-10 \u6240\u793a\uff0c\u5728\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u4f1a\u4ece\u786c\u76d8\u4e2d\u88ab\u8bfb\u53d6\u5230\u5185\u5b58\u4e2d\uff0c\u4f9b CPU \u8ba1\u7b97\u4f7f\u7528\u3002\u7f13\u5b58\u53ef\u4ee5\u770b\u4f5c CPU \u7684\u4e00\u90e8\u5206\uff0c\u5b83\u901a\u8fc7\u667a\u80fd\u5730\u4ece\u5185\u5b58\u52a0\u8f7d\u6570\u636e\uff0c\u7ed9 CPU \u63d0\u4f9b\u9ad8\u901f\u7684\u6570\u636e\u8bfb\u53d6\uff0c\u4ece\u800c\u663e\u8457\u63d0\u5347\u7a0b\u5e8f\u7684\u6267\u884c\u6548\u7387\uff0c\u51cf\u5c11\u5bf9\u8f83\u6162\u7684\u5185\u5b58\u7684\u4f9d\u8d56\u3002
\u56fe 4-10 \u00a0 \u786c\u76d8\u3001\u5185\u5b58\u548c\u7f13\u5b58\u4e4b\u95f4\u7684\u6570\u636e\u6d41\u901a
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#442","title":"4.4.2 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u5185\u5b58\u6548\u7387","text":"\u5728\u5185\u5b58\u7a7a\u95f4\u5229\u7528\u65b9\u9762\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u5404\u81ea\u5177\u6709\u4f18\u52bf\u548c\u5c40\u9650\u6027\u3002
\u4e00\u65b9\u9762\uff0c\u5185\u5b58\u662f\u6709\u9650\u7684\uff0c\u4e14\u540c\u4e00\u5757\u5185\u5b58\u4e0d\u80fd\u88ab\u591a\u4e2a\u7a0b\u5e8f\u5171\u4eab\uff0c\u56e0\u6b64\u6211\u4eec\u5e0c\u671b\u6570\u636e\u7ed3\u6784\u80fd\u591f\u5c3d\u53ef\u80fd\u9ad8\u6548\u5730\u5229\u7528\u7a7a\u95f4\u3002\u6570\u7ec4\u7684\u5143\u7d20\u7d27\u5bc6\u6392\u5217\uff0c\u4e0d\u9700\u8981\u989d\u5916\u7684\u7a7a\u95f4\u6765\u5b58\u50a8\u94fe\u8868\u8282\u70b9\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\uff0c\u56e0\u6b64\u7a7a\u95f4\u6548\u7387\u66f4\u9ad8\u3002\u7136\u800c\uff0c\u6570\u7ec4\u9700\u8981\u4e00\u6b21\u6027\u5206\u914d\u8db3\u591f\u7684\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\uff0c\u8fd9\u53ef\u80fd\u5bfc\u81f4\u5185\u5b58\u6d6a\u8d39\uff0c\u6570\u7ec4\u6269\u5bb9\u4e5f\u9700\u8981\u989d\u5916\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u6210\u672c\u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u94fe\u8868\u4ee5\u201c\u8282\u70b9\u201d\u4e3a\u5355\u4f4d\u8fdb\u884c\u52a8\u6001\u5185\u5b58\u5206\u914d\u548c\u56de\u6536\uff0c\u63d0\u4f9b\u4e86\u66f4\u5927\u7684\u7075\u6d3b\u6027\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5728\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u968f\u7740\u53cd\u590d\u7533\u8bf7\u4e0e\u91ca\u653e\u5185\u5b58\uff0c\u7a7a\u95f2\u5185\u5b58\u7684\u788e\u7247\u5316\u7a0b\u5ea6\u4f1a\u8d8a\u6765\u8d8a\u9ad8\uff0c\u4ece\u800c\u5bfc\u81f4\u5185\u5b58\u7684\u5229\u7528\u6548\u7387\u964d\u4f4e\u3002\u6570\u7ec4\u7531\u4e8e\u5176\u8fde\u7eed\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u76f8\u5bf9\u4e0d\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u788e\u7247\u5316\u3002\u76f8\u53cd\uff0c\u94fe\u8868\u7684\u5143\u7d20\u662f\u5206\u6563\u5b58\u50a8\u7684\uff0c\u5728\u9891\u7e41\u7684\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u4e2d\uff0c\u66f4\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u788e\u7247\u5316\u3002
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#443","title":"4.4.3 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u7f13\u5b58\u6548\u7387","text":"\u7f13\u5b58\u867d\u7136\u5728\u7a7a\u95f4\u5bb9\u91cf\u4e0a\u8fdc\u5c0f\u4e8e\u5185\u5b58\uff0c\u4f46\u5b83\u6bd4\u5185\u5b58\u5feb\u5f97\u591a\uff0c\u5728\u7a0b\u5e8f\u6267\u884c\u901f\u5ea6\u4e0a\u8d77\u7740\u81f3\u5173\u91cd\u8981\u7684\u4f5c\u7528\u3002\u7531\u4e8e\u7f13\u5b58\u7684\u5bb9\u91cf\u6709\u9650\uff0c\u53ea\u80fd\u5b58\u50a8\u4e00\u5c0f\u90e8\u5206\u9891\u7e41\u8bbf\u95ee\u7684\u6570\u636e\uff0c\u56e0\u6b64\u5f53 CPU \u5c1d\u8bd5\u8bbf\u95ee\u7684\u6570\u636e\u4e0d\u5728\u7f13\u5b58\u4e2d\u65f6\uff0c\u5c31\u4f1a\u53d1\u751f\u300c\u7f13\u5b58\u672a\u547d\u4e2d cache miss\u300d\uff0c\u6b64\u65f6 CPU \u4e0d\u5f97\u4e0d\u4ece\u901f\u5ea6\u8f83\u6162\u7684\u5185\u5b58\u4e2d\u52a0\u8f7d\u6240\u9700\u6570\u636e\u3002
\u663e\u7136\uff0c\u201c\u7f13\u5b58\u672a\u547d\u4e2d\u201d\u8d8a\u5c11\uff0cCPU \u8bfb\u5199\u6570\u636e\u7684\u6548\u7387\u5c31\u8d8a\u9ad8\uff0c\u7a0b\u5e8f\u6027\u80fd\u4e5f\u5c31\u8d8a\u597d\u3002\u6211\u4eec\u5c06 CPU \u4ece\u7f13\u5b58\u4e2d\u6210\u529f\u83b7\u53d6\u6570\u636e\u7684\u6bd4\u4f8b\u79f0\u4e3a\u300c\u7f13\u5b58\u547d\u4e2d\u7387 cache hit rate\u300d\uff0c\u8fd9\u4e2a\u6307\u6807\u901a\u5e38\u7528\u6765\u8861\u91cf\u7f13\u5b58\u6548\u7387\u3002
\u4e3a\u4e86\u5c3d\u53ef\u80fd\u8fbe\u5230\u66f4\u9ad8\u7684\u6548\u7387\uff0c\u7f13\u5b58\u4f1a\u91c7\u53d6\u4ee5\u4e0b\u6570\u636e\u52a0\u8f7d\u673a\u5236\u3002
- \u7f13\u5b58\u884c\uff1a\u7f13\u5b58\u4e0d\u662f\u5355\u4e2a\u5b57\u8282\u5730\u5b58\u50a8\u4e0e\u52a0\u8f7d\u6570\u636e\uff0c\u800c\u662f\u4ee5\u7f13\u5b58\u884c\u4e3a\u5355\u4f4d\u3002\u76f8\u6bd4\u4e8e\u5355\u4e2a\u5b57\u8282\u7684\u4f20\u8f93\uff0c\u7f13\u5b58\u884c\u7684\u4f20\u8f93\u5f62\u5f0f\u66f4\u52a0\u9ad8\u6548\u3002
- \u9884\u53d6\u673a\u5236\uff1a\u5904\u7406\u5668\u4f1a\u5c1d\u8bd5\u9884\u6d4b\u6570\u636e\u8bbf\u95ee\u6a21\u5f0f\uff08\u4f8b\u5982\u987a\u5e8f\u8bbf\u95ee\u3001\u56fa\u5b9a\u6b65\u957f\u8df3\u8dc3\u8bbf\u95ee\u7b49\uff09\uff0c\u5e76\u6839\u636e\u7279\u5b9a\u6a21\u5f0f\u5c06\u6570\u636e\u52a0\u8f7d\u81f3\u7f13\u5b58\u4e4b\u4e2d\uff0c\u4ece\u800c\u63d0\u5347\u547d\u4e2d\u7387\u3002
- \u7a7a\u95f4\u5c40\u90e8\u6027\uff1a\u5982\u679c\u4e00\u4e2a\u6570\u636e\u88ab\u8bbf\u95ee\uff0c\u90a3\u4e48\u5b83\u9644\u8fd1\u7684\u6570\u636e\u53ef\u80fd\u8fd1\u671f\u4e5f\u4f1a\u88ab\u8bbf\u95ee\u3002\u56e0\u6b64\uff0c\u7f13\u5b58\u5728\u52a0\u8f7d\u67d0\u4e00\u6570\u636e\u65f6\uff0c\u4e5f\u4f1a\u52a0\u8f7d\u5176\u9644\u8fd1\u7684\u6570\u636e\uff0c\u4ee5\u63d0\u9ad8\u547d\u4e2d\u7387\u3002
- \u65f6\u95f4\u5c40\u90e8\u6027\uff1a\u5982\u679c\u4e00\u4e2a\u6570\u636e\u88ab\u8bbf\u95ee\uff0c\u90a3\u4e48\u5b83\u5728\u4e0d\u4e45\u7684\u5c06\u6765\u5f88\u53ef\u80fd\u518d\u6b21\u88ab\u8bbf\u95ee\u3002\u7f13\u5b58\u5229\u7528\u8fd9\u4e00\u539f\u7406\uff0c\u901a\u8fc7\u4fdd\u7559\u6700\u8fd1\u8bbf\u95ee\u8fc7\u7684\u6570\u636e\u6765\u63d0\u9ad8\u547d\u4e2d\u7387\u3002
\u5b9e\u9645\u4e0a\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u5bf9\u7f13\u5b58\u7684\u5229\u7528\u6548\u7387\u662f\u4e0d\u540c\u7684\uff0c\u4e3b\u8981\u4f53\u73b0\u5728\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762\u3002
- \u5360\u7528\u7a7a\u95f4\uff1a\u94fe\u8868\u5143\u7d20\u6bd4\u6570\u7ec4\u5143\u7d20\u5360\u7528\u7a7a\u95f4\u66f4\u591a\uff0c\u5bfc\u81f4\u7f13\u5b58\u4e2d\u5bb9\u7eb3\u7684\u6709\u6548\u6570\u636e\u91cf\u66f4\u5c11\u3002
- \u7f13\u5b58\u884c\uff1a\u94fe\u8868\u6570\u636e\u5206\u6563\u5728\u5185\u5b58\u5404\u5904\uff0c\u800c\u7f13\u5b58\u662f\u201c\u6309\u884c\u52a0\u8f7d\u201d\u7684\uff0c\u56e0\u6b64\u52a0\u8f7d\u5230\u65e0\u6548\u6570\u636e\u7684\u6bd4\u4f8b\u66f4\u9ad8\u3002
- \u9884\u53d6\u673a\u5236\uff1a\u6570\u7ec4\u6bd4\u94fe\u8868\u7684\u6570\u636e\u8bbf\u95ee\u6a21\u5f0f\u66f4\u5177\u201c\u53ef\u9884\u6d4b\u6027\u201d\uff0c\u5373\u7cfb\u7edf\u66f4\u5bb9\u6613\u731c\u51fa\u5373\u5c06\u88ab\u52a0\u8f7d\u7684\u6570\u636e\u3002
- \u7a7a\u95f4\u5c40\u90e8\u6027\uff1a\u6570\u7ec4\u88ab\u5b58\u50a8\u5728\u96c6\u4e2d\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u56e0\u6b64\u88ab\u52a0\u8f7d\u6570\u636e\u9644\u8fd1\u7684\u6570\u636e\u66f4\u6709\u53ef\u80fd\u5373\u5c06\u88ab\u8bbf\u95ee\u3002
\u603b\u4f53\u800c\u8a00\uff0c\u6570\u7ec4\u5177\u6709\u66f4\u9ad8\u7684\u7f13\u5b58\u547d\u4e2d\u7387\uff0c\u56e0\u6b64\u5b83\u5728\u64cd\u4f5c\u6548\u7387\u4e0a\u901a\u5e38\u4f18\u4e8e\u94fe\u8868\u3002\u8fd9\u4f7f\u5f97\u5728\u89e3\u51b3\u7b97\u6cd5\u95ee\u9898\u65f6\uff0c\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u5f80\u5f80\u66f4\u53d7\u6b22\u8fce\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u9ad8\u7f13\u5b58\u6548\u7387\u5e76\u4e0d\u610f\u5473\u7740\u6570\u7ec4\u5728\u6240\u6709\u60c5\u51b5\u4e0b\u90fd\u4f18\u4e8e\u94fe\u8868\u3002\u5b9e\u9645\u5e94\u7528\u4e2d\u9009\u62e9\u54ea\u79cd\u6570\u636e\u7ed3\u6784\uff0c\u5e94\u6839\u636e\u5177\u4f53\u9700\u6c42\u6765\u51b3\u5b9a\u3002\u4f8b\u5982\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u90fd\u53ef\u4ee5\u5b9e\u73b0\u201c\u6808\u201d\u6570\u636e\u7ed3\u6784\uff08\u4e0b\u4e00\u7ae0\u4f1a\u8be6\u7ec6\u4ecb\u7ecd\uff09\uff0c\u4f46\u5b83\u4eec\u9002\u7528\u4e8e\u4e0d\u540c\u573a\u666f\u3002
- \u5728\u505a\u7b97\u6cd5\u9898\u65f6\uff0c\u6211\u4eec\u4f1a\u503e\u5411\u4e8e\u9009\u62e9\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\uff0c\u56e0\u4e3a\u5b83\u63d0\u4f9b\u4e86\u66f4\u9ad8\u7684\u64cd\u4f5c\u6548\u7387\u548c\u968f\u673a\u8bbf\u95ee\u7684\u80fd\u529b\uff0c\u4ee3\u4ef7\u4ec5\u662f\u9700\u8981\u9884\u5148\u4e3a\u6570\u7ec4\u5206\u914d\u4e00\u5b9a\u7684\u5185\u5b58\u7a7a\u95f4\u3002
- \u5982\u679c\u6570\u636e\u91cf\u975e\u5e38\u5927\u3001\u52a8\u6001\u6027\u5f88\u9ad8\u3001\u6808\u7684\u9884\u671f\u5927\u5c0f\u96be\u4ee5\u4f30\u8ba1\uff0c\u90a3\u4e48\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u66f4\u52a0\u5408\u9002\u3002\u94fe\u8868\u80fd\u591f\u5c06\u5927\u91cf\u6570\u636e\u5206\u6563\u5b58\u50a8\u4e8e\u5185\u5b58\u7684\u4e0d\u540c\u90e8\u5206\uff0c\u5e76\u4e14\u907f\u514d\u4e86\u6570\u7ec4\u6269\u5bb9\u4ea7\u751f\u7684\u989d\u5916\u5f00\u9500\u3002
"},{"location":"chapter_array_and_linkedlist/summary/","title":"4.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_array_and_linkedlist/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u6570\u7ec4\u548c\u94fe\u8868\u662f\u4e24\u79cd\u57fa\u672c\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5206\u522b\u4ee3\u8868\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u4e24\u79cd\u5b58\u50a8\u65b9\u5f0f\uff1a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u548c\u5206\u6563\u7a7a\u95f4\u5b58\u50a8\u3002\u4e24\u8005\u7684\u7279\u70b9\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u6027\u3002
- \u6570\u7ec4\u652f\u6301\u968f\u673a\u8bbf\u95ee\u3001\u5360\u7528\u5185\u5b58\u8f83\u5c11\uff1b\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u6548\u7387\u4f4e\uff0c\u4e14\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002
- \u94fe\u8868\u901a\u8fc7\u66f4\u6539\u5f15\u7528\uff08\u6307\u9488\uff09\u5b9e\u73b0\u9ad8\u6548\u7684\u8282\u70b9\u63d2\u5165\u4e0e\u5220\u9664\uff0c\u4e14\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\uff1b\u4f46\u8282\u70b9\u8bbf\u95ee\u6548\u7387\u4f4e\u3001\u5360\u7528\u5185\u5b58\u8f83\u591a\u3002
- \u5e38\u89c1\u7684\u94fe\u8868\u7c7b\u578b\u5305\u62ec\u5355\u5411\u94fe\u8868\u3001\u73af\u5f62\u94fe\u8868\u3001\u53cc\u5411\u94fe\u8868\uff0c\u5b83\u4eec\u5206\u522b\u5177\u6709\u5404\u81ea\u7684\u5e94\u7528\u573a\u666f\u3002
- \u5217\u8868\u662f\u4e00\u79cd\u652f\u6301\u589e\u5220\u67e5\u6539\u7684\u5143\u7d20\u6709\u5e8f\u96c6\u5408\uff0c\u901a\u5e38\u57fa\u4e8e\u52a8\u6001\u6570\u7ec4\u5b9e\u73b0\uff0c\u5176\u4fdd\u7559\u4e86\u6570\u7ec4\u7684\u4f18\u52bf\uff0c\u540c\u65f6\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\u3002
- \u5217\u8868\u7684\u51fa\u73b0\u5927\u5e45\u5730\u63d0\u9ad8\u4e86\u6570\u7ec4\u7684\u5b9e\u7528\u6027\uff0c\u4f46\u53ef\u80fd\u5bfc\u81f4\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
- \u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u4e3b\u8981\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\u3002\u6570\u7ec4\u53ef\u63d0\u4f9b\u66f4\u9ad8\u7684\u5185\u5b58\u7a7a\u95f4\u6548\u7387\uff0c\u800c\u94fe\u8868\u5219\u5728\u5185\u5b58\u4f7f\u7528\u4e0a\u66f4\u52a0\u7075\u6d3b\u3002
- \u7f13\u5b58\u901a\u8fc7\u7f13\u5b58\u884c\u3001\u9884\u53d6\u673a\u5236\u4ee5\u53ca\u7a7a\u95f4\u5c40\u90e8\u6027\u548c\u65f6\u95f4\u5c40\u90e8\u6027\u7b49\u6570\u636e\u52a0\u8f7d\u673a\u5236\uff0c\u4e3a CPU \u63d0\u4f9b\u5feb\u901f\u6570\u636e\u8bbf\u95ee\uff0c\u663e\u8457\u63d0\u5347\u7a0b\u5e8f\u7684\u6267\u884c\u6548\u7387\u3002
- \u7531\u4e8e\u6570\u7ec4\u5177\u6709\u66f4\u9ad8\u7684\u7f13\u5b58\u547d\u4e2d\u7387\uff0c\u56e0\u6b64\u5b83\u901a\u5e38\u6bd4\u94fe\u8868\u66f4\u9ad8\u6548\u3002\u5728\u9009\u62e9\u6570\u636e\u7ed3\u6784\u65f6\uff0c\u5e94\u6839\u636e\u5177\u4f53\u9700\u6c42\u548c\u573a\u666f\u505a\u51fa\u6070\u5f53\u9009\u62e9\u3002
"},{"location":"chapter_array_and_linkedlist/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6570\u7ec4\u5b58\u50a8\u5728\u6808\u4e0a\u548c\u5b58\u50a8\u5728\u5806\u4e0a\uff0c\u5bf9\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u5426\u6709\u5f71\u54cd\uff1f
\u5b58\u50a8\u5728\u6808\u4e0a\u548c\u5806\u4e0a\u7684\u6570\u7ec4\u90fd\u88ab\u5b58\u50a8\u5728\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\u5185\uff0c\u6570\u636e\u64cd\u4f5c\u6548\u7387\u57fa\u672c\u4e00\u81f4\u3002\u7136\u800c\uff0c\u6808\u548c\u5806\u5177\u6709\u5404\u81ea\u7684\u7279\u70b9\uff0c\u4ece\u800c\u5bfc\u81f4\u4ee5\u4e0b\u4e0d\u540c\u70b9\u3002
- \u5206\u914d\u548c\u91ca\u653e\u6548\u7387\uff1a\u6808\u662f\u4e00\u5757\u8f83\u5c0f\u7684\u5185\u5b58\uff0c\u5206\u914d\u7531\u7f16\u8bd1\u5668\u81ea\u52a8\u5b8c\u6210\uff1b\u800c\u5806\u5185\u5b58\u76f8\u5bf9\u66f4\u5927\uff0c\u53ef\u4ee5\u5728\u4ee3\u7801\u4e2d\u52a8\u6001\u5206\u914d\uff0c\u66f4\u5bb9\u6613\u788e\u7247\u5316\u3002\u56e0\u6b64\uff0c\u5806\u4e0a\u7684\u5206\u914d\u548c\u91ca\u653e\u64cd\u4f5c\u901a\u5e38\u6bd4\u6808\u4e0a\u7684\u6162\u3002
- \u5927\u5c0f\u9650\u5236\uff1a\u6808\u5185\u5b58\u76f8\u5bf9\u8f83\u5c0f\uff0c\u5806\u7684\u5927\u5c0f\u4e00\u822c\u53d7\u9650\u4e8e\u53ef\u7528\u5185\u5b58\u3002\u56e0\u6b64\u5806\u66f4\u52a0\u9002\u5408\u5b58\u50a8\u5927\u578b\u6570\u7ec4\u3002
- \u7075\u6d3b\u6027\uff1a\u6808\u4e0a\u7684\u6570\u7ec4\u7684\u5927\u5c0f\u9700\u8981\u5728\u7f16\u8bd1\u65f6\u786e\u5b9a\uff0c\u800c\u5806\u4e0a\u7684\u6570\u7ec4\u7684\u5927\u5c0f\u53ef\u4ee5\u5728\u8fd0\u884c\u65f6\u52a8\u6001\u786e\u5b9a\u3002
\u4e3a\u4ec0\u4e48\u6570\u7ec4\u8981\u6c42\u76f8\u540c\u7c7b\u578b\u7684\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u5374\u6ca1\u6709\u5f3a\u8c03\u540c\u7c7b\u578b\u5462\uff1f
\u94fe\u8868\u7531\u8282\u70b9\u7ec4\u6210\uff0c\u8282\u70b9\u4e4b\u95f4\u901a\u8fc7\u5f15\u7528\uff08\u6307\u9488\uff09\u8fde\u63a5\uff0c\u5404\u4e2a\u8282\u70b9\u53ef\u4ee5\u5b58\u50a8\u4e0d\u540c\u7c7b\u578b\u7684\u6570\u636e\uff0c\u4f8b\u5982 int\u3001double\u3001string\u3001object \u7b49\u3002
\u76f8\u5bf9\u5730\uff0c\u6570\u7ec4\u5143\u7d20\u5219\u5fc5\u987b\u662f\u76f8\u540c\u7c7b\u578b\u7684\uff0c\u8fd9\u6837\u624d\u80fd\u901a\u8fc7\u8ba1\u7b97\u504f\u79fb\u91cf\u6765\u83b7\u53d6\u5bf9\u5e94\u5143\u7d20\u4f4d\u7f6e\u3002\u4f8b\u5982\uff0c\u6570\u7ec4\u540c\u65f6\u5305\u542b int \u548c long \u4e24\u79cd\u7c7b\u578b\uff0c\u5355\u4e2a\u5143\u7d20\u5206\u522b\u5360\u7528 4 bytes \u548c 8 bytes \uff0c\u6b64\u65f6\u5c31\u4e0d\u80fd\u7528\u4ee5\u4e0b\u516c\u5f0f\u8ba1\u7b97\u504f\u79fb\u91cf\u4e86\uff0c\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5305\u542b\u4e86\u4e24\u79cd\u957f\u5ea6\u7684\u5143\u7d20\u3002
# \u5143\u7d20\u5185\u5b58\u5730\u5740 = \u6570\u7ec4\u5185\u5b58\u5730\u5740 + \u5143\u7d20\u957f\u5ea6 * \u5143\u7d20\u7d22\u5f15\n
\u5220\u9664\u8282\u70b9\u540e\uff0c\u662f\u5426\u9700\u8981\u628a P.next \u8bbe\u4e3a \\(\\text{None}\\) \u5462\uff1f
\u4e0d\u4fee\u6539 P.next \u4e5f\u53ef\u4ee5\u3002\u4ece\u8be5\u94fe\u8868\u7684\u89d2\u5ea6\u770b\uff0c\u4ece\u5934\u8282\u70b9\u904d\u5386\u5230\u5c3e\u8282\u70b9\u5df2\u7ecf\u4e0d\u4f1a\u9047\u5230 P \u4e86\u3002\u8fd9\u610f\u5473\u7740\u8282\u70b9 P \u5df2\u7ecf\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u4e86\uff0c\u6b64\u65f6\u8282\u70b9 P \u6307\u5411\u54ea\u91cc\u90fd\u4e0d\u4f1a\u5bf9\u8be5\u94fe\u8868\u4ea7\u751f\u5f71\u54cd\u3002
\u4ece\u5783\u573e\u56de\u6536\u7684\u89d2\u5ea6\u770b\uff0c\u5bf9\u4e8e Java\u3001Python\u3001Go \u7b49\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u673a\u5236\u7684\u8bed\u8a00\u6765\u8bf4\uff0c\u8282\u70b9 P \u662f\u5426\u88ab\u56de\u6536\u53d6\u51b3\u4e8e\u662f\u5426\u4ecd\u5b58\u5728\u6307\u5411\u5b83\u7684\u5f15\u7528\uff0c\u800c\u4e0d\u662f P.next \u7684\u503c\u3002\u5728 C \u548c C++ \u7b49\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u624b\u52a8\u91ca\u653e\u8282\u70b9\u5185\u5b58\u3002
\u5728\u94fe\u8868\u4e2d\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u4f46\u662f\u589e\u5220\u4e4b\u524d\u90fd\u9700\u8981 \\(O(n)\\) \u7684\u65f6\u95f4\u67e5\u627e\u5143\u7d20\uff0c\u90a3\u4e3a\u4ec0\u4e48\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u662f \\(O(n)\\) \u5462\uff1f
\u5982\u679c\u662f\u5148\u67e5\u627e\u5143\u7d20\u3001\u518d\u5220\u9664\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u786e\u5b9e\u662f \\(O(n)\\) \u3002\u7136\u800c\uff0c\u94fe\u8868\u7684 \\(O(1)\\) \u589e\u5220\u7684\u4f18\u52bf\u53ef\u4ee5\u5728\u5176\u4ed6\u5e94\u7528\u4e0a\u5f97\u5230\u4f53\u73b0\u3002\u4f8b\u5982\uff0c\u53cc\u5411\u961f\u5217\u9002\u5408\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff0c\u6211\u4eec\u7ef4\u62a4\u4e00\u4e2a\u6307\u9488\u53d8\u91cf\u59cb\u7ec8\u6307\u5411\u5934\u8282\u70b9\u3001\u5c3e\u8282\u70b9\uff0c\u6bcf\u6b21\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u90fd\u662f \\(O(1)\\) \u3002
\u56fe\u201c\u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f\u201d\u4e2d\uff0c\u6d45\u84dd\u8272\u7684\u5b58\u50a8\u8282\u70b9\u6307\u9488\u662f\u5360\u7528\u4e00\u5757\u5185\u5b58\u5730\u5740\u5417\uff1f\u8fd8\u662f\u548c\u8282\u70b9\u503c\u5404\u5360\u4e00\u534a\u5462\uff1f
\u8be5\u793a\u610f\u56fe\u53ea\u662f\u5b9a\u6027\u8868\u793a\uff0c\u5b9a\u91cf\u8868\u793a\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u8fdb\u884c\u5206\u6790\u3002
- \u4e0d\u540c\u7c7b\u578b\u7684\u8282\u70b9\u503c\u5360\u7528\u7684\u7a7a\u95f4\u662f\u4e0d\u540c\u7684\uff0c\u6bd4\u5982 int\u3001long\u3001double \u548c\u5b9e\u4f8b\u5bf9\u8c61\u7b49\u3002
- \u6307\u9488\u53d8\u91cf\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u5927\u5c0f\u6839\u636e\u6240\u4f7f\u7528\u7684\u64cd\u4f5c\u7cfb\u7edf\u53ca\u7f16\u8bd1\u73af\u5883\u800c\u5b9a\uff0c\u5927\u591a\u4e3a 8 \u5b57\u8282\u6216 4 \u5b57\u8282\u3002
\u5728\u5217\u8868\u672b\u5c3e\u6dfb\u52a0\u5143\u7d20\u662f\u5426\u65f6\u65f6\u523b\u523b\u90fd\u4e3a \\(O(1)\\) \uff1f
\u5982\u679c\u6dfb\u52a0\u5143\u7d20\u65f6\u8d85\u51fa\u5217\u8868\u957f\u5ea6\uff0c\u5219\u9700\u8981\u5148\u6269\u5bb9\u5217\u8868\u518d\u6dfb\u52a0\u3002\u7cfb\u7edf\u4f1a\u7533\u8bf7\u4e00\u5757\u65b0\u7684\u5185\u5b58\uff0c\u5e76\u5c06\u539f\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u642c\u8fd0\u8fc7\u53bb\uff0c\u8fd9\u65f6\u5019\u65f6\u95f4\u590d\u6742\u5ea6\u5c31\u4f1a\u662f \\(O(n)\\) \u3002
\u201c\u5217\u8868\u7684\u51fa\u73b0\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u6570\u7ec4\u7684\u5b9e\u7528\u6027\uff0c\u4f46\u53ef\u80fd\u5bfc\u81f4\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u201d\uff0c\u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u662f\u6307\u989d\u5916\u589e\u52a0\u7684\u53d8\u91cf\u5982\u5bb9\u91cf\u3001\u957f\u5ea6\u3001\u6269\u5bb9\u500d\u6570\u6240\u5360\u7684\u5185\u5b58\u5417\uff1f
\u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u4e3b\u8981\u6709\u4e24\u65b9\u9762\u542b\u4e49\uff1a\u4e00\u65b9\u9762\uff0c\u5217\u8868\u90fd\u4f1a\u8bbe\u5b9a\u4e00\u4e2a\u521d\u59cb\u957f\u5ea6\uff0c\u6211\u4eec\u4e0d\u4e00\u5b9a\u9700\u8981\u7528\u8fd9\u4e48\u591a\uff1b\u53e6\u4e00\u65b9\u9762\uff0c\u4e3a\u4e86\u9632\u6b62\u9891\u7e41\u6269\u5bb9\uff0c\u6269\u5bb9\u4e00\u822c\u4f1a\u4e58\u4ee5\u4e00\u4e2a\u7cfb\u6570\uff0c\u6bd4\u5982 \\(\\times 1.5\\) \u3002\u8fd9\u6837\u4e00\u6765\uff0c\u4e5f\u4f1a\u51fa\u73b0\u5f88\u591a\u7a7a\u4f4d\uff0c\u6211\u4eec\u901a\u5e38\u4e0d\u80fd\u5b8c\u5168\u586b\u6ee1\u5b83\u4eec\u3002
\u5728 Python \u4e2d\u521d\u59cb\u5316 n = [1, 2, 3] \u540e\uff0c\u8fd9 3 \u4e2a\u5143\u7d20\u7684\u5730\u5740\u662f\u76f8\u8fde\u7684\uff0c\u4f46\u662f\u521d\u59cb\u5316 m = [2, 1, 3] \u4f1a\u53d1\u73b0\u5b83\u4eec\u6bcf\u4e2a\u5143\u7d20\u7684 id \u5e76\u4e0d\u662f\u8fde\u7eed\u7684\uff0c\u800c\u662f\u5206\u522b\u8ddf n \u4e2d\u7684\u76f8\u540c\u3002\u8fd9\u4e9b\u5143\u7d20\u7684\u5730\u5740\u4e0d\u8fde\u7eed\uff0c\u90a3\u4e48 m \u8fd8\u662f\u6570\u7ec4\u5417\uff1f
\u5047\u5982\u628a\u5217\u8868\u5143\u7d20\u6362\u6210\u94fe\u8868\u8282\u70b9 n = [n1, n2, n3, n4, n5] \uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u8fd9 5 \u4e2a\u8282\u70b9\u5bf9\u8c61\u4e5f\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\u3002\u7136\u800c\uff0c\u7ed9\u5b9a\u4e00\u4e2a\u5217\u8868\u7d22\u5f15\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u8282\u70b9\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u8bbf\u95ee\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5b58\u50a8\u7684\u662f\u8282\u70b9\u7684\u5f15\u7528\uff0c\u800c\u975e\u8282\u70b9\u672c\u8eab\u3002
\u4e0e\u8bb8\u591a\u8bed\u8a00\u4e0d\u540c\uff0cPython \u4e2d\u7684\u6570\u5b57\u4e5f\u88ab\u5305\u88c5\u4e3a\u5bf9\u8c61\uff0c\u5217\u8868\u4e2d\u5b58\u50a8\u7684\u4e0d\u662f\u6570\u5b57\u672c\u8eab\uff0c\u800c\u662f\u5bf9\u6570\u5b57\u7684\u5f15\u7528\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u4f1a\u53d1\u73b0\u4e24\u4e2a\u6570\u7ec4\u4e2d\u7684\u76f8\u540c\u6570\u5b57\u62e5\u6709\u540c\u4e00\u4e2a id \uff0c\u5e76\u4e14\u8fd9\u4e9b\u6570\u5b57\u7684\u5185\u5b58\u5730\u5740\u65e0\u987b\u8fde\u7eed\u3002
C++ STL \u91cc\u9762\u7684 std::list \u5df2\u7ecf\u5b9e\u73b0\u4e86\u53cc\u5411\u94fe\u8868\uff0c\u4f46\u597d\u50cf\u4e00\u4e9b\u7b97\u6cd5\u4e66\u4e0a\u4e0d\u600e\u4e48\u76f4\u63a5\u4f7f\u7528\u5b83\uff0c\u662f\u4e0d\u662f\u56e0\u4e3a\u6709\u4ec0\u4e48\u5c40\u9650\u6027\u5462\uff1f
\u4e00\u65b9\u9762\uff0c\u6211\u4eec\u5f80\u5f80\u66f4\u9752\u7750\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u7b97\u6cd5\uff0c\u800c\u53ea\u5728\u5fc5\u8981\u65f6\u624d\u4f7f\u7528\u94fe\u8868\uff0c\u4e3b\u8981\u6709\u4e24\u4e2a\u539f\u56e0\u3002
- \u7a7a\u95f4\u5f00\u9500\uff1a\u7531\u4e8e\u6bcf\u4e2a\u5143\u7d20\u9700\u8981\u4e24\u4e2a\u989d\u5916\u7684\u6307\u9488\uff08\u4e00\u4e2a\u7528\u4e8e\u524d\u4e00\u4e2a\u5143\u7d20\uff0c\u4e00\u4e2a\u7528\u4e8e\u540e\u4e00\u4e2a\u5143\u7d20\uff09\uff0c\u6240\u4ee5
std::list \u901a\u5e38\u6bd4 std::vector \u66f4\u5360\u7528\u7a7a\u95f4\u3002 - \u7f13\u5b58\u4e0d\u53cb\u597d\uff1a\u7531\u4e8e\u6570\u636e\u4e0d\u662f\u8fde\u7eed\u5b58\u653e\u7684\uff0c\u56e0\u6b64
std::list \u5bf9\u7f13\u5b58\u7684\u5229\u7528\u7387\u8f83\u4f4e\u3002\u4e00\u822c\u60c5\u51b5\u4e0b\uff0cstd::vector \u7684\u6027\u80fd\u4f1a\u66f4\u597d\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5fc5\u8981\u4f7f\u7528\u94fe\u8868\u7684\u60c5\u51b5\u4e3b\u8981\u662f\u4e8c\u53c9\u6811\u548c\u56fe\u3002\u6808\u548c\u961f\u5217\u5f80\u5f80\u4f1a\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684 stack \u548c queue \uff0c\u800c\u975e\u94fe\u8868\u3002
\u521d\u59cb\u5316\u5217\u8868 res = [0] * self.size() \u64cd\u4f5c\uff0c\u4f1a\u5bfc\u81f4 res \u7684\u6bcf\u4e2a\u5143\u7d20\u5f15\u7528\u76f8\u540c\u7684\u5730\u5740\u5417\uff1f
\u4e0d\u4f1a\u3002\u4f46\u4e8c\u7ef4\u6570\u7ec4\u4f1a\u6709\u8fd9\u4e2a\u95ee\u9898\uff0c\u4f8b\u5982\u521d\u59cb\u5316\u4e8c\u7ef4\u5217\u8868 res = [[0] * self.size()] \uff0c\u5219\u591a\u6b21\u5f15\u7528\u4e86\u540c\u4e00\u4e2a\u5217\u8868 [0] \u3002
\u5728\u5220\u9664\u8282\u70b9\u4e2d\uff0c\u9700\u8981\u65ad\u5f00\u8be5\u8282\u70b9\u4e0e\u5176\u540e\u7ee7\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\u6307\u5411\u5417\uff1f
\u4ece\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\uff08\u505a\u9898\uff09\u7684\u89d2\u5ea6\u770b\uff0c\u4e0d\u65ad\u5f00\u6ca1\u6709\u5173\u7cfb\uff0c\u53ea\u8981\u4fdd\u8bc1\u7a0b\u5e8f\u7684\u903b\u8f91\u662f\u6b63\u786e\u7684\u5c31\u884c\u3002\u4ece\u6807\u51c6\u5e93\u7684\u89d2\u5ea6\u770b\uff0c\u65ad\u5f00\u66f4\u52a0\u5b89\u5168\u3001\u903b\u8f91\u66f4\u52a0\u6e05\u6670\u3002\u5982\u679c\u4e0d\u65ad\u5f00\uff0c\u5047\u8bbe\u88ab\u5220\u9664\u8282\u70b9\u672a\u88ab\u6b63\u5e38\u56de\u6536\uff0c\u90a3\u4e48\u5b83\u4f1a\u5f71\u54cd\u540e\u7ee7\u8282\u70b9\u7684\u5185\u5b58\u56de\u6536\u3002
"},{"location":"chapter_backtracking/","title":"\u7b2c 13 \u7ae0 \u00a0 \u56de\u6eaf","text":"Abstract
\u6211\u4eec\u5982\u540c\u8ff7\u5bab\u4e2d\u7684\u63a2\u7d22\u8005\uff0c\u5728\u524d\u8fdb\u7684\u9053\u8def\u4e0a\u53ef\u80fd\u4f1a\u9047\u5230\u56f0\u96be\u3002
\u56de\u6eaf\u7684\u529b\u91cf\u8ba9\u6211\u4eec\u80fd\u591f\u91cd\u65b0\u5f00\u59cb\uff0c\u4e0d\u65ad\u5c1d\u8bd5\uff0c\u6700\u7ec8\u627e\u5230\u901a\u5f80\u5149\u660e\u7684\u51fa\u53e3\u3002
"},{"location":"chapter_backtracking/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5
- 13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898
- 13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898
- 13.4 \u00a0 N \u7687\u540e\u95ee\u9898
- 13.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_backtracking/backtracking_algorithm/","title":"13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5","text":"\u300c\u56de\u6eaf\u7b97\u6cd5 backtracking algorithm\u300d\u662f\u4e00\u79cd\u901a\u8fc7\u7a77\u4e3e\u6765\u89e3\u51b3\u95ee\u9898\u7684\u65b9\u6cd5\uff0c\u5b83\u7684\u6838\u5fc3\u601d\u60f3\u662f\u4ece\u4e00\u4e2a\u521d\u59cb\u72b6\u6001\u51fa\u53d1\uff0c\u66b4\u529b\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u5f53\u9047\u5230\u6b63\u786e\u7684\u89e3\u5219\u5c06\u5176\u8bb0\u5f55\uff0c\u76f4\u5230\u627e\u5230\u89e3\u6216\u8005\u5c1d\u8bd5\u4e86\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u90fd\u65e0\u6cd5\u627e\u5230\u89e3\u4e3a\u6b62\u3002
\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u201c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u6765\u904d\u5386\u89e3\u7a7a\u95f4\u3002\u5728\u201c\u4e8c\u53c9\u6811\u201d\u7ae0\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5229\u7528\u524d\u5e8f\u904d\u5386\u6784\u9020\u4e00\u4e2a\u56de\u6eaf\u95ee\u9898\uff0c\u9010\u6b65\u4e86\u89e3\u56de\u6eaf\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002
\u4f8b\u9898\u4e00
\u7ed9\u5b9a\u4e00\u68f5\u4e8c\u53c9\u6811\uff0c\u641c\u7d22\u5e76\u8bb0\u5f55\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u8282\u70b9\u5217\u8868\u3002
\u5bf9\u4e8e\u6b64\u9898\uff0c\u6211\u4eec\u524d\u5e8f\u904d\u5386\u8fd9\u68f5\u6811\uff0c\u5e76\u5224\u65ad\u5f53\u524d\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \uff0c\u82e5\u662f\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u7684\u503c\u52a0\u5165\u7ed3\u679c\u5217\u8868 res \u4e4b\u4e2d\u3002\u76f8\u5173\u8fc7\u7a0b\u5b9e\u73b0\u5982\u56fe 13-1 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_i_compact.pydef pre_order(root: TreeNode):\n \"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00\"\"\"\n if root is None:\n return\n if root.val == 7:\n # \u8bb0\u5f55\u89e3\n res.append(root)\n pre_order(root.left)\n pre_order(root.right)\n
preorder_traversal_i_compact.cpp/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode *root) {\n if (root == nullptr) {\n return;\n }\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res.push_back(root);\n }\n preOrder(root->left);\n preOrder(root->right);\n}\n
preorder_traversal_i_compact.java/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode root) {\n if (root == null) {\n return;\n }\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(root);\n }\n preOrder(root.left);\n preOrder(root.right);\n}\n
preorder_traversal_i_compact.cs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid PreOrder(TreeNode? root) {\n if (root == null) {\n return;\n }\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.Add(root);\n }\n PreOrder(root.left);\n PreOrder(root.right);\n}\n
preorder_traversal_i_compact.go/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrderI(root *TreeNode, res *[]*TreeNode) {\n if root == nil {\n return\n }\n if (root.Val).(int) == 7 {\n // \u8bb0\u5f55\u89e3\n *res = append(*res, root)\n }\n preOrderI(root.Left, res)\n preOrderI(root.Right, res)\n}\n
preorder_traversal_i_compact.swift/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n if root.val == 7 {\n // \u8bb0\u5f55\u89e3\n res.append(root)\n }\n preOrder(root: root.left)\n preOrder(root: root.right)\n}\n
preorder_traversal_i_compact.js/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root, res) {\n if (root === null) {\n return;\n }\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push(root);\n }\n preOrder(root.left, res);\n preOrder(root.right, res);\n}\n
preorder_traversal_i_compact.ts/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root: TreeNode | null, res: TreeNode[]): void {\n if (root === null) {\n return;\n }\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push(root);\n }\n preOrder(root.left, res);\n preOrder(root.right, res);\n}\n
preorder_traversal_i_compact.dart/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode? root, List<TreeNode> res) {\n if (root == null) {\n return;\n }\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(root);\n }\n preOrder(root.left, res);\n preOrder(root.right, res);\n}\n
preorder_traversal_i_compact.rs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfn pre_order(res: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n if root.is_none() {\n return;\n }\n if let Some(node) = root {\n if node.borrow().val == 7 {\n // \u8bb0\u5f55\u89e3\n res.push(node.clone());\n }\n pre_order(res, node.borrow().left.clone());\n pre_order(res, node.borrow().right.clone());\n }\n}\n
preorder_traversal_i_compact.c/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode *root) {\n if (root == NULL) {\n return;\n }\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res[resSize++] = root;\n }\n preOrder(root->left);\n preOrder(root->right);\n}\n
preorder_traversal_i_compact.zig[class]{}-[func]{preOrder}\n
\u56fe 13-1 \u00a0 \u5728\u524d\u5e8f\u904d\u5386\u4e2d\u641c\u7d22\u8282\u70b9
"},{"location":"chapter_backtracking/backtracking_algorithm/#1311","title":"13.1.1 \u00a0 \u5c1d\u8bd5\u4e0e\u56de\u9000","text":"\u4e4b\u6240\u4ee5\u79f0\u4e4b\u4e3a\u56de\u6eaf\u7b97\u6cd5\uff0c\u662f\u56e0\u4e3a\u8be5\u7b97\u6cd5\u5728\u641c\u7d22\u89e3\u7a7a\u95f4\u65f6\u4f1a\u91c7\u7528\u201c\u5c1d\u8bd5\u201d\u4e0e\u201c\u56de\u9000\u201d\u7684\u7b56\u7565\u3002\u5f53\u7b97\u6cd5\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u9047\u5230\u67d0\u4e2a\u72b6\u6001\u65e0\u6cd5\u7ee7\u7eed\u524d\u8fdb\u6216\u65e0\u6cd5\u5f97\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u65f6\uff0c\u5b83\u4f1a\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u5c1d\u8bd5\u5176\u4ed6\u53ef\u80fd\u7684\u9009\u62e9\u3002
\u5bf9\u4e8e\u4f8b\u9898\u4e00\uff0c\u8bbf\u95ee\u6bcf\u4e2a\u8282\u70b9\u90fd\u4ee3\u8868\u4e00\u6b21\u201c\u5c1d\u8bd5\u201d\uff0c\u800c\u8d8a\u8fc7\u53f6\u8282\u70b9\u6216\u8fd4\u56de\u7236\u8282\u70b9\u7684 return \u5219\u8868\u793a\u201c\u56de\u9000\u201d\u3002
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u56de\u9000\u5e76\u4e0d\u4ec5\u4ec5\u5305\u62ec\u51fd\u6570\u8fd4\u56de\u3002\u4e3a\u89e3\u91ca\u8fd9\u4e00\u70b9\uff0c\u6211\u4eec\u5bf9\u4f8b\u9898\u4e00\u7a0d\u4f5c\u62d3\u5c55\u3002
\u4f8b\u9898\u4e8c
\u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\u3002
\u5728\u4f8b\u9898\u4e00\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u5217\u8868 path \u8bb0\u5f55\u8bbf\u95ee\u8fc7\u7684\u8282\u70b9\u8def\u5f84\u3002\u5f53\u8bbf\u95ee\u5230\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u590d\u5236 path \u5e76\u6dfb\u52a0\u8fdb\u7ed3\u679c\u5217\u8868 res \u3002\u904d\u5386\u5b8c\u6210\u540e\uff0cres \u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6240\u6709\u7684\u89e3\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_ii_compact.pydef pre_order(root: TreeNode):\n \"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c\"\"\"\n if root is None:\n return\n # \u5c1d\u8bd5\n path.append(root)\n if root.val == 7:\n # \u8bb0\u5f55\u89e3\n res.append(list(path))\n pre_order(root.left)\n pre_order(root.right)\n # \u56de\u9000\n path.pop()\n
preorder_traversal_ii_compact.cpp/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root) {\n if (root == nullptr) {\n return;\n }\n // \u5c1d\u8bd5\n path.push_back(root);\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res.push_back(path);\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n path.pop_back();\n}\n
preorder_traversal_ii_compact.java/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode root) {\n if (root == null) {\n return;\n }\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(new ArrayList<>(path));\n }\n preOrder(root.left);\n preOrder(root.right);\n // \u56de\u9000\n path.remove(path.size() - 1);\n}\n
preorder_traversal_ii_compact.cs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid PreOrder(TreeNode? root) {\n if (root == null) {\n return;\n }\n // \u5c1d\u8bd5\n path.Add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.Add(new List<TreeNode>(path));\n }\n PreOrder(root.left);\n PreOrder(root.right);\n // \u56de\u9000\n path.RemoveAt(path.Count - 1);\n}\n
preorder_traversal_ii_compact.go/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrderII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\n if root == nil {\n return\n }\n // \u5c1d\u8bd5\n *path = append(*path, root)\n if root.Val.(int) == 7 {\n // \u8bb0\u5f55\u89e3\n *res = append(*res, append([]*TreeNode{}, *path...))\n }\n preOrderII(root.Left, res, path)\n preOrderII(root.Right, res, path)\n // \u56de\u9000\n *path = (*path)[:len(*path)-1]\n}\n
preorder_traversal_ii_compact.swift/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u5c1d\u8bd5\n path.append(root)\n if root.val == 7 {\n // \u8bb0\u5f55\u89e3\n res.append(path)\n }\n preOrder(root: root.left)\n preOrder(root: root.right)\n // \u56de\u9000\n path.removeLast()\n}\n
preorder_traversal_ii_compact.js/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(root, path, res) {\n if (root === null) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_ii_compact.ts/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(\n root: TreeNode | null,\n path: TreeNode[],\n res: TreeNode[][]\n): void {\n if (root === null) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_ii_compact.dart/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(\n TreeNode? root,\n List<TreeNode> path,\n List<List<TreeNode>> res,\n) {\n if (root == null) {\n return;\n }\n\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(List.from(path));\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.removeLast();\n}\n
preorder_traversal_ii_compact.rs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n if root.is_none() {\n return;\n }\n if let Some(node) = root {\n // \u5c1d\u8bd5\n path.push(node.clone());\n if node.borrow().val == 7 {\n // \u8bb0\u5f55\u89e3\n res.push(path.clone());\n }\n pre_order(res, path, node.borrow().left.clone());\n pre_order(res, path, node.borrow().right.clone());\n // \u56de\u9000\n path.remove(path.len() - 1);\n }\n}\n
preorder_traversal_ii_compact.c/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root) {\n if (root == NULL) {\n return;\n }\n // \u5c1d\u8bd5\n path[pathSize++] = root;\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n for (int i = 0; i < pathSize; ++i) {\n res[resSize][i] = path[i];\n }\n resSize++;\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n pathSize--;\n}\n
preorder_traversal_ii_compact.zig[class]{}-[func]{preOrder}\n
\u5728\u6bcf\u6b21\u201c\u5c1d\u8bd5\u201d\u4e2d\uff0c\u6211\u4eec\u901a\u8fc7\u5c06\u5f53\u524d\u8282\u70b9\u6dfb\u52a0\u8fdb path \u6765\u8bb0\u5f55\u8def\u5f84\uff1b\u800c\u5728\u201c\u56de\u9000\u201d\u524d\uff0c\u6211\u4eec\u9700\u8981\u5c06\u8be5\u8282\u70b9\u4ece path \u4e2d\u5f39\u51fa\uff0c\u4ee5\u6062\u590d\u672c\u6b21\u5c1d\u8bd5\u4e4b\u524d\u7684\u72b6\u6001\u3002
\u89c2\u5bdf\u56fe 13-2 \u6240\u793a\u7684\u8fc7\u7a0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5c1d\u8bd5\u548c\u56de\u9000\u7406\u89e3\u4e3a\u201c\u524d\u8fdb\u201d\u4e0e\u201c\u64a4\u9500\u201d\uff0c\u4e24\u4e2a\u64cd\u4f5c\u4e92\u4e3a\u9006\u5411\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 13-2 \u00a0 \u5c1d\u8bd5\u4e0e\u56de\u9000
"},{"location":"chapter_backtracking/backtracking_algorithm/#1312","title":"13.1.2 \u00a0 \u526a\u679d","text":"\u590d\u6742\u7684\u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u4e00\u4e2a\u6216\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u7ea6\u675f\u6761\u4ef6\u901a\u5e38\u53ef\u7528\u4e8e\u201c\u526a\u679d\u201d\u3002
\u4f8b\u9898\u4e09
\u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\uff0c\u5e76\u8981\u6c42\u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u3002
\u4e3a\u4e86\u6ee1\u8db3\u4ee5\u4e0a\u7ea6\u675f\u6761\u4ef6\uff0c\u6211\u4eec\u9700\u8981\u6dfb\u52a0\u526a\u679d\u64cd\u4f5c\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u82e5\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\uff0c\u5219\u63d0\u524d\u8fd4\u56de\uff0c\u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_iii_compact.pydef pre_order(root: TreeNode):\n \"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09\"\"\"\n # \u526a\u679d\n if root is None or root.val == 3:\n return\n # \u5c1d\u8bd5\n path.append(root)\n if root.val == 7:\n # \u8bb0\u5f55\u89e3\n res.append(list(path))\n pre_order(root.left)\n pre_order(root.right)\n # \u56de\u9000\n path.pop()\n
preorder_traversal_iii_compact.cpp/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root) {\n // \u526a\u679d\n if (root == nullptr || root->val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.push_back(root);\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res.push_back(path);\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n path.pop_back();\n}\n
preorder_traversal_iii_compact.java/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode root) {\n // \u526a\u679d\n if (root == null || root.val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(new ArrayList<>(path));\n }\n preOrder(root.left);\n preOrder(root.right);\n // \u56de\u9000\n path.remove(path.size() - 1);\n}\n
preorder_traversal_iii_compact.cs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid PreOrder(TreeNode? root) {\n // \u526a\u679d\n if (root == null || root.val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.Add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.Add(new List<TreeNode>(path));\n }\n PreOrder(root.left);\n PreOrder(root.right);\n // \u56de\u9000\n path.RemoveAt(path.Count - 1);\n}\n
preorder_traversal_iii_compact.go/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrderIII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\n // \u526a\u679d\n if root == nil || root.Val == 3 {\n return\n }\n // \u5c1d\u8bd5\n *path = append(*path, root)\n if root.Val.(int) == 7 {\n // \u8bb0\u5f55\u89e3\n *res = append(*res, *path)\n }\n preOrderIII(root.Left, res, path)\n preOrderIII(root.Right, res, path)\n // \u56de\u9000\n *path = (*path)[:len(*path)-1]\n}\n
preorder_traversal_iii_compact.swift/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrder(root: TreeNode?) {\n // \u526a\u679d\n guard let root = root, root.val != 3 else {\n return\n }\n // \u5c1d\u8bd5\n path.append(root)\n if root.val == 7 {\n // \u8bb0\u5f55\u89e3\n res.append(path)\n }\n preOrder(root: root.left)\n preOrder(root: root.right)\n // \u56de\u9000\n path.removeLast()\n}\n
preorder_traversal_iii_compact.js/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(root, path, res) {\n // \u526a\u679d\n if (root === null || root.val === 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_iii_compact.ts/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(\n root: TreeNode | null,\n path: TreeNode[],\n res: TreeNode[][]\n): void {\n // \u526a\u679d\n if (root === null || root.val === 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_iii_compact.dart/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(\n TreeNode? root,\n List<TreeNode> path,\n List<List<TreeNode>> res,\n) {\n if (root == null || root.val == 3) {\n return;\n }\n\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(List.from(path));\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.removeLast();\n}\n
preorder_traversal_iii_compact.rs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n // \u526a\u679d\n if root.is_none() || root.as_ref().unwrap().borrow().val == 3 {\n return;\n }\n if let Some(node) = root {\n // \u5c1d\u8bd5\n path.push(node.clone());\n if node.borrow().val == 7 {\n // \u8bb0\u5f55\u89e3\n res.push(path.clone());\n }\n pre_order(res, path, node.borrow().left.clone());\n pre_order(res, path, node.borrow().right.clone());\n // \u56de\u9000\n path.remove(path.len() - 1);\n }\n}\n
preorder_traversal_iii_compact.c/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root) {\n // \u526a\u679d\n if (root == NULL || root->val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path[pathSize++] = root;\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n for (int i = 0; i < pathSize; i++) {\n res[resSize][i] = path[i];\n }\n resSize++;\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n pathSize--;\n}\n
preorder_traversal_iii_compact.zig[class]{}-[func]{preOrder}\n
\u201c\u526a\u679d\u201d\u662f\u4e00\u4e2a\u975e\u5e38\u5f62\u8c61\u7684\u540d\u8bcd\u3002\u5982\u56fe 13-3 \u6240\u793a\uff0c\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u201c\u526a\u6389\u201d\u4e86\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u641c\u7d22\u5206\u652f\uff0c\u907f\u514d\u8bb8\u591a\u65e0\u610f\u4e49\u7684\u5c1d\u8bd5\uff0c\u4ece\u800c\u63d0\u9ad8\u4e86\u641c\u7d22\u6548\u7387\u3002
\u56fe 13-3 \u00a0 \u6839\u636e\u7ea6\u675f\u6761\u4ef6\u526a\u679d
"},{"location":"chapter_backtracking/backtracking_algorithm/#1313","title":"13.1.3 \u00a0 \u6846\u67b6\u4ee3\u7801","text":"\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c1d\u8bd5\u5c06\u56de\u6eaf\u7684\u201c\u5c1d\u8bd5\u3001\u56de\u9000\u3001\u526a\u679d\u201d\u7684\u4e3b\u4f53\u6846\u67b6\u63d0\u70bc\u51fa\u6765\uff0c\u63d0\u5347\u4ee3\u7801\u7684\u901a\u7528\u6027\u3002
\u5728\u4ee5\u4e0b\u6846\u67b6\u4ee3\u7801\u4e2d\uff0cstate \u8868\u793a\u95ee\u9898\u7684\u5f53\u524d\u72b6\u6001\uff0cchoices \u8868\u793a\u5f53\u524d\u72b6\u6001\u4e0b\u53ef\u4ee5\u505a\u51fa\u7684\u9009\u62e9\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def backtrack(state: State, choices: list[choice], res: list[state]):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\"\"\"\n # \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if is_solution(state):\n # \u8bb0\u5f55\u89e3\n record_solution(state, res)\n # \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices:\n # \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice):\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice)\n backtrack(state, choices, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice)\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, vector<Choice *> &choices, vector<State *> &res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Choice choice : choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice> choices, List<State> res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Choice choice : choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid Backtrack(State state, List<Choice> choices, List<State> res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (IsSolution(state)) {\n // \u8bb0\u5f55\u89e3\n RecordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n foreach (Choice choice in choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (IsValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n MakeChoice(state, choice);\n Backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n UndoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state *State, choices []Choice, res *[]State) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if isSolution(state) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res)\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for _, choice := range choices {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state, choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice)\n backtrack(state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice)\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state: inout State, choices: [Choice], res: inout [State]) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if isSolution(state: state) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state: state, res: &res)\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state: state, choice: choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state: &state, choice: choice)\n backtrack(state: &state, choices: choices, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state: &state, choice: choice)\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state, choices, res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let choice of choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state: State, choices: Choice[], res: State[]): void {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let choice of choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice>, List<State> res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Choice choice in choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfn backtrack(state: &mut State, choices: &Vec<Choice>, res: &mut Vec<State>) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if is_solution(state) {\n // \u8bb0\u5f55\u89e3\n record_solution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, Choice *choices, int numChoices, State *res, int numRes) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res, numRes);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < numChoices; i++) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, &choices[i])) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, &choices[i]);\n backtrack(state, choices, numChoices, res, numRes);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, &choices[i]);\n }\n }\n}\n
\n
\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u57fa\u4e8e\u6846\u67b6\u4ee3\u7801\u6765\u89e3\u51b3\u4f8b\u9898\u4e09\u3002\u72b6\u6001 state \u4e3a\u8282\u70b9\u904d\u5386\u8def\u5f84\uff0c\u9009\u62e9 choices \u4e3a\u5f53\u524d\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\uff0c\u7ed3\u679c res \u662f\u8def\u5f84\u5217\u8868\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_iii_template.pydef is_solution(state: list[TreeNode]) -> bool:\n \"\"\"\u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3\"\"\"\n return state and state[-1].val == 7\n\ndef record_solution(state: list[TreeNode], res: list[list[TreeNode]]):\n \"\"\"\u8bb0\u5f55\u89e3\"\"\"\n res.append(list(state))\n\ndef is_valid(state: list[TreeNode], choice: TreeNode) -> bool:\n \"\"\"\u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5\"\"\"\n return choice is not None and choice.val != 3\n\ndef make_choice(state: list[TreeNode], choice: TreeNode):\n \"\"\"\u66f4\u65b0\u72b6\u6001\"\"\"\n state.append(choice)\n\ndef undo_choice(state: list[TreeNode], choice: TreeNode):\n \"\"\"\u6062\u590d\u72b6\u6001\"\"\"\n state.pop()\n\ndef backtrack(\n state: list[TreeNode], choices: list[TreeNode], res: list[list[TreeNode]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09\"\"\"\n # \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if is_solution(state):\n # \u8bb0\u5f55\u89e3\n record_solution(state, res)\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices:\n # \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice):\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice)\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice.left, choice.right], res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice)\n
preorder_traversal_iii_template.cpp/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(vector<TreeNode *> &state) {\n return !state.empty() && state.back()->val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(vector<TreeNode *> &state, vector<vector<TreeNode *>> &res) {\n res.push_back(state);\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(vector<TreeNode *> &state, TreeNode *choice) {\n return choice != nullptr && choice->val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(vector<TreeNode *> &state, TreeNode *choice) {\n state.push_back(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(vector<TreeNode *> &state, TreeNode *choice) {\n state.pop_back();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(vector<TreeNode *> &state, vector<TreeNode *> &choices, vector<vector<TreeNode *>> &res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (TreeNode *choice : choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n vector<TreeNode *> nextChoices{choice->left, choice->right};\n backtrack(state, nextChoices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.java/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nboolean isSolution(List<TreeNode> state) {\n return !state.isEmpty() && state.get(state.size() - 1).val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\n res.add(new ArrayList<>(state));\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nboolean isValid(List<TreeNode> state, TreeNode choice) {\n return choice != null && choice.val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode choice) {\n state.add(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode choice) {\n state.remove(state.size() - 1);\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (TreeNode choice : choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, Arrays.asList(choice.left, choice.right), res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.cs/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool IsSolution(List<TreeNode> state) {\n return state.Count != 0 && state[^1].val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid RecordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\n res.Add(new List<TreeNode>(state));\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool IsValid(List<TreeNode> state, TreeNode choice) {\n return choice != null && choice.val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid MakeChoice(List<TreeNode> state, TreeNode choice) {\n state.Add(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid UndoChoice(List<TreeNode> state, TreeNode choice) {\n state.RemoveAt(state.Count - 1);\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid Backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (IsSolution(state)) {\n // \u8bb0\u5f55\u89e3\n RecordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n foreach (TreeNode choice in choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (IsValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n MakeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, [choice.left!, choice.right!], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n UndoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.go/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state *[]*TreeNode) bool {\n return len(*state) != 0 && (*state)[len(*state)-1].Val == 7\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state *[]*TreeNode, res *[][]*TreeNode) {\n *res = append(*res, *state)\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state *[]*TreeNode, choice *TreeNode) bool {\n return choice != nil && choice.Val != 3\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state *[]*TreeNode, choice *TreeNode) {\n *state = append(*state, choice)\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state *[]*TreeNode, choice *TreeNode) {\n *state = (*state)[:len(*state)-1]\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrackIII(state *[]*TreeNode, choices *[]*TreeNode, res *[][]*TreeNode) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if isSolution(state) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for _, choice := range *choices {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state, choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n temp := make([]*TreeNode, 0)\n temp = append(temp, choice.Left, choice.Right)\n backtrackIII(state, &temp, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice)\n }\n }\n}\n
preorder_traversal_iii_template.swift/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state: [TreeNode]) -> Bool {\n !state.isEmpty && state.last!.val == 7\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state: [TreeNode], res: inout [[TreeNode]]) {\n res.append(state)\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state: [TreeNode], choice: TreeNode?) -> Bool {\n choice != nil && choice!.val != 3\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state: inout [TreeNode], choice: TreeNode) {\n state.append(choice)\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state: inout [TreeNode], choice: TreeNode) {\n state.removeLast()\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrack(state: inout [TreeNode], choices: [TreeNode], res: inout [[TreeNode]]) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if isSolution(state: state) {\n recordSolution(state: state, res: &res)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state: state, choice: choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state: &state, choice: choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, choices: [choice.left, choice.right].compactMap { $0 }, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state: &state, choice: choice)\n }\n }\n}\n
preorder_traversal_iii_template.js/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state) {\n return state && state[state.length - 1]?.val === 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state, res) {\n res.push([...state]);\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state, choice) {\n return choice !== null && choice.val !== 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state, choice) {\n state.push(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state) {\n state.pop();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(state, choices, res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice.left, choice.right], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state);\n }\n }\n}\n
preorder_traversal_iii_template.ts/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state: TreeNode[]): boolean {\n return state && state[state.length - 1]?.val === 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state: TreeNode[], res: TreeNode[][]): void {\n res.push([...state]);\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state: TreeNode[], choice: TreeNode): boolean {\n return choice !== null && choice.val !== 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state: TreeNode[], choice: TreeNode): void {\n state.push(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state: TreeNode[]): void {\n state.pop();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(\n state: TreeNode[],\n choices: TreeNode[],\n res: TreeNode[][]\n): void {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice.left, choice.right], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state);\n }\n }\n}\n
preorder_traversal_iii_template.dart/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(List<TreeNode> state) {\n return state.isNotEmpty && state.last.val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\n res.add(List.from(state));\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(List<TreeNode> state, TreeNode? choice) {\n return choice != null && choice.val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode? choice) {\n state.add(choice!);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode? choice) {\n state.removeLast();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(\n List<TreeNode> state,\n List<TreeNode?> choices,\n List<List<TreeNode>> res,\n) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (TreeNode? choice in choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice!.left, choice.right], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.rs/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfn is_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>) -> bool {\n return !state.is_empty() && state.get(state.len() - 1).unwrap().borrow().val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfn record_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\n res.push(state.clone());\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfn is_valid(_: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) -> bool {\n return choice.borrow().val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfn make_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) {\n state.push(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfn undo_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, _: Rc<RefCell<TreeNode>>) {\n state.remove(state.len() - 1);\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfn backtrack(state: &mut Vec<Rc<RefCell<TreeNode>>>, choices: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if is_solution(state) {\n // \u8bb0\u5f55\u89e3\n record_solution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice.clone()) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice.clone());\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, &mut vec![choice.borrow().left.clone().unwrap(), choice.borrow().right.clone().unwrap()], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice.clone());\n }\n }\n}\n
preorder_traversal_iii_template.c/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(void) {\n return pathSize > 0 && path[pathSize - 1]->val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(void) {\n for (int i = 0; i < pathSize; i++) {\n res[resSize][i] = path[i];\n }\n resSize++;\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(TreeNode *choice) {\n return choice != NULL && choice->val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(TreeNode *choice) {\n path[pathSize++] = choice;\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(void) {\n pathSize--;\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(TreeNode *choices[2]) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution()) {\n // \u8bb0\u5f55\u89e3\n recordSolution();\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < 2; i++) {\n TreeNode *choice = choices[i];\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n TreeNode *nextChoices[2] = {choice->left, choice->right};\n backtrack(nextChoices);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice();\n }\n }\n}\n
preorder_traversal_iii_template.zig[class]{}-[func]{isSolution}\n\n[class]{}-[func]{recordSolution}\n\n[class]{}-[func]{isValid}\n\n[class]{}-[func]{makeChoice}\n\n[class]{}-[func]{undoChoice}\n\n[class]{}-[func]{backtrack}\n
\u6839\u636e\u9898\u610f\uff0c\u6211\u4eec\u5728\u627e\u5230\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\u540e\u5e94\u8be5\u7ee7\u7eed\u641c\u7d22\uff0c\u56e0\u6b64\u9700\u8981\u5c06\u8bb0\u5f55\u89e3\u4e4b\u540e\u7684 return \u8bed\u53e5\u5220\u9664\u3002\u56fe 13-4 \u5bf9\u6bd4\u4e86\u4fdd\u7559\u6216\u5220\u9664 return \u8bed\u53e5\u7684\u641c\u7d22\u8fc7\u7a0b\u3002
\u56fe 13-4 \u00a0 \u4fdd\u7559\u4e0e\u5220\u9664 return \u7684\u641c\u7d22\u8fc7\u7a0b\u5bf9\u6bd4
\u76f8\u6bd4\u57fa\u4e8e\u524d\u5e8f\u904d\u5386\u7684\u4ee3\u7801\u5b9e\u73b0\uff0c\u57fa\u4e8e\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\u7684\u4ee3\u7801\u5b9e\u73b0\u867d\u7136\u663e\u5f97\u5570\u5506\uff0c\u4f46\u901a\u7528\u6027\u66f4\u597d\u3002\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u56de\u6eaf\u95ee\u9898\u53ef\u4ee5\u5728\u8be5\u6846\u67b6\u4e0b\u89e3\u51b3\u3002\u6211\u4eec\u53ea\u9700\u6839\u636e\u5177\u4f53\u95ee\u9898\u6765\u5b9a\u4e49 state \u548c choices \uff0c\u5e76\u5b9e\u73b0\u6846\u67b6\u4e2d\u7684\u5404\u4e2a\u65b9\u6cd5\u5373\u53ef\u3002
"},{"location":"chapter_backtracking/backtracking_algorithm/#1314","title":"13.1.4 \u00a0 \u5e38\u7528\u672f\u8bed","text":"\u4e3a\u4e86\u66f4\u6e05\u6670\u5730\u5206\u6790\u7b97\u6cd5\u95ee\u9898\uff0c\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b\u56de\u6eaf\u7b97\u6cd5\u4e2d\u5e38\u7528\u672f\u8bed\u7684\u542b\u4e49\uff0c\u5e76\u5bf9\u7167\u4f8b\u9898\u4e09\u7ed9\u51fa\u5bf9\u5e94\u793a\u4f8b\uff0c\u5982\u8868 13-1 \u6240\u793a\u3002
\u8868 13-1 \u00a0 \u5e38\u89c1\u7684\u56de\u6eaf\u7b97\u6cd5\u672f\u8bed
\u540d\u8bcd \u5b9a\u4e49 \u4f8b\u9898\u4e09 \u89e3\uff08solution\uff09 \u89e3\u662f\u6ee1\u8db3\u95ee\u9898\u7279\u5b9a\u6761\u4ef6\u7684\u7b54\u6848\uff0c\u53ef\u80fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2a \u6839\u8282\u70b9\u5230\u8282\u70b9 \\(7\\) \u7684\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u6240\u6709\u8def\u5f84 \u7ea6\u675f\u6761\u4ef6\uff08constraint\uff09 \u7ea6\u675f\u6761\u4ef6\u662f\u95ee\u9898\u4e2d\u9650\u5236\u89e3\u7684\u53ef\u884c\u6027\u7684\u6761\u4ef6\uff0c\u901a\u5e38\u7528\u4e8e\u526a\u679d \u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u8282\u70b9 \\(3\\) \u72b6\u6001\uff08state\uff09 \u72b6\u6001\u8868\u793a\u95ee\u9898\u5728\u67d0\u4e00\u65f6\u523b\u7684\u60c5\u51b5\uff0c\u5305\u62ec\u5df2\u7ecf\u505a\u51fa\u7684\u9009\u62e9 \u5f53\u524d\u5df2\u8bbf\u95ee\u7684\u8282\u70b9\u8def\u5f84\uff0c\u5373 path \u8282\u70b9\u5217\u8868 \u5c1d\u8bd5\uff08attempt\uff09 \u5c1d\u8bd5\u662f\u6839\u636e\u53ef\u7528\u9009\u62e9\u6765\u63a2\u7d22\u89e3\u7a7a\u95f4\u7684\u8fc7\u7a0b\uff0c\u5305\u62ec\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\uff0c\u68c0\u67e5\u662f\u5426\u4e3a\u89e3 \u9012\u5f52\u8bbf\u95ee\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\uff0c\u5c06\u8282\u70b9\u6dfb\u52a0\u8fdb path \uff0c\u5224\u65ad\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \u56de\u9000\uff08backtracking\uff09 \u56de\u9000\u6307\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u72b6\u6001\u65f6\uff0c\u64a4\u9500\u524d\u9762\u505a\u51fa\u7684\u9009\u62e9\uff0c\u56de\u5230\u4e0a\u4e00\u4e2a\u72b6\u6001 \u5f53\u8d8a\u8fc7\u53f6\u8282\u70b9\u3001\u7ed3\u675f\u8282\u70b9\u8bbf\u95ee\u3001\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\u7ec8\u6b62\u641c\u7d22\uff0c\u51fd\u6570\u8fd4\u56de \u526a\u679d\uff08pruning\uff09 \u526a\u679d\u662f\u6839\u636e\u95ee\u9898\u7279\u6027\u548c\u7ea6\u675f\u6761\u4ef6\u907f\u514d\u65e0\u610f\u4e49\u7684\u641c\u7d22\u8def\u5f84\u7684\u65b9\u6cd5\uff0c\u53ef\u63d0\u9ad8\u641c\u7d22\u6548\u7387 \u5f53\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u4e0d\u518d\u7ee7\u7eed\u641c\u7d22 Tip
\u95ee\u9898\u3001\u89e3\u3001\u72b6\u6001\u7b49\u6982\u5ff5\u662f\u901a\u7528\u7684\uff0c\u5728\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u4e2d\u90fd\u6709\u6d89\u53ca\u3002
"},{"location":"chapter_backtracking/backtracking_algorithm/#1315","title":"13.1.5 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u4e0a\u662f\u4e00\u79cd\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u7b97\u6cd5\uff0c\u5b83\u5c1d\u8bd5\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\u76f4\u5230\u627e\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u3002\u8fd9\u79cd\u65b9\u6cd5\u7684\u4f18\u70b9\u5728\u4e8e\u80fd\u591f\u627e\u5230\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e14\u5728\u5408\u7406\u7684\u526a\u679d\u64cd\u4f5c\u4e0b\uff0c\u5177\u6709\u5f88\u9ad8\u7684\u6548\u7387\u3002
\u7136\u800c\uff0c\u5728\u5904\u7406\u5927\u89c4\u6a21\u6216\u8005\u590d\u6742\u95ee\u9898\u65f6\uff0c\u56de\u6eaf\u7b97\u6cd5\u7684\u8fd0\u884c\u6548\u7387\u53ef\u80fd\u96be\u4ee5\u63a5\u53d7\u3002
- \u65f6\u95f4\uff1a\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u9700\u8981\u904d\u5386\u72b6\u6001\u7a7a\u95f4\u7684\u6240\u6709\u53ef\u80fd\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u6307\u6570\u9636\u6216\u9636\u4e58\u9636\u3002
- \u7a7a\u95f4\uff1a\u5728\u9012\u5f52\u8c03\u7528\u4e2d\u9700\u8981\u4fdd\u5b58\u5f53\u524d\u7684\u72b6\u6001\uff08\u4f8b\u5982\u8def\u5f84\u3001\u7528\u4e8e\u526a\u679d\u7684\u8f85\u52a9\u53d8\u91cf\u7b49\uff09\uff0c\u5f53\u6df1\u5ea6\u5f88\u5927\u65f6\uff0c\u7a7a\u95f4\u9700\u6c42\u53ef\u80fd\u4f1a\u53d8\u5f97\u5f88\u5927\u3002
\u5373\u4fbf\u5982\u6b64\uff0c\u56de\u6eaf\u7b97\u6cd5\u4ecd\u7136\u662f\u67d0\u4e9b\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u7684\u6700\u4f73\u89e3\u51b3\u65b9\u6848\u3002\u5bf9\u4e8e\u8fd9\u4e9b\u95ee\u9898\uff0c\u7531\u4e8e\u65e0\u6cd5\u9884\u6d4b\u54ea\u4e9b\u9009\u62e9\u53ef\u751f\u6210\u6709\u6548\u7684\u89e3\uff0c\u56e0\u6b64\u6211\u4eec\u5fc5\u987b\u5bf9\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u8fdb\u884c\u904d\u5386\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u5173\u952e\u662f\u5982\u4f55\u4f18\u5316\u6548\u7387\uff0c\u5e38\u89c1\u7684\u6548\u7387\u4f18\u5316\u65b9\u6cd5\u6709\u4e24\u79cd\u3002
- \u526a\u679d\uff1a\u907f\u514d\u641c\u7d22\u90a3\u4e9b\u80af\u5b9a\u4e0d\u4f1a\u4ea7\u751f\u89e3\u7684\u8def\u5f84\uff0c\u4ece\u800c\u8282\u7701\u65f6\u95f4\u548c\u7a7a\u95f4\u3002
- \u542f\u53d1\u5f0f\u641c\u7d22\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u5f15\u5165\u4e00\u4e9b\u7b56\u7565\u6216\u8005\u4f30\u8ba1\u503c\uff0c\u4ece\u800c\u4f18\u5148\u641c\u7d22\u6700\u6709\u53ef\u80fd\u4ea7\u751f\u6709\u6548\u89e3\u7684\u8def\u5f84\u3002
"},{"location":"chapter_backtracking/backtracking_algorithm/#1316","title":"13.1.6 \u00a0 \u56de\u6eaf\u5178\u578b\u4f8b\u9898","text":"\u56de\u6eaf\u7b97\u6cd5\u53ef\u7528\u4e8e\u89e3\u51b3\u8bb8\u591a\u641c\u7d22\u95ee\u9898\u3001\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u548c\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u3002
\u641c\u7d22\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u89e3\u51b3\u65b9\u6848\u3002
- \u5168\u6392\u5217\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff0c\u6c42\u51fa\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u7ec4\u5408\u3002
- \u5b50\u96c6\u548c\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\u548c\u4e00\u4e2a\u76ee\u6807\u548c\uff0c\u627e\u5230\u96c6\u5408\u4e2d\u6240\u6709\u548c\u4e3a\u76ee\u6807\u548c\u7684\u5b50\u96c6\u3002
- \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e09\u6839\u67f1\u5b50\u548c\u4e00\u7cfb\u5217\u5927\u5c0f\u4e0d\u540c\u7684\u5706\u76d8\uff0c\u8981\u6c42\u5c06\u6240\u6709\u5706\u76d8\u4ece\u4e00\u6839\u67f1\u5b50\u79fb\u52a8\u5230\u53e6\u4e00\u6839\u67f1\u5b50\uff0c\u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\uff0c\u4e14\u4e0d\u80fd\u5c06\u5927\u5706\u76d8\u653e\u5728\u5c0f\u5706\u76d8\u4e0a\u3002
\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u6240\u6709\u7ea6\u675f\u6761\u4ef6\u7684\u89e3\u3002
- \\(n\\) \u7687\u540e\uff1a\u5728 \\(n \\times n\\) \u7684\u68cb\u76d8\u4e0a\u653e\u7f6e \\(n\\) \u4e2a\u7687\u540e\uff0c\u4f7f\u5f97\u5b83\u4eec\u4e92\u4e0d\u653b\u51fb\u3002
- \u6570\u72ec\uff1a\u5728 \\(9 \\times 9\\) \u7684\u7f51\u683c\u4e2d\u586b\u5165\u6570\u5b57 \\(1\\) ~ \\(9\\) \uff0c\u4f7f\u5f97\u6bcf\u884c\u3001\u6bcf\u5217\u548c\u6bcf\u4e2a \\(3 \\times 3\\) \u5b50\u7f51\u683c\u4e2d\u7684\u6570\u5b57\u4e0d\u91cd\u590d\u3002
- \u56fe\u7740\u8272\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u7528\u6700\u5c11\u7684\u989c\u8272\u7ed9\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u7740\u8272\uff0c\u4f7f\u5f97\u76f8\u90bb\u9876\u70b9\u989c\u8272\u4e0d\u540c\u3002
\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u4e00\u4e2a\u7ec4\u5408\u7a7a\u95f4\u4e2d\u627e\u5230\u6ee1\u8db3\u67d0\u4e9b\u6761\u4ef6\u7684\u6700\u4f18\u89e3\u3002
- 0-1 \u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u80cc\u5305\uff0c\u6bcf\u4e2a\u7269\u54c1\u6709\u4e00\u5b9a\u7684\u4ef7\u503c\u548c\u91cd\u91cf\uff0c\u8981\u6c42\u5728\u80cc\u5305\u5bb9\u91cf\u9650\u5236\u5185\uff0c\u9009\u62e9\u7269\u54c1\u4f7f\u5f97\u603b\u4ef7\u503c\u6700\u5927\u3002
- \u65c5\u884c\u5546\u95ee\u9898\uff1a\u5728\u4e00\u4e2a\u56fe\u4e2d\uff0c\u4ece\u4e00\u4e2a\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u6240\u6709\u5176\u4ed6\u70b9\u6070\u597d\u4e00\u6b21\u540e\u8fd4\u56de\u8d77\u70b9\uff0c\u6c42\u6700\u77ed\u8def\u5f84\u3002
- \u6700\u5927\u56e2\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u627e\u5230\u6700\u5927\u7684\u5b8c\u5168\u5b50\u56fe\uff0c\u5373\u5b50\u56fe\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u90fd\u6709\u8fb9\u76f8\u8fde\u3002
\u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff0c\u56de\u6eaf\u4e0d\u662f\u6700\u4f18\u89e3\u51b3\u65b9\u6848\u3002
- 0-1 \u80cc\u5305\u95ee\u9898\u901a\u5e38\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\uff0c\u4ee5\u8fbe\u5230\u66f4\u9ad8\u7684\u65f6\u95f4\u6548\u7387\u3002
- \u65c5\u884c\u5546\u662f\u4e00\u4e2a\u8457\u540d\u7684 NP-Hard \u95ee\u9898\uff0c\u5e38\u7528\u89e3\u6cd5\u6709\u9057\u4f20\u7b97\u6cd5\u548c\u8681\u7fa4\u7b97\u6cd5\u7b49\u3002
- \u6700\u5927\u56e2\u95ee\u9898\u662f\u56fe\u8bba\u4e2d\u7684\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\uff0c\u53ef\u7528\u8d2a\u5fc3\u7b97\u6cd5\u7b49\u542f\u53d1\u5f0f\u7b97\u6cd5\u6765\u89e3\u51b3\u3002
"},{"location":"chapter_backtracking/n_queens_problem/","title":"13.4 \u00a0 N \u7687\u540e\u95ee\u9898","text":"Question
\u6839\u636e\u56fd\u9645\u8c61\u68cb\u7684\u89c4\u5219\uff0c\u7687\u540e\u53ef\u4ee5\u653b\u51fb\u4e0e\u540c\u5904\u4e00\u884c\u3001\u4e00\u5217\u6216\u4e00\u6761\u659c\u7ebf\u4e0a\u7684\u68cb\u5b50\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u7687\u540e\u548c\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5bfb\u627e\u4f7f\u5f97\u6240\u6709\u7687\u540e\u4e4b\u95f4\u65e0\u6cd5\u76f8\u4e92\u653b\u51fb\u7684\u6446\u653e\u65b9\u6848\u3002
\u5982\u56fe 13-15 \u6240\u793a\uff0c\u5f53 \\(n = 4\\) \u65f6\uff0c\u5171\u53ef\u4ee5\u627e\u5230\u4e24\u4e2a\u89e3\u3002\u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\u5171\u6709 \\(n^2\\) \u4e2a\u683c\u5b50\uff0c\u7ed9\u51fa\u4e86\u6240\u6709\u7684\u9009\u62e9 choices \u3002\u5728\u9010\u4e2a\u653e\u7f6e\u7687\u540e\u7684\u8fc7\u7a0b\u4e2d\uff0c\u68cb\u76d8\u72b6\u6001\u5728\u4e0d\u65ad\u5730\u53d8\u5316\uff0c\u6bcf\u4e2a\u65f6\u523b\u7684\u68cb\u76d8\u5c31\u662f\u72b6\u6001 state \u3002
\u56fe 13-15 \u00a0 4 \u7687\u540e\u95ee\u9898\u7684\u89e3
\u56fe 13-16 \u5c55\u793a\u4e86\u672c\u9898\u7684\u4e09\u4e2a\u7ea6\u675f\u6761\u4ef6\uff1a\u591a\u4e2a\u7687\u540e\u4e0d\u80fd\u5728\u540c\u4e00\u884c\u3001\u540c\u4e00\u5217\u3001\u540c\u4e00\u5bf9\u89d2\u7ebf\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u5bf9\u89d2\u7ebf\u5206\u4e3a\u4e3b\u5bf9\u89d2\u7ebf \\ \u548c\u6b21\u5bf9\u89d2\u7ebf / \u4e24\u79cd\u3002
\u56fe 13-16 \u00a0 n \u7687\u540e\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6
"},{"location":"chapter_backtracking/n_queens_problem/#1","title":"1. \u00a0 \u9010\u884c\u653e\u7f6e\u7b56\u7565","text":"\u7687\u540e\u7684\u6570\u91cf\u548c\u68cb\u76d8\u7684\u884c\u6570\u90fd\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u6211\u4eec\u5bb9\u6613\u5f97\u5230\u4e00\u4e2a\u63a8\u8bba\uff1a\u68cb\u76d8\u6bcf\u884c\u90fd\u5141\u8bb8\u4e14\u53ea\u5141\u8bb8\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u53d6\u9010\u884c\u653e\u7f6e\u7b56\u7565\uff1a\u4ece\u7b2c\u4e00\u884c\u5f00\u59cb\uff0c\u5728\u6bcf\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\uff0c\u76f4\u81f3\u6700\u540e\u4e00\u884c\u7ed3\u675f\u3002
\u56fe 13-17 \u6240\u793a\u4e3a \\(4\\) \u7687\u540e\u95ee\u9898\u7684\u9010\u884c\u653e\u7f6e\u8fc7\u7a0b\u3002\u53d7\u753b\u5e45\u9650\u5236\uff0c\u56fe 13-17 \u4ec5\u5c55\u5f00\u4e86\u7b2c\u4e00\u884c\u7684\u5176\u4e2d\u4e00\u4e2a\u641c\u7d22\u5206\u652f\uff0c\u5e76\u4e14\u5c06\u4e0d\u6ee1\u8db3\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u65b9\u6848\u90fd\u8fdb\u884c\u4e86\u526a\u679d\u3002
\u56fe 13-17 \u00a0 \u9010\u884c\u653e\u7f6e\u7b56\u7565
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u9010\u884c\u653e\u7f6e\u7b56\u7565\u8d77\u5230\u4e86\u526a\u679d\u7684\u4f5c\u7528\uff0c\u5b83\u907f\u514d\u4e86\u540c\u4e00\u884c\u51fa\u73b0\u591a\u4e2a\u7687\u540e\u7684\u6240\u6709\u641c\u7d22\u5206\u652f\u3002
"},{"location":"chapter_backtracking/n_queens_problem/#2","title":"2. \u00a0 \u5217\u4e0e\u5bf9\u89d2\u7ebf\u526a\u679d","text":"\u4e3a\u4e86\u6ee1\u8db3\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5e03\u5c14\u578b\u6570\u7ec4 cols \u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\u3002\u5728\u6bcf\u6b21\u51b3\u5b9a\u653e\u7f6e\u524d\uff0c\u6211\u4eec\u901a\u8fc7 cols \u5c06\u5df2\u6709\u7687\u540e\u7684\u5217\u8fdb\u884c\u526a\u679d\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u52a8\u6001\u66f4\u65b0 cols \u7684\u72b6\u6001\u3002
\u90a3\u4e48\uff0c\u5982\u4f55\u5904\u7406\u5bf9\u89d2\u7ebf\u7ea6\u675f\u5462\uff1f\u8bbe\u68cb\u76d8\u4e2d\u67d0\u4e2a\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\((row, col)\\) \uff0c\u9009\u5b9a\u77e9\u9635\u4e2d\u7684\u67d0\u6761\u4e3b\u5bf9\u89d2\u7ebf\uff0c\u6211\u4eec\u53d1\u73b0\u8be5\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684\u884c\u7d22\u5f15\u51cf\u5217\u7d22\u5f15\u90fd\u76f8\u7b49\uff0c\u5373\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684 \\(row - col\\) \u4e3a\u6052\u5b9a\u503c\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u5982\u679c\u4e24\u4e2a\u683c\u5b50\u6ee1\u8db3 \\(row_1 - col_1 = row_2 - col_2\\) \uff0c\u5219\u5b83\u4eec\u4e00\u5b9a\u5904\u5728\u540c\u4e00\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u3002\u5229\u7528\u8be5\u89c4\u5f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u501f\u52a9\u56fe 13-18 \u6240\u793a\u7684\u6570\u7ec4 diags1 \u8bb0\u5f55\u6bcf\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\u3002
\u540c\u7406\uff0c\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u7684\u6240\u6709\u683c\u5b50\u7684 \\(row + col\\) \u662f\u6052\u5b9a\u503c\u3002\u6211\u4eec\u540c\u6837\u4e5f\u53ef\u4ee5\u501f\u52a9\u6570\u7ec4 diags2 \u6765\u5904\u7406\u6b21\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002
\u56fe 13-18 \u00a0 \u5904\u7406\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f
"},{"location":"chapter_backtracking/n_queens_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u8bf7\u6ce8\u610f\uff0c\\(n\\) \u7ef4\u65b9\u9635\u4e2d \\(row - col\\) \u7684\u8303\u56f4\u662f \\([-n + 1, n - 1]\\) \uff0c\\(row + col\\) \u7684\u8303\u56f4\u662f \\([0, 2n - 2]\\) \uff0c\u6240\u4ee5\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\u7684\u6570\u91cf\u90fd\u4e3a \\(2n - 1\\) \uff0c\u5373\u6570\u7ec4 diags1 \u548c diags2 \u7684\u957f\u5ea6\u90fd\u4e3a \\(2n - 1\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig n_queens.pydef backtrack(\n row: int,\n n: int,\n state: list[list[str]],\n res: list[list[list[str]]],\n cols: list[bool],\n diags1: list[bool],\n diags2: list[bool],\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e\"\"\"\n # \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n:\n res.append([list(row) for row in state])\n return\n # \u904d\u5386\u6240\u6709\u5217\n for col in range(n):\n # \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n diag1 = row - col + n - 1\n diag2 = row + col\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if not cols[col] and not diags1[diag1] and not diags2[diag2]:\n # \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\"\n cols[col] = diags1[diag1] = diags2[diag2] = True\n # \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2)\n # \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\"\n cols[col] = diags1[diag1] = diags2[diag2] = False\n\ndef n_queens(n: int) -> list[list[list[str]]]:\n \"\"\"\u6c42\u89e3 N \u7687\u540e\"\"\"\n # \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n state = [[\"#\" for _ in range(n)] for _ in range(n)]\n cols = [False] * n # \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n diags1 = [False] * (2 * n - 1) # \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n diags2 = [False] * (2 * n - 1) # \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n res = []\n backtrack(0, n, state, res, cols, diags1, diags2)\n\n return res\n
n_queens.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,\n vector<bool> &diags1, vector<bool> &diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\";\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\";\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nvector<vector<vector<string>>> nQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n vector<vector<string>> state(n, vector<string>(n, \"#\"));\n vector<bool> cols(n, false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n vector<bool> diags1(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n vector<bool> diags2(2 * n - 1, false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n vector<vector<vector<string>>> res;\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.java/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,\n boolean[] cols, boolean[] diags1, boolean[] diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n List<List<String>> copyState = new ArrayList<>();\n for (List<String> sRow : state) {\n copyState.add(new ArrayList<>(sRow));\n }\n res.add(copyState);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state.get(row).set(col, \"Q\");\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state.get(row).set(col, \"#\");\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n List<List<String>> state = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n List<String> row = new ArrayList<>();\n for (int j = 0; j < n; j++) {\n row.add(\"#\");\n }\n state.add(row);\n }\n boolean[] cols = new boolean[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n boolean[] diags1 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n boolean[] diags2 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<List<List<String>>> res = new ArrayList<>();\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid Backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,\n bool[] cols, bool[] diags1, bool[] diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n List<List<string>> copyState = [];\n foreach (List<string> sRow in state) {\n copyState.Add(new List<string>(sRow));\n }\n res.Add(copyState);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\";\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n Backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\";\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<string>>> NQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n List<List<string>> state = [];\n for (int i = 0; i < n; i++) {\n List<string> row = [];\n for (int j = 0; j < n; j++) {\n row.Add(\"#\");\n }\n state.Add(row);\n }\n bool[] cols = new bool[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n bool[] diags1 = new bool[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n bool[] diags2 = new bool[2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<List<List<string>>> res = [];\n\n Backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.go/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n newState := make([][]string, len(*state))\n for i, _ := range newState {\n newState[i] = make([]string, len((*state)[0]))\n copy(newState[i], (*state)[i])\n\n }\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col := 0; col < n; col++ {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n diag1 := row - col + n - 1\n diag2 := row + col\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n (*state)[row][col] = \"Q\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row+1, n, state, res, cols, diags1, diags2)\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n (*state)[row][col] = \"#\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n }\n }\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n newState := make([][]string, len(*state))\n for i, _ := range newState {\n newState[i] = make([]string, len((*state)[0]))\n copy(newState[i], (*state)[i])\n\n }\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col := 0; col < n; col++ {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n diag1 := row - col + n - 1\n diag2 := row + col\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n (*state)[row][col] = \"Q\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row+1, n, state, res, cols, diags1, diags2)\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n (*state)[row][col] = \"#\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n }\n }\n}\n\nfunc nQueens(n int) [][][]string {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n state := make([][]string, n)\n for i := 0; i < n; i++ {\n row := make([]string, n)\n for i := 0; i < n; i++ {\n row[i] = \"#\"\n }\n state[i] = row\n }\n // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n cols := make([]bool, n)\n diags1 := make([]bool, 2*n-1)\n diags2 := make([]bool, 2*n-1)\n res := make([][][]string, 0)\n backtrack(0, n, &state, &res, &cols, &diags1, &diags2)\n return res\n}\n
n_queens.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col in 0 ..< n {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n let diag1 = row - col + n - 1\n let diag2 = row + col\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !cols[col] && !diags1[diag1] && !diags2[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\"\n cols[col] = true\n diags1[diag1] = true\n diags2[diag2] = true\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\"\n cols[col] = false\n diags1[diag1] = false\n diags2[diag2] = false\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfunc nQueens(n: Int) -> [[[String]]] {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n var state = Array(repeating: Array(repeating: \"#\", count: n), count: n)\n var cols = Array(repeating: false, count: n) // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n var diags1 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n var diags2 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n var res: [[[String]]] = []\n\n backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\n\n return res\n}\n
n_queens.js/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(row, n, state, res, cols, diags1, diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row === n) {\n res.push(state.map((row) => row.slice()));\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (let col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n const diag1 = row - col + n - 1;\n const diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = 'Q';\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = '#';\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n const state = Array.from({ length: n }, () => Array(n).fill('#'));\n const cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n const diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const res = [];\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n return res;\n}\n
n_queens.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(\n row: number,\n n: number,\n state: string[][],\n res: string[][][],\n cols: boolean[],\n diags1: boolean[],\n diags2: boolean[]\n): void {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row === n) {\n res.push(state.map((row) => row.slice()));\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (let col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n const diag1 = row - col + n - 1;\n const diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = 'Q';\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = '#';\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n: number): string[][][] {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n const state = Array.from({ length: n }, () => Array(n).fill('#'));\n const cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n const diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const res: string[][][] = [];\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n return res;\n}\n
n_queens.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(\n int row,\n int n,\n List<List<String>> state,\n List<List<List<String>>> res,\n List<bool> cols,\n List<bool> diags1,\n List<bool> diags2,\n) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n List<List<String>> copyState = [];\n for (List<String> sRow in state) {\n copyState.add(List.from(sRow));\n }\n res.add(copyState);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\";\n cols[col] = true;\n diags1[diag1] = true;\n diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\";\n cols[col] = false;\n diags1[diag1] = false;\n diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n List<List<String>> state = List.generate(n, (index) => List.filled(n, \"#\"));\n List<bool> cols = List.filled(n, false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n List<bool> diags1 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<bool> diags2 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<List<List<String>>> res = [];\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfn backtrack(row: usize, n: usize, state: &mut Vec<Vec<String>>, res: &mut Vec<Vec<Vec<String>>>,\n cols: &mut [bool], diags1: &mut [bool], diags2: &mut [bool]) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n let mut copy_state: Vec<Vec<String>> = Vec::new();\n for s_row in state.clone() {\n copy_state.push(s_row);\n }\n res.push(copy_state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col in 0..n {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n let diag1 = row + n - 1 - col;\n let diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !cols[col] && !diags1[diag1] && !diags2[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state.get_mut(row).unwrap()[col] = \"Q\".into();\n (cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state.get_mut(row).unwrap()[col] = \"#\".into();\n (cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n let mut state: Vec<Vec<String>> = Vec::new();\n for _ in 0..n {\n let mut row: Vec<String> = Vec::new();\n for _ in 0..n {\n row.push(\"#\".into());\n }\n state.push(row);\n }\n let mut cols = vec![false; n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n let mut diags1 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n let mut diags2 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n let mut res: Vec<Vec<Vec<String>>> = Vec::new();\n\n backtrack(0, n, &mut state, &mut res, &mut cols, &mut diags1, &mut diags2);\n\n res\n}\n
n_queens.c/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, char state[MAX_SIZE][MAX_SIZE], char ***res, int *resSize, bool cols[MAX_SIZE],\n bool diags1[2 * MAX_SIZE - 1], bool diags2[2 * MAX_SIZE - 1]) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n res[*resSize] = (char **)malloc(sizeof(char *) * n);\n for (int i = 0; i < n; ++i) {\n res[*resSize][i] = (char *)malloc(sizeof(char) * (n + 1));\n strcpy(res[*resSize][i], state[i]);\n }\n (*resSize)++;\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = 'Q';\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, resSize, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = '#';\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nchar ***nQueens(int n, int *returnSize) {\n char state[MAX_SIZE][MAX_SIZE];\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j < n; ++j) {\n state[i][j] = '#';\n }\n state[i][n] = '\\0';\n }\n bool cols[MAX_SIZE] = {false}; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n bool diags1[2 * MAX_SIZE - 1] = {false}; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n bool diags2[2 * MAX_SIZE - 1] = {false}; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n\n char ***res = (char ***)malloc(sizeof(char **) * MAX_SIZE);\n *returnSize = 0;\n backtrack(0, n, state, res, returnSize, cols, diags1, diags2);\n return res;\n}\n
n_queens.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{nQueens}\n
\u9010\u884c\u653e\u7f6e \\(n\\) \u6b21\uff0c\u8003\u8651\u5217\u7ea6\u675f\uff0c\u5219\u4ece\u7b2c\u4e00\u884c\u5230\u6700\u540e\u4e00\u884c\u5206\u522b\u6709 \\(n\\)\u3001\\(n-1\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \u4e2a\u9009\u62e9\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!)\\) \u3002\u5b9e\u9645\u4e0a\uff0c\u6839\u636e\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u526a\u679d\u4e5f\u80fd\u591f\u5927\u5e45\u7f29\u5c0f\u641c\u7d22\u7a7a\u95f4\uff0c\u56e0\u800c\u641c\u7d22\u6548\u7387\u5f80\u5f80\u4f18\u4e8e\u4ee5\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u3002
\u6570\u7ec4 state \u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\uff0c\u6570\u7ec4 cols\u3001diags1 \u548c diags2 \u7686\u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_backtracking/permutations_problem/","title":"13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898","text":"\u5168\u6392\u5217\u95ee\u9898\u662f\u56de\u6eaf\u7b97\u6cd5\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u7684\u5b9a\u4e49\u662f\u5728\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff08\u5982\u4e00\u4e2a\u6570\u7ec4\u6216\u5b57\u7b26\u4e32\uff09\u7684\u60c5\u51b5\u4e0b\uff0c\u627e\u51fa\u5176\u4e2d\u5143\u7d20\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002
\u8868 13-2 \u5217\u4e3e\u4e86\u51e0\u4e2a\u793a\u4f8b\u6570\u636e\uff0c\u5305\u62ec\u8f93\u5165\u6570\u7ec4\u548c\u5bf9\u5e94\u7684\u6240\u6709\u6392\u5217\u3002
\u8868 13-2 \u00a0 \u5168\u6392\u5217\u793a\u4f8b
\u8f93\u5165\u6570\u7ec4 \u6240\u6709\u6392\u5217 \\([1]\\) \\([1]\\) \\([1, 2]\\) \\([1, 2], [2, 1]\\) \\([1, 2, 3]\\) \\([1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]\\)"},{"location":"chapter_backtracking/permutations_problem/#1321","title":"13.2.1 \u00a0 \u65e0\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u5176\u4e2d\u4e0d\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002
\u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u751f\u6210\u6392\u5217\u7684\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\u3002\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 2, 3]\\) \uff0c\u5982\u679c\u6211\u4eec\u5148\u9009\u62e9 \\(1\\) \uff0c\u518d\u9009\u62e9 \\(3\\) \uff0c\u6700\u540e\u9009\u62e9 \\(2\\) \uff0c\u5219\u83b7\u5f97\u6392\u5217 \\([1, 3, 2]\\) \u3002\u56de\u9000\u8868\u793a\u64a4\u9500\u4e00\u4e2a\u9009\u62e9\uff0c\u4e4b\u540e\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002
\u4ece\u56de\u6eaf\u4ee3\u7801\u7684\u89d2\u5ea6\u770b\uff0c\u5019\u9009\u96c6\u5408 choices \u662f\u8f93\u5165\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u72b6\u6001 state \u662f\u76f4\u81f3\u76ee\u524d\u5df2\u88ab\u9009\u62e9\u7684\u5143\u7d20\u3002\u8bf7\u6ce8\u610f\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u5141\u8bb8\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u56e0\u6b64 state \u4e2d\u7684\u6240\u6709\u5143\u7d20\u90fd\u5e94\u8be5\u662f\u552f\u4e00\u7684\u3002
\u5982\u56fe 13-5 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u641c\u7d22\u8fc7\u7a0b\u5c55\u5f00\u6210\u4e00\u68f5\u9012\u5f52\u6811\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u5f53\u524d\u72b6\u6001 state \u3002\u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u7ecf\u8fc7\u4e09\u8f6e\u9009\u62e9\u540e\u5230\u8fbe\u53f6\u8282\u70b9\uff0c\u6bcf\u4e2a\u53f6\u8282\u70b9\u90fd\u5bf9\u5e94\u4e00\u4e2a\u6392\u5217\u3002
\u56fe 13-5 \u00a0 \u5168\u6392\u5217\u7684\u9012\u5f52\u6811
"},{"location":"chapter_backtracking/permutations_problem/#1","title":"1. \u00a0 \u91cd\u590d\u9009\u62e9\u526a\u679d","text":"\u4e3a\u4e86\u5b9e\u73b0\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u6211\u4eec\u8003\u8651\u5f15\u5165\u4e00\u4e2a\u5e03\u5c14\u578b\u6570\u7ec4 selected \uff0c\u5176\u4e2d selected[i] \u8868\u793a choices[i] \u662f\u5426\u5df2\u88ab\u9009\u62e9\uff0c\u5e76\u57fa\u4e8e\u5b83\u5b9e\u73b0\u4ee5\u4e0b\u526a\u679d\u64cd\u4f5c\u3002
- \u5728\u505a\u51fa\u9009\u62e9
choice[i] \u540e\uff0c\u6211\u4eec\u5c31\u5c06 selected[i] \u8d4b\u503c\u4e3a \\(\\text{True}\\) \uff0c\u4ee3\u8868\u5b83\u5df2\u88ab\u9009\u62e9\u3002 - \u904d\u5386\u9009\u62e9\u5217\u8868
choices \u65f6\uff0c\u8df3\u8fc7\u6240\u6709\u5df2\u88ab\u9009\u62e9\u7684\u8282\u70b9\uff0c\u5373\u526a\u679d\u3002
\u5982\u56fe 13-6 \u6240\u793a\uff0c\u5047\u8bbe\u6211\u4eec\u7b2c\u4e00\u8f6e\u9009\u62e9 1 \uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9 3 \uff0c\u7b2c\u4e09\u8f6e\u9009\u62e9 2 \uff0c\u5219\u9700\u8981\u5728\u7b2c\u4e8c\u8f6e\u526a\u6389\u5143\u7d20 1 \u7684\u5206\u652f\uff0c\u5728\u7b2c\u4e09\u8f6e\u526a\u6389\u5143\u7d20 1 \u548c\u5143\u7d20 3 \u7684\u5206\u652f\u3002
\u56fe 13-6 \u00a0 \u5168\u6392\u5217\u526a\u679d\u793a\u4f8b
\u89c2\u5bdf\u56fe 13-6 \u53d1\u73b0\uff0c\u8be5\u526a\u679d\u64cd\u4f5c\u5c06\u641c\u7d22\u7a7a\u95f4\u5927\u5c0f\u4ece \\(O(n^n)\\) \u51cf\u5c0f\u81f3 \\(O(n!)\\) \u3002
"},{"location":"chapter_backtracking/permutations_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u60f3\u6e05\u695a\u4ee5\u4e0a\u4fe1\u606f\u4e4b\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5728\u6846\u67b6\u4ee3\u7801\u4e2d\u505a\u201c\u5b8c\u5f62\u586b\u7a7a\u201d\u4e86\u3002\u4e3a\u4e86\u7f29\u77ed\u6574\u4f53\u4ee3\u7801\uff0c\u6211\u4eec\u4e0d\u5355\u72ec\u5b9e\u73b0\u6846\u67b6\u4ee3\u7801\u4e2d\u7684\u5404\u4e2a\u51fd\u6570\uff0c\u800c\u662f\u5c06\u5b83\u4eec\u5c55\u5f00\u5728 backtrack() \u51fd\u6570\u4e2d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig permutations_i.pydef backtrack(\n state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I\"\"\"\n # \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(state) == len(choices):\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for i, choice in enumerate(choices):\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if not selected[i]:\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = True\n state.append(choice)\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = False\n state.pop()\n\ndef permutations_i(nums: list[int]) -> list[list[int]]:\n \"\"\"\u5168\u6392\u5217 I\"\"\"\n res = []\n backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\n return res\n
permutations_i.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.size()) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.size(); i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push_back(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop_back();\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nvector<vector<int>> permutationsI(vector<int> nums) {\n vector<int> state;\n vector<bool> selected(nums.size(), false);\n vector<vector<int>> res;\n backtrack(state, nums, selected, res);\n return res;\n}\n
permutations_i.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.length) {\n res.add(new ArrayList<Integer>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.size() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nList<List<Integer>> permutationsI(int[] nums) {\n List<List<Integer>> res = new ArrayList<List<Integer>>();\n backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\n return res;\n}\n
permutations_i.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.Count == choices.Length) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.Length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.Add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.RemoveAt(state.Count - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nList<List<int>> PermutationsI(int[] nums) {\n List<List<int>> res = [];\n Backtrack([], nums, new bool[nums.Length], res);\n return res;\n}\n
permutations_i.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(*state) == len(*choices) {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i := 0; i < len(*choices); i++ {\n choice := (*choices)[i]\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if !(*selected)[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n (*selected)[i] = true\n *state = append(*state, choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackI(state, choices, selected, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n (*selected)[i] = false\n *state = (*state)[:len(*state)-1]\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums []int) [][]int {\n res := make([][]int, 0)\n state := make([]int, 0)\n selected := make([]bool, len(nums))\n backtrackI(&state, &nums, &selected, &res)\n return res\n}\n
permutations_i.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.count == choices.count {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (i, choice) in choices.enumerated() {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if !selected[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true\n state.append(choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, choices: choices, selected: &selected, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false\n state.removeLast()\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums: [Int]) -> [[Int]] {\n var state: [Int] = []\n var selected = Array(repeating: false, count: nums.count)\n var res: [[Int]] = []\n backtrack(state: &state, choices: nums, selected: &selected, res: &res)\n return res\n}\n
permutations_i.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(state, choices, selected, res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums) {\n const res = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_i.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(\n state: number[],\n choices: number[],\n selected: boolean[],\n res: number[][]\n): void {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums: number[]): number[][] {\n const res: number[][] = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_i.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(\n List<int> state,\n List<int> choices,\n List<bool> selected,\n List<List<int>> res,\n) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length == choices.length) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.removeLast();\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nList<List<int>> permutationsI(List<int> nums) {\n List<List<int>> res = [];\n backtrack([], nums, List.filled(nums.length, false), res);\n return res;\n}\n
permutations_i.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.len() == choices.len() {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in 0..choices.len() {\n let choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if !selected[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.len() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nfn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {\n let mut res = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\n res\n}\n
permutations_i.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (stateSize == choicesSize) {\n res[*resSize] = (int *)malloc(choicesSize * sizeof(int));\n for (int i = 0; i < choicesSize; i++) {\n res[*resSize][i] = state[i];\n }\n (*resSize)++;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choicesSize; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state[stateSize] = choice;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nint **permutationsI(int *nums, int numsSize, int *returnSize) {\n int *state = (int *)malloc(numsSize * sizeof(int));\n bool *selected = (bool *)malloc(numsSize * sizeof(bool));\n for (int i = 0; i < numsSize; i++) {\n selected[i] = false;\n }\n int **res = (int **)malloc(MAX_SIZE * sizeof(int *));\n *returnSize = 0;\n\n backtrack(state, 0, nums, numsSize, selected, res, returnSize);\n\n free(state);\n free(selected);\n\n return res;\n}\n
permutations_i.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{permutationsI}\n
"},{"location":"chapter_backtracking/permutations_problem/#1322","title":"13.2.2 \u00a0 \u8003\u8651\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u4e0d\u91cd\u590d\u7684\u6392\u5217\u3002
\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 1, 2]\\) \u3002\u4e3a\u4e86\u65b9\u4fbf\u533a\u5206\u4e24\u4e2a\u91cd\u590d\u5143\u7d20 \\(1\\) \uff0c\u6211\u4eec\u5c06\u7b2c\u4e8c\u4e2a \\(1\\) \u8bb0\u4e3a \\(\\hat{1}\\) \u3002
\u5982\u56fe 13-7 \u6240\u793a\uff0c\u4e0a\u8ff0\u65b9\u6cd5\u751f\u6210\u7684\u6392\u5217\u6709\u4e00\u534a\u662f\u91cd\u590d\u7684\u3002
\u56fe 13-7 \u00a0 \u91cd\u590d\u6392\u5217
\u90a3\u4e48\u5982\u4f55\u53bb\u9664\u91cd\u590d\u7684\u6392\u5217\u5462\uff1f\u6700\u76f4\u63a5\u5730\uff0c\u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u76f4\u63a5\u5bf9\u6392\u5217\u7ed3\u679c\u8fdb\u884c\u53bb\u91cd\u3002\u7136\u800c\u8fd9\u6837\u505a\u4e0d\u591f\u4f18\u96c5\uff0c\u56e0\u4e3a\u751f\u6210\u91cd\u590d\u6392\u5217\u7684\u641c\u7d22\u5206\u652f\u6ca1\u6709\u5fc5\u8981\uff0c\u5e94\u5f53\u63d0\u524d\u8bc6\u522b\u5e76\u526a\u679d\uff0c\u8fd9\u6837\u53ef\u4ee5\u8fdb\u4e00\u6b65\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002
"},{"location":"chapter_backtracking/permutations_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"\u89c2\u5bdf\u56fe 13-8 \uff0c\u5728\u7b2c\u4e00\u8f6e\u4e2d\uff0c\u9009\u62e9 \\(1\\) \u6216\u9009\u62e9 \\(\\hat{1}\\) \u662f\u7b49\u4ef7\u7684\uff0c\u5728\u8fd9\u4e24\u4e2a\u9009\u62e9\u4e4b\u4e0b\u751f\u6210\u7684\u6240\u6709\u6392\u5217\u90fd\u662f\u91cd\u590d\u7684\u3002\u56e0\u6b64\u5e94\u8be5\u628a \\(\\hat{1}\\) \u526a\u679d\u3002
\u540c\u7406\uff0c\u5728\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(2\\) \u4e4b\u540e\uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9\u4e2d\u7684 \\(1\\) \u548c \\(\\hat{1}\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5206\u652f\uff0c\u56e0\u6b64\u4e5f\u5e94\u5c06\u7b2c\u4e8c\u8f6e\u7684 \\(\\hat{1}\\) \u526a\u679d\u3002
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u5728\u67d0\u4e00\u8f6e\u9009\u62e9\u4e2d\uff0c\u4fdd\u8bc1\u591a\u4e2a\u76f8\u7b49\u7684\u5143\u7d20\u4ec5\u88ab\u9009\u62e9\u4e00\u6b21\u3002
\u56fe 13-8 \u00a0 \u91cd\u590d\u6392\u5217\u526a\u679d
"},{"location":"chapter_backtracking/permutations_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5728\u4e0a\u4e00\u9898\u7684\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u8003\u8651\u5728\u6bcf\u4e00\u8f6e\u9009\u62e9\u4e2d\u5f00\u542f\u4e00\u4e2a\u54c8\u5e0c\u8868 duplicated \uff0c\u7528\u4e8e\u8bb0\u5f55\u8be5\u8f6e\u4e2d\u5df2\u7ecf\u5c1d\u8bd5\u8fc7\u7684\u5143\u7d20\uff0c\u5e76\u5c06\u91cd\u590d\u5143\u7d20\u526a\u679d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig permutations_ii.pydef backtrack(\n state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II\"\"\"\n # \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(state) == len(choices):\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n duplicated = set[int]()\n for i, choice in enumerate(choices):\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if not selected[i] and choice not in duplicated:\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice) # \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = True\n state.append(choice)\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = False\n state.pop()\n\ndef permutations_ii(nums: list[int]) -> list[list[int]]:\n \"\"\"\u5168\u6392\u5217 II\"\"\"\n res = []\n backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\n return res\n
permutations_ii.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.size()) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n unordered_set<int> duplicated;\n for (int i = 0; i < choices.size(); i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && duplicated.find(choice) == duplicated.end()) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.emplace(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push_back(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop_back();\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nvector<vector<int>> permutationsII(vector<int> nums) {\n vector<int> state;\n vector<bool> selected(nums.size(), false);\n vector<vector<int>> res;\n backtrack(state, nums, selected, res);\n return res;\n}\n
permutations_ii.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.length) {\n res.add(new ArrayList<Integer>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n Set<Integer> duplicated = new HashSet<Integer>();\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.contains(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.size() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nList<List<Integer>> permutationsII(int[] nums) {\n List<List<Integer>> res = new ArrayList<List<Integer>>();\n backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\n return res;\n}\n
permutations_ii.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.Count == choices.Length) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n HashSet<int> duplicated = [];\n for (int i = 0; i < choices.Length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.Contains(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.Add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.Add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.RemoveAt(state.Count - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nList<List<int>> PermutationsII(int[] nums) {\n List<List<int>> res = [];\n Backtrack([], nums, new bool[nums.Length], res);\n return res;\n}\n
permutations_ii.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(*state) == len(*choices) {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n duplicated := make(map[int]struct{}, 0)\n for i := 0; i < len(*choices); i++ {\n choice := (*choices)[i]\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if _, ok := duplicated[choice]; !ok && !(*selected)[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n duplicated[choice] = struct{}{}\n (*selected)[i] = true\n *state = append(*state, choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackI(state, choices, selected, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n (*selected)[i] = false\n *state = (*state)[:len(*state)-1]\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums []int) [][]int {\n res := make([][]int, 0)\n state := make([]int, 0)\n selected := make([]bool, len(nums))\n backtrackII(&state, &nums, &selected, &res)\n return res\n}\n
permutations_ii.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.count == choices.count {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n var duplicated: Set<Int> = []\n for (i, choice) in choices.enumerated() {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if !selected[i], !duplicated.contains(choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.insert(choice) // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true\n state.append(choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, choices: choices, selected: &selected, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false\n state.removeLast()\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums: [Int]) -> [[Int]] {\n var state: [Int] = []\n var selected = Array(repeating: false, count: nums.count)\n var res: [[Int]] = []\n backtrack(state: &state, choices: nums, selected: &selected, res: &res)\n return res\n}\n
permutations_ii.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(state, choices, selected, res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n const duplicated = new Set();\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.has(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums) {\n const res = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_ii.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(\n state: number[],\n choices: number[],\n selected: boolean[],\n res: number[][]\n): void {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n const duplicated = new Set();\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.has(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums: number[]): number[][] {\n const res: number[][] = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_ii.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(\n List<int> state,\n List<int> choices,\n List<bool> selected,\n List<List<int>> res,\n) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length == choices.length) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n Set<int> duplicated = {};\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.contains(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.removeLast();\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nList<List<int>> permutationsII(List<int> nums) {\n List<List<int>> res = [];\n backtrack([], nums, List.filled(nums.length, false), res);\n return res;\n}\n
permutations_ii.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.len() == choices.len() {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n let mut duplicated = HashSet::<i32>::new();\n for i in 0..choices.len() {\n let choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if !selected[i] && !duplicated.contains(&choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.insert(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.len() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nfn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {\n let mut res = Vec::new();\n backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\n res\n}\n
permutations_ii.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (stateSize == choicesSize) {\n res[*resSize] = (int *)malloc(choicesSize * sizeof(int));\n for (int i = 0; i < choicesSize; i++) {\n res[*resSize][i] = state[i];\n }\n (*resSize)++;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n bool duplicated[MAX_SIZE] = {false};\n for (int i = 0; i < choicesSize; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated[choice]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated[choice] = true; // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state[stateSize] = choice;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nint **permutationsII(int *nums, int numsSize, int *returnSize) {\n int *state = (int *)malloc(numsSize * sizeof(int));\n bool *selected = (bool *)malloc(numsSize * sizeof(bool));\n for (int i = 0; i < numsSize; i++) {\n selected[i] = false;\n }\n int **res = (int **)malloc(MAX_SIZE * sizeof(int *));\n *returnSize = 0;\n\n backtrack(state, 0, nums, numsSize, selected, res, returnSize);\n\n free(state);\n free(selected);\n\n return res;\n}\n
permutations_ii.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{permutationsII}\n
\u5047\u8bbe\u5143\u7d20\u4e24\u4e24\u4e4b\u95f4\u4e92\u4e0d\u76f8\u540c\uff0c\u5219 \\(n\\) \u4e2a\u5143\u7d20\u5171\u6709 \\(n!\\) \u79cd\u6392\u5217\uff08\u9636\u4e58\uff09\uff1b\u5728\u8bb0\u5f55\u7ed3\u679c\u65f6\uff0c\u9700\u8981\u590d\u5236\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5217\u8868\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!n)\\) \u3002
\u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002selected \u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u540c\u4e00\u65f6\u523b\u6700\u591a\u5171\u6709 \\(n\\) \u4e2a duplicated \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\u3002\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_backtracking/permutations_problem/#3","title":"3. \u00a0 \u4e24\u79cd\u526a\u679d\u5bf9\u6bd4","text":"\u8bf7\u6ce8\u610f\uff0c\u867d\u7136 selected \u548c duplicated \u90fd\u7528\u4e8e\u526a\u679d\uff0c\u4f46\u4e24\u8005\u7684\u76ee\u6807\u4e0d\u540c\u3002
- \u91cd\u590d\u9009\u62e9\u526a\u679d\uff1a\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\u4e2d\u53ea\u6709\u4e00\u4e2a
selected \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5f53\u524d\u72b6\u6001\u4e2d\u5305\u542b\u54ea\u4e9b\u5143\u7d20\uff0c\u5176\u4f5c\u7528\u662f\u9632\u6b62 choices \u4e2d\u7684\u4efb\u4e00\u5143\u7d20\u5728 state \u4e2d\u91cd\u590d\u51fa\u73b0\u3002 - \u76f8\u7b49\u5143\u7d20\u526a\u679d\uff1a\u6bcf\u8f6e\u9009\u62e9\uff08\u6bcf\u4e2a\u8c03\u7528\u7684
backtrack \u51fd\u6570\uff09\u90fd\u5305\u542b\u4e00\u4e2a duplicated \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5728\u672c\u8f6e\u904d\u5386\uff08for \u5faa\u73af\uff09\u4e2d\u54ea\u4e9b\u5143\u7d20\u5df2\u88ab\u9009\u62e9\u8fc7\uff0c\u5176\u4f5c\u7528\u662f\u4fdd\u8bc1\u76f8\u7b49\u7684\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002
\u56fe 13-9 \u5c55\u793a\u4e86\u4e24\u4e2a\u526a\u679d\u6761\u4ef6\u7684\u751f\u6548\u8303\u56f4\u3002\u6ce8\u610f\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u9009\u62e9\uff0c\u4ece\u6839\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\u6784\u6210\u4e00\u4e2a\u6392\u5217\u3002
\u56fe 13-9 \u00a0 \u4e24\u79cd\u526a\u679d\u6761\u4ef6\u7684\u4f5c\u7528\u8303\u56f4
"},{"location":"chapter_backtracking/subset_sum_problem/","title":"13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898","text":""},{"location":"chapter_backtracking/subset_sum_problem/#1331","title":"13.3.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u65e0\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ef\u4ee5\u88ab\u9009\u53d6\u591a\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002
\u4f8b\u5982\uff0c\u8f93\u5165\u96c6\u5408 \\(\\{3, 4, 5\\}\\) \u548c\u76ee\u6807\u6574\u6570 \\(9\\) \uff0c\u89e3\u4e3a \\(\\{3, 3, 3\\}, \\{4, 5\\}\\) \u3002\u9700\u8981\u6ce8\u610f\u4ee5\u4e0b\u4e24\u70b9\u3002
- \u8f93\u5165\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u91cd\u590d\u9009\u53d6\u3002
- \u5b50\u96c6\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\uff0c\u6bd4\u5982 \\(\\{4, 5\\}\\) \u548c \\(\\{5, 4\\}\\) \u662f\u540c\u4e00\u4e2a\u5b50\u96c6\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#1","title":"1. \u00a0 \u53c2\u8003\u5168\u6392\u5217\u89e3\u6cd5","text":"\u7c7b\u4f3c\u4e8e\u5168\u6392\u5217\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b50\u96c6\u7684\u751f\u6210\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\uff0c\u5e76\u5728\u9009\u62e9\u8fc7\u7a0b\u4e2d\u5b9e\u65f6\u66f4\u65b0\u201c\u5143\u7d20\u548c\u201d\uff0c\u5f53\u5143\u7d20\u548c\u7b49\u4e8e target \u65f6\uff0c\u5c31\u5c06\u5b50\u96c6\u8bb0\u5f55\u81f3\u7ed3\u679c\u5217\u8868\u3002
\u800c\u4e0e\u5168\u6392\u5217\u95ee\u9898\u4e0d\u540c\u7684\u662f\uff0c\u672c\u9898\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u9009\u53d6\uff0c\u56e0\u6b64\u65e0\u987b\u501f\u52a9 selected \u5e03\u5c14\u5217\u8868\u6765\u8bb0\u5f55\u5143\u7d20\u662f\u5426\u5df2\u88ab\u9009\u62e9\u3002\u6211\u4eec\u53ef\u4ee5\u5bf9\u5168\u6392\u5217\u4ee3\u7801\u8fdb\u884c\u5c0f\u5e45\u4fee\u6539\uff0c\u521d\u6b65\u5f97\u5230\u89e3\u9898\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig subset_sum_i_naive.pydef backtrack(\n state: list[int],\n target: int,\n total: int,\n choices: list[int],\n res: list[list[int]],\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n # \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if total == target:\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in range(len(choices)):\n # \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total + choices[i] > target:\n continue\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.append(choices[i])\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop()\n\ndef subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:\n \"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09\"\"\"\n state = [] # \u72b6\u6001\uff08\u5b50\u96c6\uff09\n total = 0 # \u5b50\u96c6\u548c\n res = [] # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res)\n return res\n
subset_sum_i_naive.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, int total, vector<int> &choices, vector<vector<int>> &res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (size_t i = 0; i < choices.size(); i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push_back(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop_back();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {\n vector<int> state; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5b50\u96c6\u548c\n vector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int total, int[] choices, List<List<Integer>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.add(new ArrayList<>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.remove(state.size() - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<Integer>> subsetSumINaive(int[] nums, int target) {\n List<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5b50\u96c6\u548c\n List<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid Backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.Length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.Add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.RemoveAt(state.Count - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> SubsetSumINaive(int[] nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5b50\u96c6\u548c\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n Backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == total {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i := 0; i < len(*choices); i++ {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total+(*choices)[i] > target {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n *state = append(*state, (*choices)[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n *state = (*state)[:len(*state)-1]\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums []int, target int) [][]int {\n state := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n total := 0 // \u5b50\u96c6\u548c\n res := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrackSubsetSumINaive(total, target, &state, &nums, &res)\n return res\n}\n
subset_sum_i_naive.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if total == target {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in stride(from: 0, to: choices.count, by: 1) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total + choices[i] > target {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.append(choices[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast()\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums: [Int], target: Int) -> [[Int]] {\n var state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let total = 0 // \u5b50\u96c6\u548c\n var res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state: &state, target: target, total: total, choices: nums, res: &res)\n return res\n}\n
subset_sum_i_naive.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, total, choices, res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total === target) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums, target) {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n const total = 0; // \u5b50\u96c6\u548c\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\n state: number[],\n target: number,\n total: number,\n choices: number[],\n res: number[][]\n): void {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total === target) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums: number[], target: number): number[][] {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n const total = 0; // \u5b50\u96c6\u548c\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\n List<int> state,\n int target,\n int total,\n List<int> choices,\n List<List<int>> res,\n) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> subsetSumINaive(List<int> nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5143\u7d20\u548c\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, total: i32, choices: &[i32], res: &mut Vec<Vec<i32>>) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if total == target {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in 0..choices.len() {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total + choices[i] > target {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec<Vec<i32>> {\n let state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let total = 0; // \u5b50\u96c6\u548c\n let mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, &mut res);\n res\n}\n
subset_sum_i_naive.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(int target, int total, int *choices, int choicesSize) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n for (int i = 0; i < stateSize; i++) {\n res[resSize][i] = state[i];\n }\n resColSizes[resSize++] = stateSize;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choicesSize; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state[stateSize++] = choices[i];\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(target, total + choices[i], choices, choicesSize);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n stateSize--;\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvoid subsetSumINaive(int *nums, int numsSize, int target) {\n resSize = 0; // \u521d\u59cb\u5316\u89e3\u7684\u6570\u91cf\u4e3a0\n backtrack(target, 0, nums, numsSize);\n}\n
subset_sum_i_naive.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{subsetSumINaive}\n
\u5411\u4ee5\u4e0a\u4ee3\u7801\u8f93\u5165\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u8f93\u51fa\u7ed3\u679c\u4e3a \\([3, 3, 3], [4, 5], [5, 4]\\) \u3002\u867d\u7136\u6210\u529f\u627e\u51fa\u4e86\u6240\u6709\u548c\u4e3a \\(9\\) \u7684\u5b50\u96c6\uff0c\u4f46\u5176\u4e2d\u5b58\u5728\u91cd\u590d\u7684\u5b50\u96c6 \\([4, 5]\\) \u548c \\([5, 4]\\) \u3002
\u8fd9\u662f\u56e0\u4e3a\u641c\u7d22\u8fc7\u7a0b\u662f\u533a\u5206\u9009\u62e9\u987a\u5e8f\u7684\uff0c\u7136\u800c\u5b50\u96c6\u4e0d\u533a\u5206\u9009\u62e9\u987a\u5e8f\u3002\u5982\u56fe 13-10 \u6240\u793a\uff0c\u5148\u9009 \\(4\\) \u540e\u9009 \\(5\\) \u4e0e\u5148\u9009 \\(5\\) \u540e\u9009 \\(4\\) \u662f\u4e0d\u540c\u7684\u5206\u652f\uff0c\u4f46\u5bf9\u5e94\u540c\u4e00\u4e2a\u5b50\u96c6\u3002
\u56fe 13-10 \u00a0 \u5b50\u96c6\u641c\u7d22\u4e0e\u8d8a\u754c\u526a\u679d
\u4e3a\u4e86\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u601d\u8def\u662f\u5bf9\u7ed3\u679c\u5217\u8868\u8fdb\u884c\u53bb\u91cd\u3002\u4f46\u8fd9\u4e2a\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\uff0c\u6709\u4e24\u65b9\u9762\u539f\u56e0\u3002
- \u5f53\u6570\u7ec4\u5143\u7d20\u8f83\u591a\uff0c\u5c24\u5176\u662f\u5f53
target \u8f83\u5927\u65f6\uff0c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u4ea7\u751f\u5927\u91cf\u7684\u91cd\u590d\u5b50\u96c6\u3002 - \u6bd4\u8f83\u5b50\u96c6\uff08\u6570\u7ec4\uff09\u7684\u5f02\u540c\u975e\u5e38\u8017\u65f6\uff0c\u9700\u8981\u5148\u6392\u5e8f\u6570\u7ec4\uff0c\u518d\u6bd4\u8f83\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u5f02\u540c\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#2","title":"2. \u00a0 \u91cd\u590d\u5b50\u96c6\u526a\u679d","text":"\u6211\u4eec\u8003\u8651\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u901a\u8fc7\u526a\u679d\u8fdb\u884c\u53bb\u91cd\u3002\u89c2\u5bdf\u56fe 13-11 \uff0c\u91cd\u590d\u5b50\u96c6\u662f\u5728\u4ee5\u4e0d\u540c\u987a\u5e8f\u9009\u62e9\u6570\u7ec4\u5143\u7d20\u65f6\u4ea7\u751f\u7684\uff0c\u4f8b\u5982\u4ee5\u4e0b\u60c5\u51b5\u3002
- \u5f53\u7b2c\u4e00\u8f6e\u548c\u7b2c\u4e8c\u8f6e\u5206\u522b\u9009\u62e9 \\(3\\) \u548c \\(4\\) \u65f6\uff0c\u4f1a\u751f\u6210\u5305\u542b\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u6240\u6709\u5b50\u96c6\uff0c\u8bb0\u4e3a \\([3, 4, \\dots]\\) \u3002
- \u4e4b\u540e\uff0c\u5f53\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(4\\) \u65f6\uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \uff0c\u56e0\u4e3a\u8be5\u9009\u62e9\u4ea7\u751f\u7684\u5b50\u96c6 \\([4, 3, \\dots]\\) \u548c\u7b2c
1. \u6b65\u4e2d\u751f\u6210\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002
\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u6bcf\u4e00\u5c42\u7684\u9009\u62e9\u90fd\u662f\u4ece\u5de6\u5230\u53f3\u88ab\u9010\u4e2a\u5c1d\u8bd5\u7684\uff0c\u56e0\u6b64\u8d8a\u9760\u53f3\u7684\u5206\u652f\u88ab\u526a\u6389\u7684\u8d8a\u591a\u3002
- \u524d\u4e24\u8f6e\u9009\u62e9 \\(3\\) \u548c \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([3, 5, \\dots]\\) \u3002
- \u524d\u4e24\u8f6e\u9009\u62e9 \\(4\\) \u548c \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([4, 5, \\dots]\\) \u3002
- \u82e5\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(5\\) \uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \u548c \\(4\\) \uff0c\u56e0\u4e3a\u5b50\u96c6 \\([5, 3, \\dots]\\) \u548c \\([5, 4, \\dots]\\) \u4e0e\u7b2c
1. \u6b65\u548c\u7b2c 2. \u6b65\u4e2d\u63cf\u8ff0\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002
\u56fe 13-11 \u00a0 \u4e0d\u540c\u9009\u62e9\u987a\u5e8f\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6
\u603b\u7ed3\u6765\u770b\uff0c\u7ed9\u5b9a\u8f93\u5165\u6570\u7ec4 \\([x_1, x_2, \\dots, x_n]\\) \uff0c\u8bbe\u641c\u7d22\u8fc7\u7a0b\u4e2d\u7684\u9009\u62e9\u5e8f\u5217\u4e3a \\([x_{i_1}, x_{i_2}, \\dots, x_{i_m}]\\) \uff0c\u5219\u8be5\u9009\u62e9\u5e8f\u5217\u9700\u8981\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\dots \\leq i_m\\) \uff0c\u4e0d\u6ee1\u8db3\u8be5\u6761\u4ef6\u7684\u9009\u62e9\u5e8f\u5217\u90fd\u4f1a\u9020\u6210\u91cd\u590d\uff0c\u5e94\u5f53\u526a\u679d\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u4e3a\u5b9e\u73b0\u8be5\u526a\u679d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u53d8\u91cf start \uff0c\u7528\u4e8e\u6307\u793a\u904d\u5386\u8d77\u59cb\u70b9\u3002\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i\\) \u5f00\u59cb\u904d\u5386\u3002\u8fd9\u6837\u505a\u5c31\u53ef\u4ee5\u8ba9\u9009\u62e9\u5e8f\u5217\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\dots \\leq i_m\\) \uff0c\u4ece\u800c\u4fdd\u8bc1\u5b50\u96c6\u552f\u4e00\u3002
\u9664\u6b64\u4e4b\u5916\uff0c\u6211\u4eec\u8fd8\u5bf9\u4ee3\u7801\u8fdb\u884c\u4e86\u4ee5\u4e0b\u4e24\u9879\u4f18\u5316\u3002
- \u5728\u5f00\u542f\u641c\u7d22\u524d\uff0c\u5148\u5c06\u6570\u7ec4
nums \u6392\u5e8f\u3002\u5728\u904d\u5386\u6240\u6709\u9009\u62e9\u65f6\uff0c\u5f53\u5b50\u96c6\u548c\u8d85\u8fc7 target \u65f6\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\uff0c\u56e0\u4e3a\u540e\u8fb9\u7684\u5143\u7d20\u66f4\u5927\uff0c\u5176\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target \u3002 - \u7701\u53bb\u5143\u7d20\u548c\u53d8\u91cf
total \uff0c\u901a\u8fc7\u5728 target \u4e0a\u6267\u884c\u51cf\u6cd5\u6765\u7edf\u8ba1\u5143\u7d20\u548c\uff0c\u5f53 target \u7b49\u4e8e \\(0\\) \u65f6\u8bb0\u5f55\u89e3\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig subset_sum_i.pydef backtrack(\n state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n # \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0:\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n # \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i in range(start, len(choices)):\n # \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n # \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0:\n break\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop()\n\ndef subset_sum_i(nums: list[int], target: int) -> list[list[int]]:\n \"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\"\"\"\n state = [] # \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort() # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start = 0 # \u904d\u5386\u8d77\u59cb\u70b9\n res = [] # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res)\n return res\n
subset_sum_i.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.size(); i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push_back(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop_back();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvector<vector<int>> subsetSumI(vector<int> &nums, int target) {\n vector<int> state; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n vector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(new ArrayList<>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.remove(state.size() - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<Integer>> subsetSumI(int[] nums, int target) {\n List<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Arrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.Length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.Add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.RemoveAt(state.Count - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> SubsetSumI(int[] nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Array.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n Backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i := start; i < len(*choices); i++ {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target-(*choices)[i] < 0 {\n break\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n *state = append(*state, (*choices)[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n *state = (*state)[:len(*state)-1]\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums []int, target int) [][]int {\n state := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort.Ints(nums) // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start := 0 // \u904d\u5386\u8d77\u59cb\u70b9\n res := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrackSubsetSumI(start, target, &state, &nums, &res)\n return res\n}\n
subset_sum_i.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i in stride(from: start, to: choices.count, by: 1) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast()\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums: [Int], target: Int) -> [[Int]] {\n var state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\n var res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state: &state, target: target, choices: nums, start: start, res: &res)\n return res\n}\n
subset_sum_i.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, choices, start, res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums, target) {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\n state: number[],\n target: number,\n choices: number[],\n start: number,\n res: number[][]\n): void {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums: number[], target: number): number[][] {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\n List<int> state,\n int target,\n List<int> choices,\n int start,\n List<List<int>> res,\n) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> subsetSumI(List<int> nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i in start..choices.len() {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfn subset_sum_i(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\n let state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n let mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, &mut res);\n res\n}\n
subset_sum_i.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(int target, int *choices, int choicesSize, int start) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n for (int i = 0; i < stateSize; ++i) {\n res[resSize][i] = state[i];\n }\n resColSizes[resSize++] = stateSize;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choicesSize; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state[stateSize] = choices[i];\n stateSize++;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(target - choices[i], choices, choicesSize, i);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n stateSize--;\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvoid subsetSumI(int *nums, int numsSize, int target) {\n qsort(nums, numsSize, sizeof(int), cmp); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n backtrack(target, nums, numsSize, start);\n}\n
subset_sum_i.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{subsetSumI}\n
\u56fe 13-12 \u6240\u793a\u4e3a\u5c06\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u8f93\u5165\u4ee5\u4e0a\u4ee3\u7801\u540e\u7684\u6574\u4f53\u56de\u6eaf\u8fc7\u7a0b\u3002
\u56fe 13-12 \u00a0 \u5b50\u96c6\u548c I \u56de\u6eaf\u8fc7\u7a0b
"},{"location":"chapter_backtracking/subset_sum_problem/#1332","title":"13.3.2 \u00a0 \u8003\u8651\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u53ef\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002
\u76f8\u6bd4\u4e8e\u4e0a\u9898\uff0c\u672c\u9898\u7684\u8f93\u5165\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd9\u5f15\u5165\u4e86\u65b0\u7684\u95ee\u9898\u3002\u4f8b\u5982\uff0c\u7ed9\u5b9a\u6570\u7ec4 \\([4, \\hat{4}, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u5219\u73b0\u6709\u4ee3\u7801\u7684\u8f93\u51fa\u7ed3\u679c\u4e3a \\([4, 5], [\\hat{4}, 5]\\) \uff0c\u51fa\u73b0\u4e86\u91cd\u590d\u5b50\u96c6\u3002
\u9020\u6210\u8fd9\u79cd\u91cd\u590d\u7684\u539f\u56e0\u662f\u76f8\u7b49\u5143\u7d20\u5728\u67d0\u8f6e\u4e2d\u88ab\u591a\u6b21\u9009\u62e9\u3002\u5728\u56fe 13-13 \u4e2d\uff0c\u7b2c\u4e00\u8f6e\u5171\u6709\u4e09\u4e2a\u9009\u62e9\uff0c\u5176\u4e2d\u4e24\u4e2a\u90fd\u4e3a \\(4\\) \uff0c\u4f1a\u4ea7\u751f\u4e24\u4e2a\u91cd\u590d\u7684\u641c\u7d22\u5206\u652f\uff0c\u4ece\u800c\u8f93\u51fa\u91cd\u590d\u5b50\u96c6\uff1b\u540c\u7406\uff0c\u7b2c\u4e8c\u8f6e\u7684\u4e24\u4e2a \\(4\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002
\u56fe 13-13 \u00a0 \u76f8\u7b49\u5143\u7d20\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6
"},{"location":"chapter_backtracking/subset_sum_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"\u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u9700\u8981\u9650\u5236\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u4e00\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u8f83\u5de7\u5999\uff1a\u7531\u4e8e\u6570\u7ec4\u662f\u5df2\u6392\u5e8f\u7684\uff0c\u56e0\u6b64\u76f8\u7b49\u5143\u7d20\u90fd\u662f\u76f8\u90bb\u7684\u3002\u8fd9\u610f\u5473\u7740\u5728\u67d0\u8f6e\u9009\u62e9\u4e2d\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u4e0e\u5176\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u5219\u8bf4\u660e\u5b83\u5df2\u7ecf\u88ab\u9009\u62e9\u8fc7\uff0c\u56e0\u6b64\u76f4\u63a5\u8df3\u8fc7\u5f53\u524d\u5143\u7d20\u3002
\u4e0e\u6b64\u540c\u65f6\uff0c\u672c\u9898\u89c4\u5b9a\u6bcf\u4e2a\u6570\u7ec4\u5143\u7d20\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5e78\u8fd0\u7684\u662f\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u5229\u7528\u53d8\u91cf start \u6765\u6ee1\u8db3\u8be5\u7ea6\u675f\uff1a\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i + 1\\) \u5f00\u59cb\u5411\u540e\u904d\u5386\u3002\u8fd9\u6837\u65e2\u80fd\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e5f\u80fd\u907f\u514d\u91cd\u590d\u9009\u62e9\u5143\u7d20\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"PythonC++JavaC#GoSwiftJSTSDartRustCZig subset_sum_ii.pydef backtrack(\n state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II\"\"\"\n # \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0:\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n # \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n # \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i in range(start, len(choices)):\n # \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n # \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0:\n break\n # \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start and choices[i] == choices[i - 1]:\n continue\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop()\n\ndef subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:\n \"\"\"\u6c42\u89e3\u5b50\u96c6\u548c II\"\"\"\n state = [] # \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort() # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start = 0 # \u904d\u5386\u8d77\u59cb\u70b9\n res = [] # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res)\n return res\n
subset_sum_ii.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.size(); i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push_back(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop_back();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvector<vector<int>> subsetSumII(vector<int> &nums, int target) {\n vector<int> state; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n vector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(new ArrayList<>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.remove(state.size() - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<Integer>> subsetSumII(int[] nums, int target) {\n List<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Arrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.Length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.Add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.RemoveAt(state.Count - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> SubsetSumII(int[] nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Array.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n Backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i := start; i < len(*choices); i++ {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target-(*choices)[i] < 0 {\n break\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start && (*choices)[i] == (*choices)[i-1] {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n *state = append(*state, (*choices)[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n *state = (*state)[:len(*state)-1]\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums []int, target int) [][]int {\n state := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort.Ints(nums) // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start := 0 // \u904d\u5386\u8d77\u59cb\u70b9\n res := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrackSubsetSumII(start, target, &state, &nums, &res)\n return res\n}\n
subset_sum_ii.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i in stride(from: start, to: choices.count, by: 1) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start, choices[i] == choices[i - 1] {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast()\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums: [Int], target: Int) -> [[Int]] {\n var state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\n var res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state: &state, target: target, choices: nums, start: start, res: &res)\n return res\n}\n
subset_sum_ii.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(state, target, choices, start, res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] === choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums, target) {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(\n state: number[],\n target: number,\n choices: number[],\n start: number,\n res: number[][]\n): void {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] === choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums: number[], target: number): number[][] {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(\n List<int> state,\n int target,\n List<int> choices,\n int start,\n List<List<int>> res,\n) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> subsetSumII(List<int> nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i in start..choices.len() {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start && choices[i] == choices[i - 1] {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\n let state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n let mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, &mut res);\n res\n}\n
subset_sum_ii.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(int target, int *choices, int choicesSize, int start) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n for (int i = 0; i < stateSize; i++) {\n res[resSize][i] = state[i];\n }\n resColSizes[resSize++] = stateSize;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choicesSize; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\n if (target - choices[i] < 0) {\n continue;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state[stateSize] = choices[i];\n stateSize++;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(target - choices[i], choices, choicesSize, i + 1);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n stateSize--;\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvoid subsetSumII(int *nums, int numsSize, int target) {\n // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n qsort(nums, numsSize, sizeof(int), cmp);\n // \u5f00\u59cb\u56de\u6eaf\n backtrack(target, nums, numsSize, 0);\n}\n
subset_sum_ii.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{subsetSumII}\n
\u56fe 13-14 \u5c55\u793a\u4e86\u6570\u7ec4 \\([4, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u7684\u56de\u6eaf\u8fc7\u7a0b\uff0c\u5171\u5305\u542b\u56db\u79cd\u526a\u679d\u64cd\u4f5c\u3002\u8bf7\u4f60\u5c06\u56fe\u793a\u4e0e\u4ee3\u7801\u6ce8\u91ca\u76f8\u7ed3\u5408\uff0c\u7406\u89e3\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u6bcf\u79cd\u526a\u679d\u64cd\u4f5c\u662f\u5982\u4f55\u5de5\u4f5c\u7684\u3002
\u56fe 13-14 \u00a0 \u5b50\u96c6\u548c II \u56de\u6eaf\u8fc7\u7a0b
"},{"location":"chapter_backtracking/summary/","title":"13.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_backtracking/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u662f\u7a77\u4e3e\u6cd5\uff0c\u901a\u8fc7\u5bf9\u89e3\u7a7a\u95f4\u8fdb\u884c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6765\u5bfb\u627e\u7b26\u5408\u6761\u4ef6\u7684\u89e3\u3002\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u9047\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u5219\u8bb0\u5f55\uff0c\u76f4\u81f3\u627e\u5230\u6240\u6709\u89e3\u6216\u904d\u5386\u5b8c\u6210\u540e\u7ed3\u675f\u3002
- \u56de\u6eaf\u7b97\u6cd5\u7684\u641c\u7d22\u8fc7\u7a0b\u5305\u62ec\u5c1d\u8bd5\u4e0e\u56de\u9000\u4e24\u4e2a\u90e8\u5206\u3002\u5b83\u901a\u8fc7\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u6765\u5c1d\u8bd5\u5404\u79cd\u9009\u62e9\uff0c\u5f53\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u60c5\u51b5\u65f6\uff0c\u5219\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002\u5c1d\u8bd5\u4e0e\u56de\u9000\u662f\u4e24\u4e2a\u65b9\u5411\u76f8\u53cd\u7684\u64cd\u4f5c\u3002
- \u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u5b83\u4eec\u53ef\u7528\u4e8e\u5b9e\u73b0\u526a\u679d\u64cd\u4f5c\u3002\u526a\u679d\u53ef\u4ee5\u63d0\u524d\u7ed3\u675f\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\uff0c\u5927\u5e45\u63d0\u5347\u641c\u7d22\u6548\u7387\u3002
- \u56de\u6eaf\u7b97\u6cd5\u4e3b\u8981\u53ef\u7528\u4e8e\u89e3\u51b3\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u3002\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u867d\u7136\u53ef\u4ee5\u7528\u56de\u6eaf\u7b97\u6cd5\u89e3\u51b3\uff0c\u4f46\u5f80\u5f80\u5b58\u5728\u6548\u7387\u66f4\u9ad8\u6216\u6548\u679c\u66f4\u597d\u7684\u89e3\u6cd5\u3002
- \u5168\u6392\u5217\u95ee\u9898\u65e8\u5728\u641c\u7d22\u7ed9\u5b9a\u96c6\u5408\u5143\u7d20\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e2a\u5143\u7d20\u662f\u5426\u88ab\u9009\u62e9\uff0c\u526a\u6389\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\u7684\u641c\u7d22\u5206\u652f\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002
- \u5728\u5168\u6392\u5217\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u96c6\u5408\u4e2d\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff0c\u5219\u6700\u7ec8\u7ed3\u679c\u4f1a\u51fa\u73b0\u91cd\u590d\u6392\u5217\u3002\u6211\u4eec\u9700\u8981\u7ea6\u675f\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u8fd9\u901a\u5e38\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002
- \u5b50\u96c6\u548c\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u7ed9\u5b9a\u96c6\u5408\u4e2d\u627e\u5230\u548c\u4e3a\u76ee\u6807\u503c\u7684\u6240\u6709\u5b50\u96c6\u3002\u96c6\u5408\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\uff0c\u800c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u8f93\u51fa\u6240\u6709\u987a\u5e8f\u7684\u7ed3\u679c\uff0c\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002\u6211\u4eec\u5728\u56de\u6eaf\u524d\u5c06\u6570\u636e\u8fdb\u884c\u6392\u5e8f\uff0c\u5e76\u8bbe\u7f6e\u4e00\u4e2a\u53d8\u91cf\u6765\u6307\u793a\u6bcf\u4e00\u8f6e\u7684\u904d\u5386\u8d77\u59cb\u70b9\uff0c\u4ece\u800c\u5c06\u751f\u6210\u91cd\u590d\u5b50\u96c6\u7684\u641c\u7d22\u5206\u652f\u8fdb\u884c\u526a\u679d\u3002
- \u5bf9\u4e8e\u5b50\u96c6\u548c\u95ee\u9898\uff0c\u6570\u7ec4\u4e2d\u7684\u76f8\u7b49\u5143\u7d20\u4f1a\u4ea7\u751f\u91cd\u590d\u96c6\u5408\u3002\u6211\u4eec\u5229\u7528\u6570\u7ec4\u5df2\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\uff0c\u901a\u8fc7\u5224\u65ad\u76f8\u90bb\u5143\u7d20\u662f\u5426\u76f8\u7b49\u5b9e\u73b0\u526a\u679d\uff0c\u4ece\u800c\u786e\u4fdd\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u4e2d\u4e00\u6b21\u3002
- \\(n\\) \u7687\u540e\u95ee\u9898\u65e8\u5728\u5bfb\u627e\u5c06 \\(n\\) \u4e2a\u7687\u540e\u653e\u7f6e\u5230 \\(n \\times n\\) \u5c3a\u5bf8\u68cb\u76d8\u4e0a\u7684\u65b9\u6848\uff0c\u8981\u6c42\u6240\u6709\u7687\u540e\u4e24\u4e24\u4e4b\u95f4\u65e0\u6cd5\u653b\u51fb\u5bf9\u65b9\u3002\u8be5\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6\u6709\u884c\u7ea6\u675f\u3001\u5217\u7ea6\u675f\u3001\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002\u4e3a\u6ee1\u8db3\u884c\u7ea6\u675f\uff0c\u6211\u4eec\u91c7\u7528\u6309\u884c\u653e\u7f6e\u7684\u7b56\u7565\uff0c\u4fdd\u8bc1\u6bcf\u4e00\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002
- \u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u5904\u7406\u65b9\u5f0f\u7c7b\u4f3c\u3002\u5bf9\u4e8e\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\uff0c\u4ece\u800c\u6307\u793a\u9009\u4e2d\u7684\u683c\u5b50\u662f\u5426\u5408\u6cd5\u3002\u5bf9\u4e8e\u5bf9\u89d2\u7ebf\u7ea6\u675f\uff0c\u6211\u4eec\u501f\u52a9\u4e24\u4e2a\u6570\u7ec4\u6765\u5206\u522b\u8bb0\u5f55\u8be5\u4e3b\u3001\u526f\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u5b58\u5728\u7687\u540e\uff1b\u96be\u70b9\u5728\u4e8e\u627e\u5904\u5728\u5230\u540c\u4e00\u4e3b\uff08\u526f\uff09\u5bf9\u89d2\u7ebf\u4e0a\u683c\u5b50\u6ee1\u8db3\u7684\u884c\u5217\u7d22\u5f15\u89c4\u5f8b\u3002
"},{"location":"chapter_backtracking/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u600e\u4e48\u7406\u89e3\u56de\u6eaf\u548c\u9012\u5f52\u7684\u5173\u7cfb\uff1f
\u603b\u7684\u6765\u770b\uff0c\u56de\u6eaf\u662f\u4e00\u79cd\u201c\u7b97\u6cd5\u7b56\u7565\u201d\uff0c\u800c\u9012\u5f52\u66f4\u50cf\u662f\u4e00\u4e2a\u201c\u5de5\u5177\u201d\u3002
- \u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\u3002\u7136\u800c\uff0c\u56de\u6eaf\u662f\u9012\u5f52\u7684\u5e94\u7528\u573a\u666f\u4e4b\u4e00\uff0c\u662f\u9012\u5f52\u5728\u641c\u7d22\u95ee\u9898\u4e2d\u7684\u5e94\u7528\u3002
- \u9012\u5f52\u7684\u7ed3\u6784\u4f53\u73b0\u4e86\u201c\u5b50\u95ee\u9898\u5206\u89e3\u201d\u7684\u89e3\u9898\u8303\u5f0f\uff0c\u5e38\u7528\u4e8e\u89e3\u51b3\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\uff08\u8bb0\u5fc6\u5316\u9012\u5f52\uff09\u7b49\u95ee\u9898\u3002
"},{"location":"chapter_computational_complexity/","title":"\u7b2c 2 \u7ae0 \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"Abstract
\u590d\u6742\u5ea6\u5206\u6790\u72b9\u5982\u6d69\u701a\u7684\u7b97\u6cd5\u5b87\u5b99\u4e2d\u7684\u65f6\u7a7a\u5411\u5bfc\u3002
\u5b83\u5e26\u9886\u6211\u4eec\u5728\u65f6\u95f4\u4e0e\u7a7a\u95f4\u8fd9\u4e24\u4e2a\u7ef4\u5ea6\u4e0a\u6df1\u5165\u63a2\u7d22\uff0c\u5bfb\u627e\u66f4\u4f18\u96c5\u7684\u89e3\u51b3\u65b9\u6848\u3002
"},{"location":"chapter_computational_complexity/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30
- 2.2 \u00a0 \u8fed\u4ee3\u4e0e\u9012\u5f52
- 2.3 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6
- 2.4 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6
- 2.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_computational_complexity/iteration_and_recursion/","title":"2.2 \u00a0 \u8fed\u4ee3\u4e0e\u9012\u5f52","text":"\u5728\u7b97\u6cd5\u4e2d\uff0c\u91cd\u590d\u6267\u884c\u67d0\u4e2a\u4efb\u52a1\u662f\u5f88\u5e38\u89c1\u7684\uff0c\u5b83\u4e0e\u590d\u6742\u5ea6\u5206\u6790\u606f\u606f\u76f8\u5173\u3002\u56e0\u6b64\uff0c\u5728\u4ecb\u7ecd\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e4b\u524d\uff0c\u6211\u4eec\u5148\u6765\u4e86\u89e3\u5982\u4f55\u5728\u7a0b\u5e8f\u4e2d\u5b9e\u73b0\u91cd\u590d\u6267\u884c\u4efb\u52a1\uff0c\u5373\u4e24\u79cd\u57fa\u672c\u7684\u7a0b\u5e8f\u63a7\u5236\u7ed3\u6784\uff1a\u8fed\u4ee3\u3001\u9012\u5f52\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#221","title":"2.2.1 \u00a0 \u8fed\u4ee3","text":"\u300c\u8fed\u4ee3 iteration\u300d\u662f\u4e00\u79cd\u91cd\u590d\u6267\u884c\u67d0\u4e2a\u4efb\u52a1\u7684\u63a7\u5236\u7ed3\u6784\u3002\u5728\u8fed\u4ee3\u4e2d\uff0c\u7a0b\u5e8f\u4f1a\u5728\u6ee1\u8db3\u4e00\u5b9a\u7684\u6761\u4ef6\u4e0b\u91cd\u590d\u6267\u884c\u67d0\u6bb5\u4ee3\u7801\uff0c\u76f4\u5230\u8fd9\u4e2a\u6761\u4ef6\u4e0d\u518d\u6ee1\u8db3\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1-for","title":"1. \u00a0 for \u5faa\u73af","text":"for \u5faa\u73af\u662f\u6700\u5e38\u89c1\u7684\u8fed\u4ee3\u5f62\u5f0f\u4e4b\u4e00\uff0c\u9002\u5408\u5728\u9884\u5148\u77e5\u9053\u8fed\u4ee3\u6b21\u6570\u65f6\u4f7f\u7528\u3002
\u4ee5\u4e0b\u51fd\u6570\u57fa\u4e8e for \u5faa\u73af\u5b9e\u73b0\u4e86\u6c42\u548c \\(1 + 2 + \\dots + n\\) \uff0c\u6c42\u548c\u7ed3\u679c\u4f7f\u7528\u53d8\u91cf res \u8bb0\u5f55\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0cPython \u4e2d range(a, b) \u5bf9\u5e94\u7684\u533a\u95f4\u662f\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u7684\uff0c\u5bf9\u5e94\u7684\u904d\u5386\u8303\u56f4\u4e3a \\(a, a + 1, \\dots, b-1\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef for_loop(n: int) -> int:\n \"\"\"for \u5faa\u73af\"\"\"\n res = 0\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n res += i\n return res\n
iteration.cpp/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n res += i;\n }\n return res;\n}\n
iteration.java/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.cs/* for \u5faa\u73af */\nint ForLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.go/* for \u5faa\u73af */\nfunc forLoop(n int) int {\n res := 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n res += i\n }\n return res\n}\n
iteration.swift/* for \u5faa\u73af */\nfunc forLoop(n: Int) -> Int {\n var res = 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1 ... n {\n res += i\n }\n return res\n}\n
iteration.js/* for \u5faa\u73af */\nfunction forLoop(n) {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.ts/* for \u5faa\u73af */\nfunction forLoop(n: number): number {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.dart/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.rs/* for \u5faa\u73af */\nfn for_loop(n: i32) -> i32 {\n let mut res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1..=n {\n res += i;\n }\n res\n} \n
iteration.c/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.zig// for \u5faa\u73af\nfn forLoop(n: usize) i32 {\n var res: i32 = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n res = res + @as(i32, @intCast(i));\n }\n return res;\n} \n
\u56fe 2-1 \u662f\u8be5\u6c42\u548c\u51fd\u6570\u7684\u6d41\u7a0b\u6846\u56fe\u3002
\u56fe 2-1 \u00a0 \u6c42\u548c\u51fd\u6570\u7684\u6d41\u7a0b\u6846\u56fe
\u6b64\u6c42\u548c\u51fd\u6570\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u6210\u6b63\u6bd4\uff0c\u6216\u8005\u8bf4\u6210\u201c\u7ebf\u6027\u5173\u7cfb\u201d\u3002\u5b9e\u9645\u4e0a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u63cf\u8ff0\u7684\u5c31\u662f\u8fd9\u4e2a\u201c\u7ebf\u6027\u5173\u7cfb\u201d\u3002\u76f8\u5173\u5185\u5bb9\u5c06\u4f1a\u5728\u4e0b\u4e00\u8282\u4e2d\u8be6\u7ec6\u4ecb\u7ecd\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2-while","title":"2. \u00a0 while \u5faa\u73af","text":"\u4e0e for \u5faa\u73af\u7c7b\u4f3c\uff0cwhile \u5faa\u73af\u4e5f\u662f\u4e00\u79cd\u5b9e\u73b0\u8fed\u4ee3\u7684\u65b9\u6cd5\u3002\u5728 while \u5faa\u73af\u4e2d\uff0c\u7a0b\u5e8f\u6bcf\u8f6e\u90fd\u4f1a\u5148\u68c0\u67e5\u6761\u4ef6\uff0c\u5982\u679c\u6761\u4ef6\u4e3a\u771f\uff0c\u5219\u7ee7\u7eed\u6267\u884c\uff0c\u5426\u5219\u5c31\u7ed3\u675f\u5faa\u73af\u3002
\u4e0b\u9762\u6211\u4eec\u7528 while \u5faa\u73af\u6765\u5b9e\u73b0\u6c42\u548c \\(1 + 2 + \\dots + n\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop(n: int) -> int:\n \"\"\"while \u5faa\u73af\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n:\n res += i\n i += 1 # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n return res\n
iteration.cpp/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af */\nint WhileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af */\nfunc whileLoop(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af */\nfunc whileLoop(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i\n i += 1 // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af */\nfunction whileLoop(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af */\nfunction whileLoop(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af */\nfn while_loop(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n res\n}\n
iteration.c/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\nfn whileLoop(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += @intCast(i);\n i += 1;\n }\n return res;\n}\n
while \u5faa\u73af\u6bd4 for \u5faa\u73af\u7684\u81ea\u7531\u5ea6\u66f4\u9ad8\u3002\u5728 while \u5faa\u73af\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u81ea\u7531\u5730\u8bbe\u8ba1\u6761\u4ef6\u53d8\u91cf\u7684\u521d\u59cb\u5316\u548c\u66f4\u65b0\u6b65\u9aa4\u3002
\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u6761\u4ef6\u53d8\u91cf \\(i\\) \u6bcf\u8f6e\u8fdb\u884c\u4e24\u6b21\u66f4\u65b0\uff0c\u8fd9\u79cd\u60c5\u51b5\u5c31\u4e0d\u592a\u65b9\u4fbf\u7528 for \u5faa\u73af\u5b9e\u73b0\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop_ii(n: int) -> int:\n \"\"\"while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n:\n res += i\n # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n return res\n
iteration.cpp/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint WhileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, 4, 5...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1; \n i *= 2;\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n i *= 2\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfn while_loop_ii(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n res\n}\n
iteration.c/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\nfn whileLoopII(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += @intCast(i);\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n return res;\n}\n
\u603b\u7684\u6765\u8bf4\uff0cfor \u5faa\u73af\u7684\u4ee3\u7801\u66f4\u52a0\u7d27\u51d1\uff0cwhile \u5faa\u73af\u66f4\u52a0\u7075\u6d3b\uff0c\u4e24\u8005\u90fd\u53ef\u4ee5\u5b9e\u73b0\u8fed\u4ee3\u7ed3\u6784\u3002\u9009\u62e9\u4f7f\u7528\u54ea\u4e00\u4e2a\u5e94\u8be5\u6839\u636e\u7279\u5b9a\u95ee\u9898\u7684\u9700\u6c42\u6765\u51b3\u5b9a\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3","title":"3. \u00a0 \u5d4c\u5957\u5faa\u73af","text":"\u6211\u4eec\u53ef\u4ee5\u5728\u4e00\u4e2a\u5faa\u73af\u7ed3\u6784\u5185\u5d4c\u5957\u53e6\u4e00\u4e2a\u5faa\u73af\u7ed3\u6784\uff0c\u4e0b\u9762\u4ee5 for \u5faa\u73af\u4e3a\u4f8b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef nested_for_loop(n: int) -> str:\n \"\"\"\u53cc\u5c42 for \u5faa\u73af\"\"\"\n res = \"\"\n # \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n # \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in range(1, n + 1):\n res += f\"({i}, {j}), \"\n return res\n
iteration.cpp/* \u53cc\u5c42 for \u5faa\u73af */\nstring nestedForLoop(int n) {\n ostringstream res;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; ++j) {\n res << \"(\" << i << \", \" << j << \"), \";\n }\n }\n return res.str();\n}\n
iteration.java/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n StringBuilder res = new StringBuilder();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.append(\"(\" + i + \", \" + j + \"), \");\n }\n }\n return res.toString();\n}\n
iteration.cs/* \u53cc\u5c42 for \u5faa\u73af */\nstring NestedForLoop(int n) {\n StringBuilder res = new();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.Append($\"({i}, {j}), \");\n }\n }\n return res.ToString();\n}\n
iteration.go/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n int) string {\n res := \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n for j := 1; j <= n; j++ {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n res += fmt.Sprintf(\"(%d, %d), \", i, j)\n }\n }\n return res\n}\n
iteration.swift/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n: Int) -> String {\n var res = \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1 ... n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1 ... n {\n res.append(\"(\\(i), \\(j)), \")\n }\n }\n return res\n}\n
iteration.js/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n) {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.ts/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n: number): string {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.dart/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n String res = \"\";\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res += \"($i, $j), \";\n }\n }\n return res;\n}\n
iteration.rs/* \u53cc\u5c42 for \u5faa\u73af */\nfn nested_for_loop(n: i32) -> String {\n let mut res = vec![];\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1..=n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1..=n {\n res.push(format!(\"({}, {}), \", i, j));\n }\n }\n res.join(\"\")\n}\n
iteration.c/* \u53cc\u5c42 for \u5faa\u73af */\nchar *nestedForLoop(int n) {\n // n * n \u4e3a\u5bf9\u5e94\u70b9\u6570\u91cf\uff0c\"(i, j), \" \u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u6700\u5927\u4e3a 6+10*2\uff0c\u52a0\u4e0a\u6700\u540e\u4e00\u4e2a\u7a7a\u5b57\u7b26 \\0 \u7684\u989d\u5916\u7a7a\u95f4\n int size = n * n * 26 + 1;\n char *res = malloc(size * sizeof(char));\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n char tmp[26];\n snprintf(tmp, sizeof(tmp), \"(%d, %d), \", i, j);\n strncat(res, tmp, size - strlen(res) - 1);\n }\n }\n return res;\n}\n
iteration.zig// \u53cc\u5c42 for \u5faa\u73af\nfn nestedForLoop(allocator: Allocator, n: usize) ![]const u8 {\n var res = std.ArrayList(u8).init(allocator);\n defer res.deinit();\n var buffer: [20]u8 = undefined;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (1..n+1) |j| {\n var _str = try std.fmt.bufPrint(&buffer, \"({d}, {d}), \", .{i, j});\n try res.appendSlice(_str);\n }\n }\n return res.toOwnedSlice();\n}\n
\u56fe 2-2 \u662f\u8be5\u5d4c\u5957\u5faa\u73af\u7684\u6d41\u7a0b\u6846\u56fe\u3002
\u56fe 2-2 \u00a0 \u5d4c\u5957\u5faa\u73af\u7684\u6d41\u7a0b\u6846\u56fe
\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u51fd\u6570\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e \\(n^2\\) \u6210\u6b63\u6bd4\uff0c\u6216\u8005\u8bf4\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u548c\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u6210\u201c\u5e73\u65b9\u5173\u7cfb\u201d\u3002
\u6211\u4eec\u53ef\u4ee5\u7ee7\u7eed\u6dfb\u52a0\u5d4c\u5957\u5faa\u73af\uff0c\u6bcf\u4e00\u6b21\u5d4c\u5957\u90fd\u662f\u4e00\u6b21\u201c\u5347\u7ef4\u201d\uff0c\u5c06\u4f1a\u4f7f\u65f6\u95f4\u590d\u6742\u5ea6\u63d0\u9ad8\u81f3\u201c\u7acb\u65b9\u5173\u7cfb\u201d\u201c\u56db\u6b21\u65b9\u5173\u7cfb\u201d\uff0c\u4ee5\u6b64\u7c7b\u63a8\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#222","title":"2.2.2 \u00a0 \u9012\u5f52","text":"\u300c\u9012\u5f52 recursion\u300d\u662f\u4e00\u79cd\u7b97\u6cd5\u7b56\u7565\uff0c\u901a\u8fc7\u51fd\u6570\u8c03\u7528\u81ea\u8eab\u6765\u89e3\u51b3\u95ee\u9898\u3002\u5b83\u4e3b\u8981\u5305\u542b\u4e24\u4e2a\u9636\u6bb5\u3002
- \u9012\uff1a\u7a0b\u5e8f\u4e0d\u65ad\u6df1\u5165\u5730\u8c03\u7528\u81ea\u8eab\uff0c\u901a\u5e38\u4f20\u5165\u66f4\u5c0f\u6216\u66f4\u7b80\u5316\u7684\u53c2\u6570\uff0c\u76f4\u5230\u8fbe\u5230\u201c\u7ec8\u6b62\u6761\u4ef6\u201d\u3002
- \u5f52\uff1a\u89e6\u53d1\u201c\u7ec8\u6b62\u6761\u4ef6\u201d\u540e\uff0c\u7a0b\u5e8f\u4ece\u6700\u6df1\u5c42\u7684\u9012\u5f52\u51fd\u6570\u5f00\u59cb\u9010\u5c42\u8fd4\u56de\uff0c\u6c47\u805a\u6bcf\u4e00\u5c42\u7684\u7ed3\u679c\u3002
\u800c\u4ece\u5b9e\u73b0\u7684\u89d2\u5ea6\u770b\uff0c\u9012\u5f52\u4ee3\u7801\u4e3b\u8981\u5305\u542b\u4e09\u4e2a\u8981\u7d20\u3002
- \u7ec8\u6b62\u6761\u4ef6\uff1a\u7528\u4e8e\u51b3\u5b9a\u4ec0\u4e48\u65f6\u5019\u7531\u201c\u9012\u201d\u8f6c\u201c\u5f52\u201d\u3002
- \u9012\u5f52\u8c03\u7528\uff1a\u5bf9\u5e94\u201c\u9012\u201d\uff0c\u51fd\u6570\u8c03\u7528\u81ea\u8eab\uff0c\u901a\u5e38\u8f93\u5165\u66f4\u5c0f\u6216\u66f4\u7b80\u5316\u7684\u53c2\u6570\u3002
- \u8fd4\u56de\u7ed3\u679c\uff1a\u5bf9\u5e94\u201c\u5f52\u201d\uff0c\u5c06\u5f53\u524d\u9012\u5f52\u5c42\u7ea7\u7684\u7ed3\u679c\u8fd4\u56de\u81f3\u4e0a\u4e00\u5c42\u3002
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6211\u4eec\u53ea\u9700\u8c03\u7528\u51fd\u6570 recur(n) \uff0c\u5c31\u53ef\u4ee5\u5b8c\u6210 \\(1 + 2 + \\dots + n\\) \u7684\u8ba1\u7b97\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef recur(n: int) -> int:\n \"\"\"\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 1:\n return 1\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res = recur(n - 1)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n
recursion.cpp/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.java/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.cs/* \u9012\u5f52 */\nint Recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = Recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.go/* \u9012\u5f52 */\nfunc recur(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res := recur(n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.swift/* \u9012\u5f52 */\nfunc recur(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n: n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.js/* \u9012\u5f52 */\nfunction recur(n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.ts/* \u9012\u5f52 */\nfunction recur(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.dart/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.rs/* \u9012\u5f52 */\nfn recur(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n n + res\n}\n
recursion.c/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.zig// \u9012\u5f52\u51fd\u6570\nfn recur(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var res: i32 = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
\u56fe 2-3 \u5c55\u793a\u4e86\u8be5\u51fd\u6570\u7684\u9012\u5f52\u8fc7\u7a0b\u3002
\u56fe 2-3 \u00a0 \u6c42\u548c\u51fd\u6570\u7684\u9012\u5f52\u8fc7\u7a0b
\u867d\u7136\u4ece\u8ba1\u7b97\u89d2\u5ea6\u770b\uff0c\u8fed\u4ee3\u4e0e\u9012\u5f52\u53ef\u4ee5\u5f97\u5230\u76f8\u540c\u7684\u7ed3\u679c\uff0c\u4f46\u5b83\u4eec\u4ee3\u8868\u4e86\u4e24\u79cd\u5b8c\u5168\u4e0d\u540c\u7684\u601d\u8003\u548c\u89e3\u51b3\u95ee\u9898\u7684\u8303\u5f0f\u3002
- \u8fed\u4ee3\uff1a\u201c\u81ea\u4e0b\u800c\u4e0a\u201d\u5730\u89e3\u51b3\u95ee\u9898\u3002\u4ece\u6700\u57fa\u7840\u7684\u6b65\u9aa4\u5f00\u59cb\uff0c\u7136\u540e\u4e0d\u65ad\u91cd\u590d\u6216\u7d2f\u52a0\u8fd9\u4e9b\u6b65\u9aa4\uff0c\u76f4\u5230\u4efb\u52a1\u5b8c\u6210\u3002
- \u9012\u5f52\uff1a\u201c\u81ea\u4e0a\u800c\u4e0b\u201d\u5730\u89e3\u51b3\u95ee\u9898\u3002\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u8fd9\u4e9b\u5b50\u95ee\u9898\u548c\u539f\u95ee\u9898\u5177\u6709\u76f8\u540c\u7684\u5f62\u5f0f\u3002\u63a5\u4e0b\u6765\u5c06\u5b50\u95ee\u9898\u7ee7\u7eed\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u5230\u57fa\u672c\u60c5\u51b5\u65f6\u505c\u6b62\uff08\u57fa\u672c\u60c5\u51b5\u7684\u89e3\u662f\u5df2\u77e5\u7684\uff09\u3002
\u4ee5\u4e0a\u8ff0\u6c42\u548c\u51fd\u6570\u4e3a\u4f8b\uff0c\u8bbe\u95ee\u9898 \\(f(n) = 1 + 2 + \\dots + n\\) \u3002
- \u8fed\u4ee3\uff1a\u5728\u5faa\u73af\u4e2d\u6a21\u62df\u6c42\u548c\u8fc7\u7a0b\uff0c\u4ece \\(1\\) \u904d\u5386\u5230 \\(n\\) \uff0c\u6bcf\u8f6e\u6267\u884c\u6c42\u548c\u64cd\u4f5c\uff0c\u5373\u53ef\u6c42\u5f97 \\(f(n)\\) \u3002
- \u9012\u5f52\uff1a\u5c06\u95ee\u9898\u5206\u89e3\u4e3a\u5b50\u95ee\u9898 \\(f(n) = n + f(n-1)\\) \uff0c\u4e0d\u65ad\uff08\u9012\u5f52\u5730\uff09\u5206\u89e3\u4e0b\u53bb\uff0c\u76f4\u81f3\u57fa\u672c\u60c5\u51b5 \\(f(1) = 1\\) \u65f6\u7ec8\u6b62\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1","title":"1. \u00a0 \u8c03\u7528\u6808","text":"\u9012\u5f52\u51fd\u6570\u6bcf\u6b21\u8c03\u7528\u81ea\u8eab\u65f6\uff0c\u7cfb\u7edf\u90fd\u4f1a\u4e3a\u65b0\u5f00\u542f\u7684\u51fd\u6570\u5206\u914d\u5185\u5b58\uff0c\u4ee5\u5b58\u50a8\u5c40\u90e8\u53d8\u91cf\u3001\u8c03\u7528\u5730\u5740\u548c\u5176\u4ed6\u4fe1\u606f\u7b49\u3002\u8fd9\u5c06\u5bfc\u81f4\u4e24\u65b9\u9762\u7684\u7ed3\u679c\u3002
- \u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u6570\u636e\u90fd\u5b58\u50a8\u5728\u79f0\u4e3a\u201c\u6808\u5e27\u7a7a\u95f4\u201d\u7684\u5185\u5b58\u533a\u57df\u4e2d\uff0c\u76f4\u81f3\u51fd\u6570\u8fd4\u56de\u540e\u624d\u4f1a\u88ab\u91ca\u653e\u3002\u56e0\u6b64\uff0c\u9012\u5f52\u901a\u5e38\u6bd4\u8fed\u4ee3\u66f4\u52a0\u8017\u8d39\u5185\u5b58\u7a7a\u95f4\u3002
- \u9012\u5f52\u8c03\u7528\u51fd\u6570\u4f1a\u4ea7\u751f\u989d\u5916\u7684\u5f00\u9500\u3002\u56e0\u6b64\u9012\u5f52\u901a\u5e38\u6bd4\u5faa\u73af\u7684\u65f6\u95f4\u6548\u7387\u66f4\u4f4e\u3002
\u5982\u56fe 2-4 \u6240\u793a\uff0c\u5728\u89e6\u53d1\u7ec8\u6b62\u6761\u4ef6\u524d\uff0c\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684\u9012\u5f52\u51fd\u6570\uff0c\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \u3002
\u56fe 2-4 \u00a0 \u9012\u5f52\u8c03\u7528\u6df1\u5ea6
\u5728\u5b9e\u9645\u4e2d\uff0c\u7f16\u7a0b\u8bed\u8a00\u5141\u8bb8\u7684\u9012\u5f52\u6df1\u5ea6\u901a\u5e38\u662f\u6709\u9650\u7684\uff0c\u8fc7\u6df1\u7684\u9012\u5f52\u53ef\u80fd\u5bfc\u81f4\u6808\u6ea2\u51fa\u9519\u8bef\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2","title":"2. \u00a0 \u5c3e\u9012\u5f52","text":"\u6709\u8da3\u7684\u662f\uff0c\u5982\u679c\u51fd\u6570\u5728\u8fd4\u56de\u524d\u7684\u6700\u540e\u4e00\u6b65\u624d\u8fdb\u884c\u9012\u5f52\u8c03\u7528\uff0c\u5219\u8be5\u51fd\u6570\u53ef\u4ee5\u88ab\u7f16\u8bd1\u5668\u6216\u89e3\u91ca\u5668\u4f18\u5316\uff0c\u4f7f\u5176\u5728\u7a7a\u95f4\u6548\u7387\u4e0a\u4e0e\u8fed\u4ee3\u76f8\u5f53\u3002\u8fd9\u79cd\u60c5\u51b5\u88ab\u79f0\u4e3a\u300c\u5c3e\u9012\u5f52 tail recursion\u300d\u3002
- \u666e\u901a\u9012\u5f52\uff1a\u5f53\u51fd\u6570\u8fd4\u56de\u5230\u4e0a\u4e00\u5c42\u7ea7\u7684\u51fd\u6570\u540e\uff0c\u9700\u8981\u7ee7\u7eed\u6267\u884c\u4ee3\u7801\uff0c\u56e0\u6b64\u7cfb\u7edf\u9700\u8981\u4fdd\u5b58\u4e0a\u4e00\u5c42\u8c03\u7528\u7684\u4e0a\u4e0b\u6587\u3002
- \u5c3e\u9012\u5f52\uff1a\u9012\u5f52\u8c03\u7528\u662f\u51fd\u6570\u8fd4\u56de\u524d\u7684\u6700\u540e\u4e00\u4e2a\u64cd\u4f5c\uff0c\u8fd9\u610f\u5473\u7740\u51fd\u6570\u8fd4\u56de\u5230\u4e0a\u4e00\u5c42\u7ea7\u540e\uff0c\u65e0\u987b\u7ee7\u7eed\u6267\u884c\u5176\u4ed6\u64cd\u4f5c\uff0c\u56e0\u6b64\u7cfb\u7edf\u65e0\u987b\u4fdd\u5b58\u4e0a\u4e00\u5c42\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u3002
\u4ee5\u8ba1\u7b97 \\(1 + 2 + \\dots + n\\) \u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u7ed3\u679c\u53d8\u91cf res \u8bbe\u4e3a\u51fd\u6570\u53c2\u6570\uff0c\u4ece\u800c\u5b9e\u73b0\u5c3e\u9012\u5f52\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef tail_recur(n, res):\n \"\"\"\u5c3e\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 0:\n return res\n # \u5c3e\u9012\u5f52\u8c03\u7528\n return tail_recur(n - 1, res + n)\n
recursion.cpp/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.java/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.cs/* \u5c3e\u9012\u5f52 */\nint TailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return TailRecur(n - 1, res + n);\n}\n
recursion.go/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n int, res int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n-1, res+n)\n}\n
recursion.swift/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n: Int, res: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n: n - 1, res: res + n)\n}\n
recursion.js/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n, res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.ts/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n: number, res: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.dart/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.rs/* \u5c3e\u9012\u5f52 */\nfn tail_recur(n: i32, res: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n tail_recur(n - 1, res + n)\n}\n
recursion.c/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.zig// \u5c3e\u9012\u5f52\u51fd\u6570\nfn tailRecur(n: i32, res: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
\u5c3e\u9012\u5f52\u7684\u6267\u884c\u8fc7\u7a0b\u5982\u56fe 2-5 \u6240\u793a\u3002\u5bf9\u6bd4\u666e\u901a\u9012\u5f52\u548c\u5c3e\u9012\u5f52\uff0c\u4e24\u8005\u7684\u6c42\u548c\u64cd\u4f5c\u7684\u6267\u884c\u70b9\u662f\u4e0d\u540c\u7684\u3002
- \u666e\u901a\u9012\u5f52\uff1a\u6c42\u548c\u64cd\u4f5c\u662f\u5728\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u4e2d\u6267\u884c\u7684\uff0c\u6bcf\u5c42\u8fd4\u56de\u540e\u90fd\u8981\u518d\u6267\u884c\u4e00\u6b21\u6c42\u548c\u64cd\u4f5c\u3002
- \u5c3e\u9012\u5f52\uff1a\u6c42\u548c\u64cd\u4f5c\u662f\u5728\u201c\u9012\u201d\u7684\u8fc7\u7a0b\u4e2d\u6267\u884c\u7684\uff0c\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u53ea\u9700\u5c42\u5c42\u8fd4\u56de\u3002
\u56fe 2-5 \u00a0 \u5c3e\u9012\u5f52\u8fc7\u7a0b
Tip
\u8bf7\u6ce8\u610f\uff0c\u8bb8\u591a\u7f16\u8bd1\u5668\u6216\u89e3\u91ca\u5668\u5e76\u4e0d\u652f\u6301\u5c3e\u9012\u5f52\u4f18\u5316\u3002\u4f8b\u5982\uff0cPython \u9ed8\u8ba4\u4e0d\u652f\u6301\u5c3e\u9012\u5f52\u4f18\u5316\uff0c\u56e0\u6b64\u5373\u4f7f\u51fd\u6570\u662f\u5c3e\u9012\u5f52\u5f62\u5f0f\uff0c\u4ecd\u7136\u53ef\u80fd\u4f1a\u9047\u5230\u6808\u6ea2\u51fa\u95ee\u9898\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3_1","title":"3. \u00a0 \u9012\u5f52\u6811","text":"\u5f53\u5904\u7406\u4e0e\u201c\u5206\u6cbb\u201d\u76f8\u5173\u7684\u7b97\u6cd5\u95ee\u9898\u65f6\uff0c\u9012\u5f52\u5f80\u5f80\u6bd4\u8fed\u4ee3\u7684\u601d\u8def\u66f4\u52a0\u76f4\u89c2\u3001\u4ee3\u7801\u66f4\u52a0\u6613\u8bfb\u3002\u4ee5\u201c\u6590\u6ce2\u90a3\u5951\u6570\u5217\u201d\u4e3a\u4f8b\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u6590\u6ce2\u90a3\u5951\u6570\u5217 \\(0, 1, 1, 2, 3, 5, 8, 13, \\dots\\) \uff0c\u6c42\u8be5\u6570\u5217\u7684\u7b2c \\(n\\) \u4e2a\u6570\u5b57\u3002
\u8bbe\u6590\u6ce2\u90a3\u5951\u6570\u5217\u7684\u7b2c \\(n\\) \u4e2a\u6570\u5b57\u4e3a \\(f(n)\\) \uff0c\u6613\u5f97\u4e24\u4e2a\u7ed3\u8bba\u3002
- \u6570\u5217\u7684\u524d\u4e24\u4e2a\u6570\u5b57\u4e3a \\(f(1) = 0\\) \u548c \\(f(2) = 1\\) \u3002
- \u6570\u5217\u4e2d\u7684\u6bcf\u4e2a\u6570\u5b57\u662f\u524d\u4e24\u4e2a\u6570\u5b57\u7684\u548c\uff0c\u5373 \\(f(n) = f(n - 1) + f(n - 2)\\) \u3002
\u6309\u7167\u9012\u63a8\u5173\u7cfb\u8fdb\u884c\u9012\u5f52\u8c03\u7528\uff0c\u5c06\u524d\u4e24\u4e2a\u6570\u5b57\u4f5c\u4e3a\u7ec8\u6b62\u6761\u4ef6\uff0c\u4fbf\u53ef\u5199\u51fa\u9012\u5f52\u4ee3\u7801\u3002\u8c03\u7528 fib(n) \u5373\u53ef\u5f97\u5230\u6590\u6ce2\u90a3\u5951\u6570\u5217\u7684\u7b2c \\(n\\) \u4e2a\u6570\u5b57\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef fib(n: int) -> int:\n \"\"\"\u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 or n == 2:\n return n - 1\n # \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res = fib(n - 1) + fib(n - 2)\n # \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n
recursion.cpp/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.java/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.cs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint Fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = Fib(n - 1) + Fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.go/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res := fib(n-1) + fib(n-2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.swift/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n: n - 1) + fib(n: n - 2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.js/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.ts/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.dart/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.rs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfn fib(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c\n res\n}\n
recursion.c/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.zig// \u6590\u6ce2\u90a3\u5951\u6570\u5217\nfn fib(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 or n == 2) {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n var res: i32 = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
\u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u6211\u4eec\u5728\u51fd\u6570\u5185\u9012\u5f52\u8c03\u7528\u4e86\u4e24\u4e2a\u51fd\u6570\uff0c\u8fd9\u610f\u5473\u7740\u4ece\u4e00\u4e2a\u8c03\u7528\u4ea7\u751f\u4e86\u4e24\u4e2a\u8c03\u7528\u5206\u652f\u3002\u5982\u56fe 2-6 \u6240\u793a\uff0c\u8fd9\u6837\u4e0d\u65ad\u9012\u5f52\u8c03\u7528\u4e0b\u53bb\uff0c\u6700\u7ec8\u5c06\u4ea7\u751f\u4e00\u68f5\u5c42\u6570\u4e3a \\(n\\) \u7684\u300c\u9012\u5f52\u6811 recursion tree\u300d\u3002
\u56fe 2-6 \u00a0 \u6590\u6ce2\u90a3\u5951\u6570\u5217\u7684\u9012\u5f52\u6811
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u9012\u5f52\u4f53\u73b0\u4e86\u201c\u5c06\u95ee\u9898\u5206\u89e3\u4e3a\u66f4\u5c0f\u5b50\u95ee\u9898\u201d\u7684\u601d\u7ef4\u8303\u5f0f\uff0c\u8fd9\u79cd\u5206\u6cbb\u7b56\u7565\u81f3\u5173\u91cd\u8981\u3002
- \u4ece\u7b97\u6cd5\u89d2\u5ea6\u770b\uff0c\u641c\u7d22\u3001\u6392\u5e8f\u3001\u56de\u6eaf\u3001\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u7b49\u8bb8\u591a\u91cd\u8981\u7b97\u6cd5\u7b56\u7565\u76f4\u63a5\u6216\u95f4\u63a5\u5730\u5e94\u7528\u4e86\u8fd9\u79cd\u601d\u7ef4\u65b9\u5f0f\u3002
- \u4ece\u6570\u636e\u7ed3\u6784\u89d2\u5ea6\u770b\uff0c\u9012\u5f52\u5929\u7136\u9002\u5408\u5904\u7406\u94fe\u8868\u3001\u6811\u548c\u56fe\u7684\u76f8\u5173\u95ee\u9898\uff0c\u56e0\u4e3a\u5b83\u4eec\u975e\u5e38\u9002\u5408\u7528\u5206\u6cbb\u601d\u60f3\u8fdb\u884c\u5206\u6790\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#223","title":"2.2.3 \u00a0 \u4e24\u8005\u5bf9\u6bd4","text":"\u603b\u7ed3\u4ee5\u4e0a\u5185\u5bb9\uff0c\u5982\u8868 2-1 \u6240\u793a\uff0c\u8fed\u4ee3\u548c\u9012\u5f52\u5728\u5b9e\u73b0\u3001\u6027\u80fd\u548c\u9002\u7528\u6027\u4e0a\u6709\u6240\u4e0d\u540c\u3002
\u8868 2-1 \u00a0 \u8fed\u4ee3\u4e0e\u9012\u5f52\u7279\u70b9\u5bf9\u6bd4
\u8fed\u4ee3 \u9012\u5f52 \u5b9e\u73b0\u65b9\u5f0f \u5faa\u73af\u7ed3\u6784 \u51fd\u6570\u8c03\u7528\u81ea\u8eab \u65f6\u95f4\u6548\u7387 \u6548\u7387\u901a\u5e38\u8f83\u9ad8\uff0c\u65e0\u51fd\u6570\u8c03\u7528\u5f00\u9500 \u6bcf\u6b21\u51fd\u6570\u8c03\u7528\u90fd\u4f1a\u4ea7\u751f\u5f00\u9500 \u5185\u5b58\u4f7f\u7528 \u901a\u5e38\u4f7f\u7528\u56fa\u5b9a\u5927\u5c0f\u7684\u5185\u5b58\u7a7a\u95f4 \u7d2f\u79ef\u51fd\u6570\u8c03\u7528\u53ef\u80fd\u4f7f\u7528\u5927\u91cf\u7684\u6808\u5e27\u7a7a\u95f4 \u9002\u7528\u95ee\u9898 \u9002\u7528\u4e8e\u7b80\u5355\u5faa\u73af\u4efb\u52a1\uff0c\u4ee3\u7801\u76f4\u89c2\u3001\u53ef\u8bfb\u6027\u597d \u9002\u7528\u4e8e\u5b50\u95ee\u9898\u5206\u89e3\uff0c\u5982\u6811\u3001\u56fe\u3001\u5206\u6cbb\u3001\u56de\u6eaf\u7b49\uff0c\u4ee3\u7801\u7ed3\u6784\u7b80\u6d01\u3001\u6e05\u6670 Tip
\u5982\u679c\u611f\u89c9\u4ee5\u4e0b\u5185\u5bb9\u7406\u89e3\u56f0\u96be\uff0c\u53ef\u4ee5\u5728\u8bfb\u5b8c\u201c\u6808\u201d\u7ae0\u8282\u540e\u518d\u6765\u590d\u4e60\u3002
\u90a3\u4e48\uff0c\u8fed\u4ee3\u548c\u9012\u5f52\u5177\u6709\u4ec0\u4e48\u5185\u5728\u8054\u7cfb\u5462\uff1f\u4ee5\u4e0a\u8ff0\u9012\u5f52\u51fd\u6570\u4e3a\u4f8b\uff0c\u6c42\u548c\u64cd\u4f5c\u5728\u9012\u5f52\u7684\u201c\u5f52\u201d\u9636\u6bb5\u8fdb\u884c\u3002\u8fd9\u610f\u5473\u7740\u6700\u521d\u88ab\u8c03\u7528\u7684\u51fd\u6570\u5b9e\u9645\u4e0a\u662f\u6700\u540e\u5b8c\u6210\u5176\u6c42\u548c\u64cd\u4f5c\u7684\uff0c\u8fd9\u79cd\u5de5\u4f5c\u673a\u5236\u4e0e\u6808\u7684\u201c\u5148\u5165\u540e\u51fa\u201d\u539f\u5219\u5f02\u66f2\u540c\u5de5\u3002
\u4e8b\u5b9e\u4e0a\uff0c\u201c\u8c03\u7528\u6808\u201d\u548c\u201c\u6808\u5e27\u7a7a\u95f4\u201d\u8fd9\u7c7b\u9012\u5f52\u672f\u8bed\u5df2\u7ecf\u6697\u793a\u4e86\u9012\u5f52\u4e0e\u6808\u4e4b\u95f4\u7684\u5bc6\u5207\u5173\u7cfb\u3002
- \u9012\uff1a\u5f53\u51fd\u6570\u88ab\u8c03\u7528\u65f6\uff0c\u7cfb\u7edf\u4f1a\u5728\u201c\u8c03\u7528\u6808\u201d\u4e0a\u4e3a\u8be5\u51fd\u6570\u5206\u914d\u65b0\u7684\u6808\u5e27\uff0c\u7528\u4e8e\u5b58\u50a8\u51fd\u6570\u7684\u5c40\u90e8\u53d8\u91cf\u3001\u53c2\u6570\u3001\u8fd4\u56de\u5730\u5740\u7b49\u6570\u636e\u3002
- \u5f52\uff1a\u5f53\u51fd\u6570\u5b8c\u6210\u6267\u884c\u5e76\u8fd4\u56de\u65f6\uff0c\u5bf9\u5e94\u7684\u6808\u5e27\u4f1a\u88ab\u4ece\u201c\u8c03\u7528\u6808\u201d\u4e0a\u79fb\u9664\uff0c\u6062\u590d\u4e4b\u524d\u51fd\u6570\u7684\u6267\u884c\u73af\u5883\u3002
\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u8c03\u7528\u6808\u7684\u884c\u4e3a\uff0c\u4ece\u800c\u5c06\u9012\u5f52\u8f6c\u5316\u4e3a\u8fed\u4ee3\u5f62\u5f0f\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef for_loop_recur(n: int) -> int:\n \"\"\"\u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\"\"\"\n # \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack = []\n res = 0\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in range(n, 0, -1):\n # \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while stack:\n # \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop()\n # res = 1+2+3+...+n\n return res\n
recursion.cpp/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack<int> stack;\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.empty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.top();\n stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.java/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<Integer> stack = new Stack<>();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.cs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint ForLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<int> stack = new();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.Push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.Count > 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.go/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n int) int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack := list.New()\n res := 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i := n; i > 0; i-- {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.PushBack(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n for stack.Len() != 0 {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Back().Value.(int)\n stack.Remove(stack.Back())\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.swift/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n: Int) -> Int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [Int] = []\n var res = 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in stride(from: n, to: 0, by: -1) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.isEmpty {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast()\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.js/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n const stack = [];\n let res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.ts/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n: number): number {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808 \n const stack: number[] = [];\n let res: number = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.dart/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n List<int> stack = [];\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.add(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.rs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfn for_loop_recur(n: i32) -> i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n let mut stack = Vec::new();\n let mut res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in (1..=n).rev() {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.is_empty() {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop().unwrap();\n }\n // res = 1+2+3+...+n\n res\n}\n
recursion.c/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n int stack[1000]; // \u501f\u52a9\u4e00\u4e2a\u5927\u6570\u7ec4\u6765\u6a21\u62df\u6808\n int top = -1; // \u6808\u9876\u7d22\u5f15\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack[1 + top++] = i;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (top >= 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack[top--];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.zig// \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\nfn forLoopRecur(comptime n: i32) i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [n]i32 = undefined;\n var res: i32 = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var i: usize = n;\n while (i > 0) {\n stack[i - 1] = @intCast(i);\n i -= 1;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n var index: usize = n;\n while (index > 0) {\n index -= 1;\n res += stack[index];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
\u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u5f53\u9012\u5f52\u8f6c\u5316\u4e3a\u8fed\u4ee3\u540e\uff0c\u4ee3\u7801\u53d8\u5f97\u66f4\u52a0\u590d\u6742\u4e86\u3002\u5c3d\u7ba1\u8fed\u4ee3\u548c\u9012\u5f52\u5728\u5f88\u591a\u60c5\u51b5\u4e0b\u53ef\u4ee5\u4e92\u76f8\u8f6c\u5316\uff0c\u4f46\u4e0d\u4e00\u5b9a\u503c\u5f97\u8fd9\u6837\u505a\uff0c\u6709\u4ee5\u4e0b\u4e24\u70b9\u539f\u56e0\u3002
- \u8f6c\u5316\u540e\u7684\u4ee3\u7801\u53ef\u80fd\u66f4\u52a0\u96be\u4ee5\u7406\u89e3\uff0c\u53ef\u8bfb\u6027\u66f4\u5dee\u3002
- \u5bf9\u4e8e\u67d0\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\u7684\u884c\u4e3a\u53ef\u80fd\u975e\u5e38\u56f0\u96be\u3002
\u603b\u4e4b\uff0c\u9009\u62e9\u8fed\u4ee3\u8fd8\u662f\u9012\u5f52\u53d6\u51b3\u4e8e\u7279\u5b9a\u95ee\u9898\u7684\u6027\u8d28\u3002\u5728\u7f16\u7a0b\u5b9e\u8df5\u4e2d\uff0c\u6743\u8861\u4e24\u8005\u7684\u4f18\u52a3\u5e76\u6839\u636e\u60c5\u5883\u9009\u62e9\u5408\u9002\u7684\u65b9\u6cd5\u81f3\u5173\u91cd\u8981\u3002
"},{"location":"chapter_computational_complexity/performance_evaluation/","title":"2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30","text":"\u5728\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u8ffd\u6c42\u4ee5\u4e0b\u4e24\u4e2a\u5c42\u9762\u7684\u76ee\u6807\u3002
- \u627e\u5230\u95ee\u9898\u89e3\u6cd5\uff1a\u7b97\u6cd5\u9700\u8981\u5728\u89c4\u5b9a\u7684\u8f93\u5165\u8303\u56f4\u5185\u53ef\u9760\u5730\u6c42\u5f97\u95ee\u9898\u7684\u6b63\u786e\u89e3\u3002
- \u5bfb\u6c42\u6700\u4f18\u89e3\u6cd5\uff1a\u540c\u4e00\u4e2a\u95ee\u9898\u53ef\u80fd\u5b58\u5728\u591a\u79cd\u89e3\u6cd5\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u5c3d\u53ef\u80fd\u9ad8\u6548\u7684\u7b97\u6cd5\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u5728\u80fd\u591f\u89e3\u51b3\u95ee\u9898\u7684\u524d\u63d0\u4e0b\uff0c\u7b97\u6cd5\u6548\u7387\u5df2\u6210\u4e3a\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\uff0c\u5b83\u5305\u62ec\u4ee5\u4e0b\u4e24\u4e2a\u7ef4\u5ea6\u3002
- \u65f6\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u5feb\u6162\u3002
- \u7a7a\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u7684\u5927\u5c0f\u3002
\u7b80\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u8bbe\u8ba1\u201c\u65e2\u5feb\u53c8\u7701\u201d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u3002\u800c\u6709\u6548\u5730\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u81f3\u5173\u91cd\u8981\uff0c\u56e0\u4e3a\u53ea\u6709\u8fd9\u6837\u6211\u4eec\u624d\u80fd\u5c06\u5404\u79cd\u7b97\u6cd5\u8fdb\u884c\u5bf9\u6bd4\uff0c\u8fdb\u800c\u6307\u5bfc\u7b97\u6cd5\u8bbe\u8ba1\u4e0e\u4f18\u5316\u8fc7\u7a0b\u3002
\u6548\u7387\u8bc4\u4f30\u65b9\u6cd5\u4e3b\u8981\u5206\u4e3a\u4e24\u79cd\uff1a\u5b9e\u9645\u6d4b\u8bd5\u3001\u7406\u8bba\u4f30\u7b97\u3002
"},{"location":"chapter_computational_complexity/performance_evaluation/#211","title":"2.1.1 \u00a0 \u5b9e\u9645\u6d4b\u8bd5","text":"\u5047\u8bbe\u6211\u4eec\u73b0\u5728\u6709\u7b97\u6cd5 A \u548c\u7b97\u6cd5 B \uff0c\u5b83\u4eec\u90fd\u80fd\u89e3\u51b3\u540c\u4e00\u95ee\u9898\uff0c\u73b0\u5728\u9700\u8981\u5bf9\u6bd4\u8fd9\u4e24\u4e2a\u7b97\u6cd5\u7684\u6548\u7387\u3002\u6700\u76f4\u63a5\u7684\u65b9\u6cd5\u662f\u627e\u4e00\u53f0\u8ba1\u7b97\u673a\uff0c\u8fd0\u884c\u8fd9\u4e24\u4e2a\u7b97\u6cd5\uff0c\u5e76\u76d1\u63a7\u8bb0\u5f55\u5b83\u4eec\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u5185\u5b58\u5360\u7528\u60c5\u51b5\u3002\u8fd9\u79cd\u8bc4\u4f30\u65b9\u5f0f\u80fd\u591f\u53cd\u6620\u771f\u5b9e\u60c5\u51b5\uff0c\u4f46\u4e5f\u5b58\u5728\u8f83\u5927\u7684\u5c40\u9650\u6027\u3002
\u4e00\u65b9\u9762\uff0c\u96be\u4ee5\u6392\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5e72\u6270\u56e0\u7d20\u3002\u786c\u4ef6\u914d\u7f6e\u4f1a\u5f71\u54cd\u7b97\u6cd5\u7684\u6027\u80fd\u3002\u6bd4\u5982\u5728\u67d0\u53f0\u8ba1\u7b97\u673a\u4e2d\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u77ed\uff1b\u4f46\u5728\u53e6\u4e00\u53f0\u914d\u7f6e\u4e0d\u540c\u7684\u8ba1\u7b97\u673a\u4e2d\uff0c\u53ef\u80fd\u5f97\u5230\u76f8\u53cd\u7684\u6d4b\u8bd5\u7ed3\u679c\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u9700\u8981\u5728\u5404\u79cd\u673a\u5668\u4e0a\u8fdb\u884c\u6d4b\u8bd5\uff0c\u7edf\u8ba1\u5e73\u5747\u6548\u7387\uff0c\u800c\u8fd9\u662f\u4e0d\u73b0\u5b9e\u7684\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5c55\u5f00\u5b8c\u6574\u6d4b\u8bd5\u975e\u5e38\u8017\u8d39\u8d44\u6e90\u3002\u968f\u7740\u8f93\u5165\u6570\u636e\u91cf\u7684\u53d8\u5316\uff0c\u7b97\u6cd5\u4f1a\u8868\u73b0\u51fa\u4e0d\u540c\u7684\u6548\u7387\u3002\u4f8b\u5982\uff0c\u5728\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u77ed\uff1b\u800c\u5728\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5927\u65f6\uff0c\u6d4b\u8bd5\u7ed3\u679c\u53ef\u80fd\u6070\u6070\u76f8\u53cd\u3002\u56e0\u6b64\uff0c\u4e3a\u4e86\u5f97\u5230\u6709\u8bf4\u670d\u529b\u7684\u7ed3\u8bba\uff0c\u6211\u4eec\u9700\u8981\u6d4b\u8bd5\u5404\u79cd\u89c4\u6a21\u7684\u8f93\u5165\u6570\u636e\uff0c\u800c\u8fd9\u9700\u8981\u8017\u8d39\u5927\u91cf\u7684\u8ba1\u7b97\u8d44\u6e90\u3002
"},{"location":"chapter_computational_complexity/performance_evaluation/#212","title":"2.1.2 \u00a0 \u7406\u8bba\u4f30\u7b97","text":"\u7531\u4e8e\u5b9e\u9645\u6d4b\u8bd5\u5177\u6709\u8f83\u5927\u7684\u5c40\u9650\u6027\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u4ec5\u901a\u8fc7\u4e00\u4e9b\u8ba1\u7b97\u6765\u8bc4\u4f30\u7b97\u6cd5\u7684\u6548\u7387\u3002\u8fd9\u79cd\u4f30\u7b97\u65b9\u6cd5\u88ab\u79f0\u4e3a\u300c\u6e10\u8fd1\u590d\u6742\u5ea6\u5206\u6790 asymptotic complexity analysis\u300d\uff0c\u7b80\u79f0\u300c\u590d\u6742\u5ea6\u5206\u6790\u300d\u3002
\u590d\u6742\u5ea6\u5206\u6790\u80fd\u591f\u4f53\u73b0\u7b97\u6cd5\u8fd0\u884c\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e4b\u95f4\u7684\u5173\u7cfb\u3002\u5b83\u63cf\u8ff0\u4e86\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\uff0c\u7b97\u6cd5\u6267\u884c\u6240\u9700\u65f6\u95f4\u548c\u7a7a\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u5b9a\u4e49\u6709\u4e9b\u62d7\u53e3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5176\u5206\u4e3a\u4e09\u4e2a\u91cd\u70b9\u6765\u7406\u89e3\u3002
- \u201c\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\u201d\u5206\u522b\u5bf9\u5e94\u300c\u65f6\u95f4\u590d\u6742\u5ea6 time complexity\u300d\u548c\u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u3002
- \u201c\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\u201d\u610f\u5473\u7740\u590d\u6742\u5ea6\u53cd\u6620\u4e86\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u4e0e\u8f93\u5165\u6570\u636e\u4f53\u91cf\u4e4b\u95f4\u7684\u5173\u7cfb\u3002
- \u201c\u65f6\u95f4\u548c\u7a7a\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u201d\u8868\u793a\u590d\u6742\u5ea6\u5206\u6790\u5173\u6ce8\u7684\u4e0d\u662f\u8fd0\u884c\u65f6\u95f4\u6216\u5360\u7528\u7a7a\u95f4\u7684\u5177\u4f53\u503c\uff0c\u800c\u662f\u65f6\u95f4\u6216\u7a7a\u95f4\u589e\u957f\u7684\u201c\u5feb\u6162\u201d\u3002
\u590d\u6742\u5ea6\u5206\u6790\u514b\u670d\u4e86\u5b9e\u9645\u6d4b\u8bd5\u65b9\u6cd5\u7684\u5f0a\u7aef\uff0c\u4f53\u73b0\u5728\u4ee5\u4e0b\u4e24\u4e2a\u65b9\u9762\u3002
- \u5b83\u72ec\u7acb\u4e8e\u6d4b\u8bd5\u73af\u5883\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\u3002
- \u5b83\u53ef\u4ee5\u4f53\u73b0\u4e0d\u540c\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6548\u7387\uff0c\u5c24\u5176\u662f\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6027\u80fd\u3002
Tip
\u5982\u679c\u4f60\u4ecd\u5bf9\u590d\u6742\u5ea6\u7684\u6982\u5ff5\u611f\u5230\u56f0\u60d1\uff0c\u65e0\u987b\u62c5\u5fc3\uff0c\u6211\u4eec\u4f1a\u5728\u540e\u7eed\u7ae0\u8282\u4e2d\u8be6\u7ec6\u4ecb\u7ecd\u3002
\u590d\u6742\u5ea6\u5206\u6790\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u628a\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u7684\u201c\u6807\u5c3a\u201d\uff0c\u4f7f\u6211\u4eec\u53ef\u4ee5\u8861\u91cf\u6267\u884c\u67d0\u4e2a\u7b97\u6cd5\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\uff0c\u5bf9\u6bd4\u4e0d\u540c\u7b97\u6cd5\u4e4b\u95f4\u7684\u6548\u7387\u3002
\u590d\u6742\u5ea6\u662f\u4e2a\u6570\u5b66\u6982\u5ff5\uff0c\u5bf9\u4e8e\u521d\u5b66\u8005\u53ef\u80fd\u6bd4\u8f83\u62bd\u8c61\uff0c\u5b66\u4e60\u96be\u5ea6\u76f8\u5bf9\u8f83\u9ad8\u3002\u4ece\u8fd9\u4e2a\u89d2\u5ea6\u770b\uff0c\u590d\u6742\u5ea6\u5206\u6790\u53ef\u80fd\u4e0d\u592a\u9002\u5408\u4f5c\u4e3a\u6700\u5148\u4ecb\u7ecd\u7684\u5185\u5bb9\u3002\u7136\u800c\uff0c\u5f53\u6211\u4eec\u8ba8\u8bba\u67d0\u4e2a\u6570\u636e\u7ed3\u6784\u6216\u7b97\u6cd5\u7684\u7279\u70b9\u65f6\uff0c\u96be\u4ee5\u907f\u514d\u8981\u5206\u6790\u5176\u8fd0\u884c\u901f\u5ea6\u548c\u7a7a\u95f4\u4f7f\u7528\u60c5\u51b5\u3002
\u7efc\u4e0a\u6240\u8ff0\uff0c\u5efa\u8bae\u4f60\u5728\u6df1\u5165\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u524d\uff0c\u5148\u5bf9\u590d\u6742\u5ea6\u5206\u6790\u5efa\u7acb\u521d\u6b65\u7684\u4e86\u89e3\uff0c\u4ee5\u4fbf\u80fd\u591f\u5b8c\u6210\u7b80\u5355\u7b97\u6cd5\u7684\u590d\u6742\u5ea6\u5206\u6790\u3002
"},{"location":"chapter_computational_complexity/space_complexity/","title":"2.4 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6","text":"\u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u6982\u5ff5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u5e38\u7c7b\u4f3c\uff0c\u53ea\u9700\u5c06\u201c\u8fd0\u884c\u65f6\u95f4\u201d\u66ff\u6362\u4e3a\u201c\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u201d\u3002
"},{"location":"chapter_computational_complexity/space_complexity/#241","title":"2.4.1 \u00a0 \u7b97\u6cd5\u76f8\u5173\u7a7a\u95f4","text":"\u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u3002
- \u8f93\u5165\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u5165\u6570\u636e\u3002
- \u6682\u5b58\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u53d8\u91cf\u3001\u5bf9\u8c61\u3001\u51fd\u6570\u4e0a\u4e0b\u6587\u7b49\u6570\u636e\u3002
- \u8f93\u51fa\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u51fa\u6570\u636e\u3002
\u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u7edf\u8ba1\u8303\u56f4\u662f\u201c\u6682\u5b58\u7a7a\u95f4\u201d\u52a0\u4e0a\u201c\u8f93\u51fa\u7a7a\u95f4\u201d\u3002
\u6682\u5b58\u7a7a\u95f4\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\u3002
- \u6682\u5b58\u6570\u636e\uff1a\u7528\u4e8e\u4fdd\u5b58\u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u5404\u79cd\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u7b49\u3002
- \u6808\u5e27\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u8c03\u7528\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u6570\u636e\u3002\u7cfb\u7edf\u5728\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\u90fd\u4f1a\u5728\u6808\u9876\u90e8\u521b\u5efa\u4e00\u4e2a\u6808\u5e27\uff0c\u51fd\u6570\u8fd4\u56de\u540e\uff0c\u6808\u5e27\u7a7a\u95f4\u4f1a\u88ab\u91ca\u653e\u3002
- \u6307\u4ee4\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u7f16\u8bd1\u540e\u7684\u7a0b\u5e8f\u6307\u4ee4\uff0c\u5728\u5b9e\u9645\u7edf\u8ba1\u4e2d\u901a\u5e38\u5ffd\u7565\u4e0d\u8ba1\u3002
\u5728\u5206\u6790\u4e00\u6bb5\u7a0b\u5e8f\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u7edf\u8ba1\u6682\u5b58\u6570\u636e\u3001\u6808\u5e27\u7a7a\u95f4\u548c\u8f93\u51fa\u6570\u636e\u4e09\u90e8\u5206\uff0c\u5982\u56fe 2-15 \u6240\u793a\u3002
\u56fe 2-15 \u00a0 \u7b97\u6cd5\u4f7f\u7528\u7684\u76f8\u5173\u7a7a\u95f4
\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig class Node:\n \"\"\"\u7c7b\"\"\"\n def __init__(self, x: int):\n self.val: int = x # \u8282\u70b9\u503c\n self.next: Node | None = None # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n\ndef function() -> int:\n \"\"\"\u51fd\u6570\"\"\"\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n\ndef algorithm(n) -> int: # \u8f93\u5165\u6570\u636e\n A = 0 # \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff0c\u4e00\u822c\u7528\u5927\u5199\u5b57\u6bcd\u8868\u793a\uff09\n b = 0 # \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n node = Node(0) # \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n c = function() # \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return A + b + c # \u8f93\u51fa\u6570\u636e\n
/* \u7ed3\u6784\u4f53 */\nstruct Node {\n int val;\n Node *next;\n Node(int x) : val(x), next(nullptr) {}\n};\n\n/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node* node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = func(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n int val;\n Node next;\n Node(int x) { val = x; }\n}\n\n/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n final int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node(int x) {\n int val = x;\n Node next;\n}\n\n/* \u51fd\u6570 */\nint Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint Algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node node = new(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = Function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7ed3\u6784\u4f53 */\ntype node struct {\n val int\n next *node\n}\n\n/* \u521b\u5efa node \u7ed3\u6784\u4f53 */\nfunc newNode(val int) *node {\n return &node{val: val}\n}\n\n/* \u51fd\u6570 */\nfunc function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\nfunc algorithm(n int) int { // \u8f93\u5165\u6570\u636e\n const a = 0 // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n b := 0 // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n newNode(0) // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n c := function() // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n var val: Int\n var next: Node?\n\n init(x: Int) {\n val = x\n }\n}\n\n/* \u51fd\u6570 */\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\nfunc algorithm(n: Int) -> Int { // \u8f93\u5165\u6570\u636e\n let a = 0 // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n var b = 0 // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n let node = Node(x: 0) // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n let c = function() // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n val;\n next;\n constructor(val) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = null; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n\n/* \u51fd\u6570 */\nfunction constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\nfunction algorithm(n) { // \u8f93\u5165\u6570\u636e\n const a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n let b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n const node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n const c = constFunc(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n val: number;\n next: Node | null;\n constructor(val?: number) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = null; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n\n/* \u51fd\u6570 */\nfunction constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\nfunction algorithm(n: number): number { // \u8f93\u5165\u6570\u636e\n const a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n let b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n const node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n const c = constFunc(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n int val;\n Node next;\n Node(this.val, [this.next]);\n}\n\n/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node node = Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* \u7ed3\u6784\u4f53 */\nstruct Node {\n val: i32,\n next: Option<Rc<RefCell<Node>>>,\n}\n\n/* \u521b\u5efa Node \u7ed3\u6784\u4f53 */\nimpl Node {\n fn new(val: i32) -> Self {\n Self { val: val, next: None }\n }\n}\n\n/* \u51fd\u6570 */\nfn function() -> i32 { \n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nfn algorithm(n: i32) -> i32 { // \u8f93\u5165\u6570\u636e\n const a: i32 = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n let mut b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n let node = Node::new(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n let c = function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n int c = func(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
\n
"},{"location":"chapter_computational_complexity/space_complexity/#242","title":"2.4.2 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u5927\u81f4\u76f8\u540c\uff0c\u53ea\u9700\u5c06\u7edf\u8ba1\u5bf9\u8c61\u4ece\u201c\u64cd\u4f5c\u6570\u91cf\u201d\u8f6c\u4e3a\u201c\u4f7f\u7528\u7a7a\u95f4\u5927\u5c0f\u201d\u3002
\u800c\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u540c\u7684\u662f\uff0c\u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u3002\u8fd9\u662f\u56e0\u4e3a\u5185\u5b58\u7a7a\u95f4\u662f\u4e00\u9879\u786c\u6027\u8981\u6c42\uff0c\u6211\u4eec\u5fc5\u987b\u786e\u4fdd\u5728\u6240\u6709\u8f93\u5165\u6570\u636e\u4e0b\u90fd\u6709\u8db3\u591f\u7684\u5185\u5b58\u7a7a\u95f4\u9884\u7559\u3002
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u201c\u6700\u5dee\u201d\u6709\u4e24\u5c42\u542b\u4e49\u3002
- \u4ee5\u6700\u5dee\u8f93\u5165\u6570\u636e\u4e3a\u51c6\uff1a\u5f53 \\(n < 10\\) \u65f6\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff1b\u4f46\u5f53 \\(n > 10\\) \u65f6\uff0c\u521d\u59cb\u5316\u7684\u6570\u7ec4
nums \u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff0c\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002 - \u4ee5\u7b97\u6cd5\u8fd0\u884c\u4e2d\u7684\u5cf0\u503c\u5185\u5b58\u4e3a\u51c6\uff1a\u4f8b\u5982\uff0c\u7a0b\u5e8f\u5728\u6267\u884c\u6700\u540e\u4e00\u884c\u4e4b\u524d\uff0c\u5360\u7528 \\(O(1)\\) \u7a7a\u95f4\uff1b\u5f53\u521d\u59cb\u5316\u6570\u7ec4
nums \u65f6\uff0c\u7a0b\u5e8f\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff0c\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 0 # O(1)\n b = [0] * 10000 # O(1)\n if n > 10:\n nums = [0] * n # O(n)\n
void algorithm(int n) {\n int a = 0; // O(1)\n vector<int> b(10000); // O(1)\n if (n > 10)\n vector<int> nums(n); // O(n)\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10)\n int[] nums = new int[n]; // O(n)\n}\n
void Algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10) {\n int[] nums = new int[n]; // O(n)\n }\n}\n
func algorithm(n int) {\n a := 0 // O(1)\n b := make([]int, 10000) // O(1)\n var nums []int\n if n > 10 {\n nums := make([]int, n) // O(n)\n }\n fmt.Println(a, b, nums)\n}\n
func algorithm(n: Int) {\n let a = 0 // O(1)\n let b = Array(repeating: 0, count: 10000) // O(1)\n if n > 10 {\n let nums = Array(repeating: 0, count: n) // O(n)\n }\n}\n
function algorithm(n) {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
function algorithm(n: number): void {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n List<int> b = List.filled(10000, 0); // O(1)\n if (n > 10) {\n List<int> nums = List.filled(n, 0); // O(n)\n }\n}\n
fn algorithm(n: i32) {\n let a = 0; // O(1)\n let b = [0; 10000]; // O(1)\n if n > 10 {\n let nums = vec![0; n as usize]; // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int b[10000]; // O(1)\n if (n > 10)\n int nums[n] = {0}; // O(n)\n}\n
\n
\u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u9700\u8981\u6ce8\u610f\u7edf\u8ba1\u6808\u5e27\u7a7a\u95f4\u3002\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def function() -> int:\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n\ndef loop(n: int):\n \"\"\"\u5faa\u73af O(1)\"\"\"\n for _ in range(n):\n function()\n\ndef recur(n: int) -> int:\n \"\"\"\u9012\u5f52 O(n)\"\"\"\n if n == 1: return\n return recur(n - 1)\n
int func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid Loop(int n) {\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n/* \u9012\u5f52 O(n) */\nint Recur(int n) {\n if (n == 1) return 1;\n return Recur(n - 1);\n}\n
func function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5faa\u73af O(1) */\nfunc loop(n int) {\n for i := 0; i < n; i++ {\n function()\n }\n}\n\n/* \u9012\u5f52 O(n) */\nfunc recur(n int) {\n if n == 1 {\n return\n }\n recur(n - 1)\n}\n
@discardableResult\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5faa\u73af O(1) */\nfunc loop(n: Int) {\n for _ in 0 ..< n {\n function()\n }\n}\n\n/* \u9012\u5f52 O(n) */\nfunc recur(n: Int) {\n if n == 1 {\n return\n }\n recur(n: n - 1)\n}\n
function constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n) {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n) {\n if (n === 1) return;\n return recur(n - 1);\n}\n
function constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n: number): void {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n: number): void {\n if (n === 1) return;\n return recur(n - 1);\n}\n
int function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
fn function() -> i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nfn loop(n: i32) {\n for i in 0..n {\n function();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(n: i32) {\n if n == 1 {\n return;\n }\n recur(n - 1);\n}\n
int func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
\n
\u51fd\u6570 loop() \u548c recur() \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n)\\) \uff0c\u4f46\u7a7a\u95f4\u590d\u6742\u5ea6\u4e0d\u540c\u3002
- \u51fd\u6570
loop() \u5728\u5faa\u73af\u4e2d\u8c03\u7528\u4e86 \\(n\\) \u6b21 function() \uff0c\u6bcf\u8f6e\u4e2d\u7684 function() \u90fd\u8fd4\u56de\u5e76\u91ca\u653e\u4e86\u6808\u5e27\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \u3002 - \u9012\u5f52\u51fd\u6570
recur() \u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f1a\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 recur() \uff0c\u4ece\u800c\u5360\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002
"},{"location":"chapter_computational_complexity/space_complexity/#243","title":"2.4.3 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u56fe 2-16 \u5c55\u793a\u4e86\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\uff08\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\uff09\u3002
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n^2) < O(2^n) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} \\end{aligned} \\] \u56fe 2-16 \u00a0 \u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b
"},{"location":"chapter_computational_complexity/space_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"\u5e38\u6570\u9636\u5e38\u89c1\u4e8e\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u7684\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u5728\u5faa\u73af\u4e2d\u521d\u59cb\u5316\u53d8\u91cf\u6216\u8c03\u7528\u51fd\u6570\u800c\u5360\u7528\u7684\u5185\u5b58\uff0c\u5728\u8fdb\u5165\u4e0b\u4e00\u5faa\u73af\u540e\u5c31\u4f1a\u88ab\u91ca\u653e\uff0c\u56e0\u6b64\u4e0d\u4f1a\u7d2f\u79ef\u5360\u7528\u7a7a\u95f4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef function() -> int:\n \"\"\"\u51fd\u6570\"\"\"\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n\ndef constant(n: int):\n \"\"\"\u5e38\u6570\u9636\"\"\"\n # \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n a = 0\n nums = [0] * 10000\n node = ListNode(0)\n # \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n c = 0\n # \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n function()\n
space_complexity.cpp/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n vector<int> nums(10000);\n ListNode node(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.java/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.cs/* \u51fd\u6570 */\nint Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid Constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n
space_complexity.go/* \u51fd\u6570 */\nfunc function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc spaceConstant(n int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0\n b := 0\n nums := make([]int, 10000)\n ListNode := newNode(0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n var c int\n for i := 0; i < n; i++ {\n c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i := 0; i < n; i++ {\n function()\n }\n fmt.Println(a, b, nums, c, ListNode)\n}\n
space_complexity.swift/* \u51fd\u6570 */\n@discardableResult\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n let a = 0\n var b = 0\n let nums = Array(repeating: 0, count: 10000)\n let node = ListNode(x: 0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n let c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n function()\n }\n}\n
space_complexity.js/* \u51fd\u6570 */\nfunction constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.ts/* \u51fd\u6570 */\nfunction constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n: number): void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.dart/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n List<int> nums = List.filled(10000, 0);\n ListNode node = ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.rs/* \u51fd\u6570 */\nfn function() ->i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\n#[allow(unused)]\nfn constant(n: i32) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const A: i32 = 0;\n let b = 0;\n let nums = vec![0; 10000];\n let node = ListNode::new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n let c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n function();\n }\n}\n
space_complexity.c/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n int nums[1000];\n ListNode *node = newListNode(0);\n free(node);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.zig// \u51fd\u6570\nfn function() i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n// \u5e38\u6570\u9636\nfn constant(n: i32) void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a: i32 = 0;\n var b: i32 = 0;\n var nums = [_]i32{0}**10000;\n var node = inc.ListNode(i32){.val = 0};\n var i: i32 = 0;\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n while (i < n) : (i += 1) {\n var c: i32 = 0;\n _ = c;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n i = 0;\n while (i < n) : (i += 1) {\n _ = function();\n }\n _ = a;\n _ = b;\n _ = nums;\n _ = node;\n}\n
"},{"location":"chapter_computational_complexity/space_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"\u7ebf\u6027\u9636\u5e38\u89c1\u4e8e\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u6b63\u6bd4\u7684\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u7b49\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear(n: int):\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n # \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n nums = [0] * n\n # \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n hmap = dict[int, str]()\n for i in range(n):\n hmap[i] = str(i)\n
space_complexity.cpp/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n vector<int> nums(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n vector<ListNode> nodes;\n for (int i = 0; i < n; i++) {\n nodes.push_back(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n unordered_map<int, string> map;\n for (int i = 0; i < n; i++) {\n map[i] = to_string(i);\n }\n}\n
space_complexity.java/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n nodes.add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<Integer, String> map = new HashMap<>();\n for (int i = 0; i < n; i++) {\n map.put(i, String.valueOf(i));\n }\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636 */\nvoid Linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (int i = 0; i < n; i++) {\n nodes.Add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Dictionary<int, string> map = [];\n for (int i = 0; i < n; i++) {\n map.Add(i, i.ToString());\n }\n}\n
space_complexity.go/* \u7ebf\u6027\u9636 */\nfunc spaceLinear(n int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n _ = make([]int, n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes []*node\n for i := 0; i < n; i++ {\n nodes = append(nodes, newNode(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n m := make(map[int]string, n)\n for i := 0; i < n; i++ {\n m[i] = strconv.Itoa(i)\n }\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let nums = Array(repeating: 0, count: n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let nodes = (0 ..< n).map { ListNode(x: $0) }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, \"\\($0)\") })\n}\n
space_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes: ListNode[] = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n List<int> nums = List.filled(n, 0);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (var i = 0; i < n; i++) {\n nodes.add(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<int, String> map = HashMap();\n for (var i = 0; i < n; i++) {\n map.putIfAbsent(i, () => i.toString());\n }\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636 */\n#[allow(unused)]\nfn linear(n: i32) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nums = vec![0; n as usize];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nodes = Vec::new();\n for i in 0..n {\n nodes.push(ListNode::new(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut map = HashMap::new();\n for i in 0..n {\n map.insert(i, i.to_string());\n }\n}\n
space_complexity.c/* \u54c8\u5e0c\u8868 */\ntypedef struct {\n int key;\n int val;\n UT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n} HashTable;\n\n/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int *nums = malloc(sizeof(int) * n);\n free(nums);\n\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n ListNode **nodes = malloc(sizeof(ListNode *) * n);\n for (int i = 0; i < n; i++) {\n nodes[i] = newListNode(i);\n }\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(nodes[i]);\n }\n free(nodes);\n\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n HashTable *h = NULL;\n for (int i = 0; i < n; i++) {\n HashTable *tmp = malloc(sizeof(HashTable));\n tmp->key = i;\n tmp->val = i;\n HASH_ADD_INT(h, key, tmp);\n }\n\n // \u5185\u5b58\u91ca\u653e\n HashTable *curr, *tmp;\n HASH_ITER(hh, h, curr, tmp) {\n HASH_DEL(h, curr);\n free(curr);\n }\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\nfn linear(comptime n: i32) !void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n var nums = [_]i32{0}**n;\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes = std.ArrayList(i32).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n try nodes.append(i);\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var map = std.AutoArrayHashMap(i32, []const u8).init(std.heap.page_allocator);\n defer map.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n const string = try std.fmt.allocPrint(std.heap.page_allocator, \"{d}\", .{j});\n defer std.heap.page_allocator.free(string);\n try map.put(i, string);\n }\n _ = nums;\n}\n
\u5982\u56fe 2-17 \u6240\u793a\uff0c\u6b64\u51fd\u6570\u7684\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u5373\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 linear_recur() \u51fd\u6570\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear_recur(n: int):\n \"\"\"\u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n print(\"\u9012\u5f52 n =\", n)\n if n == 1:\n return\n linear_recur(n - 1)\n
space_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n cout << \"\u9012\u5f52 n = \" << n << endl;\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.java/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n System.out.println(\"\u9012\u5f52 n = \" + n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid LinearRecur(int n) {\n Console.WriteLine(\"\u9012\u5f52 n = \" + n);\n if (n == 1) return;\n LinearRecur(n - 1);\n}\n
space_complexity.go/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceLinearRecur(n int) {\n fmt.Println(\"\u9012\u5f52 n =\", n)\n if n == 1 {\n return\n }\n spaceLinearRecur(n - 1)\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc linearRecur(n: Int) {\n print(\"\u9012\u5f52 n = \\(n)\")\n if n == 1 {\n return\n }\n linearRecur(n: n - 1)\n}\n
space_complexity.js/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n) {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n: number): void {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n print('\u9012\u5f52 n = $n');\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn linear_recur(n: i32) {\n println!(\"\u9012\u5f52 n = {}\", n);\n if n == 1 {return};\n linear_recur(n - 1);\n}\n
space_complexity.c/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n printf(\"\u9012\u5f52 n = %d\\r\\n\", n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn linearRecur(comptime n: i32) void {\n std.debug.print(\"\u9012\u5f52 n = {}\\n\", .{n});\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
\u56fe 2-17 \u00a0 \u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u7ebf\u6027\u9636\u7a7a\u95f4\u590d\u6742\u5ea6
"},{"location":"chapter_computational_complexity/space_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"\u5e73\u65b9\u9636\u5e38\u89c1\u4e8e\u77e9\u9635\u548c\u56fe\uff0c\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u5e73\u65b9\u5173\u7cfb\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic(n: int):\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n # \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n num_matrix = [[0] * n for _ in range(n)]\n
space_complexity.cpp/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n vector<vector<int>> numMatrix;\n for (int i = 0; i < n; i++) {\n vector<int> tmp;\n for (int j = 0; j < n; j++) {\n tmp.push_back(0);\n }\n numMatrix.push_back(tmp);\n }\n}\n
space_complexity.java/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[][] numMatrix = new int[n][n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<Integer>> numList = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n List<Integer> tmp = new ArrayList<>();\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636 */\nvoid Quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[,] numMatrix = new int[n, n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (int i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.Add(0);\n }\n numList.Add(tmp);\n }\n}\n
space_complexity.go/* \u5e73\u65b9\u9636 */\nfunc spaceQuadratic(n int) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n numMatrix := make([][]int, n)\n for i := 0; i < n; i++ {\n numMatrix[i] = make([]int, n)\n }\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let numList = Array(repeating: Array(repeating: 0, count: n), count: n)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): void {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numMatrix = List.generate(n, (_) => List.filled(n, 0));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (var i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636 */\n#[allow(unused)]\nfn quadratic(n: i32) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n let num_matrix = vec![vec![0; n as usize]; n as usize];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let mut num_list = Vec::new();\n for i in 0..n {\n let mut tmp = Vec::new();\n for j in 0..n {\n tmp.push(0);\n }\n num_list.push(tmp);\n }\n}\n
space_complexity.c/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n int **numMatrix = malloc(sizeof(int *) * n);\n for (int i = 0; i < n; i++) {\n int *tmp = malloc(sizeof(int) * n);\n for (int j = 0; j < n; j++) {\n tmp[j] = 0;\n }\n numMatrix[i] = tmp;\n }\n\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(numMatrix[i]);\n }\n free(numMatrix);\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) !void {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n var nodes = std.ArrayList(std.ArrayList(i32)).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n var tmp = std.ArrayList(i32).init(std.heap.page_allocator);\n defer tmp.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n try tmp.append(0);\n }\n try nodes.append(tmp);\n }\n}\n
\u5982\u56fe 2-18 \u6240\u793a\uff0c\u8be5\u51fd\u6570\u7684\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u5728\u6bcf\u4e2a\u9012\u5f52\u51fd\u6570\u4e2d\u90fd\u521d\u59cb\u5316\u4e86\u4e00\u4e2a\u6570\u7ec4\uff0c\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\)\u3001\\(n-1\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \uff0c\u5e73\u5747\u957f\u5ea6\u4e3a \\(n / 2\\) \uff0c\u56e0\u6b64\u603b\u4f53\u5360\u7528 \\(O(n^2)\\) \u7a7a\u95f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic_recur(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 0:\n return 0\n # \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n nums = [0] * n\n return quadratic_recur(n - 1)\n
space_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n vector<int> nums(n);\n cout << \"\u9012\u5f52 n = \" << n << \" \u4e2d\u7684 nums \u957f\u5ea6 = \" << nums.size() << endl;\n return quadraticRecur(n - 1);\n}\n
space_complexity.java/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n int[] nums = new int[n];\n System.out.println(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.length);\n return quadraticRecur(n - 1);\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint QuadraticRecur(int n) {\n if (n <= 0) return 0;\n int[] nums = new int[n];\n Console.WriteLine(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.Length);\n return QuadraticRecur(n - 1);\n}\n
space_complexity.go/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceQuadraticRecur(n int) int {\n if n <= 0 {\n return 0\n }\n nums := make([]int, n)\n fmt.Printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d \\n\", n, len(nums))\n return spaceQuadraticRecur(n - 1)\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\n@discardableResult\nfunc quadraticRecur(n: Int) -> Int {\n if n <= 0 {\n return 0\n }\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = Array(repeating: 0, count: n)\n print(\"\u9012\u5f52 n = \\(n) \u4e2d\u7684 nums \u957f\u5ea6 = \\(nums.count)\")\n return quadraticRecur(n: n - 1)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n) {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n: number): number {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0) return 0;\n List<int> nums = List.filled(n, 0);\n print('\u9012\u5f52 n = $n \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}');\n return quadraticRecur(n - 1);\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn quadratic_recur(n: i32) -> i32 {\n if n <= 0 {return 0};\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = vec![0; n as usize];\n println!(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\", n, nums.len());\n return quadratic_recur(n - 1);\n}\n
space_complexity.c/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n int *nums = malloc(sizeof(int) * n);\n printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d\\r\\n\", n, n);\n int res = quadraticRecur(n - 1);\n free(nums);\n return res;\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn quadraticRecur(comptime n: i32) i32 {\n if (n <= 0) return 0;\n var nums = [_]i32{0}**n;\n std.debug.print(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\\n\", .{n, nums.len});\n return quadraticRecur(n - 1);\n}\n
\u56fe 2-18 \u00a0 \u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u5e73\u65b9\u9636\u7a7a\u95f4\u590d\u6742\u5ea6
"},{"location":"chapter_computational_complexity/space_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"\u6307\u6570\u9636\u5e38\u89c1\u4e8e\u4e8c\u53c9\u6811\u3002\u89c2\u5bdf\u56fe 2-19 \uff0c\u5c42\u6570\u4e3a \\(n\\) \u7684\u201c\u6ee1\u4e8c\u53c9\u6811\u201d\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(2^n - 1\\) \uff0c\u5360\u7528 \\(O(2^n)\\) \u7a7a\u95f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef build_tree(n: int) -> TreeNode | None:\n \"\"\"\u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\"\"\"\n if n == 0:\n return None\n root = TreeNode(0)\n root.left = build_tree(n - 1)\n root.right = build_tree(n - 1)\n return root\n
space_complexity.cpp/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return nullptr;\n TreeNode *root = new TreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.java/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode buildTree(int n) {\n if (n == 0)\n return null;\n TreeNode root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.cs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? BuildTree(int n) {\n if (n == 0) return null;\n TreeNode root = new(0) {\n left = BuildTree(n - 1),\n right = BuildTree(n - 1)\n };\n return root;\n}\n
space_complexity.go/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n int) *treeNode {\n if n == 0 {\n return nil\n }\n root := newTreeNode(0)\n root.left = buildTree(n - 1)\n root.right = buildTree(n - 1)\n return root\n}\n
space_complexity.swift/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n: Int) -> TreeNode? {\n if n == 0 {\n return nil\n }\n let root = TreeNode(x: 0)\n root.left = buildTree(n: n - 1)\n root.right = buildTree(n: n - 1)\n return root\n}\n
space_complexity.js/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n) {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.ts/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n: number): TreeNode | null {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.dart/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\n if (n == 0) return null;\n TreeNode root = TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.rs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {\n if n == 0 {return None};\n let root = TreeNode::new(0);\n root.borrow_mut().left = build_tree(n - 1);\n root.borrow_mut().right = build_tree(n - 1);\n return Some(root);\n}\n
space_complexity.c/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return NULL;\n TreeNode *root = newTreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.zig// \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\nfn buildTree(mem_allocator: std.mem.Allocator, n: i32) !?*inc.TreeNode(i32) {\n if (n == 0) return null;\n const root = try mem_allocator.create(inc.TreeNode(i32));\n root.init(0);\n root.left = try buildTree(mem_allocator, n - 1);\n root.right = try buildTree(mem_allocator, n - 1);\n return root;\n}\n
\u56fe 2-19 \u00a0 \u6ee1\u4e8c\u53c9\u6811\u4ea7\u751f\u7684\u6307\u6570\u9636\u7a7a\u95f4\u590d\u6742\u5ea6
"},{"location":"chapter_computational_complexity/space_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"\u5bf9\u6570\u9636\u5e38\u89c1\u4e8e\u5206\u6cbb\u7b97\u6cd5\u3002\u4f8b\u5982\u5f52\u5e76\u6392\u5e8f\uff0c\u8f93\u5165\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u6bcf\u8f6e\u9012\u5f52\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5212\u5206\u4e3a\u4e24\u534a\uff0c\u5f62\u6210\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u6808\u5e27\u7a7a\u95f4\u3002
\u518d\u4f8b\u5982\u5c06\u6570\u5b57\u8f6c\u5316\u4e3a\u5b57\u7b26\u4e32\uff0c\u8f93\u5165\u4e00\u4e2a\u6b63\u6574\u6570 \\(n\\) \uff0c\u5b83\u7684\u4f4d\u6570\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u5373\u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u5ea6\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log_{10} n + 1) = O(\\log n)\\) \u3002
"},{"location":"chapter_computational_complexity/space_complexity/#244","title":"2.4.4 \u00a0 \u6743\u8861\u65f6\u95f4\u4e0e\u7a7a\u95f4","text":"\u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u80fd\u8fbe\u5230\u6700\u4f18\u3002\u7136\u800c\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u540c\u65f6\u4f18\u5316\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u975e\u5e38\u56f0\u96be\u3002
\u964d\u4f4e\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u9700\u8981\u4ee5\u63d0\u5347\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a\u4ee3\u4ef7\uff0c\u53cd\u4e4b\u4ea6\u7136\u3002\u6211\u4eec\u5c06\u727a\u7272\u5185\u5b58\u7a7a\u95f4\u6765\u63d0\u5347\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u601d\u8def\u79f0\u4e3a\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff1b\u53cd\u4e4b\uff0c\u5219\u79f0\u4e3a\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002
\u9009\u62e9\u54ea\u79cd\u601d\u8def\u53d6\u51b3\u4e8e\u6211\u4eec\u66f4\u770b\u91cd\u54ea\u4e2a\u65b9\u9762\u3002\u5728\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u65f6\u95f4\u6bd4\u7a7a\u95f4\u66f4\u5b9d\u8d35\uff0c\u56e0\u6b64\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u901a\u5e38\u662f\u66f4\u5e38\u7528\u7684\u7b56\u7565\u3002\u5f53\u7136\uff0c\u5728\u6570\u636e\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\uff0c\u63a7\u5236\u7a7a\u95f4\u590d\u6742\u5ea6\u4e5f\u975e\u5e38\u91cd\u8981\u3002
"},{"location":"chapter_computational_complexity/summary/","title":"2.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_computational_complexity/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":"\u7b97\u6cd5\u6548\u7387\u8bc4\u4f30
- \u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e24\u4e2a\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\u3002
- \u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9e\u9645\u6d4b\u8bd5\u6765\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u96be\u4ee5\u6d88\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5f71\u54cd\uff0c\u4e14\u4f1a\u8017\u8d39\u5927\u91cf\u8ba1\u7b97\u8d44\u6e90\u3002
- \u590d\u6742\u5ea6\u5206\u6790\u53ef\u4ee5\u6d88\u9664\u5b9e\u9645\u6d4b\u8bd5\u7684\u5f0a\u7aef\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\uff0c\u5e76\u4e14\u80fd\u591f\u63ed\u793a\u7b97\u6cd5\u5728\u4e0d\u540c\u6570\u636e\u89c4\u6a21\u4e0b\u7684\u6548\u7387\u3002
\u65f6\u95f4\u590d\u6742\u5ea6
- \u65f6\u95f4\u590d\u6742\u5ea6\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\uff0c\u53ef\u4ee5\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\u53ef\u80fd\u5931\u6548\uff0c\u5982\u5728\u8f93\u5165\u7684\u6570\u636e\u91cf\u8f83\u5c0f\u6216\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\u65f6\uff0c\u65e0\u6cd5\u7cbe\u786e\u5bf9\u6bd4\u7b97\u6cd5\u6548\u7387\u7684\u4f18\u52a3\u3002
- \u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f7f\u7528\u5927 \\(O\\) \u7b26\u53f7\u8868\u793a\uff0c\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u53cd\u6620\u5f53 \\(n\\) \u8d8b\u5411\u6b63\u65e0\u7a77\u65f6\uff0c\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u7684\u589e\u957f\u7ea7\u522b\u3002
- \u63a8\u7b97\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u4e24\u6b65\uff0c\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002
- \u5e38\u89c1\u65f6\u95f4\u590d\u6742\u5ea6\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\u6709 \\(O(1)\\)\u3001\\(O(\\log n)\\)\u3001\\(O(n)\\)\u3001\\(O(n \\log n)\\)\u3001\\(O(n^2)\\)\u3001\\(O(2^n)\\) \u548c \\(O(n!)\\) \u7b49\u3002
- \u67d0\u4e9b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u56fa\u5b9a\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u51e0\u4e4e\u4e0d\u7528\uff0c\u56e0\u4e3a\u8f93\u5165\u6570\u636e\u4e00\u822c\u9700\u8981\u6ee1\u8db3\u4e25\u683c\u6761\u4ef6\u624d\u80fd\u8fbe\u5230\u6700\u4f73\u60c5\u51b5\u3002
- \u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u53cd\u6620\u7b97\u6cd5\u5728\u968f\u673a\u6570\u636e\u8f93\u5165\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u6700\u63a5\u8fd1\u5b9e\u9645\u5e94\u7528\u4e2d\u7684\u7b97\u6cd5\u6027\u80fd\u3002\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u9700\u8981\u7edf\u8ba1\u8f93\u5165\u6570\u636e\u5206\u5e03\u4ee5\u53ca\u7efc\u5408\u540e\u7684\u6570\u5b66\u671f\u671b\u3002
\u7a7a\u95f4\u590d\u6742\u5ea6
- \u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u4f5c\u7528\u7c7b\u4f3c\u4e8e\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\u3002
- \u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u76f8\u5173\u5185\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u8f93\u5165\u7a7a\u95f4\u3001\u6682\u5b58\u7a7a\u95f4\u3001\u8f93\u51fa\u7a7a\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u8f93\u5165\u7a7a\u95f4\u4e0d\u7eb3\u5165\u7a7a\u95f4\u590d\u6742\u5ea6\u8ba1\u7b97\u3002\u6682\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u6682\u5b58\u6570\u636e\u3001\u6808\u5e27\u7a7a\u95f4\u548c\u6307\u4ee4\u7a7a\u95f4\uff0c\u5176\u4e2d\u6808\u5e27\u7a7a\u95f4\u901a\u5e38\u4ec5\u5728\u9012\u5f52\u51fd\u6570\u4e2d\u5f71\u54cd\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
- \u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5373\u7edf\u8ba1\u7b97\u6cd5\u5728\u6700\u5dee\u8f93\u5165\u6570\u636e\u548c\u6700\u5dee\u8fd0\u884c\u65f6\u523b\u4e0b\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
- \u5e38\u89c1\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\u6709 \\(O(1)\\)\u3001\\(O(\\log n)\\)\u3001\\(O(n)\\)\u3001\\(O(n^2)\\) \u548c \\(O(2^n)\\) \u7b49\u3002
"},{"location":"chapter_computational_complexity/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u5c3e\u9012\u5f52\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u5417\uff1f
\u7406\u8bba\u4e0a\uff0c\u5c3e\u9012\u5f52\u51fd\u6570\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \u3002\u4e0d\u8fc7\u7edd\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java\u3001Python\u3001C++\u3001Go\u3001C# \u7b49\uff09\u4e0d\u652f\u6301\u81ea\u52a8\u4f18\u5316\u5c3e\u9012\u5f52\uff0c\u56e0\u6b64\u901a\u5e38\u8ba4\u4e3a\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(n)\\) \u3002
\u51fd\u6570\u548c\u65b9\u6cd5\u8fd9\u4e24\u4e2a\u672f\u8bed\u7684\u533a\u522b\u662f\u4ec0\u4e48\uff1f
\u300c\u51fd\u6570 function\u300d\u53ef\u4ee5\u88ab\u72ec\u7acb\u6267\u884c\uff0c\u6240\u6709\u53c2\u6570\u90fd\u4ee5\u663e\u5f0f\u4f20\u9012\u3002\u300c\u65b9\u6cd5 method\u300d\u4e0e\u4e00\u4e2a\u5bf9\u8c61\u5173\u8054\uff0c\u88ab\u9690\u5f0f\u4f20\u9012\u7ed9\u8c03\u7528\u5b83\u7684\u5bf9\u8c61\uff0c\u80fd\u591f\u5bf9\u7c7b\u7684\u5b9e\u4f8b\u4e2d\u5305\u542b\u7684\u6570\u636e\u8fdb\u884c\u64cd\u4f5c\u3002
\u4e0b\u9762\u4ee5\u51e0\u79cd\u5e38\u89c1\u7684\u7f16\u7a0b\u8bed\u8a00\u4e3a\u4f8b\u6765\u8bf4\u660e\u3002
- C \u8bed\u8a00\u662f\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\u8bed\u8a00\uff0c\u6ca1\u6709\u9762\u5411\u5bf9\u8c61\u7684\u6982\u5ff5\uff0c\u6240\u4ee5\u53ea\u6709\u51fd\u6570\u3002\u4f46\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u7ed3\u6784\u4f53\uff08struct\uff09\u6765\u6a21\u62df\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff0c\u4e0e\u7ed3\u6784\u4f53\u76f8\u5173\u8054\u7684\u51fd\u6570\u5c31\u76f8\u5f53\u4e8e\u5176\u4ed6\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u65b9\u6cd5\u3002
- Java \u548c C# \u662f\u9762\u5411\u5bf9\u8c61\u7684\u7f16\u7a0b\u8bed\u8a00\uff0c\u4ee3\u7801\u5757\uff08\u65b9\u6cd5\uff09\u901a\u5e38\u4f5c\u4e3a\u67d0\u4e2a\u7c7b\u7684\u4e00\u90e8\u5206\u3002\u9759\u6001\u65b9\u6cd5\u7684\u884c\u4e3a\u7c7b\u4f3c\u4e8e\u51fd\u6570\uff0c\u56e0\u4e3a\u5b83\u88ab\u7ed1\u5b9a\u5728\u7c7b\u4e0a\uff0c\u4e0d\u80fd\u8bbf\u95ee\u7279\u5b9a\u7684\u5b9e\u4f8b\u53d8\u91cf\u3002
- C++ \u548c Python \u65e2\u652f\u6301\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\uff08\u51fd\u6570\uff09\uff0c\u4e5f\u652f\u6301\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff08\u65b9\u6cd5\uff09\u3002
\u56fe\u89e3\u201c\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\u201d\u53cd\u6620\u7684\u662f\u5426\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\uff1f
\u4e0d\u662f\uff0c\u8be5\u56fe\u5c55\u793a\u7684\u662f\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5176\u53cd\u6620\u7684\u662f\u589e\u957f\u8d8b\u52bf\uff0c\u800c\u4e0d\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\u3002
\u5047\u8bbe\u53d6 \\(n = 8\\) \uff0c\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u6bcf\u6761\u66f2\u7ebf\u7684\u503c\u4e0e\u51fd\u6570\u5bf9\u5e94\u4e0d\u4e0a\u3002\u8fd9\u662f\u56e0\u4e3a\u6bcf\u6761\u66f2\u7ebf\u90fd\u5305\u542b\u4e00\u4e2a\u5e38\u6570\u9879\uff0c\u7528\u4e8e\u5c06\u53d6\u503c\u8303\u56f4\u538b\u7f29\u5230\u4e00\u4e2a\u89c6\u89c9\u8212\u9002\u7684\u8303\u56f4\u5185\u3002
\u5728\u5b9e\u9645\u4e2d\uff0c\u56e0\u4e3a\u6211\u4eec\u901a\u5e38\u4e0d\u77e5\u9053\u6bcf\u4e2a\u65b9\u6cd5\u7684\u201c\u5e38\u6570\u9879\u201d\u590d\u6742\u5ea6\u662f\u591a\u5c11\uff0c\u6240\u4ee5\u4e00\u822c\u65e0\u6cd5\u4ec5\u51ed\u590d\u6742\u5ea6\u6765\u9009\u62e9 \\(n = 8\\) \u4e4b\u4e0b\u7684\u6700\u4f18\u89e3\u6cd5\u3002\u4f46\u5bf9\u4e8e \\(n = 8^5\\) \u5c31\u5f88\u597d\u9009\u4e86\uff0c\u8fd9\u65f6\u589e\u957f\u8d8b\u52bf\u5df2\u7ecf\u5360\u4e3b\u5bfc\u4e86\u3002
"},{"location":"chapter_computational_complexity/time_complexity/","title":"2.3 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6","text":"\u8fd0\u884c\u65f6\u95f4\u53ef\u4ee5\u76f4\u89c2\u4e14\u51c6\u786e\u5730\u53cd\u6620\u7b97\u6cd5\u7684\u6548\u7387\u3002\u5982\u679c\u6211\u4eec\u60f3\u51c6\u786e\u9884\u4f30\u4e00\u6bb5\u4ee3\u7801\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u5e94\u8be5\u5982\u4f55\u64cd\u4f5c\u5462\uff1f
- \u786e\u5b9a\u8fd0\u884c\u5e73\u53f0\uff0c\u5305\u62ec\u786c\u4ef6\u914d\u7f6e\u3001\u7f16\u7a0b\u8bed\u8a00\u3001\u7cfb\u7edf\u73af\u5883\u7b49\uff0c\u8fd9\u4e9b\u56e0\u7d20\u90fd\u4f1a\u5f71\u54cd\u4ee3\u7801\u7684\u8fd0\u884c\u6548\u7387\u3002
- \u8bc4\u4f30\u5404\u79cd\u8ba1\u7b97\u64cd\u4f5c\u6240\u9700\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u4f8b\u5982\u52a0\u6cd5\u64cd\u4f5c
+ \u9700\u8981 1 ns \uff0c\u4e58\u6cd5\u64cd\u4f5c * \u9700\u8981 10 ns \uff0c\u6253\u5370\u64cd\u4f5c print() \u9700\u8981 5 ns \u7b49\u3002 - \u7edf\u8ba1\u4ee3\u7801\u4e2d\u6240\u6709\u7684\u8ba1\u7b97\u64cd\u4f5c\uff0c\u5e76\u5c06\u6240\u6709\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u6c42\u548c\uff0c\u4ece\u800c\u5f97\u5230\u8fd0\u884c\u65f6\u95f4\u3002
\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\ndef algorithm(n: int):\n a = 2 # 1 ns\n a = a + 1 # 1 ns\n a = a * 2 # 10 ns\n # \u5faa\u73af n \u6b21\n for _ in range(n): # 1 ns\n print(0) # 5 ns\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n cout << 0 << endl; // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n System.out.println(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid Algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n Console.WriteLine(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n int) {\n a := 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // \u5faa\u73af n \u6b21\n for i := 0; i < n; i++ { // 1 ns\n fmt.Println(a) // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n: Int) {\n var a = 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // \u5faa\u73af n \u6b21\n for _ in 0 ..< n { // 1 ns\n print(0) // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n) {\n var a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n console.log(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n: number): void {\n var a: number = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n console.log(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n print(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfn algorithm(n: i32) {\n let mut a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for _ in 0..n { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n println!(\"{}\", 0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n printf(\"%d\", 0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfn algorithm(n: usize) void {\n var a: i32 = 2; // 1 ns\n a += 1; // 1 ns\n a *= 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (0..n) |_| { // 1 ns\n std.debug.print(\"{}\\n\", .{0}); // 5 ns\n }\n}\n
\u6839\u636e\u4ee5\u4e0a\u65b9\u6cd5\uff0c\u53ef\u4ee5\u5f97\u5230\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\u4e3a \\((6n + 12)\\) ns \uff1a
\\[ 1 + 1 + 10 + (1 + 5) \\times n = 6n + 12 \\] \u4f46\u5b9e\u9645\u4e0a\uff0c\u7edf\u8ba1\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\u65e2\u4e0d\u5408\u7406\u4e5f\u4e0d\u73b0\u5b9e\u3002\u9996\u5148\uff0c\u6211\u4eec\u4e0d\u5e0c\u671b\u5c06\u9884\u4f30\u65f6\u95f4\u548c\u8fd0\u884c\u5e73\u53f0\u7ed1\u5b9a\uff0c\u56e0\u4e3a\u7b97\u6cd5\u9700\u8981\u5728\u5404\u79cd\u4e0d\u540c\u7684\u5e73\u53f0\u4e0a\u8fd0\u884c\u3002\u5176\u6b21\uff0c\u6211\u4eec\u5f88\u96be\u83b7\u77e5\u6bcf\u79cd\u64cd\u4f5c\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u8fd9\u7ed9\u9884\u4f30\u8fc7\u7a0b\u5e26\u6765\u4e86\u6781\u5927\u7684\u96be\u5ea6\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#231","title":"2.3.1 \u00a0 \u7edf\u8ba1\u65f6\u95f4\u589e\u957f\u8d8b\u52bf","text":"\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u7edf\u8ba1\u7684\u4e0d\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\uff0c\u800c\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002
\u201c\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u201d\u8fd9\u4e2a\u6982\u5ff5\u6bd4\u8f83\u62bd\u8c61\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e2a\u4f8b\u5b50\u6765\u52a0\u4ee5\u7406\u89e3\u3002\u5047\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7ed9\u5b9a\u4e09\u4e2a\u7b97\u6cd5 A\u3001B \u548c C \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_A(n: int):\n print(0)\n# \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\ndef algorithm_B(n: int):\n for _ in range(n):\n print(0)\n# \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_C(n: int):\n for _ in range(1000000):\n print(0)\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\n cout << 0 << endl;\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n cout << 0 << endl;\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n cout << 0 << endl;\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\n System.out.println(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n System.out.println(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n System.out.println(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid AlgorithmA(int n) {\n Console.WriteLine(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid AlgorithmB(int n) {\n for (int i = 0; i < n; i++) {\n Console.WriteLine(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid AlgorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n Console.WriteLine(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_A(n int) {\n fmt.Println(0)\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithm_B(n int) {\n for i := 0; i < n; i++ {\n fmt.Println(0)\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_C(n int) {\n for i := 0; i < 1000000; i++ {\n fmt.Println(0)\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmA(n: Int) {\n print(0)\n}\n\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithmB(n: Int) {\n for _ in 0 ..< n {\n print(0)\n }\n}\n\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmC(n: Int) {\n for _ in 0 ..< 1000000 {\n print(0)\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n) {\n console.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n) {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n) {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n: number): void {\n console.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n: number): void {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n: number): void {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmA(int n) {\n print(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithmB(int n) {\n for (int i = 0; i < n; i++) {\n print(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n print(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_A(n: i32) {\n println!(\"{}\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfn algorithm_B(n: i32) {\n for _ in 0..n {\n println!(\"{}\", 0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_C(n: i32) {\n for _ in 0..1000000 {\n println!(\"{}\", 0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\n printf(\"%d\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n printf(\"%d\", 0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n printf(\"%d\", 0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_A(n: usize) void {\n _ = n;\n std.debug.print(\"{}\\n\", .{0});\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfn algorithm_B(n: i32) void {\n for (0..n) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_C(n: i32) void {\n _ = n;\n for (0..1000000) |_| { \n std.debug.print(\"{}\\n\", .{0});\n }\n}\n
\u56fe 2-7 \u5c55\u793a\u4e86\u4ee5\u4e0a\u4e09\u4e2a\u7b97\u6cd5\u51fd\u6570\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002
- \u7b97\u6cd5
A \u53ea\u6709 \\(1\\) \u4e2a\u6253\u5370\u64cd\u4f5c\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u4e0d\u968f\u7740 \\(n\\) \u589e\u5927\u800c\u589e\u957f\u3002\u6211\u4eec\u79f0\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u201c\u5e38\u6570\u9636\u201d\u3002 - \u7b97\u6cd5
B \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(n\\) \u6b21\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740 \\(n\\) \u589e\u5927\u5448\u7ebf\u6027\u589e\u957f\u3002\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u88ab\u79f0\u4e3a\u201c\u7ebf\u6027\u9636\u201d\u3002 - \u7b97\u6cd5
C \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(1000000\\) \u6b21\uff0c\u867d\u7136\u8fd0\u884c\u65f6\u95f4\u5f88\u957f\uff0c\u4f46\u5b83\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u3002\u56e0\u6b64 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c A \u76f8\u540c\uff0c\u4ecd\u4e3a\u201c\u5e38\u6570\u9636\u201d\u3002
\u56fe 2-7 \u00a0 \u7b97\u6cd5 A\u3001B \u548c C \u7684\u65f6\u95f4\u589e\u957f\u8d8b\u52bf
\u76f8\u8f83\u4e8e\u76f4\u63a5\u7edf\u8ba1\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u6709\u54ea\u4e9b\u7279\u70b9\u5462\uff1f
- \u65f6\u95f4\u590d\u6742\u5ea6\u80fd\u591f\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u3002\u4f8b\u5982\uff0c\u7b97\u6cd5
B \u7684\u8fd0\u884c\u65f6\u95f4\u5448\u7ebf\u6027\u589e\u957f\uff0c\u5728 \\(n > 1\\) \u65f6\u6bd4\u7b97\u6cd5 A \u66f4\u6162\uff0c\u5728 \\(n > 1000000\\) \u65f6\u6bd4\u7b97\u6cd5 C \u66f4\u6162\u3002\u4e8b\u5b9e\u4e0a\uff0c\u53ea\u8981\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8db3\u591f\u5927\uff0c\u590d\u6742\u5ea6\u4e3a\u201c\u5e38\u6570\u9636\u201d\u7684\u7b97\u6cd5\u4e00\u5b9a\u4f18\u4e8e\u201c\u7ebf\u6027\u9636\u201d\u7684\u7b97\u6cd5\uff0c\u8fd9\u6b63\u662f\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u7684\u542b\u4e49\u3002 - \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u66f4\u7b80\u4fbf\u3002\u663e\u7136\uff0c\u8fd0\u884c\u5e73\u53f0\u548c\u8ba1\u7b97\u64cd\u4f5c\u7c7b\u578b\u90fd\u4e0e\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u65e0\u5173\u3002\u56e0\u6b64\u5728\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u5c06\u6240\u6709\u8ba1\u7b97\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u89c6\u4e3a\u76f8\u540c\u7684\u201c\u5355\u4f4d\u65f6\u95f4\u201d\uff0c\u4ece\u800c\u5c06\u201c\u8ba1\u7b97\u64cd\u4f5c\u8fd0\u884c\u65f6\u95f4\u7edf\u8ba1\u201d\u7b80\u5316\u4e3a\u201c\u8ba1\u7b97\u64cd\u4f5c\u6570\u91cf\u7edf\u8ba1\u201d\uff0c\u8fd9\u6837\u4e00\u6765\u4f30\u7b97\u96be\u5ea6\u5c31\u5927\u5927\u964d\u4f4e\u4e86\u3002
- \u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u5b58\u5728\u4e00\u5b9a\u7684\u5c40\u9650\u6027\u3002\u4f8b\u5982\uff0c\u5c3d\u7ba1\u7b97\u6cd5
A \u548c C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\uff0c\u4f46\u5b9e\u9645\u8fd0\u884c\u65f6\u95f4\u5dee\u522b\u5f88\u5927\u3002\u540c\u6837\uff0c\u5c3d\u7ba1\u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u6bd4 C \u9ad8\uff0c\u4f46\u5728\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 B \u660e\u663e\u4f18\u4e8e\u7b97\u6cd5 C \u3002\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5f88\u96be\u4ec5\u51ed\u65f6\u95f4\u590d\u6742\u5ea6\u5224\u65ad\u7b97\u6cd5\u6548\u7387\u7684\u9ad8\u4f4e\u3002\u5f53\u7136\uff0c\u5c3d\u7ba1\u5b58\u5728\u4e0a\u8ff0\u95ee\u9898\uff0c\u590d\u6742\u5ea6\u5206\u6790\u4ecd\u7136\u662f\u8bc4\u5224\u7b97\u6cd5\u6548\u7387\u6700\u6709\u6548\u4e14\u5e38\u7528\u7684\u65b9\u6cd5\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#232","title":"2.3.2 \u00a0 \u51fd\u6570\u6e10\u8fd1\u4e0a\u754c","text":"\u7ed9\u5b9a\u4e00\u4e2a\u8f93\u5165\u5927\u5c0f\u4e3a \\(n\\) \u7684\u51fd\u6570\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +1\n a = a + 1 # +1\n a = a * 2 # +1\n # \u5faa\u73af n \u6b21\n for i in range(n): # +1\n print(0) # +1\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n cout << 0 << endl; // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n System.out.println(0); // +1\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n Console.WriteLine(0); // +1\n }\n}\n
func algorithm(n int) {\n a := 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // \u5faa\u73af n \u6b21\n for i := 0; i < n; i++ { // +1\n fmt.Println(a) // +1\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // \u5faa\u73af n \u6b21\n for _ in 0 ..< n { // +1\n print(0) // +1\n }\n}\n
function algorithm(n) {\n var a = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n console.log(0); // +1\n }\n}\n
function algorithm(n: number): void{\n var a: number = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n console.log(0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n print(0); // +1\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n\n // \u5faa\u73af n \u6b21\n for _ in 0..n { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n println!(\"{}\", 0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n printf(\"%d\", 0); // +1\n }\n} \n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // \u5faa\u73af n \u6b21\n for (0..n) |_| { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n std.debug.print(\"{}\\n\", .{0}); // +1\n }\n}\n
\u8bbe\u7b97\u6cd5\u7684\u64cd\u4f5c\u6570\u91cf\u662f\u4e00\u4e2a\u5173\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u7684\u51fd\u6570\uff0c\u8bb0\u4e3a \\(T(n)\\) \uff0c\u5219\u4ee5\u4e0a\u51fd\u6570\u7684\u64cd\u4f5c\u6570\u91cf\u4e3a\uff1a
\\[ T(n) = 3 + 2n \\] \\(T(n)\\) \u662f\u4e00\u6b21\u51fd\u6570\uff0c\u8bf4\u660e\u5176\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u662f\u7ebf\u6027\u7684\uff0c\u56e0\u6b64\u5b83\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u7ebf\u6027\u9636\u3002
\u6211\u4eec\u5c06\u7ebf\u6027\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u8bb0\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e2a\u6570\u5b66\u7b26\u53f7\u79f0\u4e3a\u300c\u5927 \\(O\\) \u8bb0\u53f7 big-\\(O\\) notation\u300d\uff0c\u8868\u793a\u51fd\u6570 \\(T(n)\\) \u7684\u300c\u6e10\u8fd1\u4e0a\u754c asymptotic upper bound\u300d\u3002
\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u672c\u8d28\u4e0a\u662f\u8ba1\u7b97\u201c\u64cd\u4f5c\u6570\u91cf \\(T(n)\\)\u201d\u7684\u6e10\u8fd1\u4e0a\u754c\uff0c\u5b83\u5177\u6709\u660e\u786e\u7684\u6570\u5b66\u5b9a\u4e49\u3002
\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c
\u82e5\u5b58\u5728\u6b63\u5b9e\u6570 \\(c\\) \u548c\u5b9e\u6570 \\(n_0\\) \uff0c\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u7684 \\(n > n_0\\) \uff0c\u5747\u6709 \\(T(n) \\leq c \\cdot f(n)\\) \uff0c\u5219\u53ef\u8ba4\u4e3a \\(f(n)\\) \u7ed9\u51fa\u4e86 \\(T(n)\\) \u7684\u4e00\u4e2a\u6e10\u8fd1\u4e0a\u754c\uff0c\u8bb0\u4e3a \\(T(n) = O(f(n))\\) \u3002
\u5982\u56fe 2-8 \u6240\u793a\uff0c\u8ba1\u7b97\u6e10\u8fd1\u4e0a\u754c\u5c31\u662f\u5bfb\u627e\u4e00\u4e2a\u51fd\u6570 \\(f(n)\\) \uff0c\u4f7f\u5f97\u5f53 \\(n\\) \u8d8b\u5411\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\\(T(n)\\) \u548c \\(f(n)\\) \u5904\u4e8e\u76f8\u540c\u7684\u589e\u957f\u7ea7\u522b\uff0c\u4ec5\u76f8\u5dee\u4e00\u4e2a\u5e38\u6570\u9879 \\(c\\) \u7684\u500d\u6570\u3002
\u56fe 2-8 \u00a0 \u51fd\u6570\u7684\u6e10\u8fd1\u4e0a\u754c
"},{"location":"chapter_computational_complexity/time_complexity/#233","title":"2.3.3 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"\u6e10\u8fd1\u4e0a\u754c\u7684\u6570\u5b66\u5473\u513f\u6709\u70b9\u91cd\uff0c\u5982\u679c\u4f60\u611f\u89c9\u6ca1\u6709\u5b8c\u5168\u7406\u89e3\uff0c\u4e5f\u65e0\u987b\u62c5\u5fc3\u3002\u6211\u4eec\u53ef\u4ee5\u5148\u638c\u63e1\u63a8\u7b97\u65b9\u6cd5\uff0c\u5728\u4e0d\u65ad\u7684\u5b9e\u8df5\u4e2d\uff0c\u5c31\u53ef\u4ee5\u9010\u6e10\u9886\u609f\u5176\u6570\u5b66\u610f\u4e49\u3002
\u6839\u636e\u5b9a\u4e49\uff0c\u786e\u5b9a \\(f(n)\\) \u4e4b\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \u3002\u90a3\u4e48\u5982\u4f55\u786e\u5b9a\u6e10\u8fd1\u4e0a\u754c \\(f(n)\\) \u5462\uff1f\u603b\u4f53\u5206\u4e3a\u4e24\u6b65\uff1a\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#1","title":"1. \u00a0 \u7b2c\u4e00\u6b65\uff1a\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf","text":"\u9488\u5bf9\u4ee3\u7801\uff0c\u9010\u884c\u4ece\u4e0a\u5230\u4e0b\u8ba1\u7b97\u5373\u53ef\u3002\u7136\u800c\uff0c\u7531\u4e8e\u4e0a\u8ff0 \\(c \\cdot f(n)\\) \u4e2d\u7684\u5e38\u6570\u9879 \\(c\\) \u53ef\u4ee5\u53d6\u4efb\u610f\u5927\u5c0f\uff0c\u56e0\u6b64\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u4e2d\u7684\u5404\u79cd\u7cfb\u6570\u3001\u5e38\u6570\u9879\u90fd\u53ef\u4ee5\u5ffd\u7565\u3002\u6839\u636e\u6b64\u539f\u5219\uff0c\u53ef\u4ee5\u603b\u7ed3\u51fa\u4ee5\u4e0b\u8ba1\u6570\u7b80\u5316\u6280\u5de7\u3002
- \u5ffd\u7565 \\(T(n)\\) \u4e2d\u7684\u5e38\u6570\u9879\u3002\u56e0\u4e3a\u5b83\u4eec\u90fd\u4e0e \\(n\\) \u65e0\u5173\uff0c\u6240\u4ee5\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4ea7\u751f\u5f71\u54cd\u3002
- \u7701\u7565\u6240\u6709\u7cfb\u6570\u3002\u4f8b\u5982\uff0c\u5faa\u73af \\(2n\\) \u6b21\u3001\\(5n + 1\\) \u6b21\u7b49\uff0c\u90fd\u53ef\u4ee5\u7b80\u5316\u8bb0\u4e3a \\(n\\) \u6b21\uff0c\u56e0\u4e3a \\(n\\) \u524d\u9762\u7684\u7cfb\u6570\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u6ca1\u6709\u5f71\u54cd\u3002
- \u5faa\u73af\u5d4c\u5957\u65f6\u4f7f\u7528\u4e58\u6cd5\u3002\u603b\u64cd\u4f5c\u6570\u91cf\u7b49\u4e8e\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u64cd\u4f5c\u6570\u91cf\u4e4b\u79ef\uff0c\u6bcf\u4e00\u5c42\u5faa\u73af\u4f9d\u7136\u53ef\u4ee5\u5206\u522b\u5957\u7528\u7b2c
1. \u70b9\u548c\u7b2c 2. \u70b9\u7684\u6280\u5de7\u3002
\u7ed9\u5b9a\u4e00\u4e2a\u51fd\u6570\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u4e0a\u8ff0\u6280\u5de7\u6765\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +0\uff08\u6280\u5de7 1\uff09\n a = a + n # +0\uff08\u6280\u5de7 1\uff09\n # +n\uff08\u6280\u5de7 2\uff09\n for i in range(5 * n + 1):\n print(0)\n # +n*n\uff08\u6280\u5de7 3\uff09\n for i in range(2 * n):\n for j in range(n + 1):\n print(0)\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n cout << 0 << endl;\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n cout << 0 << endl;\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n System.out.println(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n System.out.println(0);\n }\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n Console.WriteLine(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n Console.WriteLine(0);\n }\n }\n}\n
func algorithm(n int) {\n a := 1 // +0\uff08\u6280\u5de7 1\uff09\n a = a + n // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for i := 0; i < 5 * n + 1; i++ {\n fmt.Println(0)\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for i := 0; i < 2 * n; i++ {\n for j := 0; j < n + 1; j++ {\n fmt.Println(0)\n }\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +0\uff08\u6280\u5de7 1\uff09\n a = a + n // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for _ in 0 ..< (5 * n + 1) {\n print(0)\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for _ in 0 ..< (2 * n) {\n for _ in 0 ..< (n + 1) {\n print(0)\n }\n }\n}\n
function algorithm(n) {\n let a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
function algorithm(n: number): void {\n let a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n print(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n print(0);\n }\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n\n // +n\uff08\u6280\u5de7 2\uff09\n for i in 0..(5 * n + 1) {\n println!(\"{}\", 0);\n }\n\n // +n*n\uff08\u6280\u5de7 3\uff09\n for i in 0..(2 * n) {\n for j in 0..(n + 1) {\n println!(\"{}\", 0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n printf(\"%d\", 0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n printf(\"%d\", 0);\n }\n }\n}\n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + @as(i32, @intCast(n)); // +0\uff08\u6280\u5de7 1\uff09\n\n // +n\uff08\u6280\u5de7 2\uff09\n for(0..(5 * n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0}); \n }\n\n // +n*n\uff08\u6280\u5de7 3\uff09\n for(0..(2 * n)) |_| {\n for(0..(n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0}); \n }\n }\n}\n
\u4ee5\u4e0b\u516c\u5f0f\u5c55\u793a\u4e86\u4f7f\u7528\u4e0a\u8ff0\u6280\u5de7\u524d\u540e\u7684\u7edf\u8ba1\u7ed3\u679c\uff0c\u4e24\u8005\u63a8\u7b97\u51fa\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \u3002
\\[ \\begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \\text{\u5b8c\u6574\u7edf\u8ba1 (-.-|||)} \\newline & = 2n^2 + 7n + 3 \\newline T(n) & = n^2 + n & \\text{\u5077\u61d2\u7edf\u8ba1 (o.O)} \\end{aligned} \\]"},{"location":"chapter_computational_complexity/time_complexity/#2","title":"2. \u00a0 \u7b2c\u4e8c\u6b65\uff1a\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c","text":"\u65f6\u95f4\u590d\u6742\u5ea6\u7531 \\(T(n)\\) \u4e2d\u6700\u9ad8\u9636\u7684\u9879\u6765\u51b3\u5b9a\u3002\u8fd9\u662f\u56e0\u4e3a\u5728 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u6700\u9ad8\u9636\u7684\u9879\u5c06\u53d1\u6325\u4e3b\u5bfc\u4f5c\u7528\uff0c\u5176\u4ed6\u9879\u7684\u5f71\u54cd\u90fd\u53ef\u4ee5\u5ffd\u7565\u3002
\u8868 2-2 \u5c55\u793a\u4e86\u4e00\u4e9b\u4f8b\u5b50\uff0c\u5176\u4e2d\u4e00\u4e9b\u5938\u5f20\u7684\u503c\u662f\u4e3a\u4e86\u5f3a\u8c03\u201c\u7cfb\u6570\u65e0\u6cd5\u64bc\u52a8\u9636\u6570\u201d\u8fd9\u4e00\u7ed3\u8bba\u3002\u5f53 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u8fd9\u4e9b\u5e38\u6570\u53d8\u5f97\u65e0\u8db3\u8f7b\u91cd\u3002
\u8868 2-2 \u00a0 \u4e0d\u540c\u64cd\u4f5c\u6570\u91cf\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \\(100000\\) \\(O(1)\\) \\(3n + 2\\) \\(O(n)\\) \\(2n^2 + 3n + 2\\) \\(O(n^2)\\) \\(n^3 + 10000n^2\\) \\(O(n^3)\\) \\(2^n + 10000n^{10000}\\) \\(O(2^n)\\)"},{"location":"chapter_computational_complexity/time_complexity/#234","title":"2.3.4 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\u5982\u56fe 2-9 \u6240\u793a\uff08\u6309\u7167\u4ece\u4f4e\u5230\u9ad8\u7684\u987a\u5e8f\u6392\u5217\uff09\u3002
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n \\log n) < O(n^2) < O(2^n) < O(n!) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u7ebf\u6027\u5bf9\u6570\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} < \\text{\u9636\u4e58\u9636} \\end{aligned} \\] \u56fe 2-9 \u00a0 \u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b
"},{"location":"chapter_computational_complexity/time_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"\u5e38\u6570\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u5373\u4e0d\u968f\u7740 \\(n\\) \u7684\u53d8\u5316\u800c\u53d8\u5316\u3002
\u5728\u4ee5\u4e0b\u51fd\u6570\u4e2d\uff0c\u5c3d\u7ba1\u64cd\u4f5c\u6570\u91cf size \u53ef\u80fd\u5f88\u5927\uff0c\u4f46\u7531\u4e8e\u5176\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef constant(n: int) -> int:\n \"\"\"\u5e38\u6570\u9636\"\"\"\n count = 0\n size = 100000\n for _ in range(size):\n count += 1\n return count\n
time_complexity.cpp/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u5e38\u6570\u9636 */\nint Constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u5e38\u6570\u9636 */\nfunc constant(n int) int {\n count := 0\n size := 100000\n for i := 0; i < size; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) -> Int {\n var count = 0\n let size = 100_000\n for _ in 0 ..< size {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u5e38\u6570\u9636 */\nfunction constant(n: number): number {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (var i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5e38\u6570\u9636 */\nfn constant(n: i32) -> i32 {\n _ = n;\n let mut count = 0;\n let size = 100_000;\n for _ in 0..size {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n int i = 0;\n for (int i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5e38\u6570\u9636\nfn constant(n: i32) i32 {\n _ = n;\n var count: i32 = 0;\n const size: i32 = 100_000;\n var i: i32 = 0;\n while(i<size) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"\u7ebf\u6027\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u4ee5\u7ebf\u6027\u7ea7\u522b\u589e\u957f\u3002\u7ebf\u6027\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5355\u5c42\u5faa\u73af\u4e2d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear(n: int) -> int:\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n count = 0\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636 */\nint Linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636 */\nfunc linear(n int) int {\n count := 0\n for i := 0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) -> Int {\n var count = 0\n for _ in 0 ..< n {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): number {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636 */\nfn linear(n: i32) -> i32 {\n let mut count = 0;\n for _ in 0..n {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\nfn linear(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
\u904d\u5386\u6570\u7ec4\u548c\u904d\u5386\u94fe\u8868\u7b49\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u6216\u94fe\u8868\u7684\u957f\u5ea6\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef array_traversal(nums: list[int]) -> int:\n \"\"\"\u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for num in nums:\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(vector<int> &nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint ArrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n foreach (int num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums []int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for range nums {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums: [Int]) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums: number[]): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(List<int> nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (var _num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfn array_traversal(nums: &[i32]) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int *nums, int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\nfn arrayTraversal(nums: []i32) i32 {\n var count: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (nums) |_| {\n count += 1;\n }\n return count;\n}\n
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u9700\u6839\u636e\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b\u6765\u5177\u4f53\u786e\u5b9a\u3002\u6bd4\u5982\u5728\u7b2c\u4e00\u4e2a\u793a\u4f8b\u4e2d\uff0c\u53d8\u91cf \\(n\\) \u4e3a\u8f93\u5165\u6570\u636e\u5927\u5c0f\uff1b\u5728\u7b2c\u4e8c\u4e2a\u793a\u4f8b\u4e2d\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u4e3a\u6570\u636e\u5927\u5c0f\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"\u5e73\u65b9\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u4ee5\u5e73\u65b9\u7ea7\u522b\u589e\u957f\u3002\u5e73\u65b9\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n)\\) \uff0c\u56e0\u6b64\u603b\u4f53\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef quadratic(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i in range(n):\n for j in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636 */\nint Quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636 */\nfunc quadratic(n int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i := 0; i < n; i++ {\n for j := 0; j < n; j++ {\n count++\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0 ..< n {\n for _ in 0 ..< n {\n count += 1\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636 */\nfn quadratic(n: i32) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0..n {\n for _ in 0..n {\n count += 1;\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n count += 1;\n }\n }\n return count;\n}\n
\u56fe 2-10 \u5bf9\u6bd4\u4e86\u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u4e09\u79cd\u65f6\u95f4\u590d\u6742\u5ea6\u3002
\u56fe 2-10 \u00a0 \u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u4ee5\u5192\u6ce1\u6392\u5e8f\u4e3a\u4f8b\uff0c\u5916\u5c42\u5faa\u73af\u6267\u884c \\(n - 1\\) \u6b21\uff0c\u5185\u5c42\u5faa\u73af\u6267\u884c \\(n-1\\)\u3001\\(n-2\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \u6b21\uff0c\u5e73\u5747\u4e3a \\(n / 2\\) \u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O((n - 1) n / 2) = O(n^2)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef bubble_sort(nums: list[int]) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\"\"\"\n count = 0 # \u8ba1\u6570\u5668\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(len(nums) - 1, 0, -1):\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp: int = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 # \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(vector<int> &nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint BubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums []int) int {\n count := 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp := nums[j]\n nums[j] = nums[j+1]\n nums[j+1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums: inout [Int]) -> Int {\n var count = 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0 ..< i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums) {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums: number[]): number {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(List<int> nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (var i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (var j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfn bubble_sort(nums: &mut [i32]) -> i32 {\n let mut count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int *nums, int n) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = n - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\nfn bubbleSort(nums: []i32) i32 {\n var count: i32 = 0; // \u8ba1\u6570\u5668 \n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: i32 = @as(i32, @intCast(nums.len)) - 1;\n while (i > 0) : (i -= 1) {\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"\u751f\u7269\u5b66\u7684\u201c\u7ec6\u80de\u5206\u88c2\u201d\u662f\u6307\u6570\u9636\u589e\u957f\u7684\u5178\u578b\u4f8b\u5b50\uff1a\u521d\u59cb\u72b6\u6001\u4e3a \\(1\\) \u4e2a\u7ec6\u80de\uff0c\u5206\u88c2\u4e00\u8f6e\u540e\u53d8\u4e3a \\(2\\) \u4e2a\uff0c\u5206\u88c2\u4e24\u8f6e\u540e\u53d8\u4e3a \\(4\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u5206\u88c2 \\(n\\) \u8f6e\u540e\u6709 \\(2^n\\) \u4e2a\u7ec6\u80de\u3002
\u56fe 2-11 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6a21\u62df\u4e86\u7ec6\u80de\u5206\u88c2\u7684\u8fc7\u7a0b\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exponential(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n base = 1\n # \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in range(n):\n for _ in range(base):\n count += 1\n base *= 2\n # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Exponential(int n) {\n int count = 0, bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc exponential(n int) int {\n count, base := 0, 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for i := 0; i < n; i++ {\n for j := 0; j < base; j++ {\n count++\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc exponential(n: Int) -> Int {\n var count = 0\n var base = 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0 ..< n {\n for _ in 0 ..< base {\n count += 1\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n) {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n: number): number {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (var i = 0; i < n; i++) {\n for (var j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn exponential(n: i32) -> i32 {\n let mut count = 0;\n let mut base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0..n {\n for _ in 0..base {\n count += 1\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n count\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0;\n int bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn exponential(n: i32) i32 {\n var count: i32 = 0;\n var bas: i32 = 1;\n var i: i32 = 0;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < bas) : (j += 1) {\n count += 1;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
\u56fe 2-11 \u00a0 \u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u5728\u5b9e\u9645\u7b97\u6cd5\u4e2d\uff0c\u6307\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u5176\u9012\u5f52\u5730\u4e00\u5206\u4e3a\u4e8c\uff0c\u7ecf\u8fc7 \\(n\\) \u6b21\u5206\u88c2\u540e\u505c\u6b62\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exp_recur(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 1:\n return 1\n return exp_recur(n - 1) + exp_recur(n - 1) + 1\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint ExpRecur(int n) {\n if (n == 1) return 1;\n return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc expRecur(n int) int {\n if n == 1 {\n return 1\n }\n return expRecur(n-1) + expRecur(n-1) + 1\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc expRecur(n: Int) -> Int {\n if n == 1 {\n return 1\n }\n return expRecur(n: n - 1) + expRecur(n: n - 1) + 1\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n) {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n: number): number {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn exp_recur(n: i32) -> i32 {\n if n == 1 {\n return 1;\n }\n exp_recur(n - 1) + exp_recur(n - 1) + 1\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn expRecur(n: i32) i32 {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
\u6307\u6570\u9636\u589e\u957f\u975e\u5e38\u8fc5\u901f\uff0c\u5728\u7a77\u4e3e\u6cd5\uff08\u66b4\u529b\u641c\u7d22\u3001\u56de\u6eaf\u7b49\uff09\u4e2d\u6bd4\u8f83\u5e38\u89c1\u3002\u5bf9\u4e8e\u6570\u636e\u89c4\u6a21\u8f83\u5927\u7684\u95ee\u9898\uff0c\u6307\u6570\u9636\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\uff0c\u901a\u5e38\u9700\u8981\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u6216\u8d2a\u5fc3\u7b97\u6cd5\u7b49\u6765\u89e3\u51b3\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"\u4e0e\u6307\u6570\u9636\u76f8\u53cd\uff0c\u5bf9\u6570\u9636\u53cd\u6620\u4e86\u201c\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\u201d\u7684\u60c5\u51b5\u3002\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7531\u4e8e\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\uff0c\u56e0\u6b64\u5faa\u73af\u6b21\u6570\u662f \\(\\log_2 n\\) \uff0c\u5373 \\(2^n\\) \u7684\u53cd\u51fd\u6570\u3002
\u56fe 2-12 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6a21\u62df\u4e86\u201c\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\u201d\u7684\u8fc7\u7a0b\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log_2 n)\\) \uff0c\u7b80\u8bb0\u4e3a \\(O(\\log n)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef logarithmic(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n while n > 1:\n n = n / 2\n count += 1\n return count\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n /= 2;\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc logarithmic(n float64) int {\n count := 0\n for n > 1 {\n n = n / 2\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc logarithmic(n: Double) -> Int {\n var count = 0\n var n = n\n while n > 1 {\n n = n / 2\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n) {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n: number): number {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(num n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn logarithmic(mut n: f32) -> i32 {\n let mut count = 0;\n while n > 1.0 {\n n = n / 2.0;\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn logarithmic(n: f32) i32 {\n var count: i32 = 0;\n var n_var = n;\n while (n_var > 1)\n {\n n_var = n_var / 2;\n count +=1;\n }\n return count;\n}\n
\u56fe 2-12 \u00a0 \u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u4e0e\u6307\u6570\u9636\u7c7b\u4f3c\uff0c\u5bf9\u6570\u9636\u4e5f\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4ee5\u4e0b\u4ee3\u7801\u5f62\u6210\u4e86\u4e00\u68f5\u9ad8\u5ea6\u4e3a \\(\\log_2 n\\) \u7684\u9012\u5f52\u6811\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef log_recur(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 1:\n return 0\n return log_recur(n / 2) + 1\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint LogRecur(float n) {\n if (n <= 1) return 0;\n return LogRecur(n / 2) + 1;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc logRecur(n float64) int {\n if n <= 1 {\n return 0\n }\n return logRecur(n/2) + 1\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc logRecur(n: Double) -> Int {\n if n <= 1 {\n return 0\n }\n return logRecur(n: n / 2) + 1\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n: number): number {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(num n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 0;\n }\n log_recur(n / 2.0) + 1\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn logRecur(n: f32) i32 {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
\u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u7b97\u6cd5\u4e2d\uff0c\u4f53\u73b0\u4e86\u201c\u4e00\u5206\u4e3a\u591a\u201d\u548c\u201c\u5316\u7e41\u4e3a\u7b80\u201d\u7684\u7b97\u6cd5\u601d\u60f3\u3002\u5b83\u589e\u957f\u7f13\u6162\uff0c\u662f\u4ec5\u6b21\u4e8e\u5e38\u6570\u9636\u7684\u7406\u60f3\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002
\\(O(\\log n)\\) \u7684\u5e95\u6570\u662f\u591a\u5c11\uff1f
\u51c6\u786e\u6765\u8bf4\uff0c\u201c\u4e00\u5206\u4e3a \\(m\\)\u201d\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(\\log_m n)\\) \u3002\u800c\u901a\u8fc7\u5bf9\u6570\u6362\u5e95\u516c\u5f0f\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u5177\u6709\u4e0d\u540c\u5e95\u6570\u3001\u76f8\u7b49\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a
\\[ O(\\log_m n) = O(\\log_k n / \\log_k m) = O(\\log_k n) \\] \u4e5f\u5c31\u662f\u8bf4\uff0c\u5e95\u6570 \\(m\\) \u53ef\u4ee5\u5728\u4e0d\u5f71\u54cd\u590d\u6742\u5ea6\u7684\u524d\u63d0\u4e0b\u8f6c\u6362\u3002\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f1a\u7701\u7565\u5e95\u6570 \\(m\\) \uff0c\u5c06\u5bf9\u6570\u9636\u76f4\u63a5\u8bb0\u4e3a \\(O(\\log n)\\) \u3002
"},{"location":"chapter_computational_complexity/time_complexity/#6-on-log-n","title":"6. \u00a0 \u7ebf\u6027\u5bf9\u6570\u9636 \\(O(n \\log n)\\)","text":"\u7ebf\u6027\u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u4e24\u5c42\u5faa\u73af\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u522b\u4e3a \\(O(\\log n)\\) \u548c \\(O(n)\\) \u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear_log_recur(n: float) -> int:\n \"\"\"\u7ebf\u6027\u5bf9\u6570\u9636\"\"\"\n if n <= 1:\n return 1\n count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint LinearLogRecur(float n) {\n if (n <= 1) return 1;\n int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n float64) int {\n if n <= 1 {\n return 1\n }\n count := linearLogRecur(n/2) + linearLogRecur(n/2)\n for i := 0.0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n: Double) -> Int {\n if n <= 1 {\n return 1\n }\n var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)\n for _ in stride(from: 0, to: n, by: 1) {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n) {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n: number): number {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(num n) {\n if (n <= 1) return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfn linear_log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 1;\n }\n let mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);\n for _ in 0 ..n as i32 {\n count += 1;\n }\n return count\n}\n
time_complexity.c/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u5bf9\u6570\u9636\nfn linearLogRecur(n: f32) i32 {\n if (n <= 1) return 1;\n var count: i32 = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n var i: f32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
\u56fe 2-13 \u5c55\u793a\u4e86\u7ebf\u6027\u5bf9\u6570\u9636\u7684\u751f\u6210\u65b9\u5f0f\u3002\u4e8c\u53c9\u6811\u7684\u6bcf\u4e00\u5c42\u7684\u64cd\u4f5c\u603b\u6570\u90fd\u4e3a \\(n\\) \uff0c\u6811\u5171\u6709 \\(\\log_2 n + 1\\) \u5c42\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
\u56fe 2-13 \u00a0 \u7ebf\u6027\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u4e3b\u6d41\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u7b49\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#7-on","title":"7. \u00a0 \u9636\u4e58\u9636 \\(O(n!)\\)","text":"\u9636\u4e58\u9636\u5bf9\u5e94\u6570\u5b66\u4e0a\u7684\u201c\u5168\u6392\u5217\u201d\u95ee\u9898\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u4e92\u4e0d\u91cd\u590d\u7684\u5143\u7d20\uff0c\u6c42\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u65b9\u6848\uff0c\u65b9\u6848\u6570\u91cf\u4e3a\uff1a
\\[ n! = n \\times (n - 1) \\times (n - 2) \\times \\dots \\times 2 \\times 1 \\] \u9636\u4e58\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u5b9e\u73b0\u3002\u5982\u56fe 2-14 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff0c\u7b2c\u4e00\u5c42\u5206\u88c2\u51fa \\(n\\) \u4e2a\uff0c\u7b2c\u4e8c\u5c42\u5206\u88c2\u51fa \\(n - 1\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u7b2c \\(n\\) \u5c42\u65f6\u505c\u6b62\u5206\u88c2\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef factorial_recur(n: int) -> int:\n \"\"\"\u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 0:\n return 1\n count = 0\n # \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in range(n):\n count += factorial_recur(n - 1)\n return count\n
time_complexity.cpp/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.java/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.cs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint FactorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += FactorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.go/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n int) int {\n if n == 0 {\n return 1\n }\n count := 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for i := 0; i < n; i++ {\n count += factorialRecur(n - 1)\n }\n return count\n}\n
time_complexity.swift/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n: Int) -> Int {\n if n == 0 {\n return 1\n }\n var count = 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0 ..< n {\n count += factorialRecur(n: n - 1)\n }\n return count\n}\n
time_complexity.js/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n) {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.ts/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n: number): number {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.dart/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (var i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.rs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn factorial_recur(n: i32) -> i32 {\n if n == 0 {\n return 1;\n }\n let mut count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0..n {\n count += factorial_recur(n - 1);\n }\n count\n}\n
time_complexity.c/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.zig// \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn factorialRecur(n: i32) i32 {\n if (n == 0) return 1;\n var count: i32 = 0;\n var i: i32 = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n while (i < n) : (i += 1) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
\u56fe 2-14 \u00a0 \u9636\u4e58\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u5f53 \\(n \\geq 4\\) \u65f6\u6052\u6709 \\(n! > 2^n\\) \uff0c\u6240\u4ee5\u9636\u4e58\u9636\u6bd4\u6307\u6570\u9636\u589e\u957f\u5f97\u66f4\u5feb\uff0c\u5728 \\(n\\) \u8f83\u5927\u65f6\u4e5f\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#235","title":"2.3.5 \u00a0 \u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6","text":"\u7b97\u6cd5\u7684\u65f6\u95f4\u6548\u7387\u5f80\u5f80\u4e0d\u662f\u56fa\u5b9a\u7684\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u5047\u8bbe\u8f93\u5165\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d nums \u7531\u4ece \\(1\\) \u81f3 \\(n\\) \u7684\u6570\u5b57\u7ec4\u6210\uff0c\u6bcf\u4e2a\u6570\u5b57\u53ea\u51fa\u73b0\u4e00\u6b21\uff1b\u4f46\u5143\u7d20\u987a\u5e8f\u662f\u968f\u673a\u6253\u4e71\u7684\uff0c\u4efb\u52a1\u76ee\u6807\u662f\u8fd4\u56de\u5143\u7d20 \\(1\\) \u7684\u7d22\u5f15\u3002\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\u3002
- \u5f53
nums = [?, ?, ..., 1] \uff0c\u5373\u5f53\u672b\u5c3e\u5143\u7d20\u662f \\(1\\) \u65f6\uff0c\u9700\u8981\u5b8c\u6574\u904d\u5386\u6570\u7ec4\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002 - \u5f53
nums = [1, ?, ?, ...] \uff0c\u5373\u5f53\u9996\u4e2a\u5143\u7d20\u4e3a \\(1\\) \u65f6\uff0c\u65e0\u8bba\u6570\u7ec4\u591a\u957f\u90fd\u4e0d\u9700\u8981\u7ee7\u7eed\u904d\u5386\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(\\Omega(1)\\) \u3002
\u201c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u201d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u4f7f\u7528\u5927 \\(O\\) \u8bb0\u53f7\u8868\u793a\u3002\u76f8\u5e94\u5730\uff0c\u201c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u201d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0b\u754c\uff0c\u7528 \\(\\Omega\\) \u8bb0\u53f7\u8868\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig worst_best_time_complexity.pydef random_numbers(n: int) -> list[int]:\n \"\"\"\u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a: 1, 2, ..., n \uff0c\u987a\u5e8f\u88ab\u6253\u4e71\"\"\"\n # \u751f\u6210\u6570\u7ec4 nums =: 1, 2, 3, ..., n\n nums = [i for i in range(1, n + 1)]\n # \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n random.shuffle(nums)\n return nums\n\ndef find_one(nums: list[int]) -> int:\n \"\"\"\u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\"\"\"\n for i in range(len(nums)):\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1:\n return i\n return -1\n
worst_best_time_complexity.cpp/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nvector<int> randomNumbers(int n) {\n vector<int> nums(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u4f7f\u7528\u7cfb\u7edf\u65f6\u95f4\u751f\u6210\u968f\u673a\u79cd\u5b50\n unsigned seed = chrono::system_clock::now().time_since_epoch().count();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n shuffle(nums.begin(), nums.end(), default_random_engine(seed));\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(vector<int> &nums) {\n for (int i = 0; i < nums.size(); i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.java/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\n Integer[] nums = new Integer[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n Collections.shuffle(Arrays.asList(nums));\n // Integer[] -> int[]\n int[] res = new int[n];\n for (int i = 0; i < n; i++) {\n res[i] = nums[i];\n }\n return res;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\n for (int i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.cs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] RandomNumbers(int n) {\n int[] nums = new int[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = 0; i < nums.Length; i++) {\n int index = new Random().Next(i, nums.Length);\n (nums[i], nums[index]) = (nums[index], nums[i]);\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint FindOne(int[] nums) {\n for (int i = 0; i < nums.Length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.go/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n int) []int {\n nums := make([]int, n)\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for i := 0; i < n; i++ {\n nums[i] = i + 1\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n rand.Shuffle(len(nums), func(i, j int) {\n nums[i], nums[j] = nums[j], nums[i]\n })\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums []int) int {\n for i := 0; i < len(nums); i++ {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.swift/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n: Int) -> [Int] {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n var nums = Array(1 ... n)\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle()\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums: [Int]) -> Int {\n for i in nums.indices {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.js/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n) {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums) {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.ts/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n: number): number[] {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums: number[]): number {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.dart/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nList<int> randomNumbers(int n) {\n final nums = List.filled(n, 0);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (var i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle();\n\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(List<int> nums) {\n for (var i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1) return i;\n }\n\n return -1;\n}\n
worst_best_time_complexity.rs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfn random_numbers(n: i32) -> Vec<i32> {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n let mut nums = (1..=n).collect::<Vec<i32>>();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle(&mut thread_rng());\n nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfn find_one(nums: &[i32]) -> Option<usize> {\n for i in 0..nums.len() {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return Some(i);\n }\n }\n None\n}\n
worst_best_time_complexity.c/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint *randomNumbers(int n) {\n // \u5206\u914d\u5806\u533a\u5185\u5b58\uff08\u521b\u5efa\u4e00\u7ef4\u53ef\u53d8\u957f\u6570\u7ec4\uff1a\u6570\u7ec4\u4e2d\u5143\u7d20\u6570\u91cf\u4e3a n \uff0c\u5143\u7d20\u7c7b\u578b\u4e3a int \uff09\n int *nums = (int *)malloc(n * sizeof(int));\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = n - 1; i > 0; i--) {\n int j = rand() % (i + 1);\n int temp = nums[i];\n nums[i] = nums[j];\n nums[j] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int *nums, int n) {\n for (int i = 0; i < n; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.zig// \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71\nfn randomNumbers(comptime n: usize) [n]i32 {\n var nums: [n]i32 = undefined;\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (&nums, 0..) |*num, i| {\n num.* = @as(i32, @intCast(i)) + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n const rand = std.crypto.random;\n rand.shuffle(i32, &nums);\n return nums;\n}\n\n// \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\nfn findOne(nums: []i32) i32 {\n for (nums, 0..) |num, i| {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (num == 1) return @intCast(i);\n }\n return -1;\n}\n
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6211\u4eec\u5728\u5b9e\u9645\u4e2d\u5f88\u5c11\u4f7f\u7528\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u56e0\u4e3a\u901a\u5e38\u53ea\u6709\u5728\u5f88\u5c0f\u6982\u7387\u4e0b\u624d\u80fd\u8fbe\u5230\uff0c\u53ef\u80fd\u4f1a\u5e26\u6765\u4e00\u5b9a\u7684\u8bef\u5bfc\u6027\u3002\u800c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u66f4\u4e3a\u5b9e\u7528\uff0c\u56e0\u4e3a\u5b83\u7ed9\u51fa\u4e86\u4e00\u4e2a\u6548\u7387\u5b89\u5168\u503c\uff0c\u8ba9\u6211\u4eec\u53ef\u4ee5\u653e\u5fc3\u5730\u4f7f\u7528\u7b97\u6cd5\u3002
\u4ece\u4e0a\u8ff0\u793a\u4f8b\u53ef\u4ee5\u770b\u51fa\uff0c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ea\u51fa\u73b0\u4e8e\u201c\u7279\u6b8a\u7684\u6570\u636e\u5206\u5e03\u201d\uff0c\u8fd9\u4e9b\u60c5\u51b5\u7684\u51fa\u73b0\u6982\u7387\u53ef\u80fd\u5f88\u5c0f\uff0c\u5e76\u4e0d\u80fd\u771f\u5b9e\u5730\u53cd\u6620\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f53\u73b0\u7b97\u6cd5\u5728\u968f\u673a\u8f93\u5165\u6570\u636e\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u7528 \\(\\Theta\\) \u8bb0\u53f7\u6765\u8868\u793a\u3002
\u5bf9\u4e8e\u90e8\u5206\u7b97\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u63a8\u7b97\u51fa\u968f\u673a\u6570\u636e\u5206\u5e03\u4e0b\u7684\u5e73\u5747\u60c5\u51b5\u3002\u6bd4\u5982\u4e0a\u8ff0\u793a\u4f8b\uff0c\u7531\u4e8e\u8f93\u5165\u6570\u7ec4\u662f\u88ab\u6253\u4e71\u7684\uff0c\u56e0\u6b64\u5143\u7d20 \\(1\\) \u51fa\u73b0\u5728\u4efb\u610f\u7d22\u5f15\u7684\u6982\u7387\u90fd\u662f\u76f8\u7b49\u7684\uff0c\u90a3\u4e48\u7b97\u6cd5\u7684\u5e73\u5747\u5faa\u73af\u6b21\u6570\u5c31\u662f\u6570\u7ec4\u957f\u5ea6\u7684\u4e00\u534a \\(n / 2\\) \uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(\\Theta(n / 2) = \\Theta(n)\\) \u3002
\u4f46\u5bf9\u4e8e\u8f83\u4e3a\u590d\u6742\u7684\u7b97\u6cd5\uff0c\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5f80\u5f80\u6bd4\u8f83\u56f0\u96be\uff0c\u56e0\u4e3a\u5f88\u96be\u5206\u6790\u51fa\u5728\u6570\u636e\u5206\u5e03\u4e0b\u7684\u6574\u4f53\u6570\u5b66\u671f\u671b\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f5c\u4e3a\u7b97\u6cd5\u6548\u7387\u7684\u8bc4\u5224\u6807\u51c6\u3002
\u4e3a\u4ec0\u4e48\u5f88\u5c11\u770b\u5230 \\(\\Theta\\) \u7b26\u53f7\uff1f
\u53ef\u80fd\u7531\u4e8e \\(O\\) \u7b26\u53f7\u8fc7\u4e8e\u6717\u6717\u4e0a\u53e3\uff0c\u56e0\u6b64\u6211\u4eec\u5e38\u5e38\u4f7f\u7528\u5b83\u6765\u8868\u793a\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u4f46\u4ece\u4e25\u683c\u610f\u4e49\u4e0a\u8bb2\uff0c\u8fd9\u79cd\u505a\u6cd5\u5e76\u4e0d\u89c4\u8303\u3002\u5728\u672c\u4e66\u548c\u5176\u4ed6\u8d44\u6599\u4e2d\uff0c\u82e5\u9047\u5230\u7c7b\u4f3c\u201c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\)\u201d\u7684\u8868\u8ff0\uff0c\u8bf7\u5c06\u5176\u76f4\u63a5\u7406\u89e3\u4e3a \\(\\Theta(n)\\) \u3002
"},{"location":"chapter_data_structure/","title":"\u7b2c 3 \u7ae0 \u00a0 \u6570\u636e\u7ed3\u6784","text":"Abstract
\u6570\u636e\u7ed3\u6784\u5982\u540c\u4e00\u526f\u7a33\u56fa\u800c\u591a\u6837\u7684\u6846\u67b6\u3002
\u5b83\u4e3a\u6570\u636e\u7684\u6709\u5e8f\u7ec4\u7ec7\u63d0\u4f9b\u4e86\u84dd\u56fe\uff0c\u7b97\u6cd5\u5f97\u4ee5\u5728\u6b64\u57fa\u7840\u4e0a\u751f\u52a8\u8d77\u6765\u3002
"},{"location":"chapter_data_structure/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b
- 3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b
- 3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *
- 3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *
- 3.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_data_structure/basic_data_types/","title":"3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b","text":"\u5f53\u8c08\u53ca\u8ba1\u7b97\u673a\u4e2d\u7684\u6570\u636e\u65f6\uff0c\u6211\u4eec\u4f1a\u60f3\u5230\u6587\u672c\u3001\u56fe\u7247\u3001\u89c6\u9891\u3001\u8bed\u97f3\u30013D \u6a21\u578b\u7b49\u5404\u79cd\u5f62\u5f0f\u3002\u5c3d\u7ba1\u8fd9\u4e9b\u6570\u636e\u7684\u7ec4\u7ec7\u5f62\u5f0f\u5404\u5f02\uff0c\u4f46\u5b83\u4eec\u90fd\u7531\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6784\u6210\u3002
\u57fa\u672c\u6570\u636e\u7c7b\u578b\u662f CPU \u53ef\u4ee5\u76f4\u63a5\u8fdb\u884c\u8fd0\u7b97\u7684\u7c7b\u578b\uff0c\u5728\u7b97\u6cd5\u4e2d\u76f4\u63a5\u88ab\u4f7f\u7528\uff0c\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u3002
- \u6574\u6570\u7c7b\u578b
byte\u3001short\u3001int\u3001long \u3002 - \u6d6e\u70b9\u6570\u7c7b\u578b
float\u3001double \uff0c\u7528\u4e8e\u8868\u793a\u5c0f\u6570\u3002 - \u5b57\u7b26\u7c7b\u578b
char \uff0c\u7528\u4e8e\u8868\u793a\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u6bcd\u3001\u6807\u70b9\u7b26\u53f7\u751a\u81f3\u8868\u60c5\u7b26\u53f7\u7b49\u3002 - \u5e03\u5c14\u7c7b\u578b
bool \uff0c\u7528\u4e8e\u8868\u793a\u201c\u662f\u201d\u4e0e\u201c\u5426\u201d\u5224\u65ad\u3002
\u57fa\u672c\u6570\u636e\u7c7b\u578b\u4ee5\u4e8c\u8fdb\u5236\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u3002\u4e00\u4e2a\u4e8c\u8fdb\u5236\u4f4d\u5373\u4e3a \\(1\\) \u6bd4\u7279\u3002\u5728\u7edd\u5927\u591a\u6570\u73b0\u4ee3\u64cd\u4f5c\u7cfb\u7edf\u4e2d\uff0c\\(1\\) \u5b57\u8282\uff08byte\uff09\u7531 \\(8\\) \u6bd4\u7279\uff08bit\uff09\u7ec4\u6210\u3002
\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5176\u5360\u7528\u7684\u7a7a\u95f4\u5927\u5c0f\u3002\u4e0b\u9762\u4ee5 Java \u4e3a\u4f8b\u3002
- \u6574\u6570\u7c7b\u578b
byte \u5360\u7528 \\(1\\) byte = \\(8\\) bits \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{8}\\) \u4e2a\u6570\u5b57\u3002 - \u6574\u6570\u7c7b\u578b
int \u5360\u7528 \\(4\\) bytes = \\(32\\) bits \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{32}\\) \u4e2a\u6570\u5b57\u3002
\u8868 3-1 \u5217\u4e3e\u4e86 Java \u4e2d\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u3001\u53d6\u503c\u8303\u56f4\u548c\u9ed8\u8ba4\u503c\u3002\u6b64\u8868\u683c\u65e0\u987b\u6b7b\u8bb0\u786c\u80cc\uff0c\u5927\u81f4\u7406\u89e3\u5373\u53ef\uff0c\u9700\u8981\u65f6\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u6765\u56de\u5fc6\u3002
\u8868 3-1 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u548c\u53d6\u503c\u8303\u56f4
\u7c7b\u578b \u7b26\u53f7 \u5360\u7528\u7a7a\u95f4 \u6700\u5c0f\u503c \u6700\u5927\u503c \u9ed8\u8ba4\u503c \u6574\u6570 byte 1 byte \\(-2^7\\) (\\(-128\\)) \\(2^7 - 1\\) (\\(127\\)) \\(0\\) short 2 bytes \\(-2^{15}\\) \\(2^{15} - 1\\) \\(0\\) int 4 bytes \\(-2^{31}\\) \\(2^{31} - 1\\) \\(0\\) long 8 bytes \\(-2^{63}\\) \\(2^{63} - 1\\) \\(0\\) \u6d6e\u70b9\u6570 float 4 bytes \\(1.175 \\times 10^{-38}\\) \\(3.403 \\times 10^{38}\\) \\(0.0\\text{f}\\) double 8 bytes \\(2.225 \\times 10^{-308}\\) \\(1.798 \\times 10^{308}\\) \\(0.0\\) \u5b57\u7b26 char 2 bytes \\(0\\) \\(2^{16} - 1\\) \\(0\\) \u5e03\u5c14 bool 1 byte \\(\\text{false}\\) \\(\\text{true}\\) \\(\\text{false}\\) \u8bf7\u6ce8\u610f\uff0c\u8868 3-1 \u9488\u5bf9\u7684\u662f Java \u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u60c5\u51b5\u3002\u6bcf\u79cd\u7f16\u7a0b\u8bed\u8a00\u90fd\u6709\u5404\u81ea\u7684\u6570\u636e\u7c7b\u578b\u5b9a\u4e49\uff0c\u5b83\u4eec\u7684\u5360\u7528\u7a7a\u95f4\u3001\u53d6\u503c\u8303\u56f4\u548c\u9ed8\u8ba4\u503c\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c\u3002
- \u5728 Python \u4e2d\uff0c\u6574\u6570\u7c7b\u578b
int \u53ef\u4ee5\u662f\u4efb\u610f\u5927\u5c0f\uff0c\u53ea\u53d7\u9650\u4e8e\u53ef\u7528\u5185\u5b58\uff1b\u6d6e\u70b9\u6570 float \u662f\u53cc\u7cbe\u5ea6 64 \u4f4d\uff1b\u6ca1\u6709 char \u7c7b\u578b\uff0c\u5355\u4e2a\u5b57\u7b26\u5b9e\u9645\u4e0a\u662f\u957f\u5ea6\u4e3a 1 \u7684\u5b57\u7b26\u4e32 str \u3002 - C \u548c C++ \u672a\u660e\u786e\u89c4\u5b9a\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5927\u5c0f\uff0c\u800c\u56e0\u5b9e\u73b0\u548c\u5e73\u53f0\u5404\u5f02\u3002\u8868 3-1 \u9075\u5faa LP64 \u6570\u636e\u6a21\u578b\uff0c\u5176\u7528\u4e8e\u5305\u62ec Linux \u548c macOS \u5728\u5185\u7684 Unix 64 \u4f4d\u64cd\u4f5c\u7cfb\u7edf\u3002
- \u5b57\u7b26
char \u7684\u5927\u5c0f\u5728 C \u548c C++ \u4e2d\u4e3a 1 \u5b57\u8282\uff0c\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\u53d6\u51b3\u4e8e\u7279\u5b9a\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\uff0c\u8be6\u89c1\u201c\u5b57\u7b26\u7f16\u7801\u201d\u7ae0\u8282\u3002 - \u5373\u4f7f\u8868\u793a\u5e03\u5c14\u91cf\u4ec5\u9700 1 \u4f4d\uff08\\(0\\) \u6216 \\(1\\)\uff09\uff0c\u5b83\u5728\u5185\u5b58\u4e2d\u901a\u5e38\u5b58\u50a8\u4e3a 1 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a\u73b0\u4ee3\u8ba1\u7b97\u673a CPU \u901a\u5e38\u5c06 1 \u5b57\u8282\u4f5c\u4e3a\u6700\u5c0f\u5bfb\u5740\u5185\u5b58\u5355\u5143\u3002
\u90a3\u4e48\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u95f4\u6709\u4ec0\u4e48\u8054\u7cfb\u5462\uff1f\u6211\u4eec\u77e5\u9053\uff0c\u6570\u636e\u7ed3\u6784\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u4e0e\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002\u8fd9\u53e5\u8bdd\u7684\u4e3b\u8bed\u662f\u201c\u7ed3\u6784\u201d\u800c\u975e\u201c\u6570\u636e\u201d\u3002
\u5982\u679c\u60f3\u8868\u793a\u201c\u4e00\u6392\u6570\u5b57\u201d\uff0c\u6211\u4eec\u81ea\u7136\u4f1a\u60f3\u5230\u4f7f\u7528\u6570\u7ec4\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u7684\u7ebf\u6027\u7ed3\u6784\u53ef\u4ee5\u8868\u793a\u6570\u5b57\u7684\u76f8\u90bb\u5173\u7cfb\u548c\u987a\u5e8f\u5173\u7cfb\uff0c\u4f46\u81f3\u4e8e\u5b58\u50a8\u7684\u5185\u5bb9\u662f\u6574\u6570 int\u3001\u5c0f\u6570 float \u6216\u662f\u5b57\u7b26 char \uff0c\u5219\u4e0e\u201c\u6570\u636e\u7ed3\u6784\u201d\u65e0\u5173\u3002
\u6362\u53e5\u8bdd\u8bf4\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u5185\u5bb9\u7c7b\u578b\u201d\uff0c\u800c\u6570\u636e\u7ed3\u6784\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u7ec4\u7ec7\u65b9\u5f0f\u201d\u3002\u4f8b\u5982\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6211\u4eec\u7528\u76f8\u540c\u7684\u6570\u636e\u7ed3\u6784\uff08\u6570\u7ec4\uff09\u6765\u5b58\u50a8\u4e0e\u8868\u793a\u4e0d\u540c\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c\u5305\u62ec int\u3001float\u3001char\u3001bool \u7b49\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nnumbers: list[int] = [0] * 5\ndecimals: list[float] = [0.0] * 5\n# Python \u7684\u5b57\u7b26\u5b9e\u9645\u4e0a\u662f\u957f\u5ea6\u4e3a 1 \u7684\u5b57\u7b26\u4e32\ncharacters: list[str] = ['0'] * 5\nbools: list[bool] = [False] * 5\n# Python \u7684\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\u5f15\u7528\ndata = [0, 0.0, 'a', False, ListNode(0)]\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[5];\nfloat decimals[5];\nchar characters[5];\nbool bools[5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nboolean[] bools = new boolean[5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nbool[] bools = new bool[5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nvar numbers = [5]int{}\nvar decimals = [5]float64{}\nvar characters = [5]byte{}\nvar bools = [5]bool{}\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nlet numbers = Array(repeating: Int(), count: 5)\nlet decimals = Array(repeating: Double(), count: 5)\nlet characters = Array(repeating: Character(\"a\"), count: 5)\nlet bools = Array(repeating: Bool(), count: 5)\n
// JavaScript \u7684\u6570\u7ec4\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\nconst array = [0, 0.0, 'a', false];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nconst numbers: number[] = [];\nconst characters: string[] = [];\nconst bools: boolean[] = [];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nList<int> numbers = List.filled(5, 0);\nList<double> decimals = List.filled(5, 0.0);\nList<String> characters = List.filled(5, 'a');\nList<bool> bools = List.filled(5, false);\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nlet numbers: Vec<i32> = vec![0; 5];\nlet decimals: Vec<f32> = vec![0.0, 5];\nlet characters: Vec<char> = vec!['0'; 5];\nlet bools: Vec<bool> = vec![false; 5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[10];\nfloat decimals[10];\nchar characters[10];\nbool bools[10];\n
\n
"},{"location":"chapter_data_structure/character_encoding/","title":"3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *","text":"\u5728\u8ba1\u7b97\u673a\u4e2d\uff0c\u6240\u6709\u6570\u636e\u90fd\u662f\u4ee5\u4e8c\u8fdb\u5236\u6570\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\uff0c\u5b57\u7b26 char \u4e5f\u4e0d\u4f8b\u5916\u3002\u4e3a\u4e86\u8868\u793a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u5efa\u7acb\u4e00\u5957\u201c\u5b57\u7b26\u96c6\u201d\uff0c\u89c4\u5b9a\u6bcf\u4e2a\u5b57\u7b26\u548c\u4e8c\u8fdb\u5236\u6570\u4e4b\u95f4\u7684\u4e00\u4e00\u5bf9\u5e94\u5173\u7cfb\u3002\u6709\u4e86\u5b57\u7b26\u96c6\u4e4b\u540e\uff0c\u8ba1\u7b97\u673a\u5c31\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u5b8c\u6210\u4e8c\u8fdb\u5236\u6570\u5230\u5b57\u7b26\u7684\u8f6c\u6362\u3002
"},{"location":"chapter_data_structure/character_encoding/#341-ascii","title":"3.4.1 \u00a0 ASCII \u5b57\u7b26\u96c6","text":"\u300cASCII \u7801\u300d\u662f\u6700\u65e9\u51fa\u73b0\u7684\u5b57\u7b26\u96c6\uff0c\u5176\u5168\u79f0\u4e3a American Standard Code for Information Interchange\uff08\u7f8e\u56fd\u6807\u51c6\u4fe1\u606f\u4ea4\u6362\u4ee3\u7801\uff09\u3002\u5b83\u4f7f\u7528 7 \u4f4d\u4e8c\u8fdb\u5236\u6570\uff08\u4e00\u4e2a\u5b57\u8282\u7684\u4f4e 7 \u4f4d\uff09\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6700\u591a\u80fd\u591f\u8868\u793a 128 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002\u5982\u56fe 3-6 \u6240\u793a\uff0cASCII \u7801\u5305\u62ec\u82f1\u6587\u5b57\u6bcd\u7684\u5927\u5c0f\u5199\u3001\u6570\u5b57 0 ~ 9\u3001\u4e00\u4e9b\u6807\u70b9\u7b26\u53f7\uff0c\u4ee5\u53ca\u4e00\u4e9b\u63a7\u5236\u5b57\u7b26\uff08\u5982\u6362\u884c\u7b26\u548c\u5236\u8868\u7b26\uff09\u3002
\u56fe 3-6 \u00a0 ASCII \u7801
\u7136\u800c\uff0cASCII \u7801\u4ec5\u80fd\u591f\u8868\u793a\u82f1\u6587\u3002\u968f\u7740\u8ba1\u7b97\u673a\u7684\u5168\u7403\u5316\uff0c\u8bde\u751f\u4e86\u4e00\u79cd\u80fd\u591f\u8868\u793a\u66f4\u591a\u8bed\u8a00\u7684\u5b57\u7b26\u96c6\u300cEASCII\u300d\u3002\u5b83\u5728 ASCII \u7684 7 \u4f4d\u57fa\u7840\u4e0a\u6269\u5c55\u5230 8 \u4f4d\uff0c\u80fd\u591f\u8868\u793a 256 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002
\u5728\u4e16\u754c\u8303\u56f4\u5185\uff0c\u9646\u7eed\u51fa\u73b0\u4e86\u4e00\u6279\u9002\u7528\u4e8e\u4e0d\u540c\u5730\u533a\u7684 EASCII \u5b57\u7b26\u96c6\u3002\u8fd9\u4e9b\u5b57\u7b26\u96c6\u7684\u524d 128 \u4e2a\u5b57\u7b26\u7edf\u4e00\u4e3a ASCII \u7801\uff0c\u540e 128 \u4e2a\u5b57\u7b26\u5b9a\u4e49\u4e0d\u540c\uff0c\u4ee5\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u9700\u6c42\u3002
"},{"location":"chapter_data_structure/character_encoding/#342-gbk","title":"3.4.2 \u00a0 GBK \u5b57\u7b26\u96c6","text":"\u540e\u6765\u4eba\u4eec\u53d1\u73b0\uff0cEASCII \u7801\u4ecd\u7136\u65e0\u6cd5\u6ee1\u8db3\u8bb8\u591a\u8bed\u8a00\u7684\u5b57\u7b26\u6570\u91cf\u8981\u6c42\u3002\u6bd4\u5982\u6c49\u5b57\u6709\u8fd1\u5341\u4e07\u4e2a\uff0c\u5149\u65e5\u5e38\u4f7f\u7528\u7684\u5c31\u6709\u51e0\u5343\u4e2a\u3002\u4e2d\u56fd\u56fd\u5bb6\u6807\u51c6\u603b\u5c40\u4e8e 1980 \u5e74\u53d1\u5e03\u4e86\u300cGB2312\u300d\u5b57\u7b26\u96c6\uff0c\u5176\u6536\u5f55\u4e86 6763 \u4e2a\u6c49\u5b57\uff0c\u57fa\u672c\u6ee1\u8db3\u4e86\u6c49\u5b57\u7684\u8ba1\u7b97\u673a\u5904\u7406\u9700\u8981\u3002
\u7136\u800c\uff0cGB2312 \u65e0\u6cd5\u5904\u7406\u90e8\u5206\u7f55\u89c1\u5b57\u548c\u7e41\u4f53\u5b57\u3002\u300cGBK\u300d\u5b57\u7b26\u96c6\u662f\u5728 GB2312 \u7684\u57fa\u7840\u4e0a\u6269\u5c55\u5f97\u5230\u7684\uff0c\u5b83\u5171\u6536\u5f55\u4e86 21886 \u4e2a\u6c49\u5b57\u3002\u5728 GBK \u7684\u7f16\u7801\u65b9\u6848\u4e2d\uff0cASCII \u5b57\u7b26\u4f7f\u7528\u4e00\u4e2a\u5b57\u8282\u8868\u793a\uff0c\u6c49\u5b57\u4f7f\u7528\u4e24\u4e2a\u5b57\u8282\u8868\u793a\u3002
"},{"location":"chapter_data_structure/character_encoding/#343-unicode","title":"3.4.3 \u00a0 Unicode \u5b57\u7b26\u96c6","text":"\u968f\u7740\u8ba1\u7b97\u673a\u6280\u672f\u7684\u84ec\u52c3\u53d1\u5c55\uff0c\u5b57\u7b26\u96c6\u4e0e\u7f16\u7801\u6807\u51c6\u767e\u82b1\u9f50\u653e\uff0c\u800c\u8fd9\u5e26\u6765\u4e86\u8bb8\u591a\u95ee\u9898\u3002\u4e00\u65b9\u9762\uff0c\u8fd9\u4e9b\u5b57\u7b26\u96c6\u4e00\u822c\u53ea\u5b9a\u4e49\u4e86\u7279\u5b9a\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u65e0\u6cd5\u5728\u591a\u8bed\u8a00\u73af\u5883\u4e0b\u6b63\u5e38\u5de5\u4f5c\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u540c\u4e00\u79cd\u8bed\u8a00\u5b58\u5728\u591a\u79cd\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u5982\u679c\u4e24\u53f0\u8ba1\u7b97\u673a\u4f7f\u7528\u7684\u662f\u4e0d\u540c\u7684\u7f16\u7801\u6807\u51c6\uff0c\u5219\u5728\u4fe1\u606f\u4f20\u9012\u65f6\u5c31\u4f1a\u51fa\u73b0\u4e71\u7801\u3002
\u90a3\u4e2a\u65f6\u4ee3\u7684\u7814\u7a76\u4eba\u5458\u5c31\u5728\u60f3\uff1a\u5982\u679c\u63a8\u51fa\u4e00\u4e2a\u8db3\u591f\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\uff0c\u5c06\u4e16\u754c\u8303\u56f4\u5185\u7684\u6240\u6709\u8bed\u8a00\u548c\u7b26\u53f7\u90fd\u6536\u5f55\u5176\u4e2d\uff0c\u4e0d\u5c31\u53ef\u4ee5\u89e3\u51b3\u8de8\u8bed\u8a00\u73af\u5883\u548c\u4e71\u7801\u95ee\u9898\u4e86\u5417\uff1f\u5728\u8fd9\u79cd\u60f3\u6cd5\u7684\u9a71\u52a8\u4e0b\uff0c\u4e00\u4e2a\u5927\u800c\u5168\u7684\u5b57\u7b26\u96c6 Unicode \u5e94\u8fd0\u800c\u751f\u3002
\u300cUnicode\u300d\u7684\u4e2d\u6587\u540d\u79f0\u4e3a\u201c\u7edf\u4e00\u7801\u201d\uff0c\u7406\u8bba\u4e0a\u80fd\u5bb9\u7eb3 100 \u591a\u4e07\u4e2a\u5b57\u7b26\u3002\u5b83\u81f4\u529b\u4e8e\u5c06\u5168\u7403\u8303\u56f4\u5185\u7684\u5b57\u7b26\u7eb3\u5165\u7edf\u4e00\u7684\u5b57\u7b26\u96c6\u4e4b\u4e2d\uff0c\u63d0\u4f9b\u4e00\u79cd\u901a\u7528\u7684\u5b57\u7b26\u96c6\u6765\u5904\u7406\u548c\u663e\u793a\u5404\u79cd\u8bed\u8a00\u6587\u5b57\uff0c\u51cf\u5c11\u56e0\u4e3a\u7f16\u7801\u6807\u51c6\u4e0d\u540c\u800c\u4ea7\u751f\u7684\u4e71\u7801\u95ee\u9898\u3002
\u81ea 1991 \u5e74\u53d1\u5e03\u4ee5\u6765\uff0cUnicode \u4e0d\u65ad\u6269\u5145\u65b0\u7684\u8bed\u8a00\u4e0e\u5b57\u7b26\u3002\u622a\u81f3 2022 \u5e74 9 \u6708\uff0cUnicode \u5df2\u7ecf\u5305\u542b 149186 \u4e2a\u5b57\u7b26\uff0c\u5305\u62ec\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\u3001\u7b26\u53f7\u751a\u81f3\u8868\u60c5\u7b26\u53f7\u7b49\u3002\u5728\u5e9e\u5927\u7684 Unicode \u5b57\u7b26\u96c6\u4e2d\uff0c\u5e38\u7528\u7684\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\uff0c\u6709\u4e9b\u751f\u50fb\u7684\u5b57\u7b26\u5360\u7528 3 \u5b57\u8282\u751a\u81f3 4 \u5b57\u8282\u3002
Unicode \u662f\u4e00\u79cd\u901a\u7528\u5b57\u7b26\u96c6\uff0c\u672c\u8d28\u4e0a\u662f\u7ed9\u6bcf\u4e2a\u5b57\u7b26\u5206\u914d\u4e00\u4e2a\u7f16\u53f7\uff08\u79f0\u4e3a\u201c\u7801\u70b9\u201d\uff09\uff0c\u4f46\u5b83\u5e76\u6ca1\u6709\u89c4\u5b9a\u5728\u8ba1\u7b97\u673a\u4e2d\u5982\u4f55\u5b58\u50a8\u8fd9\u4e9b\u5b57\u7b26\u7801\u70b9\u3002\u6211\u4eec\u4e0d\u7981\u4f1a\u95ee\uff1a\u5f53\u591a\u79cd\u957f\u5ea6\u7684 Unicode \u7801\u70b9\u540c\u65f6\u51fa\u73b0\u5728\u4e00\u4e2a\u6587\u672c\u4e2d\u65f6\uff0c\u7cfb\u7edf\u5982\u4f55\u89e3\u6790\u5b57\u7b26\uff1f\u4f8b\u5982\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a 2 \u5b57\u8282\u7684\u7f16\u7801\uff0c\u7cfb\u7edf\u5982\u4f55\u786e\u8ba4\u5b83\u662f\u4e00\u4e2a 2 \u5b57\u8282\u7684\u5b57\u7b26\u8fd8\u662f\u4e24\u4e2a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff1f
\u5bf9\u4e8e\u4ee5\u4e0a\u95ee\u9898\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5c06\u6240\u6709\u5b57\u7b26\u5b58\u50a8\u4e3a\u7b49\u957f\u7684\u7f16\u7801\u3002\u5982\u56fe 3-7 \u6240\u793a\uff0c\u201cHello\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u5b57\u8282\uff0c\u201c\u7b97\u6cd5\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9ad8\u4f4d\u586b 0 \u5c06\u201cHello \u7b97\u6cd5\u201d\u4e2d\u7684\u6240\u6709\u5b57\u7b26\u90fd\u7f16\u7801\u4e3a 2 \u5b57\u8282\u957f\u5ea6\u3002\u8fd9\u6837\u7cfb\u7edf\u5c31\u53ef\u4ee5\u6bcf\u9694 2 \u5b57\u8282\u89e3\u6790\u4e00\u4e2a\u5b57\u7b26\uff0c\u6062\u590d\u8fd9\u4e2a\u77ed\u8bed\u7684\u5185\u5bb9\u4e86\u3002
\u56fe 3-7 \u00a0 Unicode \u7f16\u7801\u793a\u4f8b
\u7136\u800c ASCII \u7801\u5df2\u7ecf\u5411\u6211\u4eec\u8bc1\u660e\uff0c\u7f16\u7801\u82f1\u6587\u53ea\u9700 1 \u5b57\u8282\u3002\u82e5\u91c7\u7528\u4e0a\u8ff0\u65b9\u6848\uff0c\u82f1\u6587\u6587\u672c\u5360\u7528\u7a7a\u95f4\u7684\u5927\u5c0f\u5c06\u4f1a\u662f ASCII \u7f16\u7801\u4e0b\u7684\u4e24\u500d\uff0c\u975e\u5e38\u6d6a\u8d39\u5185\u5b58\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u66f4\u52a0\u9ad8\u6548\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002
"},{"location":"chapter_data_structure/character_encoding/#344-utf-8","title":"3.4.4 \u00a0 UTF-8 \u7f16\u7801","text":"\u76ee\u524d\uff0cUTF-8 \u5df2\u6210\u4e3a\u56fd\u9645\u4e0a\u4f7f\u7528\u6700\u5e7f\u6cdb\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002\u5b83\u662f\u4e00\u79cd\u53ef\u53d8\u957f\u5ea6\u7684\u7f16\u7801\uff0c\u4f7f\u7528 1 \u5230 4 \u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6839\u636e\u5b57\u7b26\u7684\u590d\u6742\u6027\u800c\u53d8\u3002ASCII \u5b57\u7b26\u53ea\u9700 1 \u5b57\u8282\uff0c\u62c9\u4e01\u5b57\u6bcd\u548c\u5e0c\u814a\u5b57\u6bcd\u9700\u8981 2 \u5b57\u8282\uff0c\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u9700\u8981 3 \u5b57\u8282\uff0c\u5176\u4ed6\u7684\u4e00\u4e9b\u751f\u50fb\u5b57\u7b26\u9700\u8981 4 \u5b57\u8282\u3002
UTF-8 \u7684\u7f16\u7801\u89c4\u5219\u5e76\u4e0d\u590d\u6742\uff0c\u5206\u4e3a\u4ee5\u4e0b\u4e24\u79cd\u60c5\u51b5\u3002
- \u5bf9\u4e8e\u957f\u5ea6\u4e3a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff0c\u5c06\u6700\u9ad8\u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \uff0c\u5176\u4f59 7 \u4f4d\u8bbe\u7f6e\u4e3a Unicode \u7801\u70b9\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0cASCII \u5b57\u7b26\u5728 Unicode \u5b57\u7b26\u96c6\u4e2d\u5360\u636e\u4e86\u524d 128 \u4e2a\u7801\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0cUTF-8 \u7f16\u7801\u53ef\u4ee5\u5411\u4e0b\u517c\u5bb9 ASCII \u7801\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528 UTF-8 \u6765\u89e3\u6790\u5e74\u4ee3\u4e45\u8fdc\u7684 ASCII \u7801\u6587\u672c\u3002
- \u5bf9\u4e8e\u957f\u5ea6\u4e3a \\(n\\) \u5b57\u8282\u7684\u5b57\u7b26\uff08\u5176\u4e2d \\(n > 1\\)\uff09\uff0c\u5c06\u9996\u4e2a\u5b57\u8282\u7684\u9ad8 \\(n\\) \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(1\\) \uff0c\u7b2c \\(n + 1\\) \u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \uff1b\u4ece\u7b2c\u4e8c\u4e2a\u5b57\u8282\u5f00\u59cb\uff0c\u5c06\u6bcf\u4e2a\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \uff1b\u5176\u4f59\u6240\u6709\u4f4d\u7528\u4e8e\u586b\u5145\u5b57\u7b26\u7684 Unicode \u7801\u70b9\u3002
\u56fe 3-8 \u5c55\u793a\u4e86\u201cHello\u7b97\u6cd5\u201d\u5bf9\u5e94\u7684 UTF-8 \u7f16\u7801\u3002\u89c2\u5bdf\u53d1\u73b0\uff0c\u7531\u4e8e\u6700\u9ad8 \\(n\\) \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(1\\) \uff0c\u56e0\u6b64\u7cfb\u7edf\u53ef\u4ee5\u901a\u8fc7\u8bfb\u53d6\u6700\u9ad8\u4f4d \\(1\\) \u7684\u4e2a\u6570\u6765\u89e3\u6790\u51fa\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(n\\) \u3002
\u4f46\u4e3a\u4ec0\u4e48\u8981\u5c06\u5176\u4f59\u6240\u6709\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \u5462\uff1f\u5b9e\u9645\u4e0a\uff0c\u8fd9\u4e2a \\(10\\) \u80fd\u591f\u8d77\u5230\u6821\u9a8c\u7b26\u7684\u4f5c\u7528\u3002\u5047\u8bbe\u7cfb\u7edf\u4ece\u4e00\u4e2a\u9519\u8bef\u7684\u5b57\u8282\u5f00\u59cb\u89e3\u6790\u6587\u672c\uff0c\u5b57\u8282\u5934\u90e8\u7684 \\(10\\) \u80fd\u591f\u5e2e\u52a9\u7cfb\u7edf\u5feb\u901f\u5224\u65ad\u51fa\u5f02\u5e38\u3002
\u4e4b\u6240\u4ee5\u5c06 \\(10\\) \u5f53\u4f5c\u6821\u9a8c\u7b26\uff0c\u662f\u56e0\u4e3a\u5728 UTF-8 \u7f16\u7801\u89c4\u5219\u4e0b\uff0c\u4e0d\u53ef\u80fd\u6709\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \u3002\u8fd9\u4e2a\u7ed3\u8bba\u53ef\u4ee5\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\uff1a\u5047\u8bbe\u4e00\u4e2a\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \uff0c\u8bf4\u660e\u8be5\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(1\\) \uff0c\u5bf9\u5e94 ASCII \u7801\u3002\u800c ASCII \u7801\u7684\u6700\u9ad8\u4f4d\u5e94\u8be5\u662f \\(0\\) \uff0c\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
\u56fe 3-8 \u00a0 UTF-8 \u7f16\u7801\u793a\u4f8b
\u9664\u4e86 UTF-8 \u4e4b\u5916\uff0c\u5e38\u89c1\u7684\u7f16\u7801\u65b9\u5f0f\u8fd8\u5305\u62ec\u4ee5\u4e0b\u4e24\u79cd\u3002
- UTF-16 \u7f16\u7801\uff1a\u4f7f\u7528 2 \u6216 4 \u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\u3002\u6240\u6709\u7684 ASCII \u5b57\u7b26\u548c\u5e38\u7528\u7684\u975e\u82f1\u6587\u5b57\u7b26\uff0c\u90fd\u7528 2 \u5b57\u8282\u8868\u793a\uff1b\u5c11\u6570\u5b57\u7b26\u9700\u8981\u7528\u5230 4 \u5b57\u8282\u8868\u793a\u3002\u5bf9\u4e8e 2 \u5b57\u8282\u7684\u5b57\u7b26\uff0cUTF-16 \u7f16\u7801\u4e0e Unicode \u7801\u70b9\u76f8\u7b49\u3002
- UTF-32 \u7f16\u7801\uff1a\u6bcf\u4e2a\u5b57\u7b26\u90fd\u4f7f\u7528 4 \u5b57\u8282\u3002\u8fd9\u610f\u5473\u7740 UTF-32 \u6bd4 UTF-8 \u548c UTF-16 \u66f4\u5360\u7528\u7a7a\u95f4\uff0c\u7279\u522b\u662f\u5bf9\u4e8e ASCII \u5b57\u7b26\u5360\u6bd4\u8f83\u9ad8\u7684\u6587\u672c\u3002
\u4ece\u5b58\u50a8\u7a7a\u95f4\u5360\u7528\u7684\u89d2\u5ea6\u770b\uff0c\u4f7f\u7528 UTF-8 \u8868\u793a\u82f1\u6587\u5b57\u7b26\u975e\u5e38\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u4ec5\u9700 1 \u5b57\u8282\uff1b\u4f7f\u7528 UTF-16 \u7f16\u7801\u67d0\u4e9b\u975e\u82f1\u6587\u5b57\u7b26\uff08\u4f8b\u5982\u4e2d\u6587\uff09\u4f1a\u66f4\u52a0\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u4ec5\u9700 2 \u5b57\u8282\uff0c\u800c UTF-8 \u53ef\u80fd\u9700\u8981 3 \u5b57\u8282\u3002
\u4ece\u517c\u5bb9\u6027\u7684\u89d2\u5ea6\u770b\uff0cUTF-8 \u7684\u901a\u7528\u6027\u6700\u4f73\uff0c\u8bb8\u591a\u5de5\u5177\u548c\u5e93\u4f18\u5148\u652f\u6301 UTF-8 \u3002
"},{"location":"chapter_data_structure/character_encoding/#345","title":"3.4.5 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801","text":"\u5bf9\u4e8e\u4ee5\u5f80\u7684\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff0c\u7a0b\u5e8f\u8fd0\u884c\u4e2d\u7684\u5b57\u7b26\u4e32\u90fd\u91c7\u7528 UTF-16 \u6216 UTF-32 \u8fd9\u7c7b\u7b49\u957f\u7684\u7f16\u7801\u3002\u5728\u7b49\u957f\u7f16\u7801\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b57\u7b26\u4e32\u770b\u4f5c\u6570\u7ec4\u6765\u5904\u7406\uff0c\u8fd9\u79cd\u505a\u6cd5\u5177\u6709\u4ee5\u4e0b\u4f18\u70b9\u3002
- \u968f\u673a\u8bbf\u95ee\uff1aUTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u8fdb\u884c\u968f\u673a\u8bbf\u95ee\u3002UTF-8 \u662f\u4e00\u79cd\u53d8\u957f\u7f16\u7801\uff0c\u8981\u60f3\u627e\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u4ece\u5b57\u7b26\u4e32\u7684\u5f00\u59cb\u5904\u904d\u5386\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u8fd9\u9700\u8981 \\(O(n)\\) \u7684\u65f6\u95f4\u3002
- \u5b57\u7b26\u8ba1\u6570\uff1a\u4e0e\u968f\u673a\u8bbf\u95ee\u7c7b\u4f3c\uff0c\u8ba1\u7b97 UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u4e5f\u662f \\(O(1)\\) \u7684\u64cd\u4f5c\u3002\u4f46\u662f\uff0c\u8ba1\u7b97 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u9700\u8981\u904d\u5386\u6574\u4e2a\u5b57\u7b26\u4e32\u3002
- \u5b57\u7b26\u4e32\u64cd\u4f5c\uff1a\u5728 UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e0a\uff0c\u5f88\u591a\u5b57\u7b26\u4e32\u64cd\u4f5c\uff08\u5982\u5206\u5272\u3001\u8fde\u63a5\u3001\u63d2\u5165\u3001\u5220\u9664\u7b49\uff09\u66f4\u5bb9\u6613\u8fdb\u884c\u3002\u5728 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e0a\uff0c\u8fdb\u884c\u8fd9\u4e9b\u64cd\u4f5c\u901a\u5e38\u9700\u8981\u989d\u5916\u7684\u8ba1\u7b97\uff0c\u4ee5\u786e\u4fdd\u4e0d\u4f1a\u4ea7\u751f\u65e0\u6548\u7684 UTF-8 \u7f16\u7801\u3002
\u5b9e\u9645\u4e0a\uff0c\u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6848\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5f88\u6709\u8da3\u7684\u8bdd\u9898\uff0c\u6d89\u53ca\u8bb8\u591a\u56e0\u7d20\u3002
- Java \u7684
String \u7c7b\u578b\u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a Java \u8bed\u8a00\u8bbe\u8ba1\u4e4b\u521d\uff0c\u4eba\u4eec\u8ba4\u4e3a 16 \u4f4d\u8db3\u4ee5\u8868\u793a\u6240\u6709\u53ef\u80fd\u7684\u5b57\u7b26\u3002\u7136\u800c\uff0c\u8fd9\u662f\u4e00\u4e2a\u4e0d\u6b63\u786e\u7684\u5224\u65ad\u3002\u540e\u6765 Unicode \u89c4\u8303\u6269\u5c55\u5230\u4e86\u8d85\u8fc7 16 \u4f4d\uff0c\u6240\u4ee5 Java \u4e2d\u7684\u5b57\u7b26\u73b0\u5728\u53ef\u80fd\u7531\u4e00\u5bf9 16 \u4f4d\u7684\u503c\uff08\u79f0\u4e3a\u201c\u4ee3\u7406\u5bf9\u201d\uff09\u8868\u793a\u3002 - JavaScript \u548c TypeScript \u7684\u5b57\u7b26\u4e32\u4f7f\u7528 UTF-16 \u7f16\u7801\u7684\u539f\u56e0\u4e0e Java \u7c7b\u4f3c\u3002\u5f53 1995 \u5e74 Netscape \u516c\u53f8\u9996\u6b21\u63a8\u51fa JavaScript \u8bed\u8a00\u65f6\uff0cUnicode \u8fd8\u5904\u4e8e\u53d1\u5c55\u65e9\u671f\uff0c\u90a3\u65f6\u5019\u4f7f\u7528 16 \u4f4d\u7684\u7f16\u7801\u5c31\u8db3\u4ee5\u8868\u793a\u6240\u6709\u7684 Unicode \u5b57\u7b26\u4e86\u3002
- C# \u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u4e3b\u8981\u662f\u56e0\u4e3a .NET \u5e73\u53f0\u662f\u7531 Microsoft \u8bbe\u8ba1\u7684\uff0c\u800c Microsoft \u7684\u5f88\u591a\u6280\u672f\uff08\u5305\u62ec Windows \u64cd\u4f5c\u7cfb\u7edf\uff09\u90fd\u5e7f\u6cdb\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002
\u7531\u4e8e\u4ee5\u4e0a\u7f16\u7a0b\u8bed\u8a00\u5bf9\u5b57\u7b26\u6570\u91cf\u7684\u4f4e\u4f30\uff0c\u5b83\u4eec\u4e0d\u5f97\u4e0d\u91c7\u53d6\u201c\u4ee3\u7406\u5bf9\u201d\u7684\u65b9\u5f0f\u6765\u8868\u793a\u8d85\u8fc7 16 \u4f4d\u957f\u5ea6\u7684 Unicode \u5b57\u7b26\u3002\u8fd9\u662f\u4e00\u4e2a\u4e0d\u5f97\u5df2\u4e3a\u4e4b\u7684\u65e0\u5948\u4e4b\u4e3e\u3002\u4e00\u65b9\u9762\uff0c\u5305\u542b\u4ee3\u7406\u5bf9\u7684\u5b57\u7b26\u4e32\u4e2d\uff0c\u4e00\u4e2a\u5b57\u7b26\u53ef\u80fd\u5360\u7528 2 \u5b57\u8282\u6216 4 \u5b57\u8282\uff0c\u4ece\u800c\u4e27\u5931\u4e86\u7b49\u957f\u7f16\u7801\u7684\u4f18\u52bf\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5904\u7406\u4ee3\u7406\u5bf9\u9700\u8981\u589e\u52a0\u989d\u5916\u4ee3\u7801\uff0c\u8fd9\u63d0\u9ad8\u4e86\u7f16\u7a0b\u7684\u590d\u6742\u6027\u548c\u8c03\u8bd5\u96be\u5ea6\u3002
\u51fa\u4e8e\u4ee5\u4e0a\u539f\u56e0\uff0c\u90e8\u5206\u7f16\u7a0b\u8bed\u8a00\u63d0\u51fa\u4e86\u4e00\u4e9b\u4e0d\u540c\u7684\u7f16\u7801\u65b9\u6848\u3002
- Python \u4e2d\u7684
str \u4f7f\u7528 Unicode \u7f16\u7801\uff0c\u5e76\u91c7\u7528\u4e00\u79cd\u7075\u6d3b\u7684\u5b57\u7b26\u4e32\u8868\u793a\uff0c\u5b58\u50a8\u7684\u5b57\u7b26\u957f\u5ea6\u53d6\u51b3\u4e8e\u5b57\u7b26\u4e32\u4e2d\u6700\u5927\u7684 Unicode \u7801\u70b9\u3002\u82e5\u5b57\u7b26\u4e32\u4e2d\u5168\u90e8\u662f ASCII \u5b57\u7b26\uff0c\u5219\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u5b57\u8282\uff1b\u5982\u679c\u6709\u5b57\u7b26\u8d85\u51fa\u4e86 ASCII \u8303\u56f4\uff0c\u4f46\u5168\u90e8\u5728\u57fa\u672c\u591a\u8bed\u8a00\u5e73\u9762\uff08BMP\uff09\u5185\uff0c\u5219\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\uff1b\u5982\u679c\u6709\u8d85\u51fa BMP \u7684\u5b57\u7b26\uff0c\u5219\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 4 \u5b57\u8282\u3002 - Go \u8bed\u8a00\u7684
string \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Go \u8bed\u8a00\u8fd8\u63d0\u4f9b\u4e86 rune \u7c7b\u578b\uff0c\u5b83\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002 - Rust \u8bed\u8a00\u7684
str \u548c String \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Rust \u4e5f\u63d0\u4f9b\u4e86 char \u7c7b\u578b\uff0c\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ee5\u4e0a\u8ba8\u8bba\u7684\u90fd\u662f\u5b57\u7b26\u4e32\u5728\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u8fd9\u548c\u5b57\u7b26\u4e32\u5982\u4f55\u5728\u6587\u4ef6\u4e2d\u5b58\u50a8\u6216\u5728\u7f51\u7edc\u4e2d\u4f20\u8f93\u662f\u4e0d\u540c\u7684\u95ee\u9898\u3002\u5728\u6587\u4ef6\u5b58\u50a8\u6216\u7f51\u7edc\u4f20\u8f93\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u5b57\u7b26\u4e32\u7f16\u7801\u4e3a UTF-8 \u683c\u5f0f\uff0c\u4ee5\u8fbe\u5230\u6700\u4f18\u7684\u517c\u5bb9\u6027\u548c\u7a7a\u95f4\u6548\u7387\u3002
"},{"location":"chapter_data_structure/classification_of_data_structure/","title":"3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b","text":"\u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\u5305\u62ec\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\uff0c\u5b83\u4eec\u53ef\u4ee5\u4ece\u201c\u903b\u8f91\u7ed3\u6784\u201d\u548c\u201c\u7269\u7406\u7ed3\u6784\u201d\u4e24\u4e2a\u7ef4\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002
"},{"location":"chapter_data_structure/classification_of_data_structure/#311","title":"3.1.1 \u00a0 \u903b\u8f91\u7ed3\u6784\uff1a\u7ebf\u6027\u4e0e\u975e\u7ebf\u6027","text":"\u903b\u8f91\u7ed3\u6784\u63ed\u793a\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\u3002\u5728\u6570\u7ec4\u548c\u94fe\u8868\u4e2d\uff0c\u6570\u636e\u6309\u7167\u4e00\u5b9a\u987a\u5e8f\u6392\u5217\uff0c\u4f53\u73b0\u4e86\u6570\u636e\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb\uff1b\u800c\u5728\u6811\u4e2d\uff0c\u6570\u636e\u4ece\u9876\u90e8\u5411\u4e0b\u6309\u5c42\u6b21\u6392\u5217\uff0c\u8868\u73b0\u51fa\u201c\u7956\u5148\u201d\u4e0e\u201c\u540e\u4ee3\u201d\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff1b\u56fe\u5219\u7531\u8282\u70b9\u548c\u8fb9\u6784\u6210\uff0c\u53cd\u6620\u4e86\u590d\u6742\u7684\u7f51\u7edc\u5173\u7cfb\u3002
\u5982\u56fe 3-1 \u6240\u793a\uff0c\u903b\u8f91\u7ed3\u6784\u53ef\u5206\u4e3a\u201c\u7ebf\u6027\u201d\u548c\u201c\u975e\u7ebf\u6027\u201d\u4e24\u5927\u7c7b\u3002\u7ebf\u6027\u7ed3\u6784\u6bd4\u8f83\u76f4\u89c2\uff0c\u6307\u6570\u636e\u5728\u903b\u8f91\u5173\u7cfb\u4e0a\u5448\u7ebf\u6027\u6392\u5217\uff1b\u975e\u7ebf\u6027\u7ed3\u6784\u5219\u76f8\u53cd\uff0c\u5448\u975e\u7ebf\u6027\u6392\u5217\u3002
- \u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3002
- \u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u56fe\u3001\u54c8\u5e0c\u8868\u3002
\u56fe 3-1 \u00a0 \u7ebf\u6027\u6570\u636e\u7ed3\u6784\u4e0e\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784
\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5212\u5206\u4e3a\u6811\u5f62\u7ed3\u6784\u548c\u7f51\u72b6\u7ed3\u6784\u3002
- \u7ebf\u6027\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u961f\u5217\u3001\u6808\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u4e00\u7684\u987a\u5e8f\u5173\u7cfb\u3002
- \u6811\u5f62\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u591a\u7684\u5173\u7cfb\u3002
- \u7f51\u72b6\u7ed3\u6784\uff1a\u56fe\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u591a\u5bf9\u591a\u7684\u5173\u7cfb\u3002
"},{"location":"chapter_data_structure/classification_of_data_structure/#312","title":"3.1.2 \u00a0 \u7269\u7406\u7ed3\u6784\uff1a\u8fde\u7eed\u4e0e\u5206\u6563","text":"\u5f53\u7b97\u6cd5\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6b63\u5728\u5904\u7406\u7684\u6570\u636e\u4e3b\u8981\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\u3002\u56fe 3-2 \u5c55\u793a\u4e86\u4e00\u4e2a\u8ba1\u7b97\u673a\u5185\u5b58\u6761\uff0c\u5176\u4e2d\u6bcf\u4e2a\u9ed1\u8272\u65b9\u5757\u90fd\u5305\u542b\u4e00\u5757\u5185\u5b58\u7a7a\u95f4\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u5185\u5b58\u60f3\u8c61\u6210\u4e00\u4e2a\u5de8\u5927\u7684 Excel \u8868\u683c\uff0c\u5176\u4e2d\u6bcf\u4e2a\u5355\u5143\u683c\u90fd\u53ef\u4ee5\u5b58\u50a8\u4e00\u5b9a\u5927\u5c0f\u7684\u6570\u636e\u3002
\u7cfb\u7edf\u901a\u8fc7\u5185\u5b58\u5730\u5740\u6765\u8bbf\u95ee\u76ee\u6807\u4f4d\u7f6e\u7684\u6570\u636e\u3002\u5982\u56fe 3-2 \u6240\u793a\uff0c\u8ba1\u7b97\u673a\u6839\u636e\u7279\u5b9a\u89c4\u5219\u4e3a\u8868\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5206\u914d\u7f16\u53f7\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u6709\u552f\u4e00\u7684\u5185\u5b58\u5730\u5740\u3002\u6709\u4e86\u8fd9\u4e9b\u5730\u5740\uff0c\u7a0b\u5e8f\u4fbf\u53ef\u4ee5\u8bbf\u95ee\u5185\u5b58\u4e2d\u7684\u6570\u636e\u3002
\u56fe 3-2 \u00a0 \u5185\u5b58\u6761\u3001\u5185\u5b58\u7a7a\u95f4\u3001\u5185\u5b58\u5730\u5740
Tip
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5c06\u5185\u5b58\u6bd4\u4f5c Excel \u8868\u683c\u662f\u4e00\u4e2a\u7b80\u5316\u7684\u7c7b\u6bd4\uff0c\u5b9e\u9645\u5185\u5b58\u7684\u5de5\u4f5c\u673a\u5236\u6bd4\u8f83\u590d\u6742\uff0c\u6d89\u53ca\u5730\u5740\u7a7a\u95f4\u3001\u5185\u5b58\u7ba1\u7406\u3001\u7f13\u5b58\u673a\u5236\u3001\u865a\u62df\u5185\u5b58\u548c\u7269\u7406\u5185\u5b58\u7b49\u6982\u5ff5\u3002
\u5185\u5b58\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u5171\u4eab\u8d44\u6e90\uff0c\u5f53\u67d0\u5757\u5185\u5b58\u88ab\u67d0\u4e2a\u7a0b\u5e8f\u5360\u7528\u65f6\uff0c\u5219\u65e0\u6cd5\u88ab\u5176\u4ed6\u7a0b\u5e8f\u540c\u65f6\u4f7f\u7528\u4e86\u3002\u56e0\u6b64\u5728\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8bbe\u8ba1\u4e2d\uff0c\u5185\u5b58\u8d44\u6e90\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u8003\u8651\u56e0\u7d20\u3002\u6bd4\u5982\uff0c\u7b97\u6cd5\u6240\u5360\u7528\u7684\u5185\u5b58\u5cf0\u503c\u4e0d\u5e94\u8d85\u8fc7\u7cfb\u7edf\u5269\u4f59\u7a7a\u95f2\u5185\u5b58\uff1b\u5982\u679c\u7f3a\u5c11\u8fde\u7eed\u5927\u5757\u7684\u5185\u5b58\u7a7a\u95f4\uff0c\u90a3\u4e48\u6240\u9009\u7528\u7684\u6570\u636e\u7ed3\u6784\u5fc5\u987b\u80fd\u591f\u5b58\u50a8\u5728\u5206\u6563\u7684\u5185\u5b58\u7a7a\u95f4\u5185\u3002
\u5982\u56fe 3-3 \u6240\u793a\uff0c\u7269\u7406\u7ed3\u6784\u53cd\u6620\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u53ef\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u5206\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u7269\u7406\u7ed3\u6784\u4ece\u5e95\u5c42\u51b3\u5b9a\u4e86\u6570\u636e\u7684\u8bbf\u95ee\u3001\u66f4\u65b0\u3001\u589e\u5220\u7b49\u64cd\u4f5c\u65b9\u6cd5\uff0c\u4e24\u79cd\u7269\u7406\u7ed3\u6784\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u65b9\u9762\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u70b9\u3002
\u56fe 3-3 \u00a0 \u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u4e0e\u5206\u6563\u7a7a\u95f4\u5b58\u50a8
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u57fa\u4e8e\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e8c\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002\u4f8b\u5982\uff0c\u6808\u548c\u961f\u5217\u65e2\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\uff0c\u4e5f\u53ef\u4ee5\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff1b\u800c\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u6570\u7ec4\u548c\u94fe\u8868\u3002
- \u57fa\u4e8e\u6570\u7ec4\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u3001\u77e9\u9635\u3001\u5f20\u91cf\uff08\u7ef4\u5ea6 \\(\\geq 3\\) \u7684\u6570\u7ec4\uff09\u7b49\u3002
- \u57fa\u4e8e\u94fe\u8868\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u3002
\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u4e5f\u79f0\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u610f\u5473\u7740\u6b64\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u76f8\u5bf9\u5e94\u5730\uff0c\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u79f0\u201c\u52a8\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\uff0c\u4ecd\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u5bf9\u5176\u957f\u5ea6\u8fdb\u884c\u8c03\u6574\u3002
Tip
\u5982\u679c\u4f60\u611f\u89c9\u7269\u7406\u7ed3\u6784\u7406\u89e3\u8d77\u6765\u6709\u56f0\u96be\uff0c\u5efa\u8bae\u5148\u9605\u8bfb\u4e0b\u4e00\u7ae0\uff0c\u7136\u540e\u518d\u56de\u987e\u672c\u8282\u5185\u5bb9\u3002
"},{"location":"chapter_data_structure/number_encoding/","title":"3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *","text":"Note
\u5728\u672c\u4e66\u4e2d\uff0c\u6807\u9898\u5e26\u6709 * \u7b26\u53f7\u7684\u662f\u9009\u8bfb\u7ae0\u8282\u3002\u5982\u679c\u4f60\u65f6\u95f4\u6709\u9650\u6216\u611f\u5230\u7406\u89e3\u56f0\u96be\uff0c\u53ef\u4ee5\u5148\u8df3\u8fc7\uff0c\u7b49\u5b66\u5b8c\u5fc5\u8bfb\u7ae0\u8282\u540e\u518d\u5355\u72ec\u653b\u514b\u3002
"},{"location":"chapter_data_structure/number_encoding/#331","title":"3.3.1 \u00a0 \u6574\u6570\u7f16\u7801","text":"\u5728\u4e0a\u4e00\u8282\u7684\u8868\u683c\u4e2d\u6211\u4eec\u53d1\u73b0\uff0c\u6240\u6709\u6574\u6570\u7c7b\u578b\u80fd\u591f\u8868\u793a\u7684\u8d1f\u6570\u90fd\u6bd4\u6b63\u6570\u591a\u4e00\u4e2a\uff0c\u4f8b\u5982 byte \u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \u3002\u8fd9\u4e2a\u73b0\u8c61\u6bd4\u8f83\u53cd\u76f4\u89c9\uff0c\u5b83\u7684\u5185\u5728\u539f\u56e0\u6d89\u53ca\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u76f8\u5173\u77e5\u8bc6\u3002
\u9996\u5148\u9700\u8981\u6307\u51fa\uff0c\u6570\u5b57\u662f\u4ee5\u201c\u8865\u7801\u201d\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u7684\u3002\u5728\u5206\u6790\u8fd9\u6837\u505a\u7684\u539f\u56e0\u4e4b\u524d\uff0c\u9996\u5148\u7ed9\u51fa\u4e09\u8005\u7684\u5b9a\u4e49\u3002
- \u539f\u7801\uff1a\u6211\u4eec\u5c06\u6570\u5b57\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u7684\u6700\u9ad8\u4f4d\u89c6\u4e3a\u7b26\u53f7\u4f4d\uff0c\u5176\u4e2d \\(0\\) \u8868\u793a\u6b63\u6570\uff0c\\(1\\) \u8868\u793a\u8d1f\u6570\uff0c\u5176\u4f59\u4f4d\u8868\u793a\u6570\u5b57\u7684\u503c\u3002
- \u53cd\u7801\uff1a\u6b63\u6570\u7684\u53cd\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u53cd\u7801\u662f\u5bf9\u5176\u539f\u7801\u9664\u7b26\u53f7\u4f4d\u5916\u7684\u6240\u6709\u4f4d\u53d6\u53cd\u3002
- \u8865\u7801\uff1a\u6b63\u6570\u7684\u8865\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u8865\u7801\u662f\u5728\u5176\u53cd\u7801\u7684\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u3002
\u56fe 3-4 \u5c55\u793a\u4e86\u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\u4e4b\u95f4\u7684\u8f6c\u6362\u65b9\u6cd5\u3002
\u56fe 3-4 \u00a0 \u539f\u7801\u3001\u53cd\u7801\u4e0e\u8865\u7801\u4e4b\u95f4\u7684\u76f8\u4e92\u8f6c\u6362
\u300c\u539f\u7801 sign-magnitude\u300d\u867d\u7136\u6700\u76f4\u89c2\uff0c\u4f46\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\u3002\u4e00\u65b9\u9762\uff0c\u8d1f\u6570\u7684\u539f\u7801\u4e0d\u80fd\u76f4\u63a5\u7528\u4e8e\u8fd0\u7b97\u3002\u4f8b\u5982\u5728\u539f\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u5f97\u5230\u7684\u7ed3\u679c\u662f \\(-3\\) \uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 + 1000 \\; 0010 \\newline & = 1000 \\; 0011 \\newline & \\rightarrow -3 \\end{aligned} \\] \u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u8ba1\u7b97\u673a\u5f15\u5165\u4e86\u300c\u53cd\u7801 1's complement\u300d\u3002\u5982\u679c\u6211\u4eec\u5148\u5c06\u539f\u7801\u8f6c\u6362\u4e3a\u53cd\u7801\uff0c\u5e76\u5728\u53cd\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u6700\u540e\u5c06\u7ed3\u679c\u4ece\u53cd\u7801\u8f6c\u6362\u56de\u539f\u7801\uff0c\u5219\u53ef\u5f97\u5230\u6b63\u786e\u7ed3\u679c \\(-1\\) \u3002
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 \\; \\text{(\u539f\u7801)} + 1000 \\; 0010 \\; \\text{(\u539f\u7801)} \\newline & = 0000 \\; 0001 \\; \\text{(\u53cd\u7801)} + 1111 \\; 1101 \\; \\text{(\u53cd\u7801)} \\newline & = 1111 \\; 1110 \\; \\text{(\u53cd\u7801)} \\newline & = 1000 \\; 0001 \\; \\text{(\u539f\u7801)} \\newline & \\rightarrow -1 \\end{aligned} \\] \u53e6\u4e00\u65b9\u9762\uff0c\u6570\u5b57\u96f6\u7684\u539f\u7801\u6709 \\(+0\\) \u548c \\(-0\\) \u4e24\u79cd\u8868\u793a\u65b9\u5f0f\u3002\u8fd9\u610f\u5473\u7740\u6570\u5b57\u96f6\u5bf9\u5e94\u4e24\u4e2a\u4e0d\u540c\u7684\u4e8c\u8fdb\u5236\u7f16\u7801\uff0c\u8fd9\u53ef\u80fd\u4f1a\u5e26\u6765\u6b67\u4e49\u3002\u6bd4\u5982\u5728\u6761\u4ef6\u5224\u65ad\u4e2d\uff0c\u5982\u679c\u6ca1\u6709\u533a\u5206\u6b63\u96f6\u548c\u8d1f\u96f6\uff0c\u5219\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5224\u65ad\u7ed3\u679c\u51fa\u9519\u3002\u800c\u5982\u679c\u6211\u4eec\u60f3\u5904\u7406\u6b63\u96f6\u548c\u8d1f\u96f6\u6b67\u4e49\uff0c\u5219\u9700\u8981\u5f15\u5165\u989d\u5916\u7684\u5224\u65ad\u64cd\u4f5c\uff0c\u8fd9\u53ef\u80fd\u4f1a\u964d\u4f4e\u8ba1\u7b97\u673a\u7684\u8fd0\u7b97\u6548\u7387\u3002
\\[ \\begin{aligned} +0 & \\rightarrow 0000 \\; 0000 \\newline -0 & \\rightarrow 1000 \\; 0000 \\end{aligned} \\] \u4e0e\u539f\u7801\u4e00\u6837\uff0c\u53cd\u7801\u4e5f\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u95ee\u9898\uff0c\u56e0\u6b64\u8ba1\u7b97\u673a\u8fdb\u4e00\u6b65\u5f15\u5165\u4e86\u300c\u8865\u7801 2's complement\u300d\u3002\u6211\u4eec\u5148\u6765\u89c2\u5bdf\u4e00\u4e0b\u8d1f\u96f6\u7684\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u8f6c\u6362\u8fc7\u7a0b\uff1a
\\[ \\begin{aligned} -0 \\rightarrow \\; & 1000 \\; 0000 \\; \\text{(\u539f\u7801)} \\newline = \\; & 1111 \\; 1111 \\; \\text{(\u53cd\u7801)} \\newline = 1 \\; & 0000 \\; 0000 \\; \\text{(\u8865\u7801)} \\newline \\end{aligned} \\] \u5728\u8d1f\u96f6\u7684\u53cd\u7801\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u4f1a\u4ea7\u751f\u8fdb\u4f4d\uff0c\u4f46 byte \u7c7b\u578b\u7684\u957f\u5ea6\u53ea\u6709 8 \u4f4d\uff0c\u56e0\u6b64\u6ea2\u51fa\u5230\u7b2c 9 \u4f4d\u7684 \\(1\\) \u4f1a\u88ab\u820d\u5f03\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8d1f\u96f6\u7684\u8865\u7801\u4e3a \\(0000 \\; 0000\\) \uff0c\u4e0e\u6b63\u96f6\u7684\u8865\u7801\u76f8\u540c\u3002\u8fd9\u610f\u5473\u7740\u5728\u8865\u7801\u8868\u793a\u4e2d\u53ea\u5b58\u5728\u4e00\u4e2a\u96f6\uff0c\u6b63\u8d1f\u96f6\u6b67\u4e49\u4ece\u800c\u5f97\u5230\u89e3\u51b3\u3002
\u8fd8\u5269\u6700\u540e\u4e00\u4e2a\u7591\u60d1\uff1abyte \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \uff0c\u591a\u51fa\u6765\u7684\u4e00\u4e2a\u8d1f\u6570 \\(-128\\) \u662f\u5982\u4f55\u5f97\u5230\u7684\u5462\uff1f\u6211\u4eec\u6ce8\u610f\u5230\uff0c\u533a\u95f4 \\([-127, +127]\\) \u5185\u7684\u6240\u6709\u6574\u6570\u90fd\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\uff0c\u5e76\u4e14\u539f\u7801\u548c\u8865\u7801\u4e4b\u95f4\u53ef\u4ee5\u4e92\u76f8\u8f6c\u6362\u3002
\u7136\u800c\uff0c\u8865\u7801 \\(1000 \\; 0000\\) \u662f\u4e00\u4e2a\u4f8b\u5916\uff0c\u5b83\u5e76\u6ca1\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3002\u6839\u636e\u8f6c\u6362\u65b9\u6cd5\uff0c\u6211\u4eec\u5f97\u5230\u8be5\u8865\u7801\u7684\u539f\u7801\u4e3a \\(0000 \\; 0000\\) \u3002\u8fd9\u663e\u7136\u662f\u77db\u76fe\u7684\uff0c\u56e0\u4e3a\u8be5\u539f\u7801\u8868\u793a\u6570\u5b57 \\(0\\) \uff0c\u5b83\u7684\u8865\u7801\u5e94\u8be5\u662f\u81ea\u8eab\u3002\u8ba1\u7b97\u673a\u89c4\u5b9a\u8fd9\u4e2a\u7279\u6b8a\u7684\u8865\u7801 \\(1000 \\; 0000\\) \u4ee3\u8868 \\(-128\\) \u3002\u5b9e\u9645\u4e0a\uff0c\\((-1) + (-127)\\) \u5728\u8865\u7801\u4e0b\u7684\u8ba1\u7b97\u7ed3\u679c\u5c31\u662f \\(-128\\) \u3002
\\[ \\begin{aligned} & (-127) + (-1) \\newline & \\rightarrow 1111 \\; 1111 \\; \\text{(\u539f\u7801)} + 1000 \\; 0001 \\; \\text{(\u539f\u7801)} \\newline & = 1000 \\; 0000 \\; \\text{(\u53cd\u7801)} + 1111 \\; 1110 \\; \\text{(\u53cd\u7801)} \\newline & = 1000 \\; 0001 \\; \\text{(\u8865\u7801)} + 1111 \\; 1111 \\; \\text{(\u8865\u7801)} \\newline & = 1000 \\; 0000 \\; \\text{(\u8865\u7801)} \\newline & \\rightarrow -128 \\end{aligned} \\] \u4f60\u53ef\u80fd\u5df2\u7ecf\u53d1\u73b0\u4e86\uff0c\u4e0a\u8ff0\u6240\u6709\u8ba1\u7b97\u90fd\u662f\u52a0\u6cd5\u8fd0\u7b97\u3002\u8fd9\u6697\u793a\u7740\u4e00\u4e2a\u91cd\u8981\u4e8b\u5b9e\uff1a\u8ba1\u7b97\u673a\u5185\u90e8\u7684\u786c\u4ef6\u7535\u8def\u4e3b\u8981\u662f\u57fa\u4e8e\u52a0\u6cd5\u8fd0\u7b97\u8bbe\u8ba1\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u52a0\u6cd5\u8fd0\u7b97\u76f8\u5bf9\u4e8e\u5176\u4ed6\u8fd0\u7b97\uff08\u6bd4\u5982\u4e58\u6cd5\u3001\u9664\u6cd5\u548c\u51cf\u6cd5\uff09\u6765\u8bf4\uff0c\u786c\u4ef6\u5b9e\u73b0\u8d77\u6765\u66f4\u7b80\u5355\uff0c\u66f4\u5bb9\u6613\u8fdb\u884c\u5e76\u884c\u5316\u5904\u7406\uff0c\u8fd0\u7b97\u901f\u5ea6\u66f4\u5feb\u3002
\u8bf7\u6ce8\u610f\uff0c\u8fd9\u5e76\u4e0d\u610f\u5473\u7740\u8ba1\u7b97\u673a\u53ea\u80fd\u505a\u52a0\u6cd5\u3002\u901a\u8fc7\u5c06\u52a0\u6cd5\u4e0e\u4e00\u4e9b\u57fa\u672c\u903b\u8f91\u8fd0\u7b97\u7ed3\u5408\uff0c\u8ba1\u7b97\u673a\u80fd\u591f\u5b9e\u73b0\u5404\u79cd\u5176\u4ed6\u7684\u6570\u5b66\u8fd0\u7b97\u3002\u4f8b\u5982\uff0c\u8ba1\u7b97\u51cf\u6cd5 \\(a - b\\) \u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u52a0\u6cd5 \\(a + (-b)\\) \uff1b\u8ba1\u7b97\u4e58\u6cd5\u548c\u9664\u6cd5\u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u591a\u6b21\u52a0\u6cd5\u6216\u51cf\u6cd5\u3002
\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u603b\u7ed3\u51fa\u8ba1\u7b97\u673a\u4f7f\u7528\u8865\u7801\u7684\u539f\u56e0\uff1a\u57fa\u4e8e\u8865\u7801\u8868\u793a\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u7528\u540c\u6837\u7684\u7535\u8def\u548c\u64cd\u4f5c\u6765\u5904\u7406\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\uff0c\u4e0d\u9700\u8981\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\u6765\u5904\u7406\u51cf\u6cd5\uff0c\u5e76\u4e14\u65e0\u987b\u7279\u522b\u5904\u7406\u6b63\u8d1f\u96f6\u7684\u6b67\u4e49\u95ee\u9898\u3002\u8fd9\u5927\u5927\u7b80\u5316\u4e86\u786c\u4ef6\u8bbe\u8ba1\uff0c\u63d0\u9ad8\u4e86\u8fd0\u7b97\u6548\u7387\u3002
\u8865\u7801\u7684\u8bbe\u8ba1\u975e\u5e38\u7cbe\u5999\uff0c\u56e0\u7bc7\u5e45\u5173\u7cfb\u6211\u4eec\u5c31\u5148\u4ecb\u7ecd\u5230\u8fd9\u91cc\uff0c\u5efa\u8bae\u6709\u5174\u8da3\u7684\u8bfb\u8005\u8fdb\u4e00\u6b65\u6df1\u5165\u4e86\u89e3\u3002
"},{"location":"chapter_data_structure/number_encoding/#332","title":"3.3.2 \u00a0 \u6d6e\u70b9\u6570\u7f16\u7801","text":"\u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\uff1aint \u548c float \u957f\u5ea6\u76f8\u540c\uff0c\u90fd\u662f 4 bytes \uff0c\u4f46\u4e3a\u4ec0\u4e48 float \u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \uff1f\u8fd9\u975e\u5e38\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u6309\u7406\u8bf4 float \u9700\u8981\u8868\u793a\u5c0f\u6570\uff0c\u53d6\u503c\u8303\u56f4\u5e94\u8be5\u53d8\u5c0f\u624d\u5bf9\u3002
\u5b9e\u9645\u4e0a\uff0c\u8fd9\u662f\u56e0\u4e3a\u6d6e\u70b9\u6570 float \u91c7\u7528\u4e86\u4e0d\u540c\u7684\u8868\u793a\u65b9\u5f0f\u3002\u8bb0\u4e00\u4e2a 32-bit \u957f\u5ea6\u7684\u4e8c\u8fdb\u5236\u6570\u4e3a\uff1a
\\[ b_{31} b_{30} b_{29} \\ldots b_2 b_1 b_0 \\] \u6839\u636e IEEE 754 \u6807\u51c6\uff0c32-bit \u957f\u5ea6\u7684 float \u7531\u4ee5\u4e0b\u4e09\u4e2a\u90e8\u5206\u6784\u6210\u3002
- \u7b26\u53f7\u4f4d \\(\\mathrm{S}\\) \uff1a\u5360 1 bit \uff0c\u5bf9\u5e94 \\(b_{31}\\) \u3002
- \u6307\u6570\u4f4d \\(\\mathrm{E}\\) \uff1a\u5360 8 bits \uff0c\u5bf9\u5e94 \\(b_{30} b_{29} \\ldots b_{23}\\) \u3002
- \u5206\u6570\u4f4d \\(\\mathrm{N}\\) \uff1a\u5360 23 bits \uff0c\u5bf9\u5e94 \\(b_{22} b_{21} \\ldots b_0\\) \u3002
\u4e8c\u8fdb\u5236\u6570 float \u5bf9\u5e94\u503c\u7684\u8ba1\u7b97\u65b9\u6cd5\u4e3a\uff1a
\\[ \\text {val} = (-1)^{b_{31}} \\times 2^{\\left(b_{30} b_{29} \\ldots b_{23}\\right)_2-127} \\times\\left(1 . b_{22} b_{21} \\ldots b_0\\right)_2 \\] \u8f6c\u5316\u5230\u5341\u8fdb\u5236\u4e0b\u7684\u8ba1\u7b97\u516c\u5f0f\u4e3a\uff1a
\\[ \\text {val}=(-1)^{\\mathrm{S}} \\times 2^{\\mathrm{E} -127} \\times (1 + \\mathrm{N}) \\] \u5176\u4e2d\u5404\u9879\u7684\u53d6\u503c\u8303\u56f4\u4e3a\uff1a
\\[ \\begin{aligned} \\mathrm{S} \\in & \\{ 0, 1\\}, \\quad \\mathrm{E} \\in \\{ 1, 2, \\dots, 254 \\} \\newline (1 + \\mathrm{N}) = & (1 + \\sum_{i=1}^{23} b_{23-i} 2^{-i}) \\subset [1, 2 - 2^{-23}] \\end{aligned} \\] \u56fe 3-5 \u00a0 IEEE 754 \u6807\u51c6\u4e0b\u7684 float \u7684\u8ba1\u7b97\u793a\u4f8b
\u89c2\u5bdf\u56fe 3-5 \uff0c\u7ed9\u5b9a\u4e00\u4e2a\u793a\u4f8b\u6570\u636e \\(\\mathrm{S} = 0\\) \uff0c \\(\\mathrm{E} = 124\\) \uff0c\\(\\mathrm{N} = 2^{-2} + 2^{-3} = 0.375\\) \uff0c\u5219\u6709\uff1a
\\[ \\text { val } = (-1)^0 \\times 2^{124 - 127} \\times (1 + 0.375) = 0.171875 \\] \u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u56de\u7b54\u6700\u521d\u7684\u95ee\u9898\uff1afloat \u7684\u8868\u793a\u65b9\u5f0f\u5305\u542b\u6307\u6570\u4f4d\uff0c\u5bfc\u81f4\u5176\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \u3002\u6839\u636e\u4ee5\u4e0a\u8ba1\u7b97\uff0cfloat \u53ef\u8868\u793a\u7684\u6700\u5927\u6b63\u6570\u4e3a \\(2^{254 - 127} \\times (2 - 2^{-23}) \\approx 3.4 \\times 10^{38}\\) \uff0c\u5207\u6362\u7b26\u53f7\u4f4d\u4fbf\u53ef\u5f97\u5230\u6700\u5c0f\u8d1f\u6570\u3002
\u5c3d\u7ba1\u6d6e\u70b9\u6570 float \u6269\u5c55\u4e86\u53d6\u503c\u8303\u56f4\uff0c\u4f46\u5176\u526f\u4f5c\u7528\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002\u6574\u6570\u7c7b\u578b int \u5c06\u5168\u90e8 32 \u4f4d\u7528\u4e8e\u8868\u793a\u6570\u5b57\uff0c\u6570\u5b57\u662f\u5747\u5300\u5206\u5e03\u7684\uff1b\u800c\u7531\u4e8e\u6307\u6570\u4f4d\u7684\u5b58\u5728\uff0c\u6d6e\u70b9\u6570 float \u7684\u6570\u503c\u8d8a\u5927\uff0c\u76f8\u90bb\u4e24\u4e2a\u6570\u5b57\u4e4b\u95f4\u7684\u5dee\u503c\u5c31\u4f1a\u8d8b\u5411\u8d8a\u5927\u3002
\u5982\u8868 3-2 \u6240\u793a\uff0c\u6307\u6570\u4f4d \\(E = 0\\) \u548c \\(E = 255\\) \u5177\u6709\u7279\u6b8a\u542b\u4e49\uff0c\u7528\u4e8e\u8868\u793a\u96f6\u3001\u65e0\u7a77\u5927\u3001\\(\\mathrm{NaN}\\) \u7b49\u3002
\u8868 3-2 \u00a0 \u6307\u6570\u4f4d\u542b\u4e49
\u6307\u6570\u4f4d E \u5206\u6570\u4f4d \\(\\mathrm{N} = 0\\) \u5206\u6570\u4f4d \\(\\mathrm{N} \\ne 0\\) \u8ba1\u7b97\u516c\u5f0f \\(0\\) \\(\\pm 0\\) \u6b21\u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{-126} \\times (0.\\mathrm{N})\\) \\(1, 2, \\dots, 254\\) \u6b63\u89c4\u6570 \u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{(\\mathrm{E} -127)} \\times (1.\\mathrm{N})\\) \\(255\\) \\(\\pm \\infty\\) \\(\\mathrm{NaN}\\) \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6b21\u6b63\u89c4\u6570\u663e\u8457\u63d0\u5347\u4e86\u6d6e\u70b9\u6570\u7684\u7cbe\u5ea6\u3002\u6700\u5c0f\u6b63\u6b63\u89c4\u6570\u4e3a \\(2^{-126}\\) \uff0c\u6700\u5c0f\u6b63\u6b21\u6b63\u89c4\u6570\u4e3a \\(2^{-126} \\times 2^{-23}\\) \u3002
\u53cc\u7cbe\u5ea6 double \u4e5f\u91c7\u7528\u7c7b\u4f3c\u4e8e float \u7684\u8868\u793a\u65b9\u6cd5\uff0c\u5728\u6b64\u4e0d\u505a\u8d58\u8ff0\u3002
"},{"location":"chapter_data_structure/summary/","title":"3.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_data_structure/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u4ece\u903b\u8f91\u7ed3\u6784\u548c\u7269\u7406\u7ed3\u6784\u4e24\u4e2a\u89d2\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002\u903b\u8f91\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\uff0c\u800c\u7269\u7406\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\u3002
- \u5e38\u89c1\u7684\u903b\u8f91\u7ed3\u6784\u5305\u62ec\u7ebf\u6027\u3001\u6811\u72b6\u548c\u7f51\u72b6\u7b49\u3002\u901a\u5e38\u6211\u4eec\u6839\u636e\u903b\u8f91\u7ed3\u6784\u5c06\u6570\u636e\u7ed3\u6784\u5206\u4e3a\u7ebf\u6027\uff08\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\uff09\u548c\u975e\u7ebf\u6027\uff08\u6811\u3001\u56fe\u3001\u5806\uff09\u4e24\u79cd\u3002\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002
- \u5f53\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u88ab\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u3002\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u62e5\u6709\u5bf9\u5e94\u7684\u5185\u5b58\u5730\u5740\uff0c\u7a0b\u5e8f\u901a\u8fc7\u8fd9\u4e9b\u5185\u5b58\u5730\u5740\u8bbf\u95ee\u6570\u636e\u3002
- \u7269\u7406\u7ed3\u6784\u4e3b\u8981\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u5206\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u7531\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e24\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002
- \u8ba1\u7b97\u673a\u4e2d\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5305\u62ec\u6574\u6570
byte\u3001short\u3001int\u3001long \uff0c\u6d6e\u70b9\u6570 float\u3001double \uff0c\u5b57\u7b26 char \u548c\u5e03\u5c14 boolean \u3002\u5b83\u4eec\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5360\u7528\u7a7a\u95f4\u5927\u5c0f\u548c\u8868\u793a\u65b9\u5f0f\u3002 - \u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7f16\u7801\u6570\u5b57\u7684\u4e09\u79cd\u65b9\u6cd5\uff0c\u5b83\u4eec\u4e4b\u95f4\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\u3002\u6574\u6570\u7684\u539f\u7801\u7684\u6700\u9ad8\u4f4d\u662f\u7b26\u53f7\u4f4d\uff0c\u5176\u4f59\u4f4d\u662f\u6570\u5b57\u7684\u503c\u3002
- \u6574\u6570\u5728\u8ba1\u7b97\u673a\u4e2d\u662f\u4ee5\u8865\u7801\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\u3002\u5728\u8865\u7801\u8868\u793a\u4e0b\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u5bf9\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\u4e00\u89c6\u540c\u4ec1\uff0c\u4e0d\u9700\u8981\u4e3a\u51cf\u6cd5\u64cd\u4f5c\u5355\u72ec\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\uff0c\u5e76\u4e14\u4e0d\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u7684\u95ee\u9898\u3002
- \u6d6e\u70b9\u6570\u7684\u7f16\u7801\u7531 1 \u4f4d\u7b26\u53f7\u4f4d\u30018 \u4f4d\u6307\u6570\u4f4d\u548c 23 \u4f4d\u5206\u6570\u4f4d\u6784\u6210\u3002\u7531\u4e8e\u5b58\u5728\u6307\u6570\u4f4d\uff0c\u56e0\u6b64\u6d6e\u70b9\u6570\u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e\u6574\u6570\uff0c\u4ee3\u4ef7\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002
- ASCII \u7801\u662f\u6700\u65e9\u51fa\u73b0\u7684\u82f1\u6587\u5b57\u7b26\u96c6\uff0c\u957f\u5ea6\u4e3a 1 \u5b57\u8282\uff0c\u5171\u6536\u5f55 127 \u4e2a\u5b57\u7b26\u3002GBK \u5b57\u7b26\u96c6\u662f\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u96c6\uff0c\u5171\u6536\u5f55\u4e24\u4e07\u591a\u4e2a\u6c49\u5b57\u3002Unicode \u81f4\u529b\u4e8e\u63d0\u4f9b\u4e00\u4e2a\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u6536\u5f55\u4e16\u754c\u5185\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u4ece\u800c\u89e3\u51b3\u7531\u4e8e\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\u4e0d\u4e00\u81f4\u800c\u5bfc\u81f4\u7684\u4e71\u7801\u95ee\u9898\u3002
- UTF-8 \u662f\u6700\u53d7\u6b22\u8fce\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\uff0c\u901a\u7528\u6027\u975e\u5e38\u597d\u3002\u5b83\u662f\u4e00\u79cd\u53d8\u957f\u7684\u7f16\u7801\u65b9\u6cd5\uff0c\u5177\u6709\u5f88\u597d\u7684\u6269\u5c55\u6027\uff0c\u6709\u6548\u63d0\u5347\u4e86\u5b58\u50a8\u7a7a\u95f4\u7684\u4f7f\u7528\u6548\u7387\u3002UTF-16 \u548c UTF-32 \u662f\u7b49\u957f\u7684\u7f16\u7801\u65b9\u6cd5\u3002\u5728\u7f16\u7801\u4e2d\u6587\u65f6\uff0cUTF-16 \u6bd4 UTF-8 \u7684\u5360\u7528\u7a7a\u95f4\u66f4\u5c0f\u3002Java \u548c C# \u7b49\u7f16\u7a0b\u8bed\u8a00\u9ed8\u8ba4\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002
"},{"location":"chapter_data_structure/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1f
\u54c8\u5e0c\u8868\u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u800c\u4e3a\u4e86\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\uff0c\u6211\u4eec\u53ef\u80fd\u4f1a\u4f7f\u7528\u201c\u94fe\u5f0f\u5730\u5740\u201d\uff08\u540e\u7eed\u201c\u54c8\u5e0c\u51b2\u7a81\u201d\u7ae0\u8282\u4f1a\u8bb2\uff09\uff1a\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u6876\u6307\u5411\u4e00\u4e2a\u94fe\u8868\uff0c\u5f53\u94fe\u8868\u957f\u5ea6\u8d85\u8fc7\u4e00\u5b9a\u9608\u503c\u65f6\uff0c\u53c8\u53ef\u80fd\u88ab\u8f6c\u5316\u4e3a\u6811\uff08\u901a\u5e38\u4e3a\u7ea2\u9ed1\u6811\uff09\u3002 \u4ece\u5b58\u50a8\u7684\u89d2\u5ea6\u6765\u770b\uff0c\u54c8\u5e0c\u8868\u7684\u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u5176\u4e2d\u6bcf\u4e00\u4e2a\u6876\u69fd\u4f4d\u53ef\u80fd\u5305\u542b\u4e00\u4e2a\u503c\uff0c\u4e5f\u53ef\u80fd\u5305\u542b\u4e00\u4e2a\u94fe\u8868\u6216\u4e00\u68f5\u6811\u3002\u56e0\u6b64\uff0c\u54c8\u5e0c\u8868\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff08\u6570\u7ec4\u3001\u94fe\u8868\uff09\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff08\u6811\uff09\u3002
char \u7c7b\u578b\u7684\u957f\u5ea6\u662f 1 byte \u5417\uff1f
char \u7c7b\u578b\u7684\u957f\u5ea6\u7531\u7f16\u7a0b\u8bed\u8a00\u91c7\u7528\u7684\u7f16\u7801\u65b9\u6cd5\u51b3\u5b9a\u3002\u4f8b\u5982\uff0cJava\u3001JavaScript\u3001TypeScript\u3001C# \u90fd\u91c7\u7528 UTF-16 \u7f16\u7801\uff08\u4fdd\u5b58 Unicode \u7801\u70b9\uff09\uff0c\u56e0\u6b64 char \u7c7b\u578b\u7684\u957f\u5ea6\u4e3a 2 bytes\u3002
\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u4e5f\u79f0\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d \u662f\u5426\u6709\u6b67\u4e49\uff1f\u56e0\u4e3a\u6808\u4e5f\u53ef\u4ee5\u8fdb\u884c\u51fa\u6808\u548c\u5165\u6808\u7b49\u64cd\u4f5c\uff0c\u8fd9\u4e9b\u64cd\u4f5c\u90fd\u662f\u201c\u52a8\u6001\u201d\u7684\u3002
\u6808\u786e\u5b9e\u53ef\u4ee5\u5b9e\u73b0\u52a8\u6001\u7684\u6570\u636e\u64cd\u4f5c\uff0c\u4f46\u6570\u636e\u7ed3\u6784\u4ecd\u7136\u662f\u201c\u9759\u6001\u201d\uff08\u957f\u5ea6\u4e0d\u53ef\u53d8\uff09\u7684\u3002\u5c3d\u7ba1\u57fa\u4e8e\u6570\u7ec4\u7684\u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u52a8\u6001\u5730\u6dfb\u52a0\u6216\u5220\u9664\u5143\u7d20\uff0c\u4f46\u5b83\u4eec\u7684\u5bb9\u91cf\u662f\u56fa\u5b9a\u7684\u3002\u5982\u679c\u6570\u636e\u91cf\u8d85\u51fa\u4e86\u9884\u5206\u914d\u7684\u5927\u5c0f\uff0c\u5c31\u9700\u8981\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u65e7\u6570\u7ec4\u7684\u5185\u5bb9\u590d\u5236\u5230\u65b0\u6570\u7ec4\u4e2d\u3002
\u5728\u6784\u5efa\u6808\uff08\u961f\u5217\uff09\u7684\u65f6\u5019\uff0c\u672a\u6307\u5b9a\u5b83\u7684\u5927\u5c0f\uff0c\u4e3a\u4ec0\u4e48\u5b83\u4eec\u662f\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d\u5462\uff1f
\u5728\u9ad8\u7ea7\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u65e0\u987b\u4eba\u5de5\u6307\u5b9a\u6808\uff08\u961f\u5217\uff09\u7684\u521d\u59cb\u5bb9\u91cf\uff0c\u8fd9\u4e2a\u5de5\u4f5c\u7531\u7c7b\u5185\u90e8\u81ea\u52a8\u5b8c\u6210\u3002\u4f8b\u5982\uff0cJava \u7684 ArrayList \u7684\u521d\u59cb\u5bb9\u91cf\u901a\u5e38\u4e3a 10\u3002\u53e6\u5916\uff0c\u6269\u5bb9\u64cd\u4f5c\u4e5f\u662f\u81ea\u52a8\u5b9e\u73b0\u7684\u3002\u8be6\u89c1\u540e\u7eed\u7684\u201c\u5217\u8868\u201d\u7ae0\u8282\u3002
"},{"location":"chapter_divide_and_conquer/","title":"\u7b2c 12 \u7ae0 \u00a0 \u5206\u6cbb","text":"Abstract
\u96be\u9898\u88ab\u9010\u5c42\u62c6\u89e3\uff0c\u6bcf\u4e00\u6b21\u7684\u62c6\u89e3\u90fd\u4f7f\u5b83\u53d8\u5f97\u66f4\u4e3a\u7b80\u5355\u3002
\u5206\u800c\u6cbb\u4e4b\u63ed\u793a\u4e86\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u5b9e\uff1a\u4ece\u7b80\u5355\u505a\u8d77\uff0c\u4e00\u5207\u90fd\u4e0d\u518d\u590d\u6742\u3002
"},{"location":"chapter_divide_and_conquer/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5
- 12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565
- 12.3 \u00a0 \u6784\u5efa\u6811\u95ee\u9898
- 12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898
- 12.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_divide_and_conquer/binary_search_recur/","title":"12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565","text":"\u6211\u4eec\u5df2\u7ecf\u5b66\u8fc7\uff0c\u641c\u7d22\u7b97\u6cd5\u5206\u4e3a\u4e24\u5927\u7c7b\u3002
- \u66b4\u529b\u641c\u7d22\uff1a\u5b83\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
- \u81ea\u9002\u5e94\u641c\u7d22\uff1a\u5b83\u5229\u7528\u7279\u6709\u7684\u6570\u636e\u7ec4\u7ec7\u5f62\u5f0f\u6216\u5148\u9a8c\u4fe1\u606f\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u3002
\u5b9e\u9645\u4e0a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\uff0c\u4f8b\u5982\u4e8c\u5206\u67e5\u627e\u548c\u6811\u3002
- \u4e8c\u5206\u67e5\u627e\u7684\u6bcf\u4e00\u6b65\u90fd\u5c06\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\u5206\u89e3\u4e3a\u4e00\u4e2a\u5c0f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u4e00\u76f4\u6301\u7eed\u5230\u6570\u7ec4\u4e3a\u7a7a\u6216\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
- \u6811\u662f\u5206\u6cbb\u601d\u60f3\u7684\u4ee3\u8868\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u5806\u7b49\u6570\u636e\u7ed3\u6784\u4e2d\uff0c\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7686\u4e3a \\(O(\\log n)\\) \u3002
\u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u7b56\u7565\u5982\u4e0b\u6240\u793a\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u4e8c\u5206\u67e5\u627e\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\u5206\u89e3\u4e3a\u5b50\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\uff0c\u8fd9\u662f\u901a\u8fc7\u6bd4\u8f83\u4e2d\u95f4\u5143\u7d20\u548c\u76ee\u6807\u5143\u7d20\u6765\u5b9e\u73b0\u7684\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u5904\u7406\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u5b83\u4e0d\u53d7\u5176\u4ed6\u5b50\u95ee\u9898\u7684\u5f71\u54cd\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u65e0\u987b\u5408\u5e76\uff1a\u4e8c\u5206\u67e5\u627e\u65e8\u5728\u67e5\u627e\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u3002\u5f53\u5b50\u95ee\u9898\u5f97\u5230\u89e3\u51b3\u65f6\uff0c\u539f\u95ee\u9898\u4e5f\u4f1a\u540c\u65f6\u5f97\u5230\u89e3\u51b3\u3002
\u5206\u6cbb\u80fd\u591f\u63d0\u5347\u641c\u7d22\u6548\u7387\uff0c\u672c\u8d28\u4e0a\u662f\u56e0\u4e3a\u66b4\u529b\u641c\u7d22\u6bcf\u8f6e\u53ea\u80fd\u6392\u9664\u4e00\u4e2a\u9009\u9879\uff0c\u800c\u5206\u6cbb\u641c\u7d22\u6bcf\u8f6e\u53ef\u4ee5\u6392\u9664\u4e00\u534a\u9009\u9879\u3002
"},{"location":"chapter_divide_and_conquer/binary_search_recur/#1","title":"1. \u00a0 \u57fa\u4e8e\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206\u67e5\u627e","text":"\u5728\u4e4b\u524d\u7684\u7ae0\u8282\u4e2d\uff0c\u4e8c\u5206\u67e5\u627e\u662f\u57fa\u4e8e\u9012\u63a8\uff08\u8fed\u4ee3\uff09\u5b9e\u73b0\u7684\u3002\u73b0\u5728\u6211\u4eec\u57fa\u4e8e\u5206\u6cbb\uff08\u9012\u5f52\uff09\u6765\u5b9e\u73b0\u5b83\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u662f\u552f\u4e00\u7684\uff0c\u8bf7\u67e5\u627e\u5143\u7d20 target \u3002
\u4ece\u5206\u6cbb\u89d2\u5ea6\uff0c\u6211\u4eec\u5c06\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u8bb0\u4e3a \\(f(i, j)\\) \u3002
\u4ee5\u539f\u95ee\u9898 \\(f(0, n-1)\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u901a\u8fc7\u4ee5\u4e0b\u6b65\u9aa4\u8fdb\u884c\u4e8c\u5206\u67e5\u627e\u3002
- \u8ba1\u7b97\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u7684\u4e2d\u70b9 \\(m\\) \uff0c\u6839\u636e\u5b83\u6392\u9664\u4e00\u534a\u641c\u7d22\u533a\u95f4\u3002
- \u9012\u5f52\u6c42\u89e3\u89c4\u6a21\u51cf\u5c0f\u4e00\u534a\u7684\u5b50\u95ee\u9898\uff0c\u53ef\u80fd\u4e3a \\(f(i, m-1)\\) \u6216 \\(f(m+1, j)\\) \u3002
- \u5faa\u73af\u7b2c
1. \u6b65\u548c\u7b2c 2. \u6b65\uff0c\u76f4\u81f3\u627e\u5230 target \u6216\u533a\u95f4\u4e3a\u7a7a\u65f6\u8fd4\u56de\u3002
\u56fe 12-4 \u5c55\u793a\u4e86\u5728\u6570\u7ec4\u4e2d\u4e8c\u5206\u67e5\u627e\u5143\u7d20 \\(6\\) \u7684\u5206\u6cbb\u8fc7\u7a0b\u3002
\u56fe 12-4 \u00a0 \u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u8fc7\u7a0b
\u5728\u5b9e\u73b0\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \u6765\u6c42\u89e3\u95ee\u9898 \\(f(i, j)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_recur.pydef dfs(nums: list[int], target: int, i: int, j: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j)\"\"\"\n # \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j:\n return -1\n # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n m = (i + j) // 2\n if nums[m] < target:\n # \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j)\n elif nums[m] > target:\n # \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1)\n else:\n # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n\ndef binary_search(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\"\"\"\n n = len(nums)\n # \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1)\n
binary_search_recur.cpp/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(vector<int> &nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(vector<int> &nums, int target) {\n int n = nums.size();\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.java/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int[] nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int[] nums, int target) {\n int n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.cs/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint DFS(int[] nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return DFS(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return DFS(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint BinarySearch(int[] nums, int target) {\n int n = nums.Length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return DFS(nums, target, 0, n - 1);\n}\n
binary_search_recur.go/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunc dfs(nums []int, target, i, j int) int {\n // \u5982\u679c\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u6ca1\u6709\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j {\n return -1\n }\n // \u8ba1\u7b97\u7d22\u5f15\u4e2d\u70b9\n m := i + ((j - i) >> 1)\n //\u5224\u65ad\u4e2d\u70b9\u4e0e\u76ee\u6807\u5143\u7d20\u5927\u5c0f\n if nums[m] < target {\n // \u5c0f\u4e8e\u5219\u9012\u5f52\u53f3\u534a\u6570\u7ec4\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m+1, j)\n } else if nums[m] > target {\n // \u5c0f\u4e8e\u5219\u9012\u5f52\u5de6\u534a\u6570\u7ec4\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m-1)\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunc binarySearch(nums []int, target int) int {\n n := len(nums)\n return dfs(nums, target, 0, n-1)\n}\n
binary_search_recur.swift/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunc dfs(nums: [Int], target: Int, i: Int, j: Int) -> Int {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j {\n return -1\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n let m = (i + j) / 2\n if nums[m] < target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums: nums, target: target, i: m + 1, j: j)\n } else if nums[m] > target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums: nums, target: target, i: i, j: m - 1)\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunc binarySearch(nums: [Int], target: Int) -> Int {\n let n = nums.count\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums: nums, target: target, i: 0, j: n - 1)\n}\n
binary_search_recur.js/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums, target, i, j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = i + ((j - i) >> 1);\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums, target) {\n const n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.ts/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums: number[], target: number, i: number, j: number): number {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = i + ((j - i) >> 1);\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums: number[], target: number): number {\n const n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.dart/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(List<int> nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) ~/ 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(List<int> nums, int target) {\n int n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.rs/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfn dfs(nums: &[i32], target: i32, i: i32, j: i32) -> i32 {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j { return -1; }\n let m: i32 = (i + j) / 2;\n if nums[m as usize] < target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if nums[m as usize] > target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\n let n = nums.len() as i32;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n dfs(nums, target, 0, n - 1)\n}\n
binary_search_recur.c/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int nums[], int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int nums[], int target, int numsSize) {\n int n = numsSize;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.zig[class]{}-[func]{dfs}\n\n[class]{}-[func]{binarySearch}\n
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/","title":"12.3 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u95ee\u9898","text":"Question
\u7ed9\u5b9a\u4e00\u68f5\u4e8c\u53c9\u6811\u7684\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \uff0c\u8bf7\u4ece\u4e2d\u6784\u5efa\u4e8c\u53c9\u6811\uff0c\u8fd4\u56de\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u3002\u5047\u8bbe\u4e8c\u53c9\u6811\u4e2d\u6ca1\u6709\u503c\u91cd\u590d\u7684\u8282\u70b9\u3002
\u56fe 12-5 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#1","title":"1. \u00a0 \u5224\u65ad\u662f\u5426\u4e3a\u5206\u6cbb\u95ee\u9898","text":"\u539f\u95ee\u9898\u5b9a\u4e49\u4e3a\u4ece preorder \u548c inorder \u6784\u5efa\u4e8c\u53c9\u6811\uff0c\u662f\u4e00\u4e2a\u5178\u578b\u7684\u5206\u6cbb\u95ee\u9898\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u4ece\u5206\u6cbb\u7684\u89d2\u5ea6\u5207\u5165\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\u3001\u6784\u5efa\u53f3\u5b50\u6811\uff0c\u52a0\u4e0a\u4e00\u6b65\u64cd\u4f5c\uff1a\u521d\u59cb\u5316\u6839\u8282\u70b9\u3002\u800c\u5bf9\u4e8e\u6bcf\u68f5\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u590d\u7528\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u5c06\u5176\u5212\u5206\u4e3a\u66f4\u5c0f\u7684\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u7a7a\u5b50\u6811\uff09\u65f6\u7ec8\u6b62\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u4ea4\u96c6\u3002\u5728\u6784\u5efa\u5de6\u5b50\u6811\u65f6\uff0c\u6211\u4eec\u53ea\u9700\u5173\u6ce8\u4e2d\u5e8f\u904d\u5386\u548c\u524d\u5e8f\u904d\u5386\u4e2d\u4e0e\u5de6\u5b50\u6811\u5bf9\u5e94\u7684\u90e8\u5206\u3002\u53f3\u5b50\u6811\u540c\u7406\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u4e00\u65e6\u5f97\u5230\u4e86\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5c06\u5b83\u4eec\u94fe\u63a5\u5230\u6839\u8282\u70b9\u4e0a\uff0c\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#2","title":"2. \u00a0 \u5982\u4f55\u5212\u5206\u5b50\u6811","text":"\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u8fd9\u9053\u9898\u53ef\u4ee5\u4f7f\u7528\u5206\u6cbb\u6765\u6c42\u89e3\uff0c\u4f46\u5982\u4f55\u901a\u8fc7\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \u6765\u5212\u5206\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u5462\uff1f
\u6839\u636e\u5b9a\u4e49\uff0cpreorder \u548c inorder \u90fd\u53ef\u4ee5\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\u3002
- \u524d\u5e8f\u904d\u5386\uff1a
[ \u6839\u8282\u70b9 | \u5de6\u5b50\u6811 | \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u56fe 12-5 \u7684\u6811\u5bf9\u5e94 [ 3 | 9 | 2 1 7 ] \u3002 - \u4e2d\u5e8f\u904d\u5386\uff1a
[ \u5de6\u5b50\u6811 | \u6839\u8282\u70b9 \uff5c \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u56fe 12-5 \u7684\u6811\u5bf9\u5e94 [ 9 | 3 | 1 2 7 ] \u3002
\u4ee5\u4e0a\u56fe\u6570\u636e\u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u56fe 12-6 \u6240\u793a\u7684\u6b65\u9aa4\u5f97\u5230\u5212\u5206\u7ed3\u679c\u3002
- \u524d\u5e8f\u904d\u5386\u7684\u9996\u5143\u7d20 3 \u662f\u6839\u8282\u70b9\u7684\u503c\u3002
- \u67e5\u627e\u6839\u8282\u70b9 3 \u5728
inorder \u4e2d\u7684\u7d22\u5f15\uff0c\u5229\u7528\u8be5\u7d22\u5f15\u53ef\u5c06 inorder \u5212\u5206\u4e3a [ 9 | 3 \uff5c 1 2 7 ] \u3002 - \u6839\u636e
inorder \u5212\u5206\u7ed3\u679c\uff0c\u6613\u5f97\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u5206\u522b\u4e3a 1 \u548c 3 \uff0c\u4ece\u800c\u53ef\u5c06 preorder \u5212\u5206\u4e3a [ 3 | 9 | 2 1 7 ] \u3002
\u56fe 12-6 \u00a0 \u5728\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u5212\u5206\u5b50\u6811
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#3","title":"3. \u00a0 \u57fa\u4e8e\u53d8\u91cf\u63cf\u8ff0\u5b50\u6811\u533a\u95f4","text":"\u6839\u636e\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u6211\u4eec\u5df2\u7ecf\u5f97\u5230\u6839\u8282\u70b9\u3001\u5de6\u5b50\u6811\u3001\u53f3\u5b50\u6811\u5728 preorder \u548c inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002\u800c\u4e3a\u4e86\u63cf\u8ff0\u8fd9\u4e9b\u7d22\u5f15\u533a\u95f4\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\u3002
- \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728
preorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(i\\) \u3002 - \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728
inorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(m\\) \u3002 - \u5c06\u5f53\u524d\u6811\u5728
inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u8bb0\u4e3a \\([l, r]\\) \u3002
\u5982\u8868 12-1 \u6240\u793a\uff0c\u901a\u8fc7\u4ee5\u4e0a\u53d8\u91cf\u5373\u53ef\u8868\u793a\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15\uff0c\u4ee5\u53ca\u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002
\u8868 12-1 \u00a0 \u6839\u8282\u70b9\u548c\u5b50\u6811\u5728\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u7684\u7d22\u5f15
\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15 \u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4 \u5f53\u524d\u6811 \\(i\\) \\([l, r]\\) \u5de6\u5b50\u6811 \\(i + 1\\) \\([l, m-1]\\) \u53f3\u5b50\u6811 \\(i + 1 + (m - l)\\) \\([m+1, r]\\) \u8bf7\u6ce8\u610f\uff0c\u53f3\u5b50\u6811\u6839\u8282\u70b9\u7d22\u5f15\u4e2d\u7684 \\((m-l)\\) \u7684\u542b\u4e49\u662f\u201c\u5de6\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u201d\uff0c\u5efa\u8bae\u914d\u5408\u56fe 12-7 \u7406\u89e3\u3002
\u56fe 12-7 \u00a0 \u6839\u8282\u70b9\u548c\u5de6\u53f3\u5b50\u6811\u7684\u7d22\u5f15\u533a\u95f4\u8868\u793a
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#4","title":"4. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u4e3a\u4e86\u63d0\u5347\u67e5\u8be2 \\(m\\) \u7684\u6548\u7387\uff0c\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 hmap \u6765\u5b58\u50a8\u6570\u7ec4 inorder \u4e2d\u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig build_tree.pydef dfs(\n preorder: list[int],\n inorder_map: dict[int, int],\n i: int,\n l: int,\n r: int,\n) -> TreeNode | None:\n \"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb\"\"\"\n # \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r - l < 0:\n return None\n # \u521d\u59cb\u5316\u6839\u8282\u70b9\n root = TreeNode(preorder[i])\n # \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n m = inorder_map[preorder[i]]\n # \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorder_map, i + 1, l, m - 1)\n # \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r)\n # \u8fd4\u56de\u6839\u8282\u70b9\n return root\n\ndef build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:\n \"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\"\"\"\n # \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n inorder_map = {val: i for i, val in enumerate(inorder)}\n root = dfs(preorder, inorder_map, 0, 0, len(inorder) - 1)\n return root\n
build_tree.cpp/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode *dfs(vector<int> &preorder, unordered_map<int, int> &inorderMap, int i, int l, int r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return NULL;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode *root = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]];\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n unordered_map<int, int> inorderMap;\n for (int i = 0; i < inorder.size(); i++) {\n inorderMap[inorder[i]] = i;\n }\n TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);\n return root;\n}\n
build_tree.java/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode dfs(int[] preorder, Map<Integer, Integer> inorderMap, int i, int l, int r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode root = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap.get(preorder[i]);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode buildTree(int[] preorder, int[] inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n Map<Integer, Integer> inorderMap = new HashMap<>();\n for (int i = 0; i < inorder.length; i++) {\n inorderMap.put(inorder[i], i);\n }\n TreeNode root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.cs/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode? DFS(int[] preorder, Dictionary<int, int> inorderMap, int i, int l, int r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode root = new(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]];\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = DFS(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = DFS(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode? BuildTree(int[] preorder, int[] inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n Dictionary<int, int> inorderMap = [];\n for (int i = 0; i < inorder.Length; i++) {\n inorderMap.TryAdd(inorder[i], i);\n }\n TreeNode? root = DFS(preorder, inorderMap, 0, 0, inorder.Length - 1);\n return root;\n}\n
build_tree.go/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunc dfsBuildTree(preorder []int, inorderMap map[int]int, i, l, r int) *TreeNode {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r-l < 0 {\n return nil\n }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n root := NewTreeNode(preorder[i])\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n m := inorderMap[preorder[i]]\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.Left = dfsBuildTree(preorder, inorderMap, i+1, l, m-1)\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.Right = dfsBuildTree(preorder, inorderMap, i+1+m-l, m+1, r)\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunc buildTree(preorder, inorder []int) *TreeNode {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n inorderMap := make(map[int]int, len(inorder))\n for i := 0; i < len(inorder); i++ {\n inorderMap[inorder[i]] = i\n }\n\n root := dfsBuildTree(preorder, inorderMap, 0, 0, len(inorder)-1)\n return root\n}\n
build_tree.swift/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunc dfs(preorder: [Int], inorderMap: [Int: Int], i: Int, l: Int, r: Int) -> TreeNode? {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r - l < 0 {\n return nil\n }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n let root = TreeNode(x: preorder[i])\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n let m = inorderMap[preorder[i]]!\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1, l: l, r: m - 1)\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1 + m - l, l: m + 1, r: r)\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunc buildTree(preorder: [Int], inorder: [Int]) -> TreeNode? {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let inorderMap = inorder.enumerated().reduce(into: [:]) { $0[$1.element] = $1.offset }\n return dfs(preorder: preorder, inorderMap: inorderMap, i: 0, l: 0, r: inorder.count - 1)\n}\n
build_tree.js/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(preorder, inorderMap, i, l, r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0) return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n const root = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n const m = inorderMap.get(preorder[i]);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder, inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let inorderMap = new Map();\n for (let i = 0; i < inorder.length; i++) {\n inorderMap.set(inorder[i], i);\n }\n const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.ts/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(\n preorder: number[],\n inorderMap: Map<number, number>,\n i: number,\n l: number,\n r: number\n): TreeNode | null {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0) return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n const root: TreeNode = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n const m = inorderMap.get(preorder[i]);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder: number[], inorder: number[]): TreeNode | null {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let inorderMap = new Map<number, number>();\n for (let i = 0; i < inorder.length; i++) {\n inorderMap.set(inorder[i], i);\n }\n const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.dart/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode? dfs(\n List<int> preorder,\n Map<int, int> inorderMap,\n int i,\n int l,\n int r,\n) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0) {\n return null;\n }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode? root = TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]]!;\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode? buildTree(List<int> preorder, List<int> inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n Map<int, int> inorderMap = {};\n for (int i = 0; i < inorder.length; i++) {\n inorderMap[inorder[i]] = i;\n }\n TreeNode? root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.rs/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfn dfs(preorder: &[i32], inorder_map: &HashMap<i32, i32>, i: i32, l: i32, r: i32) -> Option<Rc<RefCell<TreeNode>>> {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r - l < 0 { return None; }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n let root = TreeNode::new(preorder[i as usize]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n let m = inorder_map.get(&preorder[i as usize]).unwrap();\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.borrow_mut().left = dfs(preorder, inorder_map, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.borrow_mut().right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n Some(root)\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfn build_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let mut inorder_map: HashMap<i32, i32> = HashMap::new();\n for i in 0..inorder.len() {\n inorder_map.insert(inorder[i], i as i32);\n }\n let root = dfs(preorder, &inorder_map, 0, 0, inorder.len() as i32 - 1);\n root\n}\n
build_tree.c/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode *dfs(int *preorder, int *inorderMap, int i, int l, int r, int size) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return NULL;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));\n root->val = preorder[i];\n root->left = NULL;\n root->right = NULL;\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]];\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root->left = dfs(preorder, inorderMap, i + 1, l, m - 1, size);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r, size);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode *buildTree(int *preorder, int preorderSize, int *inorder, int inorderSize) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n int *inorderMap = (int *)malloc(sizeof(int) * MAX_SIZE);\n for (int i = 0; i < inorderSize; i++) {\n inorderMap[inorder[i]] = i;\n }\n TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorderSize - 1, inorderSize);\n free(inorderMap);\n return root;\n}\n
build_tree.zig[class]{}-[func]{dfs}\n\n[class]{}-[func]{buildTree}\n
\u56fe 12-8 \u5c55\u793a\u4e86\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5404\u4e2a\u8282\u70b9\u662f\u5728\u5411\u4e0b\u201c\u9012\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\uff0c\u800c\u5404\u6761\u8fb9\uff08\u5f15\u7528\uff09\u662f\u5728\u5411\u4e0a\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 12-8 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b
\u6bcf\u4e2a\u9012\u5f52\u51fd\u6570\u5185\u7684\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \u7684\u5212\u5206\u7ed3\u679c\u5982\u56fe 12-9 \u6240\u793a\u3002
\u56fe 12-9 \u00a0 \u6bcf\u4e2a\u9012\u5f52\u51fd\u6570\u4e2d\u7684\u5212\u5206\u7ed3\u679c
\u8bbe\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u521d\u59cb\u5316\u6bcf\u4e00\u4e2a\u8282\u70b9\uff08\u6267\u884c\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \uff09\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
\u54c8\u5e0c\u8868\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/","title":"12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5","text":"\u300c\u5206\u6cbb divide and conquer\u300d\uff0c\u5168\u79f0\u5206\u800c\u6cbb\u4e4b\uff0c\u662f\u4e00\u79cd\u975e\u5e38\u91cd\u8981\u4e14\u5e38\u89c1\u7684\u7b97\u6cd5\u7b56\u7565\u3002\u5206\u6cbb\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\uff0c\u5305\u62ec\u201c\u5206\u201d\u548c\u201c\u6cbb\u201d\u4e24\u4e2a\u6b65\u9aa4\u3002
- \u5206\uff08\u5212\u5206\u9636\u6bb5\uff09\uff1a\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u6216\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898\u65f6\u7ec8\u6b62\u3002
- \u6cbb\uff08\u5408\u5e76\u9636\u6bb5\uff09\uff1a\u4ece\u5df2\u77e5\u89e3\u7684\u6700\u5c0f\u5b50\u95ee\u9898\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002
\u5982\u56fe 12-1 \u6240\u793a\uff0c\u201c\u5f52\u5e76\u6392\u5e8f\u201d\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\u4e4b\u4e00\u3002
- \u5206\uff1a\u9012\u5f52\u5730\u5c06\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u5230\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\uff08\u6700\u5c0f\u5b50\u95ee\u9898\uff09\u3002
- \u6cbb\uff1a\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u6709\u5e8f\u7684\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u7684\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002
\u56fe 12-1 \u00a0 \u5f52\u5e76\u6392\u5e8f\u7684\u5206\u6cbb\u7b56\u7565
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1211","title":"12.1.1 \u00a0 \u5982\u4f55\u5224\u65ad\u5206\u6cbb\u95ee\u9898","text":"\u4e00\u4e2a\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u5206\u6cbb\u89e3\u51b3\uff0c\u901a\u5e38\u53ef\u4ee5\u53c2\u8003\u4ee5\u4e0b\u51e0\u4e2a\u5224\u65ad\u4f9d\u636e\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u539f\u95ee\u9898\u53ef\u4ee5\u5206\u89e3\u6210\u89c4\u6a21\u66f4\u5c0f\u3001\u7c7b\u4f3c\u7684\u5b50\u95ee\u9898\uff0c\u4ee5\u53ca\u80fd\u591f\u4ee5\u76f8\u540c\u65b9\u5f0f\u9012\u5f52\u5730\u8fdb\u884c\u5212\u5206\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5b50\u95ee\u9898\u4e4b\u95f4\u6ca1\u6709\u91cd\u53e0\uff0c\u4e92\u4e0d\u4f9d\u8d56\uff0c\u53ef\u4ee5\u72ec\u7acb\u89e3\u51b3\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u539f\u95ee\u9898\u7684\u89e3\u901a\u8fc7\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\u5f97\u6765\u3002
\u663e\u7136\uff0c\u5f52\u5e76\u6392\u5e8f\u6ee1\u8db3\u4ee5\u4e0a\u4e09\u6761\u5224\u65ad\u4f9d\u636e\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u9012\u5f52\u5730\u5c06\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u53ef\u4ee5\u72ec\u7acb\u5730\u8fdb\u884c\u6392\u5e8f\uff08\u5b50\u95ee\u9898\u53ef\u4ee5\u72ec\u7acb\u8fdb\u884c\u6c42\u89e3\uff09\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u4e24\u4e2a\u6709\u5e8f\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u53ef\u4ee5\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1212","title":"12.1.2 \u00a0 \u901a\u8fc7\u5206\u6cbb\u63d0\u5347\u6548\u7387","text":"\u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u6709\u6548\u5730\u89e3\u51b3\u7b97\u6cd5\u95ee\u9898\uff0c\u5f80\u5f80\u8fd8\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002\u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u76f8\u8f83\u4e8e\u9009\u62e9\u3001\u5192\u6ce1\u3001\u63d2\u5165\u6392\u5e8f\u66f4\u5feb\uff0c\u5c31\u662f\u56e0\u4e3a\u5b83\u4eec\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\u3002
\u90a3\u4e48\uff0c\u6211\u4eec\u4e0d\u7981\u53d1\u95ee\uff1a\u4e3a\u4ec0\u4e48\u5206\u6cbb\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u5176\u5e95\u5c42\u903b\u8f91\u662f\u4ec0\u4e48\uff1f\u6362\u53e5\u8bdd\u8bf4\uff0c\u5c06\u5927\u95ee\u9898\u5206\u89e3\u4e3a\u591a\u4e2a\u5b50\u95ee\u9898\u3001\u89e3\u51b3\u5b50\u95ee\u9898\u3001\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u5408\u5e76\u4e3a\u539f\u95ee\u9898\u7684\u89e3\uff0c\u8fd9\u51e0\u6b65\u7684\u6548\u7387\u4e3a\u4ec0\u4e48\u6bd4\u76f4\u63a5\u89e3\u51b3\u539f\u95ee\u9898\u7684\u6548\u7387\u66f4\u9ad8\uff1f\u8fd9\u4e2a\u95ee\u9898\u53ef\u4ee5\u4ece\u64cd\u4f5c\u6570\u91cf\u548c\u5e76\u884c\u8ba1\u7b97\u4e24\u65b9\u9762\u6765\u8ba8\u8bba\u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1","title":"1. \u00a0 \u64cd\u4f5c\u6570\u91cf\u4f18\u5316","text":"\u4ee5\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u4e3a\u4f8b\uff0c\u5176\u5904\u7406\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u9700\u8981 \\(O(n^2)\\) \u65f6\u95f4\u3002\u5047\u8bbe\u6211\u4eec\u6309\u7167\u56fe 12-2 \u6240\u793a\u7684\u65b9\u5f0f\uff0c\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u5219\u5212\u5206\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6bcf\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O((n / 2)^2)\\) \u65f6\u95f4\uff0c\u5408\u5e76\u4e24\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\uff1a
\\[ O(n + (\\frac{n}{2})^2 \\times 2 + n) = O(\\frac{n^2}{2} + 2n) \\] \u56fe 12-2 \u00a0 \u5212\u5206\u6570\u7ec4\u524d\u540e\u7684\u5192\u6ce1\u6392\u5e8f
\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u8ba1\u7b97\u4ee5\u4e0b\u4e0d\u7b49\u5f0f\uff0c\u5176\u5de6\u8fb9\u548c\u53f3\u8fb9\u5206\u522b\u4e3a\u5212\u5206\u524d\u548c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u603b\u6570\uff1a
\\[ \\begin{aligned} n^2 & > \\frac{n^2}{2} + 2n \\newline n^2 - \\frac{n^2}{2} - 2n & > 0 \\newline n(n - 4) & > 0 \\end{aligned} \\] \u8fd9\u610f\u5473\u7740\u5f53 \\(n > 4\\) \u65f6\uff0c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u6570\u91cf\u66f4\u5c11\uff0c\u6392\u5e8f\u6548\u7387\u5e94\u8be5\u66f4\u9ad8\u3002\u8bf7\u6ce8\u610f\uff0c\u5212\u5206\u540e\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u7136\u662f\u5e73\u65b9\u9636 \\(O(n^2)\\) \uff0c\u53ea\u662f\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u53d8\u5c0f\u4e86\u3002
\u8fdb\u4e00\u6b65\u60f3\uff0c\u5982\u679c\u6211\u4eec\u628a\u5b50\u6570\u7ec4\u4e0d\u65ad\u5730\u518d\u4ece\u4e2d\u70b9\u5904\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u505c\u6b62\u5212\u5206\u5462\uff1f\u8fd9\u79cd\u601d\u8def\u5b9e\u9645\u4e0a\u5c31\u662f\u201c\u5f52\u5e76\u6392\u5e8f\u201d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
\u518d\u601d\u8003\uff0c\u5982\u679c\u6211\u4eec\u591a\u8bbe\u7f6e\u51e0\u4e2a\u5212\u5206\u70b9\uff0c\u5c06\u539f\u6570\u7ec4\u5e73\u5747\u5212\u5206\u4e3a \\(k\\) \u4e2a\u5b50\u6570\u7ec4\u5462\uff1f\u8fd9\u79cd\u60c5\u51b5\u4e0e\u201c\u6876\u6392\u5e8f\u201d\u975e\u5e38\u7c7b\u4f3c\uff0c\u5b83\u975e\u5e38\u9002\u5408\u6392\u5e8f\u6d77\u91cf\u6570\u636e\uff0c\u7406\u8bba\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230 \\(O(n + k)\\) \u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#2","title":"2. \u00a0 \u5e76\u884c\u8ba1\u7b97\u4f18\u5316","text":"\u6211\u4eec\u77e5\u9053\uff0c\u5206\u6cbb\u751f\u6210\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u56e0\u6b64\u901a\u5e38\u53ef\u4ee5\u5e76\u884c\u89e3\u51b3\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8fd8\u6709\u5229\u4e8e\u64cd\u4f5c\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002
\u5e76\u884c\u4f18\u5316\u5728\u591a\u6838\u6216\u591a\u5904\u7406\u5668\u7684\u73af\u5883\u4e2d\u5c24\u5176\u6709\u6548\uff0c\u56e0\u4e3a\u7cfb\u7edf\u53ef\u4ee5\u540c\u65f6\u5904\u7406\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u66f4\u52a0\u5145\u5206\u5730\u5229\u7528\u8ba1\u7b97\u8d44\u6e90\uff0c\u4ece\u800c\u663e\u8457\u51cf\u5c11\u603b\u4f53\u7684\u8fd0\u884c\u65f6\u95f4\u3002
\u6bd4\u5982\u5728\u56fe 12-3 \u6240\u793a\u7684\u201c\u6876\u6392\u5e8f\u201d\u4e2d\uff0c\u6211\u4eec\u5c06\u6d77\u91cf\u7684\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u5219\u53ef\u6240\u6709\u6876\u7684\u6392\u5e8f\u4efb\u52a1\u5206\u6563\u5230\u5404\u4e2a\u8ba1\u7b97\u5355\u5143\uff0c\u5b8c\u6210\u540e\u518d\u5408\u5e76\u7ed3\u679c\u3002
\u56fe 12-3 \u00a0 \u6876\u6392\u5e8f\u7684\u5e76\u884c\u8ba1\u7b97
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1213","title":"12.1.3 \u00a0 \u5206\u6cbb\u5e38\u89c1\u5e94\u7528","text":"\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u53ef\u4ee5\u7528\u6765\u89e3\u51b3\u8bb8\u591a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\u3002
- \u5bfb\u627e\u6700\u8fd1\u70b9\u5bf9\uff1a\u8be5\u7b97\u6cd5\u9996\u5148\u5c06\u70b9\u96c6\u5206\u6210\u4e24\u90e8\u5206\uff0c\u7136\u540e\u5206\u522b\u627e\u51fa\u4e24\u90e8\u5206\u4e2d\u7684\u6700\u8fd1\u70b9\u5bf9\uff0c\u6700\u540e\u627e\u51fa\u8de8\u8d8a\u4e24\u90e8\u5206\u7684\u6700\u8fd1\u70b9\u5bf9\u3002
- \u5927\u6574\u6570\u4e58\u6cd5\uff1a\u4f8b\u5982 Karatsuba \u7b97\u6cd5\uff0c\u5b83\u5c06\u5927\u6574\u6570\u4e58\u6cd5\u5206\u89e3\u4e3a\u51e0\u4e2a\u8f83\u5c0f\u7684\u6574\u6570\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
- \u77e9\u9635\u4e58\u6cd5\uff1a\u4f8b\u5982 Strassen \u7b97\u6cd5\uff0c\u5b83\u5c06\u5927\u77e9\u9635\u4e58\u6cd5\u5206\u89e3\u4e3a\u591a\u4e2a\u5c0f\u77e9\u9635\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
- \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u53ef\u4ee5\u901a\u8fc7\u9012\u5f52\u89e3\u51b3\uff0c\u8fd9\u662f\u5178\u578b\u7684\u5206\u6cbb\u7b56\u7565\u5e94\u7528\u3002
- \u6c42\u89e3\u9006\u5e8f\u5bf9\uff1a\u5728\u4e00\u4e2a\u5e8f\u5217\u4e2d\uff0c\u5982\u679c\u524d\u9762\u7684\u6570\u5b57\u5927\u4e8e\u540e\u9762\u7684\u6570\u5b57\uff0c\u90a3\u4e48\u8fd9\u4e24\u4e2a\u6570\u5b57\u6784\u6210\u4e00\u4e2a\u9006\u5e8f\u5bf9\u3002\u6c42\u89e3\u9006\u5e8f\u5bf9\u95ee\u9898\u53ef\u4ee5\u5229\u7528\u5206\u6cbb\u7684\u601d\u60f3\uff0c\u501f\u52a9\u5f52\u5e76\u6392\u5e8f\u8fdb\u884c\u6c42\u89e3\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u5728\u7b97\u6cd5\u548c\u6570\u636e\u7ed3\u6784\u7684\u8bbe\u8ba1\u4e2d\u5e94\u7528\u975e\u5e38\u5e7f\u6cdb\u3002
- \u4e8c\u5206\u67e5\u627e\uff1a\u4e8c\u5206\u67e5\u627e\u662f\u5c06\u6709\u5e8f\u6570\u7ec4\u4ece\u4e2d\u70b9\u7d22\u5f15\u5904\u5206\u4e3a\u4e24\u90e8\u5206\uff0c\u7136\u540e\u6839\u636e\u76ee\u6807\u503c\u4e0e\u4e2d\u95f4\u5143\u7d20\u503c\u6bd4\u8f83\u7ed3\u679c\uff0c\u51b3\u5b9a\u6392\u9664\u54ea\u4e00\u534a\u533a\u95f4\uff0c\u5e76\u5728\u5269\u4f59\u533a\u95f4\u6267\u884c\u76f8\u540c\u7684\u4e8c\u5206\u64cd\u4f5c\u3002
- \u5f52\u5e76\u6392\u5e8f\uff1a\u672c\u8282\u5f00\u5934\u5df2\u4ecb\u7ecd\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002
- \u5feb\u901f\u6392\u5e8f\uff1a\u5feb\u901f\u6392\u5e8f\u662f\u9009\u53d6\u4e00\u4e2a\u57fa\u51c6\u503c\uff0c\u7136\u540e\u628a\u6570\u7ec4\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u4e00\u4e2a\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5c0f\uff0c\u53e6\u4e00\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5927\uff0c\u518d\u5bf9\u8fd9\u4e24\u90e8\u5206\u8fdb\u884c\u76f8\u540c\u7684\u5212\u5206\u64cd\u4f5c\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e0b\u4e00\u4e2a\u5143\u7d20\u3002
- \u6876\u6392\u5e8f\uff1a\u6876\u6392\u5e8f\u7684\u57fa\u672c\u601d\u60f3\u662f\u5c06\u6570\u636e\u5206\u6563\u5230\u591a\u4e2a\u6876\uff0c\u7136\u540e\u5bf9\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u5404\u4e2a\u6876\u7684\u5143\u7d20\u4f9d\u6b21\u53d6\u51fa\uff0c\u4ece\u800c\u5f97\u5230\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002
- \u6811\uff1a\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u7ea2\u9ed1\u6811\u3001B \u6811\u3001B+ \u6811\u7b49\uff0c\u5b83\u4eec\u7684\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u7b49\u64cd\u4f5c\u90fd\u53ef\u4ee5\u89c6\u4e3a\u5206\u6cbb\u7b56\u7565\u7684\u5e94\u7528\u3002
- \u5806\uff1a\u5806\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u5176\u5404\u79cd\u64cd\u4f5c\uff0c\u5982\u63d2\u5165\u3001\u5220\u9664\u548c\u5806\u5316\uff0c\u5b9e\u9645\u4e0a\u90fd\u9690\u542b\u4e86\u5206\u6cbb\u7684\u601d\u60f3\u3002
- \u54c8\u5e0c\u8868\uff1a\u867d\u7136\u54c8\u5e0c\u8868\u6765\u5e76\u4e0d\u76f4\u63a5\u5e94\u7528\u5206\u6cbb\uff0c\u4f46\u67d0\u4e9b\u54c8\u5e0c\u51b2\u7a81\u89e3\u51b3\u65b9\u6848\u95f4\u63a5\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u4f8b\u5982\uff0c\u94fe\u5f0f\u5730\u5740\u4e2d\u7684\u957f\u94fe\u8868\u4f1a\u88ab\u8f6c\u5316\u4e3a\u7ea2\u9ed1\u6811\uff0c\u4ee5\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002
\u53ef\u4ee5\u770b\u51fa\uff0c\u5206\u6cbb\u662f\u4e00\u79cd\u201c\u6da6\u7269\u7ec6\u65e0\u58f0\u201d\u7684\u7b97\u6cd5\u601d\u60f3\uff0c\u9690\u542b\u5728\u5404\u79cd\u7b97\u6cd5\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u4e2d\u3002
"},{"location":"chapter_divide_and_conquer/hanota_problem/","title":"12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898","text":"\u5728\u5f52\u5e76\u6392\u5e8f\u548c\u6784\u5efa\u4e8c\u53c9\u6811\u4e2d\uff0c\u6211\u4eec\u90fd\u662f\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a\u539f\u95ee\u9898\u4e00\u534a\u7684\u5b50\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u6c49\u8bfa\u5854\u95ee\u9898\uff0c\u6211\u4eec\u91c7\u7528\u4e0d\u540c\u7684\u5206\u89e3\u7b56\u7565\u3002
Question
\u7ed9\u5b9a\u4e09\u6839\u67f1\u5b50\uff0c\u8bb0\u4e3a A\u3001B \u548c C \u3002\u8d77\u59cb\u72b6\u6001\u4e0b\uff0c\u67f1\u5b50 A \u4e0a\u5957\u7740 \\(n\\) \u4e2a\u5706\u76d8\uff0c\u5b83\u4eec\u4ece\u4e0a\u5230\u4e0b\u6309\u7167\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\u3002\u6211\u4eec\u7684\u4efb\u52a1\u662f\u8981\u628a\u8fd9 \\(n\\) \u4e2a\u5706\u76d8\u79fb\u5230\u67f1\u5b50 C \u4e0a\uff0c\u5e76\u4fdd\u6301\u5b83\u4eec\u7684\u539f\u6709\u987a\u5e8f\u4e0d\u53d8\uff08\u5982\u56fe 12-10 \u6240\u793a\uff09\u3002\u5728\u79fb\u52a8\u5706\u76d8\u7684\u8fc7\u7a0b\u4e2d\uff0c\u9700\u8981\u9075\u5b88\u4ee5\u4e0b\u89c4\u5219\u3002
- \u5706\u76d8\u53ea\u80fd\u4ece\u4e00\u6839\u67f1\u5b50\u9876\u90e8\u62ff\u51fa\uff0c\u4ece\u53e6\u4e00\u6839\u67f1\u5b50\u9876\u90e8\u653e\u5165\u3002
- \u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\u3002
- \u5c0f\u5706\u76d8\u5fc5\u987b\u65f6\u523b\u4f4d\u4e8e\u5927\u5706\u76d8\u4e4b\u4e0a\u3002
\u56fe 12-10 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898\u793a\u4f8b
\u6211\u4eec\u5c06\u89c4\u6a21\u4e3a \\(i\\) \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u8bb0\u4f5c \\(f(i)\\) \u3002\u4f8b\u5982 \\(f(3)\\) \u4ee3\u8868\u5c06 \\(3\\) \u4e2a\u5706\u76d8\u4ece A \u79fb\u52a8\u81f3 C \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u3002
"},{"location":"chapter_divide_and_conquer/hanota_problem/#1","title":"1. \u00a0 \u8003\u8651\u57fa\u672c\u60c5\u51b5","text":"\u5982\u56fe 12-11 \u6240\u793a\uff0c\u5bf9\u4e8e\u95ee\u9898 \\(f(1)\\) \uff0c\u5373\u5f53\u53ea\u6709\u4e00\u4e2a\u5706\u76d8\u65f6\uff0c\u6211\u4eec\u5c06\u5b83\u76f4\u63a5\u4ece A \u79fb\u52a8\u81f3 C \u5373\u53ef\u3002
<1><2> \u56fe 12-11 \u00a0 \u89c4\u6a21\u4e3a 1 \u95ee\u9898\u7684\u89e3
\u5982\u56fe 12-12 \u6240\u793a\uff0c\u5bf9\u4e8e\u95ee\u9898 \\(f(2)\\) \uff0c\u5373\u5f53\u6709\u4e24\u4e2a\u5706\u76d8\u65f6\uff0c\u7531\u4e8e\u8981\u65f6\u523b\u6ee1\u8db3\u5c0f\u5706\u76d8\u5728\u5927\u5706\u76d8\u4e4b\u4e0a\uff0c\u56e0\u6b64\u9700\u8981\u501f\u52a9 B \u6765\u5b8c\u6210\u79fb\u52a8\u3002
- \u5148\u5c06\u4e0a\u9762\u7684\u5c0f\u5706\u76d8\u4ece
A \u79fb\u81f3 B \u3002 - \u518d\u5c06\u5927\u5706\u76d8\u4ece
A \u79fb\u81f3 C \u3002 - \u6700\u540e\u5c06\u5c0f\u5706\u76d8\u4ece
B \u79fb\u81f3 C \u3002
<1><2><3><4> \u56fe 12-12 \u00a0 \u89c4\u6a21\u4e3a 2 \u95ee\u9898\u7684\u89e3
\u89e3\u51b3\u95ee\u9898 \\(f(2)\\) \u7684\u8fc7\u7a0b\u53ef\u603b\u7ed3\u4e3a\uff1a\u5c06\u4e24\u4e2a\u5706\u76d8\u501f\u52a9 B \u4ece A \u79fb\u81f3 C \u3002\u5176\u4e2d\uff0cC \u79f0\u4e3a\u76ee\u6807\u67f1\u3001B \u79f0\u4e3a\u7f13\u51b2\u67f1\u3002
"},{"location":"chapter_divide_and_conquer/hanota_problem/#2","title":"2. \u00a0 \u5b50\u95ee\u9898\u5206\u89e3","text":"\u5bf9\u4e8e\u95ee\u9898 \\(f(3)\\) \uff0c\u5373\u5f53\u6709\u4e09\u4e2a\u5706\u76d8\u65f6\uff0c\u60c5\u51b5\u53d8\u5f97\u7a0d\u5fae\u590d\u6742\u4e86\u4e00\u4e9b\u3002
\u56e0\u4e3a\u5df2\u77e5 \\(f(1)\\) \u548c \\(f(2)\\) \u7684\u89e3\uff0c\u6240\u4ee5\u6211\u4eec\u53ef\u4ece\u5206\u6cbb\u89d2\u5ea6\u601d\u8003\uff0c\u5c06 A \u9876\u90e8\u7684\u4e24\u4e2a\u5706\u76d8\u770b\u4f5c\u4e00\u4e2a\u6574\u4f53\uff0c\u6267\u884c\u56fe 12-13 \u6240\u793a\u7684\u6b65\u9aa4\u3002\u8fd9\u6837\u4e09\u4e2a\u5706\u76d8\u5c31\u88ab\u987a\u5229\u5730\u4ece A \u79fb\u81f3 C \u4e86\u3002
- \u4ee4
B \u4e3a\u76ee\u6807\u67f1\u3001C \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece A \u79fb\u81f3 B \u3002 - \u5c06
A \u4e2d\u5269\u4f59\u7684\u4e00\u4e2a\u5706\u76d8\u4ece A \u76f4\u63a5\u79fb\u52a8\u81f3 C \u3002 - \u4ee4
C \u4e3a\u76ee\u6807\u67f1\u3001A \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece B \u79fb\u81f3 C \u3002
<1><2><3><4> \u56fe 12-13 \u00a0 \u89c4\u6a21\u4e3a 3 \u95ee\u9898\u7684\u89e3
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u5c06\u95ee\u9898 \\(f(3)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(2)\\) \u548c\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u4e4b\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002\u8fd9\u8bf4\u660e\u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff0c\u800c\u4e14\u89e3\u53ef\u4ee5\u5408\u5e76\u3002
\u81f3\u6b64\uff0c\u6211\u4eec\u53ef\u603b\u7ed3\u51fa\u56fe 12-14 \u6240\u793a\u7684\u89e3\u51b3\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565\uff1a\u5c06\u539f\u95ee\u9898 \\(f(n)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \u548c\u4e00\u4e2a\u5b50\u95ee\u9898 \\(f(1)\\) \uff0c\u5e76\u6309\u7167\u4ee5\u4e0b\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u3002
- \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9
C \u4ece A \u79fb\u81f3 B \u3002 - \u5c06\u5269\u4f59 \\(1\\) \u4e2a\u5706\u76d8\u4ece
A \u76f4\u63a5\u79fb\u81f3 C \u3002 - \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9
A \u4ece B \u79fb\u81f3 C \u3002
\u5bf9\u4e8e\u8fd9\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \uff0c\u53ef\u4ee5\u901a\u8fc7\u76f8\u540c\u7684\u65b9\u5f0f\u8fdb\u884c\u9012\u5f52\u5212\u5206\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u800c \\(f(1)\\) \u7684\u89e3\u662f\u5df2\u77e5\u7684\uff0c\u53ea\u9700\u4e00\u6b21\u79fb\u52a8\u64cd\u4f5c\u5373\u53ef\u3002
\u56fe 12-14 \u00a0 \u89e3\u51b3\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565
"},{"location":"chapter_divide_and_conquer/hanota_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs(i, src, buf, tar) \uff0c\u5b83\u7684\u4f5c\u7528\u662f\u5c06\u67f1 src \u9876\u90e8\u7684 \\(i\\) \u4e2a\u5706\u76d8\u501f\u52a9\u7f13\u51b2\u67f1 buf \u79fb\u52a8\u81f3\u76ee\u6807\u67f1 tar \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig hanota.pydef move(src: list[int], tar: list[int]):\n \"\"\"\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\"\"\"\n # \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n pan = src.pop()\n # \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.append(pan)\n\ndef dfs(i: int, src: list[int], buf: list[int], tar: list[int]):\n \"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i)\"\"\"\n # \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1:\n move(src, tar)\n return\n # \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf)\n # \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar)\n # \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar)\n\ndef solve_hanota(A: list[int], B: list[int], C: list[int]):\n \"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898\"\"\"\n n = len(A)\n # \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C)\n
hanota.cpp/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(vector<int> &src, vector<int> &tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src.back();\n src.pop_back();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push_back(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(vector<int> &A, vector<int> &B, vector<int> &C) {\n int n = A.size();\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.java/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<Integer> src, List<Integer> tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n Integer pan = src.remove(src.size() - 1);\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.add(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, List<Integer> src, List<Integer> buf, List<Integer> tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(List<Integer> A, List<Integer> B, List<Integer> C) {\n int n = A.size();\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.cs/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid Move(List<int> src, List<int> tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src[^1];\n src.RemoveAt(src.Count - 1);\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.Add(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid DFS(int i, List<int> src, List<int> buf, List<int> tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n Move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n DFS(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n Move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n DFS(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid SolveHanota(List<int> A, List<int> B, List<int> C) {\n int n = A.Count;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n DFS(n, A, B, C);\n}\n
hanota.go/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunc move(src, tar *list.List) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n pan := src.Back()\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.PushBack(pan.Value)\n // \u79fb\u9664 src \u9876\u90e8\u5706\u76d8\n src.Remove(pan)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunc dfsHanota(i int, src, buf, tar *list.List) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1 {\n move(src, tar)\n return\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfsHanota(i-1, src, tar, buf)\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar)\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfsHanota(i-1, buf, src, tar)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunc solveHanota(A, B, C *list.List) {\n n := A.Len()\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfsHanota(n, A, B, C)\n}\n
hanota.swift/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunc move(src: inout [Int], tar: inout [Int]) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n let pan = src.popLast()!\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.append(pan)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunc dfs(i: Int, src: inout [Int], buf: inout [Int], tar: inout [Int]) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1 {\n move(src: &src, tar: &tar)\n return\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i: i - 1, src: &src, buf: &tar, tar: &buf)\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src: &src, tar: &tar)\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i: i - 1, src: &buf, buf: &src, tar: &tar)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunc solveHanota(A: inout [Int], B: inout [Int], C: inout [Int]) {\n let n = A.count\n // \u5217\u8868\u5c3e\u90e8\u662f\u67f1\u5b50\u9876\u90e8\n // \u5c06 src \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(i: n, src: &A, buf: &B, tar: &C)\n}\n
hanota.js/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src, tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n const pan = src.pop();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunction dfs(i, src, buf, tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i === 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunction solveHanota(A, B, C) {\n const n = A.length;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.ts/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src: number[], tar: number[]): void {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n const pan = src.pop();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunction dfs(i: number, src: number[], buf: number[], tar: number[]): void {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i === 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunction solveHanota(A: number[], B: number[], C: number[]): void {\n const n = A.length;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.dart/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<int> src, List<int> tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src.removeLast();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.add(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, List<int> src, List<int> buf, List<int> tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(List<int> A, List<int> B, List<int> C) {\n int n = A.length;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.rs/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfn move_pan(src: &mut Vec<i32>, tar: &mut Vec<i32>) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n let pan = src.remove(src.len() - 1);\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfn dfs(i: i32, src: &mut Vec<i32>, buf: &mut Vec<i32>, tar: &mut Vec<i32>) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1 {\n move_pan(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move_pan(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfn solve_hanota(A: &mut Vec<i32>, B: &mut Vec<i32>, C: &mut Vec<i32>) {\n let n = A.len() as i32;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.c/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(int *src, int *srcSize, int *tar, int *tarSize) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src[*srcSize - 1];\n src[*srcSize - 1] = 0;\n (*srcSize)--;\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar[*tarSize] = pan;\n (*tarSize)++;\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, int *src, int *srcSize, int *buf, int *bufSize, int *tar, int *tarSize) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, srcSize, tar, tarSize);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, srcSize, tar, tarSize, buf, bufSize);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, srcSize, tar, tarSize);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, bufSize, src, srcSize, tar, tarSize);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(int *A, int *ASize, int *B, int *BSize, int *C, int *CSize) {\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(*ASize, A, ASize, B, BSize, C, CSize);\n}\n
hanota.zig[class]{}-[func]{move}\n\n[class]{}-[func]{dfs}\n\n[class]{}-[func]{solveHanota}\n
\u5982\u56fe 12-15 \u6240\u793a\uff0c\u6c49\u8bfa\u5854\u95ee\u9898\u5f62\u6210\u4e00\u68f5\u9ad8\u5ea6\u4e3a \\(n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u5bf9\u5e94\u4e00\u4e2a\u5f00\u542f\u7684 dfs() \u51fd\u6570\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
\u56fe 12-15 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898\u7684\u9012\u5f52\u6811
Quote
\u6c49\u8bfa\u5854\u95ee\u9898\u6e90\u81ea\u4e00\u4e2a\u53e4\u8001\u7684\u4f20\u8bf4\u3002\u5728\u53e4\u5370\u5ea6\u7684\u4e00\u4e2a\u5bfa\u5e99\u91cc\uff0c\u50e7\u4fa3\u4eec\u6709\u4e09\u6839\u9ad8\u5927\u7684\u94bb\u77f3\u67f1\u5b50\uff0c\u4ee5\u53ca \\(64\\) \u4e2a\u5927\u5c0f\u4e0d\u4e00\u7684\u91d1\u5706\u76d8\u3002\u50e7\u4fa3\u4eec\u4e0d\u65ad\u5730\u79fb\u52a8\u5706\u76d8\uff0c\u4ed6\u4eec\u76f8\u4fe1\u5728\u6700\u540e\u4e00\u4e2a\u5706\u76d8\u88ab\u6b63\u786e\u653e\u7f6e\u7684\u90a3\u4e00\u523b\uff0c\u8fd9\u4e2a\u4e16\u754c\u5c31\u4f1a\u7ed3\u675f\u3002
\u7136\u800c\uff0c\u5373\u4f7f\u50e7\u4fa3\u4eec\u6bcf\u79d2\u949f\u79fb\u52a8\u4e00\u6b21\uff0c\u603b\u5171\u9700\u8981\u5927\u7ea6 \\(2^{64} \\approx 1.84\u00d710^{19}\\) \u79d2\uff0c\u5408\u7ea6 \\(5850\\) \u4ebf\u5e74\uff0c\u8fdc\u8fdc\u8d85\u8fc7\u4e86\u73b0\u5728\u5bf9\u5b87\u5b99\u5e74\u9f84\u7684\u4f30\u8ba1\u3002\u6240\u4ee5\uff0c\u5018\u82e5\u8fd9\u4e2a\u4f20\u8bf4\u662f\u771f\u7684\uff0c\u6211\u4eec\u5e94\u8be5\u4e0d\u9700\u8981\u62c5\u5fc3\u4e16\u754c\u672b\u65e5\u7684\u5230\u6765\u3002
"},{"location":"chapter_divide_and_conquer/summary/","title":"12.5 \u00a0 \u5c0f\u7ed3","text":" - \u5206\u6cbb\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u7b97\u6cd5\u8bbe\u8ba1\u7b56\u7565\uff0c\u5305\u62ec\u5206\uff08\u5212\u5206\uff09\u548c\u6cbb\uff08\u5408\u5e76\uff09\u4e24\u4e2a\u9636\u6bb5\uff0c\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\u3002
- \u5224\u65ad\u662f\u5426\u662f\u5206\u6cbb\u7b97\u6cd5\u95ee\u9898\u7684\u4f9d\u636e\u5305\u62ec\uff1a\u95ee\u9898\u80fd\u5426\u5206\u89e3\u3001\u5b50\u95ee\u9898\u662f\u5426\u72ec\u7acb\u3001\u5b50\u95ee\u9898\u80fd\u5426\u5408\u5e76\u3002
- \u5f52\u5e76\u6392\u5e8f\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\uff0c\u5176\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u7b49\u957f\u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u5230\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u5f00\u59cb\u9010\u5c42\u5408\u5e76\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002
- \u5f15\u5165\u5206\u6cbb\u7b56\u7565\u5f80\u5f80\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u7b56\u7565\u51cf\u5c11\u4e86\u64cd\u4f5c\u6570\u91cf\uff1b\u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u540e\u6709\u5229\u4e8e\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002
- \u5206\u6cbb\u65e2\u53ef\u4ee5\u89e3\u51b3\u8bb8\u591a\u7b97\u6cd5\u95ee\u9898\uff0c\u4e5f\u5e7f\u6cdb\u5e94\u7528\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u5904\u5904\u53ef\u89c1\u5176\u8eab\u5f71\u3002
- \u76f8\u8f83\u4e8e\u66b4\u529b\u641c\u7d22\uff0c\u81ea\u9002\u5e94\u641c\u7d22\u6548\u7387\u66f4\u9ad8\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\u3002
- \u4e8c\u5206\u67e5\u627e\u662f\u5206\u6cbb\u7b56\u7565\u7684\u53e6\u4e00\u4e2a\u5178\u578b\u5e94\u7528\uff0c\u5b83\u4e0d\u5305\u542b\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u7684\u6b65\u9aa4\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9012\u5f52\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206\u67e5\u627e\u3002
- \u5728\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u95ee\u9898\u4e2d\uff0c\u6784\u5efa\u6811\uff08\u539f\u95ee\u9898\uff09\u53ef\u4ee5\u5212\u5206\u4e3a\u6784\u5efa\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u5212\u5206\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u7684\u7d22\u5f15\u533a\u95f4\u6765\u5b9e\u73b0\u3002
- \u5728\u6c49\u8bfa\u5854\u95ee\u9898\u4e2d\uff0c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(n\\) \u7684\u95ee\u9898\u53ef\u4ee5\u5212\u5206\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a \\(n-1\\) \u7684\u5b50\u95ee\u9898\u548c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(1\\) \u7684\u5b50\u95ee\u9898\u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002
"},{"location":"chapter_dynamic_programming/","title":"\u7b2c 14 \u7ae0 \u00a0 \u52a8\u6001\u89c4\u5212","text":"Abstract
\u5c0f\u6eaa\u6c47\u5165\u6cb3\u6d41\uff0c\u6c5f\u6cb3\u6c47\u5165\u5927\u6d77\u3002
\u52a8\u6001\u89c4\u5212\u5c06\u5c0f\u95ee\u9898\u7684\u89e3\u6c47\u96c6\u6210\u5927\u95ee\u9898\u7684\u7b54\u6848\uff0c\u4e00\u6b65\u6b65\u5f15\u9886\u6211\u4eec\u8d70\u5411\u89e3\u51b3\u95ee\u9898\u7684\u5f7c\u5cb8\u3002
"},{"location":"chapter_dynamic_programming/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212
- 14.2 \u00a0 DP \u95ee\u9898\u7279\u6027
- 14.3 \u00a0 DP \u89e3\u9898\u601d\u8def
- 14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898
- 14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898
- 14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
- 14.7 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_dynamic_programming/dp_problem_features/","title":"14.2 \u00a0 \u52a8\u6001\u89c4\u5212\u95ee\u9898\u7279\u6027","text":"\u5728\u4e0a\u4e00\u8282\u4e2d\uff0c\u6211\u4eec\u5b66\u4e60\u4e86\u52a8\u6001\u89c4\u5212\u662f\u5982\u4f55\u901a\u8fc7\u5b50\u95ee\u9898\u5206\u89e3\u6765\u6c42\u89e3\u539f\u95ee\u9898\u7684\u3002\u5b9e\u9645\u4e0a\uff0c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u7684\u4fa7\u91cd\u70b9\u4e0d\u540c\u3002
- \u5206\u6cbb\u7b97\u6cd5\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u591a\u4e2a\u76f8\u4e92\u72ec\u7acb\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u6700\u5c0f\u5b50\u95ee\u9898\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u6700\u7ec8\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
- \u52a8\u6001\u89c4\u5212\u4e5f\u5bf9\u95ee\u9898\u8fdb\u884c\u9012\u5f52\u5206\u89e3\uff0c\u4f46\u4e0e\u5206\u6cbb\u7b97\u6cd5\u7684\u4e3b\u8981\u533a\u522b\u662f\uff0c\u52a8\u6001\u89c4\u5212\u4e2d\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u4f9d\u8d56\u7684\uff0c\u5728\u5206\u89e3\u8fc7\u7a0b\u4e2d\u4f1a\u51fa\u73b0\u8bb8\u591a\u91cd\u53e0\u5b50\u95ee\u9898\u3002
- \u56de\u6eaf\u7b97\u6cd5\u5728\u5c1d\u8bd5\u548c\u56de\u9000\u4e2d\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u7684\u89e3\uff0c\u5e76\u901a\u8fc7\u526a\u679d\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\u3002\u539f\u95ee\u9898\u7684\u89e3\u7531\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\u6784\u6210\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6bcf\u4e2a\u51b3\u7b56\u6b65\u9aa4\u4e4b\u524d\u7684\u5b50\u5e8f\u5217\u770b\u4f5c\u4e00\u4e2a\u5b50\u95ee\u9898\u3002
\u5b9e\u9645\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u5e38\u7528\u6765\u6c42\u89e3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5b83\u4eec\u4e0d\u4ec5\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u8fd8\u5177\u6709\u53e6\u5916\u4e24\u5927\u7279\u6027\uff1a\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002
"},{"location":"chapter_dynamic_programming/dp_problem_features/#1421","title":"14.2.1 \u00a0 \u6700\u4f18\u5b50\u7ed3\u6784","text":"\u6211\u4eec\u5bf9\u722c\u697c\u68af\u95ee\u9898\u7a0d\u4f5c\u6539\u52a8\uff0c\u4f7f\u4e4b\u66f4\u52a0\u9002\u5408\u5c55\u793a\u6700\u4f18\u5b50\u7ed3\u6784\u6982\u5ff5\u3002
\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7
\u7ed9\u5b9a\u4e00\u4e2a\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u6bcf\u4e00\u9636\u697c\u68af\u4e0a\u90fd\u8d34\u6709\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u4f60\u5728\u8be5\u53f0\u9636\u6240\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\u3002\u7ed9\u5b9a\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\u6570\u7ec4 \\(cost\\) \uff0c\u5176\u4e2d \\(cost[i]\\) \u8868\u793a\u5728\u7b2c \\(i\\) \u4e2a\u53f0\u9636\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\\(cost[0]\\) \u4e3a\u5730\u9762\uff08\u8d77\u59cb\u70b9\uff09\u3002\u8bf7\u8ba1\u7b97\u6700\u5c11\u9700\u8981\u4ed8\u51fa\u591a\u5c11\u4ee3\u4ef7\u624d\u80fd\u5230\u8fbe\u9876\u90e8\uff1f
\u5982\u56fe 14-6 \u6240\u793a\uff0c\u82e5\u7b2c \\(1\\)\u3001\\(2\\)\u3001\\(3\\) \u9636\u7684\u4ee3\u4ef7\u5206\u522b\u4e3a \\(1\\)\u3001\\(10\\)\u3001\\(1\\) \uff0c\u5219\u4ece\u5730\u9762\u722c\u5230\u7b2c \\(3\\) \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7\u4e3a \\(2\\) \u3002
\u56fe 14-6 \u00a0 \u722c\u5230\u7b2c 3 \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7
\u8bbe \\(dp[i]\\) \u4e3a\u722c\u5230\u7b2c \\(i\\) \u9636\u7d2f\u8ba1\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\u7531\u4e8e\u7b2c \\(i\\) \u9636\u53ea\u53ef\u80fd\u4ece \\(i - 1\\) \u9636\u6216 \\(i - 2\\) \u9636\u8d70\u6765\uff0c\u56e0\u6b64 \\(dp[i]\\) \u53ea\u53ef\u80fd\u7b49\u4e8e \\(dp[i - 1] + cost[i]\\) \u6216 \\(dp[i - 2] + cost[i]\\) \u3002\u4e3a\u4e86\u5c3d\u53ef\u80fd\u51cf\u5c11\u4ee3\u4ef7\uff0c\u6211\u4eec\u5e94\u8be5\u9009\u62e9\u4e24\u8005\u4e2d\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\uff1a
\\[ dp[i] = \\min(dp[i-1], dp[i-2]) + cost[i] \\] \u8fd9\u4fbf\u53ef\u4ee5\u5f15\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u542b\u4e49\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u662f\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\u7684\u3002
\u672c\u9898\u663e\u7136\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6211\u4eec\u4ece\u4e24\u4e2a\u5b50\u95ee\u9898\u6700\u4f18\u89e3 \\(dp[i-1]\\) \u548c \\(dp[i-2]\\) \u4e2d\u6311\u9009\u51fa\u8f83\u4f18\u7684\u90a3\u4e00\u4e2a\uff0c\u5e76\u7528\u5b83\u6784\u5efa\u51fa\u539f\u95ee\u9898 \\(dp[i]\\) \u7684\u6700\u4f18\u89e3\u3002
\u90a3\u4e48\uff0c\u4e0a\u4e00\u8282\u7684\u722c\u697c\u68af\u9898\u76ee\u6709\u6ca1\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u5462\uff1f\u5b83\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u770b\u4f3c\u662f\u4e00\u4e2a\u8ba1\u6570\u95ee\u9898\uff0c\u4f46\u5982\u679c\u6362\u4e00\u79cd\u95ee\u6cd5\uff1a\u201c\u6c42\u89e3\u6700\u5927\u65b9\u6848\u6570\u91cf\u201d\u3002\u6211\u4eec\u610f\u5916\u5730\u53d1\u73b0\uff0c\u867d\u7136\u9898\u76ee\u4fee\u6539\u524d\u540e\u662f\u7b49\u4ef7\u7684\uff0c\u4f46\u6700\u4f18\u5b50\u7ed3\u6784\u6d6e\u73b0\u51fa\u6765\u4e86\uff1a\u7b2c \\(n\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u7b49\u4e8e\u7b2c \\(n-1\\) \u9636\u548c\u7b2c \\(n-2\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u4e4b\u548c\u3002\u6240\u4ee5\u8bf4\uff0c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u89e3\u91ca\u65b9\u5f0f\u6bd4\u8f83\u7075\u6d3b\uff0c\u5728\u4e0d\u540c\u95ee\u9898\u4e2d\u4f1a\u6709\u4e0d\u540c\u7684\u542b\u4e49\u3002
\u6839\u636e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u4ee5\u53ca\u521d\u59cb\u72b6\u6001 \\(dp[1] = cost[1]\\) \u548c \\(dp[2] = cost[2]\\) \uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\u52a8\u6001\u89c4\u5212\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_cost_climbing_stairs_dp.pydef min_cost_climbing_stairs_dp(cost: list[int]) -> int:\n \"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(cost) - 1\n if n == 1 or n == 2:\n return cost[n]\n # \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp = [0] * (n + 1)\n # \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1], dp[2] = cost[1], cost[2]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in range(3, n + 1):\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\n return dp[n]\n
min_cost_climbing_stairs_dp.cpp/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(vector<int> &cost) {\n int n = cost.size() - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n vector<int> dp(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.java/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int[] cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.cs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint MinCostClimbingStairsDP(int[] cost) {\n int n = cost.Length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = Math.Min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.go/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost []int) int {\n n := len(cost) - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n min := func(a, b int) int {\n if a < b {\n return a\n }\n return b\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp := make([]int, n+1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1]\n dp[2] = cost[2]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n dp[i] = min(dp[i-1], dp[i-2]) + cost[i]\n }\n return dp[n]\n}\n
min_cost_climbing_stairs_dp.swift/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost: [Int]) -> Int {\n let n = cost.count - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = Array(repeating: 0, count: n + 1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1]\n dp[2] = cost[2]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in stride(from: 3, through: n, by: 1) {\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\n }\n return dp[n]\n}\n
min_cost_climbing_stairs_dp.js/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDP(cost) {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.ts/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDP(cost: Array<number>): number {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.dart/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(List<int> cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2) return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n List<int> dp = List.filled(n + 1, 0);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.rs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp(cost: &[i32]) -> i32 {\n let n = cost.len() - 1;\n if n == 1 || n == 2 { return cost[n]; }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n let mut dp = vec![-1; n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in 3..=n {\n dp[i] = cmp::min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n dp[n]\n}\n
min_cost_climbing_stairs_dp.c/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int cost[], int costSize) {\n int n = costSize - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int *dp = calloc(n + 1, sizeof(int));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = myMin(dp[i - 1], dp[i - 2]) + cost[i];\n }\n int res = dp[n];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
min_cost_climbing_stairs_dp.zig// \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDP(comptime cost: []i32) i32 {\n comptime var n = cost.len - 1;\n if (n == 1 or n == 2) {\n return cost[n];\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = [_]i32{-1} ** (n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n dp[i] = @min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
\u56fe 14-7 \u5c55\u793a\u4e86\u4ee5\u4e0a\u4ee3\u7801\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b\u3002
\u56fe 14-7 \u00a0 \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u672c\u9898\u4e5f\u53ef\u4ee5\u8fdb\u884c\u7a7a\u95f4\u4f18\u5316\uff0c\u5c06\u4e00\u7ef4\u538b\u7f29\u81f3\u96f6\u7ef4\uff0c\u4f7f\u5f97\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u81f3 \\(O(1)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_cost_climbing_stairs_dp.pydef min_cost_climbing_stairs_dp_comp(cost: list[int]) -> int:\n \"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(cost) - 1\n if n == 1 or n == 2:\n return cost[n]\n a, b = cost[1], cost[2]\n for i in range(3, n + 1):\n a, b = b, min(a, b) + cost[i]\n return b\n
min_cost_climbing_stairs_dp.cpp/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(vector<int> &cost) {\n int n = cost.size() - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.java/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int[] cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = Math.min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.cs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint MinCostClimbingStairsDPComp(int[] cost) {\n int n = cost.Length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = Math.Min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.go/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost []int) int {\n n := len(cost) - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n min := func(a, b int) int {\n if a < b {\n return a\n }\n return b\n }\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n a, b := cost[1], cost[2]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n tmp := b\n b = min(a, tmp) + cost[i]\n a = tmp\n }\n return b\n}\n
min_cost_climbing_stairs_dp.swift/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost: [Int]) -> Int {\n let n = cost.count - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n var (a, b) = (cost[1], cost[2])\n for i in stride(from: 3, through: n, by: 1) {\n (a, b) = (b, min(a, b) + cost[i])\n }\n return b\n}\n
min_cost_climbing_stairs_dp.js/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDPComp(cost) {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n let a = cost[1],\n b = cost[2];\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = Math.min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.ts/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDPComp(cost: Array<number>): number {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n let a = cost[1],\n b = cost[2];\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = Math.min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.dart/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(List<int> cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2) return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.rs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp_comp(cost: &[i32]) -> i32 {\n let n = cost.len() - 1;\n if n == 1 || n == 2 { return cost[n] };\n let (mut a, mut b) = (cost[1], cost[2]);\n for i in 3..=n {\n let tmp = b;\n b = cmp::min(a, tmp) + cost[i];\n a = tmp;\n }\n b\n}\n
min_cost_climbing_stairs_dp.c/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int cost[], int costSize) {\n int n = costSize - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = myMin(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.zig// \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDPComp(cost: []i32) i32 {\n var n = cost.len - 1;\n if (n == 1 or n == 2) {\n return cost[n];\n }\n var a = cost[1];\n var b = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n var tmp = b;\n b = @min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
"},{"location":"chapter_dynamic_programming/dp_problem_features/#1422","title":"14.2.2 \u00a0 \u65e0\u540e\u6548\u6027","text":"\u65e0\u540e\u6548\u6027\u662f\u52a8\u6001\u89c4\u5212\u80fd\u591f\u6709\u6548\u89e3\u51b3\u95ee\u9898\u7684\u91cd\u8981\u7279\u6027\u4e4b\u4e00\uff0c\u5176\u5b9a\u4e49\u4e3a\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u786e\u5b9a\u7684\u72b6\u6001\uff0c\u5b83\u7684\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u5f53\u524d\u72b6\u6001\u6709\u5173\uff0c\u800c\u4e0e\u8fc7\u53bb\u7ecf\u5386\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002
\u4ee5\u722c\u697c\u68af\u95ee\u9898\u4e3a\u4f8b\uff0c\u7ed9\u5b9a\u72b6\u6001 \\(i\\) \uff0c\u5b83\u4f1a\u53d1\u5c55\u51fa\u72b6\u6001 \\(i+1\\) \u548c\u72b6\u6001 \\(i+2\\) \uff0c\u5206\u522b\u5bf9\u5e94\u8df3 \\(1\\) \u6b65\u548c\u8df3 \\(2\\) \u6b65\u3002\u5728\u505a\u51fa\u8fd9\u4e24\u79cd\u9009\u62e9\u65f6\uff0c\u6211\u4eec\u65e0\u987b\u8003\u8651\u72b6\u6001 \\(i\\) \u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5b83\u4eec\u5bf9\u72b6\u6001 \\(i\\) \u7684\u672a\u6765\u6ca1\u6709\u5f71\u54cd\u3002
\u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u7ed9\u722c\u697c\u68af\u95ee\u9898\u6dfb\u52a0\u4e00\u4e2a\u7ea6\u675f\uff0c\u60c5\u51b5\u5c31\u4e0d\u4e00\u6837\u4e86\u3002
\u5e26\u7ea6\u675f\u722c\u697c\u68af
\u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u4f46\u4e0d\u80fd\u8fde\u7eed\u4e24\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\uff1f
\u5982\u56fe 14-8 \u6240\u793a\uff0c\u722c\u4e0a\u7b2c \\(3\\) \u9636\u4ec5\u5269 \\(2\\) \u79cd\u53ef\u884c\u65b9\u6848\uff0c\u5176\u4e2d\u8fde\u7eed\u4e09\u6b21\u8df3 \\(1\\) \u9636\u7684\u65b9\u6848\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\uff0c\u56e0\u6b64\u88ab\u820d\u5f03\u3002
\u56fe 14-8 \u00a0 \u5e26\u7ea6\u675f\u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf
\u5728\u8be5\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u4e0a\u4e00\u8f6e\u662f\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\uff0c\u90a3\u4e48\u4e0b\u4e00\u8f6e\u5c31\u5fc5\u987b\u8df3 \\(2\\) \u9636\u3002\u8fd9\u610f\u5473\u7740\uff0c\u4e0b\u4e00\u6b65\u9009\u62e9\u4e0d\u80fd\u7531\u5f53\u524d\u72b6\u6001\uff08\u5f53\u524d\u6240\u5728\u697c\u68af\u9636\u6570\uff09\u72ec\u7acb\u51b3\u5b9a\uff0c\u8fd8\u548c\u524d\u4e00\u4e2a\u72b6\u6001\uff08\u4e0a\u8f6e\u6240\u5728\u697c\u68af\u9636\u6570\uff09\u6709\u5173\u3002
\u4e0d\u96be\u53d1\u73b0\uff0c\u6b64\u95ee\u9898\u5df2\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b \\(dp[i] = dp[i-1] + dp[i-2]\\) \u4e5f\u5931\u6548\u4e86\uff0c\u56e0\u4e3a \\(dp[i-1]\\) \u4ee3\u8868\u672c\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u4f46\u5176\u4e2d\u5305\u542b\u4e86\u8bb8\u591a\u201c\u4e0a\u4e00\u8f6e\u662f\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\u201d\u65b9\u6848\uff0c\u800c\u4e3a\u4e86\u6ee1\u8db3\u7ea6\u675f\uff0c\u6211\u4eec\u5c31\u4e0d\u80fd\u5c06 \\(dp[i-1]\\) \u76f4\u63a5\u8ba1\u5165 \\(dp[i]\\) \u4e2d\u3002
\u4e3a\u6b64\uff0c\u6211\u4eec\u9700\u8981\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff1a\u72b6\u6001 \\([i, j]\\) \u8868\u793a\u5904\u5728\u7b2c \\(i\\) \u9636\u5e76\u4e14\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(j\\) \u9636\uff0c\u5176\u4e2d \\(j \\in \\{1, 2\\}\\) \u3002\u6b64\u72b6\u6001\u5b9a\u4e49\u6709\u6548\u5730\u533a\u5206\u4e86\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u8fd8\u662f \\(2\\) \u9636\uff0c\u6211\u4eec\u53ef\u4ee5\u636e\u6b64\u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u4ece\u4f55\u800c\u6765\u7684\u3002
- \u5f53\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u65f6\uff0c\u4e0a\u4e0a\u4e00\u8f6e\u53ea\u80fd\u9009\u62e9\u8df3 \\(2\\) \u9636\uff0c\u5373 \\(dp[i, 1]\\) \u53ea\u80fd\u4ece \\(dp[i-1, 2]\\) \u8f6c\u79fb\u8fc7\u6765\u3002
- \u5f53\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(2\\) \u9636\u65f6\uff0c\u4e0a\u4e0a\u4e00\u8f6e\u53ef\u9009\u62e9\u8df3 \\(1\\) \u9636\u6216\u8df3 \\(2\\) \u9636\uff0c\u5373 \\(dp[i, 2]\\) \u53ef\u4ee5\u4ece \\(dp[i-2, 1]\\) \u6216 \\(dp[i-2, 2]\\) \u8f6c\u79fb\u8fc7\u6765\u3002
\u5982\u56fe 14-9 \u6240\u793a\uff0c\u5728\u8be5\u5b9a\u4e49\u4e0b\uff0c\\(dp[i, j]\\) \u8868\u793a\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u65b9\u6848\u6570\u3002\u6b64\u65f6\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ \\begin{cases} dp[i, 1] = dp[i-1, 2] \\\\ dp[i, 2] = dp[i-2, 1] + dp[i-2, 2] \\end{cases} \\] \u56fe 14-9 \u00a0 \u8003\u8651\u7ea6\u675f\u4e0b\u7684\u9012\u63a8\u5173\u7cfb
\u6700\u7ec8\uff0c\u8fd4\u56de \\(dp[n, 1] + dp[n, 2]\\) \u5373\u53ef\uff0c\u4e24\u8005\u4e4b\u548c\u4ee3\u8868\u722c\u5230\u7b2c \\(n\\) \u9636\u7684\u65b9\u6848\u603b\u6570\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_constraint_dp.pydef climbing_stairs_constraint_dp(n: int) -> int:\n \"\"\"\u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n if n == 1 or n == 2:\n return 1\n # \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp = [[0] * 3 for _ in range(n + 1)]\n # \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1], dp[1][2] = 1, 0\n dp[2][1], dp[2][2] = 0, 1\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in range(3, n + 1):\n dp[i][1] = dp[i - 1][2]\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2]\n return dp[n][1] + dp[n][2]\n
climbing_stairs_constraint_dp.cpp/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n vector<vector<int>> dp(n + 1, vector<int>(3, 0));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.java/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[][] dp = new int[n + 1][3];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.cs/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint ClimbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[,] dp = new int[n + 1, 3];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1, 1] = 1;\n dp[1, 2] = 0;\n dp[2, 1] = 0;\n dp[2, 2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i, 1] = dp[i - 1, 2];\n dp[i, 2] = dp[i - 2, 1] + dp[i - 2, 2];\n }\n return dp[n, 1] + dp[n, 2];\n}\n
climbing_stairs_constraint_dp.go/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n int) int {\n if n == 1 || n == 2 {\n return 1\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp := make([][3]int, n+1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1\n dp[1][2] = 0\n dp[2][1] = 0\n dp[2][2] = 1\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n dp[i][1] = dp[i-1][2]\n dp[i][2] = dp[i-2][1] + dp[i-2][2]\n }\n return dp[n][1] + dp[n][2]\n}\n
climbing_stairs_constraint_dp.swift/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n: Int) -> Int {\n if n == 1 || n == 2 {\n return 1\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = Array(repeating: Array(repeating: 0, count: 3), count: n + 1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1\n dp[1][2] = 0\n dp[2][1] = 0\n dp[2][2] = 1\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in stride(from: 3, through: n, by: 1) {\n dp[i][1] = dp[i - 1][2]\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2]\n }\n return dp[n][1] + dp[n][2]\n}\n
climbing_stairs_constraint_dp.js/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsConstraintDP(n) {\n if (n === 1 || n === 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = Array.from(new Array(n + 1), () => new Array(3));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.ts/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsConstraintDP(n: number): number {\n if (n === 1 || n === 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = Array.from({ length: n + 1 }, () => new Array(3));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.dart/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(3, 0));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.rs/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_constraint_dp(n: usize) -> i32 {\n if n == 1 || n == 2 { return 1 };\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n let mut dp = vec![vec![-1; 3]; n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in 3..=n {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n dp[n][1] + dp[n][2]\n}\n
climbing_stairs_constraint_dp.c/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(3, sizeof(int));\n }\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n int res = dp[n][1] + dp[n][2];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n free(dp);\n return res;\n}\n
climbing_stairs_constraint_dp.zig// \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsConstraintDP(comptime n: usize) i32 {\n if (n == 1 or n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = [_][3]i32{ [_]i32{ -1, -1, -1 } } ** (n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
\u5728\u4e0a\u9762\u7684\u6848\u4f8b\u4e2d\uff0c\u7531\u4e8e\u4ec5\u9700\u591a\u8003\u8651\u524d\u9762\u4e00\u4e2a\u72b6\u6001\uff0c\u56e0\u6b64\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u901a\u8fc7\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff0c\u4f7f\u5f97\u95ee\u9898\u91cd\u65b0\u6ee1\u8db3\u65e0\u540e\u6548\u6027\u3002\u7136\u800c\uff0c\u67d0\u4e9b\u95ee\u9898\u5177\u6709\u975e\u5e38\u4e25\u91cd\u7684\u201c\u6709\u540e\u6548\u6027\u201d\u3002
\u722c\u697c\u68af\u4e0e\u969c\u788d\u751f\u6210
\u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\u3002\u89c4\u5b9a\u5f53\u722c\u5230\u7b2c \\(i\\) \u9636\u65f6\uff0c\u7cfb\u7edf\u81ea\u52a8\u4f1a\u5728\u7b2c \\(2i\\) \u9636\u4e0a\u653e\u4e0a\u969c\u788d\u7269\uff0c\u4e4b\u540e\u6240\u6709\u8f6e\u90fd\u4e0d\u5141\u8bb8\u8df3\u5230\u7b2c \\(2i\\) \u9636\u4e0a\u3002\u4f8b\u5982\uff0c\u524d\u4e24\u8f6e\u5206\u522b\u8df3\u5230\u4e86\u7b2c \\(2\\)\u3001\\(3\\) \u9636\u4e0a\uff0c\u5219\u4e4b\u540e\u5c31\u4e0d\u80fd\u8df3\u5230\u7b2c \\(4\\)\u3001\\(6\\) \u9636\u4e0a\u3002\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\uff1f
\u5728\u8fd9\u4e2a\u95ee\u9898\u4e2d\uff0c\u4e0b\u6b21\u8df3\u8dc3\u4f9d\u8d56\u8fc7\u53bb\u6240\u6709\u7684\u72b6\u6001\uff0c\u56e0\u4e3a\u6bcf\u4e00\u6b21\u8df3\u8dc3\u90fd\u4f1a\u5728\u66f4\u9ad8\u7684\u9636\u68af\u4e0a\u8bbe\u7f6e\u969c\u788d\uff0c\u5e76\u5f71\u54cd\u672a\u6765\u7684\u8df3\u8dc3\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u52a8\u6001\u89c4\u5212\u5f80\u5f80\u96be\u4ee5\u89e3\u51b3\u3002
\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u590d\u6742\u7684\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff08\u4f8b\u5982\u65c5\u884c\u5546\u95ee\u9898\uff09\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u4f7f\u7528\u5176\u4ed6\u65b9\u6cd5\uff0c\u4f8b\u5982\u542f\u53d1\u5f0f\u641c\u7d22\u3001\u9057\u4f20\u7b97\u6cd5\u3001\u5f3a\u5316\u5b66\u4e60\u7b49\uff0c\u4ece\u800c\u5728\u6709\u9650\u65f6\u95f4\u5185\u5f97\u5230\u53ef\u7528\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/","title":"14.3 \u00a0 \u52a8\u6001\u89c4\u5212\u89e3\u9898\u601d\u8def","text":"\u4e0a\u4e24\u8282\u4ecb\u7ecd\u4e86\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4e3b\u8981\u7279\u5f81\uff0c\u63a5\u4e0b\u6765\u6211\u4eec\u4e00\u8d77\u63a2\u7a76\u4e24\u4e2a\u66f4\u52a0\u5b9e\u7528\u7684\u95ee\u9898\u3002
- \u5982\u4f55\u5224\u65ad\u4e00\u4e2a\u95ee\u9898\u662f\u4e0d\u662f\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff1f
- \u6c42\u89e3\u52a8\u6001\u89c4\u5212\u95ee\u9898\u8be5\u4ece\u4f55\u5904\u5165\u624b\uff0c\u5b8c\u6574\u6b65\u9aa4\u662f\u4ec0\u4e48\uff1f
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1431","title":"14.3.1 \u00a0 \u95ee\u9898\u5224\u65ad","text":"\u603b\u7684\u6765\u8bf4\uff0c\u5982\u679c\u4e00\u4e2a\u95ee\u9898\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u90a3\u4e48\u5b83\u901a\u5e38\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u6c42\u89e3\u3002\u7136\u800c\uff0c\u6211\u4eec\u5f88\u96be\u4ece\u95ee\u9898\u63cf\u8ff0\u4e2d\u76f4\u63a5\u63d0\u53d6\u51fa\u8fd9\u4e9b\u7279\u6027\u3002\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f1a\u653e\u5bbd\u6761\u4ef6\uff0c\u5148\u89c2\u5bdf\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u56de\u6eaf\uff08\u7a77\u4e3e\uff09\u89e3\u51b3\u3002
\u9002\u5408\u7528\u56de\u6eaf\u89e3\u51b3\u7684\u95ee\u9898\u901a\u5e38\u6ee1\u8db3\u201c\u51b3\u7b56\u6811\u6a21\u578b\u201d\uff0c\u8fd9\u79cd\u95ee\u9898\u53ef\u4ee5\u4f7f\u7528\u6811\u5f62\u7ed3\u6784\u6765\u63cf\u8ff0\uff0c\u5176\u4e2d\u6bcf\u4e00\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\uff0c\u6bcf\u4e00\u6761\u8def\u5f84\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\u3002
\u6362\u53e5\u8bdd\u8bf4\uff0c\u5982\u679c\u95ee\u9898\u5305\u542b\u660e\u786e\u7684\u51b3\u7b56\u6982\u5ff5\uff0c\u5e76\u4e14\u89e3\u662f\u901a\u8fc7\u4e00\u7cfb\u5217\u51b3\u7b56\u4ea7\u751f\u7684\uff0c\u90a3\u4e48\u5b83\u5c31\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u901a\u5e38\u53ef\u4ee5\u4f7f\u7528\u56de\u6eaf\u6765\u89e3\u51b3\u3002
\u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u95ee\u9898\u8fd8\u6709\u4e00\u4e9b\u5224\u65ad\u7684\u201c\u52a0\u5206\u9879\u201d\u3002
- \u95ee\u9898\u5305\u542b\u6700\u5927\uff08\u5c0f\uff09\u6216\u6700\u591a\uff08\u5c11\uff09\u7b49\u6700\u4f18\u5316\u63cf\u8ff0\u3002
- \u95ee\u9898\u7684\u72b6\u6001\u80fd\u591f\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u3001\u591a\u7ef4\u77e9\u9635\u6216\u6811\u6765\u8868\u793a\uff0c\u5e76\u4e14\u4e00\u4e2a\u72b6\u6001\u4e0e\u5176\u5468\u56f4\u7684\u72b6\u6001\u5b58\u5728\u9012\u63a8\u5173\u7cfb\u3002
\u76f8\u5e94\u5730\uff0c\u4e5f\u5b58\u5728\u4e00\u4e9b\u201c\u51cf\u5206\u9879\u201d\u3002
- \u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e0d\u662f\u627e\u51fa\u6700\u4f18\u89e3\u3002
- \u95ee\u9898\u63cf\u8ff0\u4e2d\u6709\u660e\u663e\u7684\u6392\u5217\u7ec4\u5408\u7684\u7279\u5f81\uff0c\u9700\u8981\u8fd4\u56de\u5177\u4f53\u7684\u591a\u4e2a\u65b9\u6848\u3002
\u5982\u679c\u4e00\u4e2a\u95ee\u9898\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u5e76\u5177\u6709\u8f83\u4e3a\u660e\u663e\u7684\u201c\u52a0\u5206\u9879\u201c\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5047\u8bbe\u5b83\u662f\u4e00\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff0c\u5e76\u5728\u6c42\u89e3\u8fc7\u7a0b\u4e2d\u9a8c\u8bc1\u5b83\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1432","title":"14.3.2 \u00a0 \u95ee\u9898\u6c42\u89e3\u6b65\u9aa4","text":"\u52a8\u6001\u89c4\u5212\u7684\u89e3\u9898\u6d41\u7a0b\u4f1a\u56e0\u95ee\u9898\u7684\u6027\u8d28\u548c\u96be\u5ea6\u800c\u6709\u6240\u4e0d\u540c\uff0c\u4f46\u901a\u5e38\u9075\u5faa\u4ee5\u4e0b\u6b65\u9aa4\uff1a\u63cf\u8ff0\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u5efa\u7acb \\(dp\\) \u8868\uff0c\u63a8\u5bfc\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u7b49\u3002
\u4e3a\u4e86\u66f4\u5f62\u8c61\u5730\u5c55\u793a\u89e3\u9898\u6b65\u9aa4\uff0c\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\u201c\u6700\u5c0f\u8def\u5f84\u548c\u201d\u6765\u4e3e\u4f8b\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a \\(n \\times m\\) \u7684\u4e8c\u7ef4\u7f51\u683c grid \uff0c\u7f51\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5305\u542b\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u8be5\u5355\u5143\u683c\u7684\u4ee3\u4ef7\u3002\u673a\u5668\u4eba\u4ee5\u5de6\u4e0a\u89d2\u5355\u5143\u683c\u4e3a\u8d77\u59cb\u70b9\uff0c\u6bcf\u6b21\u53ea\u80fd\u5411\u4e0b\u6216\u8005\u5411\u53f3\u79fb\u52a8\u4e00\u6b65\uff0c\u76f4\u81f3\u5230\u8fbe\u53f3\u4e0b\u89d2\u5355\u5143\u683c\u3002\u8bf7\u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230\u53f3\u4e0b\u89d2\u7684\u6700\u5c0f\u8def\u5f84\u548c\u3002
\u56fe 14-10 \u5c55\u793a\u4e86\u4e00\u4e2a\u4f8b\u5b50\uff0c\u7ed9\u5b9a\u7f51\u683c\u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e3a \\(13\\) \u3002
\u56fe 14-10 \u00a0 \u6700\u5c0f\u8def\u5f84\u548c\u793a\u4f8b\u6570\u636e
\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u672c\u9898\u7684\u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u5c31\u662f\u4ece\u5f53\u524d\u683c\u5b50\u5411\u4e0b\u6216\u5411\u53f3\u8d70\u4e00\u6b65\u3002\u8bbe\u5f53\u524d\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\([i, j]\\) \uff0c\u5219\u5411\u4e0b\u6216\u5411\u53f3\u8d70\u4e00\u6b65\u540e\uff0c\u7d22\u5f15\u53d8\u4e3a \\([i+1, j]\\) \u6216 \\([i, j+1]\\) \u3002\u56e0\u6b64\uff0c\u72b6\u6001\u5e94\u5305\u542b\u884c\u7d22\u5f15\u548c\u5217\u7d22\u5f15\u4e24\u4e2a\u53d8\u91cf\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002
\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u4ece\u8d77\u59cb\u70b9 \\([0, 0]\\) \u8d70\u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\uff0c\u89e3\u8bb0\u4e3a \\(dp[i, j]\\) \u3002
\u81f3\u6b64\uff0c\u6211\u4eec\u5c31\u5f97\u5230\u4e86\u56fe 14-11 \u6240\u793a\u7684\u4e8c\u7ef4 \\(dp\\) \u77e9\u9635\uff0c\u5176\u5c3a\u5bf8\u4e0e\u8f93\u5165\u7f51\u683c \\(grid\\) \u76f8\u540c\u3002
\u56fe 14-11 \u00a0 \u72b6\u6001\u5b9a\u4e49\u4e0e dp \u8868
Note
\u52a8\u6001\u89c4\u5212\u548c\u56de\u6eaf\u8fc7\u7a0b\u53ef\u4ee5\u63cf\u8ff0\u4e3a\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\uff0c\u800c\u72b6\u6001\u7531\u6240\u6709\u51b3\u7b56\u53d8\u91cf\u6784\u6210\u3002\u5b83\u5e94\u5f53\u5305\u542b\u63cf\u8ff0\u89e3\u9898\u8fdb\u5ea6\u7684\u6240\u6709\u53d8\u91cf\uff0c\u5176\u5305\u542b\u4e86\u8db3\u591f\u7684\u4fe1\u606f\uff0c\u80fd\u591f\u7528\u6765\u63a8\u5bfc\u51fa\u4e0b\u4e00\u4e2a\u72b6\u6001\u3002
\u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5b9a\u4e49\u4e00\u4e2a \\(dp\\) \u8868\u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u72b6\u6001\u7684\u6bcf\u4e2a\u72ec\u7acb\u53d8\u91cf\u90fd\u662f \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\u3002\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\\(dp\\) \u8868\u662f\u72b6\u6001\u548c\u5b50\u95ee\u9898\u7684\u89e3\u4e4b\u95f4\u7684\u6620\u5c04\u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u5bf9\u4e8e\u72b6\u6001 \\([i, j]\\) \uff0c\u5b83\u53ea\u80fd\u4ece\u4e0a\u8fb9\u683c\u5b50 \\([i-1, j]\\) \u548c\u5de6\u8fb9\u683c\u5b50 \\([i, j-1]\\) \u8f6c\u79fb\u800c\u6765\u3002\u56e0\u6b64\u6700\u4f18\u5b50\u7ed3\u6784\u4e3a\uff1a\u5230\u8fbe \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u7531 \\([i, j-1]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e0e \\([i-1, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e2d\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\u51b3\u5b9a\u3002
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u63a8\u51fa\u56fe 14-12 \u6240\u793a\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a
\\[ dp[i, j] = \\min(dp[i-1, j], dp[i, j-1]) + grid[i, j] \\] \u56fe 14-12 \u00a0 \u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
Note
\u6839\u636e\u5b9a\u4e49\u597d\u7684 \\(dp\\) \u8868\uff0c\u601d\u8003\u539f\u95ee\u9898\u548c\u5b50\u95ee\u9898\u7684\u5173\u7cfb\uff0c\u627e\u51fa\u901a\u8fc7\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6765\u6784\u9020\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u7684\u65b9\u6cd5\uff0c\u5373\u6700\u4f18\u5b50\u7ed3\u6784\u3002
\u4e00\u65e6\u6211\u4eec\u627e\u5230\u4e86\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002
\u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5728\u672c\u9898\u4e2d\uff0c\u5904\u5728\u9996\u884c\u7684\u72b6\u6001\u53ea\u80fd\u4ece\u5176\u5de6\u8fb9\u7684\u72b6\u6001\u5f97\u6765\uff0c\u5904\u5728\u9996\u5217\u7684\u72b6\u6001\u53ea\u80fd\u4ece\u5176\u4e0a\u8fb9\u7684\u72b6\u6001\u5f97\u6765\uff0c\u56e0\u6b64\u9996\u884c \\(i = 0\\) \u548c\u9996\u5217 \\(j = 0\\) \u662f\u8fb9\u754c\u6761\u4ef6\u3002
\u5982\u56fe 14-13 \u6240\u793a\uff0c\u7531\u4e8e\u6bcf\u4e2a\u683c\u5b50\u662f\u7531\u5176\u5de6\u65b9\u683c\u5b50\u548c\u4e0a\u65b9\u683c\u5b50\u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u6211\u4eec\u4f7f\u7528\u5faa\u73af\u6765\u904d\u5386\u77e9\u9635\uff0c\u5916\u5faa\u73af\u904d\u5386\u5404\u884c\uff0c\u5185\u5faa\u73af\u904d\u5386\u5404\u5217\u3002
\u56fe 14-13 \u00a0 \u8fb9\u754c\u6761\u4ef6\u4e0e\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
Note
\u8fb9\u754c\u6761\u4ef6\u5728\u52a8\u6001\u89c4\u5212\u4e2d\u7528\u4e8e\u521d\u59cb\u5316 \\(dp\\) \u8868\uff0c\u5728\u641c\u7d22\u4e2d\u7528\u4e8e\u526a\u679d\u3002
\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f\u7684\u6838\u5fc3\u662f\u8981\u4fdd\u8bc1\u5728\u8ba1\u7b97\u5f53\u524d\u95ee\u9898\u7684\u89e3\u65f6\uff0c\u6240\u6709\u5b83\u4f9d\u8d56\u7684\u66f4\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u90fd\u5df2\u7ecf\u88ab\u6b63\u786e\u5730\u8ba1\u7b97\u51fa\u6765\u3002
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u5df2\u7ecf\u53ef\u4ee5\u76f4\u63a5\u5199\u51fa\u52a8\u6001\u89c4\u5212\u4ee3\u7801\u3002\u7136\u800c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u601d\u60f3\uff0c\u56e0\u6b64\u6309\u7167\u201c\u66b4\u529b\u641c\u7d22 \\(\\rightarrow\\) \u8bb0\u5fc6\u5316\u641c\u7d22 \\(\\rightarrow\\) \u52a8\u6001\u89c4\u5212\u201d\u7684\u987a\u5e8f\u5b9e\u73b0\u66f4\u52a0\u7b26\u5408\u601d\u7ef4\u4e60\u60ef\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"\u4ece\u72b6\u6001 \\([i, j]\\) \u5f00\u59cb\u641c\u7d22\uff0c\u4e0d\u65ad\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u72b6\u6001 \\([i-1, j]\\) \u548c \\([i, j-1]\\) \uff0c\u9012\u5f52\u51fd\u6570\u5305\u62ec\u4ee5\u4e0b\u8981\u7d20\u3002
- \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, j]\\) \u3002
- \u8fd4\u56de\u503c\uff1a\u4ece \\([0, 0]\\) \u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c \\(dp[i, j]\\) \u3002
- \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53 \\(i = 0\\) \u4e14 \\(j = 0\\) \u65f6\uff0c\u8fd4\u56de\u4ee3\u4ef7 \\(grid[0, 0]\\) \u3002
- \u526a\u679d\uff1a\u5f53 \\(i < 0\\) \u65f6\u6216 \\(j < 0\\) \u65f6\u7d22\u5f15\u8d8a\u754c\uff0c\u6b64\u65f6\u8fd4\u56de\u4ee3\u4ef7 \\(+\\infty\\) \uff0c\u4ee3\u8868\u4e0d\u53ef\u884c\u3002
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n # \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 and j == 0:\n return grid[0][0]\n # \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 or j < 0:\n return inf\n # \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up = min_path_sum_dfs(grid, i - 1, j)\n left = min_path_sum_dfs(grid, i, j - 1)\n # \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) + grid[i][j]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(vector<vector<int>> &grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int[][] grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Integer.MAX_VALUE;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.min(left, up) + grid[i][j];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint MinPathSumDFS(int[][] grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return int.MaxValue;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = MinPathSumDFS(grid, i - 1, j);\n int left = MinPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.Min(left, up) + grid[i][j];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid [][]int, i, j int) int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return math.MaxInt\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up := minPathSumDFS(grid, i-1, j)\n left := minPathSumDFS(grid, i, j-1)\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return int(math.Min(float64(left), float64(up))) + grid[i][j]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0, j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return .max\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = minPathSumDFS(grid: grid, i: i - 1, j: j)\n let left = minPathSumDFS(grid: grid, i: i, j: j - 1)\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) + grid[i][j]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction minPathSumDFS(grid, i, j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j === 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFS(grid, i - 1, j);\n const left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.min(left, up) + grid[i][j];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction minPathSumDFS(\n grid: Array<Array<number>>,\n i: number,\n j: number\n): number {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFS(grid, i - 1, j);\n const left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.min(left, up) + grid[i][j];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(List<List<int>> grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n // \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\n return BigInt.from(2).pow(31).toInt();\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) + grid[i][j];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfn min_path_sum_dfs(grid: &Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return i32::MAX;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = min_path_sum_dfs(grid, i - 1, j);\n let left = min_path_sum_dfs(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n std::cmp::min(left, up) + grid[i as usize][j as usize]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\nfn minPathSumDFS(grid: anytype, i: i32, j: i32) i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 and j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 or j < 0) {\n return std.math.maxInt(i32);\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n var up = minPathSumDFS(grid, i - 1, j);\n var left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
\u56fe 14-14 \u7ed9\u51fa\u4e86\u4ee5 \\(dp[2, 1]\\) \u4e3a\u6839\u8282\u70b9\u7684\u9012\u5f52\u6811\uff0c\u5176\u4e2d\u5305\u542b\u4e00\u4e9b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5176\u6570\u91cf\u4f1a\u968f\u7740\u7f51\u683c grid \u7684\u5c3a\u5bf8\u53d8\u5927\u800c\u6025\u5267\u589e\u591a\u3002
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u9020\u6210\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u539f\u56e0\u4e3a\uff1a\u5b58\u5728\u591a\u6761\u8def\u5f84\u53ef\u4ee5\u4ece\u5de6\u4e0a\u89d2\u5230\u8fbe\u67d0\u4e00\u5355\u5143\u683c\u3002
\u56fe 14-14 \u00a0 \u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811
\u6bcf\u4e2a\u72b6\u6001\u90fd\u6709\u5411\u4e0b\u548c\u5411\u53f3\u4e24\u79cd\u9009\u62e9\uff0c\u4ece\u5de6\u4e0a\u89d2\u8d70\u5230\u53f3\u4e0b\u89d2\u603b\u5171\u9700\u8981 \\(m + n - 2\\) \u6b65\uff0c\u6240\u4ee5\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^{m + n})\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u8fd9\u79cd\u8ba1\u7b97\u65b9\u5f0f\u672a\u8003\u8651\u4e34\u8fd1\u7f51\u683c\u8fb9\u754c\u7684\u60c5\u51b5\uff0c\u5f53\u5230\u8fbe\u7f51\u7edc\u8fb9\u754c\u65f6\u53ea\u5269\u4e0b\u4e00\u79cd\u9009\u62e9\uff0c\u56e0\u6b64\u5b9e\u9645\u7684\u8def\u5f84\u6570\u91cf\u4f1a\u5c11\u4e00\u4e9b\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"\u6211\u4eec\u5f15\u5165\u4e00\u4e2a\u548c\u7f51\u683c grid \u76f8\u540c\u5c3a\u5bf8\u7684\u8bb0\u5fc6\u5217\u8868 mem \uff0c\u7528\u4e8e\u8bb0\u5f55\u5404\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u8fdb\u884c\u526a\u679d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dfs_mem(\n grid: list[list[int]], mem: list[list[int]], i: int, j: int\n) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 and j == 0:\n return grid[0][0]\n # \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 or j < 0:\n return inf\n # \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][j] != -1:\n return mem[i][j]\n # \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up = min_path_sum_dfs_mem(grid, mem, i - 1, j)\n left = min_path_sum_dfs_mem(grid, mem, i, j - 1)\n # \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) + grid[i][j]\n return mem[i][j]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\n return mem[i][j];\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Integer.MAX_VALUE;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint MinPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return int.MaxValue;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = MinPathSumDFSMem(grid, mem, i - 1, j);\n int left = MinPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.Min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid, mem [][]int, i, j int) int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return math.MaxInt\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][j] != -1 {\n return mem[i][j]\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up := minPathSumDFSMem(grid, mem, i-1, j)\n left := minPathSumDFSMem(grid, mem, i, j-1)\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]\n return mem[i][j]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0, j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return .max\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][j] != -1 {\n return mem[i][j]\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)\n let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) + grid[i][j]\n return mem[i][j]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction minPathSumDFSMem(grid, mem, i, j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j === 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] !== -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFSMem(grid, mem, i - 1, j);\n const left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction minPathSumDFSMem(\n grid: Array<Array<number>>,\n mem: Array<Array<number>>,\n i: number,\n j: number\n): number {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j === 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFSMem(grid, mem, i - 1, j);\n const left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n // \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\n return BigInt.from(2).pow(31).toInt();\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn min_path_sum_dfs_mem(grid: &Vec<Vec<i32>>, mem: &mut Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return i32::MAX;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i as usize][j as usize] != -1 {\n return mem[i as usize][j as usize];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = min_path_sum_dfs_mem(grid, mem, i - 1, j);\n let left = min_path_sum_dfs_mem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i as usize][j as usize] = std::cmp::min(left, up) + grid[i as usize][j as usize];\n mem[i as usize][j as usize]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;\n return mem[i][j];\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn minPathSumDFSMem(grid: anytype, mem: anytype, i: i32, j: i32) i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 and j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 or j < 0) {\n return std.math.maxInt(i32);\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] != -1) {\n return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n var up = minPathSumDFSMem(grid, mem, i - 1, j);\n var left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
\u5982\u56fe 14-15 \u6240\u793a\uff0c\u5728\u5f15\u5165\u8bb0\u5fc6\u5316\u540e\uff0c\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\u53ea\u9700\u8ba1\u7b97\u4e00\u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u72b6\u6001\u603b\u6570\uff0c\u5373\u7f51\u683c\u5c3a\u5bf8 \\(O(nm)\\) \u3002
\u56fe 14-15 \u00a0 \u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"\u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dp(grid: list[list[int]]) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(grid), len(grid[0])\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * m for _ in range(n)]\n dp[0][0] = grid[0][0]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in range(1, m):\n dp[0][j] = dp[0][j - 1] + grid[0][j]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i in range(1, n):\n dp[i][0] = dp[i - 1][0] + grid[i][0]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in range(1, n):\n for j in range(1, m):\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\n return dp[n - 1][m - 1]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(vector<vector<int>> &grid) {\n int n = grid.size(), m = grid[0].size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n, vector<int>(m));\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int[][] grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n][m];\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint MinPathSumDP(int[][] grid) {\n int n = grid.Length, m = grid[0].Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n, m];\n dp[0, 0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0, j] = dp[0, j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i, 0] = dp[i - 1, 0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];\n }\n }\n return dp[n - 1, m - 1];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid [][]int) int {\n n, m := len(grid), len(grid[0])\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n)\n for i := 0; i < n; i++ {\n dp[i] = make([]int, m)\n }\n dp[0][0] = grid[0][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j := 1; j < m; j++ {\n dp[0][j] = dp[0][j-1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i := 1; i < n; i++ {\n dp[i][0] = dp[i-1][0] + grid[i][0]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i < n; i++ {\n for j := 1; j < m; j++ {\n dp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]\n }\n }\n return dp[n-1][m-1]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid: [[Int]]) -> Int {\n let n = grid.count\n let m = grid[0].count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: m), count: n)\n dp[0][0] = grid[0][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in stride(from: 1, to: m, by: 1) {\n dp[0][j] = dp[0][j - 1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i in stride(from: 1, to: n, by: 1) {\n dp[i][0] = dp[i - 1][0] + grid[i][0]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in stride(from: 1, to: n, by: 1) {\n for j in stride(from: 1, to: m, by: 1) {\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\n }\n }\n return dp[n - 1][m - 1]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDP(grid) {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n }, () =>\n Array.from({ length: m }, () => 0)\n );\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (let i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i < n; i++) {\n for (let j = 1; j < m; j++) {\n dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDP(grid: Array<Array<number>>): number {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n }, () =>\n Array.from({ length: m }, () => 0)\n );\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (let i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i < n; i++) {\n for (let j: number = 1; j < m; j++) {\n dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(List<List<int>> grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp(grid: &Vec<Vec<i32>>) -> i32 {\n let (n, m) = (grid.len(), grid[0].len());\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; m]; n];\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in 1..m {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i in 1..n {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in 1..n {\n for j in 1..m {\n dp[i][j] = std::cmp::min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n dp[n - 1][m - 1]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc(n * sizeof(int *));\n for (int i = 0; i < n; i++) {\n dp[i] = calloc(m, sizeof(int));\n }\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n int res = dp[n - 1][m - 1];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i < n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\nfn minPathSumDP(comptime grid: anytype) i32 {\n comptime var n = grid.len;\n comptime var m = grid[0].len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][m]i32{[_]i32{0} ** m} ** n;\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (1..m) |j| {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (1..n) |i| {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (1..n) |i| {\n for (1..m) |j| {\n dp[i][j] = @min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
\u56fe 14-16 \u5c55\u793a\u4e86\u6700\u5c0f\u8def\u5f84\u548c\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\uff0c\u5176\u904d\u5386\u4e86\u6574\u4e2a\u7f51\u683c\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002
\u6570\u7ec4 dp \u5927\u5c0f\u4e3a \\(n \\times m\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002
<1><2><3><4><5><6><7><8><9><10><11><12> \u56fe 14-16 \u00a0 \u6700\u5c0f\u8def\u5f84\u548c\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#4","title":"4. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e\u6bcf\u4e2a\u683c\u5b50\u53ea\u4e0e\u5176\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u683c\u5b50\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u53ea\u7528\u4e00\u4e2a\u5355\u884c\u6570\u7ec4\u6765\u5b9e\u73b0 \\(dp\\) \u8868\u3002
\u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u6570\u7ec4 dp \u53ea\u80fd\u8868\u793a\u4e00\u884c\u7684\u72b6\u6001\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u6cd5\u63d0\u524d\u521d\u59cb\u5316\u9996\u5217\u72b6\u6001\uff0c\u800c\u662f\u5728\u904d\u5386\u6bcf\u884c\u65f6\u66f4\u65b0\u5b83\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dp_comp(grid: list[list[int]]) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(grid), len(grid[0])\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * m\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0]\n for j in range(1, m):\n dp[j] = dp[j - 1] + grid[0][j]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in range(1, n):\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in range(1, m):\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\n return dp[m - 1]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(vector<vector<int>> &grid) {\n int n = grid.size(), m = grid[0].size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(m);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int[][] grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[m];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint MinPathSumDPComp(int[][] grid) {\n int n = grid.Length, m = grid[0].Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[m];\n dp[0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid [][]int) int {\n n, m := len(grid), len(grid[0])\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, m)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0]\n for j := 1; j < m; j++ {\n dp[j] = dp[j-1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i < n; i++ {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j := 1; j < m; j++ {\n dp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]\n }\n }\n return dp[m-1]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid: [[Int]]) -> Int {\n let n = grid.count\n let m = grid[0].count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: m)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0]\n for j in stride(from: 1, to: m, by: 1) {\n dp[j] = dp[j - 1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in stride(from: 1, to: n, by: 1) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in stride(from: 1, to: m, by: 1) {\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\n }\n }\n return dp[m - 1]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDPComp(grid) {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = new Array(m);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (let j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j < m; j++) {\n dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDPComp(grid: Array<Array<number>>): number {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = new Array(m);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (let j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j < m; j++) {\n dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(List<List<int>> grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(m, 0);\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp_comp(grid: &Vec<Vec<i32>>) -> i32 {\n let (n, m) = (grid.len(), grid[0].len());\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; m];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for j in 1..m {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in 1..n {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in 1..m {\n dp[j] = std::cmp::min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n dp[m - 1]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(m, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n int res = dp[m - 1];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minPathSumDPComp(comptime grid: anytype) i32 {\n comptime var n = grid.len;\n comptime var m = grid[0].len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** m;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (1..m) |j| {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (1..n) |i| {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n for (1..m) |j| {\n dp[j] = @min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
"},{"location":"chapter_dynamic_programming/edit_distance_problem/","title":"14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898","text":"\u7f16\u8f91\u8ddd\u79bb\uff0c\u4e5f\u79f0 Levenshtein \u8ddd\u79bb\uff0c\u6307\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u4e92\u76f8\u8f6c\u6362\u7684\u6700\u5c11\u4fee\u6539\u6b21\u6570\uff0c\u901a\u5e38\u7528\u4e8e\u5728\u4fe1\u606f\u68c0\u7d22\u548c\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4e2d\u5ea6\u91cf\u4e24\u4e2a\u5e8f\u5217\u7684\u76f8\u4f3c\u5ea6\u3002
Question
\u8f93\u5165\u4e24\u4e2a\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \uff0c\u8fd4\u56de\u5c06 \\(s\\) \u8f6c\u6362\u4e3a \\(t\\) \u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002
\u4f60\u53ef\u4ee5\u5728\u4e00\u4e2a\u5b57\u7b26\u4e32\u4e2d\u8fdb\u884c\u4e09\u79cd\u7f16\u8f91\u64cd\u4f5c\uff1a\u63d2\u5165\u4e00\u4e2a\u5b57\u7b26\u3001\u5220\u9664\u4e00\u4e2a\u5b57\u7b26\u3001\u5c06\u5b57\u7b26\u66ff\u6362\u4e3a\u4efb\u610f\u4e00\u4e2a\u5b57\u7b26\u3002
\u5982\u56fe 14-27 \u6240\u793a\uff0c\u5c06 kitten \u8f6c\u6362\u4e3a sitting \u9700\u8981\u7f16\u8f91 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u4e0e 1 \u6b21\u6dfb\u52a0\u64cd\u4f5c\uff1b\u5c06 hello \u8f6c\u6362\u4e3a algo \u9700\u8981 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u548c 1 \u6b21\u5220\u9664\u64cd\u4f5c\u3002
\u56fe 14-27 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u7684\u793a\u4f8b\u6570\u636e
\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u53ef\u4ee5\u5f88\u81ea\u7136\u5730\u7528\u51b3\u7b56\u6811\u6a21\u578b\u6765\u89e3\u91ca\u3002\u5b57\u7b26\u4e32\u5bf9\u5e94\u6811\u8282\u70b9\uff0c\u4e00\u8f6e\u51b3\u7b56\uff08\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\uff09\u5bf9\u5e94\u6811\u7684\u4e00\u6761\u8fb9\u3002
\u5982\u56fe 14-28 \u6240\u793a\uff0c\u5728\u4e0d\u9650\u5236\u64cd\u4f5c\u7684\u60c5\u51b5\u4e0b\uff0c\u6bcf\u4e2a\u8282\u70b9\u90fd\u53ef\u4ee5\u6d3e\u751f\u51fa\u8bb8\u591a\u6761\u8fb9\uff0c\u6bcf\u6761\u8fb9\u5bf9\u5e94\u4e00\u79cd\u64cd\u4f5c\uff0c\u8fd9\u610f\u5473\u7740\u4ece hello \u8f6c\u6362\u5230 algo \u6709\u8bb8\u591a\u79cd\u53ef\u80fd\u7684\u8def\u5f84\u3002
\u4ece\u51b3\u7b56\u6811\u7684\u89d2\u5ea6\u770b\uff0c\u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u8282\u70b9 hello \u548c\u8282\u70b9 algo \u4e4b\u95f4\u7684\u6700\u77ed\u8def\u5f84\u3002
\u56fe 14-28 \u00a0 \u57fa\u4e8e\u51b3\u7b56\u6811\u6a21\u578b\u8868\u793a\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
"},{"location":"chapter_dynamic_programming/edit_distance_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u662f\u5bf9\u5b57\u7b26\u4e32 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\u3002
\u6211\u4eec\u5e0c\u671b\u5728\u7f16\u8f91\u64cd\u4f5c\u7684\u8fc7\u7a0b\u4e2d\uff0c\u95ee\u9898\u7684\u89c4\u6a21\u9010\u6e10\u7f29\u5c0f\uff0c\u8fd9\u6837\u624d\u80fd\u6784\u5efa\u5b50\u95ee\u9898\u3002\u8bbe\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \u7684\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \uff0c\u6211\u4eec\u5148\u8003\u8651\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u3002
- \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u76f8\u540c\uff0c\u6211\u4eec\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u76f4\u63a5\u8003\u8651 \\(s[n-2]\\) \u548c \\(t[m-2]\\) \u3002
- \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u4e0d\u540c\uff0c\u6211\u4eec\u9700\u8981\u5bf9 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\uff08\u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\uff09\uff0c\u4f7f\u5f97\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26\u76f8\u540c\uff0c\u4ece\u800c\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u8003\u8651\u89c4\u6a21\u66f4\u5c0f\u7684\u95ee\u9898\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u5728\u5b57\u7b26\u4e32 \\(s\\) \u4e2d\u8fdb\u884c\u7684\u6bcf\u4e00\u8f6e\u51b3\u7b56\uff08\u7f16\u8f91\u64cd\u4f5c\uff09\uff0c\u90fd\u4f1a\u4f7f\u5f97 \\(s\\) \u548c \\(t\\) \u4e2d\u5269\u4f59\u7684\u5f85\u5339\u914d\u5b57\u7b26\u53d1\u751f\u53d8\u5316\u3002\u56e0\u6b64\uff0c\u72b6\u6001\u4e3a\u5f53\u524d\u5728 \\(s\\) \u548c \\(t\\) \u4e2d\u8003\u8651\u7684\u7b2c \\(i\\) \u548c\u7b2c \\(j\\) \u4e2a\u5b57\u7b26\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002
\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\uff1a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002
\u81f3\u6b64\uff0c\u5f97\u5230\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((i+1) \\times (j+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u8003\u8651\u5b50\u95ee\u9898 \\(dp[i, j]\\) \uff0c\u5176\u5bf9\u5e94\u7684\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5c3e\u90e8\u5b57\u7b26\u4e3a \\(s[i-1]\\) \u548c \\(t[j-1]\\) \uff0c\u53ef\u6839\u636e\u4e0d\u540c\u7f16\u8f91\u64cd\u4f5c\u5206\u4e3a\u56fe 14-29 \u6240\u793a\u7684\u4e09\u79cd\u60c5\u51b5\u3002
- \u5728 \\(s[i-1]\\) \u4e4b\u540e\u6dfb\u52a0 \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i, j-1]\\) \u3002
- \u5220\u9664 \\(s[i-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j]\\) \u3002
- \u5c06 \\(s[i-1]\\) \u66ff\u6362\u4e3a \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j-1]\\) \u3002
\u56fe 14-29 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u7684\u72b6\u6001\u8f6c\u79fb
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u5f97\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\\(dp[i, j]\\) \u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(dp[i, j-1]\\)\u3001\\(dp[i-1, j]\\)\u3001\\(dp[i-1, j-1]\\) \u4e09\u8005\u4e2d\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\uff0c\u518d\u52a0\u4e0a\u672c\u6b21\u7684\u7f16\u8f91\u6b65\u6570 \\(1\\) \u3002\u5bf9\u5e94\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ dp[i, j] = \\min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1 \\] \u8bf7\u6ce8\u610f\uff0c\u5f53 \\(s[i-1]\\) \u548c \\(t[j-1]\\) \u76f8\u540c\u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\uff0c\u8fd9\u79cd\u60c5\u51b5\u4e0b\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ dp[i, j] = dp[i-1, j-1] \\] \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5f53\u4e24\u5b57\u7b26\u4e32\u90fd\u4e3a\u7a7a\u65f6\uff0c\u7f16\u8f91\u6b65\u6570\u4e3a \\(0\\) \uff0c\u5373 \\(dp[0, 0] = 0\\) \u3002\u5f53 \\(s\\) \u4e3a\u7a7a\u4f46 \\(t\\) \u4e0d\u4e3a\u7a7a\u65f6\uff0c\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(t\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u884c \\(dp[0, j] = j\\) \u3002\u5f53 \\(s\\) \u4e0d\u4e3a\u7a7a\u4f46 \\(t\\) \u4e3a\u7a7a\u65f6\uff0c\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(s\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u5217 \\(dp[i, 0] = i\\) \u3002
\u89c2\u5bdf\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u89e3 \\(dp[i, j]\\) \u4f9d\u8d56\u5de6\u65b9\u3001\u4e0a\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u89e3\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002
"},{"location":"chapter_dynamic_programming/edit_distance_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"PythonC++JavaC#GoSwiftJSTSDartRustCZig edit_distance.pydef edit_distance_dp(s: str, t: str) -> int:\n \"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(s), len(t)\n dp = [[0] * (m + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i in range(1, n + 1):\n dp[i][0] = i\n for j in range(1, m + 1):\n dp[0][j] = j\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in range(1, n + 1):\n for j in range(1, m + 1):\n if s[i - 1] == t[j - 1]:\n # \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1]\n else:\n # \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1\n return dp[n][m]\n
edit_distance.cpp/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(string s, string t) {\n int n = s.length(), m = t.length();\n vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.java/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\n int n = s.length(), m = t.length();\n int[][] dp = new int[n + 1][m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s.charAt(i - 1) == t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.cs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint EditDistanceDP(string s, string t) {\n int n = s.Length, m = t.Length;\n int[,] dp = new int[n + 1, m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i, 0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0, j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i, j] = dp[i - 1, j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i, j] = Math.Min(Math.Min(dp[i, j - 1], dp[i - 1, j]), dp[i - 1, j - 1]) + 1;\n }\n }\n }\n return dp[n, m];\n}\n
edit_distance.go/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s string, t string) int {\n n := len(s)\n m := len(t)\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, m+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i := 1; i <= n; i++ {\n dp[i][0] = i\n }\n for j := 1; j <= m; j++ {\n dp[0][j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i <= n; i++ {\n for j := 1; j <= m; j++ {\n if s[i-1] == t[j-1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i-1][j-1]\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = MinInt(MinInt(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1\n }\n }\n }\n return dp[n][m]\n}\n
edit_distance.swift/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s: String, t: String) -> Int {\n let n = s.utf8CString.count\n let m = t.utf8CString.count\n var dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i in stride(from: 1, through: n, by: 1) {\n dp[i][0] = i\n }\n for j in stride(from: 1, through: m, by: 1) {\n dp[0][j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in stride(from: 1, through: n, by: 1) {\n for j in stride(from: 1, through: m, by: 1) {\n if s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1]\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1\n }\n }\n }\n return dp[n][m]\n}\n
edit_distance.js/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDP(s, t) {\n const n = s.length,\n m = t.length;\n const dp = Array.from({ length: n + 1 }, () => new Array(m + 1).fill(0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (let j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let j = 1; j <= m; j++) {\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] =\n Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.ts/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDP(s: string, t: string): number {\n const n = s.length,\n m = t.length;\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: m + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (let j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let j = 1; j <= m; j++) {\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] =\n Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.dart/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\n int n = s.length, m = t.length;\n List<List<int>> dp = List.generate(n + 1, (_) => List.filled(m + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.rs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp(s: &str, t: &str) -> i32 {\n let (n, m) = (s.len(), t.len());\n let mut dp = vec![vec![0; m + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i in 1..= n {\n dp[i][0] = i as i32;\n }\n for j in 1..m {\n dp[0][j] = j as i32;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in 1..=n {\n for j in 1..=m {\n if s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = std::cmp::min(std::cmp::min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n dp[n][m]\n}\n
edit_distance.c/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(char *s, char *t, int n, int m) {\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(m + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = myMin(myMin(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n int res = dp[n][m];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
edit_distance.zig// \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\nfn editDistanceDP(comptime s: []const u8, comptime t: []const u8) i32 {\n comptime var n = s.len;\n comptime var m = t.len;\n var dp = [_][m + 1]i32{[_]i32{0} ** (m + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (1..n + 1) |i| {\n dp[i][0] = @intCast(i);\n }\n for (1..m + 1) |j| {\n dp[0][j] = @intCast(j);\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (1..n + 1) |i| {\n for (1..m + 1) |j| {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = @min(@min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
\u5982\u56fe 14-30 \u6240\u793a\uff0c\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\u4e0e\u80cc\u5305\u95ee\u9898\u975e\u5e38\u7c7b\u4f3c\uff0c\u90fd\u53ef\u4ee5\u770b\u4f5c\u586b\u5199\u4e00\u4e2a\u4e8c\u7ef4\u7f51\u683c\u7684\u8fc7\u7a0b\u3002
<1><2><3><4><5><6><7><8><9><10><11><12><13><14><15> \u56fe 14-30 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/edit_distance_problem/#3","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e \\(dp[i,j]\\) \u662f\u7531\u4e0a\u65b9 \\(dp[i-1, j]\\)\u3001\u5de6\u65b9 \\(dp[i, j-1]\\)\u3001\u5de6\u4e0a\u65b9 \\(dp[i-1, j-1]\\) \u8f6c\u79fb\u800c\u6765\u7684\uff0c\u800c\u6b63\u5e8f\u904d\u5386\u4f1a\u4e22\u5931\u5de6\u4e0a\u65b9 \\(dp[i-1, j-1]\\) \uff0c\u5012\u5e8f\u904d\u5386\u65e0\u6cd5\u63d0\u524d\u6784\u5efa \\(dp[i, j-1]\\) \uff0c\u56e0\u6b64\u4e24\u79cd\u904d\u5386\u987a\u5e8f\u90fd\u4e0d\u53ef\u53d6\u3002
\u4e3a\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf leftup \u6765\u6682\u5b58\u5de6\u4e0a\u65b9\u7684\u89e3 \\(dp[i-1, j-1]\\) \uff0c\u4ece\u800c\u53ea\u9700\u8003\u8651\u5de6\u65b9\u548c\u4e0a\u65b9\u7684\u89e3\u3002\u6b64\u65f6\u7684\u60c5\u51b5\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u76f8\u540c\uff0c\u53ef\u4f7f\u7528\u6b63\u5e8f\u904d\u5386\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig edit_distance.pydef edit_distance_dp_comp(s: str, t: str) -> int:\n \"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(s), len(t)\n dp = [0] * (m + 1)\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in range(1, m + 1):\n dp[j] = j\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in range(1, n + 1):\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n leftup = dp[0] # \u6682\u5b58 dp[i-1, j-1]\n dp[0] += 1\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in range(1, m + 1):\n temp = dp[j]\n if s[i - 1] == t[j - 1]:\n # \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup\n else:\n # \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(dp[j - 1], dp[j], leftup) + 1\n leftup = temp # \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n return dp[m]\n
edit_distance.cpp/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(string s, string t) {\n int n = s.length(), m = t.length();\n vector<int> dp(m + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.java/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\n int n = s.length(), m = t.length();\n int[] dp = new int[m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s.charAt(i - 1) == t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.cs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint EditDistanceDPComp(string s, string t) {\n int n = s.Length, m = t.Length;\n int[] dp = new int[m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.Min(Math.Min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.go/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s string, t string) int {\n n := len(s)\n m := len(t)\n dp := make([]int, m+1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j := 1; j <= m; j++ {\n dp[j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i := 1; i <= n; i++ {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n leftUp := dp[0] // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j := 1; j <= m; j++ {\n temp := dp[j]\n if s[i-1] == t[j-1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftUp\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = MinInt(MinInt(dp[j-1], dp[j]), leftUp) + 1\n }\n leftUp = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m]\n}\n
edit_distance.swift/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s: String, t: String) -> Int {\n let n = s.utf8CString.count\n let m = t.utf8CString.count\n var dp = Array(repeating: 0, count: m + 1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in stride(from: 1, through: m, by: 1) {\n dp[j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in stride(from: 1, through: n, by: 1) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n var leftup = dp[0] // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in stride(from: 1, through: m, by: 1) {\n let temp = dp[j]\n if s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1\n }\n leftup = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m]\n}\n
edit_distance.js/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDPComp(s, t) {\n const n = s.length,\n m = t.length;\n const dp = new Array(m + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n let leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j <= m; j++) {\n const temp = dp[j];\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.ts/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDPComp(s: string, t: string): number {\n const n = s.length,\n m = t.length;\n const dp = new Array(m + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n let leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j <= m; j++) {\n const temp = dp[j];\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.dart/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\n int n = s.length, m = t.length;\n List<int> dp = List.filled(m + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.rs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp_comp(s: &str, t: &str) -> i32 {\n let (n, m) = (s.len(), t.len());\n let mut dp = vec![0; m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in 1..m {\n dp[j] = j as i32;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in 1..=n {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n let mut leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i as i32;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in 1..=m {\n let temp = dp[j];\n if s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = std::cmp::min(std::cmp::min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n dp[m]\n}\n
edit_distance.c/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(char *s, char *t, int n, int m) {\n int *dp = calloc(m + 1, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = myMin(myMin(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n int res = dp[m];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
edit_distance.zig// \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn editDistanceDPComp(comptime s: []const u8, comptime t: []const u8) i32 {\n comptime var n = s.len;\n comptime var m = t.len;\n var dp = [_]i32{0} ** (m + 1);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (1..m + 1) |j| {\n dp[j] = @intCast(j);\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (1..n + 1) |i| {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n var leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = @intCast(i);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (1..m + 1) |j| {\n var temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = @min(@min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/","title":"14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212","text":"\u300c\u52a8\u6001\u89c4\u5212 dynamic programming\u300d\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u7b97\u6cd5\u8303\u5f0f\uff0c\u5b83\u5c06\u4e00\u4e2a\u95ee\u9898\u5206\u89e3\u4e3a\u4e00\u7cfb\u5217\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u907f\u514d\u91cd\u590d\u8ba1\u7b97\uff0c\u4ece\u800c\u5927\u5e45\u63d0\u5347\u65f6\u95f4\u6548\u7387\u3002
\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u4ece\u4e00\u4e2a\u7ecf\u5178\u4f8b\u9898\u5165\u624b\uff0c\u5148\u7ed9\u51fa\u5b83\u7684\u66b4\u529b\u56de\u6eaf\u89e3\u6cd5\uff0c\u89c2\u5bdf\u5176\u4e2d\u5305\u542b\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u518d\u9010\u6b65\u5bfc\u51fa\u66f4\u9ad8\u6548\u7684\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002
\u722c\u697c\u68af
\u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\uff1f
\u5982\u56fe 14-1 \u6240\u793a\uff0c\u5bf9\u4e8e\u4e00\u4e2a \\(3\\) \u9636\u697c\u68af\uff0c\u5171\u6709 \\(3\\) \u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002
\u56fe 14-1 \u00a0 \u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf
\u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u56de\u6eaf\u6765\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u6027\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u5c06\u722c\u697c\u68af\u60f3\u8c61\u4e3a\u4e00\u4e2a\u591a\u8f6e\u9009\u62e9\u7684\u8fc7\u7a0b\uff1a\u4ece\u5730\u9762\u51fa\u53d1\uff0c\u6bcf\u8f6e\u9009\u62e9\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u6bcf\u5f53\u5230\u8fbe\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u65b9\u6848\u6570\u91cf\u52a0 \\(1\\) \uff0c\u5f53\u8d8a\u8fc7\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u5176\u526a\u679d\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_backtrack.pydef backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:\n \"\"\"\u56de\u6eaf\"\"\"\n # \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n:\n res[0] += 1\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices:\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state + choice > n:\n continue\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res)\n # \u56de\u9000\n\ndef climbing_stairs_backtrack(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u56de\u6eaf\"\"\"\n choices = [1, 2] # \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n state = 0 # \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n res = [0] # \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res)\n return res[0]\n
climbing_stairs_backtrack.cpp/* \u56de\u6eaf */\nvoid backtrack(vector<int> &choices, int state, int n, vector<int> &res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res[0]++;\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (auto &choice : choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n vector<int> choices = {1, 2}; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n vector<int> res = {0}; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res[0];\n}\n
climbing_stairs_backtrack.java/* \u56de\u6eaf */\nvoid backtrack(List<Integer> choices, int state, int n, List<Integer> res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res.set(0, res.get(0) + 1);\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Integer choice : choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n List<Integer> choices = Arrays.asList(1, 2); // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n List<Integer> res = new ArrayList<>();\n res.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res.get(0);\n}\n
climbing_stairs_backtrack.cs/* \u56de\u6eaf */\nvoid Backtrack(List<int> choices, int state, int n, List<int> res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res[0]++;\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n foreach (int choice in choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n Backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint ClimbingStairsBacktrack(int n) {\n List<int> choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n List<int> res = [0]; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n Backtrack(choices, state, n, res);\n return res[0];\n}\n
climbing_stairs_backtrack.go/* \u56de\u6eaf */\nfunc backtrack(choices []int, state, n int, res []int) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n {\n res[0] = res[0] + 1\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for _, choice := range choices {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state+choice > n {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state+choice, n, res)\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n int) int {\n // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n choices := []int{1, 2}\n // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n state := 0\n res := make([]int, 1)\n // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n res[0] = 0\n backtrack(choices, state, n, res)\n return res[0]\n}\n
climbing_stairs_backtrack.swift/* \u56de\u6eaf */\nfunc backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n {\n res[0] += 1\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state + choice > n {\n continue\n }\n backtrack(choices: choices, state: state + choice, n: n, res: &res)\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n: Int) -> Int {\n let choices = [1, 2] // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n let state = 0 // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n var res: [Int] = []\n res.append(0) // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices: choices, state: state, n: n, res: &res)\n return res[0]\n}\n
climbing_stairs_backtrack.js/* \u56de\u6eaf */\nfunction backtrack(choices, state, n, res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state === n) res.set(0, res.get(0) + 1);\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n) {\n const choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n const state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n const res = new Map();\n res.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res.get(0);\n}\n
climbing_stairs_backtrack.ts/* \u56de\u6eaf */\nfunction backtrack(\n choices: number[],\n state: number,\n n: number,\n res: Map<0, any>\n): void {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state === n) res.set(0, res.get(0) + 1);\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n: number): number {\n const choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n const state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n const res = new Map();\n res.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res.get(0);\n}\n
climbing_stairs_backtrack.dart/* \u56de\u6eaf */\nvoid backtrack(List<int> choices, int state, int n, List<int> res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n) {\n res[0]++;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int choice in choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n List<int> choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n List<int> res = [];\n res.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res[0];\n}\n
climbing_stairs_backtrack.rs/* \u56de\u6eaf */\nfn backtrack(choices: &[i32], state: i32, n: i32, res: &mut [i32]) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n { res[0] = res[0] + 1; }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for &choice in choices {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state + choice > n { continue; }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfn climbing_stairs_backtrack(n: usize) -> i32 {\n let choices = vec![ 1, 2 ]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n let state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n let mut res = Vec::new();\n res.push(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(&choices, state, n as i32, &mut res);\n res[0]\n}\n
climbing_stairs_backtrack.c/* \u56de\u6eaf */\nvoid backtrack(int *choices, int state, int n, int *res, int len) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res[0]++;\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < len; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res, len);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n int choices[2] = {1, 2}; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n int *res = (int *)malloc(sizeof(int));\n *res = 0; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n int len = sizeof(choices) / sizeof(int);\n backtrack(choices, state, n, res, len);\n int result = *res;\n free(res);\n return result;\n}\n
climbing_stairs_backtrack.zig// \u56de\u6eaf\nfn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n) {\n res.items[0] = res.items[0] + 1;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (choices) |choice| {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n// \u722c\u697c\u68af\uff1a\u56de\u6eaf\nfn climbingStairsBacktrack(n: usize) !i32 {\n var choices = [_]i32{ 1, 2 }; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n var state: i32 = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n var res = std.ArrayList(i32).init(std.heap.page_allocator);\n defer res.deinit();\n try res.append(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(&choices, state, @intCast(n), res);\n return res.items[0];\n}\n
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1411","title":"14.1.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u5e76\u4e0d\u663e\u5f0f\u5730\u5bf9\u95ee\u9898\u8fdb\u884c\u62c6\u89e3\uff0c\u800c\u662f\u5c06\u6c42\u89e3\u95ee\u9898\u770b\u4f5c\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\uff0c\u901a\u8fc7\u8bd5\u63a2\u548c\u526a\u679d\uff0c\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u3002
\u6211\u4eec\u53ef\u4ee5\u5c1d\u8bd5\u4ece\u95ee\u9898\u5206\u89e3\u7684\u89d2\u5ea6\u5206\u6790\u8fd9\u9053\u9898\u3002\u8bbe\u722c\u5230\u7b2c \\(i\\) \u9636\u5171\u6709 \\(dp[i]\\) \u79cd\u65b9\u6848\uff0c\u90a3\u4e48 \\(dp[i]\\) \u5c31\u662f\u539f\u95ee\u9898\uff0c\u5176\u5b50\u95ee\u9898\u5305\u62ec\uff1a
\\[ dp[i-1], dp[i-2], \\dots, dp[2], dp[1] \\] \u7531\u4e8e\u6bcf\u8f6e\u53ea\u80fd\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u56e0\u6b64\u5f53\u6211\u4eec\u7ad9\u5728\u7b2c \\(i\\) \u9636\u697c\u68af\u4e0a\u65f6\uff0c\u4e0a\u4e00\u8f6e\u53ea\u53ef\u80fd\u7ad9\u5728\u7b2c \\(i - 1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u4e0a\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ea\u80fd\u4ece\u7b2c \\(i -1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u8fc8\u5411\u7b2c \\(i\\) \u9636\u3002
\u7531\u6b64\u4fbf\u53ef\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u63a8\u8bba\uff1a\u722c\u5230\u7b2c \\(i - 1\\) \u9636\u7684\u65b9\u6848\u6570\u52a0\u4e0a\u722c\u5230\u7b2c \\(i - 2\\) \u9636\u7684\u65b9\u6848\u6570\u5c31\u7b49\u4e8e\u722c\u5230\u7b2c \\(i\\) \u9636\u7684\u65b9\u6848\u6570\u3002\u516c\u5f0f\u5982\u4e0b\uff1a
\\[ dp[i] = dp[i-1] + dp[i-2] \\] \u8fd9\u610f\u5473\u7740\u5728\u722c\u697c\u68af\u95ee\u9898\u4e2d\uff0c\u5404\u4e2a\u5b50\u95ee\u9898\u4e4b\u95f4\u5b58\u5728\u9012\u63a8\u5173\u7cfb\uff0c\u539f\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u7531\u5b50\u95ee\u9898\u7684\u89e3\u6784\u5efa\u5f97\u6765\u3002\u56fe 14-2 \u5c55\u793a\u4e86\u8be5\u9012\u63a8\u5173\u7cfb\u3002
\u56fe 14-2 \u00a0 \u65b9\u6848\u6570\u91cf\u9012\u63a8\u5173\u7cfb
\u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9012\u63a8\u516c\u5f0f\u5f97\u5230\u66b4\u529b\u641c\u7d22\u89e3\u6cd5\u3002\u4ee5 \\(dp[n]\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u9012\u5f52\u5730\u5c06\u4e00\u4e2a\u8f83\u5927\u95ee\u9898\u62c6\u89e3\u4e3a\u4e24\u4e2a\u8f83\u5c0f\u95ee\u9898\u7684\u548c\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898 \\(dp[1]\\) \u548c \\(dp[2]\\) \u65f6\u8fd4\u56de\u3002\u5176\u4e2d\uff0c\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u662f\u5df2\u77e5\u7684\uff0c\u5373 \\(dp[1] = 1\\)\u3001\\(dp[2] = 2\\) \uff0c\u8868\u793a\u722c\u5230\u7b2c \\(1\\)\u3001\\(2\\) \u9636\u5206\u522b\u6709 \\(1\\)\u3001\\(2\\) \u79cd\u65b9\u6848\u3002
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5b83\u548c\u6807\u51c6\u56de\u6eaf\u4ee3\u7801\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u4f46\u66f4\u52a0\u7b80\u6d01\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dfs.pydef dfs(i: int) -> int:\n \"\"\"\u641c\u7d22\"\"\"\n # \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 or i == 2:\n return i\n # dp[i] = dp[i-1] + dp[i-2]\n count = dfs(i - 1) + dfs(i - 2)\n return count\n\ndef climbing_stairs_dfs(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u641c\u7d22\"\"\"\n return dfs(n)\n
climbing_stairs_dfs.cpp/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.java/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.cs/* \u641c\u7d22 */\nint DFS(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = DFS(i - 1) + DFS(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint ClimbingStairsDFS(int n) {\n return DFS(n);\n}\n
climbing_stairs_dfs.go/* \u641c\u7d22 */\nfunc dfs(i int) int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // dp[i] = dp[i-1] + dp[i-2]\n count := dfs(i-1) + dfs(i-2)\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n int) int {\n return dfs(n)\n}\n
climbing_stairs_dfs.swift/* \u641c\u7d22 */\nfunc dfs(i: Int) -> Int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i: i - 1) + dfs(i: i - 2)\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n: Int) -> Int {\n dfs(i: n)\n}\n
climbing_stairs_dfs.js/* \u641c\u7d22 */\nfunction dfs(i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.ts/* \u641c\u7d22 */\nfunction dfs(i: number): number {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n: number): number {\n return dfs(n);\n}\n
climbing_stairs_dfs.dart/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2) return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.rs/* \u641c\u7d22 */\nfn dfs(i: usize) -> i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 { return i as i32; }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i - 1) + dfs(i - 2);\n count\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfn climbing_stairs_dfs(n: usize) -> i32 {\n dfs(n) \n}\n
climbing_stairs_dfs.c/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.zig// \u641c\u7d22\nfn dfs(i: usize) i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 or i == 2) {\n return @intCast(i);\n }\n // dp[i] = dp[i-1] + dp[i-2]\n var count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n// \u722c\u697c\u68af\uff1a\u641c\u7d22\nfn climbingStairsDFS(comptime n: usize) i32 {\n return dfs(n);\n}\n
\u56fe 14-3 \u5c55\u793a\u4e86\u66b4\u529b\u641c\u7d22\u5f62\u6210\u7684\u9012\u5f52\u6811\u3002\u5bf9\u4e8e\u95ee\u9898 \\(dp[n]\\) \uff0c\u5176\u9012\u5f52\u6811\u7684\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002\u6307\u6570\u9636\u5c5e\u4e8e\u7206\u70b8\u5f0f\u589e\u957f\uff0c\u5982\u679c\u6211\u4eec\u8f93\u5165\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684 \\(n\\) \uff0c\u5219\u4f1a\u9677\u5165\u6f2b\u957f\u7684\u7b49\u5f85\u4e4b\u4e2d\u3002
\u56fe 14-3 \u00a0 \u722c\u697c\u68af\u5bf9\u5e94\u9012\u5f52\u6811
\u89c2\u5bdf\u56fe 14-3 \uff0c\u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u201c\u91cd\u53e0\u5b50\u95ee\u9898\u201d\u5bfc\u81f4\u7684\u3002\u4f8b\u5982 \\(dp[9]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[8]\\) \u548c \\(dp[7]\\) \uff0c\\(dp[8]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[7]\\) \u548c \\(dp[6]\\) \uff0c\u4e24\u8005\u90fd\u5305\u542b\u5b50\u95ee\u9898 \\(dp[7]\\) \u3002
\u4ee5\u6b64\u7c7b\u63a8\uff0c\u5b50\u95ee\u9898\u4e2d\u5305\u542b\u66f4\u5c0f\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5b50\u5b50\u5b59\u5b59\u65e0\u7a77\u5c3d\u4e5f\u3002\u7edd\u5927\u90e8\u5206\u8ba1\u7b97\u8d44\u6e90\u90fd\u6d6a\u8d39\u5728\u8fd9\u4e9b\u91cd\u53e0\u7684\u95ee\u9898\u4e0a\u3002
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1412","title":"14.1.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"\u4e3a\u4e86\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u6211\u4eec\u5e0c\u671b\u6240\u6709\u7684\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u6570\u7ec4 mem \u6765\u8bb0\u5f55\u6bcf\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u526a\u679d\u3002
- \u5f53\u9996\u6b21\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u5c06\u5176\u8bb0\u5f55\u81f3
mem[i] \uff0c\u4ee5\u4fbf\u4e4b\u540e\u4f7f\u7528\u3002 - \u5f53\u518d\u6b21\u9700\u8981\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u4fbf\u53ef\u76f4\u63a5\u4ece
mem[i] \u4e2d\u83b7\u53d6\u7ed3\u679c\uff0c\u4ece\u800c\u907f\u514d\u91cd\u590d\u8ba1\u7b97\u8be5\u5b50\u95ee\u9898\u3002
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dfs_mem.pydef dfs(i: int, mem: list[int]) -> int:\n \"\"\"\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 or i == 2:\n return i\n # \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1:\n return mem[i]\n # dp[i] = dp[i-1] + dp[i-2]\n count = dfs(i - 1, mem) + dfs(i - 2, mem)\n # \u8bb0\u5f55 dp[i]\n mem[i] = count\n return count\n\ndef climbing_stairs_dfs_mem(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n mem = [-1] * (n + 1)\n return dfs(n, mem)\n
climbing_stairs_dfs_mem.cpp/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, vector<int> &mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n vector<int> mem(n + 1, -1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.java/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int[] mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n int[] mem = new int[n + 1];\n Arrays.fill(mem, -1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.cs/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint DFS(int i, int[] mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = DFS(i - 1, mem) + DFS(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint ClimbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n int[] mem = new int[n + 1];\n Array.Fill(mem, -1);\n return DFS(n, mem);\n}\n
climbing_stairs_dfs_mem.go/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfsMem(i int, mem []int) int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1 {\n return mem[i]\n }\n // dp[i] = dp[i-1] + dp[i-2]\n count := dfsMem(i-1, mem) + dfsMem(i-2, mem)\n // \u8bb0\u5f55 dp[i]\n mem[i] = count\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n int) int {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n mem := make([]int, n+1)\n for i := range mem {\n mem[i] = -1\n }\n return dfsMem(n, mem)\n}\n
climbing_stairs_dfs_mem.swift/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfs(i: Int, mem: inout [Int]) -> Int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1 {\n return mem[i]\n }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)\n // \u8bb0\u5f55 dp[i]\n mem[i] = count\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n: Int) -> Int {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n var mem = Array(repeating: -1, count: n + 1)\n return dfs(i: n, mem: &mem)\n}\n
climbing_stairs_dfs_mem.js/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i, mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n const mem = new Array(n + 1).fill(-1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.ts/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i: number, mem: number[]): number {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n: number): number {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n const mem = new Array(n + 1).fill(-1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.dart/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, List<int> mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2) return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n List<int> mem = List.filled(n + 1, -1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.rs/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn dfs(i: usize, mem: &mut [i32]) -> i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 { return i as i32; }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1 { return mem[i]; }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n count\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn climbing_stairs_dfs_mem(n: usize) -> i32 {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n let mut mem = vec![-1; n + 1];\n dfs(n, &mut mem)\n}\n
climbing_stairs_dfs_mem.c/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int *mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n int *mem = (int *)malloc((n + 1) * sizeof(int));\n for (int i = 0; i <= n; i++) {\n mem[i] = -1;\n }\n int result = dfs(n, mem);\n free(mem);\n return result;\n}\n
climbing_stairs_dfs_mem.zig// \u8bb0\u5fc6\u5316\u641c\u7d22\nfn dfs(i: usize, mem: []i32) i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 or i == 2) {\n return @intCast(i);\n }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) {\n return mem[i];\n }\n // dp[i] = dp[i-1] + dp[i-2]\n var count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n// \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn climbingStairsDFSMem(comptime n: usize) i32 {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n var mem = [_]i32{ -1 } ** (n + 1);\n return dfs(n, &mem);\n}\n
\u89c2\u5bdf\u56fe 14-4 \uff0c\u7ecf\u8fc7\u8bb0\u5fc6\u5316\u5904\u7406\u540e\uff0c\u6240\u6709\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u9700\u8ba1\u7b97\u4e00\u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u8fd9\u662f\u4e00\u4e2a\u5de8\u5927\u7684\u98de\u8dc3\u3002
\u56fe 14-4 \u00a0 \u8bb0\u5fc6\u5316\u641c\u7d22\u5bf9\u5e94\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1413","title":"14.1.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"\u8bb0\u5fc6\u5316\u641c\u7d22\u662f\u4e00\u79cd\u201c\u4ece\u9876\u81f3\u5e95\u201d\u7684\u65b9\u6cd5\uff1a\u6211\u4eec\u4ece\u539f\u95ee\u9898\uff08\u6839\u8282\u70b9\uff09\u5f00\u59cb\uff0c\u9012\u5f52\u5730\u5c06\u8f83\u5927\u5b50\u95ee\u9898\u5206\u89e3\u4e3a\u8f83\u5c0f\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u89e3\u5df2\u77e5\u7684\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u53f6\u8282\u70b9\uff09\u3002\u4e4b\u540e\uff0c\u901a\u8fc7\u56de\u6eaf\u9010\u5c42\u6536\u96c6\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002
\u4e0e\u4e4b\u76f8\u53cd\uff0c\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u201c\u4ece\u5e95\u81f3\u9876\u201d\u7684\u65b9\u6cd5\uff1a\u4ece\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u5f00\u59cb\uff0c\u8fed\u4ee3\u5730\u6784\u5efa\u66f4\u5927\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u76f4\u81f3\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
\u7531\u4e8e\u52a8\u6001\u89c4\u5212\u4e0d\u5305\u542b\u56de\u6eaf\u8fc7\u7a0b\uff0c\u56e0\u6b64\u53ea\u9700\u4f7f\u7528\u5faa\u73af\u8fed\u4ee3\u5b9e\u73b0\uff0c\u65e0\u987b\u4f7f\u7528\u9012\u5f52\u3002\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5b83\u8d77\u5230\u4e86\u4e0e\u8bb0\u5fc6\u5316\u641c\u7d22\u4e2d\u6570\u7ec4 mem \u76f8\u540c\u7684\u8bb0\u5f55\u4f5c\u7528\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dp.pydef climbing_stairs_dp(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n if n == 1 or n == 2:\n return n\n # \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp = [0] * (n + 1)\n # \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1], dp[2] = 1, 2\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in range(3, n + 1):\n dp[i] = dp[i - 1] + dp[i - 2]\n return dp[n]\n
climbing_stairs_dp.cpp/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n vector<int> dp(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.java/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.cs/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint ClimbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.go/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n int) int {\n if n == 1 || n == 2 {\n return n\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp := make([]int, n+1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1\n dp[2] = 2\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n dp[i] = dp[i-1] + dp[i-2]\n }\n return dp[n]\n}\n
climbing_stairs_dp.swift/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n: Int) -> Int {\n if n == 1 || n == 2 {\n return n\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = Array(repeating: 0, count: n + 1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1\n dp[2] = 2\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in stride(from: 3, through: n, by: 1) {\n dp[i] = dp[i - 1] + dp[i - 2]\n }\n return dp[n]\n}\n
climbing_stairs_dp.js/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n) {\n if (n === 1 || n === 2) return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1).fill(-1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.ts/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n: number): number {\n if (n === 1 || n === 2) return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1).fill(-1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.dart/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2) return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n List<int> dp = List.filled(n + 1, 0);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.rs/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp(n: usize) -> i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if n == 1 || n == 2 { return n as i32; }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n let mut dp = vec![-1; n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in 3..=n {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n dp[n]\n}\n
climbing_stairs_dp.c/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int *dp = (int *)malloc((n + 1) * sizeof(int));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n int result = dp[n];\n free(dp);\n return result;\n}\n
climbing_stairs_dp.zig// \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsDP(comptime n: usize) i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (n == 1 or n == 2) {\n return @intCast(n);\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = [_]i32{-1} ** (n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
\u56fe 14-5 \u6a21\u62df\u4e86\u4ee5\u4e0a\u4ee3\u7801\u7684\u6267\u884c\u8fc7\u7a0b\u3002
\u56fe 14-5 \u00a0 \u722c\u697c\u68af\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u4e0e\u56de\u6eaf\u7b97\u6cd5\u4e00\u6837\uff0c\u52a8\u6001\u89c4\u5212\u4e5f\u4f7f\u7528\u201c\u72b6\u6001\u201d\u6982\u5ff5\u6765\u8868\u793a\u95ee\u9898\u6c42\u89e3\u7684\u7279\u5b9a\u9636\u6bb5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\u4ee5\u53ca\u76f8\u5e94\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002\u4f8b\u5982\uff0c\u722c\u697c\u68af\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5f53\u524d\u6240\u5728\u697c\u68af\u9636\u6570 \\(i\\) \u3002
\u6839\u636e\u4ee5\u4e0a\u5185\u5bb9\uff0c\u6211\u4eec\u53ef\u4ee5\u603b\u7ed3\u51fa\u52a8\u6001\u89c4\u5212\u7684\u5e38\u7528\u672f\u8bed\u3002
- \u5c06\u6570\u7ec4
dp \u79f0\u4e3a\u300c\\(dp\\) \u8868\u300d\uff0c\\(dp[i]\\) \u8868\u793a\u72b6\u6001 \\(i\\) \u5bf9\u5e94\u5b50\u95ee\u9898\u7684\u89e3\u3002 - \u5c06\u6700\u5c0f\u5b50\u95ee\u9898\u5bf9\u5e94\u7684\u72b6\u6001\uff08\u7b2c \\(1\\) \u9636\u548c\u7b2c \\(2\\) \u9636\u697c\u68af\uff09\u79f0\u4e3a\u300c\u521d\u59cb\u72b6\u6001\u300d\u3002
- \u5c06\u9012\u63a8\u516c\u5f0f \\(dp[i] = dp[i-1] + dp[i-2]\\) \u79f0\u4e3a\u300c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u300d\u3002
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1414","title":"14.1.4 \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7ec6\u5fc3\u7684\u8bfb\u8005\u53ef\u80fd\u53d1\u73b0\u4e86\uff0c\u7531\u4e8e \\(dp[i]\\) \u53ea\u4e0e \\(dp[i-1]\\) \u548c \\(dp[i-2]\\) \u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u987b\u4f7f\u7528\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u800c\u53ea\u9700\u4e24\u4e2a\u53d8\u91cf\u6eda\u52a8\u524d\u8fdb\u5373\u53ef\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dp.pydef climbing_stairs_dp_comp(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n if n == 1 or n == 2:\n return n\n a, b = 1, 2\n for _ in range(3, n + 1):\n a, b = b, a + b\n return b\n
climbing_stairs_dp.cpp/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.java/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.cs/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint ClimbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.go/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n int) int {\n if n == 1 || n == 2 {\n return n\n }\n a, b := 1, 2\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n a, b = b, a+b\n }\n return b\n}\n
climbing_stairs_dp.swift/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n: Int) -> Int {\n if n == 1 || n == 2 {\n return n\n }\n var a = 1\n var b = 2\n for _ in stride(from: 3, through: n, by: 1) {\n (a, b) = (b, a + b)\n }\n return b\n}\n
climbing_stairs_dp.js/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n) {\n if (n === 1 || n === 2) return n;\n let a = 1,\n b = 2;\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.ts/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n: number): number {\n if (n === 1 || n === 2) return n;\n let a = 1,\n b = 2;\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.dart/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2) return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.rs/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp_comp(n: usize) -> i32 {\n if n == 1 || n == 2 { return n as i32; }\n let (mut a, mut b) = (1, 2);\n for _ in 3..=n {\n let tmp = b;\n b = a + b;\n a = tmp;\n }\n b\n}\n
climbing_stairs_dp.c/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.zig// \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn climbingStairsDPComp(comptime n: usize) i32 {\n if (n == 1 or n == 2) {\n return @intCast(n);\n }\n var a: i32 = 1;\n var b: i32 = 2;\n for (3..n + 1) |_| {\n var tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
\u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u7531\u4e8e\u7701\u53bb\u4e86\u6570\u7ec4 dp \u5360\u7528\u7684\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u81f3 \\(O(1)\\) \u3002
\u5728\u52a8\u6001\u89c4\u5212\u95ee\u9898\u4e2d\uff0c\u5f53\u524d\u72b6\u6001\u5f80\u5f80\u4ec5\u4e0e\u524d\u9762\u6709\u9650\u4e2a\u72b6\u6001\u6709\u5173\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u53ea\u4fdd\u7559\u5fc5\u8981\u7684\u72b6\u6001\uff0c\u901a\u8fc7\u201c\u964d\u7ef4\u201d\u6765\u8282\u7701\u5185\u5b58\u7a7a\u95f4\u3002\u8fd9\u79cd\u7a7a\u95f4\u4f18\u5316\u6280\u5de7\u88ab\u79f0\u4e3a\u201c\u6eda\u52a8\u53d8\u91cf\u201d\u6216\u201c\u6eda\u52a8\u6570\u7ec4\u201d\u3002
"},{"location":"chapter_dynamic_programming/knapsack_problem/","title":"14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898","text":"\u80cc\u5305\u95ee\u9898\u662f\u4e00\u4e2a\u975e\u5e38\u597d\u7684\u52a8\u6001\u89c4\u5212\u5165\u95e8\u9898\u76ee\uff0c\u662f\u52a8\u6001\u89c4\u5212\u4e2d\u6700\u5e38\u89c1\u7684\u95ee\u9898\u5f62\u5f0f\u3002\u5176\u5177\u6709\u5f88\u591a\u53d8\u79cd\uff0c\u4f8b\u5982 0-1 \u80cc\u5305\u95ee\u9898\u3001\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u3001\u591a\u91cd\u80cc\u5305\u95ee\u9898\u7b49\u3002
\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6765\u6c42\u89e3\u6700\u5e38\u89c1\u7684 0-1 \u80cc\u5305\u95ee\u9898\u3002
Question
\u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\)\u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u95ee\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002
\u89c2\u5bdf\u56fe 14-17 \uff0c\u7531\u4e8e\u7269\u54c1\u7f16\u53f7 \\(i\\) \u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u6570\u7ec4\u7d22\u5f15\u4ece \\(0\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u56e0\u6b64\u7269\u54c1 \\(i\\) \u5bf9\u5e94\u91cd\u91cf \\(wgt[i-1]\\) \u548c\u4ef7\u503c \\(val[i-1]\\) \u3002
\u56fe 14-17 \u00a0 0-1 \u80cc\u5305\u7684\u793a\u4f8b\u6570\u636e
\u6211\u4eec\u53ef\u4ee5\u5c06 0-1 \u80cc\u5305\u95ee\u9898\u770b\u4f5c\u4e00\u4e2a\u7531 \\(n\\) \u8f6e\u51b3\u7b56\u7ec4\u6210\u7684\u8fc7\u7a0b\uff0c\u5bf9\u4e8e\u6bcf\u4e2a\u7269\u4f53\u90fd\u6709\u4e0d\u653e\u5165\u548c\u653e\u5165\u4e24\u79cd\u51b3\u7b56\uff0c\u56e0\u6b64\u8be5\u95ee\u9898\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\u3002
\u8be5\u95ee\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u201c\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u201d\uff0c\u56e0\u6b64\u8f83\u5927\u6982\u7387\u662f\u4e00\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\u3002
\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u5bf9\u4e8e\u6bcf\u4e2a\u7269\u54c1\u6765\u8bf4\uff0c\u4e0d\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff1b\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u51cf\u5c0f\u3002\u7531\u6b64\u53ef\u5f97\u72b6\u6001\u5b9a\u4e49\uff1a\u5f53\u524d\u7269\u54c1\u7f16\u53f7 \\(i\\) \u548c\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u8bb0\u4e3a \\([i, c]\\) \u3002
\u72b6\u6001 \\([i, c]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\uff0c\u8bb0\u4e3a \\(dp[i, c]\\) \u3002
\u5f85\u6c42\u89e3\u7684\u662f \\(dp[n, cap]\\) \uff0c\u56e0\u6b64\u9700\u8981\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((n+1) \\times (cap+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u5f53\u6211\u4eec\u505a\u51fa\u7269\u54c1 \\(i\\) \u7684\u51b3\u7b56\u540e\uff0c\u5269\u4f59\u7684\u662f\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u7684\u51b3\u7b56\uff0c\u53ef\u5206\u4e3a\u4ee5\u4e0b\u4e24\u79cd\u60c5\u51b5\u3002
- \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff0c\u72b6\u6001\u53d8\u5316\u4e3a \\([i-1, c]\\) \u3002
- \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u51cf\u5c11 \\(wgt[i-1]\\) \uff0c\u4ef7\u503c\u589e\u52a0 \\(val[i-1]\\) \uff0c\u72b6\u6001\u53d8\u5316\u4e3a \\([i-1, c-wgt[i-1]]\\) \u3002
\u4e0a\u8ff0\u5206\u6790\u5411\u6211\u4eec\u63ed\u793a\u4e86\u672c\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6700\u5927\u4ef7\u503c \\(dp[i, c]\\) \u7b49\u4e8e\u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \u548c\u653e\u5165\u7269\u54c1 \\(i\\) \u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\u3002\u7531\u6b64\u53ef\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a
\\[ dp[i, c] = \\max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1]) \\] \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf \\(wgt[i - 1]\\) \u8d85\u51fa\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\u3002
\u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5f53\u65e0\u7269\u54c1\u6216\u65e0\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u65f6\u6700\u5927\u4ef7\u503c\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217 \\(dp[i, 0]\\) \u548c\u9996\u884c \\(dp[0, c]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002
\u5f53\u524d\u72b6\u6001 \\([i, c]\\) \u4ece\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c]\\) \u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c-wgt[i-1]]\\) \u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u6309\u987a\u5e8f\u5b9e\u73b0\u66b4\u529b\u641c\u7d22\u3001\u8bb0\u5fc6\u5316\u641c\u7d22\u3001\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002
"},{"location":"chapter_dynamic_programming/knapsack_problem/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"\u641c\u7d22\u4ee3\u7801\u5305\u542b\u4ee5\u4e0b\u8981\u7d20\u3002
- \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, c]\\) \u3002
- \u8fd4\u56de\u503c\uff1a\u5b50\u95ee\u9898\u7684\u89e3 \\(dp[i, c]\\) \u3002
- \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53\u7269\u54c1\u7f16\u53f7\u8d8a\u754c \\(i = 0\\) \u6216\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\u4e3a \\(0\\) \u65f6\uff0c\u7ec8\u6b62\u9012\u5f52\u5e76\u8fd4\u56de\u4ef7\u503c \\(0\\) \u3002
- \u526a\u679d\uff1a\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf\u8d85\u51fa\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n # \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 or c == 0:\n return 0\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c:\n return knapsack_dfs(wgt, val, i - 1, c)\n # \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no = knapsack_dfs(wgt, val, i - 1, c)\n yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]\n # \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes)\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes);\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int[] wgt, int[] val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.max(no, yes);\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint KnapsackDFS(int[] weight, int[] val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (weight[i - 1] > c) {\n return KnapsackDFS(weight, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = KnapsackDFS(weight, val, i - 1, c);\n int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.Max(no, yes);\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt, val []int, i, c int) int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i-1] > c {\n return knapsackDFS(wgt, val, i-1, c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no := knapsackDFS(wgt, val, i-1, c)\n yes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return int(math.Max(float64(no), float64(yes)))\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c {\n return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\n let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes)\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction knapsackDFS(wgt, val, i, c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFS(wgt, val, i - 1, c);\n const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.max(no, yes);\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction knapsackDFS(\n wgt: Array<number>,\n val: Array<number>,\n i: number,\n c: number\n): number {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFS(wgt, val, i - 1, c);\n const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.max(no, yes);\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(List<int> wgt, List<int> val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes);\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfn knapsack_dfs(wgt: &[i32], val: &[i32], i: usize, c: usize) -> i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c as i32 {\n return knapsack_dfs(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsack_dfs(wgt, val, i - 1, c);\n let yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n std::cmp::max(no, yes)\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int wgt[], int val[], int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return myMax(no, yes);\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\nfn knapsackDFS(wgt: []i32, val: []i32, i: usize, c: usize) i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 or c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n var no = knapsackDFS(wgt, val, i - 1, c);\n var yes = knapsackDFS(wgt, val, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return @max(no, yes);\n}\n
\u5982\u56fe 14-18 \u6240\u793a\uff0c\u7531\u4e8e\u6bcf\u4e2a\u7269\u54c1\u90fd\u4f1a\u4ea7\u751f\u4e0d\u9009\u548c\u9009\u4e24\u6761\u641c\u7d22\u5206\u652f\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002
\u89c2\u5bdf\u9012\u5f52\u6811\uff0c\u5bb9\u6613\u53d1\u73b0\u5176\u4e2d\u5b58\u5728\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u4f8b\u5982 \\(dp[1, 10]\\) \u7b49\u3002\u800c\u5f53\u7269\u54c1\u8f83\u591a\u3001\u80cc\u5305\u5bb9\u91cf\u8f83\u5927\uff0c\u5c24\u5176\u662f\u76f8\u540c\u91cd\u91cf\u7684\u7269\u54c1\u8f83\u591a\u65f6\uff0c\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u6570\u91cf\u5c06\u4f1a\u5927\u5e45\u589e\u591a\u3002
\u56fe 14-18 \u00a0 0-1 \u80cc\u5305\u95ee\u9898\u7684\u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/knapsack_problem/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"\u4e3a\u4e86\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\uff0c\u6211\u4eec\u501f\u52a9\u8bb0\u5fc6\u5217\u8868 mem \u6765\u8bb0\u5f55\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5176\u4e2d mem[i][c] \u5bf9\u5e94 \\(dp[i, c]\\) \u3002
\u5f15\u5165\u8bb0\u5fc6\u5316\u4e4b\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5b50\u95ee\u9898\u6570\u91cf\uff0c\u4e5f\u5c31\u662f \\(O(n \\times cap)\\) \u3002\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dfs_mem(\n wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int\n) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 or c == 0:\n return 0\n # \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1:\n return mem[i][c]\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c:\n return knapsack_dfs_mem(wgt, val, mem, i - 1, c)\n # \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)\n yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]\n # \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes)\n return mem[i][c]\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes);\n return mem[i][c];\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.max(no, yes);\n return mem[i][c];\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (weight[i - 1] > c) {\n return KnapsackDFSMem(weight, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = KnapsackDFSMem(weight, val, mem, i - 1, c);\n int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.Max(no, yes);\n return mem[i][c];\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1 {\n return mem[i][c]\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i-1] > c {\n return knapsackDFSMem(wgt, val, mem, i-1, c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no := knapsackDFSMem(wgt, val, mem, i-1, c)\n yes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = int(math.Max(float64(no), float64(yes)))\n return mem[i][c]\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1 {\n return mem[i][c]\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c {\n return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\n let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes)\n return mem[i][c]\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction knapsackDFSMem(wgt, val, mem, i, c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] !== -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n const yes =\n knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.max(no, yes);\n return mem[i][c];\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction knapsackDFSMem(\n wgt: Array<number>,\n val: Array<number>,\n mem: Array<Array<number>>,\n i: number,\n c: number\n): number {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] !== -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n const yes =\n knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.max(no, yes);\n return mem[i][c];\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(\n List<int> wgt,\n List<int> val,\n List<List<int>> mem,\n int i,\n int c,\n) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes);\n return mem[i][c];\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn knapsack_dfs_mem(wgt: &[i32], val: &[i32], mem: &mut Vec<Vec<i32>>, i: usize, c: usize) -> i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1 {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c as i32 {\n return knapsack_dfs_mem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsack_dfs_mem(wgt, val, mem, i - 1, c);\n let yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = std::cmp::max(no, yes);\n mem[i][c]\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int wgt[], int val[], int memCols, int **mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = myMax(no, yes);\n return mem[i][c];\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn knapsackDFSMem(wgt: []i32, val: []i32, mem: anytype, i: usize, c: usize) i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 or c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n var no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n var yes = knapsackDFSMem(wgt, val, mem, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = @max(no, yes);\n return mem[i][c];\n}\n
\u56fe 14-19 \u5c55\u793a\u4e86\u5728\u8bb0\u5fc6\u5316\u641c\u7d22\u4e2d\u88ab\u526a\u6389\u7684\u641c\u7d22\u5206\u652f\u3002
\u56fe 14-19 \u00a0 0-1 \u80cc\u5305\u95ee\u9898\u7684\u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/knapsack_problem/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"\u52a8\u6001\u89c4\u5212\u5b9e\u8d28\u4e0a\u5c31\u662f\u5728\u72b6\u6001\u8f6c\u79fb\u4e2d\u586b\u5145 \\(dp\\) \u8868\u7684\u8fc7\u7a0b\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (cap + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n for c in range(1, cap + 1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\n return dp[n][cap]\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint KnapsackDP(int[] weight, int[] val, int cap) {\n int n = weight.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (weight[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i, c] = dp[i - 1, c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);\n }\n }\n }\n return dp[n, cap];\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, cap+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n for c := 1; c <= cap; c++ {\n if wgt[i-1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i-1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[n][cap]\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for c in stride(from: 1, through: cap, by: 1) {\n if wgt[i - 1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[n][cap]\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDP(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array(n + 1)\n .fill(0)\n .map(() => Array(cap + 1).fill(0));\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i - 1][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDP(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: cap + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i - 1][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; cap + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for c in 1..=cap {\n if wgt[i - 1] > c as i32 {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = std::cmp::max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n dp[n][cap]\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(cap + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = myMax(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[n][cap];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn knapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\n comptime var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..cap + 1) |c| {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = @max(dp[i - 1][c], dp[i - 1][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
\u5982\u56fe 14-20 \u6240\u793a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u7531\u6570\u7ec4 dp \u5927\u5c0f\u51b3\u5b9a\uff0c\u5373 \\(O(n \\times cap)\\) \u3002
<1><2><3><4><5><6><7><8><9><10><11><12><13><14> \u56fe 14-20 \u00a0 0-1 \u80cc\u5305\u95ee\u9898\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/knapsack_problem/#4","title":"4. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u90fd\u53ea\u4e0e\u5176\u4e0a\u4e00\u884c\u7684\u72b6\u6001\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e24\u4e2a\u6570\u7ec4\u6eda\u52a8\u524d\u8fdb\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u964d\u81f3 \\(O(n)\\) \u3002
\u8fdb\u4e00\u6b65\u601d\u8003\uff0c\u6211\u4eec\u80fd\u5426\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u5b9e\u73b0\u7a7a\u95f4\u4f18\u5316\u5462\uff1f\u89c2\u5bdf\u53ef\u77e5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u662f\u7531\u6b63\u4e0a\u65b9\u6216\u5de6\u4e0a\u65b9\u7684\u683c\u5b50\u8f6c\u79fb\u8fc7\u6765\u7684\u3002\u5047\u8bbe\u53ea\u6709\u4e00\u4e2a\u6570\u7ec4\uff0c\u5f53\u5f00\u59cb\u904d\u5386\u7b2c \\(i\\) \u884c\u65f6\uff0c\u8be5\u6570\u7ec4\u5b58\u50a8\u7684\u4ecd\u7136\u662f\u7b2c \\(i-1\\) \u884c\u7684\u72b6\u6001\u3002
- \u5982\u679c\u91c7\u53d6\u6b63\u5e8f\u904d\u5386\uff0c\u90a3\u4e48\u904d\u5386\u5230 \\(dp[i, j]\\) \u65f6\uff0c\u5de6\u4e0a\u65b9 \\(dp[i-1, 1]\\) ~ \\(dp[i-1, j-1]\\) \u503c\u53ef\u80fd\u5df2\u7ecf\u88ab\u8986\u76d6\uff0c\u6b64\u65f6\u5c31\u65e0\u6cd5\u5f97\u5230\u6b63\u786e\u7684\u72b6\u6001\u8f6c\u79fb\u7ed3\u679c\u3002
- \u5982\u679c\u91c7\u53d6\u5012\u5e8f\u904d\u5386\uff0c\u5219\u4e0d\u4f1a\u53d1\u751f\u8986\u76d6\u95ee\u9898\uff0c\u72b6\u6001\u8f6c\u79fb\u53ef\u4ee5\u6b63\u786e\u8fdb\u884c\u3002
\u56fe 14-21 \u5c55\u793a\u4e86\u5728\u5355\u4e2a\u6570\u7ec4\u4e0b\u4ece\u7b2c \\(i = 1\\) \u884c\u8f6c\u6362\u81f3\u7b2c \\(i = 2\\) \u884c\u7684\u8fc7\u7a0b\u3002\u8bf7\u601d\u8003\u6b63\u5e8f\u904d\u5386\u548c\u5012\u5e8f\u904d\u5386\u7684\u533a\u522b\u3002
<1><2><3><4><5><6> \u56fe 14-21 \u00a0 0-1 \u80cc\u5305\u7684\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4 \\(i\\) \u76f4\u63a5\u5220\u9664\uff0c\u5e76\u4e14\u628a\u5185\u5faa\u73af\u66f4\u6539\u4e3a\u5012\u5e8f\u904d\u5386\u5373\u53ef\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * (cap + 1)\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u5012\u5e8f\u904d\u5386\n for c in range(cap, 0, -1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n return dp[cap]\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint KnapsackDPComp(int[] weight, int[] val, int cap) {\n int n = weight.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c > 0; c--) {\n if (weight[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, cap+1)\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n // \u5012\u5e8f\u904d\u5386\n for c := cap; c >= 1; c-- {\n if wgt[i-1] <= c {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[cap]\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: cap + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n // \u5012\u5e8f\u904d\u5386\n for c in stride(from: cap, through: 1, by: -1) {\n if wgt[i - 1] <= c {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[cap]\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDPComp(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array(cap + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (let c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDPComp(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array(cap + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (let c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n // \u5012\u5e8f\u904d\u5386\n for c in (1..=cap).rev() {\n if wgt[i - 1] <= c as i32 {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n dp[cap]\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(cap + 1, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[cap];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn knapsackDPComp(wgt: []i32, val: []i32, comptime cap: usize) i32 {\n var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (cap + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n // \u5012\u5e8f\u904d\u5386\n var c = cap;\n while (c > 0) : (c -= 1) {\n if (wgt[i - 1] < c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
"},{"location":"chapter_dynamic_programming/summary/","title":"14.7 \u00a0 \u5c0f\u7ed3","text":" - \u52a8\u6001\u89c4\u5212\u5bf9\u95ee\u9898\u8fdb\u884c\u5206\u89e3\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u89c4\u907f\u91cd\u590d\u8ba1\u7b97\uff0c\u63d0\u9ad8 \u8ba1\u7b97\u6548\u7387\u3002
- \u4e0d\u8003\u8651\u65f6\u95f4\u7684\u524d\u63d0\u4e0b\uff0c\u6240\u6709\u52a8\u6001\u89c4\u5212\u95ee\u9898\u90fd\u53ef\u4ee5\u7528\u56de\u6eaf\uff08\u66b4\u529b\u641c\u7d22\uff09\u8fdb\u884c\u6c42\u89e3\uff0c\u4f46\u9012\u5f52\u6811\u4e2d\u5b58\u5728\u5927\u91cf\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u6548\u7387\u6781\u4f4e\u3002\u901a\u8fc7\u5f15\u5165\u8bb0\u5fc6\u5316\u5217\u8868\uff0c\u53ef\u4ee5\u5b58\u50a8\u6240\u6709\u8ba1\u7b97\u8fc7\u7684\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u4ece\u800c\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002
- \u8bb0\u5fc6\u5316\u9012\u5f52\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u9012\u5f52\u5f0f\u89e3\u6cd5\uff0c\u800c\u4e0e\u4e4b\u5bf9\u5e94\u7684\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u4ece\u5e95\u81f3\u9876\u7684\u9012\u63a8\u5f0f\u89e3\u6cd5\uff0c\u5176\u5982\u540c\u201c\u586b\u5199\u8868\u683c\u201d\u4e00\u6837\u3002\u7531\u4e8e\u5f53\u524d\u72b6\u6001\u4ec5\u4f9d\u8d56\u67d0\u4e9b\u5c40\u90e8\u72b6\u6001\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u6d88\u9664 \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\uff0c\u4ece\u800c\u964d\u4f4e\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
- \u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u5177\u6709\u4e0d\u540c\u7684\u6027\u8d28\u3002
- \u52a8\u6001\u89c4\u5212\u95ee\u9898\u6709\u4e09\u5927\u7279\u6027\uff1a\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002
- \u5982\u679c\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u53ef\u4ee5\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\uff0c\u5219\u5b83\u5c31\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u3002
- \u65e0\u540e\u6548\u6027\u6307\u5bf9\u4e8e\u4e00\u4e2a\u72b6\u6001\uff0c\u5176\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u8be5\u72b6\u6001\u6709\u5173\uff0c\u800c\u4e0e\u8fc7\u53bb\u7ecf\u5386\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u4e0d\u5177\u6709\u65e0\u540e\u6548\u6027\uff0c\u65e0\u6cd5\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u5feb\u901f\u6c42\u89e3\u3002
\u80cc\u5305\u95ee\u9898
- \u80cc\u5305\u95ee\u9898\u662f\u6700\u5178\u578b\u7684\u52a8\u6001\u89c4\u5212\u95ee\u9898\u4e4b\u4e00\uff0c\u5177\u6709 0-1 \u80cc\u5305\u3001\u5b8c\u5168\u80cc\u5305\u3001\u591a\u91cd\u80cc\u5305\u7b49\u53d8\u79cd\u3002
- 0-1 \u80cc\u5305\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\u3002\u6839\u636e\u4e0d\u653e\u5165\u80cc\u5305\u548c\u653e\u5165\u80cc\u5305\u4e24\u79cd\u51b3\u7b56\uff0c\u53ef\u5f97\u5230\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u5728\u7a7a\u95f4\u4f18\u5316\u4e2d\uff0c\u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u4f9d\u8d56\u6b63\u4e0a\u65b9\u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u9700\u8981\u5012\u5e8f\u904d\u5386\u5217\u8868\uff0c\u907f\u514d\u5de6\u4e0a\u65b9\u72b6\u6001\u88ab\u8986\u76d6\u3002
- \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u6bcf\u79cd\u7269\u54c1\u7684\u9009\u53d6\u6570\u91cf\u65e0\u9650\u5236\uff0c\u56e0\u6b64\u9009\u62e9\u653e\u5165\u7269\u54c1\u7684\u72b6\u6001\u8f6c\u79fb\u4e0e 0-1 \u80cc\u5305\u95ee\u9898\u4e0d\u540c\u3002\u7531\u4e8e\u72b6\u6001\u4f9d\u8d56\u6b63\u4e0a\u65b9\u548c\u6b63\u5de6\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u5728\u7a7a\u95f4\u4f18\u5316\u4e2d\u5e94\u5f53\u6b63\u5e8f\u904d\u5386\u3002
- \u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u4e00\u4e2a\u53d8\u79cd\u3002\u5b83\u4ece\u6c42\u201c\u6700\u5927\u201d\u4ef7\u503c\u53d8\u4e3a\u6c42\u201c\u6700\u5c0f\u201d\u786c\u5e01\u6570\u91cf\uff0c\u56e0\u6b64\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\max()\\) \u5e94\u6539\u4e3a \\(\\min()\\) \u3002\u4ece\u8ffd\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u5230\u8ffd\u6c42\u201c\u6070\u597d\u201d\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u4f7f\u7528 \\(amt + 1\\) \u6765\u8868\u793a\u201c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u201d\u7684\u65e0\u6548\u89e3\u3002
- \u96f6\u94b1\u5151\u6362 II \u95ee\u9898\u4ece\u6c42\u201c\u6700\u5c11\u786c\u5e01\u6570\u91cf\u201d\u6539\u4e3a\u6c42\u201c\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u201d\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u76f8\u5e94\u5730\u4ece \\(\\min()\\) \u6539\u4e3a\u6c42\u548c\u8fd0\u7b97\u7b26\u3002
\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
- \u7f16\u8f91\u8ddd\u79bb\uff08Levenshtein \u8ddd\u79bb\uff09\u7528\u4e8e\u8861\u91cf\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u7684\u76f8\u4f3c\u5ea6\uff0c\u5176\u5b9a\u4e49\u4e3a\u4ece\u4e00\u4e2a\u5b57\u7b26\u4e32\u5230\u53e6\u4e00\u4e2a\u5b57\u7b26\u4e32\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\uff0c\u7f16\u8f91\u64cd\u4f5c\u5305\u62ec\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\u3002
- \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002\u5f53 \\(s[i] \\ne t[j]\\) \u65f6\uff0c\u5177\u6709\u4e09\u79cd\u51b3\u7b56\uff1a\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\uff0c\u5b83\u4eec\u90fd\u6709\u76f8\u5e94\u7684\u5269\u4f59\u5b50\u95ee\u9898\u3002\u636e\u6b64\u4fbf\u53ef\u4ee5\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u6784\u5efa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u800c\u5f53 \\(s[i] = t[j]\\) \u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\u3002
- \u5728\u7f16\u8f91\u8ddd\u79bb\u4e2d\uff0c\u72b6\u6001\u4f9d\u8d56\u5176\u6b63\u4e0a\u65b9\u3001\u6b63\u5de6\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u7a7a\u95f4\u4f18\u5316\u540e\u6b63\u5e8f\u6216\u5012\u5e8f\u904d\u5386\u90fd\u65e0\u6cd5\u6b63\u786e\u5730\u8fdb\u884c\u72b6\u6001\u8f6c\u79fb\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u53d8\u91cf\u6682\u5b58\u5de6\u4e0a\u65b9\u72b6\u6001\uff0c\u4ece\u800c\u8f6c\u5316\u5230\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7b49\u4ef7\u7684\u60c5\u51b5\uff0c\u53ef\u4ee5\u5728\u7a7a\u95f4\u4f18\u5316\u540e\u8fdb\u884c\u6b63\u5e8f\u904d\u5386\u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/","title":"14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898","text":"\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6c42\u89e3\u53e6\u4e00\u4e2a\u5e38\u89c1\u7684\u80cc\u5305\u95ee\u9898\uff1a\u5b8c\u5168\u80cc\u5305\uff0c\u518d\u4e86\u89e3\u5b83\u7684\u4e00\u79cd\u7279\u4f8b\uff1a\u96f6\u94b1\u5151\u6362\u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1451","title":"14.5.1 \u00a0 \u5b8c\u5168\u80cc\u5305","text":"Question
\u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\)\u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002\u793a\u4f8b\u5982\u56fe 14-22 \u6240\u793a\u3002
\u56fe 14-22 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u548c 0-1 \u80cc\u5305\u95ee\u9898\u975e\u5e38\u76f8\u4f3c\uff0c\u533a\u522b\u4ec5\u5728\u4e8e\u4e0d\u9650\u5236\u7269\u54c1\u7684\u9009\u62e9\u6b21\u6570\u3002
- \u5728 0-1 \u80cc\u5305\u95ee\u9898\u4e2d\uff0c\u6bcf\u79cd\u7269\u54c1\u53ea\u6709\u4e00\u4e2a\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u53ea\u80fd\u4ece\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002
- \u5728\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u4e2d\uff0c\u6bcf\u79cd\u7269\u54c1\u7684\u6570\u91cf\u662f\u65e0\u9650\u7684\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u4ecd\u53ef\u4ee5\u4ece\u524d \\(i\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002
\u5728\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u89c4\u5b9a\u4e0b\uff0c\u72b6\u6001 \\([i, c]\\) \u7684\u53d8\u5316\u5206\u4e3a\u4e24\u79cd\u60c5\u51b5\u3002
- \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u95ee\u9898\u76f8\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i-1, c]\\) \u3002
- \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u95ee\u9898\u4e0d\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i, c-wgt[i-1]]\\) \u3002
\u4ece\u800c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u53d8\u4e3a\uff1a
\\[ dp[i, c] = \\max(dp[i-1, c], dp[i, c - wgt[i-1]] + val[i-1]) \\]"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5bf9\u6bd4\u4e24\u9053\u9898\u76ee\u7684\u4ee3\u7801\uff0c\u72b6\u6001\u8f6c\u79fb\u4e2d\u6709\u4e00\u5904\u4ece \\(i-1\\) \u53d8\u4e3a \\(i\\) \uff0c\u5176\u4f59\u5b8c\u5168\u4e00\u81f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig unbounded_knapsack.pydef unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (cap + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n for c in range(1, cap + 1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\n return dp[n][cap]\n
unbounded_knapsack.cpp/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.java/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.cs/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint UnboundedKnapsackDP(int[] wgt, int[] val, int cap) {\n int n = wgt.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i, c] = dp[i - 1, c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i, c] = Math.Max(dp[i - 1, c], dp[i, c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n, cap];\n}\n
unbounded_knapsack.go/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, cap+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n for c := 1; c <= cap; c++ {\n if wgt[i-1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i-1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i][c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[n][cap]\n}\n
unbounded_knapsack.swift/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for c in stride(from: 1, through: cap, by: 1) {\n if wgt[i - 1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[n][cap]\n}\n
unbounded_knapsack.js/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDP(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: cap + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.ts/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDP(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: cap + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.dart/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.rs/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; cap + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for c in 1..=cap {\n if wgt[i - 1] > c as i32 {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = std::cmp::max(dp[i - 1][c], dp[i][c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.c/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(cap + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = myMax(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[n][cap];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
unbounded_knapsack.zig// \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\n comptime var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..cap + 1) |c| {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = @max(dp[i - 1][c], dp[i][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e\u5f53\u524d\u72b6\u6001\u662f\u4ece\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u72b6\u6001\u8f6c\u79fb\u800c\u6765\u7684\uff0c\u56e0\u6b64\u7a7a\u95f4\u4f18\u5316\u540e\u5e94\u8be5\u5bf9 \\(dp\\) \u8868\u4e2d\u7684\u6bcf\u4e00\u884c\u8fdb\u884c\u6b63\u5e8f\u904d\u5386\u3002
\u8fd9\u4e2a\u904d\u5386\u987a\u5e8f\u4e0e 0-1 \u80cc\u5305\u6b63\u597d\u76f8\u53cd\u3002\u8bf7\u501f\u52a9\u56fe 14-23 \u6765\u7406\u89e3\u4e24\u8005\u7684\u533a\u522b\u3002
<1><2><3><4><5><6> \u56fe 14-23 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u5728\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u4ee3\u7801\u5b9e\u73b0\u6bd4\u8f83\u7b80\u5355\uff0c\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4\u5220\u9664\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig unbounded_knapsack.pydef unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * (cap + 1)\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u6b63\u5e8f\u904d\u5386\n for c in range(1, cap + 1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n return dp[cap]\n
unbounded_knapsack.cpp/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.java/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.cs/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint UnboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\n int n = wgt.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.Max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.go/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, cap+1)\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n for c := 1; c <= cap; c++ {\n if wgt[i-1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[cap]\n}\n
unbounded_knapsack.swift/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: cap + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for c in stride(from: 1, through: cap, by: 1) {\n if wgt[i - 1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[cap]\n}\n
unbounded_knapsack.js/* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDPComp(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: cap + 1 }, () => 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.ts/* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDPComp(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: cap + 1 }, () => 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.dart/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.rs/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for c in 1..=cap {\n if wgt[i - 1] > c as i32 {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n dp[cap]\n}\n
unbounded_knapsack.c/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(cap + 1, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[cap];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
unbounded_knapsack.zig// \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDPComp(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\n comptime var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (cap + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..cap + 1) |c| {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1452","title":"14.5.2 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898","text":"\u80cc\u5305\u95ee\u9898\u662f\u4e00\u5927\u7c7b\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4ee3\u8868\uff0c\u5176\u62e5\u6709\u5f88\u591a\u53d8\u79cd\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002
Question
\u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002\u793a\u4f8b\u5982\u56fe 14-24 \u6240\u793a\u3002
\u56fe 14-24 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u96f6\u94b1\u5151\u6362\u53ef\u4ee5\u770b\u4f5c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u4e00\u79cd\u7279\u6b8a\u60c5\u51b5\uff0c\u4e24\u8005\u5177\u6709\u4ee5\u4e0b\u8054\u7cfb\u4e0e\u4e0d\u540c\u70b9\u3002
- \u4e24\u9053\u9898\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\uff0c\u201c\u7269\u54c1\u201d\u5bf9\u5e94\u201c\u786c\u5e01\u201d\u3001\u201c\u7269\u54c1\u91cd\u91cf\u201d\u5bf9\u5e94\u201c\u786c\u5e01\u9762\u503c\u201d\u3001\u201c\u80cc\u5305\u5bb9\u91cf\u201d\u5bf9\u5e94\u201c\u76ee\u6807\u91d1\u989d\u201d\u3002
- \u4f18\u5316\u76ee\u6807\u76f8\u53cd\uff0c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u662f\u8981\u6700\u5927\u5316\u7269\u54c1\u4ef7\u503c\uff0c\u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u8981\u6700\u5c0f\u5316\u786c\u5e01\u6570\u91cf\u3002
- \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u662f\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u89e3\uff0c\u96f6\u94b1\u5151\u6362\u662f\u6c42\u201c\u6070\u597d\u201d\u51d1\u5230\u76ee\u6807\u91d1\u989d\u7684\u89e3\u3002
\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u72b6\u6001 \\([i, a]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\uff0c\u8bb0\u4e3a \\(dp[i, a]\\) \u3002
\u4e8c\u7ef4 \\(dp\\) \u8868\u7684\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt+1)\\) \u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u672c\u9898\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u5b58\u5728\u4ee5\u4e0b\u4e24\u70b9\u5dee\u5f02\u3002
- \u672c\u9898\u8981\u6c42\u6700\u5c0f\u503c\uff0c\u56e0\u6b64\u9700\u5c06\u8fd0\u7b97\u7b26 \\(\\max()\\) \u66f4\u6539\u4e3a \\(\\min()\\) \u3002
- \u4f18\u5316\u4e3b\u4f53\u662f\u786c\u5e01\u6570\u91cf\u800c\u975e\u5546\u54c1\u4ef7\u503c\uff0c\u56e0\u6b64\u5728\u9009\u4e2d\u786c\u5e01\u65f6\u6267\u884c \\(+1\\) \u5373\u53ef\u3002
\\[ dp[i, a] = \\min(dp[i-1, a], dp[i, a - coins[i-1]] + 1) \\] \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u51d1\u51fa\u5b83\u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002
\u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u610f \\(> 0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u5373\u662f\u65e0\u6548\u89e3\u3002\u4e3a\u4f7f\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\min()\\) \u51fd\u6570\u80fd\u591f\u8bc6\u522b\u5e76\u8fc7\u6ee4\u65e0\u6548\u89e3\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528 \\(+ \\infty\\) \u6765\u8868\u793a\u5b83\u4eec\uff0c\u5373\u4ee4\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(+ \\infty\\) \u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u5e76\u672a\u63d0\u4f9b \\(+ \\infty\\) \u53d8\u91cf\uff0c\u53ea\u80fd\u4f7f\u7528\u6574\u578b int \u7684\u6700\u5927\u503c\u6765\u4ee3\u66ff\u3002\u800c\u8fd9\u53c8\u4f1a\u5bfc\u81f4\u5927\u6570\u8d8a\u754c\uff1a\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(+ 1\\) \u64cd\u4f5c\u53ef\u80fd\u53d1\u751f\u6ea2\u51fa\u3002
\u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u6570\u5b57 \\(amt + 1\\) \u6765\u8868\u793a\u65e0\u6548\u89e3\uff0c\u56e0\u4e3a\u51d1\u51fa \\(amt\\) \u7684\u786c\u5e01\u6570\u91cf\u6700\u591a\u4e3a \\(amt\\) \u3002\u6700\u540e\u8fd4\u56de\u524d\uff0c\u5224\u65ad \\(dp[n, amt]\\) \u662f\u5426\u7b49\u4e8e \\(amt + 1\\) \uff0c\u82e5\u662f\u5219\u8fd4\u56de \\(-1\\) \uff0c\u4ee3\u8868\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change.pydef coin_change_dp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n MAX = amt + 1\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (amt + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a in range(1, amt + 1):\n dp[0][a] = MAX\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in range(1, n + 1):\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\n return dp[n][amt] if dp[n][amt] != MAX else -1\n
coin_change.cpp/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(vector<int> &coins, int amt) {\n int n = coins.size();\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
coin_change.java/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int[] coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][amt + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
coin_change.cs/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint CoinChangeDP(int[] coins, int amt) {\n int n = coins.Length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, amt + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0, a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i, a] = dp[i - 1, a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i, a] = Math.Min(dp[i - 1, a], dp[i, a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n, amt] != MAX ? dp[n, amt] : -1;\n}\n
coin_change.go/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins []int, amt int) int {\n n := len(coins)\n max := amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, amt+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a := 1; a <= amt; a++ {\n dp[0][a] = max\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i <= n; i++ {\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i-1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = int(math.Min(float64(dp[i-1][a]), float64(dp[i][a-coins[i-1]]+1)))\n }\n }\n }\n if dp[n][amt] != max {\n return dp[n][amt]\n }\n return -1\n}\n
coin_change.swift/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n let MAX = amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a in stride(from: 1, through: amt, by: 1) {\n dp[0][a] = MAX\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1\n}\n
coin_change.js/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDP(coins, amt) {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] !== MAX ? dp[n][amt] : -1;\n}\n
coin_change.ts/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDP(coins: Array<number>, amt: number): number {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] !== MAX ? dp[n][amt] : -1;\n}\n
coin_change.dart/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(List<int> coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
coin_change.rs/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n let max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; amt + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a in 1..= amt {\n dp[0][a] = max;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = std::cmp::min(dp[i - 1][a], dp[i][a - coins[i - 1] as usize] + 1);\n }\n }\n }\n if dp[n][amt] != max { return dp[n][amt] as i32; } else { -1 }\n}\n
coin_change.c/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(amt + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = myMin(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n int res = dp[n][amt] != MAX ? dp[n][amt] : -1;\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n free(dp);\n return res;\n}\n
coin_change.zig// \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeDP(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n comptime var max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (1..amt + 1) |a| {\n dp[0][a] = max;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = @min(dp[i - 1][a], dp[i][a - @as(usize, @intCast(coins[i - 1]))] + 1);\n }\n }\n }\n if (dp[n][amt] != max) {\n return @intCast(dp[n][amt]);\n } else {\n return -1;\n }\n}\n
\u56fe 14-25 \u5c55\u793a\u4e86\u96f6\u94b1\u5151\u6362\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b\uff0c\u548c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u975e\u5e38\u76f8\u4f3c\u3002
<1><2><3><4><5><6><7><8><9><10><11><12><13><14><15> \u56fe 14-25 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_1","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u96f6\u94b1\u5151\u6362\u7684\u7a7a\u95f4\u4f18\u5316\u7684\u5904\u7406\u65b9\u5f0f\u548c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u4e00\u81f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change.pydef coin_change_dp_comp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n MAX = amt + 1\n # \u521d\u59cb\u5316 dp \u8868\n dp = [MAX] * (amt + 1)\n dp[0] = 0\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u6b63\u5e8f\u904d\u5386\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\n return dp[amt] if dp[amt] != MAX else -1\n
coin_change.cpp/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(vector<int> &coins, int amt) {\n int n = coins.size();\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(amt + 1, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.java/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int[] coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n Arrays.fill(dp, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.cs/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint CoinChangeDPComp(int[] coins, int amt) {\n int n = coins.Length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n Array.Fill(dp, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.Min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.go/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins []int, amt int) int {\n n := len(coins)\n max := amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, amt+1)\n for i := 1; i <= amt; i++ {\n dp[i] = max\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n // \u5012\u5e8f\u904d\u5386\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = int(math.Min(float64(dp[a]), float64(dp[a-coins[i-1]]+1)))\n }\n }\n }\n if dp[amt] != max {\n return dp[amt]\n }\n return -1\n}\n
coin_change.swift/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n let MAX = amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: MAX, count: amt + 1)\n dp[0] = 0\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1\n}\n
coin_change.js/* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDPComp(coins, amt) {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] !== MAX ? dp[amt] : -1;\n}\n
coin_change.ts/* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDPComp(coins: Array<number>, amt: number): number {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] !== MAX ? dp[amt] : -1;\n}\n
coin_change.dart/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(List<int> coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(amt + 1, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.rs/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp_comp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n let max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; amt + 1];\n dp.fill(max);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = std::cmp::min(dp[a], dp[a - coins[i - 1] as usize] + 1);\n }\n }\n }\n if dp[amt] != max { return dp[amt] as i32; } else { -1 }\n}\n
coin_change.c/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(amt + 1, sizeof(int));\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = myMin(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n int res = dp[amt] != MAX ? dp[amt] : -1;\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
coin_change.zig// \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeDPComp(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n comptime var max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (amt + 1);\n @memset(&dp, max);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = @min(dp[a], dp[a - @as(usize, @intCast(coins[i - 1]))] + 1);\n }\n }\n }\n if (dp[amt] != max) {\n return @intCast(dp[amt]);\n } else {\n return -1;\n }\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1453-ii","title":"14.5.3 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898 II","text":"Question
\u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u3002\u793a\u4f8b\u5982\u56fe 14-26 \u6240\u793a\u3002
\u56fe 14-26 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898 II \u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_2","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u76f8\u6bd4\u4e8e\u4e0a\u4e00\u9898\uff0c\u672c\u9898\u76ee\u6807\u662f\u6c42\u7ec4\u5408\u6570\u91cf\uff0c\u56e0\u6b64\u5b50\u95ee\u9898\u53d8\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u7ec4\u5408\u6570\u91cf\u3002\u800c \\(dp\\) \u8868\u4ecd\u7136\u662f\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt + 1)\\) \u7684\u4e8c\u7ef4\u77e9\u9635\u3002
\u5f53\u524d\u72b6\u6001\u7684\u7ec4\u5408\u6570\u91cf\u7b49\u4e8e\u4e0d\u9009\u5f53\u524d\u786c\u5e01\u4e0e\u9009\u5f53\u524d\u786c\u5e01\u8fd9\u4e24\u79cd\u51b3\u7b56\u7684\u7ec4\u5408\u6570\u91cf\u4e4b\u548c\u3002\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ dp[i, a] = dp[i-1, a] + dp[i, a - coins[i-1]] \\] \u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u65e0\u987b\u9009\u62e9\u4efb\u4f55\u786c\u5e01\u5373\u53ef\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u5e94\u5c06\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u521d\u59cb\u5316\u4e3a \\(1\\) \u3002\u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u4f55 \\(>0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change_ii.pydef coin_change_ii_dp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (amt + 1) for _ in range(n + 1)]\n # \u521d\u59cb\u5316\u9996\u5217\n for i in range(n + 1):\n dp[i][0] = 1\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\n return dp[n][amt]\n
coin_change_ii.cpp/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(vector<int> &coins, int amt) {\n int n = coins.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.java/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int[] coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][amt + 1];\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.cs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint CoinChangeIIDP(int[] coins, int amt) {\n int n = coins.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, amt + 1];\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i, 0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i, a] = dp[i - 1, a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i, a] = dp[i - 1, a] + dp[i, a - coins[i - 1]];\n }\n }\n }\n return dp[n, amt];\n}\n
coin_change_ii.go/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins []int, amt int) int {\n n := len(coins)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, amt+1)\n }\n // \u521d\u59cb\u5316\u9996\u5217\n for i := 0; i <= n; i++ {\n dp[i][0] = 1\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i <= n; i++ {\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i-1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i-1][a] + dp[i][a-coins[i-1]]\n }\n }\n }\n return dp[n][amt]\n}\n
coin_change_ii.swift/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n // \u521d\u59cb\u5316\u9996\u5217\n for i in stride(from: 0, through: n, by: 1) {\n dp[i][0] = 1\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\n }\n }\n }\n return dp[n][amt]\n}\n
coin_change_ii.js/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDP(coins, amt) {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u521d\u59cb\u5316\u9996\u5217\n for (let i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.ts/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDP(coins: Array<number>, amt: number): number {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u521d\u59cb\u5316\u9996\u5217\n for (let i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.dart/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(List<int> coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.rs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; amt + 1]; n + 1];\n // \u521d\u59cb\u5316\u9996\u5217\n for i in 0..= n {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1] as usize];\n }\n }\n }\n dp[n][amt]\n}\n
coin_change_ii.c/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(amt + 1, sizeof(int));\n }\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n int res = dp[n][amt];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n free(dp);\n return res;\n}\n
coin_change_ii.zig// \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDP(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n // \u521d\u59cb\u5316\u9996\u5217\n for (0..n + 1) |i| {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = dp[i - 1][a] + dp[i][a - @as(usize, @intCast(coins[i - 1]))];\n }\n }\n }\n return dp[n][amt];\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_2","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7a7a\u95f4\u4f18\u5316\u5904\u7406\u65b9\u5f0f\u76f8\u540c\uff0c\u5220\u9664\u786c\u5e01\u7ef4\u5ea6\u5373\u53ef\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change_ii.pydef coin_change_ii_dp_comp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * (amt + 1)\n dp[0] = 1\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u6b63\u5e8f\u904d\u5386\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]]\n return dp[amt]\n
coin_change_ii.cpp/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(vector<int> &coins, int amt) {\n int n = coins.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(amt + 1, 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.java/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int[] coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.cs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint CoinChangeIIDPComp(int[] coins, int amt) {\n int n = coins.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.go/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins []int, amt int) int {\n n := len(coins)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, amt+1)\n dp[0] = 1\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n // \u5012\u5e8f\u904d\u5386\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a-coins[i-1]]\n }\n }\n }\n return dp[amt]\n}\n
coin_change_ii.swift/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: amt + 1)\n dp[0] = 1\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]]\n }\n }\n }\n return dp[amt]\n}\n
coin_change_ii.js/* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDPComp(coins, amt) {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.ts/* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDPComp(coins: Array<number>, amt: number): number {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.dart/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(List<int> coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(amt + 1, 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.rs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp_comp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; amt + 1];\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = dp[a] + dp[a - coins[i - 1] as usize];\n }\n }\n }\n dp[amt]\n}\n
coin_change_ii.c/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(amt + 1, sizeof(int));\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n int res = dp[amt];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
coin_change_ii.zig// \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDPComp(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (amt + 1);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = dp[a] + dp[a - @as(usize, @intCast(coins[i - 1]))];\n }\n }\n }\n return dp[amt];\n}\n
"},{"location":"chapter_graph/","title":"\u7b2c 9 \u7ae0 \u00a0 \u56fe","text":"Abstract
\u5728\u751f\u547d\u65c5\u9014\u4e2d\uff0c\u6211\u4eec\u5c31\u50cf\u662f\u4e00\u4e2a\u4e2a\u8282\u70b9\uff0c\u88ab\u65e0\u6570\u770b\u4e0d\u89c1\u7684\u8fb9\u76f8\u8fde\u3002
\u6bcf\u4e00\u6b21\u7684\u76f8\u8bc6\u4e0e\u76f8\u79bb\uff0c\u90fd\u5728\u8fd9\u5f20\u5de8\u5927\u7684\u7f51\u7edc\u56fe\u4e2d\u7559\u4e0b\u72ec\u7279\u7684\u5370\u8bb0\u3002
"},{"location":"chapter_graph/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 9.1 \u00a0 \u56fe
- 9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c
- 9.3 \u00a0 \u56fe\u7684\u904d\u5386
- 9.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_graph/graph/","title":"9.1 \u00a0 \u56fe","text":"\u300c\u56fe graph\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u7531\u300c\u9876\u70b9 vertex\u300d\u548c\u300c\u8fb9 edge\u300d\u7ec4\u6210\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u56fe \\(G\\) \u62bd\u8c61\u5730\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9 \\(V\\) \u548c\u4e00\u7ec4\u8fb9 \\(E\\) \u7684\u96c6\u5408\u3002\u4ee5\u4e0b\u793a\u4f8b\u5c55\u793a\u4e86\u4e00\u4e2a\u5305\u542b 5 \u4e2a\u9876\u70b9\u548c 7 \u6761\u8fb9\u7684\u56fe\u3002
\\[ \\begin{aligned} V & = \\{ 1, 2, 3, 4, 5 \\} \\newline E & = \\{ (1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,5) \\} \\newline G & = \\{ V, E \\} \\newline \\end{aligned} \\] \u5982\u679c\u5c06\u9876\u70b9\u770b\u4f5c\u8282\u70b9\uff0c\u5c06\u8fb9\u770b\u4f5c\u8fde\u63a5\u5404\u4e2a\u8282\u70b9\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5c06\u56fe\u770b\u4f5c\u4e00\u79cd\u4ece\u94fe\u8868\u62d3\u5c55\u800c\u6765\u7684\u6570\u636e\u7ed3\u6784\u3002\u5982\u56fe 9-1 \u6240\u793a\uff0c\u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u7684\u81ea\u7531\u5ea6\u66f4\u9ad8\uff0c\u56e0\u800c\u66f4\u4e3a\u590d\u6742\u3002
\u56fe 9-1 \u00a0 \u94fe\u8868\u3001\u6811\u3001\u56fe\u4e4b\u95f4\u7684\u5173\u7cfb
"},{"location":"chapter_graph/graph/#911","title":"9.1.1 \u00a0 \u56fe\u5e38\u89c1\u7c7b\u578b\u4e0e\u672f\u8bed","text":"\u6839\u636e\u8fb9\u662f\u5426\u5177\u6709\u65b9\u5411\uff0c\u53ef\u5206\u4e3a\u300c\u65e0\u5411\u56fe undirected graph\u300d\u548c\u300c\u6709\u5411\u56fe directed graph\u300d\uff0c\u5982\u56fe 9-2 \u6240\u793a\u3002
- \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u8fb9\u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u7684\u201c\u53cc\u5411\u201d\u8fde\u63a5\u5173\u7cfb\uff0c\u4f8b\u5982\u5fae\u4fe1\u6216 QQ \u4e2d\u7684\u201c\u597d\u53cb\u5173\u7cfb\u201d\u3002
- \u5728\u6709\u5411\u56fe\u4e2d\uff0c\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u5373 \\(A \\rightarrow B\\) \u548c \\(A \\leftarrow B\\) \u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u4f8b\u5982\u5fae\u535a\u6216\u6296\u97f3\u4e0a\u7684\u201c\u5173\u6ce8\u201d\u4e0e\u201c\u88ab\u5173\u6ce8\u201d\u5173\u7cfb\u3002
\u56fe 9-2 \u00a0 \u6709\u5411\u56fe\u4e0e\u65e0\u5411\u56fe
\u6839\u636e\u6240\u6709\u9876\u70b9\u662f\u5426\u8fde\u901a\uff0c\u53ef\u5206\u4e3a\u300c\u8fde\u901a\u56fe connected graph\u300d\u548c\u300c\u975e\u8fde\u901a\u56fe disconnected graph\u300d\uff0c\u5982\u56fe 9-3 \u6240\u793a\u3002
- \u5bf9\u4e8e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u53ef\u4ee5\u5230\u8fbe\u5176\u4f59\u4efb\u610f\u9876\u70b9\u3002
- \u5bf9\u4e8e\u975e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002
\u56fe 9-3 \u00a0 \u8fde\u901a\u56fe\u4e0e\u975e\u8fde\u901a\u56fe
\u6211\u4eec\u8fd8\u53ef\u4ee5\u4e3a\u8fb9\u6dfb\u52a0\u201c\u6743\u91cd\u201d\u53d8\u91cf\uff0c\u4ece\u800c\u5f97\u5230\u5982\u56fe 9-4 \u6240\u793a\u7684\u300c\u6709\u6743\u56fe weighted graph\u300d\u3002\u4f8b\u5982\u5728\u201c\u738b\u8005\u8363\u8000\u201d\u7b49\u624b\u6e38\u4e2d\uff0c\u7cfb\u7edf\u4f1a\u6839\u636e\u5171\u540c\u6e38\u620f\u65f6\u95f4\u6765\u8ba1\u7b97\u73a9\u5bb6\u4e4b\u95f4\u7684\u201c\u4eb2\u5bc6\u5ea6\u201d\uff0c\u8fd9\u79cd\u4eb2\u5bc6\u5ea6\u7f51\u7edc\u5c31\u53ef\u4ee5\u7528\u6709\u6743\u56fe\u6765\u8868\u793a\u3002
\u56fe 9-4 \u00a0 \u6709\u6743\u56fe\u4e0e\u65e0\u6743\u56fe
\u56fe\u6570\u636e\u7ed3\u6784\u5305\u542b\u4ee5\u4e0b\u5e38\u7528\u672f\u8bed\u3002
- \u300c\u90bb\u63a5 adjacency\u300d\uff1a\u5f53\u4e24\u9876\u70b9\u4e4b\u95f4\u5b58\u5728\u8fb9\u76f8\u8fde\u65f6\uff0c\u79f0\u8fd9\u4e24\u9876\u70b9\u201c\u90bb\u63a5\u201d\u3002\u5728\u56fe 9-4 \u4e2d\uff0c\u9876\u70b9 1 \u7684\u90bb\u63a5\u9876\u70b9\u4e3a\u9876\u70b9 2\u30013\u30015\u3002
- \u300c\u8def\u5f84 path\u300d\uff1a\u4ece\u9876\u70b9 A \u5230\u9876\u70b9 B \u7ecf\u8fc7\u7684\u8fb9\u6784\u6210\u7684\u5e8f\u5217\u88ab\u79f0\u4e3a\u4ece A \u5230 B \u7684\u201c\u8def\u5f84\u201d\u3002\u5728\u56fe 9-4 \u4e2d\uff0c\u8fb9\u5e8f\u5217 1-5-2-4 \u662f\u9876\u70b9 1 \u5230\u9876\u70b9 4 \u7684\u4e00\u6761\u8def\u5f84\u3002
- \u300c\u5ea6 degree\u300d\uff1a\u4e00\u4e2a\u9876\u70b9\u62e5\u6709\u7684\u8fb9\u6570\u3002\u5bf9\u4e8e\u6709\u5411\u56fe\uff0c\u300c\u5165\u5ea6 in-degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u6307\u5411\u8be5\u9876\u70b9\uff0c\u300c\u51fa\u5ea6 out-degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u4ece\u8be5\u9876\u70b9\u6307\u51fa\u3002
"},{"location":"chapter_graph/graph/#912","title":"9.1.2 \u00a0 \u56fe\u7684\u8868\u793a","text":"\u56fe\u7684\u5e38\u7528\u8868\u793a\u65b9\u5f0f\u5305\u62ec\u201c\u90bb\u63a5\u77e9\u9635\u201d\u548c\u201c\u90bb\u63a5\u8868\u201d\u3002\u4ee5\u4e0b\u4f7f\u7528\u65e0\u5411\u56fe\u8fdb\u884c\u4e3e\u4f8b\u3002
"},{"location":"chapter_graph/graph/#1","title":"1. \u00a0 \u90bb\u63a5\u77e9\u9635","text":"\u8bbe\u56fe\u7684\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u300c\u90bb\u63a5\u77e9\u9635 adjacency matrix\u300d\u4f7f\u7528\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u662f\u5426\u5b58\u5728\u8fb9\u3002
\u5982\u56fe 9-5 \u6240\u793a\uff0c\u8bbe\u90bb\u63a5\u77e9\u9635\u4e3a \\(M\\)\u3001\u9876\u70b9\u5217\u8868\u4e3a \\(V\\) \uff0c\u90a3\u4e48\u77e9\u9635\u5143\u7d20 \\(M[i, j] = 1\\) \u8868\u793a\u9876\u70b9 \\(V[i]\\) \u5230\u9876\u70b9 \\(V[j]\\) \u4e4b\u95f4\u5b58\u5728\u8fb9\uff0c\u53cd\u4e4b \\(M[i, j] = 0\\) \u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u65e0\u8fb9\u3002
\u56fe 9-5 \u00a0 \u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a
\u90bb\u63a5\u77e9\u9635\u5177\u6709\u4ee5\u4e0b\u7279\u6027\u3002
- \u9876\u70b9\u4e0d\u80fd\u4e0e\u81ea\u8eab\u76f8\u8fde\uff0c\u56e0\u6b64\u90bb\u63a5\u77e9\u9635\u4e3b\u5bf9\u89d2\u7ebf\u5143\u7d20\u6ca1\u6709\u610f\u4e49\u3002
- \u5bf9\u4e8e\u65e0\u5411\u56fe\uff0c\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u7b49\u4ef7\uff0c\u6b64\u65f6\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\u3002
- \u5c06\u90bb\u63a5\u77e9\u9635\u7684\u5143\u7d20\u4ece \\(1\\) \u548c \\(0\\) \u66ff\u6362\u4e3a\u6743\u91cd\uff0c\u5219\u53ef\u8868\u793a\u6709\u6743\u56fe\u3002
\u4f7f\u7528\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u77e9\u9635\u5143\u7d20\u4ee5\u83b7\u53d6\u8fb9\uff0c\u56e0\u6b64\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002\u7136\u800c\uff0c\u77e9\u9635\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u5185\u5b58\u5360\u7528\u8f83\u591a\u3002
"},{"location":"chapter_graph/graph/#2","title":"2. \u00a0 \u90bb\u63a5\u8868","text":"\u300c\u90bb\u63a5\u8868 adjacency list\u300d\u4f7f\u7528 \\(n\\) \u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u94fe\u8868\u8282\u70b9\u8868\u793a\u9876\u70b9\u3002\u7b2c \\(i\\) \u4e2a\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff08\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u9876\u70b9\uff09\u3002\u56fe 9-6 \u5c55\u793a\u4e86\u4e00\u4e2a\u4f7f\u7528\u90bb\u63a5\u8868\u5b58\u50a8\u7684\u56fe\u7684\u793a\u4f8b\u3002
\u56fe 9-6 \u00a0 \u56fe\u7684\u90bb\u63a5\u8868\u8868\u793a
\u90bb\u63a5\u8868\u4ec5\u5b58\u50a8\u5b9e\u9645\u5b58\u5728\u7684\u8fb9\uff0c\u800c\u8fb9\u7684\u603b\u6570\u901a\u5e38\u8fdc\u5c0f\u4e8e \\(n^2\\) \uff0c\u56e0\u6b64\u5b83\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002\u7136\u800c\uff0c\u5728\u90bb\u63a5\u8868\u4e2d\u9700\u8981\u901a\u8fc7\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u56e0\u6b64\u5176\u65f6\u95f4\u6548\u7387\u4e0d\u5982\u90bb\u63a5\u77e9\u9635\u3002
\u89c2\u5bdf\u56fe 9-6 \uff0c\u90bb\u63a5\u8868\u7ed3\u6784\u4e0e\u54c8\u5e0c\u8868\u4e2d\u7684\u201c\u94fe\u5f0f\u5730\u5740\u201d\u975e\u5e38\u76f8\u4f3c\uff0c\u56e0\u6b64\u6211\u4eec\u4e5f\u53ef\u4ee5\u91c7\u7528\u7c7b\u4f3c\u7684\u65b9\u6cd5\u6765\u4f18\u5316\u6548\u7387\u3002\u6bd4\u5982\u5f53\u94fe\u8868\u8f83\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u5316\u4e3a AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u4ece\u800c\u5c06\u65f6\u95f4\u6548\u7387\u4ece \\(O(n)\\) \u4f18\u5316\u81f3 \\(O(\\log n)\\) \uff1b\u8fd8\u53ef\u4ee5\u628a\u94fe\u8868\u8f6c\u6362\u4e3a\u54c8\u5e0c\u8868\uff0c\u4ece\u800c\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u964d\u81f3 \\(O(1)\\) \u3002
"},{"location":"chapter_graph/graph/#913","title":"9.1.3 \u00a0 \u56fe\u5e38\u89c1\u5e94\u7528","text":"\u5982\u8868 9-1 \u6240\u793a\uff0c\u8bb8\u591a\u73b0\u5b9e\u7cfb\u7edf\u53ef\u4ee5\u7528\u56fe\u6765\u5efa\u6a21\uff0c\u76f8\u5e94\u7684\u95ee\u9898\u4e5f\u53ef\u4ee5\u7ea6\u5316\u4e3a\u56fe\u8ba1\u7b97\u95ee\u9898\u3002
\u8868 9-1 \u00a0 \u73b0\u5b9e\u751f\u6d3b\u4e2d\u5e38\u89c1\u7684\u56fe
\u9876\u70b9 \u8fb9 \u56fe\u8ba1\u7b97\u95ee\u9898 \u793e\u4ea4\u7f51\u7edc \u7528\u6237 \u597d\u53cb\u5173\u7cfb \u6f5c\u5728\u597d\u53cb\u63a8\u8350 \u5730\u94c1\u7ebf\u8def \u7ad9\u70b9 \u7ad9\u70b9\u95f4\u7684\u8fde\u901a\u6027 \u6700\u77ed\u8def\u7ebf\u63a8\u8350 \u592a\u9633\u7cfb \u661f\u4f53 \u661f\u4f53\u95f4\u7684\u4e07\u6709\u5f15\u529b\u4f5c\u7528 \u884c\u661f\u8f68\u9053\u8ba1\u7b97"},{"location":"chapter_graph/graph_operations/","title":"9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c","text":"\u56fe\u7684\u57fa\u7840\u64cd\u4f5c\u53ef\u5206\u4e3a\u5bf9\u201c\u8fb9\u201d\u7684\u64cd\u4f5c\u548c\u5bf9\u201c\u9876\u70b9\u201d\u7684\u64cd\u4f5c\u3002\u5728\u201c\u90bb\u63a5\u77e9\u9635\u201d\u548c\u201c\u90bb\u63a5\u8868\u201d\u4e24\u79cd\u8868\u793a\u65b9\u6cd5\u4e0b\uff0c\u5b9e\u73b0\u65b9\u5f0f\u6709\u6240\u4e0d\u540c\u3002
"},{"location":"chapter_graph/graph_operations/#921","title":"9.2.1 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u7684\u5b9e\u73b0","text":"\u7ed9\u5b9a\u4e00\u4e2a\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \u7684\u65e0\u5411\u56fe\uff0c\u5219\u5404\u79cd\u64cd\u4f5c\u7684\u5b9e\u73b0\u65b9\u5f0f\u5982\u56fe 9-7 \u6240\u793a\u3002
- \u6dfb\u52a0\u6216\u5220\u9664\u8fb9\uff1a\u76f4\u63a5\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u4fee\u6539\u6307\u5b9a\u7684\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u800c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u9700\u8981\u540c\u65f6\u66f4\u65b0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
- \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u7684\u5c3e\u90e8\u6dfb\u52a0\u4e00\u884c\u4e00\u5217\uff0c\u5e76\u5168\u90e8\u586b \\(0\\) \u5373\u53ef\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
- \u5220\u9664\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u4e00\u884c\u4e00\u5217\u3002\u5f53\u5220\u9664\u9996\u884c\u9996\u5217\u65f6\u8fbe\u5230\u6700\u5dee\u60c5\u51b5\uff0c\u9700\u8981\u5c06 \\((n-1)^2\\) \u4e2a\u5143\u7d20\u201c\u5411\u5de6\u4e0a\u79fb\u52a8\u201d\uff0c\u4ece\u800c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
- \u521d\u59cb\u5316\uff1a\u4f20\u5165 \\(n\\) \u4e2a\u9876\u70b9\uff0c\u521d\u59cb\u5316\u957f\u5ea6\u4e3a \\(n\\) \u7684\u9876\u70b9\u5217\u8868
vertices \uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff1b\u521d\u59cb\u5316 \\(n \\times n\\) \u5927\u5c0f\u7684\u90bb\u63a5\u77e9\u9635 adjMat \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
\u521d\u59cb\u5316\u90bb\u63a5\u77e9\u9635\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9 \u56fe 9-7 \u00a0 \u90bb\u63a5\u77e9\u9635\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9
\u4ee5\u4e0b\u662f\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u7684\u5b9e\u73b0\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_adjacency_matrix.pyclass GraphAdjMat:\n \"\"\"\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\n\n def __init__(self, vertices: list[int], edges: list[list[int]]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n # \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n self.vertices: list[int] = []\n # \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n self.adj_mat: list[list[int]] = []\n # \u6dfb\u52a0\u9876\u70b9\n for val in vertices:\n self.add_vertex(val)\n # \u6dfb\u52a0\u8fb9\n # \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for e in edges:\n self.add_edge(e[0], e[1])\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\n return len(self.vertices)\n\n def add_vertex(self, val: int):\n \"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\n n = self.size()\n # \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n self.vertices.append(val)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n new_row = [0] * n\n self.adj_mat.append(new_row)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for row in self.adj_mat:\n row.append(0)\n\n def remove_vertex(self, index: int):\n \"\"\"\u5220\u9664\u9876\u70b9\"\"\"\n if index >= self.size():\n raise IndexError()\n # \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n self.vertices.pop(index)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n self.adj_mat.pop(index)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for row in self.adj_mat:\n row.pop(index)\n\n def add_edge(self, i: int, j: int):\n \"\"\"\u6dfb\u52a0\u8fb9\"\"\"\n # \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n # \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\n raise IndexError()\n # \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n self.adj_mat[i][j] = 1\n self.adj_mat[j][i] = 1\n\n def remove_edge(self, i: int, j: int):\n \"\"\"\u5220\u9664\u8fb9\"\"\"\n # \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n # \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\n raise IndexError()\n self.adj_mat[i][j] = 0\n self.adj_mat[j][i] = 0\n\n def print(self):\n \"\"\"\u6253\u5370\u90bb\u63a5\u77e9\u9635\"\"\"\n print(\"\u9876\u70b9\u5217\u8868 =\", self.vertices)\n print(\"\u90bb\u63a5\u77e9\u9635 =\")\n print_matrix(self.adj_mat)\n
graph_adjacency_matrix.cpp/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n vector<int> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n vector<vector<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {\n // \u6dfb\u52a0\u9876\u70b9\n for (int val : vertices) {\n addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (const vector<int> &edge : edges) {\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() const {\n return vertices.size();\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(int val) {\n int n = size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.push_back(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n adjMat.emplace_back(vector<int>(n, 0));\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (vector<int> &row : adjMat) {\n row.push_back(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(int index) {\n if (index >= size()) {\n throw out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.erase(vertices.begin() + index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.erase(adjMat.begin() + index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (vector<int> &row : adjMat) {\n row.erase(row.begin() + index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void addEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1;\n adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void removeEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n }\n adjMat[i][j] = 0;\n adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n void print() {\n cout << \"\u9876\u70b9\u5217\u8868 = \";\n printVector(vertices);\n cout << \"\u90bb\u63a5\u77e9\u9635 =\" << endl;\n printVectorMatrix(adjMat);\n }\n};\n
graph_adjacency_matrix.java/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n List<Integer> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n List<List<Integer>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public GraphAdjMat(int[] vertices, int[][] edges) {\n this.vertices = new ArrayList<>();\n this.adjMat = new ArrayList<>();\n // \u6dfb\u52a0\u9876\u70b9\n for (int val : vertices) {\n addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (int[] e : edges) {\n addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n public int size() {\n return vertices.size();\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void addVertex(int val) {\n int n = size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.add(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n List<Integer> newRow = new ArrayList<>(n);\n for (int j = 0; j < n; j++) {\n newRow.add(0);\n }\n adjMat.add(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (List<Integer> row : adjMat) {\n row.add(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void removeVertex(int index) {\n if (index >= size())\n throw new IndexOutOfBoundsException();\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (List<Integer> row : adjMat) {\n row.remove(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void addEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\n throw new IndexOutOfBoundsException();\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat.get(i).set(j, 1);\n adjMat.get(j).set(i, 1);\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void removeEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\n throw new IndexOutOfBoundsException();\n adjMat.get(i).set(j, 0);\n adjMat.get(j).set(i, 0);\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n public void print() {\n System.out.print(\"\u9876\u70b9\u5217\u8868 = \");\n System.out.println(vertices);\n System.out.println(\"\u90bb\u63a5\u77e9\u9635 =\");\n PrintUtil.printMatrix(adjMat);\n }\n}\n
graph_adjacency_matrix.cs/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n List<int> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n List<List<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u51fd\u6570 */\n public GraphAdjMat(int[] vertices, int[][] edges) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n foreach (int val in vertices) {\n AddVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n foreach (int[] e in edges) {\n AddEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int Size() {\n return vertices.Count;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void AddVertex(int val) {\n int n = Size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.Add(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n List<int> newRow = new(n);\n for (int j = 0; j < n; j++) {\n newRow.Add(0);\n }\n adjMat.Add(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n foreach (List<int> row in adjMat) {\n row.Add(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void RemoveVertex(int index) {\n if (index >= Size())\n throw new IndexOutOfRangeException();\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.RemoveAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.RemoveAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n foreach (List<int> row in adjMat) {\n row.RemoveAt(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void AddEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)\n throw new IndexOutOfRangeException();\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1;\n adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void RemoveEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)\n throw new IndexOutOfRangeException();\n adjMat[i][j] = 0;\n adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n public void Print() {\n Console.Write(\"\u9876\u70b9\u5217\u8868 = \");\n PrintUtil.PrintList(vertices);\n Console.WriteLine(\"\u90bb\u63a5\u77e9\u9635 =\");\n PrintUtil.PrintMatrix(adjMat);\n }\n}\n
graph_adjacency_matrix.go/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjMat struct {\n // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n vertices []int\n // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n adjMat [][]int\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjMat(vertices []int, edges [][]int) *graphAdjMat {\n // \u6dfb\u52a0\u9876\u70b9\n n := len(vertices)\n adjMat := make([][]int, n)\n for i := range adjMat {\n adjMat[i] = make([]int, n)\n }\n // \u521d\u59cb\u5316\u56fe\n g := &graphAdjMat{\n vertices: vertices,\n adjMat: adjMat,\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for i := range edges {\n g.addEdge(edges[i][0], edges[i][1])\n }\n return g\n}\n\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjMat) size() int {\n return len(g.vertices)\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjMat) addVertex(val int) {\n n := g.size()\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n g.vertices = append(g.vertices, val)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n newRow := make([]int, n)\n g.adjMat = append(g.adjMat, newRow)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for i := range g.adjMat {\n g.adjMat[i] = append(g.adjMat[i], 0)\n }\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjMat) removeVertex(index int) {\n if index >= g.size() {\n return\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n g.vertices = append(g.vertices[:index], g.vertices[index+1:]...)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n g.adjMat = append(g.adjMat[:index], g.adjMat[index+1:]...)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for i := range g.adjMat {\n g.adjMat[i] = append(g.adjMat[i][:index], g.adjMat[i][index+1:]...)\n }\n}\n\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) addEdge(i, j int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\n fmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n g.adjMat[i][j] = 1\n g.adjMat[j][i] = 1\n}\n\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) removeEdge(i, j int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\n fmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n }\n g.adjMat[i][j] = 0\n g.adjMat[j][i] = 0\n}\n\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nfunc (g *graphAdjMat) print() {\n fmt.Printf(\"\\t\u9876\u70b9\u5217\u8868 = %v\\n\", g.vertices)\n fmt.Printf(\"\\t\u90bb\u63a5\u77e9\u9635 = \\n\")\n for i := range g.adjMat {\n fmt.Printf(\"\\t\\t\\t%v\\n\", g.adjMat[i])\n }\n}\n
graph_adjacency_matrix.swift/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n private var vertices: [Int] // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n private var adjMat: [[Int]] // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init(vertices: [Int], edges: [[Int]]) {\n self.vertices = []\n adjMat = []\n // \u6dfb\u52a0\u9876\u70b9\n for val in vertices {\n addVertex(val: val)\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for e in edges {\n addEdge(i: e[0], j: e[1])\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n func size() -> Int {\n vertices.count\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n func addVertex(val: Int) {\n let n = size()\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.append(val)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n let newRow = Array(repeating: 0, count: n)\n adjMat.append(newRow)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for i in adjMat.indices {\n adjMat[i].append(0)\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n func removeVertex(index: Int) {\n if index >= size() {\n fatalError(\"\u8d8a\u754c\")\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.remove(at: index)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.remove(at: index)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for i in adjMat.indices {\n adjMat[i].remove(at: index)\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n func addEdge(i: Int, j: Int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= size() || j >= size() || i == j {\n fatalError(\"\u8d8a\u754c\")\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1\n adjMat[j][i] = 1\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n func removeEdge(i: Int, j: Int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= size() || j >= size() || i == j {\n fatalError(\"\u8d8a\u754c\")\n }\n adjMat[i][j] = 0\n adjMat[j][i] = 0\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n func print() {\n Swift.print(\"\u9876\u70b9\u5217\u8868 = \", terminator: \"\")\n Swift.print(vertices)\n Swift.print(\"\u90bb\u63a5\u77e9\u9635 =\")\n PrintUtil.printMatrix(matrix: adjMat)\n }\n}\n
graph_adjacency_matrix.js/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u51fd\u6570 */\n constructor(vertices, edges) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n for (const val of vertices) {\n this.addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (const e of edges) {\n this.addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size() {\n return this.vertices.length;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(val) {\n const n = this.size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n this.vertices.push(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n const newRow = [];\n for (let j = 0; j < n; j++) {\n newRow.push(0);\n }\n this.adjMat.push(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (const row of this.adjMat) {\n row.push(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(index) {\n if (index >= this.size()) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n this.vertices.splice(index, 1);\n\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n this.adjMat.splice(index, 1);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (const row of this.adjMat) {\n row.splice(index, 1);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n addEdge(i, j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\n this.adjMat[i][j] = 1;\n this.adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n removeEdge(i, j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n this.adjMat[i][j] = 0;\n this.adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n print() {\n console.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\n console.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n }\n}\n
graph_adjacency_matrix.ts/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n vertices: number[]; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n adjMat: number[][]; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u51fd\u6570 */\n constructor(vertices: number[], edges: number[][]) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n for (const val of vertices) {\n this.addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (const e of edges) {\n this.addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size(): number {\n return this.vertices.length;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(val: number): void {\n const n: number = this.size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n this.vertices.push(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n const newRow: number[] = [];\n for (let j: number = 0; j < n; j++) {\n newRow.push(0);\n }\n this.adjMat.push(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (const row of this.adjMat) {\n row.push(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(index: number): void {\n if (index >= this.size()) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n this.vertices.splice(index, 1);\n\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n this.adjMat.splice(index, 1);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (const row of this.adjMat) {\n row.splice(index, 1);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n addEdge(i: number, j: number): void {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\n this.adjMat[i][j] = 1;\n this.adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n removeEdge(i: number, j: number): void {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n this.adjMat[i][j] = 0;\n this.adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n print(): void {\n console.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\n console.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n }\n}\n
graph_adjacency_matrix.dart/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n List<int> vertices = []; // \u9876\u70b9\u5143\u7d20\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n List<List<int>> adjMat = []; //\u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjMat(List<int> vertices, List<List<int>> edges) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n for (int val in vertices) {\n addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (List<int> e in edges) {\n addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() {\n return vertices.length;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(int val) {\n int n = size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.add(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n List<int> newRow = List.filled(n, 0, growable: true);\n adjMat.add(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (List<int> row in adjMat) {\n row.add(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(int index) {\n if (index >= size()) {\n throw IndexError;\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.removeAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.removeAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (List<int> row in adjMat) {\n row.removeAt(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void addEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw IndexError;\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1;\n adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void removeEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw IndexError;\n }\n adjMat[i][j] = 0;\n adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n void printAdjMat() {\n print(\"\u9876\u70b9\u5217\u8868 = $vertices\");\n print(\"\u90bb\u63a5\u77e9\u9635 = \");\n printMatrix(adjMat);\n }\n}\n
graph_adjacency_matrix.rs/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjMat {\n // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n pub vertices: Vec<i32>,\n // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n pub adj_mat: Vec<Vec<i32>>,\n}\n\nimpl GraphAdjMat {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(vertices: Vec<i32>, edges: Vec<[usize; 2]>) -> Self {\n let mut graph = GraphAdjMat {\n vertices: vec![],\n adj_mat: vec![],\n };\n // \u6dfb\u52a0\u9876\u70b9\n for val in vertices {\n graph.add_vertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for edge in edges {\n graph.add_edge(edge[0], edge[1])\n }\n\n graph\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n pub fn size(&self) -> usize {\n self.vertices.len()\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n pub fn add_vertex(&mut self, val: i32) {\n let n = self.size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n self.vertices.push(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n self.adj_mat.push(vec![0; n]);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for row in &mut self.adj_mat {\n row.push(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n pub fn remove_vertex(&mut self, index: usize) {\n if index >= self.size() {\n panic!(\"index error\")\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n self.vertices.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n self.adj_mat.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for row in &mut self.adj_mat {\n row.remove(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n pub fn add_edge(&mut self, i: usize, j: usize) {\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i >= self.size() || j >= self.size() || i == j {\n panic!(\"index error\")\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n self.adj_mat[i][j] = 1;\n self.adj_mat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n pub fn remove_edge(&mut self, i: usize, j: usize) {\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i >= self.size() || j >= self.size() || i == j {\n panic!(\"index error\")\n }\n self.adj_mat[i][j] = 0;\n self.adj_mat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n pub fn print(&self) {\n println!(\"\u9876\u70b9\u5217\u8868 = {:?}\", self.vertices);\n println!(\"\u90bb\u63a5\u77e9\u9635 =\");\n println!(\"[\");\n for row in &self.adj_mat {\n println!(\" {:?},\", row);\n }\n println!(\"]\")\n }\n}\n
graph_adjacency_matrix.c/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7ed3\u6784\u4f53 */\ntypedef struct {\n int vertices[MAX_SIZE];\n int adjMat[MAX_SIZE][MAX_SIZE];\n int size;\n} GraphAdjMat;\n\n/* \u6784\u9020\u51fd\u6570 */\nGraphAdjMat *newGraphAdjMat() {\n GraphAdjMat *graph = (GraphAdjMat *)malloc(sizeof(GraphAdjMat));\n graph->size = 0;\n for (int i = 0; i < MAX_SIZE; i++) {\n for (int j = 0; j < MAX_SIZE; j++) {\n graph->adjMat[i][j] = 0;\n }\n }\n return graph;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delGraphAdjMat(GraphAdjMat *graph) {\n free(graph);\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(GraphAdjMat *graph, int val) {\n if (graph->size == MAX_SIZE) {\n fprintf(stderr, \"\u56fe\u7684\u9876\u70b9\u6570\u91cf\u5df2\u8fbe\u6700\u5927\u503c\\n\");\n return;\n }\n // \u6dfb\u52a0\u7b2c n \u4e2a\u9876\u70b9\uff0c\u5e76\u5c06\u7b2c n \u884c\u548c\u5217\u7f6e\u96f6\n int n = graph->size;\n graph->vertices[n] = val;\n for (int i = 0; i <= n; i++) {\n graph->adjMat[n][i] = graph->adjMat[i][n] = 0;\n }\n graph->size++;\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(GraphAdjMat *graph, int index) {\n if (index < 0 || index >= graph->size) {\n fprintf(stderr, \"\u9876\u70b9\u7d22\u5f15\u8d8a\u754c\\n\");\n return;\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n for (int i = index; i < graph->size - 1; i++) {\n graph->vertices[i] = graph->vertices[i + 1];\n }\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n for (int i = index; i < graph->size - 1; i++) {\n for (int j = 0; j < graph->size; j++) {\n graph->adjMat[i][j] = graph->adjMat[i + 1][j];\n }\n }\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (int i = 0; i < graph->size; i++) {\n for (int j = index; j < graph->size - 1; j++) {\n graph->adjMat[i][j] = graph->adjMat[i][j + 1];\n }\n }\n graph->size--;\n}\n\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(GraphAdjMat *graph, int i, int j) {\n if (i < 0 || j < 0 || i >= graph->size || j >= graph->size || i == j) {\n fprintf(stderr, \"\u8fb9\u7d22\u5f15\u8d8a\u754c\u6216\u76f8\u7b49\\n\");\n return;\n }\n graph->adjMat[i][j] = 1;\n graph->adjMat[j][i] = 1;\n}\n\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(GraphAdjMat *graph, int i, int j) {\n if (i < 0 || j < 0 || i >= graph->size || j >= graph->size || i == j) {\n fprintf(stderr, \"\u8fb9\u7d22\u5f15\u8d8a\u754c\u6216\u76f8\u7b49\\n\");\n return;\n }\n graph->adjMat[i][j] = 0;\n graph->adjMat[j][i] = 0;\n}\n\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nvoid printGraphAdjMat(GraphAdjMat *graph) {\n printf(\"\u9876\u70b9\u5217\u8868 = \");\n printArray(graph->vertices, graph->size);\n printf(\"\u90bb\u63a5\u77e9\u9635 =\\n\");\n for (int i = 0; i < graph->size; i++) {\n printArray(graph->adjMat[i], graph->size);\n }\n}\n
graph_adjacency_matrix.zig[class]{GraphAdjMat}-[func]{}\n
"},{"location":"chapter_graph/graph_operations/#922","title":"9.2.2 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u8868\u7684\u5b9e\u73b0","text":"\u8bbe\u65e0\u5411\u56fe\u7684\u9876\u70b9\u603b\u6570\u4e3a \\(n\\)\u3001\u8fb9\u603b\u6570\u4e3a \\(m\\) \uff0c\u5219\u53ef\u6839\u636e\u56fe 9-8 \u6240\u793a\u7684\u65b9\u6cd5\u5b9e\u73b0\u5404\u79cd\u64cd\u4f5c\u3002
- \u6dfb\u52a0\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u7684\u672b\u5c3e\u6dfb\u52a0\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u4e3a\u662f\u65e0\u5411\u56fe\uff0c\u6240\u4ee5\u9700\u8981\u540c\u65f6\u6dfb\u52a0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
- \u5220\u9664\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u4e2d\u67e5\u627e\u5e76\u5220\u9664\u6307\u5b9a\u8fb9\uff0c\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\u3002\u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u9700\u8981\u540c\u65f6\u5220\u9664\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
- \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u94fe\u8868\uff0c\u5e76\u5c06\u65b0\u589e\u9876\u70b9\u4f5c\u4e3a\u94fe\u8868\u5934\u8282\u70b9\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
- \u5220\u9664\u9876\u70b9\uff1a\u9700\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5220\u9664\u5305\u542b\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
- \u521d\u59cb\u5316\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u521b\u5efa \\(n\\) \u4e2a\u9876\u70b9\u548c \\(2m\\) \u6761\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
\u521d\u59cb\u5316\u90bb\u63a5\u8868\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9 \u56fe 9-8 \u00a0 \u90bb\u63a5\u8868\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9
\u4ee5\u4e0b\u662f\u90bb\u63a5\u8868\u7684\u4ee3\u7801\u5b9e\u73b0\u3002\u5bf9\u6bd4\u56fe 9-8 \uff0c\u5b9e\u9645\u4ee3\u7801\u6709\u4ee5\u4e0b\u4e0d\u540c\u3002
- \u4e3a\u4e86\u65b9\u4fbf\u6dfb\u52a0\u4e0e\u5220\u9664\u9876\u70b9\uff0c\u4ee5\u53ca\u7b80\u5316\u4ee3\u7801\uff0c\u6211\u4eec\u4f7f\u7528\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u6765\u4ee3\u66ff\u94fe\u8868\u3002
- \u4f7f\u7528\u54c8\u5e0c\u8868\u6765\u5b58\u50a8\u90bb\u63a5\u8868\uff0c
key \u4e3a\u9876\u70b9\u5b9e\u4f8b\uff0cvalue \u4e3a\u8be5\u9876\u70b9\u7684\u90bb\u63a5\u9876\u70b9\u5217\u8868\uff08\u94fe\u8868\uff09\u3002
\u53e6\u5916\uff0c\u6211\u4eec\u5728\u90bb\u63a5\u8868\u4e2d\u4f7f\u7528 Vertex \u7c7b\u6765\u8868\u793a\u9876\u70b9\uff0c\u8fd9\u6837\u505a\u7684\u539f\u56e0\u662f\uff1a\u5982\u679c\u4e0e\u90bb\u63a5\u77e9\u9635\u4e00\u6837\uff0c\u7528\u5217\u8868\u7d22\u5f15\u6765\u533a\u5206\u4e0d\u540c\u9876\u70b9\uff0c\u90a3\u4e48\u5047\u8bbe\u8981\u5220\u9664\u7d22\u5f15\u4e3a \\(i\\) \u7684\u9876\u70b9\uff0c\u5219\u9700\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5c06\u6240\u6709\u5927\u4e8e \\(i\\) \u7684\u7d22\u5f15\u5168\u90e8\u51cf \\(1\\) \uff0c\u6548\u7387\u5f88\u4f4e\u3002\u800c\u5982\u679c\u6bcf\u4e2a\u9876\u70b9\u90fd\u662f\u552f\u4e00\u7684 Vertex \u5b9e\u4f8b\uff0c\u5220\u9664\u67d0\u4e00\u9876\u70b9\u4e4b\u540e\u5c31\u65e0\u987b\u6539\u52a8\u5176\u4ed6\u9876\u70b9\u4e86\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_adjacency_list.pyclass GraphAdjList:\n \"\"\"\u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\n\n def __init__(self, edges: list[list[Vertex]]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n # \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n self.adj_list = dict[Vertex, list[Vertex]]()\n # \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for edge in edges:\n self.add_vertex(edge[0])\n self.add_vertex(edge[1])\n self.add_edge(edge[0], edge[1])\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\n return len(self.adj_list)\n\n def add_edge(self, vet1: Vertex, vet2: Vertex):\n \"\"\"\u6dfb\u52a0\u8fb9\"\"\"\n if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\n raise ValueError()\n # \u6dfb\u52a0\u8fb9 vet1 - vet2\n self.adj_list[vet1].append(vet2)\n self.adj_list[vet2].append(vet1)\n\n def remove_edge(self, vet1: Vertex, vet2: Vertex):\n \"\"\"\u5220\u9664\u8fb9\"\"\"\n if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\n raise ValueError()\n # \u5220\u9664\u8fb9 vet1 - vet2\n self.adj_list[vet1].remove(vet2)\n self.adj_list[vet2].remove(vet1)\n\n def add_vertex(self, vet: Vertex):\n \"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\n if vet in self.adj_list:\n return\n # \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n self.adj_list[vet] = []\n\n def remove_vertex(self, vet: Vertex):\n \"\"\"\u5220\u9664\u9876\u70b9\"\"\"\n if vet not in self.adj_list:\n raise ValueError()\n # \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n self.adj_list.pop(vet)\n # \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for vertex in self.adj_list:\n if vet in self.adj_list[vertex]:\n self.adj_list[vertex].remove(vet)\n\n def print(self):\n \"\"\"\u6253\u5370\u90bb\u63a5\u8868\"\"\"\n print(\"\u90bb\u63a5\u8868 =\")\n for vertex in self.adj_list:\n tmp = [v.val for v in self.adj_list[vertex]]\n print(f\"{vertex.val}: {tmp},\")\n
graph_adjacency_list.cpp/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n public:\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n unordered_map<Vertex *, vector<Vertex *>> adjList;\n\n /* \u5728 vector \u4e2d\u5220\u9664\u6307\u5b9a\u8282\u70b9 */\n void remove(vector<Vertex *> &vec, Vertex *vet) {\n for (int i = 0; i < vec.size(); i++) {\n if (vec[i] == vet) {\n vec.erase(vec.begin() + i);\n break;\n }\n }\n }\n\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjList(const vector<vector<Vertex *>> &edges) {\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (const vector<Vertex *> &edge : edges) {\n addVertex(edge[0]);\n addVertex(edge[1]);\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() {\n return adjList.size();\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n void addEdge(Vertex *vet1, Vertex *vet2) {\n if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\n throw invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1].push_back(vet2);\n adjList[vet2].push_back(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n void removeEdge(Vertex *vet1, Vertex *vet2) {\n if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\n throw invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n // \u5220\u9664\u8fb9 vet1 - vet2\n remove(adjList[vet1], vet2);\n remove(adjList[vet2], vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(Vertex *vet) {\n if (adjList.count(vet))\n return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList[vet] = vector<Vertex *>();\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(Vertex *vet) {\n if (!adjList.count(vet))\n throw invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.erase(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (auto &adj : adjList) {\n remove(adj.second, vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n void print() {\n cout << \"\u90bb\u63a5\u8868 =\" << endl;\n for (auto &adj : adjList) {\n const auto &key = adj.first;\n const auto &vec = adj.second;\n cout << key->val << \": \";\n printVector(vetsToVals(vec));\n }\n }\n};\n
graph_adjacency_list.java/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n Map<Vertex, List<Vertex>> adjList;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public GraphAdjList(Vertex[][] edges) {\n this.adjList = new HashMap<>();\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (Vertex[] edge : edges) {\n addVertex(edge[0]);\n addVertex(edge[1]);\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n public int size() {\n return adjList.size();\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n public void addEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\n throw new IllegalArgumentException();\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList.get(vet1).add(vet2);\n adjList.get(vet2).add(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n public void removeEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\n throw new IllegalArgumentException();\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList.get(vet1).remove(vet2);\n adjList.get(vet2).remove(vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void addVertex(Vertex vet) {\n if (adjList.containsKey(vet))\n return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList.put(vet, new ArrayList<>());\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void removeVertex(Vertex vet) {\n if (!adjList.containsKey(vet))\n throw new IllegalArgumentException();\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.remove(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (List<Vertex> list : adjList.values()) {\n list.remove(vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n public void print() {\n System.out.println(\"\u90bb\u63a5\u8868 =\");\n for (Map.Entry<Vertex, List<Vertex>> pair : adjList.entrySet()) {\n List<Integer> tmp = new ArrayList<>();\n for (Vertex vertex : pair.getValue())\n tmp.add(vertex.val);\n System.out.println(pair.getKey().val + \": \" + tmp + \",\");\n }\n }\n}\n
graph_adjacency_list.cs/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n public Dictionary<Vertex, List<Vertex>> adjList;\n\n /* \u6784\u9020\u51fd\u6570 */\n public GraphAdjList(Vertex[][] edges) {\n adjList = [];\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n foreach (Vertex[] edge in edges) {\n AddVertex(edge[0]);\n AddVertex(edge[1]);\n AddEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int Size() {\n return adjList.Count;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n public void AddEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\n throw new InvalidOperationException();\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1].Add(vet2);\n adjList[vet2].Add(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n public void RemoveEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\n throw new InvalidOperationException();\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList[vet1].Remove(vet2);\n adjList[vet2].Remove(vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void AddVertex(Vertex vet) {\n if (adjList.ContainsKey(vet))\n return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList.Add(vet, []);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void RemoveVertex(Vertex vet) {\n if (!adjList.ContainsKey(vet))\n throw new InvalidOperationException();\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.Remove(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n foreach (List<Vertex> list in adjList.Values) {\n list.Remove(vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n public void Print() {\n Console.WriteLine(\"\u90bb\u63a5\u8868 =\");\n foreach (KeyValuePair<Vertex, List<Vertex>> pair in adjList) {\n List<int> tmp = [];\n foreach (Vertex vertex in pair.Value)\n tmp.Add(vertex.val);\n Console.WriteLine(pair.Key.val + \": [\" + string.Join(\", \", tmp) + \"],\");\n }\n }\n}\n
graph_adjacency_list.go/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjList struct {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n adjList map[Vertex][]Vertex\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjList(edges [][]Vertex) *graphAdjList {\n g := &graphAdjList{\n adjList: make(map[Vertex][]Vertex),\n }\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for _, edge := range edges {\n g.addVertex(edge[0])\n g.addVertex(edge[1])\n g.addEdge(edge[0], edge[1])\n }\n return g\n}\n\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjList) size() int {\n return len(g.adjList)\n}\n\n/* \u6dfb\u52a0\u8fb9 */\nfunc (g *graphAdjList) addEdge(vet1 Vertex, vet2 Vertex) {\n _, ok1 := g.adjList[vet1]\n _, ok2 := g.adjList[vet2]\n if !ok1 || !ok2 || vet1 == vet2 {\n panic(\"error\")\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2, \u6dfb\u52a0\u533f\u540d struct{},\n g.adjList[vet1] = append(g.adjList[vet1], vet2)\n g.adjList[vet2] = append(g.adjList[vet2], vet1)\n}\n\n/* \u5220\u9664\u8fb9 */\nfunc (g *graphAdjList) removeEdge(vet1 Vertex, vet2 Vertex) {\n _, ok1 := g.adjList[vet1]\n _, ok2 := g.adjList[vet2]\n if !ok1 || !ok2 || vet1 == vet2 {\n panic(\"error\")\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n g.adjList[vet1] = DeleteSliceElms(g.adjList[vet1], vet2)\n g.adjList[vet2] = DeleteSliceElms(g.adjList[vet2], vet1)\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjList) addVertex(vet Vertex) {\n _, ok := g.adjList[vet]\n if ok {\n return\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n g.adjList[vet] = make([]Vertex, 0)\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjList) removeVertex(vet Vertex) {\n _, ok := g.adjList[vet]\n if !ok {\n panic(\"error\")\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n delete(g.adjList, vet)\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for v, list := range g.adjList {\n g.adjList[v] = DeleteSliceElms(list, vet)\n }\n}\n\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nfunc (g *graphAdjList) print() {\n var builder strings.Builder\n fmt.Printf(\"\u90bb\u63a5\u8868 = \\n\")\n for k, v := range g.adjList {\n builder.WriteString(\"\\t\\t\" + strconv.Itoa(k.Val) + \": \")\n for _, vet := range v {\n builder.WriteString(strconv.Itoa(vet.Val) + \" \")\n }\n fmt.Println(builder.String())\n builder.Reset()\n }\n}\n
graph_adjacency_list.swift/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n public private(set) var adjList: [Vertex: [Vertex]]\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public init(edges: [[Vertex]]) {\n adjList = [:]\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for edge in edges {\n addVertex(vet: edge[0])\n addVertex(vet: edge[1])\n addEdge(vet1: edge[0], vet2: edge[1])\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n public func size() -> Int {\n adjList.count\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n public func addEdge(vet1: Vertex, vet2: Vertex) {\n if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\n fatalError(\"\u53c2\u6570\u9519\u8bef\")\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1]?.append(vet2)\n adjList[vet2]?.append(vet1)\n }\n\n /* \u5220\u9664\u8fb9 */\n public func removeEdge(vet1: Vertex, vet2: Vertex) {\n if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\n fatalError(\"\u53c2\u6570\u9519\u8bef\")\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList[vet1]?.removeAll(where: { $0 == vet2 })\n adjList[vet2]?.removeAll(where: { $0 == vet1 })\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public func addVertex(vet: Vertex) {\n if adjList[vet] != nil {\n return\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList[vet] = []\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public func removeVertex(vet: Vertex) {\n if adjList[vet] == nil {\n fatalError(\"\u53c2\u6570\u9519\u8bef\")\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.removeValue(forKey: vet)\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for key in adjList.keys {\n adjList[key]?.removeAll(where: { $0 == vet })\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n public func print() {\n Swift.print(\"\u90bb\u63a5\u8868 =\")\n for pair in adjList {\n var tmp: [Int] = []\n for vertex in pair.value {\n tmp.append(vertex.val)\n }\n Swift.print(\"\\(pair.key.val): \\(tmp),\")\n }\n }\n}\n
graph_adjacency_list.js/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n adjList;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(edges) {\n this.adjList = new Map();\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (const edge of edges) {\n this.addVertex(edge[0]);\n this.addVertex(edge[1]);\n this.addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size() {\n return this.adjList.size;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n addEdge(vet1, vet2) {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n this.adjList.get(vet1).push(vet2);\n this.adjList.get(vet2).push(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n removeEdge(vet1, vet2) {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n this.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\n this.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(vet) {\n if (this.adjList.has(vet)) return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n this.adjList.set(vet, []);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(vet) {\n if (!this.adjList.has(vet)) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n this.adjList.delete(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (const set of this.adjList.values()) {\n const index = set.indexOf(vet);\n if (index > -1) {\n set.splice(index, 1);\n }\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n print() {\n console.log('\u90bb\u63a5\u8868 =');\n for (const [key, value] of this.adjList) {\n const tmp = [];\n for (const vertex of value) {\n tmp.push(vertex.val);\n }\n console.log(key.val + ': ' + tmp.join());\n }\n }\n}\n
graph_adjacency_list.ts/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n adjList: Map<Vertex, Vertex[]>;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(edges: Vertex[][]) {\n this.adjList = new Map();\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (const edge of edges) {\n this.addVertex(edge[0]);\n this.addVertex(edge[1]);\n this.addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size(): number {\n return this.adjList.size;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n addEdge(vet1: Vertex, vet2: Vertex): void {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n this.adjList.get(vet1).push(vet2);\n this.adjList.get(vet2).push(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n removeEdge(vet1: Vertex, vet2: Vertex): void {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n this.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\n this.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(vet: Vertex): void {\n if (this.adjList.has(vet)) return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n this.adjList.set(vet, []);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(vet: Vertex): void {\n if (!this.adjList.has(vet)) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n this.adjList.delete(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (const set of this.adjList.values()) {\n const index: number = set.indexOf(vet);\n if (index > -1) {\n set.splice(index, 1);\n }\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n print(): void {\n console.log('\u90bb\u63a5\u8868 =');\n for (const [key, value] of this.adjList.entries()) {\n const tmp = [];\n for (const vertex of value) {\n tmp.push(vertex.val);\n }\n console.log(key.val + ': ' + tmp.join());\n }\n }\n}\n
graph_adjacency_list.dart/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n Map<Vertex, List<Vertex>> adjList = {};\n\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjList(List<List<Vertex>> edges) {\n for (List<Vertex> edge in edges) {\n addVertex(edge[0]);\n addVertex(edge[1]);\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() {\n return adjList.length;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n void addEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) ||\n !adjList.containsKey(vet2) ||\n vet1 == vet2) {\n throw ArgumentError;\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1]!.add(vet2);\n adjList[vet2]!.add(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n void removeEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) ||\n !adjList.containsKey(vet2) ||\n vet1 == vet2) {\n throw ArgumentError;\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList[vet1]!.remove(vet2);\n adjList[vet2]!.remove(vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(Vertex vet) {\n if (adjList.containsKey(vet)) return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList[vet] = [];\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(Vertex vet) {\n if (!adjList.containsKey(vet)) {\n throw ArgumentError;\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.remove(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n adjList.forEach((key, value) {\n value.remove(vet);\n });\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n void printAdjList() {\n print(\"\u90bb\u63a5\u8868 =\");\n adjList.forEach((key, value) {\n List<int> tmp = [];\n for (Vertex vertex in value) {\n tmp.add(vertex.val);\n }\n print(\"${key.val}: $tmp,\");\n });\n }\n}\n
graph_adjacency_list.rs/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n pub adj_list: HashMap<Vertex, Vec<Vertex>>,\n}\n\nimpl GraphAdjList {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(edges: Vec<[Vertex; 2]>) -> Self {\n let mut graph = GraphAdjList {\n adj_list: HashMap::new(),\n };\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for edge in edges {\n graph.add_vertex(edge[0]);\n graph.add_vertex(edge[1]);\n graph.add_edge(edge[0], edge[1]);\n }\n\n graph\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n #[allow(unused)]\n pub fn size(&self) -> usize {\n self.adj_list.len()\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n pub fn add_edge(&mut self, vet1: Vertex, vet2: Vertex) {\n if !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n {\n panic!(\"value error\");\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n self.adj_list.get_mut(&vet1).unwrap().push(vet2);\n self.adj_list.get_mut(&vet2).unwrap().push(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n #[allow(unused)]\n pub fn remove_edge(&mut self, vet1: Vertex, vet2: Vertex) {\n if !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n {\n panic!(\"value error\");\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n self.adj_list\n .get_mut(&vet1)\n .unwrap()\n .retain(|&vet| vet != vet2);\n self.adj_list\n .get_mut(&vet2)\n .unwrap()\n .retain(|&vet| vet != vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n pub fn add_vertex(&mut self, vet: Vertex) {\n if self.adj_list.contains_key(&vet) {\n return;\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n self.adj_list.insert(vet, vec![]);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n #[allow(unused)]\n pub fn remove_vertex(&mut self, vet: Vertex) {\n if !self.adj_list.contains_key(&vet) {\n panic!(\"value error\");\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n self.adj_list.remove(&vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for list in self.adj_list.values_mut() {\n list.retain(|&v| v != vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n pub fn print(&self) {\n println!(\"\u90bb\u63a5\u8868 =\");\n for (vertex, list) in &self.adj_list {\n let list = list.iter().map(|vertex| vertex.val).collect::<Vec<i32>>();\n println!(\"{}: {:?},\", vertex.val, list);\n }\n }\n}\n
graph_adjacency_list.c/* \u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct AdjListNode {\n Vertex *vertex; // \u9876\u70b9\n struct AdjListNode *next; // \u540e\u7ee7\u8282\u70b9\n} AdjListNode;\n\n/* \u67e5\u627e\u9876\u70b9\u5bf9\u5e94\u7684\u8282\u70b9 */\nAdjListNode *findNode(GraphAdjList *graph, Vertex *vet) {\n for (int i = 0; i < graph->size; i++) {\n if (graph->heads[i]->vertex == vet) {\n return graph->heads[i];\n }\n }\n return NULL;\n}\n\n/* \u6dfb\u52a0\u8fb9\u8f85\u52a9\u51fd\u6570 */\nvoid addEdgeHelper(AdjListNode *head, Vertex *vet) {\n AdjListNode *node = (AdjListNode *)malloc(sizeof(AdjListNode));\n node->vertex = vet;\n // \u5934\u63d2\u6cd5\n node->next = head->next;\n head->next = node;\n}\n\n/* \u5220\u9664\u8fb9\u8f85\u52a9\u51fd\u6570 */\nvoid removeEdgeHelper(AdjListNode *head, Vertex *vet) {\n AdjListNode *pre = head;\n AdjListNode *cur = head->next;\n // \u5728\u94fe\u8868\u4e2d\u641c\u7d22 vet \u5bf9\u5e94\u8282\u70b9\n while (cur != NULL && cur->vertex != vet) {\n pre = cur;\n cur = cur->next;\n }\n if (cur == NULL)\n return;\n // \u5c06 vet \u5bf9\u5e94\u8282\u70b9\u4ece\u94fe\u8868\u4e2d\u5220\u9664\n pre->next = cur->next;\n // \u91ca\u653e\u5185\u5b58\n free(cur);\n}\n\n/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntypedef struct {\n AdjListNode *heads[MAX_SIZE]; // \u8282\u70b9\u6570\u7ec4\n int size; // \u8282\u70b9\u6570\u91cf\n} GraphAdjList;\n\n/* \u6784\u9020\u51fd\u6570 */\nGraphAdjList *newGraphAdjList() {\n GraphAdjList *graph = (GraphAdjList *)malloc(sizeof(GraphAdjList));\n if (!graph) {\n return NULL;\n }\n graph->size = 0;\n for (int i = 0; i < MAX_SIZE; i++) {\n graph->heads[i] = NULL;\n }\n return graph;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delGraphAdjList(GraphAdjList *graph) {\n for (int i = 0; i < graph->size; i++) {\n AdjListNode *cur = graph->heads[i];\n while (cur != NULL) {\n AdjListNode *next = cur->next;\n if (cur != graph->heads[i]) {\n free(cur);\n }\n cur = next;\n }\n free(graph->heads[i]->vertex);\n free(graph->heads[i]);\n }\n free(graph);\n}\n\n/* \u67e5\u627e\u9876\u70b9\u5bf9\u5e94\u7684\u8282\u70b9 */\nAdjListNode *findNode(GraphAdjList *graph, Vertex *vet) {\n for (int i = 0; i < graph->size; i++) {\n if (graph->heads[i]->vertex == vet) {\n return graph->heads[i];\n }\n }\n return NULL;\n}\n\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(GraphAdjList *graph, Vertex *vet1, Vertex *vet2) {\n AdjListNode *head1 = findNode(graph, vet1);\n AdjListNode *head2 = findNode(graph, vet2);\n assert(head1 != NULL && head2 != NULL && head1 != head2);\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n addEdgeHelper(head1, vet2);\n addEdgeHelper(head2, vet1);\n}\n\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(GraphAdjList *graph, Vertex *vet1, Vertex *vet2) {\n AdjListNode *head1 = findNode(graph, vet1);\n AdjListNode *head2 = findNode(graph, vet2);\n assert(head1 != NULL && head2 != NULL);\n // \u5220\u9664\u8fb9 vet1 - vet2\n removeEdgeHelper(head1, head2->vertex);\n removeEdgeHelper(head2, head1->vertex);\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(GraphAdjList *graph, Vertex *vet) {\n assert(graph != NULL && graph->size < MAX_SIZE);\n AdjListNode *head = (AdjListNode *)malloc(sizeof(AdjListNode));\n head->vertex = vet;\n head->next = NULL;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n graph->heads[graph->size++] = head;\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(GraphAdjList *graph, Vertex *vet) {\n AdjListNode *node = findNode(graph, vet);\n assert(node != NULL);\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n AdjListNode *cur = node, *pre = NULL;\n while (cur) {\n pre = cur;\n cur = cur->next;\n free(pre);\n }\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (int i = 0; i < graph->size; i++) {\n cur = graph->heads[i];\n pre = NULL;\n while (cur) {\n pre = cur;\n cur = cur->next;\n if (cur && cur->vertex == vet) {\n pre->next = cur->next;\n free(cur);\n break;\n }\n }\n }\n // \u5c06\u8be5\u9876\u70b9\u4e4b\u540e\u7684\u9876\u70b9\u5411\u524d\u79fb\u52a8\uff0c\u4ee5\u586b\u8865\u7a7a\u7f3a\n int i;\n for (i = 0; i < graph->size; i++) {\n if (graph->heads[i] == node)\n break;\n }\n for (int j = i; j < graph->size - 1; j++) {\n graph->heads[j] = graph->heads[j + 1];\n }\n graph->size--;\n free(vet);\n}\n
graph_adjacency_list.zig[class]{GraphAdjList}-[func]{}\n
"},{"location":"chapter_graph/graph_operations/#923","title":"9.2.3 \u00a0 \u6548\u7387\u5bf9\u6bd4","text":"\u8bbe\u56fe\u4e2d\u5171\u6709 \\(n\\) \u4e2a\u9876\u70b9\u548c \\(m\\) \u6761\u8fb9\uff0c\u8868 9-2 \u5bf9\u6bd4\u4e86\u90bb\u63a5\u77e9\u9635\u548c\u90bb\u63a5\u8868\u7684\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u3002
\u8868 9-2 \u00a0 \u90bb\u63a5\u77e9\u9635\u4e0e\u90bb\u63a5\u8868\u5bf9\u6bd4
\u90bb\u63a5\u77e9\u9635 \u90bb\u63a5\u8868\uff08\u94fe\u8868\uff09 \u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09 \u5224\u65ad\u662f\u5426\u90bb\u63a5 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u8fb9 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u8fb9 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u9876\u70b9 \\(O(n)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u9876\u70b9 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n)\\) \u5185\u5b58\u7a7a\u95f4\u5360\u7528 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n + m)\\) \u89c2\u5bdf\u8868 9-2 \uff0c\u4f3c\u4e4e\u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09\u7684\u65f6\u95f4\u6548\u7387\u4e0e\u7a7a\u95f4\u6548\u7387\u6700\u4f18\u3002\u4f46\u5b9e\u9645\u4e0a\uff0c\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u64cd\u4f5c\u8fb9\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u53ea\u9700\u4e00\u6b21\u6570\u7ec4\u8bbf\u95ee\u6216\u8d4b\u503c\u64cd\u4f5c\u5373\u53ef\u3002\u7efc\u5408\u6765\u770b\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u4e86\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u7684\u539f\u5219\uff0c\u800c\u90bb\u63a5\u8868\u4f53\u73b0\u4e86\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u7684\u539f\u5219\u3002
"},{"location":"chapter_graph/graph_traversal/","title":"9.3 \u00a0 \u56fe\u7684\u904d\u5386","text":"\u6811\u4ee3\u8868\u7684\u662f\u201c\u4e00\u5bf9\u591a\u201d\u7684\u5173\u7cfb\uff0c\u800c\u56fe\u5219\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u53ef\u4ee5\u8868\u793a\u4efb\u610f\u7684\u201c\u591a\u5bf9\u591a\u201d\u5173\u7cfb\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u6811\u770b\u4f5c\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\u3002\u663e\u7136\uff0c\u6811\u7684\u904d\u5386\u64cd\u4f5c\u4e5f\u662f\u56fe\u7684\u904d\u5386\u64cd\u4f5c\u7684\u4e00\u79cd\u7279\u4f8b\u3002
\u56fe\u548c\u6811\u90fd\u9700\u8981\u5e94\u7528\u641c\u7d22\u7b97\u6cd5\u6765\u5b9e\u73b0\u904d\u5386\u64cd\u4f5c\u3002\u56fe\u7684\u904d\u5386\u65b9\u5f0f\u53ef\u5206\u4e3a\u4e24\u79cd\uff1a\u300c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 breadth-first traversal\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386 depth-first traversal\u300d\u3002\u5b83\u4eec\u4e5f\u5e38\u88ab\u79f0\u4e3a\u300c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22 breadth-first search\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22 depth-first search\u300d\uff0c\u7b80\u79f0 BFS \u548c DFS \u3002
"},{"location":"chapter_graph/graph_traversal/#931","title":"9.3.1 \u00a0 \u5e7f\u5ea6\u4f18\u5148\u904d\u5386","text":"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u7684\u904d\u5386\u65b9\u5f0f\uff0c\u4ece\u67d0\u4e2a\u8282\u70b9\u51fa\u53d1\uff0c\u59cb\u7ec8\u4f18\u5148\u8bbf\u95ee\u8ddd\u79bb\u6700\u8fd1\u7684\u9876\u70b9\uff0c\u5e76\u4e00\u5c42\u5c42\u5411\u5916\u6269\u5f20\u3002\u5982\u56fe 9-9 \u6240\u793a\uff0c\u4ece\u5de6\u4e0a\u89d2\u9876\u70b9\u51fa\u53d1\uff0c\u9996\u5148\u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u7136\u540e\u904d\u5386\u4e0b\u4e00\u4e2a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u8bbf\u95ee\u5b8c\u6bd5\u3002
\u56fe 9-9 \u00a0 \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386
"},{"location":"chapter_graph/graph_traversal/#1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"BFS \u901a\u5e38\u501f\u52a9\u961f\u5217\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002\u961f\u5217\u5177\u6709\u201c\u5148\u5165\u5148\u51fa\u201d\u7684\u6027\u8d28\uff0c\u8fd9\u4e0e BFS \u7684\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u601d\u60f3\u5f02\u66f2\u540c\u5de5\u3002
- \u5c06\u904d\u5386\u8d77\u59cb\u9876\u70b9
startVet \u52a0\u5165\u961f\u5217\uff0c\u5e76\u5f00\u542f\u5faa\u73af\u3002 - \u5728\u5faa\u73af\u7684\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\uff0c\u5f39\u51fa\u961f\u9996\u9876\u70b9\u5e76\u8bb0\u5f55\u8bbf\u95ee\uff0c\u7136\u540e\u5c06\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u52a0\u5165\u5230\u961f\u5217\u5c3e\u90e8\u3002
- \u5faa\u73af\u6b65\u9aa4
2. \uff0c\u76f4\u5230\u6240\u6709\u9876\u70b9\u88ab\u8bbf\u95ee\u5b8c\u6bd5\u540e\u7ed3\u675f\u3002
\u4e3a\u4e86\u9632\u6b62\u91cd\u590d\u904d\u5386\u9876\u70b9\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u54ea\u4e9b\u8282\u70b9\u5df2\u88ab\u8bbf\u95ee\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_bfs.pydef graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n \"\"\"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS\"\"\"\n # \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n # \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res = []\n # \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited = set[Vertex]([start_vet])\n # \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n que = deque[Vertex]([start_vet])\n # \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while len(que) > 0:\n vet = que.popleft() # \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.append(vet) # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n # \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adj_vet in graph.adj_list[vet]:\n if adj_vet in visited:\n continue # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n que.append(adj_vet) # \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adj_vet) # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n # \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n
graph_bfs.cpp/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n vector<Vertex *> res;\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n unordered_set<Vertex *> visited = {startVet};\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n queue<Vertex *> que;\n que.push(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (!que.empty()) {\n Vertex *vet = que.front();\n que.pop(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push_back(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (auto adjVet : graph.adjList[vet]) {\n if (visited.count(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n que.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.emplace(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.java/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = new ArrayList<>();\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = new HashSet<>();\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue<Vertex> que = new LinkedList<>();\n que.offer(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (!que.isEmpty()) {\n Vertex vet = que.poll(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet : graph.adjList.get(vet)) {\n if (visited.contains(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n que.offer(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.cs/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> GraphBFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n HashSet<Vertex> visited = [startVet];\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue<Vertex> que = new();\n que.Enqueue(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.Count > 0) {\n Vertex vet = que.Dequeue(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.Add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n foreach (Vertex adjVet in graph.adjList[vet]) {\n if (visited.Contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.Enqueue(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.Add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.go/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(g *graphAdjList, startVet Vertex) []Vertex {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res := make([]Vertex, 0)\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited := make(map[Vertex]struct{})\n visited[startVet] = struct{}{}\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS, \u4f7f\u7528\u5207\u7247\u6a21\u62df\u961f\u5217\n queue := make([]Vertex, 0)\n queue = append(queue, startVet)\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n for len(queue) > 0 {\n // \u961f\u9996\u9876\u70b9\u51fa\u961f\n vet := queue[0]\n queue = queue[1:]\n // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n res = append(res, vet)\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for _, adjVet := range g.adjList[vet] {\n _, isExist := visited[adjVet]\n // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n if !isExist {\n queue = append(queue, adjVet)\n visited[adjVet] = struct{}{}\n }\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n}\n
graph_bfs.swift/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n var res: [Vertex] = []\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n var visited: Set<Vertex> = [startVet]\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n var que: [Vertex] = [startVet]\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while !que.isEmpty {\n let vet = que.removeFirst() // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adjVet in graph.adjList[vet] ?? [] {\n if visited.contains(adjVet) {\n continue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.append(adjVet) // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.insert(adjVet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n}\n
graph_bfs.js/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph, startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited = new Set();\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n const que = [startVet];\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.length) {\n const vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet) ?? []) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.ts/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res: Vertex[] = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited: Set<Vertex> = new Set();\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n const que = [startVet];\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.length) {\n const vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet) ?? []) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.dart/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n // \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = {};\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue<Vertex> que = Queue();\n que.add(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.isNotEmpty) {\n Vertex vet = que.removeFirst(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet in graph.adjList[vet]!) {\n if (visited.contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.add(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.rs/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n let mut res = vec![];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n let mut visited = HashSet::new();\n visited.insert(start_vet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n let mut que = VecDeque::new();\n que.push_back(start_vet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while !que.is_empty() {\n let vet = que.pop_front().unwrap(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n if let Some(adj_vets) = graph.adj_list.get(&vet) {\n for &adj_vet in adj_vets {\n if visited.contains(&adj_vet) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.push_back(adj_vet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.insert(adj_vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n res\n}\n
graph_bfs.c/* \u8282\u70b9\u961f\u5217\u7ed3\u6784\u4f53 */\ntypedef struct {\n Vertex *vertices[MAX_SIZE];\n int front, rear, size;\n} Queue;\n\n/* \u6784\u9020\u51fd\u6570 */\nQueue *newQueue() {\n Queue *q = (Queue *)malloc(sizeof(Queue));\n q->front = q->rear = q->size = 0;\n return q;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nint isEmpty(Queue *q) {\n return q->size == 0;\n}\n\n/* \u5165\u961f\u64cd\u4f5c */\nvoid enqueue(Queue *q, Vertex *vet) {\n q->vertices[q->rear] = vet;\n q->rear = (q->rear + 1) % MAX_SIZE;\n q->size++;\n}\n\n/* \u51fa\u961f\u64cd\u4f5c */\nVertex *dequeue(Queue *q) {\n Vertex *vet = q->vertices[q->front];\n q->front = (q->front + 1) % MAX_SIZE;\n q->size--;\n return vet;\n}\n\n/* \u68c0\u67e5\u9876\u70b9\u662f\u5426\u5df2\u88ab\u8bbf\u95ee */\nint isVisited(Vertex **visited, int size, Vertex *vet) {\n // \u904d\u5386\u67e5\u627e\u8282\u70b9\uff0c\u4f7f\u7528 O(n) \u65f6\u95f4\n for (int i = 0; i < size; i++) {\n if (visited[i] == vet)\n return 1;\n }\n return 0;\n}\n\n/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvoid graphBFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize, Vertex **visited, int *visitedSize) {\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue *queue = newQueue();\n enqueue(queue, startVet);\n visited[(*visitedSize)++] = startVet;\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (!isEmpty(queue)) {\n Vertex *vet = dequeue(queue); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res[(*resSize)++] = vet; // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n AdjListNode *node = findNode(graph, vet);\n while (node != NULL) {\n // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n if (!isVisited(visited, *visitedSize, node->vertex)) {\n enqueue(queue, node->vertex); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited[(*visitedSize)++] = node->vertex; // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n node = node->next;\n }\n }\n // \u91ca\u653e\u5185\u5b58\n free(queue);\n}\n
graph_bfs.zig[class]{}-[func]{graphBFS}\n
\u4ee3\u7801\u76f8\u5bf9\u62bd\u8c61\uff0c\u5efa\u8bae\u5bf9\u7167\u56fe 9-10 \u6765\u52a0\u6df1\u7406\u89e3\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 9-10 \u00a0 \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4
\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f
\u4e0d\u552f\u4e00\u3002\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u53ea\u8981\u6c42\u6309\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u987a\u5e8f\u904d\u5386\uff0c\u800c\u591a\u4e2a\u76f8\u540c\u8ddd\u79bb\u7684\u9876\u70b9\u7684\u904d\u5386\u987a\u5e8f\u5141\u8bb8\u88ab\u4efb\u610f\u6253\u4e71\u3002\u4ee5\u56fe 9-10 \u4e3a\u4f8b\uff0c\u9876\u70b9 \\(1\\)\u3001\\(3\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\uff0c\u9876\u70b9 \\(2\\)\u3001\\(4\\)\u3001\\(6\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u4e5f\u53ef\u4ee5\u4efb\u610f\u4ea4\u6362\u3002
"},{"location":"chapter_graph/graph_traversal/#2","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u9876\u70b9\u90fd\u4f1a\u5165\u961f\u5e76\u51fa\u961f\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u5728\u904d\u5386\u90bb\u63a5\u9876\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002
\u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \uff0c\u961f\u5217 que \u4e2d\u7684\u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002
"},{"location":"chapter_graph/graph_traversal/#932","title":"9.3.2 \u00a0 \u6df1\u5ea6\u4f18\u5148\u904d\u5386","text":"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u518d\u56de\u5934\u7684\u904d\u5386\u65b9\u5f0f\u3002\u5982\u56fe 9-11 \u6240\u793a\uff0c\u4ece\u5de6\u4e0a\u89d2\u9876\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u5f53\u524d\u9876\u70b9\u7684\u67d0\u4e2a\u90bb\u63a5\u9876\u70b9\uff0c\u76f4\u5230\u8d70\u5230\u5c3d\u5934\u65f6\u8fd4\u56de\uff0c\u518d\u7ee7\u7eed\u8d70\u5230\u5c3d\u5934\u5e76\u8fd4\u56de\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u904d\u5386\u5b8c\u6210\u3002
\u56fe 9-11 \u00a0 \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386
"},{"location":"chapter_graph/graph_traversal/#1_1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"\u8fd9\u79cd\u201c\u8d70\u5230\u5c3d\u5934\u518d\u8fd4\u56de\u201d\u7684\u7b97\u6cd5\u8303\u5f0f\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002\u4e0e\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7c7b\u4f3c\uff0c\u5728\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u4e2d\uff0c\u6211\u4eec\u4e5f\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\uff0c\u4ee5\u907f\u514d\u91cd\u590d\u8bbf\u95ee\u9876\u70b9\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_dfs.pydef dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):\n \"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570\"\"\"\n res.append(vet) # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet) # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n # \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adjVet in graph.adj_list[vet]:\n if adjVet in visited:\n continue # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n # \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet)\n\ndef graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n \"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS\"\"\"\n # \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n # \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res = []\n # \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited = set[Vertex]()\n dfs(graph, visited, res, start_vet)\n return res\n
graph_dfs.cpp/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {\n res.push_back(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.emplace(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex *adjVet : graph.adjList[vet]) {\n if (visited.count(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n vector<Vertex *> res;\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n unordered_set<Vertex *> visited;\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.java/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet : graph.adjList.get(vet)) {\n if (visited.contains(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = new ArrayList<>();\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = new HashSet<>();\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.cs/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid DFS(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {\n res.Add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.Add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n foreach (Vertex adjVet in graph.adjList[vet]) {\n if (visited.Contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9 \n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n DFS(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> GraphDFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n HashSet<Vertex> visited = [];\n DFS(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.go/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunc dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {\n // append \u64cd\u4f5c\u4f1a\u8fd4\u56de\u65b0\u7684\u7684\u5f15\u7528\uff0c\u5fc5\u987b\u8ba9\u539f\u5f15\u7528\u91cd\u65b0\u8d4b\u503c\u4e3a\u65b0slice\u7684\u5f15\u7528\n *res = append(*res, vet)\n visited[vet] = struct{}{}\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for _, adjVet := range g.adjList[vet] {\n _, isExist := visited[adjVet]\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n if !isExist {\n dfs(g, visited, res, adjVet)\n }\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(g *graphAdjList, startVet Vertex) []Vertex {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res := make([]Vertex, 0)\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited := make(map[Vertex]struct{})\n dfs(g, visited, &res, startVet)\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n}\n
graph_dfs.swift/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunc dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {\n res.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.insert(vet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adjVet in graph.adjList[vet] ?? [] {\n if visited.contains(adjVet) {\n continue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph: graph, visited: &visited, res: &res, vet: adjVet)\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n var res: [Vertex] = []\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n var visited: Set<Vertex> = []\n dfs(graph: graph, visited: &visited, res: &res, vet: startVet)\n return res\n}\n
graph_dfs.js/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction dfs(graph, visited, res, vet) {\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet)) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph, startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited = new Set();\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.ts/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunction dfs(\n graph: GraphAdjList,\n visited: Set<Vertex>,\n res: Vertex[],\n vet: Vertex\n): void {\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet)) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res: Vertex[] = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited: Set<Vertex> = new Set();\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.dart/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(\n GraphAdjList graph,\n Set<Vertex> visited,\n List<Vertex> res,\n Vertex vet,\n) {\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet in graph.adjList[vet]!) {\n if (visited.contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = {};\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.rs/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfn dfs(graph: &GraphAdjList, visited: &mut HashSet<Vertex>, res: &mut Vec<Vertex>, vet: Vertex) {\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.insert(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n if let Some(adj_vets) = graph.adj_list.get(&vet) {\n for &adj_vet in adj_vets {\n if visited.contains(&adj_vet) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adj_vet);\n }\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n let mut res = vec![];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n let mut visited = HashSet::new();\n dfs(&graph, &mut visited, &mut res, start_vet);\n\n res\n}\n
graph_dfs.c/* \u68c0\u67e5\u9876\u70b9\u662f\u5426\u5df2\u88ab\u8bbf\u95ee */\nint isVisited(Vertex **res, int size, Vertex *vet) {\n // \u904d\u5386\u67e5\u627e\u8282\u70b9\uff0c\u4f7f\u7528 O(n) \u65f6\u95f4\n for (int i = 0; i < size; i++) {\n if (res[i] == vet) {\n return 1;\n }\n }\n return 0;\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList *graph, Vertex **res, int *resSize, Vertex *vet) {\n // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n res[(*resSize)++] = vet;\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n AdjListNode *node = findNode(graph, vet);\n while (node != NULL) {\n // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n if (!isVisited(res, *resSize, node->vertex)) {\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, res, resSize, node->vertex);\n }\n node = node->next;\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvoid graphDFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize) {\n dfs(graph, res, resSize, startVet);\n}\n
graph_dfs.zig[class]{}-[func]{dfs}\n\n[class]{}-[func]{graphDFS}\n
\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u56fe 9-12 \u6240\u793a\u3002
- \u76f4\u865a\u7ebf\u4ee3\u8868\u5411\u4e0b\u9012\u63a8\uff0c\u8868\u793a\u5f00\u542f\u4e86\u4e00\u4e2a\u65b0\u7684\u9012\u5f52\u65b9\u6cd5\u6765\u8bbf\u95ee\u65b0\u9876\u70b9\u3002
- \u66f2\u865a\u7ebf\u4ee3\u8868\u5411\u4e0a\u56de\u6eaf\uff0c\u8868\u793a\u6b64\u9012\u5f52\u65b9\u6cd5\u5df2\u7ecf\u8fd4\u56de\uff0c\u56de\u6eaf\u5230\u4e86\u5f00\u542f\u6b64\u65b9\u6cd5\u7684\u4f4d\u7f6e\u3002
\u4e3a\u4e86\u52a0\u6df1\u7406\u89e3\uff0c\u5efa\u8bae\u5c06\u56fe 9-12 \u4e0e\u4ee3\u7801\u7ed3\u5408\u8d77\u6765\uff0c\u5728\u8111\u4e2d\u6a21\u62df\uff08\u6216\u8005\u7528\u7b14\u753b\u4e0b\u6765\uff09\u6574\u4e2a DFS \u8fc7\u7a0b\uff0c\u5305\u62ec\u6bcf\u4e2a\u9012\u5f52\u65b9\u6cd5\u4f55\u65f6\u5f00\u542f\u3001\u4f55\u65f6\u8fd4\u56de\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 9-12 \u00a0 \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4
\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f
\u4e0e\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7c7b\u4f3c\uff0c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5e8f\u5217\u7684\u987a\u5e8f\u4e5f\u4e0d\u662f\u552f\u4e00\u7684\u3002\u7ed9\u5b9a\u67d0\u9876\u70b9\uff0c\u5148\u5f80\u54ea\u4e2a\u65b9\u5411\u63a2\u7d22\u90fd\u53ef\u4ee5\uff0c\u5373\u90bb\u63a5\u9876\u70b9\u7684\u987a\u5e8f\u53ef\u4ee5\u4efb\u610f\u6253\u4e71\uff0c\u90fd\u662f\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002
\u4ee5\u6811\u7684\u904d\u5386\u4e3a\u4f8b\uff0c\u201c\u6839 \\(\\rightarrow\\) \u5de6 \\(\\rightarrow\\) \u53f3\u201d\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u201c\u5de6 \\(\\rightarrow\\) \u53f3 \\(\\rightarrow\\) \u6839\u201d\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\uff0c\u5b83\u4eec\u5c55\u793a\u4e86\u4e09\u79cd\u904d\u5386\u4f18\u5148\u7ea7\uff0c\u7136\u800c\u8fd9\u4e09\u8005\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002
"},{"location":"chapter_graph/graph_traversal/#2_1","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u9876\u70b9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(1\\) \u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002
\u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u9012\u5f52\u6df1\u5ea6\u6700\u5927\u4e3a \\(|V|\\) \uff0c\u56e0\u6b64\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002
"},{"location":"chapter_graph/summary/","title":"9.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_graph/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u56fe\u7531\u9876\u70b9\u548c\u8fb9\u7ec4\u6210\uff0c\u53ef\u4ee5\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9\u548c\u4e00\u7ec4\u8fb9\u6784\u6210\u7684\u96c6\u5408\u3002
- \u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u56e0\u800c\u66f4\u4e3a\u590d\u6742\u3002
- \u6709\u5411\u56fe\u7684\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u8fde\u901a\u56fe\u4e2d\u7684\u4efb\u610f\u9876\u70b9\u5747\u53ef\u8fbe\uff0c\u6709\u6743\u56fe\u7684\u6bcf\u6761\u8fb9\u90fd\u5305\u542b\u6743\u91cd\u53d8\u91cf\u3002
- \u90bb\u63a5\u77e9\u9635\u5229\u7528\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u6709\u8fb9\u6216\u65e0\u8fb9\u3002\u90bb\u63a5\u77e9\u9635\u5728\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u4e0a\u6548\u7387\u5f88\u9ad8\uff0c\u4f46\u7a7a\u95f4\u5360\u7528\u8f83\u591a\u3002
- \u90bb\u63a5\u8868\u4f7f\u7528\u591a\u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u7b2c \\(i\\) \u4e2a\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u3002\u90bb\u63a5\u8868\u76f8\u5bf9\u4e8e\u90bb\u63a5\u77e9\u9635\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\uff0c\u4f46\u7531\u4e8e\u9700\u8981\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u56e0\u6b64\u65f6\u95f4\u6548\u7387\u8f83\u4f4e\u3002
- \u5f53\u90bb\u63a5\u8868\u4e2d\u7684\u94fe\u8868\u8fc7\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u5176\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6216\u54c8\u5e0c\u8868\uff0c\u4ece\u800c\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002
- \u4ece\u7b97\u6cd5\u601d\u60f3\u7684\u89d2\u5ea6\u5206\u6790\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u4e86\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff0c\u90bb\u63a5\u8868\u4f53\u73b0\u4e86\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002
- \u56fe\u53ef\u7528\u4e8e\u5efa\u6a21\u5404\u7c7b\u73b0\u5b9e\u7cfb\u7edf\uff0c\u5982\u793e\u4ea4\u7f51\u7edc\u3001\u5730\u94c1\u7ebf\u8def\u7b49\u3002
- \u6811\u662f\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\uff0c\u6811\u7684\u904d\u5386\u4e5f\u662f\u56fe\u7684\u904d\u5386\u7684\u4e00\u79cd\u7279\u4f8b\u3002
- \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u3001\u5c42\u5c42\u6269\u5f20\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u901a\u5e38\u501f\u52a9\u961f\u5217\u5b9e\u73b0\u3002
- \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u65f6\u518d\u56de\u6eaf\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002
"},{"location":"chapter_graph/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u8def\u5f84\u7684\u5b9a\u4e49\u662f\u9876\u70b9\u5e8f\u5217\u8fd8\u662f\u8fb9\u5e8f\u5217\uff1f
\u7ef4\u57fa\u767e\u79d1\u4e0a\u4e0d\u540c\u8bed\u8a00\u7248\u672c\u7684\u5b9a\u4e49\u4e0d\u4e00\u81f4\uff1a\u82f1\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u8fb9\u5e8f\u5217\u201d\uff0c\u800c\u4e2d\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u201d\u3002\u4ee5\u4e0b\u662f\u82f1\u6587\u7248\u539f\u6587\uff1aIn graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices. \u5728\u672c\u6587\u4e2d\uff0c\u8def\u5f84\u88ab\u89c6\u4e3a\u4e00\u4e2a\u8fb9\u5e8f\u5217\uff0c\u800c\u4e0d\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u3002\u8fd9\u662f\u56e0\u4e3a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u53ef\u80fd\u5b58\u5728\u591a\u6761\u8fb9\u8fde\u63a5\uff0c\u6b64\u65f6\u6bcf\u6761\u8fb9\u90fd\u5bf9\u5e94\u4e00\u6761\u8def\u5f84\u3002
\u975e\u8fde\u901a\u56fe\u4e2d\u662f\u5426\u4f1a\u6709\u65e0\u6cd5\u904d\u5386\u5230\u7684\u70b9\uff1f
\u5728\u975e\u8fde\u901a\u56fe\u4e2d\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002\u904d\u5386\u975e\u8fde\u901a\u56fe\u9700\u8981\u8bbe\u7f6e\u591a\u4e2a\u8d77\u70b9\uff0c\u4ee5\u904d\u5386\u5230\u56fe\u7684\u6240\u6709\u8fde\u901a\u5206\u91cf\u3002
\u5728\u90bb\u63a5\u8868\u4e2d\uff0c\u201c\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u6240\u6709\u9876\u70b9\u201d\u7684\u9876\u70b9\u987a\u5e8f\u662f\u5426\u6709\u8981\u6c42\uff1f
\u53ef\u4ee5\u662f\u4efb\u610f\u987a\u5e8f\u3002\u4f46\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u53ef\u80fd\u9700\u8981\u6309\u7167\u6307\u5b9a\u89c4\u5219\u6765\u6392\u5e8f\uff0c\u6bd4\u5982\u6309\u7167\u9876\u70b9\u6dfb\u52a0\u7684\u6b21\u5e8f\uff0c\u6216\u8005\u6309\u7167\u9876\u70b9\u503c\u5927\u5c0f\u7684\u987a\u5e8f\u7b49\uff0c\u8fd9\u6837\u6709\u52a9\u4e8e\u5feb\u901f\u67e5\u627e\u201c\u5e26\u6709\u67d0\u79cd\u6781\u503c\u201d\u7684\u9876\u70b9\u3002
"},{"location":"chapter_greedy/","title":"\u7b2c 15 \u7ae0 \u00a0 \u8d2a\u5fc3","text":"Abstract
\u5411\u65e5\u8475\u671d\u7740\u592a\u9633\u8f6c\u52a8\uff0c\u65f6\u523b\u8ffd\u6c42\u81ea\u8eab\u6210\u957f\u7684\u6700\u5927\u53ef\u80fd\u3002
\u8d2a\u5fc3\u7b56\u7565\u5728\u4e00\u8f6e\u8f6e\u7684\u7b80\u5355\u9009\u62e9\u4e2d\uff0c\u9010\u6b65\u5bfc\u5411\u6700\u4f73\u7b54\u6848\u3002
"},{"location":"chapter_greedy/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5
- 15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898
- 15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898
- 15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898
- 15.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_greedy/fractional_knapsack_problem/","title":"15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898","text":"Question
\u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\)\u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u4f46\u53ef\u4ee5\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u4ef7\u503c\u6839\u636e\u9009\u62e9\u7684\u91cd\u91cf\u6bd4\u4f8b\u8ba1\u7b97\uff0c\u95ee\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80cc\u5305\u4e2d\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002\u793a\u4f8b\u5982\u56fe 15-3 \u6240\u793a\u3002
\u56fe 15-3 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
\u5206\u6570\u80cc\u5305\u95ee\u9898\u548c 0-1 \u80cc\u5305\u95ee\u9898\u6574\u4f53\u4e0a\u975e\u5e38\u76f8\u4f3c\uff0c\u72b6\u6001\u5305\u542b\u5f53\u524d\u7269\u54c1 \\(i\\) \u548c\u5bb9\u91cf \\(c\\) \uff0c\u76ee\u6807\u662f\u6c42\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u6700\u5927\u4ef7\u503c\u3002
\u4e0d\u540c\u70b9\u5728\u4e8e\uff0c\u672c\u9898\u5141\u8bb8\u53ea\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\u3002\u5982\u56fe 15-4 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5bf9\u7269\u54c1\u4efb\u610f\u5730\u8fdb\u884c\u5207\u5206\uff0c\u5e76\u6309\u7167\u91cd\u91cf\u6bd4\u4f8b\u6765\u8ba1\u7b97\u76f8\u5e94\u4ef7\u503c\u3002
- \u5bf9\u4e8e\u7269\u54c1 \\(i\\) \uff0c\u5b83\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c\u4e3a \\(val[i-1] / wgt[i-1]\\) \uff0c\u7b80\u79f0\u5355\u4f4d\u4ef7\u503c\u3002
- \u5047\u8bbe\u653e\u5165\u4e00\u90e8\u5206\u7269\u54c1 \\(i\\) \uff0c\u91cd\u91cf\u4e3a \\(w\\) \uff0c\u5219\u80cc\u5305\u589e\u52a0\u7684\u4ef7\u503c\u4e3a \\(w \\times val[i-1] / wgt[i-1]\\) \u3002
\u56fe 15-4 \u00a0 \u7269\u54c1\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c
"},{"location":"chapter_greedy/fractional_knapsack_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"\u6700\u5927\u5316\u80cc\u5305\u5185\u7269\u54c1\u603b\u4ef7\u503c\uff0c\u672c\u8d28\u4e0a\u662f\u6700\u5927\u5316\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u7269\u54c1\u4ef7\u503c\u3002\u7531\u6b64\u4fbf\u53ef\u63a8\u7406\u51fa\u56fe 15-5 \u6240\u793a\u7684\u8d2a\u5fc3\u7b56\u7565\u3002
- \u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\u3002
- \u904d\u5386\u6240\u6709\u7269\u54c1\uff0c\u6bcf\u8f6e\u8d2a\u5fc3\u5730\u9009\u62e9\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\u3002
- \u82e5\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u4f7f\u7528\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u586b\u6ee1\u80cc\u5305\u3002
\u56fe 15-5 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u8d2a\u5fc3\u7b56\u7565
"},{"location":"chapter_greedy/fractional_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u6211\u4eec\u5efa\u7acb\u4e86\u4e00\u4e2a\u7269\u54c1\u7c7b Item \uff0c\u4ee5\u4fbf\u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u8fdb\u884c\u6392\u5e8f\u3002\u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u5f53\u80cc\u5305\u5df2\u6ee1\u65f6\u8df3\u51fa\u5e76\u8fd4\u56de\u89e3\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig fractional_knapsack.pyclass Item:\n \"\"\"\u7269\u54c1\"\"\"\n\n def __init__(self, w: int, v: int):\n self.w = w # \u7269\u54c1\u91cd\u91cf\n self.v = v # \u7269\u54c1\u4ef7\u503c\n\ndef fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"\u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3\"\"\"\n # \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n items = [Item(w, v) for w, v in zip(wgt, val)]\n # \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort(key=lambda item: item.v / item.w, reverse=True)\n # \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n res = 0\n for item in items:\n if item.w <= cap:\n # \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v\n cap -= item.w\n else:\n # \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (item.v / item.w) * cap\n # \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break\n return res\n
fractional_knapsack.cpp/* \u7269\u54c1 */\nclass Item {\n public:\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n\n Item(int w, int v) : w(w), v(v) {\n }\n};\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n vector<Item> items;\n for (int i = 0; i < wgt.size(); i++) {\n items.push_back(Item(wgt[i], val[i]));\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n for (auto &item : items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (double)item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.java/* \u7269\u54c1 */\nclass Item {\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n\n public Item(int w, int v) {\n this.w = w;\n this.v = v;\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(int[] wgt, int[] val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n Item[] items = new Item[wgt.length];\n for (int i = 0; i < wgt.length; i++) {\n items[i] = new Item(wgt[i], val[i]);\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n Arrays.sort(items, Comparator.comparingDouble(item -> -((double) item.v / item.w)));\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n for (Item item : items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (double) item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.cs/* \u7269\u54c1 */\nclass Item(int w, int v) {\n public int w = w; // \u7269\u54c1\u91cd\u91cf\n public int v = v; // \u7269\u54c1\u4ef7\u503c\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble FractionalKnapsack(int[] wgt, int[] val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n Item[] items = new Item[wgt.Length];\n for (int i = 0; i < wgt.Length; i++) {\n items[i] = new Item(wgt[i], val[i]);\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n Array.Sort(items, (x, y) => (y.v / y.w).CompareTo(x.v / x.w));\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n foreach (Item item in items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (double)item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.go/* \u7269\u54c1 */\ntype Item struct {\n w int // \u7269\u54c1\u91cd\u91cf\n v int // \u7269\u54c1\u4ef7\u503c\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunc fractionalKnapsack(wgt []int, val []int, cap int) float64 {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n items := make([]Item, len(wgt))\n for i := 0; i < len(wgt); i++ {\n items[i] = Item{wgt[i], val[i]}\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n sort.Slice(items, func(i, j int) bool {\n return float64(items[i].v)/float64(items[i].w) > float64(items[j].v)/float64(items[j].w)\n })\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n res := 0.0\n for _, item := range items {\n if item.w <= cap {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += float64(item.v)\n cap -= item.w\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += float64(item.v) / float64(item.w) * float64(cap)\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break\n }\n }\n return res\n}\n
fractional_knapsack.swift/* \u7269\u54c1 */\nclass Item {\n var w: Int // \u7269\u54c1\u91cd\u91cf\n var v: Int // \u7269\u54c1\u4ef7\u503c\n\n init(w: Int, v: Int) {\n self.w = w\n self.v = v\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunc fractionalKnapsack(wgt: [Int], val: [Int], cap: Int) -> Double {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n var items = zip(wgt, val).map { Item(w: $0, v: $1) }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort(by: { -(Double($0.v) / Double($0.w)) < -(Double($1.v) / Double($1.w)) })\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n var res = 0.0\n var cap = cap\n for item in items {\n if item.w <= cap {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += Double(item.v)\n cap -= item.w\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += Double(item.v) / Double(item.w) * Double(cap)\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break\n }\n }\n return res\n}\n
fractional_knapsack.js/* \u7269\u54c1 */\nclass Item {\n constructor(w, v) {\n this.w = w; // \u7269\u54c1\u91cd\u91cf\n this.v = v; // \u7269\u54c1\u4ef7\u503c\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunction fractionalKnapsack(wgt, val, cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n const items = wgt.map((w, i) => new Item(w, val[i]));\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort((a, b) => b.v / b.w - a.v / a.w);\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n let res = 0;\n for (const item of items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (item.v / item.w) * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.ts/* \u7269\u54c1 */\nclass Item {\n w: number; // \u7269\u54c1\u91cd\u91cf\n v: number; // \u7269\u54c1\u4ef7\u503c\n\n constructor(w: number, v: number) {\n this.w = w;\n this.v = v;\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunction fractionalKnapsack(wgt: number[], val: number[], cap: number): number {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n const items: Item[] = wgt.map((w, i) => new Item(w, val[i]));\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort((a, b) => b.v / b.w - a.v / a.w);\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n let res = 0;\n for (const item of items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (item.v / item.w) * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.dart/* \u7269\u54c1 */\nclass Item {\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n\n Item(this.w, this.v);\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(List<int> wgt, List<int> val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n List<Item> items = List.generate(wgt.length, (i) => Item(wgt[i], val[i]));\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort((a, b) => (b.v / b.w).compareTo(a.v / a.w));\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n for (Item item in items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.rs/* \u7269\u54c1 */\nstruct Item {\n w: i32, // \u7269\u54c1\u91cd\u91cf\n v: i32, // \u7269\u54c1\u4ef7\u503c\n}\n\nimpl Item {\n fn new(w: i32, v: i32) -> Self {\n Self { w, v }\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfn fractional_knapsack(wgt: &[i32], val: &[i32], mut cap: i32) -> f64 {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n let mut items = wgt\n .iter()\n .zip(val.iter())\n .map(|(&w, &v)| Item::new(w, v))\n .collect::<Vec<Item>>();\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort_by(|a, b| {\n (b.v as f64 / b.w as f64)\n .partial_cmp(&(a.v as f64 / a.w as f64))\n .unwrap()\n });\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n let mut res = 0.0;\n for item in &items {\n if item.w <= cap {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v as f64;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += item.v as f64 / item.w as f64 * cap as f64;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n res\n}\n
fractional_knapsack.c/* \u7269\u54c1 */\ntypedef struct {\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n} Item;\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfloat fractionalKnapsack(int wgt[], int val[], int itemCount, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n Item *items = malloc(sizeof(Item) * itemCount);\n for (int i = 0; i < itemCount; i++) {\n items[i] = (Item){.w = wgt[i], .v = val[i]};\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n qsort(items, (size_t)itemCount, sizeof(Item), sortByValueDensity);\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n float res = 0.0;\n for (int i = 0; i < itemCount; i++) {\n if (items[i].w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += items[i].v;\n cap -= items[i].w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (float)cap / items[i].w * items[i].v;\n cap = 0;\n break;\n }\n }\n free(items);\n return res;\n}\n
fractional_knapsack.zig[class]{Item}-[func]{}\n\n[class]{}-[func]{fractionalKnapsack}\n
\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u9700\u8981\u904d\u5386\u6574\u4e2a\u7269\u54c1\u5217\u8868\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u7269\u54c1\u6570\u91cf\u3002
\u7531\u4e8e\u521d\u59cb\u5316\u4e86\u4e00\u4e2a Item \u5bf9\u8c61\u5217\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
"},{"location":"chapter_greedy/fractional_knapsack_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"\u91c7\u7528\u53cd\u8bc1\u6cd5\u3002\u5047\u8bbe\u7269\u54c1 \\(x\\) \u662f\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\uff0c\u4f7f\u7528\u67d0\u7b97\u6cd5\u6c42\u5f97\u6700\u5927\u4ef7\u503c\u4e3a res \uff0c\u4f46\u8be5\u89e3\u4e2d\u4e0d\u5305\u542b\u7269\u54c1 \\(x\\) \u3002
\u73b0\u5728\u4ece\u80cc\u5305\u4e2d\u62ff\u51fa\u5355\u4f4d\u91cd\u91cf\u7684\u4efb\u610f\u7269\u54c1\uff0c\u5e76\u66ff\u6362\u4e3a\u5355\u4f4d\u91cd\u91cf\u7684\u7269\u54c1 \\(x\\) \u3002\u7531\u4e8e\u7269\u54c1 \\(x\\) \u7684\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\uff0c\u56e0\u6b64\u66ff\u6362\u540e\u7684\u603b\u4ef7\u503c\u4e00\u5b9a\u5927\u4e8e res \u3002\u8fd9\u4e0e res \u662f\u6700\u4f18\u89e3\u77db\u76fe\uff0c\u8bf4\u660e\u6700\u4f18\u89e3\u4e2d\u5fc5\u987b\u5305\u542b\u7269\u54c1 \\(x\\) \u3002
\u5bf9\u4e8e\u8be5\u89e3\u4e2d\u7684\u5176\u4ed6\u7269\u54c1\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u6784\u5efa\u51fa\u4e0a\u8ff0\u77db\u76fe\u3002\u603b\u800c\u8a00\u4e4b\uff0c\u5355\u4f4d\u4ef7\u503c\u66f4\u5927\u7684\u7269\u54c1\u603b\u662f\u66f4\u4f18\u9009\u62e9\uff0c\u8fd9\u8bf4\u660e\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002
\u5982\u56fe 15-6 \u6240\u793a\uff0c\u5982\u679c\u5c06\u7269\u54c1\u91cd\u91cf\u548c\u7269\u54c1\u5355\u4f4d\u4ef7\u503c\u5206\u522b\u770b\u4f5c\u4e00\u5f20\u4e8c\u7ef4\u56fe\u8868\u7684\u6a2a\u8f74\u548c\u7eb5\u8f74\uff0c\u5219\u5206\u6570\u80cc\u5305\u95ee\u9898\u53ef\u8f6c\u5316\u4e3a\u201c\u6c42\u5728\u6709\u9650\u6a2a\u8f74\u533a\u95f4\u4e0b\u7684\u6700\u5927\u56f4\u6210\u9762\u79ef\u201d\u3002\u8fd9\u4e2a\u7c7b\u6bd4\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u4ece\u51e0\u4f55\u89d2\u5ea6\u7406\u89e3\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002
\u56fe 15-6 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u51e0\u4f55\u8868\u793a
"},{"location":"chapter_greedy/greedy_algorithm/","title":"15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5","text":"\u300c\u8d2a\u5fc3\u7b97\u6cd5 greedy algorithm\u300d\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u7684\u7b97\u6cd5\uff0c\u5176\u57fa\u672c\u601d\u60f3\u662f\u5728\u95ee\u9898\u7684\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\uff0c\u90fd\u9009\u62e9\u5f53\u524d\u770b\u8d77\u6765\u6700\u4f18\u7684\u9009\u62e9\uff0c\u5373\u8d2a\u5fc3\u5730\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002\u8d2a\u5fc3\u7b97\u6cd5\u7b80\u6d01\u4e14\u9ad8\u6548\uff0c\u5728\u8bb8\u591a\u5b9e\u9645\u95ee\u9898\u4e2d\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\u3002
\u8d2a\u5fc3\u7b97\u6cd5\u548c\u52a8\u6001\u89c4\u5212\u90fd\u5e38\u7528\u4e8e\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u3002\u5b83\u4eec\u4e4b\u95f4\u5b58\u5728\u4e00\u4e9b\u76f8\u4f3c\u4e4b\u5904\uff0c\u6bd4\u5982\u90fd\u4f9d\u8d56\u6700\u4f18\u5b50\u7ed3\u6784\u6027\u8d28\uff0c\u4f46\u5de5\u4f5c\u539f\u7406\u4e0d\u540c\u3002
- \u52a8\u6001\u89c4\u5212\u4f1a\u6839\u636e\u4e4b\u524d\u9636\u6bb5\u7684\u6240\u6709\u51b3\u7b56\u6765\u8003\u8651\u5f53\u524d\u51b3\u7b56\uff0c\u5e76\u4f7f\u7528\u8fc7\u53bb\u5b50\u95ee\u9898\u7684\u89e3\u6765\u6784\u5efa\u5f53\u524d\u5b50\u95ee\u9898\u7684\u89e3\u3002
- \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4f1a\u8003\u8651\u8fc7\u53bb\u7684\u51b3\u7b56\uff0c\u800c\u662f\u4e00\u8def\u5411\u524d\u5730\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u4e0d\u65ad\u7f29\u5c0f\u95ee\u9898\u8303\u56f4\uff0c\u76f4\u81f3\u95ee\u9898\u88ab\u89e3\u51b3\u3002
\u6211\u4eec\u5148\u901a\u8fc7\u4f8b\u9898\u201c\u96f6\u94b1\u5151\u6362\u201d\u4e86\u89e3\u8d2a\u5fc3\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002\u8fd9\u9053\u9898\u5df2\u7ecf\u5728\u201c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u201d\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u76f8\u4fe1\u4f60\u5bf9\u5b83\u5e76\u4e0d\u964c\u751f\u3002
Question
\u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u5219\u8fd4\u56de \\(-1\\) \u3002
\u672c\u9898\u91c7\u53d6\u7684\u8d2a\u5fc3\u7b56\u7565\u5982\u56fe 15-1 \u6240\u793a\u3002\u7ed9\u5b9a\u76ee\u6807\u91d1\u989d\uff0c\u6211\u4eec\u8d2a\u5fc3\u5730\u9009\u62e9\u4e0d\u5927\u4e8e\u4e14\u6700\u63a5\u8fd1\u5b83\u7684\u786c\u5e01\uff0c\u4e0d\u65ad\u5faa\u73af\u8be5\u6b65\u9aa4\uff0c\u76f4\u81f3\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u4e3a\u6b62\u3002
\u56fe 15-1 \u00a0 \u96f6\u94b1\u5151\u6362\u7684\u8d2a\u5fc3\u7b56\u7565
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002\u4f60\u53ef\u80fd\u4f1a\u4e0d\u7531\u5730\u53d1\u51fa\u611f\u53f9\uff1aSo clean \uff01\u8d2a\u5fc3\u7b97\u6cd5\u4ec5\u7528\u7ea6\u5341\u884c\u4ee3\u7801\u5c31\u89e3\u51b3\u4e86\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change_greedy.pydef coin_change_greedy(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3\"\"\"\n # \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n i = len(coins) - 1\n count = 0\n # \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while amt > 0:\n # \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while i > 0 and coins[i] > amt:\n i -= 1\n # \u9009\u62e9 coins[i]\n amt -= coins[i]\n count += 1\n # \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return count if amt == 0 else -1\n
coin_change_greedy.cpp/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(vector<int> &coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.size() - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.java/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int[] coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.length - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.cs/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint CoinChangeGreedy(int[] coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.Length - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.go/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunc coinChangeGreedy(coins []int, amt int) int {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n i := len(coins) - 1\n count := 0\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n for amt > 0 {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n for i > 0 && coins[i] > amt {\n i--\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i]\n count++\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n if amt != 0 {\n return -1\n }\n return count\n}\n
coin_change_greedy.swift/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunc coinChangeGreedy(coins: [Int], amt: Int) -> Int {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n var i = coins.count - 1\n var count = 0\n var amt = amt\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while amt > 0 {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while i > 0 && coins[i] > amt {\n i -= 1\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i]\n count += 1\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1\n}\n
coin_change_greedy.js/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunction coinChangeGreedy(coins, amt) {\n // \u5047\u8bbe coins \u6570\u7ec4\u6709\u5e8f\n let i = coins.length - 1;\n let count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt === 0 ? count : -1;\n}\n
coin_change_greedy.ts/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunction coinChangeGreedy(coins: number[], amt: number): number {\n // \u5047\u8bbe coins \u6570\u7ec4\u6709\u5e8f\n let i = coins.length - 1;\n let count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt === 0 ? count : -1;\n}\n
coin_change_greedy.dart/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(List<int> coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.length - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.rs/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfn coin_change_greedy(coins: &[i32], mut amt: i32) -> i32 {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n let mut i = coins.len() - 1;\n let mut count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while amt > 0 {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while i > 0 && coins[i] > amt {\n i -= 1;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count += 1;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n if amt == 0 {\n count\n } else {\n -1\n }\n}\n
coin_change_greedy.c/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int *coins, int size, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = size - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.zig[class]{}-[func]{coinChangeGreedy}\n
"},{"location":"chapter_greedy/greedy_algorithm/#1511","title":"15.1.1 \u00a0 \u8d2a\u5fc3\u7684\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u64cd\u4f5c\u76f4\u63a5\u3001\u5b9e\u73b0\u7b80\u5355\uff0c\u800c\u4e14\u901a\u5e38\u6548\u7387\u4e5f\u5f88\u9ad8\u3002\u5728\u4ee5\u4e0a\u4ee3\u7801\u4e2d\uff0c\u8bb0\u786c\u5e01\u6700\u5c0f\u9762\u503c\u4e3a \\(\\min(coins)\\) \uff0c\u5219\u8d2a\u5fc3\u9009\u62e9\u6700\u591a\u5faa\u73af \\(amt / \\min(coins)\\) \u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(amt / \\min(coins))\\) \u3002\u8fd9\u6bd4\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\times amt)\\) \u63d0\u5347\u4e86\u4e00\u4e2a\u6570\u91cf\u7ea7\u3002
\u7136\u800c\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u9762\u503c\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5e76\u4e0d\u80fd\u627e\u5230\u6700\u4f18\u89e3\u3002\u56fe 15-2 \u7ed9\u51fa\u4e86\u4e24\u4e2a\u793a\u4f8b\u3002
- \u6b63\u4f8b \\(coins = [1, 5, 10, 20, 50, 100]\\)\uff1a\u5728\u8be5\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u7ed9\u5b9a\u4efb\u610f \\(amt\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u90fd\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3\u3002
- \u53cd\u4f8b \\(coins = [1, 20, 50]\\)\uff1a\u5047\u8bbe \\(amt = 60\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 10\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(11\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(20 + 20 + 20\\) \uff0c\u4ec5\u9700 \\(3\\) \u679a\u786c\u5e01\u3002
- \u53cd\u4f8b \\(coins = [1, 49, 50]\\)\uff1a\u5047\u8bbe \\(amt = 98\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 48\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(49\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(49 + 49\\) \uff0c\u4ec5\u9700 \\(2\\) \u679a\u786c\u5e01\u3002
\u56fe 15-2 \u00a0 \u8d2a\u5fc3\u65e0\u6cd5\u627e\u51fa\u6700\u4f18\u89e3\u7684\u793a\u4f8b
\u4e5f\u5c31\u662f\u8bf4\uff0c\u5bf9\u4e8e\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u65e0\u6cd5\u4fdd\u8bc1\u627e\u5230\u5168\u5c40\u6700\u4f18\u89e3\uff0c\u5e76\u4e14\u6709\u53ef\u80fd\u627e\u5230\u975e\u5e38\u5dee\u7684\u89e3\u3002\u5b83\u66f4\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\u3002
\u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u9002\u7528\u60c5\u51b5\u5206\u4ee5\u4e0b\u4e24\u79cd\u3002
- \u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u5f80\u5f80\u662f\u6700\u4f18\u9009\u62e9\uff0c\u56e0\u4e3a\u5b83\u5f80\u5f80\u6bd4\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u66f4\u9ad8\u6548\u3002
- \u53ef\u4ee5\u627e\u5230\u8fd1\u4f3c\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e5f\u662f\u53ef\u7528\u7684\u3002\u5bf9\u4e8e\u5f88\u591a\u590d\u6742\u95ee\u9898\u6765\u8bf4\uff0c\u5bfb\u627e\u5168\u5c40\u6700\u4f18\u89e3\u975e\u5e38\u56f0\u96be\uff0c\u80fd\u4ee5\u8f83\u9ad8\u6548\u7387\u627e\u5230\u6b21\u4f18\u89e3\u4e5f\u662f\u975e\u5e38\u4e0d\u9519\u7684\u3002
"},{"location":"chapter_greedy/greedy_algorithm/#1512","title":"15.1.2 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u7279\u6027","text":"\u90a3\u4e48\u95ee\u9898\u6765\u4e86\uff0c\u4ec0\u4e48\u6837\u7684\u95ee\u9898\u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u5462\uff1f\u6216\u8005\u8bf4\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1f
\u76f8\u8f83\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u4f7f\u7528\u6761\u4ef6\u66f4\u52a0\u82db\u523b\uff0c\u5176\u4e3b\u8981\u5173\u6ce8\u95ee\u9898\u7684\u4e24\u4e2a\u6027\u8d28\u3002
- \u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\uff1a\u53ea\u6709\u5f53\u5c40\u90e8\u6700\u4f18\u9009\u62e9\u59cb\u7ec8\u53ef\u4ee5\u5bfc\u81f4\u5168\u5c40\u6700\u4f18\u89e3\u65f6\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u624d\u80fd\u4fdd\u8bc1\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u5305\u542b\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u3002
\u6700\u4f18\u5b50\u7ed3\u6784\u5df2\u7ecf\u5728\u201c\u52a8\u6001\u89c4\u5212\u201d\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u4e00\u4e9b\u95ee\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\u5e76\u4e0d\u660e\u663e\uff0c\u4f46\u4ecd\u7136\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u89e3\u51b3\u3002
\u6211\u4eec\u4e3b\u8981\u63a2\u7a76\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u5224\u65ad\u65b9\u6cd5\u3002\u867d\u7136\u5b83\u7684\u63cf\u8ff0\u770b\u4e0a\u53bb\u6bd4\u8f83\u7b80\u5355\uff0c\u4f46\u5b9e\u9645\u4e0a\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\uff0c\u8bc1\u660e\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u5e76\u975e\u6613\u4e8b\u3002
\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u6211\u4eec\u867d\u7136\u80fd\u591f\u5bb9\u6613\u5730\u4e3e\u51fa\u53cd\u4f8b\uff0c\u5bf9\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u8fdb\u884c\u8bc1\u4f2a\uff0c\u4f46\u8bc1\u5b9e\u7684\u96be\u5ea6\u8f83\u5927\u3002\u5982\u679c\u95ee\uff1a\u6ee1\u8db3\u4ec0\u4e48\u6761\u4ef6\u7684\u786c\u5e01\u7ec4\u5408\u53ef\u4ee5\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\uff1f\u6211\u4eec\u5f80\u5f80\u53ea\u80fd\u51ed\u501f\u76f4\u89c9\u6216\u4e3e\u4f8b\u5b50\u6765\u7ed9\u51fa\u4e00\u4e2a\u6a21\u68f1\u4e24\u53ef\u7684\u7b54\u6848\uff0c\u800c\u96be\u4ee5\u7ed9\u51fa\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\u3002
Quote
\u6709\u4e00\u7bc7\u8bba\u6587\u7ed9\u51fa\u4e86\u4e00\u4e2a \\(O(n^3)\\) \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u7b97\u6cd5\uff0c\u7528\u4e8e\u5224\u65ad\u4e00\u4e2a\u786c\u5e01\u7ec4\u5408\u80fd\u5426\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u627e\u51fa\u4efb\u610f\u91d1\u989d\u7684\u6700\u4f18\u89e3\u3002
Pearson, David. A polynomial-time algorithm for the change-making problem. Operations Research Letters 33.3 (2005): 231-234.
"},{"location":"chapter_greedy/greedy_algorithm/#1513","title":"15.1.3 \u00a0 \u8d2a\u5fc3\u89e3\u9898\u6b65\u9aa4","text":"\u8d2a\u5fc3\u95ee\u9898\u7684\u89e3\u51b3\u6d41\u7a0b\u5927\u4f53\u53ef\u5206\u4e3a\u4ee5\u4e0b\u4e09\u6b65\u3002
- \u95ee\u9898\u5206\u6790\uff1a\u68b3\u7406\u4e0e\u7406\u89e3\u95ee\u9898\u7279\u6027\uff0c\u5305\u62ec\u72b6\u6001\u5b9a\u4e49\u3001\u4f18\u5316\u76ee\u6807\u548c\u7ea6\u675f\u6761\u4ef6\u7b49\u3002\u8fd9\u4e00\u6b65\u5728\u56de\u6eaf\u548c\u52a8\u6001\u89c4\u5212\u4e2d\u90fd\u6709\u6d89\u53ca\u3002
- \u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\uff1a\u786e\u5b9a\u5982\u4f55\u5728\u6bcf\u4e00\u6b65\u4e2d\u505a\u51fa\u8d2a\u5fc3\u9009\u62e9\u3002\u8fd9\u4e2a\u7b56\u7565\u80fd\u591f\u5728\u6bcf\u4e00\u6b65\u51cf\u5c0f\u95ee\u9898\u7684\u89c4\u6a21\uff0c\u5e76\u6700\u7ec8\u89e3\u51b3\u6574\u4e2a\u95ee\u9898\u3002
- \u6b63\u786e\u6027\u8bc1\u660e\uff1a\u901a\u5e38\u9700\u8981\u8bc1\u660e\u95ee\u9898\u5177\u6709\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8fd9\u4e2a\u6b65\u9aa4\u53ef\u80fd\u9700\u8981\u7528\u5230\u6570\u5b66\u8bc1\u660e\uff0c\u4f8b\u5982\u5f52\u7eb3\u6cd5\u6216\u53cd\u8bc1\u6cd5\u7b49\u3002
\u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u662f\u6c42\u89e3\u95ee\u9898\u7684\u6838\u5fc3\u6b65\u9aa4\uff0c\u4f46\u5b9e\u65bd\u8d77\u6765\u53ef\u80fd\u5e76\u4e0d\u5bb9\u6613\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u4e0d\u540c\u95ee\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\u7684\u5dee\u5f02\u8f83\u5927\u3002\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\u6765\u8bf4\uff0c\u8d2a\u5fc3\u7b56\u7565\u6bd4\u8f83\u6d45\u663e\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u5927\u6982\u7684\u601d\u8003\u4e0e\u5c1d\u8bd5\u5c31\u80fd\u5f97\u51fa\u3002\u800c\u5bf9\u4e8e\u4e00\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b56\u7565\u53ef\u80fd\u975e\u5e38\u9690\u853d\uff0c\u8fd9\u79cd\u60c5\u51b5\u5c31\u975e\u5e38\u8003\u9a8c\u4e2a\u4eba\u7684\u89e3\u9898\u7ecf\u9a8c\u4e0e\u7b97\u6cd5\u80fd\u529b\u4e86\u3002
- \u67d0\u4e9b\u8d2a\u5fc3\u7b56\u7565\u5177\u6709\u8f83\u5f3a\u7684\u8ff7\u60d1\u6027\u3002\u5f53\u6211\u4eec\u6ee1\u6000\u4fe1\u5fc3\u8bbe\u8ba1\u597d\u8d2a\u5fc3\u7b56\u7565\uff0c\u5199\u51fa\u89e3\u9898\u4ee3\u7801\u5e76\u63d0\u4ea4\u8fd0\u884c\uff0c\u5f88\u53ef\u80fd\u53d1\u73b0\u90e8\u5206\u6d4b\u8bd5\u6837\u4f8b\u65e0\u6cd5\u901a\u8fc7\u3002\u8fd9\u662f\u56e0\u4e3a\u8bbe\u8ba1\u7684\u8d2a\u5fc3\u7b56\u7565\u53ea\u662f\u201c\u90e8\u5206\u6b63\u786e\u201d\u7684\uff0c\u4e0a\u6587\u4ecb\u7ecd\u7684\u96f6\u94b1\u5151\u6362\u5c31\u662f\u4e00\u4e2a\u5178\u578b\u6848\u4f8b\u3002
\u4e3a\u4e86\u4fdd\u8bc1\u6b63\u786e\u6027\uff0c\u6211\u4eec\u5e94\u8be5\u5bf9\u8d2a\u5fc3\u7b56\u7565\u8fdb\u884c\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\uff0c\u901a\u5e38\u9700\u8981\u7528\u5230\u53cd\u8bc1\u6cd5\u6216\u6570\u5b66\u5f52\u7eb3\u6cd5\u3002
\u7136\u800c\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u4e5f\u5f88\u53ef\u80fd\u4e0d\u662f\u4e00\u4ef6\u6613\u4e8b\u3002\u5982\u82e5\u6ca1\u6709\u5934\u7eea\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u9762\u5411\u6d4b\u8bd5\u7528\u4f8b\u8fdb\u884c\u4ee3\u7801\u8c03\u8bd5\uff0c\u4e00\u6b65\u6b65\u4fee\u6539\u4e0e\u9a8c\u8bc1\u8d2a\u5fc3\u7b56\u7565\u3002
"},{"location":"chapter_greedy/greedy_algorithm/#1514","title":"15.1.4 \u00a0 \u8d2a\u5fc3\u5178\u578b\u4f8b\u9898","text":"\u8d2a\u5fc3\u7b97\u6cd5\u5e38\u5e38\u5e94\u7528\u5728\u6ee1\u8db3\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u4f18\u5316\u95ee\u9898\u4e2d\uff0c\u4ee5\u4e0b\u5217\u4e3e\u4e86\u4e00\u4e9b\u5178\u578b\u7684\u8d2a\u5fc3\u7b97\u6cd5\u95ee\u9898\u3002
- \u786c\u5e01\u627e\u96f6\u95ee\u9898\uff1a\u5728\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u603b\u662f\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u533a\u95f4\u8c03\u5ea6\u95ee\u9898\uff1a\u5047\u8bbe\u4f60\u6709\u4e00\u4e9b\u4efb\u52a1\uff0c\u6bcf\u4e2a\u4efb\u52a1\u5728\u4e00\u6bb5\u65f6\u95f4\u5185\u8fdb\u884c\uff0c\u4f60\u7684\u76ee\u6807\u662f\u5b8c\u6210\u5c3d\u53ef\u80fd\u591a\u7684\u4efb\u52a1\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u7ed3\u675f\u65f6\u95f4\u6700\u65e9\u7684\u4efb\u52a1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5c31\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u5206\u6570\u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u8f7d\u91cd\u91cf\uff0c\u4f60\u7684\u76ee\u6807\u662f\u9009\u62e9\u4e00\u7ec4\u7269\u54c1\uff0c\u4f7f\u5f97\u603b\u91cd\u91cf\u4e0d\u8d85\u8fc7\u8f7d\u91cd\u91cf\uff0c\u4e14\u603b\u4ef7\u503c\u6700\u5927\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u6027\u4ef7\u6bd4\u6700\u9ad8\uff08\u4ef7\u503c / \u91cd\u91cf\uff09\u7684\u7269\u54c1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4e00\u4e9b\u60c5\u51b5\u4e0b\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u80a1\u7968\u4e70\u5356\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u80a1\u7968\u7684\u5386\u53f2\u4ef7\u683c\uff0c\u4f60\u53ef\u4ee5\u8fdb\u884c\u591a\u6b21\u4e70\u5356\uff0c\u4f46\u5982\u679c\u4f60\u5df2\u7ecf\u6301\u6709\u80a1\u7968\uff0c\u90a3\u4e48\u5728\u5356\u51fa\u4e4b\u524d\u4e0d\u80fd\u518d\u4e70\uff0c\u76ee\u6807\u662f\u83b7\u53d6\u6700\u5927\u5229\u6da6\u3002
- \u970d\u592b\u66fc\u7f16\u7801\uff1a\u970d\u592b\u66fc\u7f16\u7801\u662f\u4e00\u79cd\u7528\u4e8e\u65e0\u635f\u6570\u636e\u538b\u7f29\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002\u901a\u8fc7\u6784\u5efa\u970d\u592b\u66fc\u6811\uff0c\u6bcf\u6b21\u9009\u62e9\u51fa\u73b0\u9891\u7387\u6700\u4f4e\u7684\u4e24\u4e2a\u8282\u70b9\u5408\u5e76\uff0c\u6700\u540e\u5f97\u5230\u7684\u970d\u592b\u66fc\u6811\u7684\u5e26\u6743\u8def\u5f84\u957f\u5ea6\uff08\u7f16\u7801\u957f\u5ea6\uff09\u6700\u5c0f\u3002
- Dijkstra \u7b97\u6cd5\uff1a\u5b83\u662f\u4e00\u79cd\u89e3\u51b3\u7ed9\u5b9a\u6e90\u9876\u70b9\u5230\u5176\u4f59\u5404\u9876\u70b9\u7684\u6700\u77ed\u8def\u5f84\u95ee\u9898\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002
"},{"location":"chapter_greedy/max_capacity_problem/","title":"15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898","text":"Question
\u8f93\u5165\u4e00\u4e2a\u6570\u7ec4 \\(ht\\) \uff0c\u5176\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u4ee3\u8868\u4e00\u4e2a\u5782\u76f4\u9694\u677f\u7684\u9ad8\u5ea6\u3002\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9694\u677f\uff0c\u4ee5\u53ca\u5b83\u4eec\u4e4b\u95f4\u7684\u7a7a\u95f4\u53ef\u4ee5\u7ec4\u6210\u4e00\u4e2a\u5bb9\u5668\u3002
\u5bb9\u5668\u7684\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u548c\u5bbd\u5ea6\u7684\u4e58\u79ef\uff08\u9762\u79ef\uff09\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u8f83\u77ed\u7684\u9694\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u4e2a\u9694\u677f\u7684\u6570\u7ec4\u7d22\u5f15\u4e4b\u5dee\u3002
\u8bf7\u5728\u6570\u7ec4\u4e2d\u9009\u62e9\u4e24\u4e2a\u9694\u677f\uff0c\u4f7f\u5f97\u7ec4\u6210\u7684\u5bb9\u5668\u7684\u5bb9\u91cf\u6700\u5927\uff0c\u8fd4\u56de\u6700\u5927\u5bb9\u91cf\u3002\u793a\u4f8b\u5982\u56fe 15-7 \u6240\u793a\u3002
\u56fe 15-7 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
\u5bb9\u5668\u7531\u4efb\u610f\u4e24\u4e2a\u9694\u677f\u56f4\u6210\uff0c\u56e0\u6b64\u672c\u9898\u7684\u72b6\u6001\u4e3a\u4e24\u4e2a\u9694\u677f\u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002
\u6839\u636e\u9898\u610f\uff0c\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u4e58\u4ee5\u5bbd\u5ea6\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u9694\u677f\u7684\u6570\u7ec4\u7d22\u5f15\u4e4b\u5dee\u3002\u8bbe\u5bb9\u91cf\u4e3a \\(cap[i, j]\\) \uff0c\u5219\u53ef\u5f97\u8ba1\u7b97\u516c\u5f0f\uff1a
\\[ cap[i, j] = \\min(ht[i], ht[j]) \\times (j - i) \\] \u8bbe\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u4e24\u4e2a\u9694\u677f\u7684\u7ec4\u5408\u6570\u91cf\uff08\u72b6\u6001\u603b\u6570\uff09\u4e3a \\(C_n^2 = \\frac{n(n - 1)}{2}\\) \u4e2a\u3002\u6700\u76f4\u63a5\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u7a77\u4e3e\u6240\u6709\u72b6\u6001\uff0c\u4ece\u800c\u6c42\u5f97\u6700\u5927\u5bb9\u91cf\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_greedy/max_capacity_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"\u8fd9\u9053\u9898\u8fd8\u6709\u66f4\u9ad8\u6548\u7387\u7684\u89e3\u6cd5\u3002\u5982\u56fe 15-8 \u6240\u793a\uff0c\u73b0\u9009\u53d6\u4e00\u4e2a\u72b6\u6001 \\([i, j]\\) \uff0c\u5176\u6ee1\u8db3\u7d22\u5f15 \\(i < j\\) \u4e14\u9ad8\u5ea6 \\(ht[i] < ht[j]\\) \uff0c\u5373 \\(i\\) \u4e3a\u77ed\u677f\u3001\\(j\\) \u4e3a\u957f\u677f\u3002
\u56fe 15-8 \u00a0 \u521d\u59cb\u72b6\u6001
\u5982\u56fe 15-9 \u6240\u793a\uff0c\u82e5\u6b64\u65f6\u5c06\u957f\u677f \\(j\\) \u5411\u77ed\u677f \\(i\\) \u9760\u8fd1\uff0c\u5219\u5bb9\u91cf\u4e00\u5b9a\u53d8\u5c0f\u3002
\u8fd9\u662f\u56e0\u4e3a\u5728\u79fb\u52a8\u957f\u677f \\(j\\) \u540e\uff0c\u5bbd\u5ea6 \\(j-i\\) \u80af\u5b9a\u53d8\u5c0f\uff1b\u800c\u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u56e0\u6b64\u9ad8\u5ea6\u53ea\u53ef\u80fd\u4e0d\u53d8\uff08 \\(i\\) \u4ecd\u4e3a\u77ed\u677f\uff09\u6216\u53d8\u5c0f\uff08\u79fb\u52a8\u540e\u7684 \\(j\\) \u6210\u4e3a\u77ed\u677f\uff09\u3002
\u56fe 15-9 \u00a0 \u5411\u5185\u79fb\u52a8\u957f\u677f\u540e\u7684\u72b6\u6001
\u53cd\u5411\u601d\u8003\uff0c\u6211\u4eec\u53ea\u6709\u5411\u5185\u6536\u7f29\u77ed\u677f \\(i\\) \uff0c\u624d\u6709\u53ef\u80fd\u4f7f\u5bb9\u91cf\u53d8\u5927\u3002\u56e0\u4e3a\u867d\u7136\u5bbd\u5ea6\u4e00\u5b9a\u53d8\u5c0f\uff0c\u4f46\u9ad8\u5ea6\u53ef\u80fd\u4f1a\u53d8\u5927\uff08\u79fb\u52a8\u540e\u7684\u77ed\u677f \\(i\\) \u53ef\u80fd\u4f1a\u53d8\u957f\uff09\u3002\u4f8b\u5982\u5728\u56fe 15-10 \u4e2d\uff0c\u79fb\u52a8\u77ed\u677f\u540e\u9762\u79ef\u53d8\u5927\u3002
\u56fe 15-10 \u00a0 \u5411\u5185\u79fb\u52a8\u77ed\u677f\u540e\u7684\u72b6\u6001
\u7531\u6b64\u4fbf\u53ef\u63a8\u51fa\u672c\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\uff1a\u521d\u59cb\u5316\u4e24\u6307\u9488\u5206\u5217\u5bb9\u5668\u4e24\u7aef\uff0c\u6bcf\u8f6e\u5411\u5185\u6536\u7f29\u77ed\u677f\u5bf9\u5e94\u7684\u6307\u9488\uff0c\u76f4\u81f3\u4e24\u6307\u9488\u76f8\u9047\u3002
\u56fe 15-11 \u5c55\u793a\u4e86\u8d2a\u5fc3\u7b56\u7565\u7684\u6267\u884c\u8fc7\u7a0b\u3002
- \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5206\u5217\u4e0e\u6570\u7ec4\u4e24\u7aef\u3002
- \u8ba1\u7b97\u5f53\u524d\u72b6\u6001\u7684\u5bb9\u91cf \\(cap[i, j]\\) \uff0c\u5e76\u66f4\u65b0\u6700\u5927\u5bb9\u91cf\u3002
- \u6bd4\u8f83\u677f \\(i\\) \u548c \u677f \\(j\\) \u7684\u9ad8\u5ea6\uff0c\u5e76\u5c06\u77ed\u677f\u5411\u5185\u79fb\u52a8\u4e00\u683c\u3002
- \u5faa\u73af\u6267\u884c\u7b2c
2. \u6b65\u548c\u7b2c 3. \u6b65\uff0c\u76f4\u81f3 \\(i\\) \u548c \\(j\\) \u76f8\u9047\u65f6\u7ed3\u675f\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 15-11 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u8d2a\u5fc3\u8fc7\u7a0b
"},{"location":"chapter_greedy/max_capacity_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u4ee3\u7801\u5faa\u73af\u6700\u591a \\(n\\) \u8f6e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
\u53d8\u91cf \\(i\\)\u3001\\(j\\)\u3001\\(res\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig max_capacity.pydef max_capacity(ht: list[int]) -> int:\n \"\"\"\u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3\"\"\"\n # \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n i, j = 0, len(ht) - 1\n # \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n res = 0\n # \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while i < j:\n # \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n cap = min(ht[i], ht[j]) * (j - i)\n res = max(res, cap)\n # \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j]:\n i += 1\n else:\n j -= 1\n return res\n
max_capacity.cpp/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(vector<int> &ht) {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.size() - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = min(ht[i], ht[j]) * (j - i);\n res = max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.java/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int[] ht) {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = Math.min(ht[i], ht[j]) * (j - i);\n res = Math.max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.cs/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint MaxCapacity(int[] ht) {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.Length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = Math.Min(ht[i], ht[j]) * (j - i);\n res = Math.Max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.go/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunc maxCapacity(ht []int) int {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n i, j := 0, len(ht)-1\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n res := 0\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n for i < j {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n capacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)\n res = int(math.Max(float64(res), float64(capacity)))\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j] {\n i++\n } else {\n j--\n }\n }\n return res\n}\n
max_capacity.swift/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunc maxCapacity(ht: [Int]) -> Int {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n var i = 0, j = ht.count - 1\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n var res = 0\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while i < j {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n let cap = min(ht[i], ht[j]) * (j - i)\n res = max(res, cap)\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j] {\n i += 1\n } else {\n j -= 1\n }\n }\n return res\n}\n
max_capacity.js/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunction maxCapacity(ht) {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n let i = 0,\n j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n let res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n const cap = Math.min(ht[i], ht[j]) * (j - i);\n res = Math.max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i += 1;\n } else {\n j -= 1;\n }\n }\n return res;\n}\n
max_capacity.ts/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunction maxCapacity(ht: number[]): number {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n let i = 0,\n j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n let res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n const cap: number = Math.min(ht[i], ht[j]) * (j - i);\n res = Math.max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i += 1;\n } else {\n j -= 1;\n }\n }\n return res;\n}\n
max_capacity.dart/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(List<int> ht) {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = min(ht[i], ht[j]) * (j - i);\n res = max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.rs/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfn max_capacity(ht: &[i32]) -> i32 {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n let mut i = 0;\n let mut j = ht.len() - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n let mut res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while i < j {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n let cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;\n res = std::cmp::max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j] {\n i += 1;\n } else {\n j -= 1;\n }\n }\n res\n}\n
max_capacity.c/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int ht[], int htLength) {\n // \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0;\n int j = htLength - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int capacity = myMin(ht[i], ht[j]) * (j - i);\n res = myMax(res, capacity);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.zig[class]{}-[func]{maxCapacity}\n
"},{"location":"chapter_greedy/max_capacity_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"\u4e4b\u6240\u4ee5\u8d2a\u5fc3\u6bd4\u7a77\u4e3e\u66f4\u5feb\uff0c\u662f\u56e0\u4e3a\u6bcf\u8f6e\u7684\u8d2a\u5fc3\u9009\u62e9\u90fd\u4f1a\u201c\u8df3\u8fc7\u201d\u4e00\u4e9b\u72b6\u6001\u3002
\u6bd4\u5982\u5728\u72b6\u6001 \\(cap[i, j]\\) \u4e0b\uff0c\\(i\\) \u4e3a\u77ed\u677f\u3001\\(j\\) \u4e3a\u957f\u677f\u3002\u82e5\u8d2a\u5fc3\u5730\u5c06\u77ed\u677f \\(i\\) \u5411\u5185\u79fb\u52a8\u4e00\u683c\uff0c\u4f1a\u5bfc\u81f4\u56fe 15-12 \u6240\u793a\u7684\u72b6\u6001\u88ab\u201c\u8df3\u8fc7\u201d\u3002\u8fd9\u610f\u5473\u7740\u4e4b\u540e\u65e0\u6cd5\u9a8c\u8bc1\u8fd9\u4e9b\u72b6\u6001\u7684\u5bb9\u91cf\u5927\u5c0f\u3002
\\[ cap[i, i+1], cap[i, i+2], \\dots, cap[i, j-2], cap[i, j-1] \\] \u56fe 15-12 \u00a0 \u79fb\u52a8\u77ed\u677f\u5bfc\u81f4\u88ab\u8df3\u8fc7\u7684\u72b6\u6001
\u89c2\u5bdf\u53d1\u73b0\uff0c\u8fd9\u4e9b\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u5b9e\u9645\u4e0a\u5c31\u662f\u5c06\u957f\u677f \\(j\\) \u5411\u5185\u79fb\u52a8\u7684\u6240\u6709\u72b6\u6001\u3002\u524d\u9762\u6211\u4eec\u5df2\u7ecf\u8bc1\u660e\u5185\u79fb\u957f\u677f\u4e00\u5b9a\u4f1a\u5bfc\u81f4\u5bb9\u91cf\u53d8\u5c0f\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u90fd\u4e0d\u53ef\u80fd\u662f\u6700\u4f18\u89e3\uff0c\u8df3\u8fc7\u5b83\u4eec\u4e0d\u4f1a\u5bfc\u81f4\u9519\u8fc7\u6700\u4f18\u89e3\u3002
\u4ee5\u4e0a\u5206\u6790\u8bf4\u660e\uff0c\u79fb\u52a8\u77ed\u677f\u7684\u64cd\u4f5c\u662f\u201c\u5b89\u5168\u201d\u7684\uff0c\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002
"},{"location":"chapter_greedy/max_product_cutting_problem/","title":"15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570 \\(n\\) \uff0c\u5c06\u5176\u5207\u5206\u4e3a\u81f3\u5c11\u4e24\u4e2a\u6b63\u6574\u6570\u7684\u548c\uff0c\u6c42\u5207\u5206\u540e\u6240\u6709\u6574\u6570\u7684\u4e58\u79ef\u6700\u5927\u662f\u591a\u5c11\uff0c\u5982\u56fe 15-13 \u6240\u793a\u3002
\u56fe 15-13 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u95ee\u9898\u5b9a\u4e49
\u5047\u8bbe\u6211\u4eec\u5c06 \\(n\\) \u5207\u5206\u4e3a \\(m\\) \u4e2a\u6574\u6570\u56e0\u5b50\uff0c\u5176\u4e2d\u7b2c \\(i\\) \u4e2a\u56e0\u5b50\u8bb0\u4e3a \\(n_i\\) \uff0c\u5373
\\[ n = \\sum_{i=1}^{m}n_i \\] \u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u5f97\u6240\u6709\u6574\u6570\u56e0\u5b50\u7684\u6700\u5927\u4e58\u79ef\uff0c\u5373
\\[ \\max(\\prod_{i=1}^{m}n_i) \\] \u6211\u4eec\u9700\u8981\u601d\u8003\u7684\u662f\uff1a\u5207\u5206\u6570\u91cf \\(m\\) \u5e94\u8be5\u591a\u5927\uff0c\u6bcf\u4e2a \\(n_i\\) \u5e94\u8be5\u662f\u591a\u5c11\uff1f
"},{"location":"chapter_greedy/max_product_cutting_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"\u6839\u636e\u7ecf\u9a8c\uff0c\u4e24\u4e2a\u6574\u6570\u7684\u4e58\u79ef\u5f80\u5f80\u6bd4\u5b83\u4eec\u7684\u52a0\u548c\u66f4\u5927\u3002\u5047\u8bbe\u4ece \\(n\\) \u4e2d\u5206\u51fa\u4e00\u4e2a\u56e0\u5b50 \\(2\\) \uff0c\u5219\u5b83\u4eec\u7684\u4e58\u79ef\u4e3a \\(2(n-2)\\) \u3002\u6211\u4eec\u5c06\u8be5\u4e58\u79ef\u4e0e \\(n\\) \u4f5c\u6bd4\u8f83\uff1a
\\[ \\begin{aligned} 2(n-2) & \\geq n \\newline 2n - n - 4 & \\geq 0 \\newline n & \\geq 4 \\end{aligned} \\] \u5982\u56fe 15-14 \u6240\u793a\uff0c\u5f53 \\(n \\geq 4\\) \u65f6\uff0c\u5207\u5206\u51fa\u4e00\u4e2a \\(2\\) \u540e\u4e58\u79ef\u4f1a\u53d8\u5927\uff0c\u8fd9\u8bf4\u660e\u5927\u4e8e\u7b49\u4e8e \\(4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u88ab\u5207\u5206\u3002
\u8d2a\u5fc3\u7b56\u7565\u4e00\uff1a\u5982\u679c\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b \\(\\geq 4\\) \u7684\u56e0\u5b50\uff0c\u90a3\u4e48\u5b83\u5c31\u5e94\u8be5\u88ab\u7ee7\u7eed\u5207\u5206\u3002\u6700\u7ec8\u7684\u5207\u5206\u65b9\u6848\u53ea\u5e94\u51fa\u73b0 \\(1\\)\u3001\\(2\\)\u3001\\(3\\) \u8fd9\u4e09\u79cd\u56e0\u5b50\u3002
\u56fe 15-14 \u00a0 \u5207\u5206\u5bfc\u81f4\u4e58\u79ef\u53d8\u5927
\u63a5\u4e0b\u6765\u601d\u8003\u54ea\u4e2a\u56e0\u5b50\u662f\u6700\u4f18\u7684\u3002\u5728 \\(1\\)\u3001\\(2\\)\u3001\\(3\\) \u8fd9\u4e09\u4e2a\u56e0\u5b50\u4e2d\uff0c\u663e\u7136 \\(1\\) \u662f\u6700\u5dee\u7684\uff0c\u56e0\u4e3a \\(1 \\times (n-1) < n\\) \u6052\u6210\u7acb\uff0c\u5373\u5207\u5206\u51fa \\(1\\) \u53cd\u800c\u4f1a\u5bfc\u81f4\u4e58\u79ef\u51cf\u5c0f\u3002
\u5982\u56fe 15-15 \u6240\u793a\uff0c\u5f53 \\(n = 6\\) \u65f6\uff0c\u6709 \\(3 \\times 3 > 2 \\times 2 \\times 2\\) \u3002\u8fd9\u610f\u5473\u7740\u5207\u5206\u51fa \\(3\\) \u6bd4\u5207\u5206\u51fa \\(2\\) \u66f4\u4f18\u3002
\u8d2a\u5fc3\u7b56\u7565\u4e8c\uff1a\u5728\u5207\u5206\u65b9\u6848\u4e2d\uff0c\u6700\u591a\u53ea\u5e94\u5b58\u5728\u4e24\u4e2a \\(2\\) \u3002\u56e0\u4e3a\u4e09\u4e2a \\(2\\) \u603b\u662f\u53ef\u4ee5\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002
\u56fe 15-15 \u00a0 \u6700\u4f18\u5207\u5206\u56e0\u5b50
\u7efc\u4e0a\u6240\u8ff0\uff0c\u53ef\u63a8\u7406\u51fa\u4ee5\u4e0b\u8d2a\u5fc3\u7b56\u7565\u3002
- \u8f93\u5165\u6574\u6570 \\(n\\) \uff0c\u4ece\u5176\u4e0d\u65ad\u5730\u5207\u5206\u51fa\u56e0\u5b50 \\(3\\) \uff0c\u76f4\u81f3\u4f59\u6570\u4e3a \\(0\\)\u3001\\(1\\)\u3001\\(2\\) \u3002
- \u5f53\u4f59\u6570\u4e3a \\(0\\) \u65f6\uff0c\u4ee3\u8868 \\(n\\) \u662f \\(3\\) \u7684\u500d\u6570\uff0c\u56e0\u6b64\u4e0d\u505a\u4efb\u4f55\u5904\u7406\u3002
- \u5f53\u4f59\u6570\u4e3a \\(2\\) \u65f6\uff0c\u4e0d\u7ee7\u7eed\u5212\u5206\uff0c\u4fdd\u7559\u4e4b\u3002
- \u5f53\u4f59\u6570\u4e3a \\(1\\) \u65f6\uff0c\u7531\u4e8e \\(2 \\times 2 > 1 \\times 3\\) \uff0c\u56e0\u6b64\u5e94\u5c06\u6700\u540e\u4e00\u4e2a \\(3\\) \u66ff\u6362\u4e3a \\(2\\) \u3002
"},{"location":"chapter_greedy/max_product_cutting_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5982\u56fe 15-16 \u6240\u793a\uff0c\u6211\u4eec\u65e0\u987b\u901a\u8fc7\u5faa\u73af\u6765\u5207\u5206\u6574\u6570\uff0c\u800c\u53ef\u4ee5\u5229\u7528\u5411\u4e0b\u6574\u9664\u8fd0\u7b97\u5f97\u5230 \\(3\\) \u7684\u4e2a\u6570 \\(a\\) \uff0c\u7528\u53d6\u6a21\u8fd0\u7b97\u5f97\u5230\u4f59\u6570 \\(b\\) \uff0c\u6b64\u65f6\u6709\uff1a
\\[ n = 3 a + b \\] \u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e \\(n \\leq 3\\) \u7684\u8fb9\u754c\u60c5\u51b5\uff0c\u5fc5\u987b\u62c6\u5206\u51fa\u4e00\u4e2a \\(1\\) \uff0c\u4e58\u79ef\u4e3a \\(1 \\times (n - 1)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig max_product_cutting.pydef max_product_cutting(n: int) -> int:\n \"\"\"\u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3\"\"\"\n # \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3:\n return 1 * (n - 1)\n # \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n a, b = n // 3, n % 3\n if b == 1:\n # \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return int(math.pow(3, a - 1)) * 2 * 2\n if b == 2:\n # \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.pow(3, a)) * 2\n # \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.pow(3, a))\n
max_product_cutting.cpp/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (int)pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)pow(3, a);\n}\n
max_product_cutting.java/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (int) Math.pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int) Math.pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int) Math.pow(3, a);\n}\n
max_product_cutting.cs/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint MaxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (int)Math.Pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)Math.Pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)Math.Pow(3, a);\n}\n
max_product_cutting.go/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunc maxProductCutting(n int) int {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3 {\n return 1 * (n - 1)\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n a := n / 3\n b := n % 3\n if b == 1 {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return int(math.Pow(3, float64(a-1))) * 2 * 2\n }\n if b == 2 {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.Pow(3, float64(a))) * 2\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.Pow(3, float64(a)))\n}\n
max_product_cutting.swift/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunc maxProductCutting(n: Int) -> Int {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3 {\n return 1 * (n - 1)\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a = n / 3\n let b = n % 3\n if b == 1 {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return pow(3, a - 1) * 2 * 2\n }\n if b == 2 {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a) * 2\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a)\n}\n
max_product_cutting.js/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunction maxProductCutting(n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a = Math.floor(n / 3);\n let b = n % 3;\n if (b === 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return Math.pow(3, a - 1) * 2 * 2;\n }\n if (b === 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a);\n}\n
max_product_cutting.ts/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunction maxProductCutting(n: number): number {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a: number = Math.floor(n / 3);\n let b: number = n % 3;\n if (b === 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return Math.pow(3, a - 1) * 2 * 2;\n }\n if (b === 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a);\n}\n
max_product_cutting.dart/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n ~/ 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (pow(3, a - 1) * 2 * 2).toInt();\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (pow(3, a) * 2).toInt();\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a).toInt();\n}\n
max_product_cutting.rs/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfn max_product_cutting(n: i32) -> i32 {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3 {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a = n / 3;\n let b = n % 3;\n if b == 1 {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n 3_i32.pow(a as u32 - 1) * 2 * 2\n } else if b == 2 {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n 3_i32.pow(a as u32) * 2\n } else {\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n 3_i32.pow(a as u32)\n }\n}\n
max_product_cutting.c/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a);\n}\n
max_product_cutting.zig[class]{}-[func]{maxProductCutting}\n
\u56fe 15-16 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u8ba1\u7b97\u65b9\u6cd5
\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u5e42\u8fd0\u7b97\u7684\u5b9e\u73b0\u65b9\u6cd5\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u5e38\u7528\u7684\u5e42\u8ba1\u7b97\u51fd\u6570\u6709\u4e09\u79cd\u3002
- \u8fd0\u7b97\u7b26
** \u548c\u51fd\u6570 pow() \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log\u2061 a)\\) \u3002 - \u51fd\u6570
math.pow() \u5185\u90e8\u8c03\u7528 C \u8bed\u8a00\u5e93\u7684 pow() \u51fd\u6570\uff0c\u5176\u6267\u884c\u6d6e\u70b9\u53d6\u5e42\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
\u53d8\u91cf \\(a\\) \u548c \\(b\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
"},{"location":"chapter_greedy/max_product_cutting_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"\u4f7f\u7528\u53cd\u8bc1\u6cd5\uff0c\u53ea\u5206\u6790 \\(n \\geq 3\\) \u7684\u60c5\u51b5\u3002
- \u6240\u6709\u56e0\u5b50 \\(\\leq 3\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728 \\(\\geq 4\\) \u7684\u56e0\u5b50 \\(x\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u5c06\u5176\u7ee7\u7eed\u5212\u5206\u4e3a \\(2(x-2)\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
- \u5207\u5206\u65b9\u6848\u4e0d\u5305\u542b \\(1\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728\u4e00\u4e2a\u56e0\u5b50 \\(1\\) \uff0c\u90a3\u4e48\u5b83\u4e00\u5b9a\u53ef\u4ee5\u5408\u5e76\u5165\u53e6\u5916\u4e00\u4e2a\u56e0\u5b50\u4e2d\uff0c\u4ee5\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
- \u5207\u5206\u65b9\u6848\u6700\u591a\u5305\u542b\u4e24\u4e2a \\(2\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b\u4e09\u4e2a \\(2\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4e58\u79ef\u66f4\u5927\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
"},{"location":"chapter_greedy/summary/","title":"15.5 \u00a0 \u5c0f\u7ed3","text":" - \u8d2a\u5fc3\u7b97\u6cd5\u901a\u5e38\u7528\u4e8e\u89e3\u51b3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5176\u539f\u7406\u662f\u5728\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\u90fd\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002
- \u8d2a\u5fc3\u7b97\u6cd5\u4f1a\u8fed\u4ee3\u5730\u505a\u51fa\u4e00\u4e2a\u53c8\u4e00\u4e2a\u7684\u8d2a\u5fc3\u9009\u62e9\uff0c\u6bcf\u8f6e\u90fd\u5c06\u95ee\u9898\u8f6c\u5316\u6210\u4e00\u4e2a\u89c4\u6a21\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u5230\u95ee\u9898\u88ab\u89e3\u51b3\u3002
- \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u5b9e\u73b0\u7b80\u5355\uff0c\u8fd8\u5177\u6709\u5f88\u9ad8\u7684\u89e3\u9898\u6548\u7387\u3002\u76f8\u6bd4\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u66f4\u4f4e\u3002
- \u5728\u96f6\u94b1\u5151\u6362\u95ee\u9898\u4e2d\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1b\u5bf9\u4e8e\u53e6\u5916\u4e00\u4e9b\u786c\u5e01\u7ec4\u5408\u5219\u4e0d\u7136\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u80fd\u627e\u5230\u5f88\u5dee\u7684\u89e3\u3002
- \u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u7684\u95ee\u9898\u5177\u6709\u4e24\u5927\u6027\u8d28\uff1a\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u4ee3\u8868\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002
- \u5bf9\u4e8e\u67d0\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u8bc1\u660e\u5e76\u4e0d\u7b80\u5355\u3002\u76f8\u5bf9\u6765\u8bf4\uff0c\u8bc1\u4f2a\u66f4\u52a0\u5bb9\u6613\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002
- \u6c42\u89e3\u8d2a\u5fc3\u95ee\u9898\u4e3b\u8981\u5206\u4e3a\u4e09\u6b65\uff1a\u95ee\u9898\u5206\u6790\u3001\u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u3001\u6b63\u786e\u6027\u8bc1\u660e\u3002\u5176\u4e2d\uff0c\u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u662f\u6838\u5fc3\u6b65\u9aa4\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u5f80\u5f80\u662f\u96be\u70b9\u3002
- \u5206\u6570\u80cc\u5305\u95ee\u9898\u5728 0-1 \u80cc\u5305\u7684\u57fa\u7840\u4e0a\uff0c\u5141\u8bb8\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u56e0\u6b64\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u3002\u8d2a\u5fc3\u7b56\u7565\u7684\u6b63\u786e\u6027\u53ef\u4ee5\u4f7f\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\u3002
- \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u53ef\u4f7f\u7528\u7a77\u4e3e\u6cd5\u6c42\u89e3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u901a\u8fc7\u8bbe\u8ba1\u8d2a\u5fc3\u7b56\u7565\uff0c\u6bcf\u8f6e\u5411\u5185\u79fb\u52a8\u77ed\u677f\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(n)\\) \u3002
- \u5728\u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u63a8\u7406\u51fa\u4e24\u4e2a\u8d2a\u5fc3\u7b56\u7565\uff1a\\(\\geq 4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u7ee7\u7eed\u5207\u5206\u3001\u6700\u4f18\u5207\u5206\u56e0\u5b50\u4e3a \\(3\\) \u3002\u4ee3\u7801\u4e2d\u5305\u542b\u5e42\u8fd0\u7b97\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5e42\u8fd0\u7b97\u5b9e\u73b0\u65b9\u6cd5\uff0c\u901a\u5e38\u4e3a \\(O(1)\\) \u6216 \\(O(\\log n)\\) \u3002
"},{"location":"chapter_hashing/","title":"\u7b2c 6 \u7ae0 \u00a0 \u54c8\u5e0c\u8868","text":"Abstract
\u5728\u8ba1\u7b97\u673a\u4e16\u754c\u4e2d\uff0c\u54c8\u5e0c\u8868\u5982\u540c\u4e00\u4f4d\u806a\u6167\u7684\u56fe\u4e66\u7ba1\u7406\u5458\u3002
\u4ed6\u77e5\u9053\u5982\u4f55\u8ba1\u7b97\u7d22\u4e66\u53f7\uff0c\u4ece\u800c\u53ef\u4ee5\u5feb\u901f\u627e\u5230\u76ee\u6807\u56fe\u4e66\u3002
"},{"location":"chapter_hashing/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 6.1 \u00a0 \u54c8\u5e0c\u8868
- 6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81
- 6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5
- 6.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_hashing/hash_algorithm/","title":"6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5","text":"\u524d\u4e24\u8282\u4ecb\u7ecd\u4e86\u54c8\u5e0c\u8868\u7684\u5de5\u4f5c\u539f\u7406\u548c\u54c8\u5e0c\u51b2\u7a81\u7684\u5904\u7406\u65b9\u6cd5\u3002\u7136\u800c\u65e0\u8bba\u662f\u5f00\u653e\u5bfb\u5740\u8fd8\u662f\u94fe\u5f0f\u5730\u5740\uff0c\u5b83\u4eec\u53ea\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u53d1\u751f\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\uff0c\u800c\u65e0\u6cd5\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u3002
\u5982\u679c\u54c8\u5e0c\u51b2\u7a81\u8fc7\u4e8e\u9891\u7e41\uff0c\u54c8\u5e0c\u8868\u7684\u6027\u80fd\u5219\u4f1a\u6025\u5267\u52a3\u5316\u3002\u5982\u56fe 6-8 \u6240\u793a\uff0c\u5bf9\u4e8e\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\uff0c\u7406\u60f3\u60c5\u51b5\u4e0b\u952e\u503c\u5bf9\u5747\u5300\u5206\u5e03\u5728\u5404\u4e2a\u6876\u4e2d\uff0c\u8fbe\u5230\u6700\u4f73\u67e5\u8be2\u6548\u7387\uff1b\u6700\u5dee\u60c5\u51b5\u4e0b\u6240\u6709\u952e\u503c\u5bf9\u90fd\u5b58\u50a8\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002
\u56fe 6-8 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u7684\u6700\u4f73\u60c5\u51b5\u4e0e\u6700\u5dee\u60c5\u51b5
\u952e\u503c\u5bf9\u7684\u5206\u5e03\u60c5\u51b5\u7531\u54c8\u5e0c\u51fd\u6570\u51b3\u5b9a\u3002\u56de\u5fc6\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u6b65\u9aa4\uff0c\u5148\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u518d\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\uff1a
index = hash(key) % capacity\n
\u89c2\u5bdf\u4ee5\u4e0a\u516c\u5f0f\uff0c\u5f53\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u56fa\u5b9a\u65f6\uff0c\u54c8\u5e0c\u7b97\u6cd5 hash() \u51b3\u5b9a\u4e86\u8f93\u51fa\u503c\uff0c\u8fdb\u800c\u51b3\u5b9a\u4e86\u952e\u503c\u5bf9\u5728\u54c8\u5e0c\u8868\u4e2d\u7684\u5206\u5e03\u60c5\u51b5\u3002
\u8fd9\u610f\u5473\u7740\uff0c\u4e3a\u4e86\u964d\u4f4e\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u6982\u7387\uff0c\u6211\u4eec\u5e94\u5f53\u5c06\u6ce8\u610f\u529b\u96c6\u4e2d\u5728\u54c8\u5e0c\u7b97\u6cd5 hash() \u7684\u8bbe\u8ba1\u4e0a\u3002
"},{"location":"chapter_hashing/hash_algorithm/#631","title":"6.3.1 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u76ee\u6807","text":"\u4e3a\u4e86\u5b9e\u73b0\u201c\u65e2\u5feb\u53c8\u7a33\u201d\u7684\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u5177\u5907\u4ee5\u4e0b\u7279\u70b9\u3002
- \u786e\u5b9a\u6027\uff1a\u5bf9\u4e8e\u76f8\u540c\u7684\u8f93\u5165\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u59cb\u7ec8\u4ea7\u751f\u76f8\u540c\u7684\u8f93\u51fa\u3002\u8fd9\u6837\u624d\u80fd\u786e\u4fdd\u54c8\u5e0c\u8868\u662f\u53ef\u9760\u7684\u3002
- \u6548\u7387\u9ad8\uff1a\u8ba1\u7b97\u54c8\u5e0c\u503c\u7684\u8fc7\u7a0b\u5e94\u8be5\u8db3\u591f\u5feb\u3002\u8ba1\u7b97\u5f00\u9500\u8d8a\u5c0f\uff0c\u54c8\u5e0c\u8868\u7684\u5b9e\u7528\u6027\u8d8a\u9ad8\u3002
- \u5747\u5300\u5206\u5e03\uff1a\u54c8\u5e0c\u7b97\u6cd5\u5e94\u4f7f\u5f97\u952e\u503c\u5bf9\u5747\u5300\u5206\u5e03\u5728\u54c8\u5e0c\u8868\u4e2d\u3002\u5206\u5e03\u8d8a\u5747\u5300\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002
\u5b9e\u9645\u4e0a\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9664\u4e86\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u54c8\u5e0c\u8868\uff0c\u8fd8\u5e7f\u6cdb\u5e94\u7528\u4e8e\u5176\u4ed6\u9886\u57df\u4e2d\u3002
- \u5bc6\u7801\u5b58\u50a8\uff1a\u4e3a\u4e86\u4fdd\u62a4\u7528\u6237\u5bc6\u7801\u7684\u5b89\u5168\uff0c\u7cfb\u7edf\u901a\u5e38\u4e0d\u4f1a\u76f4\u63a5\u5b58\u50a8\u7528\u6237\u7684\u660e\u6587\u5bc6\u7801\uff0c\u800c\u662f\u5b58\u50a8\u5bc6\u7801\u7684\u54c8\u5e0c\u503c\u3002\u5f53\u7528\u6237\u8f93\u5165\u5bc6\u7801\u65f6\uff0c\u7cfb\u7edf\u4f1a\u5bf9\u8f93\u5165\u7684\u5bc6\u7801\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u7136\u540e\u4e0e\u5b58\u50a8\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u5bc6\u7801\u5c31\u88ab\u89c6\u4e3a\u6b63\u786e\u3002
- \u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5\uff1a\u6570\u636e\u53d1\u9001\u65b9\u53ef\u4ee5\u8ba1\u7b97\u6570\u636e\u7684\u54c8\u5e0c\u503c\u5e76\u5c06\u5176\u4e00\u540c\u53d1\u9001\uff1b\u63a5\u6536\u65b9\u53ef\u4ee5\u91cd\u65b0\u8ba1\u7b97\u63a5\u6536\u5230\u7684\u6570\u636e\u7684\u54c8\u5e0c\u503c\uff0c\u5e76\u4e0e\u63a5\u6536\u5230\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u6570\u636e\u5c31\u88ab\u89c6\u4e3a\u5b8c\u6574\u3002
\u5bf9\u4e8e\u5bc6\u7801\u5b66\u7684\u76f8\u5173\u5e94\u7528\uff0c\u4e3a\u4e86\u9632\u6b62\u4ece\u54c8\u5e0c\u503c\u63a8\u5bfc\u51fa\u539f\u59cb\u5bc6\u7801\u7b49\u9006\u5411\u5de5\u7a0b\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9700\u8981\u5177\u5907\u66f4\u9ad8\u7b49\u7ea7\u7684\u5b89\u5168\u7279\u6027\u3002
- \u5355\u5411\u6027\uff1a\u65e0\u6cd5\u901a\u8fc7\u54c8\u5e0c\u503c\u53cd\u63a8\u51fa\u5173\u4e8e\u8f93\u5165\u6570\u636e\u7684\u4efb\u4f55\u4fe1\u606f\u3002
- \u6297\u78b0\u649e\u6027\uff1a\u5e94\u5f53\u6781\u96be\u627e\u5230\u4e24\u4e2a\u4e0d\u540c\u7684\u8f93\u5165\uff0c\u4f7f\u5f97\u5b83\u4eec\u7684\u54c8\u5e0c\u503c\u76f8\u540c\u3002
- \u96ea\u5d29\u6548\u5e94\uff1a\u8f93\u5165\u7684\u5fae\u5c0f\u53d8\u5316\u5e94\u5f53\u5bfc\u81f4\u8f93\u51fa\u7684\u663e\u8457\u4e14\u4e0d\u53ef\u9884\u6d4b\u7684\u53d8\u5316\u3002
\u8bf7\u6ce8\u610f\uff0c\u201c\u5747\u5300\u5206\u5e03\u201d\u4e0e\u201c\u6297\u78b0\u649e\u6027\u201d\u662f\u4e24\u4e2a\u72ec\u7acb\u7684\u6982\u5ff5\uff0c\u6ee1\u8db3\u5747\u5300\u5206\u5e03\u4e0d\u4e00\u5b9a\u6ee1\u8db3\u6297\u78b0\u649e\u6027\u3002\u4f8b\u5982\uff0c\u5728\u968f\u673a\u8f93\u5165 key \u4e0b\uff0c\u54c8\u5e0c\u51fd\u6570 key % 100 \u53ef\u4ee5\u4ea7\u751f\u5747\u5300\u5206\u5e03\u7684\u8f93\u51fa\u3002\u7136\u800c\u8be5\u54c8\u5e0c\u7b97\u6cd5\u8fc7\u4e8e\u7b80\u5355\uff0c\u6240\u6709\u540e\u4e24\u4f4d\u76f8\u7b49\u7684 key \u7684\u8f93\u51fa\u90fd\u76f8\u540c\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4ece\u54c8\u5e0c\u503c\u53cd\u63a8\u51fa\u53ef\u7528\u7684 key \uff0c\u4ece\u800c\u7834\u89e3\u5bc6\u7801\u3002
"},{"location":"chapter_hashing/hash_algorithm/#632","title":"6.3.2 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1","text":"\u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u662f\u4e00\u4e2a\u9700\u8981\u8003\u8651\u8bb8\u591a\u56e0\u7d20\u7684\u590d\u6742\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u67d0\u4e9b\u8981\u6c42\u4e0d\u9ad8\u7684\u573a\u666f\uff0c\u6211\u4eec\u4e5f\u80fd\u8bbe\u8ba1\u4e00\u4e9b\u7b80\u5355\u7684\u54c8\u5e0c\u7b97\u6cd5\u3002
- \u52a0\u6cd5\u54c8\u5e0c\uff1a\u5bf9\u8f93\u5165\u7684\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u8fdb\u884c\u76f8\u52a0\uff0c\u5c06\u5f97\u5230\u7684\u603b\u548c\u4f5c\u4e3a\u54c8\u5e0c\u503c\u3002
- \u4e58\u6cd5\u54c8\u5e0c\uff1a\u5229\u7528\u4e58\u6cd5\u7684\u4e0d\u76f8\u5173\u6027\uff0c\u6bcf\u8f6e\u4e58\u4ee5\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5404\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u54c8\u5e0c\u503c\u4e2d\u3002
- \u5f02\u6216\u54c8\u5e0c\uff1a\u5c06\u8f93\u5165\u6570\u636e\u7684\u6bcf\u4e2a\u5143\u7d20\u901a\u8fc7\u5f02\u6216\u64cd\u4f5c\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\u3002
- \u65cb\u8f6c\u54c8\u5e0c\uff1a\u5c06\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\uff0c\u6bcf\u6b21\u7d2f\u79ef\u4e4b\u524d\u90fd\u4f1a\u5bf9\u54c8\u5e0c\u503c\u8fdb\u884c\u65cb\u8f6c\u64cd\u4f5c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig simple_hash.pydef add_hash(key: str) -> int:\n \"\"\"\u52a0\u6cd5\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash += ord(c)\n return hash % modulus\n\ndef mul_hash(key: str) -> int:\n \"\"\"\u4e58\u6cd5\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash = 31 * hash + ord(c)\n return hash % modulus\n\ndef xor_hash(key: str) -> int:\n \"\"\"\u5f02\u6216\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash ^= ord(c)\n return hash % modulus\n\ndef rot_hash(key: str) -> int:\n \"\"\"\u65cb\u8f6c\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash = (hash << 4) ^ (hash >> 28) ^ ord(c)\n return hash % modulus\n
simple_hash.cpp/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(string key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash = (hash + (int)c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(string key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash = (31 * hash + (int)c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(string key) {\n int hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash ^= (int)c;\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(string key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ (int)c) % MODULUS;\n }\n return (int)hash;\n}\n
simple_hash.java/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\n long hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash = (hash + (int) c) % MODULUS;\n }\n return (int) hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\n long hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash = (31 * hash + (int) c) % MODULUS;\n }\n return (int) hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash ^= (int) c;\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\n long hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash = ((hash << 4) ^ (hash >> 28) ^ (int) c) % MODULUS;\n }\n return (int) hash;\n}\n
simple_hash.cs/* \u52a0\u6cd5\u54c8\u5e0c */\nint AddHash(string key) {\n long hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash = (hash + c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint MulHash(string key) {\n long hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash = (31 * hash + c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint XorHash(string key) {\n int hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash ^= c;\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint RotHash(string key) {\n long hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ c) % MODULUS;\n }\n return (int)hash;\n}\n
simple_hash.go/* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key string) int {\n var hash int64\n var modulus int64\n\n modulus = 1000000007\n for _, b := range []byte(key) {\n hash = (hash + int64(b)) % modulus\n }\n return int(hash)\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key string) int {\n var hash int64\n var modulus int64\n\n modulus = 1000000007\n for _, b := range []byte(key) {\n hash = (31*hash + int64(b)) % modulus\n }\n return int(hash)\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key string) int {\n hash := 0\n modulus := 1000000007\n for _, b := range []byte(key) {\n fmt.Println(int(b))\n hash ^= int(b)\n hash = (31*hash + int(b)) % modulus\n }\n return hash & modulus\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key string) int {\n var hash int64\n var modulus int64\n\n modulus = 1000000007\n for _, b := range []byte(key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ int64(b)) % modulus\n }\n return int(hash)\n}\n
simple_hash.swift/* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash = (hash + Int(scalar.value)) % MODULUS\n }\n }\n return hash\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash = (31 * hash + Int(scalar.value)) % MODULUS\n }\n }\n return hash\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash ^= Int(scalar.value)\n }\n }\n return hash & MODULUS\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash = ((hash << 4) ^ (hash >> 28) ^ Int(scalar.value)) % MODULUS\n }\n }\n return hash\n}\n
simple_hash.js/* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash ^= c.charCodeAt(0);\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n
simple_hash.ts/* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash ^= c.charCodeAt(0);\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n
simple_hash.dart/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash = (hash + key.codeUnitAt(i)) % MODULUS;\n }\n return hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash = (31 * hash + key.codeUnitAt(i)) % MODULUS;\n }\n return hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash ^= key.codeUnitAt(i);\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash = ((hash << 4) ^ (hash >> 28) ^ key.codeUnitAt(i)) % MODULUS;\n }\n return hash;\n}\n
simple_hash.rs/* \u52a0\u6cd5\u54c8\u5e0c */\nfn add_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash = (hash + c as i64) % MODULUS;\n }\n\n hash as i32\n} \n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfn mul_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash = (31 * hash + c as i64) % MODULUS;\n }\n\n hash as i32\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfn xor_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash ^= c as i64;\n }\n\n (hash & MODULUS) as i32\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfn rot_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash = ((hash << 4) ^ (hash >> 28) ^ c as i64) % MODULUS;\n }\n\n hash as i32\n}\n
simple_hash.c/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(char *key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (int i = 0; i < strlen(key); i++) {\n hash = (hash + (unsigned char)key[i]) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(char *key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (int i = 0; i < strlen(key); i++) {\n hash = (31 * hash + (unsigned char)key[i]) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(char *key) {\n int hash = 0;\n const int MODULUS = 1000000007;\n\n for (int i = 0; i < strlen(key); i++) {\n hash ^= (unsigned char)key[i];\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(char *key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (int i = 0; i < strlen(key); i++) {\n hash = ((hash << 4) ^ (hash >> 28) ^ (unsigned char)key[i]) % MODULUS;\n }\n\n return (int)hash;\n}\n
simple_hash.zig[class]{}-[func]{addHash}\n\n[class]{}-[func]{mulHash}\n\n[class]{}-[func]{xorHash}\n\n[class]{}-[func]{rotHash}\n
\u89c2\u5bdf\u53d1\u73b0\uff0c\u6bcf\u79cd\u54c8\u5e0c\u7b97\u6cd5\u7684\u6700\u540e\u4e00\u6b65\u90fd\u662f\u5bf9\u5927\u8d28\u6570 \\(1000000007\\) \u53d6\u6a21\uff0c\u4ee5\u786e\u4fdd\u54c8\u5e0c\u503c\u5728\u5408\u9002\u7684\u8303\u56f4\u5185\u3002\u503c\u5f97\u601d\u8003\u7684\u662f\uff0c\u4e3a\u4ec0\u4e48\u8981\u5f3a\u8c03\u5bf9\u8d28\u6570\u53d6\u6a21\uff0c\u6216\u8005\u8bf4\u5bf9\u5408\u6570\u53d6\u6a21\u7684\u5f0a\u7aef\u662f\u4ec0\u4e48\uff1f\u8fd9\u662f\u4e00\u4e2a\u6709\u8da3\u7684\u95ee\u9898\u3002
\u5148\u629b\u51fa\u7ed3\u8bba\uff1a\u4f7f\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u53ef\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u7684\u5747\u5300\u5206\u5e03\u3002\u56e0\u4e3a\u8d28\u6570\u4e0d\u4e0e\u5176\u4ed6\u6570\u5b57\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u53ef\u4ee5\u51cf\u5c11\u56e0\u53d6\u6a21\u64cd\u4f5c\u800c\u4ea7\u751f\u7684\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u4ece\u800c\u907f\u514d\u54c8\u5e0c\u51b2\u7a81\u3002
\u4e3e\u4e2a\u4f8b\u5b50\uff0c\u5047\u8bbe\u6211\u4eec\u9009\u62e9\u5408\u6570 \\(9\\) \u4f5c\u4e3a\u6a21\u6570\uff0c\u5b83\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\uff0c\u90a3\u4e48\u6240\u6709\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\u7684 key \u90fd\u4f1a\u88ab\u6620\u5c04\u5230 \\(0\\)\u3001\\(3\\)\u3001\\(6\\) \u8fd9\u4e09\u4e2a\u54c8\u5e0c\u503c\u3002
\\[ \\begin{aligned} \\text{modulus} & = 9 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\dots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\\dots \\} \\end{aligned} \\] \u5982\u679c\u8f93\u5165 key \u6070\u597d\u6ee1\u8db3\u8fd9\u79cd\u7b49\u5dee\u6570\u5217\u7684\u6570\u636e\u5206\u5e03\uff0c\u90a3\u4e48\u54c8\u5e0c\u503c\u5c31\u4f1a\u51fa\u73b0\u805a\u5806\uff0c\u4ece\u800c\u52a0\u91cd\u54c8\u5e0c\u51b2\u7a81\u3002\u73b0\u5728\uff0c\u5047\u8bbe\u5c06 modulus \u66ff\u6362\u4e3a\u8d28\u6570 \\(13\\) \uff0c\u7531\u4e8e key \u548c modulus \u4e4b\u95f4\u4e0d\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u56e0\u6b64\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u7684\u5747\u5300\u6027\u4f1a\u660e\u663e\u63d0\u5347\u3002
\\[ \\begin{aligned} \\text{modulus} & = 13 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\dots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \\dots \\} \\end{aligned} \\] \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5982\u679c\u80fd\u591f\u4fdd\u8bc1 key \u662f\u968f\u673a\u5747\u5300\u5206\u5e03\u7684\uff0c\u90a3\u4e48\u9009\u62e9\u8d28\u6570\u6216\u8005\u5408\u6570\u4f5c\u4e3a\u6a21\u6570\u90fd\u53ef\u4ee5\uff0c\u5b83\u4eec\u90fd\u80fd\u8f93\u51fa\u5747\u5300\u5206\u5e03\u7684\u54c8\u5e0c\u503c\u3002\u800c\u5f53 key \u7684\u5206\u5e03\u5b58\u5728\u67d0\u79cd\u5468\u671f\u6027\u65f6\uff0c\u5bf9\u5408\u6570\u53d6\u6a21\u66f4\u5bb9\u6613\u51fa\u73b0\u805a\u96c6\u73b0\u8c61\u3002
\u603b\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u901a\u5e38\u9009\u53d6\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u5e76\u4e14\u8fd9\u4e2a\u8d28\u6570\u6700\u597d\u8db3\u591f\u5927\uff0c\u4ee5\u5c3d\u53ef\u80fd\u6d88\u9664\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002
"},{"location":"chapter_hashing/hash_algorithm/#633","title":"6.3.3 \u00a0 \u5e38\u89c1\u54c8\u5e0c\u7b97\u6cd5","text":"\u4e0d\u96be\u53d1\u73b0\uff0c\u4ee5\u4e0a\u4ecb\u7ecd\u7684\u7b80\u5355\u54c8\u5e0c\u7b97\u6cd5\u90fd\u6bd4\u8f83\u201c\u8106\u5f31\u201d\uff0c\u8fdc\u8fdc\u6ca1\u6709\u8fbe\u5230\u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u76ee\u6807\u3002\u4f8b\u5982\uff0c\u7531\u4e8e\u52a0\u6cd5\u548c\u5f02\u6216\u6ee1\u8db3\u4ea4\u6362\u5f8b\uff0c\u56e0\u6b64\u52a0\u6cd5\u54c8\u5e0c\u548c\u5f02\u6216\u54c8\u5e0c\u65e0\u6cd5\u533a\u5206\u5185\u5bb9\u76f8\u540c\u4f46\u987a\u5e8f\u4e0d\u540c\u7684\u5b57\u7b26\u4e32\uff0c\u8fd9\u53ef\u80fd\u4f1a\u52a0\u5267\u54c8\u5e0c\u51b2\u7a81\uff0c\u5e76\u5f15\u8d77\u4e00\u4e9b\u5b89\u5168\u95ee\u9898\u3002
\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u7528\u4e00\u4e9b\u6807\u51c6\u54c8\u5e0c\u7b97\u6cd5\uff0c\u4f8b\u5982 MD5\u3001SHA-1\u3001SHA-2\u3001SHA-3 \u7b49\u3002\u5b83\u4eec\u53ef\u4ee5\u5c06\u4efb\u610f\u957f\u5ea6\u7684\u8f93\u5165\u6570\u636e\u6620\u5c04\u5230\u6052\u5b9a\u957f\u5ea6\u7684\u54c8\u5e0c\u503c\u3002
\u8fd1\u4e00\u4e2a\u4e16\u7eaa\u4ee5\u6765\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5904\u5728\u4e0d\u65ad\u5347\u7ea7\u4e0e\u4f18\u5316\u7684\u8fc7\u7a0b\u4e2d\u3002\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u52aa\u529b\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u6027\u80fd\uff0c\u53e6\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u548c\u9ed1\u5ba2\u5219\u81f4\u529b\u4e8e\u5bfb\u627e\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u95ee\u9898\u3002\u8868 6-2 \u5c55\u793a\u4e86\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5\u3002
- MD5 \u548c SHA-1 \u5df2\u591a\u6b21\u88ab\u6210\u529f\u653b\u51fb\uff0c\u56e0\u6b64\u5b83\u4eec\u88ab\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u5f03\u7528\u3002
- SHA-2 \u7cfb\u5217\u4e2d\u7684 SHA-256 \u662f\u6700\u5b89\u5168\u7684\u54c8\u5e0c\u7b97\u6cd5\u4e4b\u4e00\uff0c\u4ecd\u672a\u51fa\u73b0\u6210\u529f\u7684\u653b\u51fb\u6848\u4f8b\uff0c\u56e0\u6b64\u5e38\u7528\u5728\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u4e2d\u3002
- SHA-3 \u76f8\u8f83 SHA-2 \u7684\u5b9e\u73b0\u5f00\u9500\u66f4\u4f4e\u3001\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8\uff0c\u4f46\u76ee\u524d\u4f7f\u7528\u8986\u76d6\u5ea6\u4e0d\u5982 SHA-2 \u7cfb\u5217\u3002
\u8868 6-2 \u00a0 \u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5
MD5 SHA-1 SHA-2 SHA-3 \u63a8\u51fa\u65f6\u95f4 1992 1995 2002 2008 \u8f93\u51fa\u957f\u5ea6 128 bits 160 bits 256/512 bits 224/256/384/512 bits \u54c8\u5e0c\u51b2\u7a81 \u8f83\u591a \u8f83\u591a \u5f88\u5c11 \u5f88\u5c11 \u5b89\u5168\u7b49\u7ea7 \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u9ad8 \u9ad8 \u5e94\u7528 \u5df2\u88ab\u5f03\u7528\uff0c\u4ecd\u7528\u4e8e\u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5 \u5df2\u88ab\u5f03\u7528 \u52a0\u5bc6\u8d27\u5e01\u4ea4\u6613\u9a8c\u8bc1\u3001\u6570\u5b57\u7b7e\u540d\u7b49 \u53ef\u7528\u4e8e\u66ff\u4ee3 SHA-2"},{"location":"chapter_hashing/hash_algorithm/#634","title":"6.3.4 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u54c8\u5e0c\u503c","text":"\u6211\u4eec\u77e5\u9053\uff0c\u54c8\u5e0c\u8868\u7684 key \u53ef\u4ee5\u662f\u6574\u6570\u3001\u5c0f\u6570\u6216\u5b57\u7b26\u4e32\u7b49\u6570\u636e\u7c7b\u578b\u3002\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u8fd9\u4e9b\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u7684\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u8c03\u7528 hash() \u51fd\u6570\u6765\u8ba1\u7b97\u5404\u79cd\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\u3002
- \u6574\u6570\u548c\u5e03\u5c14\u91cf\u7684\u54c8\u5e0c\u503c\u5c31\u662f\u5176\u672c\u8eab\u3002
- \u6d6e\u70b9\u6570\u548c\u5b57\u7b26\u4e32\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u8f83\u4e3a\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u8bf7\u81ea\u884c\u5b66\u4e60\u3002
- \u5143\u7ec4\u7684\u54c8\u5e0c\u503c\u662f\u5bf9\u5176\u4e2d\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fdb\u884c\u54c8\u5e0c\uff0c\u7136\u540e\u5c06\u8fd9\u4e9b\u54c8\u5e0c\u503c\u7ec4\u5408\u8d77\u6765\uff0c\u5f97\u5230\u5355\u4e00\u7684\u54c8\u5e0c\u503c\u3002
- \u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u57fa\u4e8e\u5176\u5185\u5b58\u5730\u5740\u751f\u6210\u3002\u901a\u8fc7\u91cd\u5199\u5bf9\u8c61\u7684\u54c8\u5e0c\u65b9\u6cd5\uff0c\u53ef\u5b9e\u73b0\u57fa\u4e8e\u5185\u5bb9\u751f\u6210\u54c8\u5e0c\u503c\u3002
Tip
\u8bf7\u6ce8\u610f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u54c8\u5e0c\u503c\u8ba1\u7b97\u51fd\u6570\u7684\u5b9a\u4e49\u548c\u65b9\u6cd5\u4e0d\u540c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig built_in_hash.pynum = 3\nhash_num = hash(num)\n# \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\n\nbol = True\nhash_bol = hash(bol)\n# \u5e03\u5c14\u91cf True \u7684\u54c8\u5e0c\u503c\u4e3a 1\n\ndec = 3.14159\nhash_dec = hash(dec)\n# \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 326484311674566659\n\nstr = \"Hello \u7b97\u6cd5\"\nhash_str = hash(str)\n# \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 4617003410720528961\n\ntup = (12836, \"\u5c0f\u54c8\")\nhash_tup = hash(tup)\n# \u5143\u7ec4 (12836, '\u5c0f\u54c8') \u7684\u54c8\u5e0c\u503c\u4e3a 1029005403108185979\n\nobj = ListNode(0)\nhash_obj = hash(obj)\n# \u8282\u70b9\u5bf9\u8c61 <ListNode object at 0x1058fd810> \u7684\u54c8\u5e0c\u503c\u4e3a 274267521\n
built_in_hash.cppint num = 3;\nsize_t hashNum = hash<int>()(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\n\nbool bol = true;\nsize_t hashBol = hash<bool>()(bol);\n// \u5e03\u5c14\u91cf 1 \u7684\u54c8\u5e0c\u503c\u4e3a 1\n\ndouble dec = 3.14159;\nsize_t hashDec = hash<double>()(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 4614256650576692846\n\nstring str = \"Hello \u7b97\u6cd5\";\nsize_t hashStr = hash<string>()(str);\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 15466937326284535026\n\n// \u5728 C++ \u4e2d\uff0c\u5185\u7f6e std:hash() \u4ec5\u63d0\u4f9b\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\n// \u6570\u7ec4\u3001\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u9700\u8981\u81ea\u884c\u5b9e\u73b0\n
built_in_hash.javaint num = 3;\nint hashNum = Integer.hashCode(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\n\nboolean bol = true;\nint hashBol = Boolean.hashCode(bol);\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\n\ndouble dec = 3.14159;\nint hashDec = Double.hashCode(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729\n\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode();\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a -727081396\n\nObject[] arr = { 12836, \"\u5c0f\u54c8\" };\nint hashTup = Arrays.hashCode(arr);\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 1151158\n\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode();\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode@7dc5e7b4 \u7684\u54c8\u5e0c\u503c\u4e3a 2110121908\n
built_in_hash.csint num = 3;\nint hashNum = num.GetHashCode();\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3;\n\nbool bol = true;\nint hashBol = bol.GetHashCode();\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1;\n\ndouble dec = 3.14159;\nint hashDec = dec.GetHashCode();\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729;\n\nstring str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.GetHashCode();\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a -586107568;\n\nobject[] arr = [12836, \"\u5c0f\u54c8\"];\nint hashTup = arr.GetHashCode();\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 42931033;\n\nListNode obj = new(0);\nint hashObj = obj.GetHashCode();\n// \u8282\u70b9\u5bf9\u8c61 0 \u7684\u54c8\u5e0c\u503c\u4e3a 39053774;\n
built_in_hash.go// Go \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.swiftlet num = 3\nlet hashNum = num.hashValue\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 9047044699613009734\n\nlet bol = true\nlet hashBol = bol.hashValue\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a -4431640247352757451\n\nlet dec = 3.14159\nlet hashDec = dec.hashValue\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -2465384235396674631\n\nlet str = \"Hello \u7b97\u6cd5\"\nlet hashStr = str.hashValue\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a -7850626797806988787\n\nlet arr = [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")]\nlet hashTup = arr.hashValue\n// \u6570\u7ec4 [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")] \u7684\u54c8\u5e0c\u503c\u4e3a -2308633508154532996\n\nlet obj = ListNode(x: 0)\nlet hashObj = obj.hashValue\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode \u7684\u54c8\u5e0c\u503c\u4e3a -2434780518035996159\n
built_in_hash.js// JavaScript \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.ts// TypeScript \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.dartint num = 3;\nint hashNum = num.hashCode;\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 34803\n\nbool bol = true;\nint hashBol = bol.hashCode;\n// \u5e03\u5c14\u503c true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\n\ndouble dec = 3.14159;\nint hashDec = dec.hashCode;\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 2570631074981783\n\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode;\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 468167534\n\nList arr = [12836, \"\u5c0f\u54c8\"];\nint hashArr = arr.hashCode;\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 976512528\n\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode;\n// \u8282\u70b9\u5bf9\u8c61 Instance of 'ListNode' \u7684\u54c8\u5e0c\u503c\u4e3a 1033450432\n
built_in_hash.rsuse std::collections::hash_map::DefaultHasher;\nuse std::hash::{Hash, Hasher};\n\nlet num = 3;\nlet mut num_hasher = DefaultHasher::new();\nnum.hash(&mut num_hasher);\nlet hash_num = num_hasher.finish();\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 568126464209439262\n\nlet bol = true;\nlet mut bol_hasher = DefaultHasher::new();\nbol.hash(&mut bol_hasher);\nlet hash_bol = bol_hasher.finish();\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 4952851536318644461\n\nlet dec: f32 = 3.14159;\nlet mut dec_hasher = DefaultHasher::new();\ndec.to_bits().hash(&mut dec_hasher);\nlet hash_dec = dec_hasher.finish();\nprintln!(\"\u5c0f\u6570 {} \u7684\u54c8\u5e0c\u503c\u4e3a {}\", dec, hash_dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 2566941990314602357\n\nlet str = \"Hello \u7b97\u6cd5\";\nlet mut str_hasher = DefaultHasher::new();\nstr.hash(&mut str_hasher);\nlet hash_str = str_hasher.finish();\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 16092673739211250988\n\nlet arr = (&12836, &\"\u5c0f\u54c8\");\nlet mut tup_hasher = DefaultHasher::new();\narr.hash(&mut tup_hasher);\nlet hash_tup = tup_hasher.finish();\n// \u5143\u7ec4 (12836, \"\u5c0f\u54c8\") \u7684\u54c8\u5e0c\u503c\u4e3a 1885128010422702749\n\nlet node = ListNode::new(42);\nlet mut hasher = DefaultHasher::new();\nnode.borrow().val.hash(&mut hasher);\nlet hash = hasher.finish();\n// \u8282\u70b9\u5bf9\u8c61 RefCell { value: ListNode { val: 42, next: None } } \u7684\u54c8\u5e0c\u503c\u4e3a15387811073369036852\n
built_in_hash.c// C \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.zig\n
\u5728\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u624d\u53ef\u4f5c\u4e3a\u54c8\u5e0c\u8868\u7684 key \u3002\u5047\u5982\u6211\u4eec\u5c06\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4f5c\u4e3a key \uff0c\u5f53\u5217\u8868\u7684\u5185\u5bb9\u53d1\u751f\u53d8\u5316\u65f6\uff0c\u5b83\u7684\u54c8\u5e0c\u503c\u4e5f\u968f\u4e4b\u6539\u53d8\uff0c\u6211\u4eec\u5c31\u65e0\u6cd5\u5728\u54c8\u5e0c\u8868\u4e2d\u67e5\u8be2\u5230\u539f\u5148\u7684 value \u4e86\u3002
\u867d\u7136\u81ea\u5b9a\u4e49\u5bf9\u8c61\uff08\u6bd4\u5982\u94fe\u8868\u8282\u70b9\uff09\u7684\u6210\u5458\u53d8\u91cf\u662f\u53ef\u53d8\u7684\uff0c\u4f46\u5b83\u662f\u53ef\u54c8\u5e0c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u901a\u5e38\u662f\u57fa\u4e8e\u5185\u5b58\u5730\u5740\u751f\u6210\u7684\uff0c\u5373\u4f7f\u5bf9\u8c61\u7684\u5185\u5bb9\u53d1\u751f\u4e86\u53d8\u5316\uff0c\u4f46\u5b83\u7684\u5185\u5b58\u5730\u5740\u4e0d\u53d8\uff0c\u54c8\u5e0c\u503c\u4ecd\u7136\u662f\u4e0d\u53d8\u7684\u3002
\u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u53d1\u73b0\u5728\u4e0d\u540c\u63a7\u5236\u53f0\u4e2d\u8fd0\u884c\u7a0b\u5e8f\u65f6\uff0c\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u662f\u4e0d\u540c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a Python \u89e3\u91ca\u5668\u5728\u6bcf\u6b21\u542f\u52a8\u65f6\uff0c\u90fd\u4f1a\u4e3a\u5b57\u7b26\u4e32\u54c8\u5e0c\u51fd\u6570\u52a0\u5165\u4e00\u4e2a\u968f\u673a\u7684\u76d0\uff08Salt\uff09\u503c\u3002\u8fd9\u79cd\u505a\u6cd5\u53ef\u4ee5\u6709\u6548\u9632\u6b62 HashDoS \u653b\u51fb\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u3002
"},{"location":"chapter_hashing/hash_collision/","title":"6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81","text":"\u4e0a\u4e00\u8282\u63d0\u5230\uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u5165\u7a7a\u95f4\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff0c\u56e0\u6b64\u7406\u8bba\u4e0a\u54c8\u5e0c\u51b2\u7a81\u662f\u4e0d\u53ef\u907f\u514d\u7684\u3002\u6bd4\u5982\uff0c\u8f93\u5165\u7a7a\u95f4\u4e3a\u5168\u4f53\u6574\u6570\uff0c\u8f93\u51fa\u7a7a\u95f4\u4e3a\u6570\u7ec4\u5bb9\u91cf\u5927\u5c0f\uff0c\u5219\u5fc5\u7136\u6709\u591a\u4e2a\u6574\u6570\u6620\u5c04\u81f3\u540c\u4e00\u6876\u7d22\u5f15\u3002
\u54c8\u5e0c\u51b2\u7a81\u4f1a\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u9519\u8bef\uff0c\u4e25\u91cd\u5f71\u54cd\u54c8\u5e0c\u8868\u7684\u53ef\u7528\u6027\u3002\u4e3a\u89e3\u51b3\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u6bcf\u5f53\u9047\u5230\u54c8\u5e0c\u51b2\u7a81\u5c31\u8fdb\u884c\u54c8\u5e0c\u8868\u6269\u5bb9\uff0c\u76f4\u81f3\u51b2\u7a81\u6d88\u5931\u4e3a\u6b62\u3002\u6b64\u65b9\u6cd5\u7b80\u5355\u7c97\u66b4\u4e14\u6709\u6548\uff0c\u4f46\u6548\u7387\u592a\u4f4e\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u8981\u8fdb\u884c\u5927\u91cf\u7684\u6570\u636e\u642c\u8fd0\u4e0e\u54c8\u5e0c\u503c\u8ba1\u7b97\u3002\u4e3a\u4e86\u63d0\u5347\u6548\u7387\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u4ee5\u4e0b\u7b56\u7565\u3002
- \u6539\u826f\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u4f7f\u5f97\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u51fa\u73b0\u54c8\u5e0c\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\u3002
- \u4ec5\u5728\u5fc5\u8981\u65f6\uff0c\u5373\u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u624d\u6267\u884c\u6269\u5bb9\u64cd\u4f5c\u3002
\u54c8\u5e0c\u8868\u7684\u7ed3\u6784\u6539\u826f\u65b9\u6cd5\u4e3b\u8981\u5305\u62ec\u201c\u94fe\u5f0f\u5730\u5740\u201d\u548c\u201c\u5f00\u653e\u5bfb\u5740\u201d\u3002
"},{"location":"chapter_hashing/hash_collision/#621","title":"6.2.1 \u00a0 \u94fe\u5f0f\u5730\u5740","text":"\u5728\u539f\u59cb\u54c8\u5e0c\u8868\u4e2d\uff0c\u6bcf\u4e2a\u6876\u4ec5\u80fd\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u300c\u94fe\u5f0f\u5730\u5740 separate chaining\u300d\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u6362\u4e3a\u94fe\u8868\uff0c\u5c06\u952e\u503c\u5bf9\u4f5c\u4e3a\u94fe\u8868\u8282\u70b9\uff0c\u5c06\u6240\u6709\u53d1\u751f\u51b2\u7a81\u7684\u952e\u503c\u5bf9\u90fd\u5b58\u50a8\u5728\u540c\u4e00\u94fe\u8868\u4e2d\u3002\u56fe 6-5 \u5c55\u793a\u4e86\u4e00\u4e2a\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\u7684\u4f8b\u5b50\u3002
\u56fe 6-5 \u00a0 \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868
\u57fa\u4e8e\u94fe\u5f0f\u5730\u5740\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\u7684\u64cd\u4f5c\u65b9\u6cd5\u53d1\u751f\u4e86\u4ee5\u4e0b\u53d8\u5316\u3002
- \u67e5\u8be2\u5143\u7d20\uff1a\u8f93\u5165
key \uff0c\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u6876\u7d22\u5f15\uff0c\u5373\u53ef\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u904d\u5386\u94fe\u8868\u5e76\u5bf9\u6bd4 key \u4ee5\u67e5\u627e\u76ee\u6807\u952e\u503c\u5bf9\u3002 - \u6dfb\u52a0\u5143\u7d20\uff1a\u9996\u5148\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u5c06\u8282\u70b9\uff08\u952e\u503c\u5bf9\uff09\u6dfb\u52a0\u5230\u94fe\u8868\u4e2d\u3002
- \u5220\u9664\u5143\u7d20\uff1a\u6839\u636e\u54c8\u5e0c\u51fd\u6570\u7684\u7ed3\u679c\u8bbf\u95ee\u94fe\u8868\u5934\u90e8\uff0c\u63a5\u7740\u904d\u5386\u94fe\u8868\u4ee5\u67e5\u627e\u76ee\u6807\u8282\u70b9\u5e76\u5c06\u5176\u5220\u9664\u3002
\u94fe\u5f0f\u5730\u5740\u5b58\u5728\u4ee5\u4e0b\u5c40\u9650\u6027\u3002
- \u5360\u7528\u7a7a\u95f4\u589e\u5927\uff0c\u94fe\u8868\u5305\u542b\u8282\u70b9\u6307\u9488\uff0c\u5b83\u76f8\u6bd4\u6570\u7ec4\u66f4\u52a0\u8017\u8d39\u5185\u5b58\u7a7a\u95f4\u3002
- \u67e5\u8be2\u6548\u7387\u964d\u4f4e\uff0c\u56e0\u4e3a\u9700\u8981\u7ebf\u6027\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u5bf9\u5e94\u5143\u7d20\u3002
\u4ee5\u4e0b\u4ee3\u7801\u7ed9\u51fa\u4e86\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\u7684\u7b80\u5355\u5b9e\u73b0\uff0c\u9700\u8981\u6ce8\u610f\u4e24\u70b9\u3002
- \u4f7f\u7528\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4ee3\u66ff\u94fe\u8868\uff0c\u4ece\u800c\u7b80\u5316\u4ee3\u7801\u3002\u5728\u8fd9\u79cd\u8bbe\u5b9a\u4e0b\uff0c\u54c8\u5e0c\u8868\uff08\u6570\u7ec4\uff09\u5305\u542b\u591a\u4e2a\u6876\uff0c\u6bcf\u4e2a\u6876\u90fd\u662f\u4e00\u4e2a\u5217\u8868\u3002
- \u4ee5\u4e0b\u5b9e\u73b0\u5305\u542b\u54c8\u5e0c\u8868\u6269\u5bb9\u65b9\u6cd5\u3002\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(\\frac{2}{3}\\) \u65f6\uff0c\u6211\u4eec\u5c06\u54c8\u5e0c\u8868\u6269\u5bb9\u81f3\u539f\u5148\u7684 \\(2\\) \u500d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map_chaining.pyclass HashMapChaining:\n \"\"\"\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self.size = 0 # \u952e\u503c\u5bf9\u6570\u91cf\n self.capacity = 4 # \u54c8\u5e0c\u8868\u5bb9\u91cf\n self.load_thres = 2.0 / 3.0 # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n self.extend_ratio = 2 # \u6269\u5bb9\u500d\u6570\n self.buckets = [[] for _ in range(self.capacity)] # \u6876\u6570\u7ec4\n\n def hash_func(self, key: int) -> int:\n \"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\n return key % self.capacity\n\n def load_factor(self) -> float:\n \"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\n return self.size / self.capacity\n\n def get(self, key: int) -> str | None:\n \"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\n index = self.hash_func(key)\n bucket = self.buckets[index]\n # \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for pair in bucket:\n if pair.key == key:\n return pair.val\n # \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\n return None\n\n def put(self, key: int, val: str):\n \"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n # \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres:\n self.extend()\n index = self.hash_func(key)\n bucket = self.buckets[index]\n # \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for pair in bucket:\n if pair.key == key:\n pair.val = val\n return\n # \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n pair = Pair(key, val)\n bucket.append(pair)\n self.size += 1\n\n def remove(self, key: int):\n \"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\n index = self.hash_func(key)\n bucket = self.buckets[index]\n # \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for pair in bucket:\n if pair.key == key:\n bucket.remove(pair)\n self.size -= 1\n break\n\n def extend(self):\n \"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n # \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n buckets = self.buckets\n # \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio\n self.buckets = [[] for _ in range(self.capacity)]\n self.size = 0\n # \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for bucket in buckets:\n for pair in bucket:\n self.put(pair.key, pair.val)\n\n def print(self):\n \"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\n for bucket in self.buckets:\n res = []\n for pair in bucket:\n res.append(str(pair.key) + \" -> \" + pair.val)\n print(res)\n
hash_map_chaining.cpp/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n private:\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n vector<vector<Pair *>> buckets; // \u6876\u6570\u7ec4\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3.0), extendRatio(2) {\n buckets.resize(capacity);\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~HashMapChaining() {\n for (auto &bucket : buckets) {\n for (Pair *pair : bucket) {\n // \u91ca\u653e\u5185\u5b58\n delete pair;\n }\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return (double)size / (double)capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n string get(int key) {\n int index = hashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (Pair *pair : buckets[index]) {\n if (pair->key == key) {\n return pair->val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\";\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n int index = hashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (Pair *pair : buckets[index]) {\n if (pair->key == key) {\n pair->val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n buckets[index].push_back(new Pair(key, val));\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n auto &bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (int i = 0; i < bucket.size(); i++) {\n if (bucket[i]->key == key) {\n Pair *tmp = bucket[i];\n bucket.erase(bucket.begin() + i); // \u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n delete tmp; // \u91ca\u653e\u5185\u5b58\n size--;\n return;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n vector<vector<Pair *>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets.clear();\n buckets.resize(capacity);\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (auto &bucket : bucketsTmp) {\n for (Pair *pair : bucket) {\n put(pair->key, pair->val);\n // \u91ca\u653e\u5185\u5b58\n delete pair;\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (auto &bucket : buckets) {\n cout << \"[\";\n for (Pair *pair : bucket) {\n cout << pair->key << \" -> \" << pair->val << \", \";\n }\n cout << \"]\\n\";\n }\n }\n};\n
hash_map_chaining.java/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapChaining() {\n size = 0;\n capacity = 4;\n loadThres = 2.0 / 3.0;\n extendRatio = 2;\n buckets = new ArrayList<>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.add(new ArrayList<>());\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return (double) size / capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String get(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets.get(index);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (Pair pair : bucket) {\n if (pair.key == key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n int index = hashFunc(key);\n List<Pair> bucket = buckets.get(index);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (Pair pair : bucket) {\n if (pair.key == key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n Pair pair = new Pair(key, val);\n bucket.add(pair);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets.get(index);\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (Pair pair : bucket) {\n if (pair.key == key) {\n bucket.remove(pair);\n size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<List<Pair>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new ArrayList<>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.add(new ArrayList<>());\n }\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (List<Pair> bucket : bucketsTmp) {\n for (Pair pair : bucket) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (List<Pair> bucket : buckets) {\n List<String> res = new ArrayList<>();\n for (Pair pair : bucket) {\n res.add(pair.key + \" -> \" + pair.val);\n }\n System.out.println(res);\n }\n }\n}\n
hash_map_chaining.cs/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapChaining() {\n size = 0;\n capacity = 4;\n loadThres = 2.0 / 3.0;\n extendRatio = 2;\n buckets = new List<List<Pair>>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.Add([]);\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int HashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double LoadFactor() {\n return (double)size / capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public string? Get(int key) {\n int index = HashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n foreach (Pair pair in buckets[index]) {\n if (pair.key == key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void Put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (LoadFactor() > loadThres) {\n Extend();\n }\n int index = HashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n foreach (Pair pair in buckets[index]) {\n if (pair.key == key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n buckets[index].Add(new Pair(key, val));\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void Remove(int key) {\n int index = HashFunc(key);\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n foreach (Pair pair in buckets[index].ToList()) {\n if (pair.key == key) {\n buckets[index].Remove(pair);\n size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void Extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<List<Pair>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new List<List<Pair>>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.Add([]);\n }\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n foreach (List<Pair> bucket in bucketsTmp) {\n foreach (Pair pair in bucket) {\n Put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void Print() {\n foreach (List<Pair> bucket in buckets) {\n List<string> res = [];\n foreach (Pair pair in bucket) {\n res.Add(pair.key + \" -> \" + pair.val);\n }\n foreach (string kv in res) {\n Console.WriteLine(kv);\n }\n }\n }\n}\n
hash_map_chaining.go/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntype hashMapChaining struct {\n size int // \u952e\u503c\u5bf9\u6570\u91cf\n capacity int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n loadThres float64 // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n extendRatio int // \u6269\u5bb9\u500d\u6570\n buckets [][]pair // \u6876\u6570\u7ec4\n}\n\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapChaining() *hashMapChaining {\n buckets := make([][]pair, 4)\n for i := 0; i < 4; i++ {\n buckets[i] = make([]pair, 0)\n }\n return &hashMapChaining{\n size: 0,\n capacity: 4,\n loadThres: 2.0 / 3.0,\n extendRatio: 2,\n buckets: buckets,\n }\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapChaining) hashFunc(key int) int {\n return key % m.capacity\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapChaining) loadFactor() float64 {\n return float64(m.size) / float64(m.capacity)\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapChaining) get(key int) string {\n idx := m.hashFunc(key)\n bucket := m.buckets[idx]\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for _, p := range bucket {\n if p.key == key {\n return p.val\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\"\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapChaining) put(key int, val string) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if m.loadFactor() > m.loadThres {\n m.extend()\n }\n idx := m.hashFunc(key)\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for i := range m.buckets[idx] {\n if m.buckets[idx][i].key == key {\n m.buckets[idx][i].val = val\n return\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n p := pair{\n key: key,\n val: val,\n }\n m.buckets[idx] = append(m.buckets[idx], p)\n m.size += 1\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapChaining) remove(key int) {\n idx := m.hashFunc(key)\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for i, p := range m.buckets[idx] {\n if p.key == key {\n // \u5207\u7247\u5220\u9664\n m.buckets[idx] = append(m.buckets[idx][:i], m.buckets[idx][i+1:]...)\n m.size -= 1\n break\n }\n }\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n tmpBuckets := make([][]pair, len(m.buckets))\n for i := 0; i < len(m.buckets); i++ {\n tmpBuckets[i] = make([]pair, len(m.buckets[i]))\n copy(tmpBuckets[i], m.buckets[i])\n }\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n m.capacity *= m.extendRatio\n m.buckets = make([][]pair, m.capacity)\n for i := 0; i < m.capacity; i++ {\n m.buckets[i] = make([]pair, 0)\n }\n m.size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for _, bucket := range tmpBuckets {\n for _, p := range bucket {\n m.put(p.key, p.val)\n }\n }\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) print() {\n var builder strings.Builder\n\n for _, bucket := range m.buckets {\n builder.WriteString(\"[\")\n for _, p := range bucket {\n builder.WriteString(strconv.Itoa(p.key) + \" -> \" + p.val + \" \")\n }\n builder.WriteString(\"]\")\n fmt.Println(builder.String())\n builder.Reset()\n }\n}\n
hash_map_chaining.swift/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n var size: Int // \u952e\u503c\u5bf9\u6570\u91cf\n var capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n var loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n var extendRatio: Int // \u6269\u5bb9\u500d\u6570\n var buckets: [[Pair]] // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n size = 0\n capacity = 4\n loadThres = 2.0 / 3.0\n extendRatio = 2\n buckets = Array(repeating: [], count: capacity)\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n func hashFunc(key: Int) -> Int {\n key % capacity\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n func loadFactor() -> Double {\n Double(size / capacity)\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n func get(key: Int) -> String? {\n let index = hashFunc(key: key)\n let bucket = buckets[index]\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for pair in bucket {\n if pair.key == key {\n return pair.val\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de nil\n return nil\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n func put(key: Int, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if loadFactor() > loadThres {\n extend()\n }\n let index = hashFunc(key: key)\n let bucket = buckets[index]\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for pair in bucket {\n if pair.key == key {\n pair.val = val\n return\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n let pair = Pair(key: key, val: val)\n buckets[index].append(pair)\n size += 1\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n func remove(key: Int) {\n let index = hashFunc(key: key)\n let bucket = buckets[index]\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (pairIndex, pair) in bucket.enumerated() {\n if pair.key == key {\n buckets[index].remove(at: pairIndex)\n }\n }\n size -= 1\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n func extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let bucketsTmp = buckets\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio\n buckets = Array(repeating: [], count: capacity)\n size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for bucket in bucketsTmp {\n for pair in bucket {\n put(key: pair.key, val: pair.val)\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n func print() {\n for bucket in buckets {\n let res = bucket.map { \"\\($0.key) -> \\($0.val)\" }\n Swift.print(res)\n }\n }\n}\n
hash_map_chaining.js/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n #size; // \u952e\u503c\u5bf9\u6570\u91cf\n #capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n #loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n #extendRatio; // \u6269\u5bb9\u500d\u6570\n #buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#size = 0;\n this.#capacity = 4;\n this.#loadThres = 2.0 / 3.0;\n this.#extendRatio = 2;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key) {\n return key % this.#capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n #loadFactor() {\n return this.#size / this.#capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key) {\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (const pair of bucket) {\n if (pair.key === key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key, val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.#loadFactor() > this.#loadThres) {\n this.#extend();\n }\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (const pair of bucket) {\n if (pair.key === key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n const pair = new Pair(key, val);\n bucket.push(pair);\n this.#size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key) {\n const index = this.#hashFunc(key);\n let bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (let i = 0; i < bucket.length; i++) {\n if (bucket[i].key === key) {\n bucket.splice(i, 1);\n this.#size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n #extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.#buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.#capacity *= this.#extendRatio;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n this.#size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const bucket of bucketsTmp) {\n for (const pair of bucket) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print() {\n for (const bucket of this.#buckets) {\n let res = [];\n for (const pair of bucket) {\n res.push(pair.key + ' -> ' + pair.val);\n }\n console.log(res);\n }\n }\n}\n
hash_map_chaining.ts/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n #size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n #capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n #loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n #extendRatio: number; // \u6269\u5bb9\u500d\u6570\n #buckets: Pair[][]; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#size = 0;\n this.#capacity = 4;\n this.#loadThres = 2.0 / 3.0;\n this.#extendRatio = 2;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key: number): number {\n return key % this.#capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n #loadFactor(): number {\n return this.#size / this.#capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key: number): string | null {\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (const pair of bucket) {\n if (pair.key === key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key: number, val: string): void {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.#loadFactor() > this.#loadThres) {\n this.#extend();\n }\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (const pair of bucket) {\n if (pair.key === key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n const pair = new Pair(key, val);\n bucket.push(pair);\n this.#size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key: number): void {\n const index = this.#hashFunc(key);\n let bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (let i = 0; i < bucket.length; i++) {\n if (bucket[i].key === key) {\n bucket.splice(i, 1);\n this.#size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n #extend(): void {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.#buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.#capacity *= this.#extendRatio;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n this.#size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const bucket of bucketsTmp) {\n for (const pair of bucket) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print(): void {\n for (const bucket of this.#buckets) {\n let res = [];\n for (const pair of bucket) {\n res.push(pair.key + ' -> ' + pair.val);\n }\n console.log(res);\n }\n }\n}\n
hash_map_chaining.dart/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n late int size; // \u952e\u503c\u5bf9\u6570\u91cf\n late int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n late double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n late int extendRatio; // \u6269\u5bb9\u500d\u6570\n late List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapChaining() {\n size = 0;\n capacity = 4;\n loadThres = 2.0 / 3.0;\n extendRatio = 2;\n buckets = List.generate(capacity, (_) => []);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return size / capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String? get(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (Pair pair in bucket) {\n if (pair.key == key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n int index = hashFunc(key);\n List<Pair> bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (Pair pair in bucket) {\n if (pair.key == key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n Pair pair = Pair(key, val);\n bucket.add(pair);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (Pair pair in bucket) {\n if (pair.key == key) {\n bucket.remove(pair);\n size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<List<Pair>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = List.generate(capacity, (_) => []);\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (List<Pair> bucket in bucketsTmp) {\n for (Pair pair in bucket) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void printHashMap() {\n for (List<Pair> bucket in buckets) {\n List<String> res = [];\n for (Pair pair in bucket) {\n res.add(\"${pair.key} -> ${pair.val}\");\n }\n print(res);\n }\n }\n}\n
hash_map_chaining.rs/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapChaining {\n size: i32,\n capacity: i32,\n load_thres: f32,\n extend_ratio: i32,\n buckets: Vec<Vec<Pair>>,\n}\n\nimpl HashMapChaining {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new() -> Self {\n Self {\n size: 0,\n capacity: 4,\n load_thres: 2.0 / 3.0,\n extend_ratio: 2,\n buckets: vec![vec![]; 4],\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n fn hash_func(&self, key: i32) -> usize {\n key as usize % self.capacity as usize\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n fn load_factor(&self) -> f32 {\n self.size as f32 / self.capacity as f32\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n fn remove(&mut self, key: i32) -> Option<String> {\n let index = self.hash_func(key);\n let bucket = &mut self.buckets[index];\n\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for i in 0..bucket.len() {\n if bucket[i].key == key {\n let pair = bucket.remove(i);\n self.size -= 1;\n return Some(pair.val);\n }\n }\n\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\n None\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n fn extend(&mut self) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let buckets_tmp = std::mem::replace(&mut self.buckets, vec![]);\n\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio;\n self.buckets = vec![Vec::new(); self.capacity as usize];\n self.size = 0;\n\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for bucket in buckets_tmp {\n for pair in bucket {\n self.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n fn print(&self) {\n for bucket in &self.buckets {\n let mut res = Vec::new();\n for pair in bucket {\n res.push(format!(\"{} -> {}\", pair.key, pair.val));\n }\n println!(\"{:?}\", res);\n }\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n fn put(&mut self, key: i32, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres {\n self.extend();\n }\n\n let index = self.hash_func(key);\n let bucket = &mut self.buckets[index];\n\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for pair in bucket {\n if pair.key == key {\n pair.val = val.clone();\n return;\n }\n }\n let bucket = &mut self.buckets[index];\n\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n let pair = Pair {\n key,\n val: val.clone(),\n };\n bucket.push(pair);\n self.size += 1;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n fn get(&self, key: i32) -> Option<&str> {\n let index = self.hash_func(key);\n let bucket = &self.buckets[index];\n\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n for pair in bucket {\n if pair.key == key {\n return Some(&pair.val);\n }\n }\n\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\n None\n }\n}\n
hash_map_chaining.c/* \u94fe\u8868\u8282\u70b9 */\ntypedef struct Node {\n Pair *pair;\n struct Node *next;\n} Node;\n\n/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntypedef struct {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n Node **buckets; // \u6876\u6570\u7ec4\n} HashMapChaining;\n\n/* \u6784\u9020\u51fd\u6570 */\nHashMapChaining *newHashMapChaining() {\n HashMapChaining *hashMap = (HashMapChaining *)malloc(sizeof(HashMapChaining));\n hashMap->size = 0;\n hashMap->capacity = 4;\n hashMap->loadThres = 2.0 / 3.0;\n hashMap->extendRatio = 2;\n hashMap->buckets = (Node **)malloc(hashMap->capacity * sizeof(Node *));\n for (int i = 0; i < hashMap->capacity; i++) {\n hashMap->buckets[i] = NULL;\n }\n return hashMap;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delHashMapChaining(HashMapChaining *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Node *cur = hashMap->buckets[i];\n while (cur) {\n Node *tmp = cur;\n cur = cur->next;\n free(tmp->pair);\n free(tmp);\n }\n }\n free(hashMap->buckets);\n free(hashMap);\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(HashMapChaining *hashMap, int key) {\n return key % hashMap->capacity;\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor(HashMapChaining *hashMap) {\n return (double)hashMap->size / (double)hashMap->capacity;\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nchar *get(HashMapChaining *hashMap, int key) {\n int index = hashFunc(hashMap, key);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\n Node *cur = hashMap->buckets[index];\n while (cur) {\n if (cur->pair->key == key) {\n return cur->pair->val;\n }\n cur = cur->next;\n }\n return \"\"; // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(HashMapChaining *hashMap, int key, const char *val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor(hashMap) > hashMap->loadThres) {\n extend(hashMap);\n }\n int index = hashFunc(hashMap, key);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n Node *cur = hashMap->buckets[index];\n while (cur) {\n if (cur->pair->key == key) {\n strcpy(cur->pair->val, val); // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n return;\n }\n cur = cur->next;\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n Pair *newPair = (Pair *)malloc(sizeof(Pair));\n newPair->key = key;\n strcpy(newPair->val, val);\n Node *newNode = (Node *)malloc(sizeof(Node));\n newNode->pair = newPair;\n newNode->next = hashMap->buckets[index];\n hashMap->buckets[index] = newNode;\n hashMap->size++;\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend(HashMapChaining *hashMap) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n int oldCapacity = hashMap->capacity;\n Node **oldBuckets = hashMap->buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n hashMap->capacity *= hashMap->extendRatio;\n hashMap->buckets = (Node **)malloc(hashMap->capacity * sizeof(Node *));\n for (int i = 0; i < hashMap->capacity; i++) {\n hashMap->buckets[i] = NULL;\n }\n hashMap->size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (int i = 0; i < oldCapacity; i++) {\n Node *cur = oldBuckets[i];\n while (cur) {\n put(hashMap, cur->pair->key, cur->pair->val);\n Node *temp = cur;\n cur = cur->next;\n // \u91ca\u653e\u5185\u5b58\n free(temp->pair);\n free(temp);\n }\n }\n\n free(oldBuckets);\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nvoid removeItem(HashMapChaining *hashMap, int key) {\n int index = hashFunc(hashMap, key);\n Node *cur = hashMap->buckets[index];\n Node *pre = NULL;\n while (cur) {\n if (cur->pair->key == key) {\n // \u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n if (pre) {\n pre->next = cur->next;\n } else {\n hashMap->buckets[index] = cur->next;\n }\n // \u91ca\u653e\u5185\u5b58\n free(cur->pair);\n free(cur);\n hashMap->size--;\n return;\n }\n pre = cur;\n cur = cur->next;\n }\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print(HashMapChaining *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Node *cur = hashMap->buckets[i];\n printf(\"[\");\n while (cur) {\n printf(\"%d -> %s, \", cur->pair->key, cur->pair->val);\n cur = cur->next;\n }\n printf(\"]\\n\");\n }\n}\n
hash_map_chaining.zig[class]{HashMapChaining}-[func]{}\n
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u5f53\u94fe\u8868\u5f88\u957f\u65f6\uff0c\u67e5\u8be2\u6548\u7387 \\(O(n)\\) \u5f88\u5dee\u3002\u6b64\u65f6\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u201cAVL \u6811\u201d\u6216\u201c\u7ea2\u9ed1\u6811\u201d\uff0c\u4ece\u800c\u5c06\u67e5\u8be2\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002
"},{"location":"chapter_hashing/hash_collision/#622","title":"6.2.2 \u00a0 \u5f00\u653e\u5bfb\u5740","text":"\u300c\u5f00\u653e\u5bfb\u5740 open addressing\u300d\u4e0d\u5f15\u5165\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u800c\u662f\u901a\u8fc7\u201c\u591a\u6b21\u63a2\u6d4b\u201d\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\uff0c\u63a2\u6d4b\u65b9\u5f0f\u4e3b\u8981\u5305\u62ec\u7ebf\u6027\u63a2\u6d4b\u3001\u5e73\u65b9\u63a2\u6d4b\u3001\u591a\u6b21\u54c8\u5e0c\u7b49\u3002
\u4e0b\u9762\u4ee5\u7ebf\u6027\u63a2\u6d4b\u4e3a\u4f8b\uff0c\u4ecb\u7ecd\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\u7684\u5de5\u4f5c\u673a\u5236\u3002
"},{"location":"chapter_hashing/hash_collision/#1","title":"1. \u00a0 \u7ebf\u6027\u63a2\u6d4b","text":"\u7ebf\u6027\u63a2\u6d4b\u91c7\u7528\u56fa\u5b9a\u6b65\u957f\u7684\u7ebf\u6027\u641c\u7d22\u6765\u8fdb\u884c\u63a2\u6d4b\uff0c\u5176\u64cd\u4f5c\u65b9\u6cd5\u4e0e\u666e\u901a\u54c8\u5e0c\u8868\u6709\u6240\u4e0d\u540c\u3002
- \u63d2\u5165\u5143\u7d20\uff1a\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u82e5\u53d1\u73b0\u6876\u5185\u5df2\u6709\u5143\u7d20\uff0c\u5219\u4ece\u51b2\u7a81\u4f4d\u7f6e\u5411\u540e\u7ebf\u6027\u904d\u5386\uff08\u6b65\u957f\u901a\u5e38\u4e3a \\(1\\) \uff09\uff0c\u76f4\u81f3\u627e\u5230\u7a7a\u6876\uff0c\u5c06\u5143\u7d20\u63d2\u5165\u5176\u4e2d\u3002
- \u67e5\u627e\u5143\u7d20\uff1a\u82e5\u53d1\u73b0\u54c8\u5e0c\u51b2\u7a81\uff0c\u5219\u4f7f\u7528\u76f8\u540c\u6b65\u957f\u5411\u540e\u7ebf\u6027\u904d\u5386\uff0c\u76f4\u5230\u627e\u5230\u5bf9\u5e94\u5143\u7d20\uff0c\u8fd4\u56de
value \u5373\u53ef\uff1b\u5982\u679c\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u76ee\u6807\u5143\u7d20\u4e0d\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8fd4\u56de \\(\\text{None}\\) \u3002
\u56fe 6-6 \u5c55\u793a\u4e86\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\uff09\u54c8\u5e0c\u8868\u7684\u952e\u503c\u5bf9\u5206\u5e03\u3002\u6839\u636e\u6b64\u54c8\u5e0c\u51fd\u6570\uff0c\u6700\u540e\u4e24\u4f4d\u76f8\u540c\u7684 key \u90fd\u4f1a\u88ab\u6620\u5c04\u5230\u76f8\u540c\u7684\u6876\u3002\u800c\u901a\u8fc7\u7ebf\u6027\u63a2\u6d4b\uff0c\u5b83\u4eec\u88ab\u4f9d\u6b21\u5b58\u50a8\u5728\u8be5\u6876\u4ee5\u53ca\u4e4b\u4e0b\u7684\u6876\u4e2d\u3002
\u56fe 6-6 \u00a0 \u5f00\u653e\u5bfb\u5740\u548c\u7ebf\u6027\u63a2\u6d4b
\u7136\u800c\uff0c\u7ebf\u6027\u63a2\u6d4b\u5bb9\u6613\u4ea7\u751f\u201c\u805a\u96c6\u73b0\u8c61\u201d\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u6570\u7ec4\u4e2d\u8fde\u7eed\u88ab\u5360\u7528\u7684\u4f4d\u7f6e\u8d8a\u957f\uff0c\u8fd9\u4e9b\u8fde\u7eed\u4f4d\u7f6e\u53d1\u751f\u54c8\u5e0c\u51b2\u7a81\u7684\u53ef\u80fd\u6027\u8d8a\u5927\uff0c\u4ece\u800c\u8fdb\u4e00\u6b65\u4fc3\u4f7f\u8be5\u4f4d\u7f6e\u7684\u805a\u5806\u751f\u957f\uff0c\u5f62\u6210\u6076\u6027\u5faa\u73af\uff0c\u6700\u7ec8\u5bfc\u81f4\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u6548\u7387\u52a3\u5316\u3002
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u6211\u4eec\u4e0d\u80fd\u5728\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\u4e2d\u76f4\u63a5\u5220\u9664\u5143\u7d20\u3002\u8fd9\u662f\u56e0\u4e3a\u5220\u9664\u5143\u7d20\u4f1a\u5728\u6570\u7ec4\u5185\u4ea7\u751f\u4e00\u4e2a\u7a7a\u6876 \\(\\text{None}\\) \uff0c\u800c\u5f53\u67e5\u8be2\u5143\u7d20\u65f6\uff0c\u7ebf\u6027\u63a2\u6d4b\u5230\u8be5\u7a7a\u6876\u5c31\u4f1a\u8fd4\u56de\uff0c\u56e0\u6b64\u5728\u8be5\u7a7a\u6876\u4e4b\u4e0b\u7684\u5143\u7d20\u90fd\u65e0\u6cd5\u518d\u88ab\u8bbf\u95ee\u5230\uff0c\u7a0b\u5e8f\u53ef\u80fd\u8bef\u5224\u8fd9\u4e9b\u5143\u7d20\u4e0d\u5b58\u5728\u3002
\u56fe 6-7 \u00a0 \u5728\u5f00\u653e\u5bfb\u5740\u4e2d\u5220\u9664\u5143\u7d20\u5bfc\u81f4\u7684\u67e5\u8be2\u95ee\u9898
\u4e3a\u4e86\u89e3\u51b3\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u300c\u61d2\u5220\u9664 lazy deletion\u300d\u673a\u5236\uff1a\u5b83\u4e0d\u76f4\u63a5\u4ece\u54c8\u5e0c\u8868\u4e2d\u79fb\u9664\u5143\u7d20\uff0c\u800c\u662f\u5229\u7528\u4e00\u4e2a\u5e38\u91cf TOMBSTONE \u6765\u6807\u8bb0\u8fd9\u4e2a\u6876\u3002\u5728\u8be5\u673a\u5236\u4e0b\uff0c\\(\\text{None}\\) \u548c TOMBSTONE \u90fd\u4ee3\u8868\u7a7a\u6876\uff0c\u90fd\u53ef\u4ee5\u653e\u7f6e\u952e\u503c\u5bf9\u3002\u4f46\u4e0d\u540c\u7684\u662f\uff0c\u7ebf\u6027\u63a2\u6d4b\u5230 TOMBSTONE \u65f6\u5e94\u8be5\u7ee7\u7eed\u904d\u5386\uff0c\u56e0\u4e3a\u5176\u4e4b\u4e0b\u53ef\u80fd\u8fd8\u5b58\u5728\u952e\u503c\u5bf9\u3002
\u7136\u800c\uff0c\u61d2\u5220\u9664\u53ef\u80fd\u4f1a\u52a0\u901f\u54c8\u5e0c\u8868\u7684\u6027\u80fd\u9000\u5316\u3002\u8fd9\u662f\u56e0\u4e3a\u6bcf\u6b21\u5220\u9664\u64cd\u4f5c\u90fd\u4f1a\u4ea7\u751f\u4e00\u4e2a\u5220\u9664\u6807\u8bb0\uff0c\u968f\u7740 TOMBSTONE \u7684\u589e\u52a0\uff0c\u641c\u7d22\u65f6\u95f4\u4e5f\u4f1a\u589e\u52a0\uff0c\u56e0\u4e3a\u7ebf\u6027\u63a2\u6d4b\u53ef\u80fd\u9700\u8981\u8df3\u8fc7\u591a\u4e2a TOMBSTONE \u624d\u80fd\u627e\u5230\u76ee\u6807\u5143\u7d20\u3002
\u4e3a\u6b64\uff0c\u8003\u8651\u5728\u7ebf\u6027\u63a2\u6d4b\u4e2d\u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a TOMBSTONE \u7684\u7d22\u5f15\uff0c\u5e76\u5c06\u641c\u7d22\u5230\u7684\u76ee\u6807\u5143\u7d20\u4e0e\u8be5 TOMBSTONE \u4ea4\u6362\u4f4d\u7f6e\u3002\u8fd9\u6837\u505a\u7684\u597d\u5904\u662f\u5f53\u6bcf\u6b21\u67e5\u8be2\u6216\u6dfb\u52a0\u5143\u7d20\u65f6\uff0c\u5143\u7d20\u4f1a\u88ab\u79fb\u52a8\u81f3\u8ddd\u79bb\u7406\u60f3\u4f4d\u7f6e\uff08\u63a2\u6d4b\u8d77\u59cb\u70b9\uff09\u66f4\u8fd1\u7684\u6876\uff0c\u4ece\u800c\u4f18\u5316\u67e5\u8be2\u6548\u7387\u3002
\u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u5305\u542b\u61d2\u5220\u9664\u7684\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\uff09\u54c8\u5e0c\u8868\u3002\u4e3a\u4e86\u66f4\u52a0\u5145\u5206\u5730\u4f7f\u7528\u54c8\u5e0c\u8868\u7684\u7a7a\u95f4\uff0c\u6211\u4eec\u5c06\u54c8\u5e0c\u8868\u770b\u4f5c\u4e00\u4e2a\u201c\u73af\u5f62\u6570\u7ec4\u201d\uff0c\u5f53\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u56de\u5230\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map_open_addressing.pyclass HashMapOpenAddressing:\n \"\"\"\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self.size = 0 # \u952e\u503c\u5bf9\u6570\u91cf\n self.capacity = 4 # \u54c8\u5e0c\u8868\u5bb9\u91cf\n self.load_thres = 2.0 / 3.0 # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n self.extend_ratio = 2 # \u6269\u5bb9\u500d\u6570\n self.buckets: list[Pair | None] = [None] * self.capacity # \u6876\u6570\u7ec4\n self.TOMBSTONE = Pair(-1, \"-1\") # \u5220\u9664\u6807\u8bb0\n\n def hash_func(self, key: int) -> int:\n \"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\n return key % self.capacity\n\n def load_factor(self) -> float:\n \"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\n return self.size / self.capacity\n\n def find_bucket(self, key: int) -> int:\n \"\"\"\u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\"\"\"\n index = self.hash_func(key)\n first_tombstone = -1\n # \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while self.buckets[index] is not None:\n # \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if self.buckets[index].key == key:\n # \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if first_tombstone != -1:\n self.buckets[first_tombstone] = self.buckets[index]\n self.buckets[index] = self.TOMBSTONE\n return first_tombstone # \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n return index # \u8fd4\u56de\u6876\u7d22\u5f15\n # \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if first_tombstone == -1 and self.buckets[index] is self.TOMBSTONE:\n first_tombstone = index\n # \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % self.capacity\n # \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return index if first_tombstone == -1 else first_tombstone\n\n def get(self, key: int) -> str:\n \"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\n # \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n index = self.find_bucket(key)\n # \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if self.buckets[index] not in [None, self.TOMBSTONE]:\n return self.buckets[index].val\n # \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de None\n return None\n\n def put(self, key: int, val: str):\n \"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n # \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres:\n self.extend()\n # \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n index = self.find_bucket(key)\n # \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if self.buckets[index] not in [None, self.TOMBSTONE]:\n self.buckets[index].val = val\n return\n # \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n self.buckets[index] = Pair(key, val)\n self.size += 1\n\n def remove(self, key: int):\n \"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\n # \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n index = self.find_bucket(key)\n # \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if self.buckets[index] not in [None, self.TOMBSTONE]:\n self.buckets[index] = self.TOMBSTONE\n self.size -= 1\n\n def extend(self):\n \"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n # \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n buckets_tmp = self.buckets\n # \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio\n self.buckets = [None] * self.capacity\n self.size = 0\n # \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for pair in buckets_tmp:\n if pair not in [None, self.TOMBSTONE]:\n self.put(pair.key, pair.val)\n\n def print(self):\n \"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\n for pair in self.buckets:\n if pair is None:\n print(\"None\")\n elif pair is self.TOMBSTONE:\n print(\"TOMBSTONE\")\n else:\n print(pair.key, \"->\", pair.val)\n
hash_map_open_addressing.cpp/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n private:\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n const double loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n const int extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n vector<Pair *> buckets; // \u6876\u6570\u7ec4\n Pair *TOMBSTONE = new Pair(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapOpenAddressing() : size(0), buckets(capacity, nullptr) {\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~HashMapOpenAddressing() {\n for (Pair *pair : buckets) {\n if (pair != nullptr && pair != TOMBSTONE) {\n delete pair;\n }\n }\n delete TOMBSTONE;\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return (double)size / capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n int findBucket(int key) {\n int index = hashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (buckets[index] != nullptr) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if (buckets[index]->key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if (firstTombstone != -1) {\n buckets[firstTombstone] = buckets[index];\n buckets[index] = TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n string get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {\n return buckets[index]->val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\";\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {\n buckets[index]->val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = new Pair(key, val);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {\n delete buckets[index];\n buckets[index] = TOMBSTONE;\n size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n vector<Pair *> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = vector<Pair *>(capacity, nullptr);\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (Pair *pair : bucketsTmp) {\n if (pair != nullptr && pair != TOMBSTONE) {\n put(pair->key, pair->val);\n delete pair;\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (Pair *pair : buckets) {\n if (pair == nullptr) {\n cout << \"nullptr\" << endl;\n } else if (pair == TOMBSTONE) {\n cout << \"TOMBSTONE\" << endl;\n } else {\n cout << pair->key << \" -> \" << pair->val << endl;\n }\n }\n }\n};\n
hash_map_open_addressing.java/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n private int size; // \u952e\u503c\u5bf9\u6570\u91cf\n private int capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n private final double loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n private final int extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n private Pair[] buckets; // \u6876\u6570\u7ec4\n private final Pair TOMBSTONE = new Pair(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapOpenAddressing() {\n size = 0;\n buckets = new Pair[capacity];\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n private double loadFactor() {\n return (double) size / capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n private int findBucket(int key) {\n int index = hashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (buckets[index] != null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if (buckets[index].key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if (firstTombstone != -1) {\n buckets[firstTombstone] = buckets[index];\n buckets[index] = TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public String get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n return buckets[index].val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index].val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = new Pair(key, val);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index] = TOMBSTONE;\n size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n private void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n Pair[] bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new Pair[capacity];\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (Pair pair : bucketsTmp) {\n if (pair != null && pair != TOMBSTONE) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void print() {\n for (Pair pair : buckets) {\n if (pair == null) {\n System.out.println(\"null\");\n } else if (pair == TOMBSTONE) {\n System.out.println(\"TOMBSTONE\");\n } else {\n System.out.println(pair.key + \" -> \" + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.cs/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n Pair[] buckets; // \u6876\u6570\u7ec4\n Pair TOMBSTONE = new(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapOpenAddressing() {\n size = 0;\n buckets = new Pair[capacity];\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int HashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double LoadFactor() {\n return (double)size / capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n int FindBucket(int key) {\n int index = HashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (buckets[index] != null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if (buckets[index].key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if (firstTombstone != -1) {\n buckets[firstTombstone] = buckets[index];\n buckets[index] = TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public string? Get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = FindBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n return buckets[index].val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void Put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (LoadFactor() > loadThres) {\n Extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = FindBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index].val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = new Pair(key, val);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void Remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = FindBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index] = TOMBSTONE;\n size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void Extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n Pair[] bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new Pair[capacity];\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n foreach (Pair pair in bucketsTmp) {\n if (pair != null && pair != TOMBSTONE) {\n Put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void Print() {\n foreach (Pair pair in buckets) {\n if (pair == null) {\n Console.WriteLine(\"null\");\n } else if (pair == TOMBSTONE) {\n Console.WriteLine(\"TOMBSTONE\");\n } else {\n Console.WriteLine(pair.key + \" -> \" + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.go/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\ntype hashMapOpenAddressing struct {\n size int // \u952e\u503c\u5bf9\u6570\u91cf\n capacity int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n loadThres float64 // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n extendRatio int // \u6269\u5bb9\u500d\u6570\n buckets []pair // \u6876\u6570\u7ec4\n removed pair // \u5220\u9664\u6807\u8bb0\n}\n\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapOpenAddressing() *hashMapOpenAddressing {\n buckets := make([]pair, 4)\n return &hashMapOpenAddressing{\n size: 0,\n capacity: 4,\n loadThres: 2.0 / 3.0,\n extendRatio: 2,\n buckets: buckets,\n removed: pair{\n key: -1,\n val: \"-1\",\n },\n }\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapOpenAddressing) hashFunc(key int) int {\n return key % m.capacity\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapOpenAddressing) loadFactor() float64 {\n return float64(m.size) / float64(m.capacity)\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) get(key int) string {\n idx := m.hashFunc(key)\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\n for i := 0; i < m.capacity; i++ {\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n j := (idx + i) % m.capacity\n // \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\n if m.buckets[j] == (pair{}) {\n return \"\"\n }\n // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if m.buckets[j].key == key && m.buckets[j] != m.removed {\n return m.buckets[j].val\n }\n }\n // \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\"\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) put(key int, val string) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if m.loadFactor() > m.loadThres {\n m.extend()\n }\n idx := m.hashFunc(key)\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\n for i := 0; i < m.capacity; i++ {\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n j := (idx + i) % m.capacity\n // \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\n if m.buckets[j] == (pair{}) || m.buckets[j] == m.removed {\n m.buckets[j] = pair{\n key: key,\n val: val,\n }\n m.size += 1\n return\n }\n // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\n if m.buckets[j].key == key {\n m.buckets[j].val = val\n return\n }\n }\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) remove(key int) {\n idx := m.hashFunc(key)\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\n for i := 0; i < m.capacity; i++ {\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n j := (idx + i) % m.capacity\n // \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if m.buckets[j] == (pair{}) {\n return\n }\n // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\n if m.buckets[j].key == key {\n m.buckets[j] = m.removed\n m.size -= 1\n }\n }\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n tmpBuckets := make([]pair, len(m.buckets))\n copy(tmpBuckets, m.buckets)\n\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n m.capacity *= m.extendRatio\n m.buckets = make([]pair, m.capacity)\n m.size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for _, p := range tmpBuckets {\n if p != (pair{}) && p != m.removed {\n m.put(p.key, p.val)\n }\n }\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) print() {\n for _, p := range m.buckets {\n if p != (pair{}) {\n fmt.Println(strconv.Itoa(p.key) + \" -> \" + p.val)\n } else {\n fmt.Println(\"nil\")\n }\n }\n}\n
hash_map_open_addressing.swift/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n var size: Int // \u952e\u503c\u5bf9\u6570\u91cf\n var capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n var loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n var extendRatio: Int // \u6269\u5bb9\u500d\u6570\n var buckets: [Pair?] // \u6876\u6570\u7ec4\n var TOMBSTONE: Pair // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n size = 0\n capacity = 4\n loadThres = 2.0 / 3.0\n extendRatio = 2\n buckets = Array(repeating: nil, count: capacity)\n TOMBSTONE = Pair(key: -1, val: \"-1\")\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n func hashFunc(key: Int) -> Int {\n key % capacity\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n func loadFactor() -> Double {\n Double(size / capacity)\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n func findBucket(key: Int) -> Int {\n var index = hashFunc(key: key)\n var firstTombstone = -1\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while buckets[index] != nil {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if buckets[index]!.key == key {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if firstTombstone != -1 {\n buckets[firstTombstone] = buckets[index]\n buckets[index] = TOMBSTONE\n return firstTombstone // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if firstTombstone == -1 && buckets[index] == TOMBSTONE {\n firstTombstone = index\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n func get(key: Int) -> String? {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = findBucket(key: key)\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if buckets[index] != nil, buckets[index] != TOMBSTONE {\n return buckets[index]!.val\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return nil\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n func put(key: Int, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if loadFactor() > loadThres {\n extend()\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = findBucket(key: key)\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if buckets[index] != nil, buckets[index] != TOMBSTONE {\n buckets[index]!.val = val\n return\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = Pair(key: key, val: val)\n size += 1\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n func remove(key: Int) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = findBucket(key: key)\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if buckets[index] != nil, buckets[index] != TOMBSTONE {\n buckets[index] = TOMBSTONE\n size -= 1\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n func extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let bucketsTmp = buckets\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio\n buckets = Array(repeating: nil, count: capacity)\n size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for pair in bucketsTmp {\n if let pair, pair != TOMBSTONE {\n put(key: pair.key, val: pair.val)\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n func print() {\n for pair in buckets {\n if pair == nil {\n Swift.print(\"null\")\n } else if pair == TOMBSTONE {\n Swift.print(\"TOMBSTONE\")\n } else {\n Swift.print(\"\\(pair!.key) -> \\(pair!.val)\")\n }\n }\n }\n}\n
hash_map_open_addressing.js/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n #size; // \u952e\u503c\u5bf9\u6570\u91cf\n #capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n #loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n #extendRatio; // \u6269\u5bb9\u500d\u6570\n #buckets; // \u6876\u6570\u7ec4\n #TOMBSTONE; // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#size = 0; // \u952e\u503c\u5bf9\u6570\u91cf\n this.#capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n this.#loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n this.#extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n this.#buckets = Array(this.#capacity).fill(null); // \u6876\u6570\u7ec4\n this.#TOMBSTONE = new Pair(-1, '-1'); // \u5220\u9664\u6807\u8bb0\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key) {\n return key % this.#capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n #loadFactor() {\n return this.#size / this.#capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n #findBucket(key) {\n let index = this.#hashFunc(key);\n let firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (this.#buckets[index] !== null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if (this.#buckets[index].key === key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if (firstTombstone !== -1) {\n this.#buckets[firstTombstone] = this.#buckets[index];\n this.#buckets[index] = this.#TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (\n firstTombstone === -1 &&\n this.#buckets[index] === this.#TOMBSTONE\n ) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % this.#capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone === -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.#findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (\n this.#buckets[index] !== null &&\n this.#buckets[index] !== this.#TOMBSTONE\n ) {\n return this.#buckets[index].val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key, val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.#loadFactor() > this.#loadThres) {\n this.#extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.#findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (\n this.#buckets[index] !== null &&\n this.#buckets[index] !== this.#TOMBSTONE\n ) {\n this.#buckets[index].val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n this.#buckets[index] = new Pair(key, val);\n this.#size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.#findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (\n this.#buckets[index] !== null &&\n this.#buckets[index] !== this.#TOMBSTONE\n ) {\n this.#buckets[index] = this.#TOMBSTONE;\n this.#size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n #extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.#buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.#capacity *= this.#extendRatio;\n this.#buckets = Array(this.#capacity).fill(null);\n this.#size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const pair of bucketsTmp) {\n if (pair !== null && pair !== this.#TOMBSTONE) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print() {\n for (const pair of this.#buckets) {\n if (pair === null) {\n console.log('null');\n } else if (pair === this.#TOMBSTONE) {\n console.log('TOMBSTONE');\n } else {\n console.log(pair.key + ' -> ' + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.ts/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n private size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n private capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n private loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n private extendRatio: number; // \u6269\u5bb9\u500d\u6570\n private buckets: Array<Pair | null>; // \u6876\u6570\u7ec4\n private TOMBSTONE: Pair; // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.size = 0; // \u952e\u503c\u5bf9\u6570\u91cf\n this.capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n this.loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n this.extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n this.buckets = Array(this.capacity).fill(null); // \u6876\u6570\u7ec4\n this.TOMBSTONE = new Pair(-1, '-1'); // \u5220\u9664\u6807\u8bb0\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private hashFunc(key: number): number {\n return key % this.capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n private loadFactor(): number {\n return this.size / this.capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n private findBucket(key: number): number {\n let index = this.hashFunc(key);\n let firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (this.buckets[index] !== null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if (this.buckets[index]!.key === key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if (firstTombstone !== -1) {\n this.buckets[firstTombstone] = this.buckets[index];\n this.buckets[index] = this.TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (\n firstTombstone === -1 &&\n this.buckets[index] === this.TOMBSTONE\n ) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % this.capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone === -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key: number): string | null {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (\n this.buckets[index] !== null &&\n this.buckets[index] !== this.TOMBSTONE\n ) {\n return this.buckets[index]!.val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key: number, val: string): void {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.loadFactor() > this.loadThres) {\n this.extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (\n this.buckets[index] !== null &&\n this.buckets[index] !== this.TOMBSTONE\n ) {\n this.buckets[index]!.val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n this.buckets[index] = new Pair(key, val);\n this.size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key: number): void {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (\n this.buckets[index] !== null &&\n this.buckets[index] !== this.TOMBSTONE\n ) {\n this.buckets[index] = this.TOMBSTONE;\n this.size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n private extend(): void {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.capacity *= this.extendRatio;\n this.buckets = Array(this.capacity).fill(null);\n this.size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const pair of bucketsTmp) {\n if (pair !== null && pair !== this.TOMBSTONE) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print(): void {\n for (const pair of this.buckets) {\n if (pair === null) {\n console.log('null');\n } else if (pair === this.TOMBSTONE) {\n console.log('TOMBSTONE');\n } else {\n console.log(pair.key + ' -> ' + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.dart/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n late int _size; // \u952e\u503c\u5bf9\u6570\u91cf\n int _capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double _loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int _extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n late List<Pair?> _buckets; // \u6876\u6570\u7ec4\n Pair _TOMBSTONE = Pair(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapOpenAddressing() {\n _size = 0;\n _buckets = List.generate(_capacity, (index) => null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % _capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return _size / _capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n int findBucket(int key) {\n int index = hashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (_buckets[index] != null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if (_buckets[index]!.key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if (firstTombstone != -1) {\n _buckets[firstTombstone] = _buckets[index];\n _buckets[index] = _TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && _buckets[index] == _TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % _capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String? get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {\n return _buckets[index]!.val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > _loadThres) {\n extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {\n _buckets[index]!.val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n _buckets[index] = new Pair(key, val);\n _size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {\n _buckets[index] = _TOMBSTONE;\n _size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<Pair?> bucketsTmp = _buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n _capacity *= _extendRatio;\n _buckets = List.generate(_capacity, (index) => null);\n _size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (Pair? pair in bucketsTmp) {\n if (pair != null && pair != _TOMBSTONE) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void printHashMap() {\n for (Pair? pair in _buckets) {\n if (pair == null) {\n print(\"null\");\n } else if (pair == _TOMBSTONE) {\n print(\"TOMBSTONE\");\n } else {\n print(\"${pair.key} -> ${pair.val}\");\n }\n }\n }\n}\n
hash_map_open_addressing.rs/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapOpenAddressing {\n size: usize, // \u952e\u503c\u5bf9\u6570\u91cf\n capacity: usize, // \u54c8\u5e0c\u8868\u5bb9\u91cf\n load_thres: f64, // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n extend_ratio: usize, // \u6269\u5bb9\u500d\u6570\n buckets: Vec<Option<Pair>>, // \u6876\u6570\u7ec4\n TOMBSTONE: Option<Pair>, // \u5220\u9664\u6807\u8bb0\n}\n\n\nimpl HashMapOpenAddressing {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new() -> Self {\n Self {\n size: 0,\n capacity: 4,\n load_thres: 2.0 / 3.0,\n extend_ratio: 2,\n buckets: vec![None; 4],\n TOMBSTONE: Some(Pair {key: -1, val: \"-1\".to_string()}),\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n fn hash_func(&self, key: i32) -> usize {\n (key % self.capacity as i32) as usize\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n fn load_factor(&self) -> f64 {\n self.size as f64 / self.capacity as f64\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n fn find_bucket(&mut self, key: i32) -> usize {\n let mut index = self.hash_func(key);\n let mut first_tombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while self.buckets[index].is_some() {\n // \u82e5\u9047\u5230 key\uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if self.buckets[index].as_ref().unwrap().key == key {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u5efa\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if first_tombstone != -1 {\n self.buckets[first_tombstone as usize] = self.buckets[index].take();\n self.buckets[index] = self.TOMBSTONE.clone();\n return first_tombstone as usize; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if first_tombstone == -1 && self.buckets[index] == self.TOMBSTONE {\n first_tombstone = index as i32;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % self.capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n if first_tombstone == -1 { index } else { first_tombstone as usize }\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n fn get(&mut self, key: i32) -> Option<&str> {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = self.find_bucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {\n return self.buckets[index].as_ref().map(|pair| &pair.val as &str);\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n None\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n fn put(&mut self, key: i32, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres {\n self.extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = self.find_bucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {\n self.buckets[index].as_mut().unwrap().val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n self.buckets[index] = Some(Pair { key, val });\n self.size += 1;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n fn remove(&mut self, key: i32) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = self.find_bucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {\n self.buckets[index] = self.TOMBSTONE.clone();\n self.size -= 1;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n fn extend(&mut self) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let buckets_tmp = self.buckets.clone();\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio;\n self.buckets = vec![None; self.capacity];\n self.size = 0;\n\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for pair in buckets_tmp {\n if pair.is_none() || pair == self.TOMBSTONE {\n continue;\n }\n let pair = pair.unwrap();\n\n self.put(pair.key, pair.val);\n }\n }\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n fn print(&self) {\n for pair in &self.buckets {\n if pair.is_none() {\n println!(\"null\");\n } else if pair == &self.TOMBSTONE {\n println!(\"TOMBSTONE\");\n } else {\n let pair = pair.as_ref().unwrap();\n println!(\"{} -> {}\", pair.key, pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.c/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\ntypedef struct {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n Pair **buckets; // \u6876\u6570\u7ec4\n Pair *TOMBSTONE; // \u5220\u9664\u6807\u8bb0\n} HashMapOpenAddressing;\n\n/* \u6784\u9020\u51fd\u6570 */\nHashMapOpenAddressing *newHashMapOpenAddressing() {\n HashMapOpenAddressing *hashMap = (HashMapOpenAddressing *)malloc(sizeof(HashMapOpenAddressing));\n hashMap->size = 0;\n hashMap->capacity = 4;\n hashMap->loadThres = 2.0 / 3.0;\n hashMap->extendRatio = 2;\n hashMap->buckets = (Pair **)malloc(sizeof(Pair *) * hashMap->capacity);\n hashMap->TOMBSTONE = (Pair *)malloc(sizeof(Pair));\n hashMap->TOMBSTONE->key = -1;\n hashMap->TOMBSTONE->val = \"-1\";\n\n return hashMap;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delHashMapOpenAddressing(HashMapOpenAddressing *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Pair *pair = hashMap->buckets[i];\n if (pair != NULL && pair != hashMap->TOMBSTONE) {\n free(pair->val);\n free(pair);\n }\n }\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(HashMapOpenAddressing *hashMap, int key) {\n return key % hashMap->capacity;\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor(HashMapOpenAddressing *hashMap) {\n return (double)hashMap->size / (double)hashMap->capacity;\n}\n\n/* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\nint findBucket(HashMapOpenAddressing *hashMap, int key) {\n int index = hashFunc(hashMap, key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (hashMap->buckets[index] != NULL) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u6876\u7d22\u5f15\n if (hashMap->buckets[index]->key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if (firstTombstone != -1) {\n hashMap->buckets[firstTombstone] = hashMap->buckets[index];\n hashMap->buckets[index] = hashMap->TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && hashMap->buckets[index] == hashMap->TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % hashMap->capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nchar *get(HashMapOpenAddressing *hashMap, int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(hashMap, key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {\n return hashMap->buckets[index]->val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\";\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(HashMapOpenAddressing *hashMap, int key, char *val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor(hashMap) > hashMap->loadThres) {\n extend(hashMap);\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(hashMap, key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {\n free(hashMap->buckets[index]->val);\n hashMap->buckets[index]->val = (char *)malloc(sizeof(strlen(val + 1)));\n strcpy(hashMap->buckets[index]->val, val);\n hashMap->buckets[index]->val[strlen(val)] = '\\0';\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n Pair *pair = (Pair *)malloc(sizeof(Pair));\n pair->key = key;\n pair->val = (char *)malloc(sizeof(strlen(val + 1)));\n strcpy(pair->val, val);\n pair->val[strlen(val)] = '\\0';\n\n hashMap->buckets[index] = pair;\n hashMap->size++;\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nvoid removeItem(HashMapOpenAddressing *hashMap, int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(hashMap, key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {\n Pair *pair = hashMap->buckets[index];\n free(pair->val);\n free(pair);\n hashMap->buckets[index] = hashMap->TOMBSTONE;\n hashMap->size--;\n }\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend(HashMapOpenAddressing *hashMap) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n Pair **bucketsTmp = hashMap->buckets;\n int oldCapacity = hashMap->capacity;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n hashMap->capacity *= hashMap->extendRatio;\n hashMap->buckets = (Pair **)malloc(sizeof(Pair *) * hashMap->capacity);\n hashMap->size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (int i = 0; i < oldCapacity; i++) {\n Pair *pair = bucketsTmp[i];\n if (pair != NULL && pair != hashMap->TOMBSTONE) {\n put(hashMap, pair->key, pair->val);\n free(pair->val);\n free(pair);\n }\n }\n free(bucketsTmp);\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print(HashMapOpenAddressing *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Pair *pair = hashMap->buckets[i];\n if (pair == NULL) {\n printf(\"NULL\\n\");\n } else if (pair == hashMap->TOMBSTONE) {\n printf(\"TOMBSTONE\\n\");\n } else {\n printf(\"%d -> %s\\n\", pair->key, pair->val);\n }\n }\n}\n
hash_map_open_addressing.zig[class]{HashMapOpenAddressing}-[func]{}\n
"},{"location":"chapter_hashing/hash_collision/#2","title":"2. \u00a0 \u5e73\u65b9\u63a2\u6d4b","text":"\u5e73\u65b9\u63a2\u6d4b\u4e0e\u7ebf\u6027\u63a2\u6d4b\u7c7b\u4f3c\uff0c\u90fd\u662f\u5f00\u653e\u5bfb\u5740\u7684\u5e38\u89c1\u7b56\u7565\u4e4b\u4e00\u3002\u5f53\u53d1\u751f\u51b2\u7a81\u65f6\uff0c\u5e73\u65b9\u63a2\u6d4b\u4e0d\u662f\u7b80\u5355\u5730\u8df3\u8fc7\u4e00\u4e2a\u56fa\u5b9a\u7684\u6b65\u6570\uff0c\u800c\u662f\u8df3\u8fc7\u201c\u63a2\u6d4b\u6b21\u6570\u7684\u5e73\u65b9\u201d\u7684\u6b65\u6570\uff0c\u5373 \\(1, 4, 9, \\dots\\) \u6b65\u3002
\u5e73\u65b9\u63a2\u6d4b\u4e3b\u8981\u5177\u6709\u4ee5\u4e0b\u4f18\u52bf\u3002
- \u5e73\u65b9\u63a2\u6d4b\u901a\u8fc7\u8df3\u8fc7\u63a2\u6d4b\u6b21\u6570\u5e73\u65b9\u7684\u8ddd\u79bb\uff0c\u8bd5\u56fe\u7f13\u89e3\u7ebf\u6027\u63a2\u6d4b\u7684\u805a\u96c6\u6548\u5e94\u3002
- \u5e73\u65b9\u63a2\u6d4b\u4f1a\u8df3\u8fc7\u66f4\u5927\u7684\u8ddd\u79bb\u6765\u5bfb\u627e\u7a7a\u4f4d\u7f6e\uff0c\u6709\u52a9\u4e8e\u6570\u636e\u5206\u5e03\u5f97\u66f4\u52a0\u5747\u5300\u3002
\u7136\u800c\uff0c\u5e73\u65b9\u63a2\u6d4b\u5e76\u4e0d\u662f\u5b8c\u7f8e\u7684\u3002
- \u4ecd\u7136\u5b58\u5728\u805a\u96c6\u73b0\u8c61\uff0c\u5373\u67d0\u4e9b\u4f4d\u7f6e\u6bd4\u5176\u4ed6\u4f4d\u7f6e\u66f4\u5bb9\u6613\u88ab\u5360\u7528\u3002
- \u7531\u4e8e\u5e73\u65b9\u7684\u589e\u957f\uff0c\u5e73\u65b9\u63a2\u6d4b\u53ef\u80fd\u4e0d\u4f1a\u63a2\u6d4b\u6574\u4e2a\u54c8\u5e0c\u8868\uff0c\u8fd9\u610f\u5473\u7740\u5373\u4f7f\u54c8\u5e0c\u8868\u4e2d\u6709\u7a7a\u6876\uff0c\u5e73\u65b9\u63a2\u6d4b\u4e5f\u53ef\u80fd\u65e0\u6cd5\u8bbf\u95ee\u5230\u5b83\u3002
"},{"location":"chapter_hashing/hash_collision/#3","title":"3. \u00a0 \u591a\u6b21\u54c8\u5e0c","text":"\u987e\u540d\u601d\u4e49\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\)\u3001\\(f_2(x)\\)\u3001\\(f_3(x)\\)\u3001\\(\\dots\\) \u8fdb\u884c\u63a2\u6d4b\u3002
- \u63d2\u5165\u5143\u7d20\uff1a\u82e5\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\) \u51fa\u73b0\u51b2\u7a81\uff0c\u5219\u5c1d\u8bd5 \\(f_2(x)\\) \uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u5230\u627e\u5230\u7a7a\u6876\u540e\u63d2\u5165\u5143\u7d20\u3002
- \u67e5\u627e\u5143\u7d20\uff1a\u5728\u76f8\u540c\u7684\u54c8\u5e0c\u51fd\u6570\u987a\u5e8f\u4e0b\u8fdb\u884c\u67e5\u627e\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u65f6\u8fd4\u56de\uff1b\u82e5\u9047\u5230\u7a7a\u6876\u6216\u5df2\u5c1d\u8bd5\u6240\u6709\u54c8\u5e0c\u51fd\u6570\uff0c\u8bf4\u660e\u54c8\u5e0c\u8868\u4e2d\u4e0d\u5b58\u5728\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(\\text{None}\\) \u3002
\u4e0e\u7ebf\u6027\u63a2\u6d4b\u76f8\u6bd4\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u4f1a\u5e26\u6765\u989d\u5916\u7684\u8ba1\u7b97\u91cf\u3002
Tip
\u8bf7\u6ce8\u610f\uff0c\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\u3001\u5e73\u65b9\u63a2\u6d4b\u548c\u591a\u6b21\u54c8\u5e0c\uff09\u54c8\u5e0c\u8868\u90fd\u5b58\u5728\u201c\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u201d\u7684\u95ee\u9898\u3002
"},{"location":"chapter_hashing/hash_collision/#623","title":"6.2.3 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u9009\u62e9","text":"\u5404\u79cd\u7f16\u7a0b\u8bed\u8a00\u91c7\u53d6\u4e86\u4e0d\u540c\u7684\u54c8\u5e0c\u8868\u5b9e\u73b0\u7b56\u7565\uff0c\u4e0b\u9762\u4e3e\u51e0\u4e2a\u4f8b\u5b50\u3002
- Python \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002\u5b57\u5178 dict \u4f7f\u7528\u4f2a\u968f\u673a\u6570\u8fdb\u884c\u63a2\u6d4b\u3002
- Java \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002\u81ea JDK 1.8 \u4ee5\u6765\uff0c\u5f53 HashMap \u5185\u6570\u7ec4\u957f\u5ea6\u8fbe\u5230 64 \u4e14\u94fe\u8868\u957f\u5ea6\u8fbe\u5230 8 \u65f6\uff0c\u94fe\u8868\u4f1a\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u4ee5\u63d0\u5347\u67e5\u627e\u6027\u80fd\u3002
- Go \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002Go \u89c4\u5b9a\u6bcf\u4e2a\u6876\u6700\u591a\u5b58\u50a8 8 \u4e2a\u952e\u503c\u5bf9\uff0c\u8d85\u51fa\u5bb9\u91cf\u5219\u8fde\u63a5\u4e00\u4e2a\u6ea2\u51fa\u6876\u3002\u5f53\u6ea2\u51fa\u6876\u8fc7\u591a\u65f6\uff0c\u4f1a\u6267\u884c\u4e00\u6b21\u7279\u6b8a\u7684\u7b49\u91cf\u6269\u5bb9\u64cd\u4f5c\uff0c\u4ee5\u786e\u4fdd\u6027\u80fd\u3002
"},{"location":"chapter_hashing/hash_map/","title":"6.1 \u00a0 \u54c8\u5e0c\u8868","text":"\u300c\u54c8\u5e0c\u8868 hash table\u300d\uff0c\u53c8\u79f0\u300c\u6563\u5217\u8868\u300d\uff0c\u5176\u901a\u8fc7\u5efa\u7acb\u952e key \u4e0e\u503c value \u4e4b\u95f4\u7684\u6620\u5c04\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u8be2\u3002\u5177\u4f53\u800c\u8a00\uff0c\u6211\u4eec\u5411\u54c8\u5e0c\u8868\u8f93\u5165\u4e00\u4e2a\u952e key \uff0c\u5219\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u5bf9\u5e94\u7684\u503c value \u3002
\u5982\u56fe 6-1 \u6240\u793a\uff0c\u7ed9\u5b9a \\(n\\) \u4e2a\u5b66\u751f\uff0c\u6bcf\u4e2a\u5b66\u751f\u90fd\u6709\u201c\u59d3\u540d\u201d\u548c\u201c\u5b66\u53f7\u201d\u4e24\u9879\u6570\u636e\u3002\u5047\u5982\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u201c\u8f93\u5165\u4e00\u4e2a\u5b66\u53f7\uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u59d3\u540d\u201d\u7684\u67e5\u8be2\u529f\u80fd\uff0c\u5219\u53ef\u4ee5\u91c7\u7528\u56fe 6-1 \u6240\u793a\u7684\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002
\u56fe 6-1 \u00a0 \u54c8\u5e0c\u8868\u7684\u62bd\u8c61\u8868\u793a
\u9664\u54c8\u5e0c\u8868\u5916\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u4e5f\u53ef\u4ee5\u5b9e\u73b0\u67e5\u8be2\u529f\u80fd\uff0c\u5b83\u4eec\u7684\u6548\u7387\u5bf9\u6bd4\u5982\u8868 6-1 \u6240\u793a\u3002
- \u6dfb\u52a0\u5143\u7d20\uff1a\u4ec5\u9700\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u6570\u7ec4\uff08\u94fe\u8868\uff09\u7684\u5c3e\u90e8\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
- \u67e5\u8be2\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\uff08\u94fe\u8868\uff09\u662f\u4e71\u5e8f\u7684\uff0c\u56e0\u6b64\u9700\u8981\u904d\u5386\u5176\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
- \u5220\u9664\u5143\u7d20\uff1a\u9700\u8981\u5148\u67e5\u8be2\u5230\u5143\u7d20\uff0c\u518d\u4ece\u6570\u7ec4\uff08\u94fe\u8868\uff09\u4e2d\u5220\u9664\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
\u8868 6-1 \u00a0 \u5143\u7d20\u67e5\u8be2\u6548\u7387\u5bf9\u6bd4
\u6570\u7ec4 \u94fe\u8868 \u54c8\u5e0c\u8868 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\) \u89c2\u5bdf\u53d1\u73b0\uff0c\u5728\u54c8\u5e0c\u8868\u4e2d\u8fdb\u884c\u589e\u5220\u67e5\u6539\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f \\(O(1)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
"},{"location":"chapter_hashing/hash_map/#611","title":"6.1.1 \u00a0 \u54c8\u5e0c\u8868\u5e38\u7528\u64cd\u4f5c","text":"\u54c8\u5e0c\u8868\u7684\u5e38\u89c1\u64cd\u4f5c\u5305\u62ec\uff1a\u521d\u59cb\u5316\u3001\u67e5\u8be2\u64cd\u4f5c\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u548c\u5220\u9664\u952e\u503c\u5bf9\u7b49\uff0c\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map.py# \u521d\u59cb\u5316\u54c8\u5e0c\u8868\nhmap: dict = {}\n\n# \u6dfb\u52a0\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n\n# \u67e5\u8be2\u64cd\u4f5c\n# \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname: str = hmap[15937]\n\n# \u5220\u9664\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nhmap.pop(10583)\n
hash_map.cpp/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nunordered_map<int, string> map;\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nstring name = map[15937];\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.erase(10583);\n
hash_map.java/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<Integer, String> map = new HashMap<>();\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.put(12836, \"\u5c0f\u54c8\"); \nmap.put(15937, \"\u5c0f\u5570\"); \nmap.put(16750, \"\u5c0f\u7b97\"); \nmap.put(13276, \"\u5c0f\u6cd5\");\nmap.put(10583, \"\u5c0f\u9e2d\");\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map.get(15937);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
hash_map.cs/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nDictionary<int, string> map = new() {\n /* \u6dfb\u52a0\u64cd\u4f5c */\n // \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\n { 12836, \"\u5c0f\u54c8\" },\n { 15937, \"\u5c0f\u5570\" },\n { 16750, \"\u5c0f\u7b97\" },\n { 13276, \"\u5c0f\u6cd5\" },\n { 10583, \"\u5c0f\u9e2d\" }\n};\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nstring name = map[15937];\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.Remove(10583);\n
hash_map_test.go/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nhmap := make(map[int]string)\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname := hmap[15937]\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\ndelete(hmap, 10583)\n
hash_map.swift/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nvar map: [Int: String] = [:]\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\"\nmap[15937] = \"\u5c0f\u5570\"\nmap[16750] = \"\u5c0f\u7b97\"\nmap[13276] = \"\u5c0f\u6cd5\"\nmap[10583] = \"\u5c0f\u9e2d\"\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map[15937]!\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.removeValue(forKey: 10583)\n
hash_map.js/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new Map();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\n
hash_map.ts/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new Map<number, string>();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\nconsole.info('\\n\u6dfb\u52a0\u5b8c\u6210\u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\nconsole.info('\\n\u8f93\u5165\u5b66\u53f7 15937 \uff0c\u67e5\u8be2\u5230\u59d3\u540d ' + name);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\nconsole.info('\\n\u5220\u9664 10583 \u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n
hash_map.dart/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<int, String> map = {};\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map[15937];\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
hash_map.rsuse std::collections::HashMap;\n\n/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nlet mut map: HashMap<i32, String> = HashMap::new();\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.insert(12836, \"\u5c0f\u54c8\".to_string());\nmap.insert(15937, \"\u5c0f\u5570\".to_string());\nmap.insert(16750, \"\u5c0f\u7b97\".to_string());\nmap.insert(13279, \"\u5c0f\u6cd5\".to_string());\nmap.insert(10583, \"\u5c0f\u9e2d\".to_string());\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet _name: Option<&String> = map.get(&15937);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nlet _removed_value: Option<String> = map.remove(&10583);\n
hash_map.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
hash_map.zig\n
\u54c8\u5e0c\u8868\u6709\u4e09\u79cd\u5e38\u7528\u7684\u904d\u5386\u65b9\u5f0f\uff1a\u904d\u5386\u952e\u503c\u5bf9\u3001\u904d\u5386\u952e\u548c\u904d\u5386\u503c\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map.py# \u904d\u5386\u54c8\u5e0c\u8868\n# \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value in hmap.items():\n print(key, \"->\", value)\n# \u5355\u72ec\u904d\u5386\u952e key\nfor key in hmap.keys():\n print(key)\n# \u5355\u72ec\u904d\u5386\u503c value\nfor value in hmap.values():\n print(value)\n
hash_map.cpp/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (auto kv: map) {\n cout << kv.first << \" -> \" << kv.second << endl;\n}\n// \u4f7f\u7528\u8fed\u4ee3\u5668\u904d\u5386 key->value\nfor (auto iter = map.begin(); iter != map.end(); iter++) {\n cout << iter->first << \"->\" << iter->second << endl;\n}\n
hash_map.java/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (Map.Entry <Integer, String> kv: map.entrySet()) {\n System.out.println(kv.getKey() + \" -> \" + kv.getValue());\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor (int key: map.keySet()) {\n System.out.println(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor (String val: map.values()) {\n System.out.println(val);\n}\n
hash_map.cs/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nforeach (var kv in map) {\n Console.WriteLine(kv.Key + \" -> \" + kv.Value);\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nforeach (int key in map.Keys) {\n Console.WriteLine(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nforeach (string val in map.Values) {\n Console.WriteLine(val);\n}\n
hash_map_test.go/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value := range hmap {\n fmt.Println(key, \"->\", value)\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor key := range hmap {\n fmt.Println(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor _, value := range hmap {\n fmt.Println(value)\n}\n
hash_map.swift/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nfor (key, value) in map {\n print(\"\\(key) -> \\(value)\")\n}\n// \u5355\u72ec\u904d\u5386\u952e Key\nfor key in map.keys {\n print(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c Value\nfor value in map.values {\n print(value)\n}\n
hash_map.js/* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\n console.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\n console.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\n console.info(v);\n}\n
hash_map.ts/* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\n console.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\n console.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\n console.info(v);\n}\n
hash_map.dart/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nmap.forEach((key, value) {\n print('$key -> $value');\n});\n\n// \u5355\u72ec\u904d\u5386\u952e Key\nmap.keys.forEach((key) {\n print(key);\n});\n\n// \u5355\u72ec\u904d\u5386\u503c Value\nmap.values.forEach((value) {\n print(value);\n});\n
hash_map.rs/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nfor (key, value) in &map {\n println!(\"{key} -> {value}\");\n}\n\n// \u5355\u72ec\u904d\u5386\u952e Key\nfor key in map.keys() {\n println!(\"{key}\"); \n}\n\n// \u5355\u72ec\u904d\u5386\u503c Value\nfor value in map.values() {\n println!(\"{value}\");\n}\n
hash_map.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
hash_map.zig\n
"},{"location":"chapter_hashing/hash_map/#612","title":"6.1.2 \u00a0 \u54c8\u5e0c\u8868\u7b80\u5355\u5b9e\u73b0","text":"\u6211\u4eec\u5148\u8003\u8651\u6700\u7b80\u5355\u7684\u60c5\u51b5\uff0c\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u5b9e\u73b0\u54c8\u5e0c\u8868\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5c06\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u7a7a\u4f4d\u79f0\u4e3a\u300c\u6876 bucket\u300d\uff0c\u6bcf\u4e2a\u6876\u53ef\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u56e0\u6b64\uff0c\u67e5\u8be2\u64cd\u4f5c\u5c31\u662f\u627e\u5230 key \u5bf9\u5e94\u7684\u6876\uff0c\u5e76\u5728\u6876\u4e2d\u83b7\u53d6 value \u3002
\u90a3\u4e48\uff0c\u5982\u4f55\u57fa\u4e8e key \u5b9a\u4f4d\u5bf9\u5e94\u7684\u6876\u5462\uff1f\u8fd9\u662f\u901a\u8fc7\u300c\u54c8\u5e0c\u51fd\u6570 hash function\u300d\u5b9e\u73b0\u7684\u3002\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u8f93\u51fa\u7a7a\u95f4\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8f93\u5165\u7a7a\u95f4\u662f\u6240\u6709 key \uff0c\u8f93\u51fa\u7a7a\u95f4\u662f\u6240\u6709\u6876\uff08\u6570\u7ec4\u7d22\u5f15\uff09\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u8f93\u5165\u4e00\u4e2a key \uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u8be5 key \u5bf9\u5e94\u7684\u952e\u503c\u5bf9\u5728\u6570\u7ec4\u4e2d\u7684\u5b58\u50a8\u4f4d\u7f6e\u3002
\u8f93\u5165\u4e00\u4e2a key \uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u8fc7\u7a0b\u5206\u4e3a\u4ee5\u4e0b\u4e24\u6b65\u3002
- \u901a\u8fc7\u67d0\u79cd\u54c8\u5e0c\u7b97\u6cd5
hash() \u8ba1\u7b97\u5f97\u5230\u54c8\u5e0c\u503c\u3002 - \u5c06\u54c8\u5e0c\u503c\u5bf9\u6876\u6570\u91cf\uff08\u6570\u7ec4\u957f\u5ea6\uff09
capacity \u53d6\u6a21\uff0c\u4ece\u800c\u83b7\u53d6\u8be5 key \u5bf9\u5e94\u7684\u6570\u7ec4\u7d22\u5f15 index \u3002
index = hash(key) % capacity\n
\u968f\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5229\u7528 index \u5728\u54c8\u5e0c\u8868\u4e2d\u8bbf\u95ee\u5bf9\u5e94\u7684\u6876\uff0c\u4ece\u800c\u83b7\u53d6 value \u3002
\u8bbe\u6570\u7ec4\u957f\u5ea6 capacity = 100\u3001\u54c8\u5e0c\u7b97\u6cd5 hash(key) = key \uff0c\u6613\u5f97\u54c8\u5e0c\u51fd\u6570\u4e3a key % 100 \u3002\u56fe 6-2 \u4ee5 key \u5b66\u53f7\u548c value \u59d3\u540d\u4e3a\u4f8b\uff0c\u5c55\u793a\u4e86\u54c8\u5e0c\u51fd\u6570\u7684\u5de5\u4f5c\u539f\u7406\u3002
\u56fe 6-2 \u00a0 \u54c8\u5e0c\u51fd\u6570\u5de5\u4f5c\u539f\u7406
\u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u7b80\u5355\u54c8\u5e0c\u8868\u3002\u5176\u4e2d\uff0c\u6211\u4eec\u5c06 key \u548c value \u5c01\u88c5\u6210\u4e00\u4e2a\u7c7b Pair \uff0c\u4ee5\u8868\u793a\u952e\u503c\u5bf9\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_hash_map.pyclass Pair:\n \"\"\"\u952e\u503c\u5bf9\"\"\"\n\n def __init__(self, key: int, val: str):\n self.key = key\n self.val = val\n\nclass ArrayHashMap:\n \"\"\"\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n # \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n self.buckets: list[Pair | None] = [None] * 100\n\n def hash_func(self, key: int) -> int:\n \"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\n index = key % 100\n return index\n\n def get(self, key: int) -> str:\n \"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\n index: int = self.hash_func(key)\n pair: Pair = self.buckets[index]\n if pair is None:\n return None\n return pair.val\n\n def put(self, key: int, val: str):\n \"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n pair = Pair(key, val)\n index: int = self.hash_func(key)\n self.buckets[index] = pair\n\n def remove(self, key: int):\n \"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\n index: int = self.hash_func(key)\n # \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\n self.buckets[index] = None\n\n def entry_set(self) -> list[Pair]:\n \"\"\"\u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\"\"\"\n result: list[Pair] = []\n for pair in self.buckets:\n if pair is not None:\n result.append(pair)\n return result\n\n def key_set(self) -> list[int]:\n \"\"\"\u83b7\u53d6\u6240\u6709\u952e\"\"\"\n result = []\n for pair in self.buckets:\n if pair is not None:\n result.append(pair.key)\n return result\n\n def value_set(self) -> list[str]:\n \"\"\"\u83b7\u53d6\u6240\u6709\u503c\"\"\"\n result = []\n for pair in self.buckets:\n if pair is not None:\n result.append(pair.val)\n return result\n\n def print(self):\n \"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\n for pair in self.buckets:\n if pair is not None:\n print(pair.key, \"->\", pair.val)\n
array_hash_map.cpp/* \u952e\u503c\u5bf9 */\nstruct Pair {\n public:\n int key;\n string val;\n Pair(int key, string val) {\n this->key = key;\n this->val = val;\n }\n};\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private:\n vector<Pair *> buckets;\n\n public:\n ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets = vector<Pair *>(100);\n }\n\n ~ArrayHashMap() {\n // \u91ca\u653e\u5185\u5b58\n for (const auto &bucket : buckets) {\n delete bucket;\n }\n buckets.clear();\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n string get(int key) {\n int index = hashFunc(key);\n Pair *pair = buckets[index];\n if (pair == nullptr)\n return \"\";\n return pair->val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, string val) {\n Pair *pair = new Pair(key, val);\n int index = hashFunc(key);\n buckets[index] = pair;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n // \u91ca\u653e\u5185\u5b58\u5e76\u7f6e\u4e3a nullptr\n delete buckets[index];\n buckets[index] = nullptr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n vector<Pair *> pairSet() {\n vector<Pair *> pairSet;\n for (Pair *pair : buckets) {\n if (pair != nullptr) {\n pairSet.push_back(pair);\n }\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n vector<int> keySet() {\n vector<int> keySet;\n for (Pair *pair : buckets) {\n if (pair != nullptr) {\n keySet.push_back(pair->key);\n }\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n vector<string> valueSet() {\n vector<string> valueSet;\n for (Pair *pair : buckets) {\n if (pair != nullptr) {\n valueSet.push_back(pair->val);\n }\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (Pair *kv : pairSet()) {\n cout << kv->key << \" -> \" << kv->val << endl;\n }\n }\n};\n
array_hash_map.java/* \u952e\u503c\u5bf9 */\nclass Pair {\n public int key;\n public String val;\n\n public Pair(int key, String val) {\n this.key = key;\n this.val = val;\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private List<Pair> buckets;\n\n public ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets = new ArrayList<>();\n for (int i = 0; i < 100; i++) {\n buckets.add(null);\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private int hashFunc(int key) {\n int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public String get(int key) {\n int index = hashFunc(key);\n Pair pair = buckets.get(index);\n if (pair == null)\n return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void put(int key, String val) {\n Pair pair = new Pair(key, val);\n int index = hashFunc(key);\n buckets.set(index, pair);\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void remove(int key) {\n int index = hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n buckets.set(index, null);\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n public List<Pair> pairSet() {\n List<Pair> pairSet = new ArrayList<>();\n for (Pair pair : buckets) {\n if (pair != null)\n pairSet.add(pair);\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n public List<Integer> keySet() {\n List<Integer> keySet = new ArrayList<>();\n for (Pair pair : buckets) {\n if (pair != null)\n keySet.add(pair.key);\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n public List<String> valueSet() {\n List<String> valueSet = new ArrayList<>();\n for (Pair pair : buckets) {\n if (pair != null)\n valueSet.add(pair.val);\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void print() {\n for (Pair kv : pairSet()) {\n System.out.println(kv.key + \" -> \" + kv.val);\n }\n }\n}\n
array_hash_map.cs/* \u952e\u503c\u5bf9 int->string */\nclass Pair(int key, string val) {\n public int key = key;\n public string val = val;\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n List<Pair?> buckets;\n public ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets = [];\n for (int i = 0; i < 100; i++) {\n buckets.Add(null);\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int HashFunc(int key) {\n int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public string? Get(int key) {\n int index = HashFunc(key);\n Pair? pair = buckets[index];\n if (pair == null) return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void Put(int key, string val) {\n Pair pair = new(key, val);\n int index = HashFunc(key);\n buckets[index] = pair;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void Remove(int key) {\n int index = HashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n public List<Pair> PairSet() {\n List<Pair> pairSet = [];\n foreach (Pair? pair in buckets) {\n if (pair != null)\n pairSet.Add(pair);\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n public List<int> KeySet() {\n List<int> keySet = [];\n foreach (Pair? pair in buckets) {\n if (pair != null)\n keySet.Add(pair.key);\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n public List<string> ValueSet() {\n List<string> valueSet = [];\n foreach (Pair? pair in buckets) {\n if (pair != null)\n valueSet.Add(pair.val);\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void Print() {\n foreach (Pair kv in PairSet()) {\n Console.WriteLine(kv.key + \" -> \" + kv.val);\n }\n }\n}\n
array_hash_map.go/* \u952e\u503c\u5bf9 */\ntype pair struct {\n key int\n val string\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\ntype arrayHashMap struct {\n buckets []*pair\n}\n\n/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nfunc newArrayHashMap() *arrayHashMap {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets := make([]*pair, 100)\n return &arrayHashMap{buckets: buckets}\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (a *arrayHashMap) hashFunc(key int) int {\n index := key % 100\n return index\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (a *arrayHashMap) get(key int) string {\n index := a.hashFunc(key)\n pair := a.buckets[index]\n if pair == nil {\n return \"Not Found\"\n }\n return pair.val\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (a *arrayHashMap) put(key int, val string) {\n pair := &pair{key: key, val: val}\n index := a.hashFunc(key)\n a.buckets[index] = pair\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (a *arrayHashMap) remove(key int) {\n index := a.hashFunc(key)\n // \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\n a.buckets[index] = nil\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e\u5bf9 */\nfunc (a *arrayHashMap) pairSet() []*pair {\n var pairs []*pair\n for _, pair := range a.buckets {\n if pair != nil {\n pairs = append(pairs, pair)\n }\n }\n return pairs\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e */\nfunc (a *arrayHashMap) keySet() []int {\n var keys []int\n for _, pair := range a.buckets {\n if pair != nil {\n keys = append(keys, pair.key)\n }\n }\n return keys\n}\n\n/* \u83b7\u53d6\u6240\u6709\u503c */\nfunc (a *arrayHashMap) valueSet() []string {\n var values []string\n for _, pair := range a.buckets {\n if pair != nil {\n values = append(values, pair.val)\n }\n }\n return values\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (a *arrayHashMap) print() {\n for _, pair := range a.buckets {\n if pair != nil {\n fmt.Println(pair.key, \"->\", pair.val)\n }\n }\n}\n
array_hash_map.swift/* \u952e\u503c\u5bf9 */\nclass Pair: Equatable {\n public var key: Int\n public var val: String\n\n public init(key: Int, val: String) {\n self.key = key\n self.val = val\n }\n\n public static func == (lhs: Pair, rhs: Pair) -> Bool {\n lhs.key == rhs.key && lhs.val == rhs.val\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private var buckets: [Pair?] = []\n\n init() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n for _ in 0 ..< 100 {\n buckets.append(nil)\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private func hashFunc(key: Int) -> Int {\n let index = key % 100\n return index\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n func get(key: Int) -> String? {\n let index = hashFunc(key: key)\n let pair = buckets[index]\n return pair?.val\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n func put(key: Int, val: String) {\n let pair = Pair(key: key, val: val)\n let index = hashFunc(key: key)\n buckets[index] = pair\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n func remove(key: Int) {\n let index = hashFunc(key: key)\n // \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\n buckets[index] = nil\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n func pairSet() -> [Pair] {\n var pairSet: [Pair] = []\n for pair in buckets {\n if let pair = pair {\n pairSet.append(pair)\n }\n }\n return pairSet\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n func keySet() -> [Int] {\n var keySet: [Int] = []\n for pair in buckets {\n if let pair = pair {\n keySet.append(pair.key)\n }\n }\n return keySet\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n func valueSet() -> [String] {\n var valueSet: [String] = []\n for pair in buckets {\n if let pair = pair {\n valueSet.append(pair.val)\n }\n }\n return valueSet\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n func print() {\n for pair in pairSet() {\n Swift.print(\"\\(pair.key) -> \\(pair.val)\")\n }\n }\n}\n
array_hash_map.js/* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\n constructor(key, val) {\n this.key = key;\n this.val = val;\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n #buckets;\n constructor() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n this.#buckets = new Array(100).fill(null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key) {\n return key % 100;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key) {\n let index = this.#hashFunc(key);\n let pair = this.#buckets[index];\n if (pair === null) return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n set(key, val) {\n let index = this.#hashFunc(key);\n this.#buckets[index] = new Pair(key, val);\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n delete(key) {\n let index = this.#hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n this.#buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n entries() {\n let arr = [];\n for (let i = 0; i < this.#buckets.length; i++) {\n if (this.#buckets[i]) {\n arr.push(this.#buckets[i]);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n keys() {\n let arr = [];\n for (let i = 0; i < this.#buckets.length; i++) {\n if (this.#buckets[i]) {\n arr.push(this.#buckets[i].key);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n values() {\n let arr = [];\n for (let i = 0; i < this.#buckets.length; i++) {\n if (this.#buckets[i]) {\n arr.push(this.#buckets[i].val);\n }\n }\n return arr;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print() {\n let pairSet = this.entries();\n for (const pair of pairSet) {\n console.info(`${pair.key} -> ${pair.val}`);\n }\n }\n}\n
array_hash_map.ts/* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\n public key: number;\n public val: string;\n\n constructor(key: number, val: string) {\n this.key = key;\n this.val = val;\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private readonly buckets: (Pair | null)[];\n\n constructor() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n this.buckets = new Array(100).fill(null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private hashFunc(key: number): number {\n return key % 100;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public get(key: number): string | null {\n let index = this.hashFunc(key);\n let pair = this.buckets[index];\n if (pair === null) return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public set(key: number, val: string) {\n let index = this.hashFunc(key);\n this.buckets[index] = new Pair(key, val);\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public delete(key: number) {\n let index = this.hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n this.buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n public entries(): (Pair | null)[] {\n let arr: (Pair | null)[] = [];\n for (let i = 0; i < this.buckets.length; i++) {\n if (this.buckets[i]) {\n arr.push(this.buckets[i]);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n public keys(): (number | undefined)[] {\n let arr: (number | undefined)[] = [];\n for (let i = 0; i < this.buckets.length; i++) {\n if (this.buckets[i]) {\n arr.push(this.buckets[i].key);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n public values(): (string | undefined)[] {\n let arr: (string | undefined)[] = [];\n for (let i = 0; i < this.buckets.length; i++) {\n if (this.buckets[i]) {\n arr.push(this.buckets[i].val);\n }\n }\n return arr;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public print() {\n let pairSet = this.entries();\n for (const pair of pairSet) {\n console.info(`${pair.key} -> ${pair.val}`);\n }\n }\n}\n
array_hash_map.dart/* \u952e\u503c\u5bf9 */\nclass Pair {\n int key;\n String val;\n Pair(this.key, this.val);\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n late List<Pair?> _buckets;\n\n ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n _buckets = List.filled(100, null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int _hashFunc(int key) {\n final int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String? get(int key) {\n final int index = _hashFunc(key);\n final Pair? pair = _buckets[index];\n if (pair == null) {\n return null;\n }\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n final Pair pair = Pair(key, val);\n final int index = _hashFunc(key);\n _buckets[index] = pair;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n final int index = _hashFunc(key);\n _buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n List<Pair> pairSet() {\n List<Pair> pairSet = [];\n for (final Pair? pair in _buckets) {\n if (pair != null) {\n pairSet.add(pair);\n }\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n List<int> keySet() {\n List<int> keySet = [];\n for (final Pair? pair in _buckets) {\n if (pair != null) {\n keySet.add(pair.key);\n }\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n List<String> values() {\n List<String> valueSet = [];\n for (final Pair? pair in _buckets) {\n if (pair != null) {\n valueSet.add(pair.val);\n }\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void printHashMap() {\n for (final Pair kv in pairSet()) {\n print(\"${kv.key} -> ${kv.val}\");\n }\n }\n}\n
array_hash_map.rs/* \u952e\u503c\u5bf9 */\n#[derive(Debug, Clone, PartialEq)]\npub struct Pair {\n pub key: i32,\n pub val: String,\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\npub struct ArrayHashMap {\n buckets: Vec<Option<Pair>>\n}\n\nimpl ArrayHashMap {\n pub fn new() -> ArrayHashMap {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n Self { buckets: vec![None; 100] }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n fn hash_func(&self, key: i32) -> usize {\n key as usize % 100\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n pub fn get(&self, key: i32) -> Option<&String> {\n let index = self.hash_func(key);\n self.buckets[index].as_ref().map(|pair| &pair.val)\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n pub fn put(&mut self, key: i32, val: &str) {\n let index = self.hash_func(key);\n self.buckets[index] = Some(Pair {\n key,\n val: val.to_string(),\n });\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n pub fn remove(&mut self, key: i32) {\n let index = self.hash_func(key);\n // \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\n self.buckets[index] = None;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n pub fn entry_set(&self) -> Vec<&Pair> {\n self.buckets.iter().filter_map(|pair| pair.as_ref()).collect()\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n pub fn key_set(&self) -> Vec<&i32> {\n self.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.key)).collect()\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n pub fn value_set(&self) -> Vec<&String> {\n self.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.val)).collect()\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n pub fn print(&self) {\n for pair in self.entry_set() {\n println!(\"{} -> {}\", pair.key, pair.val);\n }\n }\n}\n
array_hash_map.c/* \u952e\u503c\u5bf9 int->string */\ntypedef struct {\n int key;\n char *val;\n} Pair;\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\ntypedef struct {\n Pair *buckets[HASHTABLE_CAPACITY];\n} ArrayHashMap;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayHashMap *newArrayHashMap() {\n ArrayHashMap *hmap = malloc(sizeof(ArrayHashMap));\n return hmap;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayHashMap(ArrayHashMap *hmap) {\n for (int i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n free(hmap->buckets[i]->val);\n free(hmap->buckets[i]);\n }\n }\n free(hmap);\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(ArrayHashMap *hmap, const int key, const char *val) {\n Pair *Pair = malloc(sizeof(Pair));\n Pair->key = key;\n Pair->val = malloc(strlen(val) + 1);\n strcpy(Pair->val, val);\n\n int index = hashFunc(key);\n hmap->buckets[index] = Pair;\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nvoid removeItem(ArrayHashMap *hmap, const int key) {\n int index = hashFunc(key);\n free(hmap->buckets[index]->val);\n free(hmap->buckets[index]);\n hmap->buckets[index] = NULL;\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nvoid pairSet(ArrayHashMap *hmap, MapSet *set) {\n Pair *entries;\n int i = 0, index = 0;\n int total = 0;\n /* \u7edf\u8ba1\u6709\u6548\u952e\u503c\u5bf9\u6570\u91cf */\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n total++;\n }\n }\n entries = malloc(sizeof(Pair) * total);\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n entries[index].key = hmap->buckets[i]->key;\n entries[index].val = malloc(strlen(hmap->buckets[i]->val) + 1);\n strcpy(entries[index].val, hmap->buckets[i]->val);\n index++;\n }\n }\n set->set = entries;\n set->len = total;\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e */\nvoid keySet(ArrayHashMap *hmap, MapSet *set) {\n int *keys;\n int i = 0, index = 0;\n int total = 0;\n /* \u7edf\u8ba1\u6709\u6548\u952e\u503c\u5bf9\u6570\u91cf */\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n total++;\n }\n }\n keys = malloc(total * sizeof(int));\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n keys[index] = hmap->buckets[i]->key;\n index++;\n }\n }\n set->set = keys;\n set->len = total;\n}\n\n/* \u83b7\u53d6\u6240\u6709\u503c */\nvoid valueSet(ArrayHashMap *hmap, MapSet *set) {\n char **vals;\n int i = 0, index = 0;\n int total = 0;\n /* \u7edf\u8ba1\u6709\u6548\u952e\u503c\u5bf9\u6570\u91cf */\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n total++;\n }\n }\n vals = malloc(total * sizeof(char *));\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n vals[index] = hmap->buckets[i]->val;\n index++;\n }\n }\n set->set = vals;\n set->len = total;\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print(ArrayHashMap *hmap) {\n int i;\n MapSet set;\n pairSet(hmap, &set);\n Pair *entries = (Pair *)set.set;\n for (i = 0; i < set.len; i++) {\n printf(\"%d -> %s\\n\", entries[i].key, entries[i].val);\n }\n free(set.set);\n}\n
array_hash_map.zig// \u952e\u503c\u5bf9\nconst Pair = struct {\n key: usize = undefined,\n val: []const u8 = undefined,\n\n pub fn init(key: usize, val: []const u8) Pair {\n return Pair {\n .key = key,\n .val = val,\n };\n }\n};\n\n// \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\nfn ArrayHashMap(comptime T: type) type {\n return struct {\n bucket: ?std.ArrayList(?T) = null,\n mem_allocator: std.mem.Allocator = undefined,\n\n const Self = @This();\n\n // \u6784\u9020\u51fd\u6570\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n self.mem_allocator = allocator;\n // \u521d\u59cb\u5316\u4e00\u4e2a\u957f\u5ea6\u4e3a 100 \u7684\u6876\uff08\u6570\u7ec4\uff09\n self.bucket = std.ArrayList(?T).init(self.mem_allocator);\n var i: i32 = 0;\n while (i < 100) : (i += 1) {\n try self.bucket.?.append(null);\n }\n }\n\n // \u6790\u6784\u51fd\u6570\n pub fn deinit(self: *Self) void {\n if (self.bucket != null) self.bucket.?.deinit();\n }\n\n // \u54c8\u5e0c\u51fd\u6570\n fn hashFunc(key: usize) usize {\n var index = key % 100;\n return index;\n }\n\n // \u67e5\u8be2\u64cd\u4f5c\n pub fn get(self: *Self, key: usize) []const u8 {\n var index = hashFunc(key);\n var pair = self.bucket.?.items[index];\n return pair.?.val;\n }\n\n // \u6dfb\u52a0\u64cd\u4f5c\n pub fn put(self: *Self, key: usize, val: []const u8) !void {\n var pair = Pair.init(key, val);\n var index = hashFunc(key);\n self.bucket.?.items[index] = pair;\n }\n\n // \u5220\u9664\u64cd\u4f5c\n pub fn remove(self: *Self, key: usize) !void {\n var index = hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n self.bucket.?.items[index] = null;\n } \n\n // \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\n pub fn pairSet(self: *Self) !std.ArrayList(T) {\n var entry_set = std.ArrayList(T).init(self.mem_allocator);\n for (self.bucket.?.items) |item| {\n if (item == null) continue;\n try entry_set.append(item.?);\n }\n return entry_set;\n } \n\n // \u83b7\u53d6\u6240\u6709\u952e\n pub fn keySet(self: *Self) !std.ArrayList(usize) {\n var key_set = std.ArrayList(usize).init(self.mem_allocator);\n for (self.bucket.?.items) |item| {\n if (item == null) continue;\n try key_set.append(item.?.key);\n }\n return key_set;\n } \n\n // \u83b7\u53d6\u6240\u6709\u503c\n pub fn valueSet(self: *Self) !std.ArrayList([]const u8) {\n var value_set = std.ArrayList([]const u8).init(self.mem_allocator);\n for (self.bucket.?.items) |item| {\n if (item == null) continue;\n try value_set.append(item.?.val);\n }\n return value_set;\n }\n\n // \u6253\u5370\u54c8\u5e0c\u8868\n pub fn print(self: *Self) !void {\n var entry_set = try self.pairSet();\n defer entry_set.deinit();\n for (entry_set.items) |item| {\n std.debug.print(\"{} -> {s}\\n\", .{item.key, item.val});\n }\n }\n };\n}\n
"},{"location":"chapter_hashing/hash_map/#613","title":"6.1.3 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u4e0e\u6269\u5bb9","text":"\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u6240\u6709 key \u6784\u6210\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u6570\u7ec4\u6240\u6709\u7d22\u5f15\u6784\u6210\u7684\u8f93\u51fa\u7a7a\u95f4\uff0c\u800c\u8f93\u5165\u7a7a\u95f4\u5f80\u5f80\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7406\u8bba\u4e0a\u4e00\u5b9a\u5b58\u5728\u201c\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u76f8\u540c\u8f93\u51fa\u201d\u7684\u60c5\u51b5\u3002
\u5bf9\u4e8e\u4e0a\u8ff0\u793a\u4f8b\u4e2d\u7684\u54c8\u5e0c\u51fd\u6570\uff0c\u5f53\u8f93\u5165\u7684 key \u540e\u4e24\u4f4d\u76f8\u540c\u65f6\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u51fa\u7ed3\u679c\u4e5f\u76f8\u540c\u3002\u4f8b\u5982\uff0c\u67e5\u8be2\u5b66\u53f7\u4e3a 12836 \u548c 20336 \u7684\u4e24\u4e2a\u5b66\u751f\u65f6\uff0c\u6211\u4eec\u5f97\u5230\uff1a
12836 % 100 = 36\n20336 % 100 = 36\n
\u5982\u56fe 6-3 \u6240\u793a\uff0c\u4e24\u4e2a\u5b66\u53f7\u6307\u5411\u4e86\u540c\u4e00\u4e2a\u59d3\u540d\uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002\u6211\u4eec\u5c06\u8fd9\u79cd\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u540c\u4e00\u8f93\u51fa\u7684\u60c5\u51b5\u79f0\u4e3a\u300c\u54c8\u5e0c\u51b2\u7a81 hash collision\u300d\u3002
\u56fe 6-3 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u793a\u4f8b
\u5bb9\u6613\u60f3\u5230\uff0c\u54c8\u5e0c\u8868\u5bb9\u91cf \\(n\\) \u8d8a\u5927\uff0c\u591a\u4e2a key \u88ab\u5206\u914d\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\uff0c\u51b2\u7a81\u5c31\u8d8a\u5c11\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002
\u5982\u56fe 6-4 \u6240\u793a\uff0c\u6269\u5bb9\u524d\u952e\u503c\u5bf9 (136, A) \u548c (236, D) \u53d1\u751f\u51b2\u7a81\uff0c\u6269\u5bb9\u540e\u51b2\u7a81\u6d88\u5931\u3002
\u56fe 6-4 \u00a0 \u54c8\u5e0c\u8868\u6269\u5bb9
\u7c7b\u4f3c\u4e8e\u6570\u7ec4\u6269\u5bb9\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u5c06\u6240\u6709\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u8fc1\u79fb\u81f3\u65b0\u54c8\u5e0c\u8868\uff0c\u975e\u5e38\u8017\u65f6\uff1b\u5e76\u4e14\u7531\u4e8e\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u6539\u53d8\uff0c\u6211\u4eec\u9700\u8981\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u6765\u91cd\u65b0\u8ba1\u7b97\u6240\u6709\u952e\u503c\u5bf9\u7684\u5b58\u50a8\u4f4d\u7f6e\uff0c\u8fd9\u8fdb\u4e00\u6b65\u63d0\u9ad8\u4e86\u6269\u5bb9\u8fc7\u7a0b\u7684\u8ba1\u7b97\u5f00\u9500\u3002\u4e3a\u6b64\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u9884\u7559\u8db3\u591f\u5927\u7684\u54c8\u5e0c\u8868\u5bb9\u91cf\uff0c\u9632\u6b62\u9891\u7e41\u6269\u5bb9\u3002
\u300c\u8d1f\u8f7d\u56e0\u5b50 load factor\u300d\u662f\u54c8\u5e0c\u8868\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5\uff0c\u5176\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u7684\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u7528\u4e8e\u8861\u91cf\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u4e5f\u5e38\u4f5c\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u89e6\u53d1\u6761\u4ef6\u3002\u4f8b\u5982\u5728 Java \u4e2d\uff0c\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(0.75\\) \u65f6\uff0c\u7cfb\u7edf\u4f1a\u5c06\u54c8\u5e0c\u8868\u6269\u5bb9\u81f3\u539f\u5148\u7684 \\(2\\) \u500d\u3002
"},{"location":"chapter_hashing/summary/","title":"6.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_hashing/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u8f93\u5165
key \uff0c\u54c8\u5e0c\u8868\u80fd\u591f\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u67e5\u8be2\u5230 value \uff0c\u6548\u7387\u975e\u5e38\u9ad8\u3002 - \u5e38\u89c1\u7684\u54c8\u5e0c\u8868\u64cd\u4f5c\u5305\u62ec\u67e5\u8be2\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u3001\u5220\u9664\u952e\u503c\u5bf9\u548c\u904d\u5386\u54c8\u5e0c\u8868\u7b49\u3002
- \u54c8\u5e0c\u51fd\u6570\u5c06
key \u6620\u5c04\u4e3a\u6570\u7ec4\u7d22\u5f15\uff0c\u4ece\u800c\u8bbf\u95ee\u5bf9\u5e94\u6876\u5e76\u83b7\u53d6 value \u3002 - \u4e24\u4e2a\u4e0d\u540c\u7684
key \u53ef\u80fd\u5728\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u540e\u5f97\u5230\u76f8\u540c\u7684\u6570\u7ec4\u7d22\u5f15\uff0c\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u51fa\u9519\uff0c\u8fd9\u79cd\u73b0\u8c61\u88ab\u79f0\u4e3a\u54c8\u5e0c\u51b2\u7a81\u3002 - \u54c8\u5e0c\u8868\u5bb9\u91cf\u8d8a\u5927\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002\u56e0\u6b64\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\u3002\u4e0e\u6570\u7ec4\u6269\u5bb9\u7c7b\u4f3c\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u64cd\u4f5c\u7684\u5f00\u9500\u5f88\u5927\u3002
- \u8d1f\u8f7d\u56e0\u5b50\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u4e2d\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u53cd\u6620\u4e86\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u5e38\u7528\u4f5c\u89e6\u53d1\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u6761\u4ef6\u3002
- \u94fe\u5f0f\u5730\u5740\u901a\u8fc7\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u5316\u4e3a\u94fe\u8868\uff0c\u5c06\u6240\u6709\u51b2\u7a81\u5143\u7d20\u5b58\u50a8\u5728\u540c\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002\u7136\u800c\uff0c\u94fe\u8868\u8fc7\u957f\u4f1a\u964d\u4f4e\u67e5\u8be2\u6548\u7387\uff0c\u53ef\u4ee5\u901a\u8fc7\u8fdb\u4e00\u6b65\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6765\u63d0\u9ad8\u6548\u7387\u3002
- \u5f00\u653e\u5bfb\u5740\u901a\u8fc7\u591a\u6b21\u63a2\u6d4b\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\u3002\u7ebf\u6027\u63a2\u6d4b\u4f7f\u7528\u56fa\u5b9a\u6b65\u957f\uff0c\u7f3a\u70b9\u662f\u4e0d\u80fd\u5220\u9664\u5143\u7d20\uff0c\u4e14\u5bb9\u6613\u4ea7\u751f\u805a\u96c6\u3002\u591a\u6b21\u54c8\u5e0c\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u8fdb\u884c\u63a2\u6d4b\uff0c\u76f8\u8f83\u7ebf\u6027\u63a2\u6d4b\u66f4\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u589e\u52a0\u4e86\u8ba1\u7b97\u91cf\u3002
- \u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u91c7\u53d6\u4e86\u4e0d\u540c\u7684\u54c8\u5e0c\u8868\u5b9e\u73b0\u3002\u4f8b\u5982\uff0cJava \u7684
HashMap \u4f7f\u7528\u94fe\u5f0f\u5730\u5740\uff0c\u800c Python \u7684 Dict \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002 - \u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5e0c\u671b\u54c8\u5e0c\u7b97\u6cd5\u5177\u6709\u786e\u5b9a\u6027\u3001\u9ad8\u6548\u7387\u548c\u5747\u5300\u5206\u5e03\u7684\u7279\u70b9\u3002\u5728\u5bc6\u7801\u5b66\u4e2d\uff0c\u54c8\u5e0c\u7b97\u6cd5\u8fd8\u5e94\u8be5\u5177\u5907\u6297\u78b0\u649e\u6027\u548c\u96ea\u5d29\u6548\u5e94\u3002
- \u54c8\u5e0c\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u5747\u5300\u5206\u5e03\uff0c\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002
- \u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5\u5305\u62ec MD5\u3001SHA-1\u3001SHA-2 \u548c SHA-3 \u7b49\u3002MD5 \u5e38\u7528\u4e8e\u6821\u9a8c\u6587\u4ef6\u5b8c\u6574\u6027\uff0cSHA-2 \u5e38\u7528\u4e8e\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u3002
- \u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u662f\u53ef\u54c8\u5e0c\u7684\u3002
"},{"location":"chapter_hashing/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u662f \\(O(n)\\) \uff1f
\u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u9000\u5316\u81f3 \\(O(n)\\) \u3002\u5f53\u54c8\u5e0c\u51fd\u6570\u8bbe\u8ba1\u5f97\u6bd4\u8f83\u597d\u3001\u5bb9\u91cf\u8bbe\u7f6e\u6bd4\u8f83\u5408\u7406\u3001\u51b2\u7a81\u6bd4\u8f83\u5e73\u5747\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u6211\u4eec\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u54c8\u5e0c\u8868\u65f6\uff0c\u901a\u5e38\u8ba4\u4e3a\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002
\u4e3a\u4ec0\u4e48\u4e0d\u4f7f\u7528\u54c8\u5e0c\u51fd\u6570 \\(f(x) = x\\) \u5462\uff1f\u8fd9\u6837\u5c31\u4e0d\u4f1a\u6709\u51b2\u7a81\u4e86
\u5728 \\(f(x) = x\\) \u54c8\u5e0c\u51fd\u6570\u4e0b\uff0c\u6bcf\u4e2a\u5143\u7d20\u5bf9\u5e94\u552f\u4e00\u7684\u6876\u7d22\u5f15\uff0c\u8fd9\u4e0e\u6570\u7ec4\u7b49\u4ef7\u3002\u7136\u800c\uff0c\u8f93\u5165\u7a7a\u95f4\u901a\u5e38\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff08\u6570\u7ec4\u957f\u5ea6\uff09\uff0c\u56e0\u6b64\u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u54c8\u5e0c\u8868\u7684\u76ee\u6807\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u7a7a\u95f4\uff0c\u5e76\u63d0\u4f9b \\(O(1)\\) \u7684\u67e5\u8be2\u6548\u7387\u3002
\u54c8\u5e0c\u8868\u5e95\u5c42\u5b9e\u73b0\u662f\u6570\u7ec4\u3001\u94fe\u8868\u3001\u4e8c\u53c9\u6811\uff0c\u4f46\u4e3a\u4ec0\u4e48\u6548\u7387\u53ef\u4ee5\u6bd4\u5b83\u4eec\u66f4\u9ad8\u5462\uff1f
\u9996\u5148\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\uff0c\u4f46\u7a7a\u95f4\u6548\u7387\u53d8\u4f4e\u4e86\u3002\u54c8\u5e0c\u8868\u6709\u76f8\u5f53\u4e00\u90e8\u5206\u5185\u5b58\u672a\u4f7f\u7528\u3002
\u5176\u6b21\uff0c\u53ea\u662f\u5728\u7279\u5b9a\u4f7f\u7528\u573a\u666f\u4e0b\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\u4e86\u3002\u5982\u679c\u4e00\u4e2a\u529f\u80fd\u80fd\u591f\u5728\u76f8\u540c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u4f7f\u7528\u6570\u7ec4\u6216\u94fe\u8868\u5b9e\u73b0\uff0c\u90a3\u4e48\u901a\u5e38\u6bd4\u54c8\u5e0c\u8868\u66f4\u5feb\u3002\u8fd9\u662f\u56e0\u4e3a\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u9700\u8981\u5f00\u9500\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u7684\u5e38\u6570\u9879\u66f4\u5927\u3002
\u6700\u540e\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u80fd\u53d1\u751f\u52a3\u5316\u3002\u4f8b\u5982\u5728\u94fe\u5f0f\u5730\u5740\u4e2d\uff0c\u6211\u4eec\u91c7\u53d6\u5728\u94fe\u8868\u6216\u7ea2\u9ed1\u6811\u4e2d\u6267\u884c\u67e5\u627e\u64cd\u4f5c\uff0c\u4ecd\u7136\u6709\u9000\u5316\u81f3 \\(O(n)\\) \u65f6\u95f4\u7684\u98ce\u9669\u3002
\u591a\u6b21\u54c8\u5e0c\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\u5417\uff1f\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u7a7a\u95f4\u8fd8\u80fd\u518d\u6b21\u4f7f\u7528\u5417\uff1f
\u591a\u6b21\u54c8\u5e0c\u662f\u5f00\u653e\u5bfb\u5740\u7684\u4e00\u79cd\uff0c\u5f00\u653e\u5bfb\u5740\u6cd5\u90fd\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\uff0c\u9700\u8981\u901a\u8fc7\u6807\u8bb0\u5220\u9664\u3002\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u7a7a\u95f4\u53ef\u4ee5\u518d\u6b21\u4f7f\u7528\u3002\u5f53\u5c06\u65b0\u5143\u7d20\u63d2\u5165\u54c8\u5e0c\u8868\uff0c\u5e76\u4e14\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u4f4d\u7f6e\u65f6\uff0c\u8be5\u4f4d\u7f6e\u53ef\u4ee5\u88ab\u65b0\u5143\u7d20\u4f7f\u7528\u3002\u8fd9\u6837\u505a\u65e2\u80fd\u4fdd\u6301\u54c8\u5e0c\u8868\u7684\u63a2\u6d4b\u5e8f\u5217\u4e0d\u53d8\uff0c\u53c8\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u7684\u7a7a\u95f4\u4f7f\u7528\u7387\u3002
\u4e3a\u4ec0\u4e48\u5728\u7ebf\u6027\u63a2\u6d4b\u4e2d\uff0c\u67e5\u627e\u5143\u7d20\u7684\u65f6\u5019\u4f1a\u51fa\u73b0\u54c8\u5e0c\u51b2\u7a81\u5462\uff1f
\u67e5\u627e\u7684\u65f6\u5019\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u5bf9\u5e94\u7684\u6876\u548c\u952e\u503c\u5bf9\uff0c\u53d1\u73b0 key \u4e0d\u5339\u914d\uff0c\u8fd9\u5c31\u4ee3\u8868\u6709\u54c8\u5e0c\u51b2\u7a81\u3002\u56e0\u6b64\uff0c\u7ebf\u6027\u63a2\u6d4b\u6cd5\u4f1a\u6839\u636e\u9884\u5148\u8bbe\u5b9a\u7684\u6b65\u957f\u4f9d\u6b21\u5411\u4e0b\u67e5\u627e\uff0c\u76f4\u81f3\u627e\u5230\u6b63\u786e\u7684\u952e\u503c\u5bf9\u6216\u65e0\u6cd5\u627e\u5230\u8df3\u51fa\u4e3a\u6b62\u3002
\u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u6269\u5bb9\u80fd\u591f\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\uff1f
\u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d6\u4f59\uff0c\u8ba9\u8f93\u51fa\u503c\u843d\u5728\u6570\u7ec4\u7d22\u5f15\u8303\u56f4\u5185\uff1b\u5728\u6269\u5bb9\u540e\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d1\u751f\u53d8\u5316\uff0c\u800c key \u5bf9\u5e94\u7684\u7d22\u5f15\u4e5f\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002\u539f\u5148\u843d\u5728\u540c\u4e00\u4e2a\u6876\u7684\u591a\u4e2a key \uff0c\u5728\u6269\u5bb9\u540e\u53ef\u80fd\u4f1a\u88ab\u5206\u914d\u5230\u591a\u4e2a\u6876\u4e2d\uff0c\u4ece\u800c\u5b9e\u73b0\u54c8\u5e0c\u51b2\u7a81\u7684\u7f13\u89e3\u3002
"},{"location":"chapter_heap/","title":"\u7b2c 8 \u7ae0 \u00a0 \u5806","text":"Abstract
\u5806\u5c31\u50cf\u662f\u5c71\u5cb3\u5cf0\u5ce6\uff0c\u5c42\u53e0\u8d77\u4f0f\u3001\u5f62\u6001\u5404\u5f02\u3002
\u5ea7\u5ea7\u5c71\u5cf0\u9ad8\u4f4e\u9519\u843d\uff0c\u800c\u6700\u9ad8\u7684\u5c71\u5cf0\u603b\u662f\u6700\u5148\u6620\u5165\u773c\u5e18\u3002
"},{"location":"chapter_heap/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 8.1 \u00a0 \u5806
- 8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c
- 8.3 \u00a0 Top-K \u95ee\u9898
- 8.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_heap/build_heap/","title":"8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c","text":"\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u6765\u6784\u5efa\u4e00\u4e2a\u5806\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u88ab\u79f0\u4e3a\u201c\u5efa\u5806\u64cd\u4f5c\u201d\u3002
"},{"location":"chapter_heap/build_heap/#821","title":"8.2.1 \u00a0 \u501f\u52a9\u5165\u5806\u64cd\u4f5c\u5b9e\u73b0","text":"\u6211\u4eec\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u7a7a\u5806\uff0c\u7136\u540e\u904d\u5386\u5217\u8868\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e2a\u5143\u7d20\u6267\u884c\u201c\u5165\u5806\u64cd\u4f5c\u201d\uff0c\u5373\u5148\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u5806\u7684\u5c3e\u90e8\uff0c\u518d\u5bf9\u8be5\u5143\u7d20\u6267\u884c\u201c\u4ece\u5e95\u81f3\u9876\u201d\u5806\u5316\u3002
\u6bcf\u5f53\u4e00\u4e2a\u5143\u7d20\u5165\u5806\uff0c\u5806\u7684\u957f\u5ea6\u5c31\u52a0\u4e00\u3002\u7531\u4e8e\u8282\u70b9\u662f\u4ece\u9876\u5230\u5e95\u4f9d\u6b21\u88ab\u6dfb\u52a0\u8fdb\u4e8c\u53c9\u6811\u7684\uff0c\u56e0\u6b64\u5806\u662f\u201c\u81ea\u4e0a\u800c\u4e0b\u201d\u6784\u5efa\u7684\u3002
\u8bbe\u5143\u7d20\u6570\u91cf\u4e3a \\(n\\) \uff0c\u6bcf\u4e2a\u5143\u7d20\u7684\u5165\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(\\log{n})\\) \u65f6\u95f4\uff0c\u56e0\u6b64\u8be5\u5efa\u5806\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
"},{"location":"chapter_heap/build_heap/#822","title":"8.2.2 \u00a0 \u901a\u8fc7\u904d\u5386\u5806\u5316\u5b9e\u73b0","text":"\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u53ef\u4ee5\u5b9e\u73b0\u4e00\u79cd\u66f4\u4e3a\u9ad8\u6548\u7684\u5efa\u5806\u65b9\u6cd5\uff0c\u5171\u5206\u4e3a\u4e24\u6b65\u3002
- \u5c06\u5217\u8868\u6240\u6709\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u5730\u6dfb\u52a0\u5230\u5806\u4e2d\uff0c\u6b64\u65f6\u5806\u7684\u6027\u8d28\u5c1a\u672a\u5f97\u5230\u6ee1\u8db3\u3002
- \u5012\u5e8f\u904d\u5386\u5806\uff08\u5c42\u5e8f\u904d\u5386\u7684\u5012\u5e8f\uff09\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e2a\u975e\u53f6\u8282\u70b9\u6267\u884c\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u3002
\u6bcf\u5f53\u5806\u5316\u4e00\u4e2a\u8282\u70b9\u540e\uff0c\u4ee5\u8be5\u8282\u70b9\u4e3a\u6839\u8282\u70b9\u7684\u5b50\u6811\u5c31\u5f62\u6210\u4e00\u4e2a\u5408\u6cd5\u7684\u5b50\u5806\u3002\u800c\u7531\u4e8e\u662f\u5012\u5e8f\u904d\u5386\uff0c\u56e0\u6b64\u5806\u662f\u201c\u81ea\u4e0b\u800c\u4e0a\u201d\u6784\u5efa\u7684\u3002
\u4e4b\u6240\u4ee5\u9009\u62e9\u5012\u5e8f\u904d\u5386\uff0c\u662f\u56e0\u4e3a\u8fd9\u6837\u80fd\u591f\u4fdd\u8bc1\u5f53\u524d\u8282\u70b9\u4e4b\u4e0b\u7684\u5b50\u6811\u5df2\u7ecf\u662f\u5408\u6cd5\u7684\u5b50\u5806\uff0c\u8fd9\u6837\u5806\u5316\u5f53\u524d\u8282\u70b9\u624d\u662f\u6709\u6548\u7684\u3002
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u7531\u4e8e\u53f6\u8282\u70b9\u6ca1\u6709\u5b50\u8282\u70b9\uff0c\u56e0\u6b64\u5b83\u4eec\u5929\u7136\u5c31\u662f\u5408\u6cd5\u7684\u5b50\u5806\uff0c\u65e0\u987b\u5806\u5316\u3002\u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff0c\u6700\u540e\u4e00\u4e2a\u975e\u53f6\u8282\u70b9\u662f\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u7684\u7236\u8282\u70b9\uff0c\u6211\u4eec\u4ece\u5b83\u5f00\u59cb\u5012\u5e8f\u904d\u5386\u5e76\u6267\u884c\u5806\u5316\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef __init__(self, nums: list[int]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\"\"\"\n # \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n self.max_heap = nums\n # \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in range(self.parent(self.size() - 1), -1, -1):\n self.sift_down(i)\n
my_heap.cpp/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(vector<int> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = nums;\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = parent(size() - 1); i >= 0; i--) {\n siftDown(i);\n }\n}\n
my_heap.java/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<Integer> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = new ArrayList<>(nums);\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = parent(size() - 1); i >= 0; i--) {\n siftDown(i);\n }\n}\n
my_heap.cs/* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(IEnumerable<int> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = new List<int>(nums);\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n var size = Parent(this.Size() - 1);\n for (int i = size; i >= 0; i--) {\n SiftDown(i);\n }\n}\n
my_heap.go/* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nfunc newMaxHeap(nums []any) *maxHeap {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n h := &maxHeap{data: nums}\n for i := h.parent(len(h.data) - 1); i >= 0; i-- {\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n h.siftDown(i)\n }\n return h\n}\n
my_heap.swift/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\ninit(nums: [Int]) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = nums\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in stride(from: parent(i: size() - 1), through: 0, by: -1) {\n siftDown(i: i)\n }\n}\n
my_heap.js/* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n this.#maxHeap = nums === undefined ? [] : [...nums];\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = this.#parent(this.size() - 1); i >= 0; i--) {\n this.#siftDown(i);\n }\n}\n
my_heap.ts/* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums?: number[]) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n this.maxHeap = nums === undefined ? [] : [...nums];\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = this.parent(this.size() - 1); i >= 0; i--) {\n this.siftDown(i);\n }\n}\n
my_heap.dart/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<int> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n _maxHeap = nums;\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = _parent(size() - 1); i >= 0; i--) {\n siftDown(i);\n }\n}\n
my_heap.rs/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nfn new(nums: Vec<i32>) -> Self {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n let mut heap = MaxHeap { max_heap: nums };\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in (0..=Self::parent(heap.size() - 1)).rev() {\n heap.sift_down(i);\n }\n heap\n}\n
my_heap.c/* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nMaxHeap *newMaxHeap(int nums[], int size) {\n // \u6240\u6709\u5143\u7d20\u5165\u5806\n MaxHeap *maxHeap = (MaxHeap *)malloc(sizeof(MaxHeap));\n maxHeap->size = size;\n memcpy(maxHeap->data, nums, size * sizeof(int));\n for (int i = parent(maxHeap, size - 1); i >= 0; i--) {\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n siftDown(maxHeap, i);\n }\n return maxHeap;\n}\n
my_heap.zig// \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\nfn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void {\n if (self.max_heap != null) return;\n self.max_heap = std.ArrayList(T).init(allocator);\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n try self.max_heap.?.appendSlice(nums);\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n var i: usize = parent(self.size() - 1) + 1;\n while (i > 0) : (i -= 1) {\n try self.siftDown(i - 1);\n }\n}\n
"},{"location":"chapter_heap/build_heap/#823","title":"8.2.3 \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"\u4e0b\u9762\uff0c\u6211\u4eec\u6765\u5c1d\u8bd5\u63a8\u7b97\u7b2c\u4e8c\u79cd\u5efa\u5806\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002
- \u5047\u8bbe\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u5219\u53f6\u8282\u70b9\u6570\u91cf\u4e3a \\((n + 1) / 2\\) \uff0c\u5176\u4e2d \\(/\\) \u4e3a\u5411\u4e0b\u6574\u9664\u3002\u56e0\u6b64\u9700\u8981\u5806\u5316\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\((n - 1) / 2\\) \u3002
- \u5728\u4ece\u9876\u81f3\u5e95\u5806\u5316\u7684\u8fc7\u7a0b\u4e2d\uff0c\u6bcf\u4e2a\u8282\u70b9\u6700\u591a\u5806\u5316\u5230\u53f6\u8282\u70b9\uff0c\u56e0\u6b64\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u4e3a\u4e8c\u53c9\u6811\u9ad8\u5ea6 \\(\\log n\\) \u3002
\u5c06\u4e0a\u8ff0\u4e24\u8005\u76f8\u4e58\uff0c\u53ef\u5f97\u5230\u5efa\u5806\u8fc7\u7a0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u4f46\u8fd9\u4e2a\u4f30\u7b97\u7ed3\u679c\u5e76\u4e0d\u51c6\u786e\uff0c\u56e0\u4e3a\u6211\u4eec\u6ca1\u6709\u8003\u8651\u5230\u4e8c\u53c9\u6811\u5e95\u5c42\u8282\u70b9\u6570\u91cf\u8fdc\u591a\u4e8e\u9876\u5c42\u8282\u70b9\u7684\u6027\u8d28\u3002
\u63a5\u4e0b\u6765\u6211\u4eec\u6765\u8fdb\u884c\u66f4\u4e3a\u51c6\u786e\u7684\u8ba1\u7b97\u3002\u4e3a\u4e86\u964d\u4f4e\u8ba1\u7b97\u96be\u5ea6\uff0c\u5047\u8bbe\u7ed9\u5b9a\u4e00\u4e2a\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \u3001\u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u201c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u201d\uff0c\u8be5\u5047\u8bbe\u4e0d\u4f1a\u5f71\u54cd\u8ba1\u7b97\u7ed3\u679c\u7684\u6b63\u786e\u6027\u3002
\u56fe 8-5 \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u5404\u5c42\u8282\u70b9\u6570\u91cf
\u5982\u56fe 8-5 \u6240\u793a\uff0c\u8282\u70b9\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u7684\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u7b49\u4e8e\u8be5\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u800c\u8be5\u8ddd\u79bb\u6b63\u662f\u201c\u8282\u70b9\u9ad8\u5ea6\u201d\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u5bf9\u5404\u5c42\u7684\u201c\u8282\u70b9\u6570\u91cf \\(\\times\\) \u8282\u70b9\u9ad8\u5ea6\u201d\u6c42\u548c\uff0c\u5f97\u5230\u6240\u6709\u8282\u70b9\u7684\u5806\u5316\u8fed\u4ee3\u6b21\u6570\u7684\u603b\u548c\u3002
\\[ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \\dots + 2^{(h-1)}\\times1 \\] \u5316\u7b80\u4e0a\u5f0f\u9700\u8981\u501f\u52a9\u4e2d\u5b66\u7684\u6570\u5217\u77e5\u8bc6\uff0c\u5148\u5bf9 \\(T(h)\\) \u4e58\u4ee5 \\(2\\) \uff0c\u5f97\u5230\uff1a
\\[ \\begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \\dots + 2^{h-1}\\times1 \\newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \\dots + 2^{h}\\times1 \\newline \\end{aligned} \\] \u4f7f\u7528\u9519\u4f4d\u76f8\u51cf\u6cd5\uff0c\u7528\u4e0b\u5f0f \\(2 T(h)\\) \u51cf\u53bb\u4e0a\u5f0f \\(T(h)\\) \uff0c\u53ef\u5f97\uff1a
\\[ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \\dots + 2^{h-1} + 2^h \\] \u89c2\u5bdf\u4e0a\u5f0f\uff0c\u53d1\u73b0 \\(T(h)\\) \u662f\u4e00\u4e2a\u7b49\u6bd4\u6570\u5217\uff0c\u53ef\u76f4\u63a5\u4f7f\u7528\u6c42\u548c\u516c\u5f0f\uff0c\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\uff1a
\\[ \\begin{aligned} T(h) & = 2 \\frac{1 - 2^h}{1 - 2} - h \\newline & = 2^{h+1} - h - 2 \\newline & = O(2^h) \\end{aligned} \\] \u8fdb\u4e00\u6b65\u5730\uff0c\u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n = 2^{h+1} - 1\\) \uff0c\u6613\u5f97\u590d\u6742\u5ea6\u4e3a \\(O(2^h) = O(n)\\) \u3002\u4ee5\u4e0a\u63a8\u7b97\u8868\u660e\uff0c\u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
"},{"location":"chapter_heap/heap/","title":"8.1 \u00a0 \u5806","text":"\u300c\u5806 heap\u300d\u662f\u4e00\u79cd\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u4e3b\u8981\u53ef\u5206\u4e3a\u4e24\u79cd\u7c7b\u578b\uff0c\u5982\u56fe 8-1 \u6240\u793a\u3002
- \u300c\u5927\u9876\u5806 max heap\u300d\uff1a\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\geq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002
- \u300c\u5c0f\u9876\u5806 min heap\u300d\uff1a\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\leq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002
\u56fe 8-1 \u00a0 \u5c0f\u9876\u5806\u4e0e\u5927\u9876\u5806
\u5806\u4f5c\u4e3a\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5177\u6709\u4ee5\u4e0b\u7279\u6027\u3002
- \u6700\u5e95\u5c42\u8282\u70b9\u9760\u5de6\u586b\u5145\uff0c\u5176\u4ed6\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u3002
- \u6211\u4eec\u5c06\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u79f0\u4e3a\u201c\u5806\u9876\u201d\uff0c\u5c06\u5e95\u5c42\u6700\u9760\u53f3\u7684\u8282\u70b9\u79f0\u4e3a\u201c\u5806\u5e95\u201d\u3002
- \u5bf9\u4e8e\u5927\u9876\u5806\uff08\u5c0f\u9876\u5806\uff09\uff0c\u5806\u9876\u5143\u7d20\uff08\u6839\u8282\u70b9\uff09\u7684\u503c\u5206\u522b\u662f\u6700\u5927\uff08\u6700\u5c0f\uff09\u7684\u3002
"},{"location":"chapter_heap/heap/#811","title":"8.1.1 \u00a0 \u5806\u5e38\u7528\u64cd\u4f5c","text":"\u9700\u8981\u6307\u51fa\u7684\u662f\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u662f\u300c\u4f18\u5148\u961f\u5217 priority queue\u300d\uff0c\u8fd9\u662f\u4e00\u79cd\u62bd\u8c61\u6570\u636e\u7ed3\u6784\uff0c\u5b9a\u4e49\u4e3a\u5177\u6709\u4f18\u5148\u7ea7\u6392\u5e8f\u7684\u961f\u5217\u3002
\u5b9e\u9645\u4e0a\uff0c\u5806\u901a\u5e38\u7528\u4e8e\u5b9e\u73b0\u4f18\u5148\u961f\u5217\uff0c\u5927\u9876\u5806\u76f8\u5f53\u4e8e\u5143\u7d20\u6309\u4ece\u5927\u5230\u5c0f\u7684\u987a\u5e8f\u51fa\u961f\u7684\u4f18\u5148\u961f\u5217\u3002\u4ece\u4f7f\u7528\u89d2\u5ea6\u6765\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u201c\u4f18\u5148\u961f\u5217\u201d\u548c\u201c\u5806\u201d\u770b\u4f5c\u7b49\u4ef7\u7684\u6570\u636e\u7ed3\u6784\u3002\u56e0\u6b64\uff0c\u672c\u4e66\u5bf9\u4e24\u8005\u4e0d\u505a\u7279\u522b\u533a\u5206\uff0c\u7edf\u4e00\u79f0\u4f5c\u201c\u5806\u201d\u3002
\u5806\u7684\u5e38\u7528\u64cd\u4f5c\u89c1\u8868 8-1 \uff0c\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002
\u8868 8-1 \u00a0 \u5806\u7684\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u5806 \\(O(\\log n)\\) pop() \u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) peek() \u8bbf\u95ee\u5806\u9876\u5143\u7d20\uff08\u5927 / \u5c0f\u9876\u5806\u5206\u522b\u4e3a\u6700\u5927 / \u5c0f\u503c\uff09 \\(O(1)\\) size() \u83b7\u53d6\u5806\u7684\u5143\u7d20\u6570\u91cf \\(O(1)\\) isEmpty() \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a \\(O(1)\\) \u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u5806\u7c7b\uff08\u6216\u4f18\u5148\u961f\u5217\u7c7b\uff09\u3002
\u7c7b\u4f3c\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e2d\u7684\u201c\u4ece\u5c0f\u5230\u5927\u6392\u5217\u201d\u548c\u201c\u4ece\u5927\u5230\u5c0f\u6392\u5217\u201d\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u8bbe\u7f6e\u4e00\u4e2a flag \u6216\u4fee\u6539 Comparator \u5b9e\u73b0\u201c\u5c0f\u9876\u5806\u201d\u4e0e\u201c\u5927\u9876\u5806\u201d\u4e4b\u95f4\u7684\u8f6c\u6362\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig heap.py# \u521d\u59cb\u5316\u5c0f\u9876\u5806\nmin_heap, flag = [], 1\n# \u521d\u59cb\u5316\u5927\u9876\u5806\nmax_heap, flag = [], -1\n\n# Python \u7684 heapq \u6a21\u5757\u9ed8\u8ba4\u5b9e\u73b0\u5c0f\u9876\u5806\n# \u8003\u8651\u5c06\u201c\u5143\u7d20\u53d6\u8d1f\u201d\u540e\u518d\u5165\u5806\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5c06\u5927\u5c0f\u5173\u7cfb\u98a0\u5012\uff0c\u4ece\u800c\u5b9e\u73b0\u5927\u9876\u5806\n# \u5728\u672c\u793a\u4f8b\u4e2d\uff0cflag = 1 \u65f6\u5bf9\u5e94\u5c0f\u9876\u5806\uff0cflag = -1 \u65f6\u5bf9\u5e94\u5927\u9876\u5806\n\n# \u5143\u7d20\u5165\u5806\nheapq.heappush(max_heap, flag * 1)\nheapq.heappush(max_heap, flag * 3)\nheapq.heappush(max_heap, flag * 2)\nheapq.heappush(max_heap, flag * 5)\nheapq.heappush(max_heap, flag * 4)\n\n# \u83b7\u53d6\u5806\u9876\u5143\u7d20\npeek: int = flag * max_heap[0] # 5\n\n# \u5806\u9876\u5143\u7d20\u51fa\u5806\n# \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nval = flag * heapq.heappop(max_heap) # 5\nval = flag * heapq.heappop(max_heap) # 4\nval = flag * heapq.heappop(max_heap) # 3\nval = flag * heapq.heappop(max_heap) # 2\nval = flag * heapq.heappop(max_heap) # 1\n\n# \u83b7\u53d6\u5806\u5927\u5c0f\nsize: int = len(max_heap)\n\n# \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = not max_heap\n\n# \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\nmin_heap: list[int] = [1, 3, 2, 5, 4]\nheapq.heapify(min_heap)\n
heap.cpp/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\npriority_queue<int, vector<int>, greater<int>> minHeap;\n// \u521d\u59cb\u5316\u5927\u9876\u5806\npriority_queue<int, vector<int>, less<int>> maxHeap;\n\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.push(1);\nmaxHeap.push(3);\nmaxHeap.push(2);\nmaxHeap.push(5);\nmaxHeap.push(4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.top(); // 5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nmaxHeap.pop(); // 5\nmaxHeap.pop(); // 4\nmaxHeap.pop(); // 3\nmaxHeap.pop(); // 2\nmaxHeap.pop(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.empty();\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nvector<int> input{1, 3, 2, 5, 4};\npriority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());\n
heap.java/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nQueue<Integer> minHeap = new PriorityQueue<>();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);\n\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.offer(1);\nmaxHeap.offer(3);\nmaxHeap.offer(2);\nmaxHeap.offer(5);\nmaxHeap.offer(4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.peek(); // 5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = maxHeap.poll(); // 5\npeek = maxHeap.poll(); // 4\npeek = maxHeap.poll(); // 3\npeek = maxHeap.poll(); // 2\npeek = maxHeap.poll(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = maxHeap.isEmpty();\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));\n
heap.cs/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nPriorityQueue<int, int> minHeap = new();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nPriorityQueue<int, int> maxHeap = new(Comparer<int>.Create((x, y) => y - x));\n\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.Enqueue(1, 1);\nmaxHeap.Enqueue(3, 3);\nmaxHeap.Enqueue(2, 2);\nmaxHeap.Enqueue(5, 5);\nmaxHeap.Enqueue(4, 4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.Peek();//5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = maxHeap.Dequeue(); // 5\npeek = maxHeap.Dequeue(); // 4\npeek = maxHeap.Dequeue(); // 3\npeek = maxHeap.Dequeue(); // 2\npeek = maxHeap.Dequeue(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.Count;\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.Count == 0;\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<int, int>([(1, 1), (3, 3), (2, 2), (5, 5), (4, 4)]);\n
heap.go// Go \u8bed\u8a00\u4e2d\u53ef\u4ee5\u901a\u8fc7\u5b9e\u73b0 heap.Interface \u6765\u6784\u5efa\u6574\u6570\u5927\u9876\u5806\n// \u5b9e\u73b0 heap.Interface \u9700\u8981\u540c\u65f6\u5b9e\u73b0 sort.Interface\ntype intHeap []any\n\n// Push heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u63a8\u5165\u5143\u7d20\u5230\u5806\nfunc (h *intHeap) Push(x any) {\n // Push \u548c Pop \u4f7f\u7528 pointer receiver \u4f5c\u4e3a\u53c2\u6570\n // \u56e0\u4e3a\u5b83\u4eec\u4e0d\u4ec5\u4f1a\u5bf9\u5207\u7247\u7684\u5185\u5bb9\u8fdb\u884c\u8c03\u6574\uff0c\u8fd8\u4f1a\u4fee\u6539\u5207\u7247\u7684\u957f\u5ea6\u3002\n *h = append(*h, x.(int))\n}\n\n// Pop heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u5f39\u51fa\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Pop() any {\n // \u5f85\u51fa\u5806\u5143\u7d20\u5b58\u653e\u5728\u6700\u540e\n last := (*h)[len(*h)-1]\n *h = (*h)[:len(*h)-1]\n return last\n}\n\n// Len sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Len() int {\n return len(*h)\n}\n\n// Less sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Less(i, j int) bool {\n // \u5982\u679c\u5b9e\u73b0\u5c0f\u9876\u5806\uff0c\u5219\u9700\u8981\u8c03\u6574\u4e3a\u5c0f\u4e8e\u53f7\n return (*h)[i].(int) > (*h)[j].(int)\n}\n\n// Swap sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Swap(i, j int) {\n (*h)[i], (*h)[j] = (*h)[j], (*h)[i]\n}\n\n// Top \u83b7\u53d6\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Top() any {\n return (*h)[0]\n}\n\n/* Driver Code */\nfunc TestHeap(t *testing.T) {\n /* \u521d\u59cb\u5316\u5806 */\n // \u521d\u59cb\u5316\u5927\u9876\u5806\n maxHeap := &intHeap{}\n heap.Init(maxHeap)\n /* \u5143\u7d20\u5165\u5806 */\n // \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u6dfb\u52a0\u5143\u7d20\n heap.Push(maxHeap, 1)\n heap.Push(maxHeap, 3)\n heap.Push(maxHeap, 2)\n heap.Push(maxHeap, 4)\n heap.Push(maxHeap, 5)\n\n /* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\n top := maxHeap.Top()\n fmt.Printf(\"\u5806\u9876\u5143\u7d20\u4e3a %d\\n\", top)\n\n /* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n // \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u79fb\u9664\u5143\u7d20\n heap.Pop(maxHeap) // 5\n heap.Pop(maxHeap) // 4\n heap.Pop(maxHeap) // 3\n heap.Pop(maxHeap) // 2\n heap.Pop(maxHeap) // 1\n\n /* \u83b7\u53d6\u5806\u5927\u5c0f */\n size := len(*maxHeap)\n fmt.Printf(\"\u5806\u5143\u7d20\u6570\u91cf\u4e3a %d\\n\", size)\n\n /* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\n isEmpty := len(*maxHeap) == 0\n fmt.Printf(\"\u5806\u662f\u5426\u4e3a\u7a7a %t\\n\", isEmpty)\n}\n
heap.swift// Swift \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.js// JavaScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.ts// TypeScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.dart// Dart \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.rsuse std::collections::BinaryHeap;\nuse std::cmp::Reverse;\n\n/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nlet mut min_heap = BinaryHeap::<Reverse<i32>>::new();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\nlet mut max_heap = BinaryHeap::new();\n\n/* \u5143\u7d20\u5165\u5806 */\nmax_heap.push(1);\nmax_heap.push(3);\nmax_heap.push(2);\nmax_heap.push(5);\nmax_heap.push(4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nlet peek = max_heap.peek().unwrap(); // 5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nlet peek = max_heap.pop().unwrap(); // 5\nlet peek = max_heap.pop().unwrap(); // 4\nlet peek = max_heap.pop().unwrap(); // 3\nlet peek = max_heap.pop().unwrap(); // 2\nlet peek = max_heap.pop().unwrap(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nlet size = max_heap.len();\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = max_heap.is_empty();\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nlet min_heap = BinaryHeap::from(vec![Reverse(1), Reverse(3), Reverse(2), Reverse(5), Reverse(4)]);\n
heap.c// C \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.zig\n
"},{"location":"chapter_heap/heap/#812","title":"8.1.2 \u00a0 \u5806\u7684\u5b9e\u73b0","text":"\u4e0b\u6587\u5b9e\u73b0\u7684\u662f\u5927\u9876\u5806\u3002\u82e5\u8981\u5c06\u5176\u8f6c\u6362\u4e3a\u5c0f\u9876\u5806\uff0c\u53ea\u9700\u5c06\u6240\u6709\u5927\u5c0f\u903b\u8f91\u5224\u65ad\u53d6\u9006\uff08\u4f8b\u5982\uff0c\u5c06 \\(\\geq\\) \u66ff\u6362\u4e3a \\(\\leq\\) \uff09\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002
"},{"location":"chapter_heap/heap/#1","title":"1. \u00a0 \u5806\u7684\u5b58\u50a8\u4e0e\u8868\u793a","text":"\u201c\u4e8c\u53c9\u6811\u201d\u7ae0\u8282\u8bb2\u8fc7\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u7531\u4e8e\u5806\u6b63\u662f\u4e00\u79cd\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u56e0\u6b64\u6211\u4eec\u5c06\u91c7\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002
\u5f53\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u4e8c\u53c9\u6811\u65f6\uff0c\u5143\u7d20\u4ee3\u8868\u8282\u70b9\u503c\uff0c\u7d22\u5f15\u4ee3\u8868\u8282\u70b9\u5728\u4e8c\u53c9\u6811\u4e2d\u7684\u4f4d\u7f6e\u3002\u8282\u70b9\u6307\u9488\u901a\u8fc7\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u6765\u5b9e\u73b0\u3002
\u5982\u56fe 8-2 \u6240\u793a\uff0c\u7ed9\u5b9a\u7d22\u5f15 \\(i\\) \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 2\\) \uff0c\u7236\u8282\u70b9\u7d22\u5f15\u4e3a \\((i - 1) / 2\\)\uff08\u5411\u4e0b\u6574\u9664\uff09\u3002\u5f53\u7d22\u5f15\u8d8a\u754c\u65f6\uff0c\u8868\u793a\u7a7a\u8282\u70b9\u6216\u8282\u70b9\u4e0d\u5b58\u5728\u3002
\u56fe 8-2 \u00a0 \u5806\u7684\u8868\u793a\u4e0e\u5b58\u50a8
\u6211\u4eec\u53ef\u4ee5\u5c06\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef left(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\"\"\"\n return 2 * i + 1\n\ndef right(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\"\"\"\n return 2 * i + 2\n\ndef parent(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15\"\"\"\n return (i - 1) // 2 # \u5411\u4e0b\u6574\u9664\n
my_heap.cpp/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\n return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.java/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\n return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.cs/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint Left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint Right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint Parent(int i) {\n return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.go/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) left(i int) int {\n return 2*i + 1\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) right(i int) int {\n return 2*i + 2\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) parent(i int) int {\n // \u5411\u4e0b\u6574\u9664\n return (i - 1) / 2\n}\n
my_heap.swift/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc left(i: Int) -> Int {\n 2 * i + 1\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc right(i: Int) -> Int {\n 2 * i + 2\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfunc parent(i: Int) -> Int {\n (i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.js/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\n#left(i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\n#right(i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\n#parent(i) {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.ts/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nleft(i: number): number {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nright(i: number): number {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nparent(i: number): number {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.dart/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint _left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint _right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint _parent(int i) {\n return (i - 1) ~/ 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.rs/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfn left(i: usize) -> usize {\n 2 * i + 1\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfn right(i: usize) -> usize {\n 2 * i + 2\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfn parent(i: usize) -> usize {\n (i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.c/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(MaxHeap *maxHeap, int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(MaxHeap *maxHeap, int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(MaxHeap *maxHeap, int i) {\n return (i - 1) / 2;\n}\n
my_heap.zig// \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\nfn left(i: usize) usize {\n return 2 * i + 1;\n}\n\n// \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\nfn right(i: usize) usize {\n return 2 * i + 2;\n}\n\n// \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15\nfn parent(i: usize) usize {\n // return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n return @divFloor(i - 1, 2);\n}\n
"},{"location":"chapter_heap/heap/#2","title":"2. \u00a0 \u8bbf\u95ee\u5806\u9876\u5143\u7d20","text":"\u5806\u9876\u5143\u7d20\u5373\u4e3a\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u4e5f\u5c31\u662f\u5217\u8868\u7684\u9996\u4e2a\u5143\u7d20\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u5806\u9876\u5143\u7d20\"\"\"\n return self.max_heap[0]\n
my_heap.cpp/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\n return maxHeap[0];\n}\n
my_heap.java/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\n return maxHeap.get(0);\n}\n
my_heap.cs/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint Peek() {\n return maxHeap[0];\n}\n
my_heap.go/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc (h *maxHeap) peek() any {\n return h.data[0]\n}\n
my_heap.swift/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc peek() -> Int {\n maxHeap[0]\n}\n
my_heap.js/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek() {\n return this.#maxHeap[0];\n}\n
my_heap.ts/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek(): number {\n return this.maxHeap[0];\n}\n
my_heap.dart/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\n return _maxHeap[0];\n}\n
my_heap.rs/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfn peek(&self) -> Option<i32> {\n self.max_heap.first().copied()\n}\n
my_heap.c/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek(MaxHeap *maxHeap) {\n return maxHeap->data[0];\n}\n
my_heap.zig// \u8bbf\u95ee\u5806\u9876\u5143\u7d20\nfn peek(self: *Self) T {\n return self.max_heap.?.items[0];\n} \n
"},{"location":"chapter_heap/heap/#3","title":"3. \u00a0 \u5143\u7d20\u5165\u5806","text":"\u7ed9\u5b9a\u5143\u7d20 val \uff0c\u6211\u4eec\u9996\u5148\u5c06\u5176\u6dfb\u52a0\u5230\u5806\u5e95\u3002\u6dfb\u52a0\u4e4b\u540e\uff0c\u7531\u4e8e val \u53ef\u80fd\u5927\u4e8e\u5806\u4e2d\u5176\u4ed6\u5143\u7d20\uff0c\u5806\u7684\u6210\u7acb\u6761\u4ef6\u53ef\u80fd\u5df2\u88ab\u7834\u574f\uff0c\u56e0\u6b64\u9700\u8981\u4fee\u590d\u4ece\u63d2\u5165\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u8fd9\u4e2a\u64cd\u4f5c\u88ab\u79f0\u4e3a\u300c\u5806\u5316 heapify\u300d\u3002
\u8003\u8651\u4ece\u5165\u5806\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u6267\u884c\u5806\u5316\u3002\u5982\u56fe 8-3 \u6240\u793a\uff0c\u6211\u4eec\u6bd4\u8f83\u63d2\u5165\u8282\u70b9\u4e0e\u5176\u7236\u8282\u70b9\u7684\u503c\uff0c\u5982\u679c\u63d2\u5165\u8282\u70b9\u66f4\u5927\uff0c\u5219\u5c06\u5b83\u4eec\u4ea4\u6362\u3002\u7136\u540e\u7ee7\u7eed\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u4ece\u5e95\u81f3\u9876\u4fee\u590d\u5806\u4e2d\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u76f4\u81f3\u8d8a\u8fc7\u6839\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 8-3 \u00a0 \u5143\u7d20\u5165\u5806\u6b65\u9aa4
\u8bbe\u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \uff0c\u5219\u6811\u7684\u9ad8\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u7531\u6b64\u53ef\u77e5\uff0c\u5806\u5316\u64cd\u4f5c\u7684\u5faa\u73af\u8f6e\u6570\u6700\u591a\u4e3a \\(O(\\log n)\\) \uff0c\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef push(self, val: int):\n \"\"\"\u5143\u7d20\u5165\u5806\"\"\"\n # \u6dfb\u52a0\u8282\u70b9\n self.max_heap.append(val)\n # \u4ece\u5e95\u81f3\u9876\u5806\u5316\n self.sift_up(self.size() - 1)\n\ndef sift_up(self, i: int):\n \"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\"\"\"\n while True:\n # \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n p = self.parent(i)\n # \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if p < 0 or self.max_heap[i] <= self.max_heap[p]:\n break\n # \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, p)\n # \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p\n
my_heap.cpp/* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.push_back(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap[i] <= maxHeap[p])\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(maxHeap[i], maxHeap[p]);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.java/* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.add(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.cs/* \u5143\u7d20\u5165\u5806 */\nvoid Push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.Add(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n SiftUp(Size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid SiftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = Parent(i);\n // \u82e5\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap[i] <= maxHeap[p])\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n Swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.go/* \u5143\u7d20\u5165\u5806 */\nfunc (h *maxHeap) push(val any) {\n // \u6dfb\u52a0\u8282\u70b9\n h.data = append(h.data, val)\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n h.siftUp(len(h.data) - 1)\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc (h *maxHeap) siftUp(i int) {\n for true {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n p := h.parent(i)\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if p < 0 || h.data[i].(int) <= h.data[p].(int) {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n h.swap(i, p)\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p\n }\n}\n
my_heap.swift/* \u5143\u7d20\u5165\u5806 */\nfunc push(val: Int) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.append(val)\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(i: size() - 1)\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc siftUp(i: Int) {\n var i = i\n while true {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n let p = parent(i: i)\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if p < 0 || maxHeap[i] <= maxHeap[p] {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i: i, j: p)\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p\n }\n}\n
my_heap.js/* \u5143\u7d20\u5165\u5806 */\npush(val) {\n // \u6dfb\u52a0\u8282\u70b9\n this.#maxHeap.push(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n this.#siftUp(this.size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\n#siftUp(i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n const p = this.#parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.#swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.ts/* \u5143\u7d20\u5165\u5806 */\npush(val: number): void {\n // \u6dfb\u52a0\u8282\u70b9\n this.maxHeap.push(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n this.siftUp(this.size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nsiftUp(i: number): void {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n const p = this.parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || this.maxHeap[i] <= this.maxHeap[p]) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.dart/* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n _maxHeap.add(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = _parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || _maxHeap[i] <= _maxHeap[p]) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n _swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.rs/* \u5143\u7d20\u5165\u5806 */\nfn push(&mut self, val: i32) {\n // \u6dfb\u52a0\u8282\u70b9\n self.max_heap.push(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n self.sift_up(self.size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfn sift_up(&mut self, mut i: usize) {\n loop {\n // \u8282\u70b9 i \u5df2\u7ecf\u662f\u5806\u9876\u8282\u70b9\u4e86\uff0c\u7ed3\u675f\u5806\u5316\n if i == 0 {\n break;\n }\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n let p = Self::parent(i);\n // \u5f53\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if self.max_heap[i] <= self.max_heap[p] {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.c/* \u5143\u7d20\u5165\u5806 */\nvoid push(MaxHeap *maxHeap, int val) {\n // \u9ed8\u8ba4\u60c5\u51b5\u4e0b\uff0c\u4e0d\u5e94\u8be5\u6dfb\u52a0\u8fd9\u4e48\u591a\u8282\u70b9\n if (maxHeap->size == MAX_SIZE) {\n printf(\"heap is full!\");\n return;\n }\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap->data[maxHeap->size] = val;\n maxHeap->size++;\n\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(maxHeap, maxHeap->size - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(MaxHeap *maxHeap, int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = parent(maxHeap, i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap->data[i] <= maxHeap->data[p]) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(maxHeap, i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.zig// \u5143\u7d20\u5165\u5806\nfn push(self: *Self, val: T) !void {\n // \u6dfb\u52a0\u8282\u70b9\n try self.max_heap.?.append(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n try self.siftUp(self.size() - 1);\n} \n\n// \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\nfn siftUp(self: *Self, i_: usize) !void {\n var i = i_;\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n var p = parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 or self.max_heap.?.items[i] <= self.max_heap.?.items[p]) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n try self.swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
"},{"location":"chapter_heap/heap/#4","title":"4. \u00a0 \u5806\u9876\u5143\u7d20\u51fa\u5806","text":"\u5806\u9876\u5143\u7d20\u662f\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u5373\u5217\u8868\u9996\u5143\u7d20\u3002\u5982\u679c\u6211\u4eec\u76f4\u63a5\u4ece\u5217\u8868\u4e2d\u5220\u9664\u9996\u5143\u7d20\uff0c\u90a3\u4e48\u4e8c\u53c9\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u7d22\u5f15\u90fd\u4f1a\u53d1\u751f\u53d8\u5316\uff0c\u8fd9\u5c06\u4f7f\u5f97\u540e\u7eed\u4f7f\u7528\u5806\u5316\u8fdb\u884c\u4fee\u590d\u53d8\u5f97\u56f0\u96be\u3002\u4e3a\u4e86\u5c3d\u91cf\u51cf\u5c11\u5143\u7d20\u7d22\u5f15\u7684\u53d8\u52a8\uff0c\u6211\u4eec\u91c7\u7528\u4ee5\u4e0b\u64cd\u4f5c\u6b65\u9aa4\u3002
- \u4ea4\u6362\u5806\u9876\u5143\u7d20\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff09\u3002
- \u4ea4\u6362\u5b8c\u6210\u540e\uff0c\u5c06\u5806\u5e95\u4ece\u5217\u8868\u4e2d\u5220\u9664\uff08\u6ce8\u610f\uff0c\u7531\u4e8e\u5df2\u7ecf\u4ea4\u6362\uff0c\u56e0\u6b64\u5b9e\u9645\u4e0a\u5220\u9664\u7684\u662f\u539f\u6765\u7684\u5806\u9876\u5143\u7d20\uff09\u3002
- \u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u6267\u884c\u5806\u5316\u3002
\u5982\u56fe 8-4 \u6240\u793a\uff0c\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u7684\u64cd\u4f5c\u65b9\u5411\u4e0e\u201c\u4ece\u5e95\u81f3\u9876\u5806\u5316\u201d\u76f8\u53cd\uff0c\u6211\u4eec\u5c06\u6839\u8282\u70b9\u7684\u503c\u4e0e\u5176\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u503c\u8fdb\u884c\u6bd4\u8f83\uff0c\u5c06\u6700\u5927\u7684\u5b50\u8282\u70b9\u4e0e\u6839\u8282\u70b9\u4ea4\u6362\u3002\u7136\u540e\u5faa\u73af\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002
<1><2><3><4><5><6><7><8><9><10> \u56fe 8-4 \u00a0 \u5806\u9876\u5143\u7d20\u51fa\u5806\u6b65\u9aa4
\u4e0e\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u76f8\u4f3c\uff0c\u5806\u9876\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4e3a \\(O(\\log n)\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef pop(self) -> int:\n \"\"\"\u5143\u7d20\u51fa\u5806\"\"\"\n # \u5224\u7a7a\u5904\u7406\n if self.is_empty():\n raise IndexError(\"\u5806\u4e3a\u7a7a\")\n # \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n self.swap(0, self.size() - 1)\n # \u5220\u9664\u8282\u70b9\n val = self.max_heap.pop()\n # \u4ece\u9876\u81f3\u5e95\u5806\u5316\n self.sift_down(0)\n # \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val\n\ndef sift_down(self, i: int):\n \"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\n while True:\n # \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n l, r, ma = self.left(i), self.right(i), i\n if l < self.size() and self.max_heap[l] > self.max_heap[ma]:\n ma = l\n if r < self.size() and self.max_heap[r] > self.max_heap[ma]:\n ma = r\n # \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i:\n break\n # \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, ma)\n # \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n
my_heap.cpp/* \u5143\u7d20\u51fa\u5806 */\nvoid pop() {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty()) {\n throw out_of_range(\"\u5806\u4e3a\u7a7a\");\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(maxHeap[0], maxHeap[size() - 1]);\n // \u5220\u9664\u8282\u70b9\n maxHeap.pop_back();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(0);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = left(i), r = right(i), ma = i;\n if (l < size() && maxHeap[l] > maxHeap[ma])\n ma = l;\n if (r < size() && maxHeap[r] > maxHeap[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n swap(maxHeap[i], maxHeap[ma]);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.java/* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(0, size() - 1);\n // \u5220\u9664\u8282\u70b9\n int val = maxHeap.remove(size() - 1);\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = left(i), r = right(i), ma = i;\n if (l < size() && maxHeap.get(l) > maxHeap.get(ma))\n ma = l;\n if (r < size() && maxHeap.get(r) > maxHeap.get(ma))\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.cs/* \u5143\u7d20\u51fa\u5806 */\nint Pop() {\n // \u5224\u7a7a\u5904\u7406\n if (IsEmpty())\n throw new IndexOutOfRangeException();\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n Swap(0, Size() - 1);\n // \u5220\u9664\u8282\u70b9\n int val = maxHeap.Last();\n maxHeap.RemoveAt(Size() - 1);\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n SiftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid SiftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = Left(i), r = Right(i), ma = i;\n if (l < Size() && maxHeap[l] > maxHeap[ma])\n ma = l;\n if (r < Size() && maxHeap[r] > maxHeap[ma])\n ma = r;\n // \u82e5\u201c\u8282\u70b9 i \u6700\u5927\u201d\u6216\u201c\u8d8a\u8fc7\u53f6\u8282\u70b9\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n Swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.go/* \u5143\u7d20\u51fa\u5806 */\nfunc (h *maxHeap) pop() any {\n // \u5224\u7a7a\u5904\u7406\n if h.isEmpty() {\n fmt.Println(\"error\")\n return nil\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n h.swap(0, h.size()-1)\n // \u5220\u9664\u8282\u70b9\n val := h.data[len(h.data)-1]\n h.data = h.data[:len(h.data)-1]\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n h.siftDown(0)\n\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc (h *maxHeap) siftDown(i int) {\n for true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\n l, r, max := h.left(i), h.right(i), i\n if l < h.size() && h.data[l].(int) > h.data[max].(int) {\n max = l\n }\n if r < h.size() && h.data[r].(int) > h.data[max].(int) {\n max = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if max == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n h.swap(i, max)\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = max\n }\n}\n
my_heap.swift/* \u5143\u7d20\u51fa\u5806 */\nfunc pop() -> Int {\n // \u5224\u7a7a\u5904\u7406\n if isEmpty() {\n fatalError(\"\u5806\u4e3a\u7a7a\")\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(i: 0, j: size() - 1)\n // \u5220\u9664\u8282\u70b9\n let val = maxHeap.remove(at: size() - 1)\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(i: 0)\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(i: Int) {\n var i = i\n while true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = left(i: i)\n let r = right(i: i)\n var ma = i\n if l < size(), maxHeap[l] > maxHeap[ma] {\n ma = l\n }\n if r < size(), maxHeap[r] > maxHeap[ma] {\n ma = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i: i, j: ma)\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n }\n}\n
my_heap.js/* \u5143\u7d20\u51fa\u5806 */\npop() {\n // \u5224\u7a7a\u5904\u7406\n if (this.isEmpty()) throw new Error('\u5806\u4e3a\u7a7a');\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n this.#swap(0, this.size() - 1);\n // \u5220\u9664\u8282\u70b9\n const val = this.#maxHeap.pop();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n this.#siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\n#siftDown(i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n const l = this.#left(i),\n r = this.#right(i);\n let ma = i;\n if (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l;\n if (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.#swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.ts/* \u5143\u7d20\u51fa\u5806 */\npop(): number {\n // \u5224\u7a7a\u5904\u7406\n if (this.isEmpty()) throw new RangeError('Heap is empty.');\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n this.swap(0, this.size() - 1);\n // \u5220\u9664\u8282\u70b9\n const val = this.maxHeap.pop();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n this.siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nsiftDown(i: number): void {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n const l = this.left(i),\n r = this.right(i);\n let ma = i;\n if (l < this.size() && this.maxHeap[l] > this.maxHeap[ma]) ma = l;\n if (r < this.size() && this.maxHeap[r] > this.maxHeap[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.dart/* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty()) throw Exception('\u5806\u4e3a\u7a7a');\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n _swap(0, size() - 1);\n // \u5220\u9664\u8282\u70b9\n int val = _maxHeap.removeLast();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = _left(i);\n int r = _right(i);\n int ma = i;\n if (l < size() && _maxHeap[l] > _maxHeap[ma]) ma = l;\n if (r < size() && _maxHeap[r] > _maxHeap[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n _swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.rs/* \u5143\u7d20\u51fa\u5806 */\nfn pop(&mut self) -> i32 {\n // \u5224\u7a7a\u5904\u7406\n if self.is_empty() {\n panic!(\"index out of bounds\");\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n self.swap(0, self.size() - 1);\n // \u5220\u9664\u8282\u70b9\n let val = self.max_heap.remove(self.size() - 1);\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n self.sift_down(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n val\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(&mut self, mut i: usize) {\n loop {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let (l, r, mut ma) = (Self::left(i), Self::right(i), i);\n if l < self.size() && self.max_heap[l] > self.max_heap[ma] {\n ma = l;\n }\n if r < self.size() && self.max_heap[r] > self.max_heap[ma] {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.c/* \u5143\u7d20\u51fa\u5806 */\nint pop(MaxHeap *maxHeap) {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty(maxHeap)) {\n printf(\"heap is empty!\");\n return INT_MAX;\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(maxHeap, 0, size(maxHeap) - 1);\n // \u5220\u9664\u8282\u70b9\n int val = maxHeap->data[maxHeap->size - 1];\n maxHeap->size--;\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(maxHeap, 0);\n\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(MaxHeap *maxHeap, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\n int l = left(maxHeap, i);\n int r = right(maxHeap, i);\n int max = i;\n if (l < size(maxHeap) && maxHeap->data[l] > maxHeap->data[max]) {\n max = l;\n }\n if (r < size(maxHeap) && maxHeap->data[r] > maxHeap->data[max]) {\n max = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (max == i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(maxHeap, i, max);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = max;\n }\n}\n
my_heap.zig// \u5143\u7d20\u51fa\u5806\nfn pop(self: *Self) !T {\n // \u5224\u65ad\u5904\u7406\n if (self.isEmpty()) unreachable;\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n try self.swap(0, self.size() - 1);\n // \u5220\u9664\u8282\u70b9\n var val = self.max_heap.?.pop();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n try self.siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n} \n\n// \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\nfn siftDown(self: *Self, i_: usize) !void {\n var i = i_;\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n var l = left(i);\n var r = right(i);\n var ma = i;\n if (l < self.size() and self.max_heap.?.items[l] > self.max_heap.?.items[ma]) ma = l;\n if (r < self.size() and self.max_heap.?.items[r] > self.max_heap.?.items[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n try self.swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
"},{"location":"chapter_heap/heap/#813","title":"8.1.3 \u00a0 \u5806\u5e38\u89c1\u5e94\u7528","text":" - \u4f18\u5148\u961f\u5217\uff1a\u5806\u901a\u5e38\u4f5c\u4e3a\u5b9e\u73b0\u4f18\u5148\u961f\u5217\u7684\u9996\u9009\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \uff0c\u800c\u5efa\u961f\u64cd\u4f5c\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e9b\u64cd\u4f5c\u90fd\u975e\u5e38\u9ad8\u6548\u3002
- \u5806\u6392\u5e8f\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u5b83\u4eec\u5efa\u7acb\u4e00\u4e2a\u5806\uff0c\u7136\u540e\u4e0d\u65ad\u5730\u6267\u884c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u6570\u636e\u3002\u7136\u800c\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u4f7f\u7528\u4e00\u79cd\u66f4\u4f18\u96c5\u7684\u65b9\u5f0f\u5b9e\u73b0\u5806\u6392\u5e8f\uff0c\u8be6\u89c1\u201c\u5806\u6392\u5e8f\u201d\u7ae0\u8282\u3002
- \u83b7\u53d6\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff1a\u8fd9\u662f\u4e00\u4e2a\u7ecf\u5178\u7684\u7b97\u6cd5\u95ee\u9898\uff0c\u540c\u65f6\u4e5f\u662f\u4e00\u79cd\u5178\u578b\u5e94\u7528\uff0c\u4f8b\u5982\u9009\u62e9\u70ed\u5ea6\u524d 10 \u7684\u65b0\u95fb\u4f5c\u4e3a\u5fae\u535a\u70ed\u641c\uff0c\u9009\u53d6\u9500\u91cf\u524d 10 \u7684\u5546\u54c1\u7b49\u3002
"},{"location":"chapter_heap/summary/","title":"8.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_heap/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u5806\u662f\u4e00\u68f5\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u6839\u636e\u6210\u7acb\u6761\u4ef6\u53ef\u5206\u4e3a\u5927\u9876\u5806\u548c\u5c0f\u9876\u5806\u3002\u5927\uff08\u5c0f\uff09\u9876\u5806\u7684\u5806\u9876\u5143\u7d20\u662f\u6700\u5927\uff08\u5c0f\uff09\u7684\u3002
- \u4f18\u5148\u961f\u5217\u7684\u5b9a\u4e49\u662f\u5177\u6709\u51fa\u961f\u4f18\u5148\u7ea7\u7684\u961f\u5217\uff0c\u901a\u5e38\u4f7f\u7528\u5806\u6765\u5b9e\u73b0\u3002
- \u5806\u7684\u5e38\u7528\u64cd\u4f5c\u53ca\u5176\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5305\u62ec\uff1a\u5143\u7d20\u5165\u5806 \\(O(\\log n)\\)\u3001\u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) \u548c\u8bbf\u95ee\u5806\u9876\u5143\u7d20 \\(O(1)\\) \u7b49\u3002
- \u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u8868\u793a\uff0c\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002
- \u5806\u5316\u64cd\u4f5c\u7528\u4e8e\u7ef4\u62a4\u5806\u7684\u6027\u8d28\uff0c\u5728\u5165\u5806\u548c\u51fa\u5806\u64cd\u4f5c\u4e2d\u90fd\u4f1a\u7528\u5230\u3002
- \u8f93\u5165 \\(n\\) \u4e2a\u5143\u7d20\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
- Top-K \u662f\u4e00\u4e2a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\uff0c\u53ef\u4ee5\u4f7f\u7528\u5806\u6570\u636e\u7ed3\u6784\u9ad8\u6548\u89e3\u51b3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002
"},{"location":"chapter_heap/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6570\u636e\u7ed3\u6784\u7684\u201c\u5806\u201d\u4e0e\u5185\u5b58\u7ba1\u7406\u7684\u201c\u5806\u201d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\u5417\uff1f
\u4e24\u8005\u4e0d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\uff0c\u53ea\u662f\u78b0\u5de7\u90fd\u53eb\u5806\u3002\u8ba1\u7b97\u673a\u7cfb\u7edf\u5185\u5b58\u4e2d\u7684\u5806\u662f\u52a8\u6001\u5185\u5b58\u5206\u914d\u7684\u4e00\u90e8\u5206\uff0c\u7a0b\u5e8f\u5728\u8fd0\u884c\u65f6\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u5b58\u50a8\u6570\u636e\u3002\u7a0b\u5e8f\u53ef\u4ee5\u8bf7\u6c42\u4e00\u5b9a\u91cf\u7684\u5806\u5185\u5b58\uff0c\u7528\u4e8e\u5b58\u50a8\u5982\u5bf9\u8c61\u548c\u6570\u7ec4\u7b49\u590d\u6742\u7ed3\u6784\u3002\u5f53\u8fd9\u4e9b\u6570\u636e\u4e0d\u518d\u9700\u8981\u65f6\uff0c\u7a0b\u5e8f\u9700\u8981\u91ca\u653e\u8fd9\u4e9b\u5185\u5b58\uff0c\u4ee5\u9632\u6b62\u5185\u5b58\u6cc4\u6f0f\u3002\u76f8\u8f83\u4e8e\u6808\u5185\u5b58\uff0c\u5806\u5185\u5b58\u7684\u7ba1\u7406\u548c\u4f7f\u7528\u9700\u8981\u66f4\u8c28\u614e\uff0c\u4f7f\u7528\u4e0d\u5f53\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5185\u5b58\u6cc4\u6f0f\u548c\u91ce\u6307\u9488\u7b49\u95ee\u9898\u3002
"},{"location":"chapter_heap/top_k/","title":"8.3 \u00a0 Top-K \u95ee\u9898","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u65e0\u5e8f\u6570\u7ec4 nums \uff0c\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u524d \\(k\\) \u5927\u7684\u5143\u7d20\u3002
\u5bf9\u4e8e\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u5148\u4ecb\u7ecd\u4e24\u79cd\u601d\u8def\u6bd4\u8f83\u76f4\u63a5\u7684\u89e3\u6cd5\uff0c\u518d\u4ecb\u7ecd\u6548\u7387\u66f4\u9ad8\u7684\u5806\u89e3\u6cd5\u3002
"},{"location":"chapter_heap/top_k/#831","title":"8.3.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u904d\u5386\u9009\u62e9","text":"\u6211\u4eec\u53ef\u4ee5\u8fdb\u884c\u56fe 8-6 \u6240\u793a\u7684 \\(k\\) \u8f6e\u904d\u5386\uff0c\u5206\u522b\u5728\u6bcf\u8f6e\u4e2d\u63d0\u53d6\u7b2c \\(1\\)\u3001\\(2\\)\u3001\\(\\dots\\)\u3001\\(k\\) \u5927\u7684\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nk)\\) \u3002
\u6b64\u65b9\u6cd5\u53ea\u9002\u7528\u4e8e \\(k \\ll n\\) \u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u5f53 \\(k\\) \u4e0e \\(n\\) \u6bd4\u8f83\u63a5\u8fd1\u65f6\uff0c\u5176\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411\u4e8e \\(O(n^2)\\) \uff0c\u975e\u5e38\u8017\u65f6\u3002
\u56fe 8-6 \u00a0 \u904d\u5386\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20
Tip
\u5f53 \\(k = n\\) \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u5b8c\u6574\u7684\u6709\u5e8f\u5e8f\u5217\uff0c\u6b64\u65f6\u7b49\u4ef7\u4e8e\u201c\u9009\u62e9\u6392\u5e8f\u201d\u7b97\u6cd5\u3002
"},{"location":"chapter_heap/top_k/#832","title":"8.3.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u6392\u5e8f","text":"\u5982\u56fe 8-7 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5148\u5bf9\u6570\u7ec4 nums \u8fdb\u884c\u6392\u5e8f\uff0c\u518d\u8fd4\u56de\u6700\u53f3\u8fb9\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
\u663e\u7136\uff0c\u8be5\u65b9\u6cd5\u201c\u8d85\u989d\u201d\u5b8c\u6210\u4efb\u52a1\u4e86\uff0c\u56e0\u4e3a\u6211\u4eec\u53ea\u9700\u627e\u51fa\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u5373\u53ef\uff0c\u800c\u4e0d\u9700\u8981\u6392\u5e8f\u5176\u4ed6\u5143\u7d20\u3002
\u56fe 8-7 \u00a0 \u6392\u5e8f\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20
"},{"location":"chapter_heap/top_k/#833","title":"8.3.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u5806","text":"\u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u5806\u66f4\u52a0\u9ad8\u6548\u5730\u89e3\u51b3 Top-K \u95ee\u9898\uff0c\u6d41\u7a0b\u5982\u56fe 8-8 \u6240\u793a\u3002
- \u521d\u59cb\u5316\u4e00\u4e2a\u5c0f\u9876\u5806\uff0c\u5176\u5806\u9876\u5143\u7d20\u6700\u5c0f\u3002
- \u5148\u5c06\u6570\u7ec4\u7684\u524d \\(k\\) \u4e2a\u5143\u7d20\u4f9d\u6b21\u5165\u5806\u3002
- \u4ece\u7b2c \\(k + 1\\) \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\uff0c\u5e76\u5c06\u5f53\u524d\u5143\u7d20\u5165\u5806\u3002
- \u904d\u5386\u5b8c\u6210\u540e\uff0c\u5806\u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 8-8 \u00a0 \u57fa\u4e8e\u5806\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig top_k.pydef top_k_heap(nums: list[int], k: int) -> list[int]:\n \"\"\"\u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20\"\"\"\n # \u521d\u59cb\u5316\u5c0f\u9876\u5806\n heap = []\n # \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for i in range(k):\n heapq.heappush(heap, nums[i])\n # \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for i in range(k, len(nums)):\n # \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if nums[i] > heap[0]:\n heapq.heappop(heap)\n heapq.heappush(heap, nums[i])\n return heap\n
top_k.cpp/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\npriority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n priority_queue<int, vector<int>, greater<int>> heap;\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n heap.push(nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.size(); i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.top()) {\n heap.pop();\n heap.push(nums[i]);\n }\n }\n return heap;\n}\n
top_k.java/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nQueue<Integer> topKHeap(int[] nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n Queue<Integer> heap = new PriorityQueue<Integer>();\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n heap.offer(nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.peek()) {\n heap.poll();\n heap.offer(nums[i]);\n }\n }\n return heap;\n}\n
top_k.cs/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nPriorityQueue<int, int> TopKHeap(int[] nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n PriorityQueue<int, int> heap = new();\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n heap.Enqueue(nums[i], nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.Length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.Peek()) {\n heap.Dequeue();\n heap.Enqueue(nums[i], nums[i]);\n }\n }\n return heap;\n}\n
top_k.go/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums []int, k int) *minHeap {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n h := &minHeap{}\n heap.Init(h)\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for i := 0; i < k; i++ {\n heap.Push(h, nums[i])\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for i := k; i < len(nums); i++ {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if nums[i] > h.Top().(int) {\n heap.Pop(h)\n heap.Push(h, nums[i])\n }\n }\n return h\n}\n
top_k.swift/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums: [Int], k: Int) -> [Int] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5c0f\u9876\u5806\uff0c\u5e76\u5c06\u524d k \u4e2a\u5143\u7d20\u5efa\u5806\n var heap = Heap(nums.prefix(k))\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for i in stride(from: k, to: nums.count, by: 1) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if nums[i] > heap.min()! {\n _ = heap.removeMin()\n heap.insert(nums[i])\n }\n }\n return heap.unordered\n}\n
top_k.js/* \u5143\u7d20\u5165\u5806 */\nfunction pushMinHeap(maxHeap, val) {\n // \u5143\u7d20\u53d6\u53cd\n maxHeap.push(-val);\n}\n\n/* \u5143\u7d20\u51fa\u5806 */\nfunction popMinHeap(maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.pop();\n}\n\n/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunction peekMinHeap(maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.peek();\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nfunction getMinHeap(maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return maxHeap.getMaxHeap().map((num) => -num);\n}\n\n/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunction topKHeap(nums, k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n // \u8bf7\u6ce8\u610f\uff1a\u6211\u4eec\u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u7528\u5927\u9876\u5806\u6765\u6a21\u62df\u5c0f\u9876\u5806\n const maxHeap = new MaxHeap([]);\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (let i = 0; i < k; i++) {\n pushMinHeap(maxHeap, nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (let i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > peekMinHeap(maxHeap)) {\n popMinHeap(maxHeap);\n pushMinHeap(maxHeap, nums[i]);\n }\n }\n // \u8fd4\u56de\u5806\u4e2d\u5143\u7d20\n return getMinHeap(maxHeap);\n}\n
top_k.ts/* \u5143\u7d20\u5165\u5806 */\nfunction pushMinHeap(maxHeap: MaxHeap, val: number): void {\n // \u5143\u7d20\u53d6\u53cd\n maxHeap.push(-val);\n}\n\n/* \u5143\u7d20\u51fa\u5806 */\nfunction popMinHeap(maxHeap: MaxHeap): number {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.pop();\n}\n\n/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunction peekMinHeap(maxHeap: MaxHeap): number {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.peek();\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nfunction getMinHeap(maxHeap: MaxHeap): number[] {\n // \u5143\u7d20\u53d6\u53cd\n return maxHeap.getMaxHeap().map((num: number) => -num);\n}\n\n/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunction topKHeap(nums: number[], k: number): number[] {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n // \u8bf7\u6ce8\u610f\uff1a\u6211\u4eec\u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u7528\u5927\u9876\u5806\u6765\u6a21\u62df\u5c0f\u9876\u5806\n const maxHeap = new MaxHeap([]);\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (let i = 0; i < k; i++) {\n pushMinHeap(maxHeap, nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (let i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > peekMinHeap(maxHeap)) {\n popMinHeap(maxHeap);\n pushMinHeap(maxHeap, nums[i]);\n }\n }\n // \u8fd4\u56de\u5806\u4e2d\u5143\u7d20\n return getMinHeap(maxHeap);\n}\n
top_k.dart/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nMinHeap topKHeap(List<int> nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\uff0c\u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n MinHeap heap = MinHeap(nums.sublist(0, k));\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.peek()) {\n heap.pop();\n heap.push(nums[i]);\n }\n }\n return heap;\n}\n
top_k.rs/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {\n // BinaryHeap \u662f\u5927\u9876\u5806\uff0c\u4f7f\u7528 Reverse \u5c06\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u5b9e\u73b0\u5c0f\u9876\u5806\n let mut heap = BinaryHeap::<Reverse<i32>>::new();\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for &num in nums.iter().take(k) {\n heap.push(Reverse(num));\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for &num in nums.iter().skip(k) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if num > heap.peek().unwrap().0 {\n heap.pop();\n heap.push(Reverse(num));\n }\n }\n heap\n}\n
top_k.c/* \u5143\u7d20\u5165\u5806 */\nvoid pushMinHeap(MaxHeap *maxHeap, int val) {\n // \u5143\u7d20\u53d6\u53cd\n push(maxHeap, -val);\n}\n\n/* \u5143\u7d20\u51fa\u5806 */\nint popMinHeap(MaxHeap *maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -pop(maxHeap);\n}\n\n/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peekMinHeap(MaxHeap *maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -peek(maxHeap);\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nint *getMinHeap(MaxHeap *maxHeap) {\n // \u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\u5e76\u5b58\u5165 res \u6570\u7ec4\n int *res = (int *)malloc(maxHeap->size * sizeof(int));\n for (int i = 0; i < maxHeap->size; i++) {\n res[i] = -maxHeap->data[i];\n }\n return res;\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nint *getMinHeap(MaxHeap *maxHeap) {\n // \u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\u5e76\u5b58\u5165 res \u6570\u7ec4\n int *res = (int *)malloc(maxHeap->size * sizeof(int));\n for (int i = 0; i < maxHeap->size; i++) {\n res[i] = -maxHeap->data[i];\n }\n return res;\n}\n\n// \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20\u7684\u51fd\u6570\nint *topKHeap(int *nums, int sizeNums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n // \u8bf7\u6ce8\u610f\uff1a\u6211\u4eec\u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u7528\u5927\u9876\u5806\u6765\u6a21\u62df\u5c0f\u9876\u5806\n int *empty = (int *)malloc(0);\n MaxHeap *maxHeap = newMaxHeap(empty, 0);\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n pushMinHeap(maxHeap, nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < sizeNums; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > peekMinHeap(maxHeap)) {\n popMinHeap(maxHeap);\n pushMinHeap(maxHeap, nums[i]);\n }\n }\n int *res = getMinHeap(maxHeap);\n // \u91ca\u653e\u5185\u5b58\n delMaxHeap(maxHeap);\n return res;\n}\n
top_k.zig[class]{}-[func]{topKHeap}\n
\u603b\u5171\u6267\u884c\u4e86 \\(n\\) \u8f6e\u5165\u5806\u548c\u51fa\u5806\uff0c\u5806\u7684\u6700\u5927\u957f\u5ea6\u4e3a \\(k\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002\u8be5\u65b9\u6cd5\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u5f53 \\(k\\) \u8f83\u5c0f\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \uff1b\u5f53 \\(k\\) \u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(O(n \\log n)\\) \u3002
\u53e6\u5916\uff0c\u8be5\u65b9\u6cd5\u9002\u7528\u4e8e\u52a8\u6001\u6570\u636e\u6d41\u7684\u4f7f\u7528\u573a\u666f\u3002\u5728\u4e0d\u65ad\u52a0\u5165\u6570\u636e\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u6301\u7eed\u7ef4\u62a4\u5806\u5185\u7684\u5143\u7d20\uff0c\u4ece\u800c\u5b9e\u73b0\u6700\u5927 \\(k\\) \u4e2a\u5143\u7d20\u7684\u52a8\u6001\u66f4\u65b0\u3002
"},{"location":"chapter_introduction/","title":"\u7b2c 1 \u7ae0 \u00a0 \u521d\u8bc6\u7b97\u6cd5","text":"Abstract
\u4e00\u4f4d\u5c11\u5973\u7fe9\u7fe9\u8d77\u821e\uff0c\u4e0e\u6570\u636e\u4ea4\u7ec7\u5728\u4e00\u8d77\uff0c\u88d9\u6446\u4e0a\u98d8\u626c\u7740\u7b97\u6cd5\u7684\u65cb\u5f8b\u3002
\u5979\u9080\u8bf7\u4f60\u5171\u821e\uff0c\u8bf7\u7d27\u8ddf\u5979\u7684\u6b65\u4f10\uff0c\u8e0f\u5165\u5145\u6ee1\u903b\u8f91\u4e0e\u7f8e\u611f\u7684\u7b97\u6cd5\u4e16\u754c\u3002
"},{"location":"chapter_introduction/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728
- 1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48
- 1.3 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_introduction/algorithms_are_everywhere/","title":"1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728","text":"\u5f53\u6211\u4eec\u542c\u5230\u201c\u7b97\u6cd5\u201d\u8fd9\u4e2a\u8bcd\u65f6\uff0c\u5f88\u81ea\u7136\u5730\u4f1a\u60f3\u5230\u6570\u5b66\u3002\u7136\u800c\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7b97\u6cd5\u5e76\u4e0d\u6d89\u53ca\u590d\u6742\u6570\u5b66\uff0c\u800c\u662f\u66f4\u591a\u5730\u4f9d\u8d56\u57fa\u672c\u903b\u8f91\uff0c\u8fd9\u4e9b\u903b\u8f91\u5728\u6211\u4eec\u7684\u65e5\u5e38\u751f\u6d3b\u4e2d\u5904\u5904\u53ef\u89c1\u3002
\u5728\u6b63\u5f0f\u63a2\u8ba8\u7b97\u6cd5\u4e4b\u524d\uff0c\u6709\u4e00\u4e2a\u6709\u8da3\u7684\u4e8b\u5b9e\u503c\u5f97\u5206\u4eab\uff1a\u4f60\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u5e76\u4e60\u60ef\u5c06\u5b83\u4eec\u5e94\u7528\u5230\u65e5\u5e38\u751f\u6d3b\u4e2d\u4e86\u3002\u4e0b\u9762\u6211\u5c06\u4e3e\u51e0\u4e2a\u5177\u4f53\u7684\u4f8b\u5b50\u6765\u8bc1\u5b9e\u8fd9\u4e00\u70b9\u3002
\u4f8b\u4e00\uff1a\u67e5\u9605\u5b57\u5178\u3002\u5728\u5b57\u5178\u91cc\uff0c\u6bcf\u4e2a\u6c49\u5b57\u90fd\u5bf9\u5e94\u4e00\u4e2a\u62fc\u97f3\uff0c\u800c\u5b57\u5178\u662f\u6309\u7167\u62fc\u97f3\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\u7684\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u67e5\u627e\u4e00\u4e2a\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u5b57\uff0c\u901a\u5e38\u4f1a\u6309\u7167\u56fe 1-1 \u6240\u793a\u7684\u65b9\u5f0f\u5b9e\u73b0\u3002
- \u7ffb\u5f00\u5b57\u5178\u7ea6\u4e00\u534a\u7684\u9875\u6570\uff0c\u67e5\u770b\u8be5\u9875\u7684\u9996\u5b57\u6bcd\u662f\u4ec0\u4e48\uff0c\u5047\u8bbe\u9996\u5b57\u6bcd\u4e3a \\(m\\) \u3002
- \u7531\u4e8e\u5728\u62fc\u97f3\u5b57\u6bcd\u8868\u4e2d \\(r\\) \u4f4d\u4e8e \\(m\\) \u4e4b\u540e\uff0c\u6240\u4ee5\u6392\u9664\u5b57\u5178\u524d\u534a\u90e8\u5206\uff0c\u67e5\u627e\u8303\u56f4\u7f29\u5c0f\u5230\u540e\u534a\u90e8\u5206\u3002
- \u4e0d\u65ad\u91cd\u590d\u6b65\u9aa4
1. \u548c \u6b65\u9aa4 2. \uff0c\u76f4\u81f3\u627e\u5230\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u9875\u7801\u4e3a\u6b62\u3002
<1><2><3><4><5> \u56fe 1-1 \u00a0 \u67e5\u5b57\u5178\u6b65\u9aa4
\u67e5\u5b57\u5178\u8fd9\u4e2a\u5c0f\u5b66\u751f\u5fc5\u5907\u6280\u80fd\uff0c\u5b9e\u9645\u4e0a\u5c31\u662f\u8457\u540d\u7684\u201c\u4e8c\u5206\u67e5\u627e\u201d\u7b97\u6cd5\u3002\u4ece\u6570\u636e\u7ed3\u6784\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b57\u5178\u89c6\u4e3a\u4e00\u4e2a\u5df2\u6392\u5e8f\u7684\u201c\u6570\u7ec4\u201d\uff1b\u4ece\u7b97\u6cd5\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u4e0a\u8ff0\u67e5\u5b57\u5178\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u770b\u4f5c\u201c\u4e8c\u5206\u67e5\u627e\u201d\u3002
\u4f8b\u4e8c\uff1a\u6574\u7406\u6251\u514b\u3002\u6211\u4eec\u5728\u6253\u724c\u65f6\uff0c\u6bcf\u5c40\u90fd\u9700\u8981\u6574\u7406\u624b\u4e2d\u7684\u6251\u514b\u724c\uff0c\u4f7f\u5176\u4ece\u5c0f\u5230\u5927\u6392\u5217\uff0c\u5b9e\u73b0\u6d41\u7a0b\u5982\u56fe 1-2 \u6240\u793a\u3002
- \u5c06\u6251\u514b\u724c\u5212\u5206\u4e3a\u201c\u6709\u5e8f\u201d\u548c\u201c\u65e0\u5e8f\u201d\u4e24\u90e8\u5206\uff0c\u5e76\u5047\u8bbe\u521d\u59cb\u72b6\u6001\u4e0b\u6700\u5de6 1 \u5f20\u6251\u514b\u724c\u5df2\u7ecf\u6709\u5e8f\u3002
- \u5728\u65e0\u5e8f\u90e8\u5206\u62bd\u51fa\u4e00\u5f20\u6251\u514b\u724c\uff0c\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\uff1b\u5b8c\u6210\u540e\u6700\u5de6 2 \u5f20\u6251\u514b\u5df2\u7ecf\u6709\u5e8f\u3002
- \u4e0d\u65ad\u5faa\u73af\u6b65\u9aa4
2. \uff0c\u6bcf\u4e00\u8f6e\u5c06\u4e00\u5f20\u6251\u514b\u724c\u4ece\u65e0\u5e8f\u90e8\u5206\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\uff0c\u76f4\u81f3\u6240\u6709\u6251\u514b\u724c\u90fd\u6709\u5e8f\u3002
\u56fe 1-2 \u00a0 \u6251\u514b\u6392\u5e8f\u6b65\u9aa4
\u4e0a\u8ff0\u6574\u7406\u6251\u514b\u724c\u7684\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u201c\u63d2\u5165\u6392\u5e8f\u201d\u7b97\u6cd5\uff0c\u5b83\u5728\u5904\u7406\u5c0f\u578b\u6570\u636e\u96c6\u65f6\u975e\u5e38\u9ad8\u6548\u3002\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u7684\u6392\u5e8f\u5e93\u51fd\u6570\u4e2d\u90fd\u6709\u63d2\u5165\u6392\u5e8f\u7684\u8eab\u5f71\u3002
\u4f8b\u4e09\uff1a\u8d27\u5e01\u627e\u96f6\u3002\u5047\u8bbe\u6211\u4eec\u5728\u8d85\u5e02\u8d2d\u4e70\u4e86 \\(69\\) \u5143\u7684\u5546\u54c1\uff0c\u7ed9\u4e86\u6536\u94f6\u5458 \\(100\\) \u5143\uff0c\u5219\u6536\u94f6\u5458\u9700\u8981\u627e\u6211\u4eec \\(31\\) \u5143\u3002\u4ed6\u4f1a\u5f88\u81ea\u7136\u5730\u5b8c\u6210\u5982\u56fe 1-3 \u6240\u793a\u7684\u601d\u8003\u3002
- \u53ef\u9009\u9879\u662f\u6bd4 \\(31\\) \u5143\u9762\u503c\u66f4\u5c0f\u7684\u8d27\u5e01\uff0c\u5305\u62ec \\(1\\) \u5143\u3001\\(5\\) \u5143\u3001\\(10\\) \u5143\u3001\\(20\\) \u5143\u3002
- \u4ece\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(20\\) \u5143\uff0c\u5269\u4f59 \\(31 - 20 = 11\\) \u5143\u3002
- \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(10\\) \u5143\uff0c\u5269\u4f59 \\(11 - 10 = 1\\) \u5143\u3002
- \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(1\\) \u5143\uff0c\u5269\u4f59 \\(1 - 1 = 0\\) \u5143\u3002
- \u5b8c\u6210\u627e\u96f6\uff0c\u65b9\u6848\u4e3a \\(20 + 10 + 1 = 31\\) \u5143\u3002
\u56fe 1-3 \u00a0 \u8d27\u5e01\u627e\u96f6\u8fc7\u7a0b
\u5728\u4ee5\u4e0a\u6b65\u9aa4\u4e2d\uff0c\u6211\u4eec\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u6700\u597d\u7684\u9009\u62e9\uff08\u5c3d\u53ef\u80fd\u7528\u5927\u9762\u989d\u7684\u8d27\u5e01\uff09\uff0c\u6700\u7ec8\u5f97\u5230\u4e86\u53ef\u884c\u7684\u627e\u96f6\u65b9\u6848\u3002\u4ece\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u201c\u8d2a\u5fc3\u201d\u7b97\u6cd5\u3002
\u5c0f\u5230\u70f9\u996a\u4e00\u9053\u83dc\uff0c\u5927\u5230\u661f\u9645\u822a\u884c\uff0c\u51e0\u4e4e\u6240\u6709\u95ee\u9898\u7684\u89e3\u51b3\u90fd\u79bb\u4e0d\u5f00\u7b97\u6cd5\u3002\u8ba1\u7b97\u673a\u7684\u51fa\u73b0\u4f7f\u5f97\u6211\u4eec\u80fd\u591f\u901a\u8fc7\u7f16\u7a0b\u5c06\u6570\u636e\u7ed3\u6784\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\uff0c\u540c\u65f6\u7f16\u5199\u4ee3\u7801\u8c03\u7528 CPU \u548c GPU \u6267\u884c\u7b97\u6cd5\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u6211\u4eec\u5c31\u80fd\u628a\u751f\u6d3b\u4e2d\u7684\u95ee\u9898\u8f6c\u79fb\u5230\u8ba1\u7b97\u673a\u4e0a\uff0c\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u89e3\u51b3\u5404\u79cd\u590d\u6742\u95ee\u9898\u3002
Tip
\u5982\u679c\u4f60\u5bf9\u6570\u636e\u7ed3\u6784\u3001\u7b97\u6cd5\u3001\u6570\u7ec4\u548c\u4e8c\u5206\u67e5\u627e\u7b49\u6982\u5ff5\u4ecd\u611f\u5230\u4e00\u77e5\u534a\u89e3\uff0c\u8bf7\u7ee7\u7eed\u5f80\u4e0b\u9605\u8bfb\uff0c\u672c\u4e66\u5c06\u5f15\u5bfc\u4f60\u8fc8\u5165\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u77e5\u8bc6\u6bbf\u5802\u3002
"},{"location":"chapter_introduction/summary/","title":"1.3 \u00a0 \u5c0f\u7ed3","text":" - \u7b97\u6cd5\u5728\u65e5\u5e38\u751f\u6d3b\u4e2d\u65e0\u5904\u4e0d\u5728\uff0c\u5e76\u4e0d\u662f\u9065\u4e0d\u53ef\u53ca\u7684\u9ad8\u6df1\u77e5\u8bc6\u3002\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u7528\u4ee5\u89e3\u51b3\u751f\u6d3b\u4e2d\u7684\u5927\u5c0f\u95ee\u9898\u3002
- \u67e5\u9605\u5b57\u5178\u7684\u539f\u7406\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u76f8\u4e00\u81f4\u3002\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u4f53\u73b0\u4e86\u5206\u800c\u6cbb\u4e4b\u7684\u91cd\u8981\u7b97\u6cd5\u601d\u60f3\u3002
- \u6574\u7406\u6251\u514b\u7684\u8fc7\u7a0b\u4e0e\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u975e\u5e38\u7c7b\u4f3c\u3002\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u9002\u5408\u6392\u5e8f\u5c0f\u578b\u6570\u636e\u96c6\u3002
- \u8d27\u5e01\u627e\u96f6\u7684\u6b65\u9aa4\u672c\u8d28\u4e0a\u662f\u8d2a\u5fc3\u7b97\u6cd5\uff0c\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u6700\u597d\u7684\u9009\u62e9\u3002
- \u7b97\u6cd5\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u800c\u6570\u636e\u7ed3\u6784\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002
- \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7d27\u5bc6\u76f8\u8fde\u3002\u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\uff0c\u800c\u7b97\u6cd5\u662f\u6570\u636e\u7ed3\u6784\u53d1\u6325\u4f5c\u7528\u7684\u821e\u53f0\u3002
- \u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u62fc\u88c5\u79ef\u6728\uff0c\u79ef\u6728\u4ee3\u8868\u6570\u636e\uff0c\u79ef\u6728\u7684\u5f62\u72b6\u548c\u8fde\u63a5\u65b9\u5f0f\u7b49\u4ee3\u8868\u6570\u636e\u7ed3\u6784\uff0c\u62fc\u88c5\u79ef\u6728\u7684\u6b65\u9aa4\u5219\u5bf9\u5e94\u7b97\u6cd5\u3002
"},{"location":"chapter_introduction/what_is_dsa/","title":"1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48","text":""},{"location":"chapter_introduction/what_is_dsa/#121","title":"1.2.1 \u00a0 \u7b97\u6cd5\u5b9a\u4e49","text":"\u300c\u7b97\u6cd5 algorithm\u300d\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u5b83\u5177\u6709\u4ee5\u4e0b\u7279\u6027\u3002
- \u95ee\u9898\u662f\u660e\u786e\u7684\uff0c\u5305\u542b\u6e05\u6670\u7684\u8f93\u5165\u548c\u8f93\u51fa\u5b9a\u4e49\u3002
- \u5177\u6709\u53ef\u884c\u6027\uff0c\u80fd\u591f\u5728\u6709\u9650\u6b65\u9aa4\u3001\u65f6\u95f4\u548c\u5185\u5b58\u7a7a\u95f4\u4e0b\u5b8c\u6210\u3002
- \u5404\u6b65\u9aa4\u90fd\u6709\u786e\u5b9a\u7684\u542b\u4e49\uff0c\u5728\u76f8\u540c\u7684\u8f93\u5165\u548c\u8fd0\u884c\u6761\u4ef6\u4e0b\uff0c\u8f93\u51fa\u59cb\u7ec8\u76f8\u540c\u3002
"},{"location":"chapter_introduction/what_is_dsa/#122","title":"1.2.2 \u00a0 \u6570\u636e\u7ed3\u6784\u5b9a\u4e49","text":"\u300c\u6570\u636e\u7ed3\u6784 data structure\u300d\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\uff0c\u5177\u6709\u4ee5\u4e0b\u8bbe\u8ba1\u76ee\u6807\u3002
- \u7a7a\u95f4\u5360\u7528\u5c3d\u91cf\u5c11\uff0c\u4ee5\u8282\u7701\u8ba1\u7b97\u673a\u5185\u5b58\u3002
- \u6570\u636e\u64cd\u4f5c\u5c3d\u53ef\u80fd\u5feb\u901f\uff0c\u6db5\u76d6\u6570\u636e\u8bbf\u95ee\u3001\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66f4\u65b0\u7b49\u3002
- \u63d0\u4f9b\u7b80\u6d01\u7684\u6570\u636e\u8868\u793a\u548c\u903b\u8f91\u4fe1\u606f\uff0c\u4ee5\u4fbf\u7b97\u6cd5\u9ad8\u6548\u8fd0\u884c\u3002
\u6570\u636e\u7ed3\u6784\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5145\u6ee1\u6743\u8861\u7684\u8fc7\u7a0b\u3002\u5982\u679c\u60f3\u5728\u67d0\u65b9\u9762\u53d6\u5f97\u63d0\u5347\uff0c\u5f80\u5f80\u9700\u8981\u5728\u53e6\u4e00\u65b9\u9762\u4f5c\u51fa\u59a5\u534f\u3002\u4e0b\u9762\u4e3e\u4e24\u4e2a\u4f8b\u5b50\u3002
- \u94fe\u8868\u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5728\u6570\u636e\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u4e0a\u66f4\u52a0\u4fbf\u6377\uff0c\u4f46\u727a\u7272\u4e86\u6570\u636e\u8bbf\u95ee\u901f\u5ea6\u3002
- \u56fe\u76f8\u8f83\u4e8e\u94fe\u8868\uff0c\u63d0\u4f9b\u4e86\u66f4\u4e30\u5bcc\u7684\u903b\u8f91\u4fe1\u606f\uff0c\u4f46\u9700\u8981\u5360\u7528\u66f4\u5927\u7684\u5185\u5b58\u7a7a\u95f4\u3002
"},{"location":"chapter_introduction/what_is_dsa/#123","title":"1.2.3 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb","text":"\u5982\u56fe 1-4 \u6240\u793a\uff0c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u9ad8\u5ea6\u76f8\u5173\u3001\u7d27\u5bc6\u7ed3\u5408\uff0c\u5177\u4f53\u8868\u73b0\u5728\u4ee5\u4e0b\u4e09\u4e2a\u65b9\u9762\u3002
- \u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\u3002\u6570\u636e\u7ed3\u6784\u4e3a\u7b97\u6cd5\u63d0\u4f9b\u4e86\u7ed3\u6784\u5316\u5b58\u50a8\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u64cd\u4f5c\u6570\u636e\u7684\u65b9\u6cd5\u3002
- \u7b97\u6cd5\u662f\u6570\u636e\u7ed3\u6784\u53d1\u6325\u4f5c\u7528\u7684\u821e\u53f0\u3002\u6570\u636e\u7ed3\u6784\u672c\u8eab\u4ec5\u5b58\u50a8\u6570\u636e\u4fe1\u606f\uff0c\u7ed3\u5408\u7b97\u6cd5\u624d\u80fd\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u3002
- \u7b97\u6cd5\u901a\u5e38\u53ef\u4ee5\u57fa\u4e8e\u4e0d\u540c\u7684\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff0c\u4f46\u6267\u884c\u6548\u7387\u53ef\u80fd\u76f8\u5dee\u5f88\u5927\uff0c\u9009\u62e9\u5408\u9002\u7684\u6570\u636e\u7ed3\u6784\u662f\u5173\u952e\u3002
\u56fe 1-4 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb
\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u72b9\u5982\u56fe 1-5 \u6240\u793a\u7684\u62fc\u88c5\u79ef\u6728\u3002\u4e00\u5957\u79ef\u6728\uff0c\u9664\u4e86\u5305\u542b\u8bb8\u591a\u96f6\u4ef6\u4e4b\u5916\uff0c\u8fd8\u9644\u6709\u8be6\u7ec6\u7684\u7ec4\u88c5\u8bf4\u660e\u4e66\u3002\u6211\u4eec\u6309\u7167\u8bf4\u660e\u4e66\u4e00\u6b65\u6b65\u64cd\u4f5c\uff0c\u5c31\u80fd\u7ec4\u88c5\u51fa\u7cbe\u7f8e\u7684\u79ef\u6728\u6a21\u578b\u3002
\u56fe 1-5 \u00a0 \u62fc\u88c5\u79ef\u6728
\u4e24\u8005\u7684\u8be6\u7ec6\u5bf9\u5e94\u5173\u7cfb\u5982\u8868 1-1 \u6240\u793a\u3002
\u8868 1-1 \u00a0 \u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u62fc\u88c5\u79ef\u6728
\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5 \u62fc\u88c5\u79ef\u6728 \u8f93\u5165\u6570\u636e \u672a\u62fc\u88c5\u7684\u79ef\u6728 \u6570\u636e\u7ed3\u6784 \u79ef\u6728\u7ec4\u7ec7\u5f62\u5f0f\uff0c\u5305\u62ec\u5f62\u72b6\u3001\u5927\u5c0f\u3001\u8fde\u63a5\u65b9\u5f0f\u7b49 \u7b97\u6cd5 \u628a\u79ef\u6728\u62fc\u6210\u76ee\u6807\u5f62\u6001\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u6b65\u9aa4 \u8f93\u51fa\u6570\u636e \u79ef\u6728\u6a21\u578b \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u662f\u72ec\u7acb\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u3002\u6b63\u56e0\u5982\u6b64\uff0c\u672c\u4e66\u5f97\u4ee5\u63d0\u4f9b\u57fa\u4e8e\u591a\u79cd\u7f16\u7a0b\u8bed\u8a00\u7684\u5b9e\u73b0\u3002
\u7ea6\u5b9a\u4fd7\u6210\u7684\u7b80\u79f0
\u5728\u5b9e\u9645\u8ba8\u8bba\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u201c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u201d\u7b80\u79f0\u4e3a\u201c\u7b97\u6cd5\u201d\u3002\u6bd4\u5982\u4f17\u6240\u5468\u77e5\u7684 LeetCode \u7b97\u6cd5\u9898\u76ee\uff0c\u5b9e\u9645\u4e0a\u540c\u65f6\u8003\u67e5\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e24\u65b9\u9762\u7684\u77e5\u8bc6\u3002
"},{"location":"chapter_preface/","title":"\u7b2c 0 \u7ae0 \u00a0 \u524d\u8a00","text":"Abstract
\u7b97\u6cd5\u72b9\u5982\u7f8e\u5999\u7684\u4ea4\u54cd\u4e50\uff0c\u6bcf\u4e00\u884c\u4ee3\u7801\u90fd\u50cf\u97f5\u5f8b\u822c\u6d41\u6dcc\u3002
\u613f\u8fd9\u672c\u4e66\u5728\u4f60\u7684\u8111\u6d77\u4e2d\u8f7b\u8f7b\u54cd\u8d77\uff0c\u7559\u4e0b\u72ec\u7279\u800c\u6df1\u523b\u7684\u65cb\u5f8b\u3002
"},{"location":"chapter_preface/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 0.1 \u00a0 \u5173\u4e8e\u672c\u4e66
- 0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66
- 0.3 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_preface/about_the_book/","title":"0.1 \u00a0 \u5173\u4e8e\u672c\u4e66","text":"\u672c\u9879\u76ee\u65e8\u5728\u521b\u5efa\u4e00\u672c\u5f00\u6e90\u3001\u514d\u8d39\u3001\u65b0\u624b\u53cb\u597d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u6559\u7a0b\u3002
- \u5168\u4e66\u91c7\u7528\u52a8\u753b\u56fe\u89e3\uff0c\u7ed3\u6784\u5316\u5730\u8bb2\u89e3\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u5185\u5bb9\u6e05\u6670\u6613\u61c2\u3001\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1\u3002
- \u7b97\u6cd5\u6e90\u4ee3\u7801\u7686\u53ef\u4e00\u952e\u8fd0\u884c\uff0c\u652f\u6301 Python\u3001C++\u3001Java\u3001C#\u3001Go\u3001Swift\u3001JavaScript\u3001TypeScript\u3001Dart\u3001Rust\u3001C\u3001Zig \u7b49\u8bed\u8a00\u3002
- \u9f13\u52b1\u8bfb\u8005\u5728\u7ae0\u8282\u8ba8\u8bba\u533a\u4e92\u5e2e\u4e92\u52a9\u3001\u5171\u540c\u8fdb\u6b65\uff0c\u63d0\u95ee\u4e0e\u8bc4\u8bba\u901a\u5e38\u53ef\u5728\u4e24\u65e5\u5185\u5f97\u5230\u56de\u590d\u3002
"},{"location":"chapter_preface/about_the_book/#011","title":"0.1.1 \u00a0 \u8bfb\u8005\u5bf9\u8c61","text":"\u82e5\u4f60\u662f\u7b97\u6cd5\u521d\u5b66\u8005\uff0c\u4ece\u672a\u63a5\u89e6\u8fc7\u7b97\u6cd5\uff0c\u6216\u8005\u5df2\u7ecf\u6709\u4e00\u4e9b\u5237\u9898\u7ecf\u9a8c\uff0c\u5bf9\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6709\u6a21\u7cca\u7684\u8ba4\u8bc6\uff0c\u5728\u4f1a\u4e0e\u4e0d\u4f1a\u4e4b\u95f4\u53cd\u590d\u6a2a\u8df3\uff0c\u90a3\u4e48\u672c\u4e66\u6b63\u662f\u4e3a\u4f60\u91cf\u8eab\u5b9a\u5236\u7684\uff01
\u5982\u679c\u4f60\u5df2\u7ecf\u79ef\u7d2f\u4e00\u5b9a\u5237\u9898\u91cf\uff0c\u719f\u6089\u5927\u90e8\u5206\u9898\u578b\uff0c\u90a3\u4e48\u672c\u4e66\u53ef\u52a9\u4f60\u56de\u987e\u4e0e\u68b3\u7406\u7b97\u6cd5\u77e5\u8bc6\u4f53\u7cfb\uff0c\u4ed3\u5e93\u6e90\u4ee3\u7801\u53ef\u4ee5\u5f53\u4f5c\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u6216\u201c\u7b97\u6cd5\u5b57\u5178\u201d\u6765\u4f7f\u7528\u3002
\u82e5\u4f60\u662f\u7b97\u6cd5\u5927\u795e\uff0c\u6211\u4eec\u671f\u5f85\u6536\u5230\u4f60\u7684\u5b9d\u8d35\u5efa\u8bae\uff0c\u6216\u8005\u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c\u3002
\u524d\u7f6e\u6761\u4ef6
\u4f60\u9700\u8981\u81f3\u5c11\u5177\u5907\u4efb\u4e00\u8bed\u8a00\u7684\u7f16\u7a0b\u57fa\u7840\uff0c\u80fd\u591f\u9605\u8bfb\u548c\u7f16\u5199\u7b80\u5355\u4ee3\u7801\u3002
"},{"location":"chapter_preface/about_the_book/#012","title":"0.1.2 \u00a0 \u5185\u5bb9\u7ed3\u6784","text":"\u672c\u4e66\u7684\u4e3b\u8981\u5185\u5bb9\u5982\u56fe 0-1 \u6240\u793a\u3002
- \u590d\u6742\u5ea6\u5206\u6790\uff1a\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u7684\u8bc4\u4ef7\u7ef4\u5ea6\u4e0e\u65b9\u6cd5\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u3001\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u793a\u4f8b\u7b49\u3002
- \u6570\u636e\u7ed3\u6784\uff1a\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c\u6570\u636e\u7ed3\u6784\u7684\u5206\u7c7b\u65b9\u6cd5\u3002\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u5e38\u7528\u64cd\u4f5c\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u5178\u578b\u5e94\u7528\u3001\u5b9e\u73b0\u65b9\u6cd5\u7b49\u3002
- \u7b97\u6cd5\uff1a\u641c\u7d22\u3001\u6392\u5e8f\u3001\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u6548\u7387\u3001\u5e94\u7528\u573a\u666f\u3001\u89e3\u9898\u6b65\u9aa4\u548c\u793a\u4f8b\u95ee\u9898\u7b49\u3002
\u56fe 0-1 \u00a0 \u672c\u4e66\u4e3b\u8981\u5185\u5bb9
"},{"location":"chapter_preface/about_the_book/#013","title":"0.1.3 \u00a0 \u81f4\u8c22","text":"\u5728\u672c\u4e66\u7684\u521b\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u5f97\u5230\u4e86\u8bb8\u591a\u4eba\u7684\u5e2e\u52a9\uff0c\u5305\u62ec\u4f46\u4e0d\u9650\u4e8e\uff1a
- \u611f\u8c22\u6211\u5728\u516c\u53f8\u7684\u5bfc\u5e08\u674e\u6c50\u535a\u58eb\uff0c\u5728\u4e00\u6b21\u7545\u8c08\u4e2d\u4f60\u9f13\u52b1\u6211\u201c\u5feb\u884c\u52a8\u8d77\u6765\u201d\uff0c\u575a\u5b9a\u4e86\u6211\u5199\u8fd9\u672c\u4e66\u7684\u51b3\u5fc3\uff1b
- \u611f\u8c22\u6211\u7684\u5973\u670b\u53cb\u6ce1\u6ce1\u4f5c\u4e3a\u672c\u4e66\u7684\u9996\u4f4d\u8bfb\u8005\uff0c\u4ece\u7b97\u6cd5\u5c0f\u767d\u7684\u89d2\u5ea6\u63d0\u51fa\u8bb8\u591a\u5b9d\u8d35\u5efa\u8bae\uff0c\u4f7f\u5f97\u672c\u4e66\u66f4\u9002\u5408\u65b0\u624b\u9605\u8bfb\uff1b
- \u611f\u8c22\u817e\u5b9d\u3001\u7426\u5b9d\u3001\u98de\u5b9d\u4e3a\u672c\u4e66\u8d77\u4e86\u4e00\u4e2a\u5bcc\u6709\u521b\u610f\u7684\u540d\u5b57\uff0c\u5524\u8d77\u5927\u5bb6\u5199\u4e0b\u7b2c\u4e00\u884c\u4ee3\u7801 \"Hello World!\" \u7684\u7f8e\u597d\u56de\u5fc6\uff1b
- \u611f\u8c22\u6821\u94e8\u5728\u77e5\u8bc6\u4ea7\u6743\u65b9\u9762\u63d0\u4f9b\u7684\u4e13\u4e1a\u5e2e\u52a9\uff0c\u8fd9\u5bf9\u672c\u5f00\u6e90\u4e66\u7684\u53d1\u5c55\u8d77\u5230\u4e86\u91cd\u8981\u7684\u4f5c\u7528\uff1b
- \u611f\u8c22\u82cf\u6f7c\u4e3a\u672c\u4e66\u8bbe\u8ba1\u4e86\u7cbe\u7f8e\u7684\u5c01\u9762\u548c logo \uff0c\u5e76\u5728\u6211\u7684\u5f3a\u8feb\u75c7\u4e0b\u591a\u6b21\u8010\u5fc3\u4fee\u6539\uff1b
- \u611f\u8c22 @squidfunk \u63d0\u4f9b\u7684\u5199\u4f5c\u6392\u7248\u5efa\u8bae\uff0c\u4ee5\u53ca\u4ed6\u5f00\u53d1\u7684\u5f00\u6e90\u6587\u6863\u4e3b\u9898 Material-for-MkDocs \u3002
\u5728\u5199\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u9605\u8bfb\u4e86\u8bb8\u591a\u5173\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u6559\u6750\u548c\u6587\u7ae0\u3002\u8fd9\u4e9b\u4f5c\u54c1\u4e3a\u672c\u4e66\u63d0\u4f9b\u4e86\u4f18\u79c0\u7684\u8303\u672c\uff0c\u786e\u4fdd\u4e86\u672c\u4e66\u5185\u5bb9\u7684\u51c6\u786e\u6027\u4e0e\u54c1\u8d28\u3002\u5728\u6b64\u611f\u8c22\u6240\u6709\u8001\u5e08\u548c\u524d\u8f88\u4eec\u7684\u6770\u51fa\u8d21\u732e\uff01
\u672c\u4e66\u5021\u5bfc\u624b\u8111\u5e76\u7528\u7684\u5b66\u4e60\u65b9\u5f0f\uff0c\u5728\u8fd9\u4e00\u70b9\u4e0a\u6df1\u53d7\u300a\u52a8\u624b\u5b66\u6df1\u5ea6\u5b66\u4e60\u300b\u7684\u542f\u53d1\u3002\u5728\u6b64\u5411\u5404\u4f4d\u8bfb\u8005\u5f3a\u70c8\u63a8\u8350\u8fd9\u672c\u4f18\u79c0\u7684\u8457\u4f5c\u3002
\u8877\u5fc3\u611f\u8c22\u6211\u7684\u7236\u6bcd\uff0c\u6b63\u662f\u4f60\u4eec\u4e00\u76f4\u4ee5\u6765\u7684\u652f\u6301\u4e0e\u9f13\u52b1\uff0c\u8ba9\u6211\u6709\u673a\u4f1a\u505a\u8fd9\u4ef6\u5bcc\u6709\u8da3\u5473\u7684\u4e8b\u3002
"},{"location":"chapter_preface/suggestions/","title":"0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66","text":"Tip
\u4e3a\u4e86\u83b7\u5f97\u6700\u4f73\u7684\u9605\u8bfb\u4f53\u9a8c\uff0c\u5efa\u8bae\u4f60\u901a\u8bfb\u672c\u8282\u5185\u5bb9\u3002
"},{"location":"chapter_preface/suggestions/#021","title":"0.2.1 \u00a0 \u884c\u6587\u98ce\u683c\u7ea6\u5b9a","text":" - \u6807\u9898\u540e\u6807\u6ce8
* \u7684\u662f\u9009\u8bfb\u7ae0\u8282\uff0c\u5185\u5bb9\u76f8\u5bf9\u56f0\u96be\u3002\u5982\u679c\u4f60\u7684\u65f6\u95f4\u6709\u9650\uff0c\u53ef\u4ee5\u5148\u8df3\u8fc7\u3002 - \u91cd\u8981\u4e13\u6709\u540d\u8bcd\u53ca\u5176\u82f1\u6587\u7ffb\u8bd1\u4f1a\u7528
\u300c \u300d \u62ec\u53f7\u6807\u6ce8\uff0c\u4f8b\u5982 \u300c\u6570\u7ec4 array\u300d \u3002\u5efa\u8bae\u8bb0\u4f4f\u5b83\u4eec\uff0c\u4ee5\u4fbf\u9605\u8bfb\u6587\u732e\u3002 - \u4e13\u6709\u540d\u8bcd\u548c\u6709\u7279\u6307\u542b\u4e49\u7684\u8bcd\u53e5\u4f1a\u4f7f\u7528
\u201c\u5f15\u53f7\u201d \u6807\u6ce8\uff0c\u4ee5\u907f\u514d\u6b67\u4e49\u3002 - \u91cd\u8981\u540d\u8bcd\u3001\u91cd\u70b9\u5185\u5bb9\u548c\u603b\u7ed3\u6027\u8bed\u53e5\u4f1a\u88ab \u52a0\u7c97 \uff0c\u8fd9\u7c7b\u6587\u5b57\u503c\u5f97\u7279\u522b\u5173\u6ce8\u3002
- \u5f53\u6d89\u53ca\u7f16\u7a0b\u8bed\u8a00\u4e4b\u95f4\u4e0d\u4e00\u81f4\u7684\u540d\u8bcd\u65f6\uff0c\u672c\u4e66\u5747\u4ee5 Python \u4e3a\u51c6\uff0c\u4f8b\u5982\u4f7f\u7528 \\(\\text{None}\\) \u6765\u8868\u793a\u201c\u7a7a\u201d\u3002
- \u672c\u4e66\u90e8\u5206\u653e\u5f03\u4e86\u7f16\u7a0b\u8bed\u8a00\u7684\u6ce8\u91ca\u89c4\u8303\uff0c\u4ee5\u6362\u53d6\u66f4\u52a0\u7d27\u51d1\u7684\u5185\u5bb9\u6392\u7248\u3002\u6ce8\u91ca\u4e3b\u8981\u5206\u4e3a\u4e09\u79cd\u7c7b\u578b\uff1a\u6807\u9898\u6ce8\u91ca\u3001\u5185\u5bb9\u6ce8\u91ca\u3001\u591a\u884c\u6ce8\u91ca\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig \"\"\"\u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\"\"\"\n\n# \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n\"\"\"\n\u591a\u884c\n\u6ce8\u91ca\n\"\"\"\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
// \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n// \u591a\u884c\n// \u6ce8\u91ca\n
"},{"location":"chapter_preface/suggestions/#022","title":"0.2.2 \u00a0 \u5728\u52a8\u753b\u56fe\u89e3\u4e2d\u9ad8\u6548\u5b66\u4e60","text":"\u76f8\u8f83\u4e8e\u6587\u5b57\uff0c\u89c6\u9891\u548c\u56fe\u7247\u5177\u6709\u66f4\u9ad8\u7684\u4fe1\u606f\u5bc6\u5ea6\u548c\u7ed3\u6784\u5316\u7a0b\u5ea6\uff0c\u66f4\u6613\u4e8e\u7406\u89e3\u3002\u5728\u672c\u4e66\u4e2d\uff0c\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u5c06\u4e3b\u8981\u901a\u8fc7\u52a8\u753b\u548c\u56fe\u89e3\u5f62\u5f0f\u5c55\u793a\uff0c\u800c\u6587\u5b57\u5219\u4f5c\u4e3a\u52a8\u753b\u548c\u56fe\u7247\u7684\u89e3\u91ca\u4e0e\u8865\u5145\u3002
\u5982\u679c\u4f60\u5728\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u53d1\u73b0\u67d0\u6bb5\u5185\u5bb9\u63d0\u4f9b\u4e86\u5982\u56fe 0-2 \u6240\u793a\u7684\u52a8\u753b\u6216\u56fe\u89e3\uff0c\u8bf7\u4ee5\u56fe\u4e3a\u4e3b\u3001\u4ee5\u6587\u5b57\u4e3a\u8f85\uff0c\u7efc\u5408\u4e24\u8005\u6765\u7406\u89e3\u5185\u5bb9\u3002
\u56fe 0-2 \u00a0 \u52a8\u753b\u56fe\u89e3\u793a\u4f8b
"},{"location":"chapter_preface/suggestions/#023","title":"0.2.3 \u00a0 \u5728\u4ee3\u7801\u5b9e\u8df5\u4e2d\u52a0\u6df1\u7406\u89e3","text":"\u672c\u4e66\u7684\u914d\u5957\u4ee3\u7801\u6258\u7ba1\u5728 GitHub \u4ed3\u5e93\u3002\u5982\u56fe 0-3 \u6240\u793a\uff0c\u6e90\u4ee3\u7801\u9644\u6709\u6d4b\u8bd5\u6837\u4f8b\uff0c\u53ef\u4e00\u952e\u8fd0\u884c\u3002
\u5982\u679c\u65f6\u95f4\u5141\u8bb8\uff0c\u5efa\u8bae\u4f60\u53c2\u7167\u4ee3\u7801\u81ea\u884c\u6572\u4e00\u904d\u3002\u5982\u679c\u5b66\u4e60\u65f6\u95f4\u6709\u9650\uff0c\u8bf7\u81f3\u5c11\u901a\u8bfb\u5e76\u8fd0\u884c\u6240\u6709\u4ee3\u7801\u3002
\u4e0e\u9605\u8bfb\u4ee3\u7801\u76f8\u6bd4\uff0c\u7f16\u5199\u4ee3\u7801\u7684\u8fc7\u7a0b\u5f80\u5f80\u80fd\u5e26\u6765\u66f4\u591a\u6536\u83b7\u3002\u52a8\u624b\u5b66\uff0c\u624d\u662f\u771f\u7684\u5b66\u3002
\u56fe 0-3 \u00a0 \u8fd0\u884c\u4ee3\u7801\u793a\u4f8b
\u8fd0\u884c\u4ee3\u7801\u7684\u524d\u7f6e\u5de5\u4f5c\u4e3b\u8981\u5206\u4e3a\u4e09\u6b65\u3002
\u7b2c\u4e00\u6b65\uff1a\u5b89\u88c5\u672c\u5730\u7f16\u7a0b\u73af\u5883\u3002\u8bf7\u53c2\u7167\u9644\u5f55\u6240\u793a\u7684\u6559\u7a0b\u8fdb\u884c\u5b89\u88c5\uff0c\u5982\u679c\u5df2\u5b89\u88c5\uff0c\u5219\u53ef\u8df3\u8fc7\u6b64\u6b65\u9aa4\u3002
\u7b2c\u4e8c\u6b65\uff1a\u514b\u9686\u6216\u4e0b\u8f7d\u4ee3\u7801\u4ed3\u5e93\u3002\u524d\u5f80 GitHub \u4ed3\u5e93\u3002
\u5982\u679c\u5df2\u7ecf\u5b89\u88c5 Git \uff0c\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u514b\u9686\u672c\u4ed3\u5e93\uff1a
git clone https://github.com/krahets/hello-algo.git\n
\u5f53\u7136\uff0c\u4f60\u4e5f\u53ef\u4ee5\u5728\u56fe 0-4 \u6240\u793a\u7684\u4f4d\u7f6e\uff0c\u70b9\u51fb\u201cDownload ZIP\u201d\u6309\u94ae\u76f4\u63a5\u4e0b\u8f7d\u4ee3\u7801\u538b\u7f29\u5305\uff0c\u7136\u540e\u5728\u672c\u5730\u89e3\u538b\u5373\u53ef\u3002
\u56fe 0-4 \u00a0 \u514b\u9686\u4ed3\u5e93\u4e0e\u4e0b\u8f7d\u4ee3\u7801
\u7b2c\u4e09\u6b65\uff1a\u8fd0\u884c\u6e90\u4ee3\u7801\u3002\u5982\u56fe 0-5 \u6240\u793a\uff0c\u5bf9\u4e8e\u9876\u90e8\u6807\u6709\u6587\u4ef6\u540d\u79f0\u7684\u4ee3\u7801\u5757\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u4ed3\u5e93\u7684 codes \u6587\u4ef6\u5939\u5185\u627e\u5230\u5bf9\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6\u3002\u6e90\u4ee3\u7801\u6587\u4ef6\u53ef\u4e00\u952e\u8fd0\u884c\uff0c\u5c06\u5e2e\u52a9\u4f60\u8282\u7701\u4e0d\u5fc5\u8981\u7684\u8c03\u8bd5\u65f6\u95f4\uff0c\u8ba9\u4f60\u80fd\u591f\u4e13\u6ce8\u4e8e\u5b66\u4e60\u5185\u5bb9\u3002
\u56fe 0-5 \u00a0 \u4ee3\u7801\u5757\u4e0e\u5bf9\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6
"},{"location":"chapter_preface/suggestions/#024","title":"0.2.4 \u00a0 \u5728\u63d0\u95ee\u8ba8\u8bba\u4e2d\u5171\u540c\u6210\u957f","text":"\u5728\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u8bf7\u4e0d\u8981\u8f7b\u6613\u8df3\u8fc7\u90a3\u4e9b\u6ca1\u5b66\u660e\u767d\u7684\u77e5\u8bc6\u70b9\u3002\u6b22\u8fce\u5728\u8bc4\u8bba\u533a\u63d0\u51fa\u4f60\u7684\u95ee\u9898\uff0c\u6211\u548c\u5c0f\u4f19\u4f34\u4eec\u5c06\u7aed\u8bda\u4e3a\u4f60\u89e3\u7b54\uff0c\u4e00\u822c\u60c5\u51b5\u4e0b\u53ef\u5728\u4e24\u5929\u5185\u56de\u590d\u3002
\u5982\u56fe 0-6 \u6240\u793a\uff0c\u6bcf\u4e2a\u7ae0\u8282\u7684\u5e95\u90e8\u90fd\u914d\u6709\u8bc4\u8bba\u533a\u3002\u5e0c\u671b\u4f60\u80fd\u591a\u5173\u6ce8\u8bc4\u8bba\u533a\u7684\u5185\u5bb9\u3002\u4e00\u65b9\u9762\uff0c\u4f60\u53ef\u4ee5\u4e86\u89e3\u5927\u5bb6\u9047\u5230\u7684\u95ee\u9898\uff0c\u4ece\u800c\u67e5\u6f0f\u8865\u7f3a\uff0c\u6fc0\u53d1\u66f4\u6df1\u5165\u7684\u601d\u8003\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u671f\u5f85\u4f60\u80fd\u6177\u6168\u5730\u56de\u7b54\u5176\u4ed6\u5c0f\u4f19\u4f34\u7684\u95ee\u9898\uff0c\u5206\u4eab\u4f60\u7684\u89c1\u89e3\uff0c\u5e2e\u52a9\u4ed6\u4eba\u8fdb\u6b65\u3002
\u56fe 0-6 \u00a0 \u8bc4\u8bba\u533a\u793a\u4f8b
"},{"location":"chapter_preface/suggestions/#025","title":"0.2.5 \u00a0 \u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf","text":"\u4ece\u603b\u4f53\u4e0a\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8fc7\u7a0b\u5212\u5206\u4e3a\u4e09\u4e2a\u9636\u6bb5\u3002
- \u9636\u6bb5\u4e00\uff1a\u7b97\u6cd5\u5165\u95e8\u3002\u6211\u4eec\u9700\u8981\u719f\u6089\u5404\u79cd\u6570\u636e\u7ed3\u6784\u7684\u7279\u70b9\u548c\u7528\u6cd5\uff0c\u5b66\u4e60\u4e0d\u540c\u7b97\u6cd5\u7684\u539f\u7406\u3001\u6d41\u7a0b\u3001\u7528\u9014\u548c\u6548\u7387\u7b49\u65b9\u9762\u7684\u5185\u5bb9\u3002
- \u9636\u6bb5\u4e8c\uff1a\u5237\u7b97\u6cd5\u9898\u3002\u5efa\u8bae\u4ece\u70ed\u95e8\u9898\u76ee\u5f00\u5237\uff0c\u5982\u201c\u5251\u6307 Offer\u201d\u548c\u201cLeetCode Hot 100\u201d\uff0c\u5148\u79ef\u7d2f\u81f3\u5c11 100 \u9053\u9898\u76ee\uff0c\u719f\u6089\u4e3b\u6d41\u7684\u7b97\u6cd5\u95ee\u9898\u3002\u521d\u6b21\u5237\u9898\u65f6\uff0c\u201c\u77e5\u8bc6\u9057\u5fd8\u201d\u53ef\u80fd\u662f\u4e00\u4e2a\u6311\u6218\uff0c\u4f46\u8bf7\u653e\u5fc3\uff0c\u8fd9\u662f\u5f88\u6b63\u5e38\u7684\u3002\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u201c\u827e\u5bbe\u6d69\u65af\u9057\u5fd8\u66f2\u7ebf\u201d\u6765\u590d\u4e60\u9898\u76ee\uff0c\u901a\u5e38\u5728\u8fdb\u884c 3\uff5e5 \u8f6e\u7684\u91cd\u590d\u540e\uff0c\u5c31\u80fd\u5c06\u5176\u7262\u8bb0\u5728\u5fc3\u3002
- \u9636\u6bb5\u4e09\uff1a\u642d\u5efa\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5b66\u4e60\u65b9\u9762\uff0c\u6211\u4eec\u53ef\u4ee5\u9605\u8bfb\u7b97\u6cd5\u4e13\u680f\u6587\u7ae0\u3001\u89e3\u9898\u6846\u67b6\u548c\u7b97\u6cd5\u6559\u6750\uff0c\u4ee5\u4e0d\u65ad\u4e30\u5bcc\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5237\u9898\u65b9\u9762\uff0c\u53ef\u4ee5\u5c1d\u8bd5\u91c7\u7528\u8fdb\u9636\u5237\u9898\u7b56\u7565\uff0c\u5982\u6309\u4e13\u9898\u5206\u7c7b\u3001\u4e00\u9898\u591a\u89e3\u3001\u4e00\u89e3\u591a\u9898\u7b49\uff0c\u76f8\u5173\u7684\u5237\u9898\u5fc3\u5f97\u53ef\u4ee5\u5728\u5404\u4e2a\u793e\u533a\u627e\u5230\u3002
\u5982\u56fe 0-7 \u6240\u793a\uff0c\u672c\u4e66\u5185\u5bb9\u4e3b\u8981\u6db5\u76d6\u201c\u9636\u6bb5\u4e00\u201d\uff0c\u65e8\u5728\u5e2e\u52a9\u4f60\u66f4\u9ad8\u6548\u5730\u5c55\u5f00\u9636\u6bb5\u4e8c\u548c\u9636\u6bb5\u4e09\u7684\u5b66\u4e60\u3002
\u56fe 0-7 \u00a0 \u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf
"},{"location":"chapter_preface/summary/","title":"0.3 \u00a0 \u5c0f\u7ed3","text":" - \u672c\u4e66\u7684\u4e3b\u8981\u53d7\u4f17\u662f\u7b97\u6cd5\u521d\u5b66\u8005\u3002\u5982\u679c\u5df2\u6709\u4e00\u5b9a\u57fa\u7840\uff0c\u672c\u4e66\u80fd\u5e2e\u52a9\u4f60\u7cfb\u7edf\u56de\u987e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u4e66\u4e2d\u6e90\u4ee3\u7801\u4e5f\u53ef\u4f5c\u4e3a\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u4f7f\u7528\u3002
- \u4e66\u4e2d\u5185\u5bb9\u4e3b\u8981\u5305\u62ec\u590d\u6742\u5ea6\u5206\u6790\u3001\u6570\u636e\u7ed3\u6784\u3001\u7b97\u6cd5\u4e09\u90e8\u5206\uff0c\u6db5\u76d6\u4e86\u8be5\u9886\u57df\u7684\u5927\u90e8\u5206\u4e3b\u9898\u3002
- \u5bf9\u4e8e\u7b97\u6cd5\u65b0\u624b\uff0c\u5728\u521d\u5b66\u9636\u6bb5\u9605\u8bfb\u4e00\u672c\u5165\u95e8\u4e66\u81f3\u5173\u91cd\u8981\uff0c\u53ef\u4ee5\u5c11\u8d70\u8bb8\u591a\u5f2f\u8def\u3002
- \u4e66\u4e2d\u7684\u52a8\u753b\u548c\u56fe\u89e3\u901a\u5e38\u7528\u4e8e\u4ecb\u7ecd\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u3002\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u5e94\u7ed9\u4e88\u8fd9\u4e9b\u5185\u5bb9\u66f4\u591a\u5173\u6ce8\u3002
- \u5b9e\u8df5\u4e43\u5b66\u4e60\u7f16\u7a0b\u4e4b\u6700\u4f73\u9014\u5f84\u3002\u5f3a\u70c8\u5efa\u8bae\u8fd0\u884c\u6e90\u4ee3\u7801\u5e76\u4eb2\u81ea\u6572\u4ee3\u7801\u3002
- \u672c\u4e66\u7f51\u9875\u7248\u7684\u6bcf\u4e2a\u7ae0\u8282\u90fd\u8bbe\u6709\u8ba8\u8bba\u533a\uff0c\u6b22\u8fce\u968f\u65f6\u5206\u4eab\u4f60\u7684\u7591\u60d1\u4e0e\u89c1\u89e3\u3002
"},{"location":"chapter_reference/","title":"\u53c2\u8003\u6587\u732e","text":"[1] Thomas H. Cormen, et al. Introduction to Algorithms (3rd Edition).
[2] Aditya Bhargava. Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People (1st Edition).
[3] \u4e25\u851a\u654f. \u6570\u636e\u7ed3\u6784\uff08C \u8bed\u8a00\u7248\uff09.
[4] \u9093\u4fca\u8f89. \u6570\u636e\u7ed3\u6784\uff08C++ \u8bed\u8a00\u7248\uff0c\u7b2c\u4e09\u7248\uff09.
[5] \u9a6c\u514b \u827e\u4f26 \u7ef4\u65af\u8457\uff0c\u9648\u8d8a\u8bd1. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5206\u6790\uff1aJava\u8bed\u8a00\u63cf\u8ff0\uff08\u7b2c\u4e09\u7248\uff09.
[6] \u7a0b\u6770. \u5927\u8bdd\u6570\u636e\u7ed3\u6784.
[7] \u738b\u4e89. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u7f8e.
[8] Gayle Laakmann McDowell. Cracking the Coding Interview: 189 Programming Questions and Solutions (6th Edition).
[9] Aston Zhang, et al. Dive into Deep Learning.
"},{"location":"chapter_searching/","title":"\u7b2c 10 \u7ae0 \u00a0 \u641c\u7d22","text":"Abstract
\u641c\u7d22\u662f\u4e00\u573a\u672a\u77e5\u7684\u5192\u9669\uff0c\u6211\u4eec\u6216\u8bb8\u9700\u8981\u8d70\u904d\u795e\u79d8\u7a7a\u95f4\u7684\u6bcf\u4e2a\u89d2\u843d\uff0c\u53c8\u6216\u8bb8\u53ef\u4ee5\u5feb\u901f\u9501\u5b9a\u76ee\u6807\u3002
\u5728\u8fd9\u573a\u5bfb\u89c5\u4e4b\u65c5\u4e2d\uff0c\u6bcf\u4e00\u6b21\u63a2\u7d22\u90fd\u53ef\u80fd\u5f97\u5230\u4e00\u4e2a\u672a\u66fe\u6599\u60f3\u7684\u7b54\u6848\u3002
"},{"location":"chapter_searching/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 10.1 \u00a0 \u4e8c\u5206\u67e5\u627e
- 10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9
- 10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c
- 10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565
- 10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5
- 10.6 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_searching/binary_search/","title":"10.1 \u00a0 \u4e8c\u5206\u67e5\u627e","text":"\u300c\u4e8c\u5206\u67e5\u627e binary search\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u9ad8\u6548\u641c\u7d22\u7b97\u6cd5\u3002\u5b83\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u6bcf\u8f6e\u7f29\u5c0f\u4e00\u534a\u641c\u7d22\u8303\u56f4\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u4e3a\u6b62\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5143\u7d20\u6309\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\u4e14\u4e0d\u91cd\u590d\u3002\u8bf7\u67e5\u627e\u5e76\u8fd4\u56de\u5143\u7d20 target \u5728\u8be5\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002\u793a\u4f8b\u5982\u56fe 10-1 \u6240\u793a\u3002
\u56fe 10-1 \u00a0 \u4e8c\u5206\u67e5\u627e\u793a\u4f8b\u6570\u636e
\u5982\u56fe 10-2 \u6240\u793a\uff0c\u6211\u4eec\u5148\u521d\u59cb\u5316\u6307\u9488 \\(i = 0\\) \u548c \\(j = n - 1\\) \uff0c\u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u548c\u5c3e\u5143\u7d20\uff0c\u4ee3\u8868\u641c\u7d22\u533a\u95f4 \\([0, n - 1]\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u4e2d\u62ec\u53f7\u8868\u793a\u95ed\u533a\u95f4\uff0c\u5176\u5305\u542b\u8fb9\u754c\u503c\u672c\u8eab\u3002
\u63a5\u4e0b\u6765\uff0c\u5faa\u73af\u6267\u884c\u4ee5\u4e0b\u4e24\u6b65\u3002
- \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m = \\lfloor {(i + j) / 2} \\rfloor\\) \uff0c\u5176\u4e2d \\(\\lfloor \\: \\rfloor\\) \u8868\u793a\u5411\u4e0b\u53d6\u6574\u64cd\u4f5c\u3002
- \u5224\u65ad
nums[m] \u548c target \u7684\u5927\u5c0f\u5173\u7cfb\uff0c\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u60c5\u51b5\u3002 - \u5f53
nums[m] < target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([m + 1, j]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(i = m + 1\\) \u3002 - \u5f53
nums[m] > target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(j = m - 1\\) \u3002 - \u5f53
nums[m] = target \u65f6\uff0c\u8bf4\u660e\u627e\u5230 target \uff0c\u56e0\u6b64\u8fd4\u56de\u7d22\u5f15 \\(m\\) \u3002
\u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u76ee\u6807\u5143\u7d20\uff0c\u641c\u7d22\u533a\u95f4\u6700\u7ec8\u4f1a\u7f29\u5c0f\u4e3a\u7a7a\u3002\u6b64\u65f6\u8fd4\u56de \\(-1\\) \u3002
<1><2><3><4><5><6><7> \u56fe 10-2 \u00a0 \u4e8c\u5206\u67e5\u627e\u6d41\u7a0b
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e \\(i\\) \u548c \\(j\\) \u90fd\u662f int \u7c7b\u578b\uff0c\u56e0\u6b64 \\(i + j\\) \u53ef\u80fd\u4f1a\u8d85\u51fa int \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u3002\u4e3a\u4e86\u907f\u514d\u5927\u6570\u8d8a\u754c\uff0c\u6211\u4eec\u901a\u5e38\u91c7\u7528\u516c\u5f0f \\(m = \\lfloor {i + (j - i) / 2} \\rfloor\\) \u6765\u8ba1\u7b97\u4e2d\u70b9\u3002
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search.pydef binary_search(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\"\"\"\n # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n i, j = 0, len(nums) - 1\n # \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while i <= j:\n # \u7406\u8bba\u4e0a Python \u7684\u6570\u5b57\u53ef\u4ee5\u65e0\u9650\u5927\uff08\u53d6\u51b3\u4e8e\u5185\u5b58\u5927\u5c0f\uff09\uff0c\u65e0\u987b\u8003\u8651\u5927\u6570\u8d8a\u754c\u95ee\u9898\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n elif nums[m] > target:\n j = m - 1 # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n else:\n return m # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return -1 # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
binary_search.cpp/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(vector<int> &nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.size() - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.java/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int[] nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.cs/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint BinarySearch(int[] nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.Length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.go/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums []int, target int) int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n i, j := 0, len(nums)-1\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n for i <= j {\n m := i + (j-i)/2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.swift/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums: [Int], target: Int) -> Int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n var i = 0\n var j = nums.count - 1\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while i <= j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.js/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums, target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n let i = 0,\n j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\n const m = parseInt(i + (j - i) / 2);\n if (nums[m] < target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else return m; // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.ts/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums: number[], target: number): number {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n let i = 0,\n j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = Math.floor(i + (j - i) / 2);\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n return -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
binary_search.dart/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(List<int> nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.rs/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n let mut i = 0;\n let mut j = nums.len() as i32 - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while i <= j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if nums[m as usize] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n } \n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.c/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int *nums, int len, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = len - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.zig// \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\nfn binarySearch(comptime T: type, nums: std.ArrayList(T), target: T) T {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n var i: usize = 0;\n var j: usize = nums.items.len - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n var m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums.items[m] < target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if (nums.items[m] > target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return @intCast(m);\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(\\log n)\\) \uff1a\u5728\u4e8c\u5206\u5faa\u73af\u4e2d\uff0c\u533a\u95f4\u6bcf\u8f6e\u7f29\u5c0f\u4e00\u534a\uff0c\u5faa\u73af\u6b21\u6570\u4e3a \\(\\log_2 n\\) \u3002
\u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\) \uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7a7a\u95f4\u3002
"},{"location":"chapter_searching/binary_search/#1011","title":"10.1.1 \u00a0 \u533a\u95f4\u8868\u793a\u65b9\u6cd5","text":"\u9664\u4e86\u4e0a\u8ff0\u53cc\u95ed\u533a\u95f4\u5916\uff0c\u5e38\u89c1\u7684\u533a\u95f4\u8868\u793a\u8fd8\u6709\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u533a\u95f4\uff0c\u5b9a\u4e49\u4e3a \\([0, n)\\) \uff0c\u5373\u5de6\u8fb9\u754c\u5305\u542b\u81ea\u8eab\uff0c\u53f3\u8fb9\u754c\u4e0d\u5305\u542b\u81ea\u8eab\u3002\u5728\u8be5\u8868\u793a\u4e0b\uff0c\u533a\u95f4 \\([i, j)\\) \u5728 \\(i = j\\) \u65f6\u4e3a\u7a7a\u3002
\u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u8be5\u8868\u793a\u5b9e\u73b0\u5177\u6709\u76f8\u540c\u529f\u80fd\u7684\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search.pydef binary_search_lcro(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09\"\"\"\n # \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n i, j = 0, len(nums)\n # \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while i < j:\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n elif nums[m] > target:\n j = m # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n else:\n return m # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return -1 # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
binary_search.cpp/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(vector<int> &nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.size();\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.java/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(int[] nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.cs/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint BinarySearchLCRO(int[] nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.Length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.go/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunc binarySearchLCRO(nums []int, target int) int {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n i, j := 0, len(nums)\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n for i < j {\n m := i + (j-i)/2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.swift/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunc binarySearchLCRO(nums: [Int], target: Int) -> Int {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n var i = 0\n var j = nums.count\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while i < j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.js/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunction binarySearchLCRO(nums, target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n let i = 0,\n j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\n const m = parseInt(i + (j - i) / 2);\n if (nums[m] < target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n else return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.ts/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunction binarySearchLCRO(nums: number[], target: number): number {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n let i = 0,\n j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = Math.floor(i + (j - i) / 2);\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n return -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
binary_search.dart/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(List<int> nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.rs/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfn binary_search_lcro(nums: &[i32], target: i32) -> i32 {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n let mut i = 0;\n let mut j = nums.len() as i32;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while i < j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if nums[m as usize] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n } \n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.c/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(int *nums, int len, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = len;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.zig// \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09\nfn binarySearchLCRO(comptime T: type, nums: std.ArrayList(T), target: T) T {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n var i: usize = 0;\n var j: usize = nums.items.len;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n var m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums.items[m] < target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if (nums.items[m] > target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return @intCast(m);\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
\u5982\u56fe 10-3 \u6240\u793a\uff0c\u5728\u4e24\u79cd\u533a\u95f4\u8868\u793a\u4e0b\uff0c\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u521d\u59cb\u5316\u3001\u5faa\u73af\u6761\u4ef6\u548c\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\u7686\u6709\u6240\u4e0d\u540c\u3002
\u7531\u4e8e\u201c\u53cc\u95ed\u533a\u95f4\u201d\u8868\u793a\u4e2d\u7684\u5de6\u53f3\u8fb9\u754c\u90fd\u88ab\u5b9a\u4e49\u4e3a\u95ed\u533a\u95f4\uff0c\u56e0\u6b64\u901a\u8fc7\u6307\u9488 \\(i\\) \u548c\u6307\u9488 \\(j\\) \u7f29\u5c0f\u533a\u95f4\u7684\u64cd\u4f5c\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u8fd9\u6837\u66f4\u4e0d\u5bb9\u6613\u51fa\u9519\uff0c\u56e0\u6b64\u4e00\u822c\u5efa\u8bae\u91c7\u7528\u201c\u53cc\u95ed\u533a\u95f4\u201d\u7684\u5199\u6cd5\u3002
\u56fe 10-3 \u00a0 \u4e24\u79cd\u533a\u95f4\u5b9a\u4e49
"},{"location":"chapter_searching/binary_search/#1012","title":"10.1.2 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u4e8c\u5206\u67e5\u627e\u5728\u65f6\u95f4\u548c\u7a7a\u95f4\u65b9\u9762\u90fd\u6709\u8f83\u597d\u7684\u6027\u80fd\u3002
- \u4e8c\u5206\u67e5\u627e\u7684\u65f6\u95f4\u6548\u7387\u9ad8\u3002\u5728\u5927\u6570\u636e\u91cf\u4e0b\uff0c\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5177\u6709\u663e\u8457\u4f18\u52bf\u3002\u4f8b\u5982\uff0c\u5f53\u6570\u636e\u5927\u5c0f \\(n = 2^{20}\\) \u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u9700\u8981 \\(2^{20} = 1048576\\) \u8f6e\u5faa\u73af\uff0c\u800c\u4e8c\u5206\u67e5\u627e\u4ec5\u9700 \\(\\log_2 2^{20} = 20\\) \u8f6e\u5faa\u73af\u3002
- \u4e8c\u5206\u67e5\u627e\u65e0\u987b\u989d\u5916\u7a7a\u95f4\u3002\u76f8\u8f83\u4e8e\u9700\u8981\u501f\u52a9\u989d\u5916\u7a7a\u95f4\u7684\u641c\u7d22\u7b97\u6cd5\uff08\u4f8b\u5982\u54c8\u5e0c\u67e5\u627e\uff09\uff0c\u4e8c\u5206\u67e5\u627e\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002
\u7136\u800c\uff0c\u4e8c\u5206\u67e5\u627e\u5e76\u975e\u9002\u7528\u4e8e\u6240\u6709\u60c5\u51b5\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6709\u5e8f\u6570\u636e\u3002\u82e5\u8f93\u5165\u6570\u636e\u65e0\u5e8f\uff0c\u4e3a\u4e86\u4f7f\u7528\u4e8c\u5206\u67e5\u627e\u800c\u4e13\u95e8\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u4e0d\u507f\u5931\u3002\u56e0\u4e3a\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u6bd4\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u90fd\u66f4\u9ad8\u3002\u5bf9\u4e8e\u9891\u7e41\u63d2\u5165\u5143\u7d20\u7684\u573a\u666f\uff0c\u4e3a\u4fdd\u6301\u6570\u7ec4\u6709\u5e8f\u6027\uff0c\u9700\u8981\u5c06\u5143\u7d20\u63d2\u5165\u5230\u7279\u5b9a\u4f4d\u7f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u4e5f\u662f\u975e\u5e38\u6602\u8d35\u7684\u3002
- \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002\u4e8c\u5206\u67e5\u627e\u9700\u8981\u8df3\u8dc3\u5f0f\uff08\u975e\u8fde\u7eed\u5730\uff09\u8bbf\u95ee\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u6267\u884c\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u7684\u6548\u7387\u8f83\u4f4e\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5e94\u7528\u5728\u94fe\u8868\u6216\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
- \u5c0f\u6570\u636e\u91cf\u4e0b\uff0c\u7ebf\u6027\u67e5\u627e\u6027\u80fd\u66f4\u4f73\u3002\u5728\u7ebf\u6027\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u9700 1 \u6b21\u5224\u65ad\u64cd\u4f5c\uff1b\u800c\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u9700\u8981 1 \u6b21\u52a0\u6cd5\u30011 \u6b21\u9664\u6cd5\u30011 ~ 3 \u6b21\u5224\u65ad\u64cd\u4f5c\u30011 \u6b21\u52a0\u6cd5\uff08\u51cf\u6cd5\uff09\uff0c\u5171 4 ~ 6 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u56e0\u6b64\uff0c\u5f53\u6570\u636e\u91cf \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u53cd\u800c\u6bd4\u4e8c\u5206\u67e5\u627e\u66f4\u5feb\u3002
"},{"location":"chapter_searching/binary_search_edge/","title":"10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c","text":""},{"location":"chapter_searching/binary_search_edge/#1031","title":"10.3.1 \u00a0 \u67e5\u627e\u5de6\u8fb9\u754c","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\u3002\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a\u5143\u7d20 target \u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e2d\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002
\u56de\u5fc6\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u7684\u65b9\u6cd5\uff0c\u641c\u7d22\u5b8c\u6210\u540e \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target \uff0c\u56e0\u6b64\u67e5\u627e\u63d2\u5165\u70b9\u672c\u8d28\u4e0a\u662f\u5728\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002
\u8003\u8651\u901a\u8fc7\u67e5\u627e\u63d2\u5165\u70b9\u7684\u51fd\u6570\u5b9e\u73b0\u67e5\u627e\u5de6\u8fb9\u754c\u3002\u8bf7\u6ce8\u610f\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u4e0d\u5305\u542b target \uff0c\u8fd9\u79cd\u60c5\u51b5\u53ef\u80fd\u5bfc\u81f4\u4ee5\u4e0b\u4e24\u79cd\u7ed3\u679c\u3002
- \u63d2\u5165\u70b9\u7684\u7d22\u5f15 \\(i\\) \u8d8a\u754c\u3002
- \u5143\u7d20
nums[i] \u4e0e target \u4e0d\u76f8\u7b49\u3002
\u5f53\u9047\u5230\u4ee5\u4e0a\u4e24\u79cd\u60c5\u51b5\u65f6\uff0c\u76f4\u63a5\u8fd4\u56de \\(-1\\) \u5373\u53ef\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_edge.pydef binary_search_left_edge(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target\"\"\"\n # \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n i = binary_search_insertion(nums, target)\n # \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == len(nums) or nums[i] != target:\n return -1\n # \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i\n
binary_search_edge.cpp/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(vector<int> &nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.size() || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.java/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int[] nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binary_search_insertion.binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.length || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.cs/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint BinarySearchLeftEdge(int[] nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binary_search_insertion.BinarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.Length || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.go/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunc binarySearchLeftEdge(nums []int, target int) int {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n i := binarySearchInsertion(nums, target)\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == len(nums) || nums[i] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i\n}\n
binary_search_edge.swift/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunc binarySearchLeftEdge(nums: [Int], target: Int) -> Int {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n let i = binarySearchInsertion(nums: nums, target: target)\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == nums.count || nums[i] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i\n}\n
binary_search_edge.js/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunction binarySearchLeftEdge(nums, target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n const i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i === nums.length || nums[i] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.ts/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunction binarySearchLeftEdge(nums: Array<number>, target: number): number {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n const i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i === nums.length || nums[i] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.dart/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(List<int> nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.length || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.rs/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfn binary_search_left_edge(nums: &[i32], target: i32) -> i32 {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n let i = binary_search_insertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == nums.len() as i32 || nums[i as usize] != target {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n i\n}\n
binary_search_edge.c/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int *nums, int numSize, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binarySearchInsertion(nums, numSize, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == numSize || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.zig[class]{}-[func]{binarySearchLeftEdge}\n
"},{"location":"chapter_searching/binary_search_edge/#1032","title":"10.3.2 \u00a0 \u67e5\u627e\u53f3\u8fb9\u754c","text":"\u90a3\u4e48\u5982\u4f55\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u5462\uff1f\u6700\u76f4\u63a5\u7684\u65b9\u5f0f\u662f\u4fee\u6539\u4ee3\u7801\uff0c\u66ff\u6362\u5728 nums[m] == target \u60c5\u51b5\u4e0b\u7684\u6307\u9488\u6536\u7f29\u64cd\u4f5c\u3002\u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002
\u4e0b\u9762\u6211\u4eec\u4ecb\u7ecd\u4e24\u79cd\u66f4\u52a0\u53d6\u5de7\u7684\u65b9\u6cd5\u3002
"},{"location":"chapter_searching/binary_search_edge/#1","title":"1. \u00a0 \u590d\u7528\u67e5\u627e\u5de6\u8fb9\u754c","text":"\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u67e5\u627e\u6700\u5de6\u5143\u7d20\u7684\u51fd\u6570\u6765\u67e5\u627e\u6700\u53f3\u5143\u7d20\uff0c\u5177\u4f53\u65b9\u6cd5\u4e3a\uff1a\u5c06\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\u3002
\u5982\u56fe 10-7 \u6240\u793a\uff0c\u67e5\u627e\u5b8c\u6210\u540e\uff0c\u6307\u9488 \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target + 1\uff08\u5982\u679c\u5b58\u5728\uff09\uff0c\u800c \\(j\\) \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0c\u56e0\u6b64\u8fd4\u56de \\(j\\) \u5373\u53ef\u3002
\u56fe 10-7 \u00a0 \u5c06\u67e5\u627e\u53f3\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5de6\u8fb9\u754c
\u8bf7\u6ce8\u610f\uff0c\u8fd4\u56de\u7684\u63d2\u5165\u70b9\u662f \\(i\\) \uff0c\u56e0\u6b64\u9700\u8981\u5c06\u5176\u51cf \\(1\\) \uff0c\u4ece\u800c\u83b7\u5f97 \\(j\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_edge.pydef binary_search_right_edge(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target\"\"\"\n # \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n i = binary_search_insertion(nums, target + 1)\n # j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n j = i - 1\n # \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 or nums[j] != target:\n return -1\n # \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j\n
binary_search_edge.cpp/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(vector<int> &nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.java/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int[] nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binary_search_insertion.binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.cs/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint BinarySearchRightEdge(int[] nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binary_search_insertion.BinarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.go/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunc binarySearchRightEdge(nums []int, target int) int {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n i := binarySearchInsertion(nums, target+1)\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n j := i - 1\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 || nums[j] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j\n}\n
binary_search_edge.swift/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunc binarySearchRightEdge(nums: [Int], target: Int) -> Int {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n let i = binarySearchInsertion(nums: nums, target: target + 1)\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n let j = i - 1\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 || nums[j] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j\n}\n
binary_search_edge.js/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunction binarySearchRightEdge(nums, target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n const i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n const j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j === -1 || nums[j] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.ts/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunction binarySearchRightEdge(nums: Array<number>, target: number): number {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n const i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n const j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j === -1 || nums[j] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.dart/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(List<int> nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.rs/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfn binary_search_right_edge(nums: &[i32], target: i32) -> i32 {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n let i = binary_search_insertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n let j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 || nums[j as usize] != target {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n j\n}\n
binary_search_edge.c/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int *nums, int numSize, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binarySearchInsertion(nums, numSize, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.zig[class]{}-[func]{binarySearchRightEdge}\n
"},{"location":"chapter_searching/binary_search_edge/#2","title":"2. \u00a0 \u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20","text":"\u6211\u4eec\u77e5\u9053\uff0c\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u6700\u7ec8 \\(i\\) \u548c \\(j\\) \u4f1a\u5206\u522b\u6307\u5411\u9996\u4e2a\u5927\u4e8e\u3001\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002
\u56e0\u6b64\uff0c\u5982\u56fe 10-8 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u6784\u9020\u4e00\u4e2a\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728\u7684\u5143\u7d20\uff0c\u7528\u4e8e\u67e5\u627e\u5de6\u53f3\u8fb9\u754c\u3002
- \u67e5\u627e\u6700\u5de6\u4e00\u4e2a
target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target - 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(i\\) \u3002 - \u67e5\u627e\u6700\u53f3\u4e00\u4e2a
target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target + 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(j\\) \u3002
\u56fe 10-8 \u00a0 \u5c06\u67e5\u627e\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20
\u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u4ee5\u4e0b\u4e24\u70b9\u503c\u5f97\u6ce8\u610f\u3002
- \u7ed9\u5b9a\u6570\u7ec4\u4e0d\u5305\u542b\u5c0f\u6570\uff0c\u8fd9\u610f\u5473\u7740\u6211\u4eec\u65e0\u987b\u5173\u5fc3\u5982\u4f55\u5904\u7406\u76f8\u7b49\u7684\u60c5\u51b5\u3002
- \u56e0\u4e3a\u8be5\u65b9\u6cd5\u5f15\u5165\u4e86\u5c0f\u6570\uff0c\u6240\u4ee5\u9700\u8981\u5c06\u51fd\u6570\u4e2d\u7684\u53d8\u91cf
target \u6539\u4e3a\u6d6e\u70b9\u6570\u7c7b\u578b\u3002
"},{"location":"chapter_searching/binary_search_insertion/","title":"10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9","text":"\u4e8c\u5206\u67e5\u627e\u4e0d\u4ec5\u53ef\u7528\u4e8e\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff0c\u8fd8\u53ef\u7528\u4e8e\u89e3\u51b3\u8bb8\u591a\u53d8\u79cd\u95ee\u9898\uff0c\u6bd4\u5982\u641c\u7d22\u76ee\u6807\u5143\u7d20\u7684\u63d2\u5165\u4f4d\u7f6e\u3002
"},{"location":"chapter_searching/binary_search_insertion/#1021","title":"10.2.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u5143\u7d20 target \uff0c\u6570\u7ec4\u4e0d\u5b58\u5728\u91cd\u590d\u5143\u7d20\u3002\u73b0\u5c06 target \u63d2\u5165\u6570\u7ec4 nums \u4e2d\uff0c\u5e76\u4fdd\u6301\u5176\u6709\u5e8f\u6027\u3002\u82e5\u6570\u7ec4\u4e2d\u5df2\u5b58\u5728\u5143\u7d20 target \uff0c\u5219\u63d2\u5165\u5230\u5176\u5de6\u65b9\u3002\u8bf7\u8fd4\u56de\u63d2\u5165\u540e target \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002
\u56fe 10-4 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u793a\u4f8b\u6570\u636e
\u5982\u679c\u60f3\u590d\u7528\u4e0a\u4e00\u8282\u7684\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\uff0c\u5219\u9700\u8981\u56de\u7b54\u4ee5\u4e0b\u4e24\u4e2a\u95ee\u9898\u3002
\u95ee\u9898\u4e00\uff1a\u5f53\u6570\u7ec4\u4e2d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u662f\u5426\u662f\u8be5\u5143\u7d20\u7684\u7d22\u5f15\uff1f
\u9898\u76ee\u8981\u6c42\u5c06 target \u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u5de6\u8fb9\uff0c\u8fd9\u610f\u5473\u7740\u65b0\u63d2\u5165\u7684 target \u66ff\u6362\u4e86\u539f\u6765 target \u7684\u4f4d\u7f6e\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5f53\u6570\u7ec4\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u5c31\u662f\u8be5 target \u7684\u7d22\u5f15\u3002
\u95ee\u9898\u4e8c\uff1a\u5f53\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728 target \u65f6\uff0c\u63d2\u5165\u70b9\u662f\u54ea\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff1f
\u8fdb\u4e00\u6b65\u601d\u8003\u4e8c\u5206\u67e5\u627e\u8fc7\u7a0b\uff1a\u5f53 nums[m] < target \u65f6 \\(i\\) \u79fb\u52a8\uff0c\u8fd9\u610f\u5473\u7740\u6307\u9488 \\(i\\) \u5728\u5411\u5927\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002\u540c\u7406\uff0c\u6307\u9488 \\(j\\) \u59cb\u7ec8\u5728\u5411\u5c0f\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002
\u56e0\u6b64\u4e8c\u5206\u7ed3\u675f\u65f6\u4e00\u5b9a\u6709\uff1a\\(i\\) \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002\u6613\u5f97\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u7d22\u5f15\u4e3a \\(i\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_insertion.pydef binary_search_insertion_simple(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09\"\"\"\n i, j = 0, len(nums) - 1 # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j:\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n elif nums[m] > target:\n j = m - 1 # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n else:\n return m # \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n # \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n
binary_search_insertion.cpp/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(vector<int> &nums, int target) {\n int i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.java/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int[] nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.cs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint BinarySearchInsertionSimple(int[] nums, int target) {\n int i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.go/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertionSimple(nums []int, target int) int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n i, j := 0, len(nums)-1\n for i <= j {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n m := i + (j-i)/2\n if nums[m] < target {\n // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target {\n // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else {\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n return m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.swift/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertionSimple(nums: [Int], target: Int) -> Int {\n var i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target {\n i = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m] > target {\n j = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.js/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertionSimple(nums, target) {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.ts/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertionSimple(\n nums: Array<number>,\n target: number\n): number {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.dart/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(List<int> nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.rs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\npub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {\n let (mut i, mut j) = (0, nums.len() as i32 - 1); // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m as usize] > target {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n i\n}\n
binary_search_insertion.c/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int *nums, int numSize, int target) {\n int i = 0, j = numSize - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.zig[class]{}-[func]{binarySearchInsertionSimple}\n
"},{"location":"chapter_searching/binary_search_insertion/#1022","title":"10.2.2 \u00a0 \u5b58\u5728\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u5728\u4e0a\u4e00\u9898\u7684\u57fa\u7840\u4e0a\uff0c\u89c4\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u5176\u4f59\u4e0d\u53d8\u3002
\u5047\u8bbe\u6570\u7ec4\u4e2d\u5b58\u5728\u591a\u4e2a target \uff0c\u5219\u666e\u901a\u4e8c\u5206\u67e5\u627e\u53ea\u80fd\u8fd4\u56de\u5176\u4e2d\u4e00\u4e2a target \u7684\u7d22\u5f15\uff0c\u800c\u65e0\u6cd5\u786e\u5b9a\u8be5\u5143\u7d20\u7684\u5de6\u8fb9\u548c\u53f3\u8fb9\u8fd8\u6709\u591a\u5c11 target\u3002
\u9898\u76ee\u8981\u6c42\u5c06\u76ee\u6807\u5143\u7d20\u63d2\u5165\u5230\u6700\u5de6\u8fb9\uff0c\u6240\u4ee5\u6211\u4eec\u9700\u8981\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002\u521d\u6b65\u8003\u8651\u901a\u8fc7\u56fe 10-5 \u6240\u793a\u7684\u6b65\u9aa4\u5b9e\u73b0\u3002
- \u6267\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u5f97\u5230\u4efb\u610f\u4e00\u4e2a
target \u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\(k\\) \u3002 - \u4ece\u7d22\u5f15 \\(k\\) \u5f00\u59cb\uff0c\u5411\u5de6\u8fdb\u884c\u7ebf\u6027\u904d\u5386\uff0c\u5f53\u627e\u5230\u6700\u5de6\u8fb9\u7684
target \u65f6\u8fd4\u56de\u3002
\u56fe 10-5 \u00a0 \u7ebf\u6027\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9
\u6b64\u65b9\u6cd5\u867d\u7136\u53ef\u7528\uff0c\u4f46\u5176\u5305\u542b\u7ebf\u6027\u67e5\u627e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5f53\u6570\u7ec4\u4e2d\u5b58\u5728\u5f88\u591a\u91cd\u590d\u7684 target \u65f6\uff0c\u8be5\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\u3002
\u73b0\u8003\u8651\u62d3\u5c55\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\u3002\u5982\u56fe 10-6 \u6240\u793a\uff0c\u6574\u4f53\u6d41\u7a0b\u4fdd\u6301\u4e0d\u53d8\uff0c\u6bcf\u8f6e\u5148\u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m\\) \uff0c\u518d\u5224\u65ad target \u548c nums[m] \u7684\u5927\u5c0f\u5173\u7cfb\uff0c\u5206\u4e3a\u4ee5\u4e0b\u51e0\u79cd\u60c5\u51b5\u3002
- \u5f53
nums[m] < target \u6216 nums[m] > target \u65f6\uff0c\u8bf4\u660e\u8fd8\u6ca1\u6709\u627e\u5230 target \uff0c\u56e0\u6b64\u91c7\u7528\u666e\u901a\u4e8c\u5206\u67e5\u627e\u7684\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5411 target \u9760\u8fd1\u3002 - \u5f53
nums[m] == target \u65f6\uff0c\u8bf4\u660e\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u91c7\u7528 \\(j = m - 1\\) \u6765\u7f29\u5c0f\u533a\u95f4\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(j\\) \u5411\u5c0f\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002
\u5faa\u73af\u5b8c\u6210\u540e\uff0c\\(i\\) \u6307\u5411\u6700\u5de6\u8fb9\u7684 target \uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\uff0c\u56e0\u6b64\u7d22\u5f15 \\(i\\) \u5c31\u662f\u63d2\u5165\u70b9\u3002
<1><2><3><4><5><6><7><8> \u56fe 10-6 \u00a0 \u4e8c\u5206\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9\u7684\u6b65\u9aa4
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5224\u65ad\u5206\u652f nums[m] > target \u548c nums[m] == target \u7684\u64cd\u4f5c\u76f8\u540c\uff0c\u56e0\u6b64\u4e24\u8005\u53ef\u4ee5\u5408\u5e76\u3002
\u5373\u4fbf\u5982\u6b64\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5c06\u5224\u65ad\u6761\u4ef6\u4fdd\u6301\u5c55\u5f00\uff0c\u56e0\u4e3a\u5176\u903b\u8f91\u66f4\u52a0\u6e05\u6670\u3001\u53ef\u8bfb\u6027\u66f4\u597d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_insertion.pydef binary_search_insertion(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09\"\"\"\n i, j = 0, len(nums) - 1 # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j:\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n elif nums[m] > target:\n j = m - 1 # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n else:\n j = m - 1 # \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n # \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n
binary_search_insertion.cpp/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(vector<int> &nums, int target) {\n int i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.java/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int[] nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.cs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint BinarySearchInsertion(int[] nums, int target) {\n int i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.go/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertion(nums []int, target int) int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n i, j := 0, len(nums)-1\n for i <= j {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n m := i + (j-i)/2\n if nums[m] < target {\n // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target {\n // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else {\n // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.swift/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertion(nums: [Int], target: Int) -> Int {\n var i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target {\n i = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m] > target {\n j = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1 // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.js/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertion(nums, target) {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.ts/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertion(nums: Array<number>, target: number): number {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.dart/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(List<int> nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.rs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\npub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {\n let (mut i, mut j) = (0, nums.len() as i32 - 1); // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m as usize] > target {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n i\n}\n
binary_search_insertion.c/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int *nums, int numSize, int target) {\n int i = 0, j = numSize - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.zig[class]{}-[func]{binarySearchInsertion}\n
Tip
\u672c\u8282\u7684\u4ee3\u7801\u90fd\u662f\u201c\u53cc\u95ed\u533a\u95f4\u201d\u5199\u6cd5\u3002\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u5199\u6cd5\u3002
\u603b\u7684\u6765\u770b\uff0c\u4e8c\u5206\u67e5\u627e\u65e0\u975e\u5c31\u662f\u7ed9\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5206\u522b\u8bbe\u5b9a\u641c\u7d22\u76ee\u6807\uff0c\u76ee\u6807\u53ef\u80fd\u662f\u4e00\u4e2a\u5177\u4f53\u7684\u5143\u7d20\uff08\u4f8b\u5982 target \uff09\uff0c\u4e5f\u53ef\u80fd\u662f\u4e00\u4e2a\u5143\u7d20\u8303\u56f4\uff08\u4f8b\u5982\u5c0f\u4e8e target \u7684\u5143\u7d20\uff09\u3002
\u5728\u4e0d\u65ad\u7684\u5faa\u73af\u4e8c\u5206\u4e2d\uff0c\u6307\u9488 \\(i\\) \u548c \\(j\\) \u90fd\u9010\u6e10\u903c\u8fd1\u9884\u5148\u8bbe\u5b9a\u7684\u76ee\u6807\u3002\u6700\u7ec8\uff0c\u5b83\u4eec\u6216\u662f\u6210\u529f\u627e\u5230\u7b54\u6848\uff0c\u6216\u662f\u8d8a\u8fc7\u8fb9\u754c\u540e\u505c\u6b62\u3002
"},{"location":"chapter_searching/replace_linear_by_hashing/","title":"10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565","text":"\u5728\u7b97\u6cd5\u9898\u4e2d\uff0c\u6211\u4eec\u5e38\u901a\u8fc7\u5c06\u7ebf\u6027\u67e5\u627e\u66ff\u6362\u4e3a\u54c8\u5e0c\u67e5\u627e\u6765\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u7b97\u6cd5\u9898\u6765\u52a0\u6df1\u7406\u89e3\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u5143\u7d20 target \uff0c\u8bf7\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u201c\u548c\u201d\u4e3a target \u7684\u4e24\u4e2a\u5143\u7d20\uff0c\u5e76\u8fd4\u56de\u5b83\u4eec\u7684\u6570\u7ec4\u7d22\u5f15\u3002\u8fd4\u56de\u4efb\u610f\u4e00\u4e2a\u89e3\u5373\u53ef\u3002
"},{"location":"chapter_searching/replace_linear_by_hashing/#1041","title":"10.4.1 \u00a0 \u7ebf\u6027\u67e5\u627e\uff1a\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4","text":"\u8003\u8651\u76f4\u63a5\u904d\u5386\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\u3002\u5982\u56fe 10-9 \u6240\u793a\uff0c\u6211\u4eec\u5f00\u542f\u4e00\u4e2a\u4e24\u5c42\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u5224\u65ad\u4e24\u4e2a\u6574\u6570\u7684\u548c\u662f\u5426\u4e3a target \uff0c\u82e5\u662f\uff0c\u5219\u8fd4\u56de\u5b83\u4eec\u7684\u7d22\u5f15\u3002
\u56fe 10-9 \u00a0 \u7ebf\u6027\u67e5\u627e\u6c42\u89e3\u4e24\u6570\u4e4b\u548c
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig two_sum.pydef two_sum_brute_force(nums: list[int], target: int) -> list[int]:\n \"\"\"\u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\"\"\"\n # \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i in range(len(nums) - 1):\n for j in range(i + 1, len(nums)):\n if nums[i] + nums[j] == target:\n return [i, j]\n return []\n
two_sum.cpp/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nvector<int> twoSumBruteForce(vector<int> &nums, int target) {\n int size = nums.size();\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (int i = 0; i < size - 1; i++) {\n for (int j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target)\n return {i, j};\n }\n }\n return {};\n}\n
two_sum.java/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] twoSumBruteForce(int[] nums, int target) {\n int size = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (int i = 0; i < size - 1; i++) {\n for (int j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target)\n return new int[] { i, j };\n }\n }\n return new int[0];\n}\n
two_sum.cs/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] TwoSumBruteForce(int[] nums, int target) {\n int size = nums.Length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (int i = 0; i < size - 1; i++) {\n for (int j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target)\n return [i, j];\n }\n }\n return [];\n}\n
two_sum.go/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums []int, target int) []int {\n size := len(nums)\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i := 0; i < size-1; i++ {\n for j := i + 1; i < size; j++ {\n if nums[i]+nums[j] == target {\n return []int{i, j}\n }\n }\n }\n return nil\n}\n
two_sum.swift/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums: [Int], target: Int) -> [Int] {\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i in nums.indices.dropLast() {\n for j in nums.indices.dropFirst(i + 1) {\n if nums[i] + nums[j] == target {\n return [i, j]\n }\n }\n }\n return [0]\n}\n
two_sum.js/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums, target) {\n const n = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (let i = 0; i < n; i++) {\n for (let j = i + 1; j < n; j++) {\n if (nums[i] + nums[j] === target) {\n return [i, j];\n }\n }\n }\n return [];\n}\n
two_sum.ts/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums: number[], target: number): number[] {\n const n = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (let i = 0; i < n; i++) {\n for (let j = i + 1; j < n; j++) {\n if (nums[i] + nums[j] === target) {\n return [i, j];\n }\n }\n }\n return [];\n}\n
two_sum.dart/* \u65b9\u6cd5\u4e00\uff1a \u66b4\u529b\u679a\u4e3e */\nList<int> twoSumBruteForce(List<int> nums, int target) {\n int size = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (var i = 0; i < size - 1; i++) {\n for (var j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target) return [i, j];\n }\n }\n return [0];\n}\n
two_sum.rs/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\npub fn two_sum_brute_force(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\n let size = nums.len();\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i in 0..size - 1 {\n for j in i + 1..size {\n if nums[i] + nums[j] == target {\n return Some(vec![i as i32, j as i32]);\n }\n }\n }\n None\n}\n
two_sum.c/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) {\n for (int i = 0; i < numsSize; ++i) {\n for (int j = i + 1; j < numsSize; ++j) {\n if (nums[i] + nums[j] == target) {\n int *res = malloc(sizeof(int) * 2);\n res[0] = i, res[1] = j;\n *returnSize = 2;\n return res;\n }\n }\n }\n *returnSize = 0;\n return NULL;\n}\n
two_sum.zig// \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\nfn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {\n var size: usize = nums.len;\n var i: usize = 0;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n while (i < size - 1) : (i += 1) {\n var j = i + 1;\n while (j < size) : (j += 1) {\n if (nums[i] + nums[j] == target) {\n return [_]i32{@intCast(i), @intCast(j)};\n }\n }\n }\n return null;\n}\n
\u6b64\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u975e\u5e38\u8017\u65f6\u3002
"},{"location":"chapter_searching/replace_linear_by_hashing/#1042","title":"10.4.2 \u00a0 \u54c8\u5e0c\u67e5\u627e\uff1a\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4","text":"\u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u952e\u503c\u5bf9\u5206\u522b\u4e3a\u6570\u7ec4\u5143\u7d20\u548c\u5143\u7d20\u7d22\u5f15\u3002\u5faa\u73af\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u6267\u884c\u56fe 10-10 \u6240\u793a\u7684\u6b65\u9aa4\u3002
- \u5224\u65ad\u6570\u5b57
target - nums[i] \u662f\u5426\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u82e5\u662f\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u3002 - \u5c06\u952e\u503c\u5bf9
nums[i] \u548c\u7d22\u5f15 i \u6dfb\u52a0\u8fdb\u54c8\u5e0c\u8868\u3002
<1><2><3> \u56fe 10-10 \u00a0 \u8f85\u52a9\u54c8\u5e0c\u8868\u6c42\u89e3\u4e24\u6570\u4e4b\u548c
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff0c\u4ec5\u9700\u5355\u5c42\u5faa\u73af\u5373\u53ef\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig two_sum.pydef two_sum_hash_table(nums: list[int], target: int) -> list[int]:\n \"\"\"\u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\"\"\"\n # \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n dic = {}\n # \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for i in range(len(nums)):\n if target - nums[i] in dic:\n return [dic[target - nums[i]], i]\n dic[nums[i]] = i\n return []\n
two_sum.cpp/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nvector<int> twoSumHashTable(vector<int> &nums, int target) {\n int size = nums.size();\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n unordered_map<int, int> dic;\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (int i = 0; i < size; i++) {\n if (dic.find(target - nums[i]) != dic.end()) {\n return {dic[target - nums[i]], i};\n }\n dic.emplace(nums[i], i);\n }\n return {};\n}\n
two_sum.java/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] twoSumHashTable(int[] nums, int target) {\n int size = nums.length;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n Map<Integer, Integer> dic = new HashMap<>();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (int i = 0; i < size; i++) {\n if (dic.containsKey(target - nums[i])) {\n return new int[] { dic.get(target - nums[i]), i };\n }\n dic.put(nums[i], i);\n }\n return new int[0];\n}\n
two_sum.cs/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] TwoSumHashTable(int[] nums, int target) {\n int size = nums.Length;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n Dictionary<int, int> dic = [];\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (int i = 0; i < size; i++) {\n if (dic.ContainsKey(target - nums[i])) {\n return [dic[target - nums[i]], i];\n }\n dic.Add(nums[i], i);\n }\n return [];\n}\n
two_sum.go/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums []int, target int) []int {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n hashTable := map[int]int{}\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for idx, val := range nums {\n if preIdx, ok := hashTable[target-val]; ok {\n return []int{preIdx, idx}\n }\n hashTable[val] = idx\n }\n return nil\n}\n
two_sum.swift/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums: [Int], target: Int) -> [Int] {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n var dic: [Int: Int] = [:]\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for i in nums.indices {\n if let j = dic[target - nums[i]] {\n return [j, i]\n }\n dic[nums[i]] = i\n }\n return [0]\n}\n
two_sum.js/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums, target) {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n let m = {};\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (let i = 0; i < nums.length; i++) {\n if (m[target - nums[i]] !== undefined) {\n return [m[target - nums[i]], i];\n } else {\n m[nums[i]] = i;\n }\n }\n return [];\n}\n
two_sum.ts/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums: number[], target: number): number[] {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n let m: Map<number, number> = new Map();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (let i = 0; i < nums.length; i++) {\n let index = m.get(target - nums[i]);\n if (index !== undefined) {\n return [index, i];\n } else {\n m.set(nums[i], i);\n }\n }\n return [];\n}\n
two_sum.dart/* \u65b9\u6cd5\u4e8c\uff1a \u8f85\u52a9\u54c8\u5e0c\u8868 */\nList<int> twoSumHashTable(List<int> nums, int target) {\n int size = nums.length;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n Map<int, int> dic = HashMap();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (var i = 0; i < size; i++) {\n if (dic.containsKey(target - nums[i])) {\n return [dic[target - nums[i]]!, i];\n }\n dic.putIfAbsent(nums[i], () => i);\n }\n return [0];\n}\n
two_sum.rs/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\npub fn two_sum_hash_table(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n let mut dic = HashMap::new();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (i, num) in nums.iter().enumerate() {\n match dic.get(&(target - num)) {\n Some(v) => return Some(vec![*v as i32, i as i32]),\n None => dic.insert(num, i as i32)\n };\n }\n None\n}\n
two_sum.c/* \u54c8\u5e0c\u8868 */\ntypedef struct {\n int key;\n int val;\n UT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n} HashTable;\n\n/* \u54c8\u5e0c\u8868\u67e5\u8be2 */\nHashTable *find(HashTable *h, int key) {\n HashTable *tmp;\n HASH_FIND_INT(h, &key, tmp);\n return tmp;\n}\n\n/* \u54c8\u5e0c\u8868\u5143\u7d20\u63d2\u5165 */\nvoid insert(HashTable *h, int key, int val) {\n HashTable *t = find(h, key);\n if (t == NULL) {\n HashTable *tmp = malloc(sizeof(HashTable));\n tmp->key = key, tmp->val = val;\n HASH_ADD_INT(h, key, tmp);\n } else {\n t->val = val;\n }\n}\n\n/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) {\n HashTable *hashtable = NULL;\n for (int i = 0; i < numsSize; i++) {\n HashTable *t = find(hashtable, target - nums[i]);\n if (t != NULL) {\n int *res = malloc(sizeof(int) * 2);\n res[0] = t->val, res[1] = i;\n *returnSize = 2;\n return res;\n }\n insert(hashtable, nums[i], i);\n }\n *returnSize = 0;\n return NULL;\n}\n
two_sum.zig// \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\nfn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {\n var size: usize = nums.len;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);\n defer dic.deinit();\n var i: usize = 0;\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n while (i < size) : (i += 1) {\n if (dic.contains(target - nums[i])) {\n return [_]i32{dic.get(target - nums[i]).?, @intCast(i)};\n }\n try dic.put(nums[i], @intCast(i));\n }\n return null;\n}\n
\u6b64\u65b9\u6cd5\u901a\u8fc7\u54c8\u5e0c\u67e5\u627e\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u964d\u81f3 \\(O(n)\\) \uff0c\u5927\u5e45\u63d0\u5347\u8fd0\u884c\u6548\u7387\u3002
\u7531\u4e8e\u9700\u8981\u7ef4\u62a4\u4e00\u4e2a\u989d\u5916\u7684\u54c8\u5e0c\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5c3d\u7ba1\u5982\u6b64\uff0c\u8be5\u65b9\u6cd5\u7684\u6574\u4f53\u65f6\u7a7a\u6548\u7387\u66f4\u4e3a\u5747\u8861\uff0c\u56e0\u6b64\u5b83\u662f\u672c\u9898\u7684\u6700\u4f18\u89e3\u6cd5\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/","title":"10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5","text":"\u300c\u641c\u7d22\u7b97\u6cd5 searching algorithm\u300d\u7528\u4e8e\u5728\u6570\u636e\u7ed3\u6784\uff08\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u6216\u56fe\uff09\u4e2d\u641c\u7d22\u4e00\u4e2a\u6216\u4e00\u7ec4\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5143\u7d20\u3002
\u641c\u7d22\u7b97\u6cd5\u53ef\u6839\u636e\u5b9e\u73b0\u601d\u8def\u5206\u4e3a\u4ee5\u4e0b\u4e24\u7c7b\u3002
- \u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\uff0c\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u548c\u56fe\u7684\u904d\u5386\u7b49\u3002
- \u5229\u7528\u6570\u636e\u7ec4\u7ec7\u7ed3\u6784\u6216\u6570\u636e\u5305\u542b\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u5b9e\u73b0\u9ad8\u6548\u5143\u7d20\u67e5\u627e\uff0c\u4f8b\u5982\u4e8c\u5206\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u548c\u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u7b49\u3002
\u4e0d\u96be\u53d1\u73b0\uff0c\u8fd9\u4e9b\u77e5\u8bc6\u70b9\u90fd\u5df2\u5728\u524d\u9762\u7684\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u56e0\u6b64\u641c\u7d22\u7b97\u6cd5\u5bf9\u4e8e\u6211\u4eec\u6765\u8bf4\u5e76\u4e0d\u964c\u751f\u3002\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5c06\u4ece\u66f4\u52a0\u7cfb\u7edf\u7684\u89c6\u89d2\u5207\u5165\uff0c\u91cd\u65b0\u5ba1\u89c6\u641c\u7d22\u7b97\u6cd5\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/#1051","title":"10.5.1 \u00a0 \u66b4\u529b\u641c\u7d22","text":"\u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u7684\u6bcf\u4e2a\u5143\u7d20\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002
- \u201c\u7ebf\u6027\u641c\u7d22\u201d\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\u7b49\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u5b83\u4ece\u6570\u636e\u7ed3\u6784\u7684\u4e00\u7aef\u5f00\u59cb\uff0c\u9010\u4e2a\u8bbf\u95ee\u5143\u7d20\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u5230\u8fbe\u53e6\u4e00\u7aef\u4ecd\u6ca1\u6709\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
- \u201c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u548c\u201c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u662f\u56fe\u548c\u6811\u7684\u4e24\u79cd\u904d\u5386\u7b56\u7565\u3002\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\u9010\u5c42\u641c\u7d22\uff0c\u7531\u8fd1\u53ca\u8fdc\u5730\u8bbf\u95ee\u5404\u4e2a\u8282\u70b9\u3002\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\uff0c\u6cbf\u7740\u4e00\u6761\u8def\u5f84\u8d70\u5230\u5934\uff0c\u518d\u56de\u6eaf\u5e76\u5c1d\u8bd5\u5176\u4ed6\u8def\u5f84\uff0c\u76f4\u5230\u904d\u5386\u5b8c\u6574\u4e2a\u6570\u636e\u7ed3\u6784\u3002
\u66b4\u529b\u641c\u7d22\u7684\u4f18\u70b9\u662f\u7b80\u5355\u4e14\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u505a\u9884\u5904\u7406\u548c\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\u3002
\u7136\u800c\uff0c\u6b64\u7c7b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u5143\u7d20\u6570\u91cf\uff0c\u56e0\u6b64\u5728\u6570\u636e\u91cf\u8f83\u5927\u7684\u60c5\u51b5\u4e0b\u6027\u80fd\u8f83\u5dee\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/#1052","title":"10.5.2 \u00a0 \u81ea\u9002\u5e94\u641c\u7d22","text":"\u81ea\u9002\u5e94\u641c\u7d22\u5229\u7528\u6570\u636e\u7684\u7279\u6709\u5c5e\u6027\uff08\u4f8b\u5982\u6709\u5e8f\u6027\uff09\u6765\u4f18\u5316\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ece\u800c\u66f4\u9ad8\u6548\u5730\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002
- \u201c\u4e8c\u5206\u67e5\u627e\u201d\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\u5b9e\u73b0\u9ad8\u6548\u67e5\u627e\uff0c\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002
- \u201c\u54c8\u5e0c\u67e5\u627e\u201d\u5229\u7528\u54c8\u5e0c\u8868\u5c06\u641c\u7d22\u6570\u636e\u548c\u76ee\u6807\u6570\u636e\u5efa\u7acb\u4e3a\u952e\u503c\u5bf9\u6620\u5c04\uff0c\u4ece\u800c\u5b9e\u73b0\u67e5\u8be2\u64cd\u4f5c\u3002
- \u201c\u6811\u67e5\u627e\u201d\u5728\u7279\u5b9a\u7684\u6811\u7ed3\u6784\uff08\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\uff09\u4e2d\uff0c\u57fa\u4e8e\u6bd4\u8f83\u8282\u70b9\u503c\u6765\u5feb\u901f\u6392\u9664\u8282\u70b9\uff0c\u4ece\u800c\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002
\u6b64\u7c7b\u7b97\u6cd5\u7684\u4f18\u70b9\u662f\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u3002
\u7136\u800c\uff0c\u4f7f\u7528\u8fd9\u4e9b\u7b97\u6cd5\u5f80\u5f80\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u5904\u7406\u3002\u4f8b\u5982\uff0c\u4e8c\u5206\u67e5\u627e\u9700\u8981\u9884\u5148\u5bf9\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\uff0c\u54c8\u5e0c\u67e5\u627e\u548c\u6811\u67e5\u627e\u90fd\u9700\u8981\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u7ef4\u62a4\u8fd9\u4e9b\u6570\u636e\u7ed3\u6784\u4e5f\u9700\u8981\u989d\u5916\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u5f00\u9500\u3002
Tip
\u81ea\u9002\u5e94\u641c\u7d22\u7b97\u6cd5\u5e38\u88ab\u79f0\u4e3a\u67e5\u627e\u7b97\u6cd5\uff0c\u4e3b\u8981\u7528\u4e8e\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u68c0\u7d22\u76ee\u6807\u5143\u7d20\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/#1053","title":"10.5.3 \u00a0 \u641c\u7d22\u65b9\u6cd5\u9009\u53d6","text":"\u7ed9\u5b9a\u5927\u5c0f\u4e3a \\(n\\) \u7684\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u7ebf\u6027\u641c\u7d22\u3001\u4e8c\u5206\u67e5\u627e\u3001\u6811\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u7b49\u591a\u79cd\u65b9\u6cd5\u4ece\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\u3002\u5404\u4e2a\u65b9\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u5982\u56fe 10-11 \u6240\u793a\u3002
\u56fe 10-11 \u00a0 \u591a\u79cd\u641c\u7d22\u7b56\u7565
\u4e0a\u8ff0\u51e0\u79cd\u65b9\u6cd5\u7684\u64cd\u4f5c\u6548\u7387\u4e0e\u7279\u6027\u5982\u8868 10-1 \u6240\u793a\u3002
\u8868 10-1 \u00a0 \u67e5\u627e\u7b97\u6cd5\u6548\u7387\u5bf9\u6bd4
\u7ebf\u6027\u641c\u7d22 \u4e8c\u5206\u67e5\u627e \u6811\u67e5\u627e \u54c8\u5e0c\u67e5\u627e \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u989d\u5916\u7a7a\u95f4 \\(O(1)\\) \\(O(1)\\) \\(O(n)\\) \\(O(n)\\) \u6570\u636e\u9884\u5904\u7406 / \u6392\u5e8f \\(O(n \\log n)\\) \u5efa\u6811 \\(O(n \\log n)\\) \u5efa\u54c8\u5e0c\u8868 \\(O(n)\\) \u6570\u636e\u662f\u5426\u6709\u5e8f \u65e0\u5e8f \u6709\u5e8f \u6709\u5e8f \u65e0\u5e8f \u641c\u7d22\u7b97\u6cd5\u7684\u9009\u62e9\u8fd8\u53d6\u51b3\u4e8e\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u4e0e\u66f4\u65b0\u9891\u7387\u7b49\u3002
\u7ebf\u6027\u641c\u7d22
- \u901a\u7528\u6027\u8f83\u597d\uff0c\u65e0\u987b\u4efb\u4f55\u6570\u636e\u9884\u5904\u7406\u64cd\u4f5c\u3002\u5047\u5982\u6211\u4eec\u4ec5\u9700\u67e5\u8be2\u4e00\u6b21\u6570\u636e\uff0c\u90a3\u4e48\u5176\u4ed6\u4e09\u79cd\u65b9\u6cd5\u7684\u6570\u636e\u9884\u5904\u7406\u7684\u65f6\u95f4\u6bd4\u7ebf\u6027\u641c\u7d22\u7684\u65f6\u95f4\u8fd8\u8981\u66f4\u957f\u3002
- \u9002\u7528\u4e8e\u4f53\u91cf\u8f83\u5c0f\u7684\u6570\u636e\uff0c\u6b64\u60c5\u51b5\u4e0b\u65f6\u95f4\u590d\u6742\u5ea6\u5bf9\u6548\u7387\u5f71\u54cd\u8f83\u5c0f\u3002
- \u9002\u7528\u4e8e\u6570\u636e\u66f4\u65b0\u9891\u7387\u8f83\u9ad8\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u8be5\u65b9\u6cd5\u4e0d\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u4efb\u4f55\u989d\u5916\u7ef4\u62a4\u3002
\u4e8c\u5206\u67e5\u627e
- \u9002\u7528\u4e8e\u5927\u6570\u636e\u91cf\u7684\u60c5\u51b5\uff0c\u6548\u7387\u8868\u73b0\u7a33\u5b9a\uff0c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002
- \u6570\u636e\u91cf\u4e0d\u80fd\u8fc7\u5927\uff0c\u56e0\u4e3a\u5b58\u50a8\u6570\u7ec4\u9700\u8981\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u3002
- \u4e0d\u9002\u7528\u4e8e\u9ad8\u9891\u589e\u5220\u6570\u636e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u7ef4\u62a4\u6709\u5e8f\u6570\u7ec4\u7684\u5f00\u9500\u8f83\u5927\u3002
\u54c8\u5e0c\u67e5\u627e
- \u9002\u5408\u5bf9\u67e5\u8be2\u6027\u80fd\u8981\u6c42\u5f88\u9ad8\u7684\u573a\u666f\uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
- \u4e0d\u9002\u5408\u9700\u8981\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u65e0\u6cd5\u7ef4\u62a4\u6570\u636e\u7684\u6709\u5e8f\u6027\u3002
- \u5bf9\u54c8\u5e0c\u51fd\u6570\u548c\u54c8\u5e0c\u51b2\u7a81\u5904\u7406\u7b56\u7565\u7684\u4f9d\u8d56\u6027\u8f83\u9ad8\uff0c\u5177\u6709\u8f83\u5927\u7684\u6027\u80fd\u52a3\u5316\u98ce\u9669\u3002
- \u4e0d\u9002\u5408\u6570\u636e\u91cf\u8fc7\u5927\u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u9700\u8981\u989d\u5916\u7a7a\u95f4\u6765\u6700\u5927\u7a0b\u5ea6\u5730\u51cf\u5c11\u51b2\u7a81\uff0c\u4ece\u800c\u63d0\u4f9b\u826f\u597d\u7684\u67e5\u8be2\u6027\u80fd\u3002
\u6811\u67e5\u627e
- \u9002\u7528\u4e8e\u6d77\u91cf\u6570\u636e\uff0c\u56e0\u4e3a\u6811\u8282\u70b9\u5728\u5185\u5b58\u4e2d\u662f\u5206\u6563\u5b58\u50a8\u7684\u3002
- \u9002\u5408\u9700\u8981\u7ef4\u62a4\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\u3002
- \u5728\u6301\u7eed\u589e\u5220\u8282\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u4ea7\u751f\u503e\u659c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
- \u82e5\u4f7f\u7528 AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u5219\u5404\u9879\u64cd\u4f5c\u53ef\u5728 \\(O(\\log n)\\) \u6548\u7387\u4e0b\u7a33\u5b9a\u8fd0\u884c\uff0c\u4f46\u7ef4\u62a4\u6811\u5e73\u8861\u7684\u64cd\u4f5c\u4f1a\u589e\u52a0\u989d\u5916\u5f00\u9500\u3002
"},{"location":"chapter_searching/summary/","title":"10.6 \u00a0 \u5c0f\u7ed3","text":" - \u4e8c\u5206\u67e5\u627e\u4f9d\u8d56\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u901a\u8fc7\u5faa\u73af\u9010\u6b65\u7f29\u51cf\u4e00\u534a\u641c\u7d22\u533a\u95f4\u6765\u8fdb\u884c\u67e5\u627e\u3002\u5b83\u8981\u6c42\u8f93\u5165\u6570\u636e\u6709\u5e8f\uff0c\u4e14\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u6216\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
- \u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u6570\u636e\u3002\u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\uff0c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u548c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u9002\u7528\u4e8e\u56fe\u548c\u6811\u3002\u6b64\u7c7b\u7b97\u6cd5\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u5904\u7406\uff0c\u4f46\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u8f83\u9ad8\u3002
- \u54c8\u5e0c\u67e5\u627e\u3001\u6811\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u5c5e\u4e8e\u9ad8\u6548\u641c\u7d22\u65b9\u6cd5\uff0c\u53ef\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002\u6b64\u7c7b\u7b97\u6cd5\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \uff0c\u4f46\u901a\u5e38\u9700\u8981\u501f\u52a9\u989d\u5916\u6570\u636e\u7ed3\u6784\u3002
- \u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5bf9\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u548c\u66f4\u65b0\u9891\u7387\u7b49\u56e0\u7d20\u8fdb\u884c\u5177\u4f53\u5206\u6790\uff0c\u4ece\u800c\u9009\u62e9\u5408\u9002\u7684\u641c\u7d22\u65b9\u6cd5\u3002
- \u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u5c0f\u578b\u6216\u9891\u7e41\u66f4\u65b0\u7684\u6570\u636e\uff1b\u4e8c\u5206\u67e5\u627e\u9002\u7528\u4e8e\u5927\u578b\u3001\u6392\u5e8f\u7684\u6570\u636e\uff1b\u54c8\u5e0c\u67e5\u627e\u9002\u7528\u4e8e\u5bf9\u67e5\u8be2\u6548\u7387\u8981\u6c42\u8f83\u9ad8\u4e14\u65e0\u987b\u8303\u56f4\u67e5\u8be2\u7684\u6570\u636e\uff1b\u6811\u67e5\u627e\u9002\u7528\u4e8e\u9700\u8981\u7ef4\u62a4\u987a\u5e8f\u548c\u652f\u6301\u8303\u56f4\u67e5\u8be2\u7684\u5927\u578b\u52a8\u6001\u6570\u636e\u3002
- \u7528\u54c8\u5e0c\u67e5\u627e\u66ff\u6362\u7ebf\u6027\u67e5\u627e\u662f\u4e00\u79cd\u5e38\u7528\u7684\u4f18\u5316\u8fd0\u884c\u65f6\u95f4\u7684\u7b56\u7565\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u81f3 \\(O(1)\\) \u3002
"},{"location":"chapter_sorting/","title":"\u7b2c 11 \u7ae0 \u00a0 \u6392\u5e8f","text":"Abstract
\u6392\u5e8f\u72b9\u5982\u4e00\u628a\u5c06\u6df7\u4e71\u53d8\u4e3a\u79e9\u5e8f\u7684\u9b54\u6cd5\u94a5\u5319\uff0c\u4f7f\u6211\u4eec\u80fd\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u7406\u89e3\u4e0e\u5904\u7406\u6570\u636e\u3002
\u65e0\u8bba\u662f\u7b80\u5355\u7684\u5347\u5e8f\uff0c\u8fd8\u662f\u590d\u6742\u7684\u5206\u7c7b\u6392\u5217\uff0c\u6392\u5e8f\u90fd\u5411\u6211\u4eec\u5c55\u793a\u4e86\u6570\u636e\u7684\u548c\u8c10\u7f8e\u611f\u3002
"},{"location":"chapter_sorting/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5
- 11.2 \u00a0 \u9009\u62e9\u6392\u5e8f
- 11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f
- 11.4 \u00a0 \u63d2\u5165\u6392\u5e8f
- 11.5 \u00a0 \u5feb\u901f\u6392\u5e8f
- 11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f
- 11.7 \u00a0 \u5806\u6392\u5e8f
- 11.8 \u00a0 \u6876\u6392\u5e8f
- 11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f
- 11.10 \u00a0 \u57fa\u6570\u6392\u5e8f
- 11.11 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_sorting/bubble_sort/","title":"11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f","text":"\u300c\u5192\u6ce1\u6392\u5e8f bubble sort\u300d\u901a\u8fc7\u8fde\u7eed\u5730\u6bd4\u8f83\u4e0e\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u5b9e\u73b0\u6392\u5e8f\u3002\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u50cf\u6c14\u6ce1\u4ece\u5e95\u90e8\u5347\u5230\u9876\u90e8\u4e00\u6837\uff0c\u56e0\u6b64\u5f97\u540d\u5192\u6ce1\u6392\u5e8f\u3002
\u5982\u56fe 11-4 \u6240\u793a\uff0c\u5192\u6ce1\u8fc7\u7a0b\u53ef\u4ee5\u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6765\u6a21\u62df\uff1a\u4ece\u6570\u7ec4\u6700\u5de6\u7aef\u5f00\u59cb\u5411\u53f3\u904d\u5386\uff0c\u4f9d\u6b21\u6bd4\u8f83\u76f8\u90bb\u5143\u7d20\u5927\u5c0f\uff0c\u5982\u679c\u201c\u5de6\u5143\u7d20 > \u53f3\u5143\u7d20\u201d\u5c31\u4ea4\u6362\u4e8c\u8005\u3002\u904d\u5386\u5b8c\u6210\u540e\uff0c\u6700\u5927\u7684\u5143\u7d20\u4f1a\u88ab\u79fb\u52a8\u5230\u6570\u7ec4\u7684\u6700\u53f3\u7aef\u3002
<1><2><3><4><5><6><7> \u56fe 11-4 \u00a0 \u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6a21\u62df\u5192\u6ce1
"},{"location":"chapter_sorting/bubble_sort/#1131","title":"11.3.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6b65\u9aa4\u5982\u56fe 11-5 \u6240\u793a\u3002
- \u9996\u5148\uff0c\u5bf9 \\(n\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\uff0c
- \u63a5\u4e0b\u6765\uff0c\u5bf9\u5269\u4f59 \\(n - 1\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u7b2c\u4e8c\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
- \u4ee5\u6b64\u7c7b\u63a8\uff0c\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u201c\u5192\u6ce1\u201d\u540e\uff0c\u524d \\(n - 1\\) \u5927\u7684\u5143\u7d20\u90fd\u88ab\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
- \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5c0f\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002
\u56fe 11-5 \u00a0 \u5192\u6ce1\u6392\u5e8f\u6d41\u7a0b
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig bubble_sort.pydef bubble_sort(nums: list[int]):\n \"\"\"\u5192\u6ce1\u6392\u5e8f\"\"\"\n n = len(nums)\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(n - 1, 0, -1):\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j + 1] = nums[j + 1], nums[j]\n
bubble_sort.cpp/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(vector<int> &nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n // \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\n swap(nums[j], nums[j + 1]);\n }\n }\n }\n}\n
bubble_sort.java/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.cs/* \u5192\u6ce1\u6392\u5e8f */\nvoid BubbleSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n }\n }\n }\n}\n
bubble_sort.go/* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums []int) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j+1] = nums[j+1], nums[j]\n }\n }\n }\n}\n
bubble_sort.swift/* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in stride(from: 0, to: i, by: 1) {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n }\n }\n }\n}\n
bubble_sort.js/* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.ts/* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums: number[]): void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.dart/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(List<int> nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.rs/* \u5192\u6ce1\u6392\u5e8f */\nfn bubble_sort(nums: &mut [i32]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.c/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int nums[], int size) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = size - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n int temp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = temp;\n }\n }\n }\n}\n
bubble_sort.zig// \u5192\u6ce1\u6392\u5e8f\nfn bubbleSort(nums: []i32) void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: usize = nums.len - 1;\n while (i > 0) : (i -= 1) {\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
"},{"location":"chapter_sorting/bubble_sort/#1132","title":"11.3.2 \u00a0 \u6548\u7387\u4f18\u5316","text":"\u6211\u4eec\u53d1\u73b0\uff0c\u5982\u679c\u67d0\u8f6e\u201c\u5192\u6ce1\u201d\u4e2d\u6ca1\u6709\u6267\u884c\u4efb\u4f55\u4ea4\u6362\u64cd\u4f5c\uff0c\u8bf4\u660e\u6570\u7ec4\u5df2\u7ecf\u5b8c\u6210\u6392\u5e8f\uff0c\u53ef\u76f4\u63a5\u8fd4\u56de\u7ed3\u679c\u3002\u56e0\u6b64\uff0c\u53ef\u4ee5\u589e\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d flag \u6765\u76d1\u6d4b\u8fd9\u79cd\u60c5\u51b5\uff0c\u4e00\u65e6\u51fa\u73b0\u5c31\u7acb\u5373\u8fd4\u56de\u3002
\u7ecf\u8fc7\u4f18\u5316\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(n^2)\\) \uff1b\u4f46\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u53ef\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig bubble_sort.pydef bubble_sort_with_flag(nums: list[int]):\n \"\"\"\u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\"\"\"\n n = len(nums)\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(n - 1, 0, -1):\n flag = False # \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j + 1] = nums[j + 1], nums[j]\n flag = True # \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n if not flag:\n break # \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n
bubble_sort.cpp/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(vector<int> &nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n bool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n // \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\n swap(nums[j], nums[j + 1]);\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag)\n break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.java/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nvoid bubbleSortWithFlag(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n boolean flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag)\n break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.cs/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid BubbleSortWithFlag(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n bool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.go/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums []int) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n flag := false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j+1] = nums[j+1], nums[j]\n flag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if flag == false { // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n break\n }\n }\n}\n
bubble_sort.swift/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n var flag = false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n for j in stride(from: 0, to: i, by: 1) {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n flag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if !flag { // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n break\n }\n }\n}\n
bubble_sort.js/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n let flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.ts/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums: number[]): void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n let flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.dart/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(List<int> nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n bool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.rs/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nfn bubble_sort_with_flag(nums: &mut [i32]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n let mut flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if !flag {break}; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.c/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(int nums[], int size) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = size - 1; i > 0; i--) {\n bool flag = false;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n int temp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = temp;\n flag = true;\n }\n }\n if (!flag)\n break;\n }\n}\n
bubble_sort.zig// \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\nfn bubbleSortWithFlag(nums: []i32) void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: usize = nums.len - 1;\n while (i > 0) : (i -= 1) {\n var flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true;\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
"},{"location":"chapter_sorting/bubble_sort/#1133","title":"11.3.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\)\u3001\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5404\u8f6e\u201c\u5192\u6ce1\u201d\u904d\u5386\u7684\u6570\u7ec4\u957f\u5ea6\u4f9d\u6b21\u4e3a \\(n - 1\\)\u3001\\(n - 2\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \uff0c\u603b\u548c\u4e3a \\((n - 1) n / 2\\) \u3002\u5728\u5f15\u5165
flag \u4f18\u5316\u540e\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(n)\\) \u3002 - \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5728\u201c\u5192\u6ce1\u201d\u4e2d\u9047\u5230\u76f8\u7b49\u5143\u7d20\u4e0d\u4ea4\u6362\u3002
"},{"location":"chapter_sorting/bucket_sort/","title":"11.8 \u00a0 \u6876\u6392\u5e8f","text":"\u524d\u8ff0\u51e0\u79cd\u6392\u5e8f\u7b97\u6cd5\u90fd\u5c5e\u4e8e\u201c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u901a\u8fc7\u6bd4\u8f83\u5143\u7d20\u95f4\u7684\u5927\u5c0f\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u6b64\u7c7b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u65e0\u6cd5\u8d85\u8d8a \\(O(n \\log n)\\) \u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u63a2\u8ba8\u51e0\u79cd\u201c\u975e\u6bd4\u8f83\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u7ebf\u6027\u9636\u3002
\u300c\u6876\u6392\u5e8f bucket sort\u300d\u662f\u5206\u6cbb\u7b56\u7565\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u901a\u8fc7\u8bbe\u7f6e\u4e00\u4e9b\u5177\u6709\u5927\u5c0f\u987a\u5e8f\u7684\u6876\uff0c\u6bcf\u4e2a\u6876\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u8303\u56f4\uff0c\u5c06\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff1b\u7136\u540e\uff0c\u5728\u6bcf\u4e2a\u6876\u5185\u90e8\u5206\u522b\u6267\u884c\u6392\u5e8f\uff1b\u6700\u7ec8\u6309\u7167\u6876\u7684\u987a\u5e8f\u5c06\u6240\u6709\u6570\u636e\u5408\u5e76\u3002
"},{"location":"chapter_sorting/bucket_sort/#1181","title":"11.8.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u8003\u8651\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u5176\u5143\u7d20\u662f\u8303\u56f4 \\([0, 1)\\) \u5185\u7684\u6d6e\u70b9\u6570\u3002\u6876\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u56fe 11-13 \u6240\u793a\u3002
- \u521d\u59cb\u5316 \\(k\\) \u4e2a\u6876\uff0c\u5c06 \\(n\\) \u4e2a\u5143\u7d20\u5206\u914d\u5230 \\(k\\) \u4e2a\u6876\u4e2d\u3002
- \u5bf9\u6bcf\u4e2a\u6876\u5206\u522b\u6267\u884c\u6392\u5e8f\uff08\u8fd9\u91cc\u91c7\u7528\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff09\u3002
- \u6309\u7167\u6876\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u5408\u5e76\u7ed3\u679c\u3002
\u56fe 11-13 \u00a0 \u6876\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig bucket_sort.pydef bucket_sort(nums: list[float]):\n \"\"\"\u6876\u6392\u5e8f\"\"\"\n # \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n k = len(nums) // 2\n buckets = [[] for _ in range(k)]\n # 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for num in nums:\n # \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n i = int(num * k)\n # \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].append(num)\n # 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for bucket in buckets:\n # \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort()\n # 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n i = 0\n for bucket in buckets:\n for num in bucket:\n nums[i] = num\n i += 1\n
bucket_sort.cpp/* \u6876\u6392\u5e8f */\nvoid bucketSort(vector<float> &nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.size() / 2;\n vector<vector<float>> buckets(k);\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (float num : nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = num * k;\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\n buckets[i].push_back(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (vector<float> &bucket : buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n sort(bucket.begin(), bucket.end());\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int i = 0;\n for (vector<float> &bucket : buckets) {\n for (float num : bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.java/* \u6876\u6392\u5e8f */\nvoid bucketSort(float[] nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.length / 2;\n List<List<Float>> buckets = new ArrayList<>();\n for (int i = 0; i < k; i++) {\n buckets.add(new ArrayList<>());\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (float num : nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = (int) (num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets.get(i).add(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (List<Float> bucket : buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n Collections.sort(bucket);\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int i = 0;\n for (List<Float> bucket : buckets) {\n for (float num : bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.cs/* \u6876\u6392\u5e8f */\nvoid BucketSort(float[] nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.Length / 2;\n List<List<float>> buckets = [];\n for (int i = 0; i < k; i++) {\n buckets.Add([]);\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n foreach (float num in nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = (int)(num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].Add(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n foreach (List<float> bucket in buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.Sort();\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int j = 0;\n foreach (List<float> bucket in buckets) {\n foreach (float num in bucket) {\n nums[j++] = num;\n }\n }\n}\n
bucket_sort.go/* \u6876\u6392\u5e8f */\nfunc bucketSort(nums []float64) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n k := len(nums) / 2\n buckets := make([][]float64, k)\n for i := 0; i < k; i++ {\n buckets[i] = make([]float64, 0)\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for _, num := range nums {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n i := int(num * float64(k))\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i] = append(buckets[i], num)\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for i := 0; i < k; i++ {\n // \u4f7f\u7528\u5185\u7f6e\u5207\u7247\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n sort.Float64s(buckets[i])\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n i := 0\n for _, bucket := range buckets {\n for _, num := range bucket {\n nums[i] = num\n i++\n }\n }\n}\n
bucket_sort.swift/* \u6876\u6392\u5e8f */\nfunc bucketSort(nums: inout [Double]) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n let k = nums.count / 2\n var buckets = (0 ..< k).map { _ in [Double]() }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for num in nums {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n let i = Int(num * Double(k))\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].append(num)\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for i in buckets.indices {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n buckets[i].sort()\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n var i = nums.startIndex\n for bucket in buckets {\n for num in bucket {\n nums[i] = num\n nums.formIndex(after: &i)\n }\n }\n}\n
bucket_sort.js/* \u6876\u6392\u5e8f */\nfunction bucketSort(nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n const k = nums.length / 2;\n const buckets = [];\n for (let i = 0; i < k; i++) {\n buckets.push([]);\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (const num of nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n const i = Math.floor(num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].push(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (const bucket of buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort((a, b) => a - b);\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n let i = 0;\n for (const bucket of buckets) {\n for (const num of bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.ts/* \u6876\u6392\u5e8f */\nfunction bucketSort(nums: number[]): void {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n const k = nums.length / 2;\n const buckets: number[][] = [];\n for (let i = 0; i < k; i++) {\n buckets.push([]);\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (const num of nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n const i = Math.floor(num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].push(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (const bucket of buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort((a, b) => a - b);\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n let i = 0;\n for (const bucket of buckets) {\n for (const num of bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.dart/* \u6876\u6392\u5e8f */\nvoid bucketSort(List<double> nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.length ~/ 2;\n List<List<double>> buckets = List.generate(k, (index) => []);\n\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (double _num in nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 _num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = (_num * k).toInt();\n // \u5c06 _num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\n buckets[i].add(_num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (List<double> bucket in buckets) {\n bucket.sort();\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int i = 0;\n for (List<double> bucket in buckets) {\n for (double _num in bucket) {\n nums[i++] = _num;\n }\n }\n}\n
bucket_sort.rs/* \u6876\u6392\u5e8f */\nfn bucket_sort(nums: &mut [f64]) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n let k = nums.len() / 2;\n let mut buckets = vec![vec![]; k];\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for &mut num in &mut *nums {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n let i = (num * k as f64) as usize;\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].push(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for bucket in &mut buckets {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort_by(|a, b| a.partial_cmp(b).unwrap());\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n let mut i = 0;\n for bucket in &mut buckets {\n for &mut num in bucket {\n nums[i] = num;\n i += 1;\n }\n }\n}\n
bucket_sort.c/* \u6876\u6392\u5e8f */\nvoid bucketSort(float nums[], int size) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = size / 2;\n float **buckets = calloc(k, sizeof(float *));\n for (int i = 0; i < k; i++) {\n // \u6bcf\u4e2a\u6876\u6700\u591a\u53ef\u4ee5\u5206\u914d k \u4e2a\u5143\u7d20\n buckets[i] = calloc(ARRAY_SIZE, sizeof(float));\n }\n\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (int i = 0; i < size; i++) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int bucket_idx = nums[i] * k;\n int j = 0;\n // \u5982\u679c\u6876\u4e2d\u6709\u6570\u636e\u4e14\u6570\u636e\u5c0f\u4e8e\u5f53\u524d\u503c nums[i], \u8981\u5c06\u5176\u653e\u5230\u5f53\u524d\u6876\u7684\u540e\u9762\uff0c\u76f8\u5f53\u4e8e cpp \u4e2d\u7684 push_back\n while (buckets[bucket_idx][j] > 0 && buckets[bucket_idx][j] < nums[i]) {\n j++;\n }\n float temp = nums[i];\n while (j < ARRAY_SIZE && buckets[bucket_idx][j] > 0) {\n swap(&temp, &buckets[bucket_idx][j]);\n j++;\n }\n buckets[bucket_idx][j] = temp;\n }\n\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (int i = 0; i < k; i++) {\n qsort(buckets[i], ARRAY_SIZE, sizeof(float), compare_float);\n }\n\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n for (int i = 0, j = 0; j < k; j++) {\n for (int l = 0; l < ARRAY_SIZE; l++) {\n if (buckets[j][l] > 0) {\n nums[i++] = buckets[j][l];\n }\n }\n }\n\n // \u91ca\u653e\u4e0a\u8ff0\u5206\u914d\u7684\u5185\u5b58\n for (int i = 0; i < k; i++) {\n free(buckets[i]);\n }\n free(buckets);\n}\n
bucket_sort.zig[class]{}-[func]{bucketSort}\n
"},{"location":"chapter_sorting/bucket_sort/#1182","title":"11.8.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"\u6876\u6392\u5e8f\u9002\u7528\u4e8e\u5904\u7406\u4f53\u91cf\u5f88\u5927\u7684\u6570\u636e\u3002\u4f8b\u5982\uff0c\u8f93\u5165\u6570\u636e\u5305\u542b 100 \u4e07\u4e2a\u5143\u7d20\uff0c\u7531\u4e8e\u7a7a\u95f4\u9650\u5236\uff0c\u7cfb\u7edf\u5185\u5b58\u65e0\u6cd5\u4e00\u6b21\u6027\u52a0\u8f7d\u6240\u6709\u6570\u636e\u3002\u6b64\u65f6\uff0c\u53ef\u4ee5\u5c06\u6570\u636e\u5206\u6210 1000 \u4e2a\u6876\uff0c\u7136\u540e\u5206\u522b\u5bf9\u6bcf\u4e2a\u6876\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u7ed3\u679c\u5408\u5e76\u3002
- \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n + k)\\) \uff1a\u5047\u8bbe\u5143\u7d20\u5728\u5404\u4e2a\u6876\u5185\u5e73\u5747\u5206\u5e03\uff0c\u90a3\u4e48\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u6570\u91cf\u4e3a \\(\\frac{n}{k}\\) \u3002\u5047\u8bbe\u6392\u5e8f\u5355\u4e2a\u6876\u4f7f\u7528 \\(O(\\frac{n}{k} \\log\\frac{n}{k})\\) \u65f6\u95f4\uff0c\u5219\u6392\u5e8f\u6240\u6709\u6876\u4f7f\u7528 \\(O(n \\log\\frac{n}{k})\\) \u65f6\u95f4\u3002\u5f53\u6876\u6570\u91cf \\(k\\) \u6bd4\u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5219\u8d8b\u5411\u4e8e \\(O(n)\\) \u3002\u5408\u5e76\u7ed3\u679c\u65f6\u9700\u8981\u904d\u5386\u6240\u6709\u6876\u548c\u5143\u7d20\uff0c\u82b1\u8d39 \\(O(n + k)\\) \u65f6\u95f4\u3002
- \u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u6570\u636e\u88ab\u5206\u914d\u5230\u4e00\u4e2a\u6876\u4e2d\uff0c\u4e14\u6392\u5e8f\u8be5\u6876\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + k)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u9700\u8981\u501f\u52a9 \\(k\\) \u4e2a\u6876\u548c\u603b\u5171 \\(n\\) \u4e2a\u5143\u7d20\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u6876\u6392\u5e8f\u662f\u5426\u7a33\u5b9a\u53d6\u51b3\u4e8e\u6392\u5e8f\u6876\u5185\u5143\u7d20\u7684\u7b97\u6cd5\u662f\u5426\u7a33\u5b9a\u3002
"},{"location":"chapter_sorting/bucket_sort/#1183","title":"11.8.3 \u00a0 \u5982\u4f55\u5b9e\u73b0\u5e73\u5747\u5206\u914d","text":"\u6876\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7406\u8bba\u4e0a\u53ef\u4ee5\u8fbe\u5230 \\(O(n)\\) \uff0c\u5173\u952e\u5728\u4e8e\u5c06\u5143\u7d20\u5747\u5300\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u56e0\u4e3a\u5b9e\u9645\u6570\u636e\u5f80\u5f80\u4e0d\u662f\u5747\u5300\u5206\u5e03\u7684\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u60f3\u8981\u5c06\u6dd8\u5b9d\u4e0a\u7684\u6240\u6709\u5546\u54c1\u6309\u4ef7\u683c\u8303\u56f4\u5e73\u5747\u5206\u914d\u5230 10 \u4e2a\u6876\u4e2d\uff0c\u4f46\u5546\u54c1\u4ef7\u683c\u5206\u5e03\u4e0d\u5747\uff0c\u4f4e\u4e8e 100 \u5143\u7684\u975e\u5e38\u591a\uff0c\u9ad8\u4e8e 1000 \u5143\u7684\u975e\u5e38\u5c11\u3002\u82e5\u5c06\u4ef7\u683c\u533a\u95f4\u5e73\u5747\u5212\u5206\u4e3a 10 \u4e2a\uff0c\u5404\u4e2a\u6876\u4e2d\u7684\u5546\u54c1\u6570\u91cf\u5dee\u8ddd\u4f1a\u975e\u5e38\u5927\u3002
\u4e3a\u5b9e\u73b0\u5e73\u5747\u5206\u914d\uff0c\u6211\u4eec\u53ef\u4ee5\u5148\u8bbe\u5b9a\u4e00\u6761\u5927\u81f4\u7684\u5206\u754c\u7ebf\uff0c\u5c06\u6570\u636e\u7c97\u7565\u5730\u5206\u5230 3 \u4e2a\u6876\u4e2d\u3002\u5206\u914d\u5b8c\u6bd5\u540e\uff0c\u518d\u5c06\u5546\u54c1\u8f83\u591a\u7684\u6876\u7ee7\u7eed\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u76f4\u81f3\u6240\u6709\u6876\u4e2d\u7684\u5143\u7d20\u6570\u91cf\u5927\u81f4\u76f8\u7b49\u3002
\u5982\u56fe 11-14 \u6240\u793a\uff0c\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u521b\u5efa\u4e00\u68f5\u9012\u5f52\u6811\uff0c\u76ee\u6807\u662f\u8ba9\u53f6\u8282\u70b9\u7684\u503c\u5c3d\u53ef\u80fd\u5e73\u5747\u3002\u5f53\u7136\uff0c\u4e0d\u4e00\u5b9a\u8981\u6bcf\u8f6e\u5c06\u6570\u636e\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u5177\u4f53\u5212\u5206\u65b9\u5f0f\u53ef\u6839\u636e\u6570\u636e\u7279\u70b9\u7075\u6d3b\u9009\u62e9\u3002
\u56fe 11-14 \u00a0 \u9012\u5f52\u5212\u5206\u6876
\u5982\u679c\u6211\u4eec\u63d0\u524d\u77e5\u9053\u5546\u54c1\u4ef7\u683c\u7684\u6982\u7387\u5206\u5e03\uff0c\u5219\u53ef\u4ee5\u6839\u636e\u6570\u636e\u6982\u7387\u5206\u5e03\u8bbe\u7f6e\u6bcf\u4e2a\u6876\u7684\u4ef7\u683c\u5206\u754c\u7ebf\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u6570\u636e\u5206\u5e03\u5e76\u4e0d\u4e00\u5b9a\u9700\u8981\u7279\u610f\u7edf\u8ba1\uff0c\u4e5f\u53ef\u4ee5\u6839\u636e\u6570\u636e\u7279\u70b9\u91c7\u7528\u67d0\u79cd\u6982\u7387\u6a21\u578b\u8fdb\u884c\u8fd1\u4f3c\u3002
\u5982\u56fe 11-15 \u6240\u793a\uff0c\u6211\u4eec\u5047\u8bbe\u5546\u54c1\u4ef7\u683c\u670d\u4ece\u6b63\u6001\u5206\u5e03\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5408\u7406\u5730\u8bbe\u5b9a\u4ef7\u683c\u533a\u95f4\uff0c\u4ece\u800c\u5c06\u5546\u54c1\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\u3002
\u56fe 11-15 \u00a0 \u6839\u636e\u6982\u7387\u5206\u5e03\u5212\u5206\u6876
"},{"location":"chapter_sorting/counting_sort/","title":"11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f","text":"\u300c\u8ba1\u6570\u6392\u5e8f counting sort\u300d\u901a\u8fc7\u7edf\u8ba1\u5143\u7d20\u6570\u91cf\u6765\u5b9e\u73b0\u6392\u5e8f\uff0c\u901a\u5e38\u5e94\u7528\u4e8e\u6574\u6570\u6570\u7ec4\u3002
"},{"location":"chapter_sorting/counting_sort/#1191","title":"11.9.1 \u00a0 \u7b80\u5355\u5b9e\u73b0","text":"\u5148\u6765\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u3002\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u7684\u5143\u7d20\u90fd\u662f\u201c\u975e\u8d1f\u6574\u6570\u201d\uff0c\u8ba1\u6570\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u56fe 11-16 \u6240\u793a\u3002
- \u904d\u5386\u6570\u7ec4\uff0c\u627e\u51fa\u5176\u4e2d\u7684\u6700\u5927\u6570\u5b57\uff0c\u8bb0\u4e3a \\(m\\) \uff0c\u7136\u540e\u521b\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(m + 1\\) \u7684\u8f85\u52a9\u6570\u7ec4
counter \u3002 - \u501f\u52a9
counter \u7edf\u8ba1 nums \u4e2d\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\uff0c\u5176\u4e2d counter[num] \u5bf9\u5e94\u6570\u5b57 num \u7684\u51fa\u73b0\u6b21\u6570\u3002\u7edf\u8ba1\u65b9\u6cd5\u5f88\u7b80\u5355\uff0c\u53ea\u9700\u904d\u5386 nums\uff08\u8bbe\u5f53\u524d\u6570\u5b57\u4e3a num\uff09\uff0c\u6bcf\u8f6e\u5c06 counter[num] \u589e\u52a0 \\(1\\) \u5373\u53ef\u3002 - \u7531\u4e8e
counter \u7684\u5404\u4e2a\u7d22\u5f15\u5929\u7136\u6709\u5e8f\uff0c\u56e0\u6b64\u76f8\u5f53\u4e8e\u6240\u6709\u6570\u5b57\u5df2\u7ecf\u6392\u5e8f\u597d\u4e86\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u904d\u5386 counter \uff0c\u6839\u636e\u5404\u6570\u5b57\u51fa\u73b0\u6b21\u6570\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u586b\u5165 nums \u5373\u53ef\u3002
\u56fe 11-16 \u00a0 \u8ba1\u6570\u6392\u5e8f\u6d41\u7a0b
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig counting_sort.pydef counting_sort_naive(nums: list[int]):\n \"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n # \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\n # 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m = 0\n for num in nums:\n m = max(m, num)\n # 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n # counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter = [0] * (m + 1)\n for num in nums:\n counter[num] += 1\n # 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n i = 0\n for num in range(m + 1):\n for _ in range(counter[num]):\n nums[i] = num\n i += 1\n
counting_sort.cpp/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(vector<int> &nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n vector<int> counter(m + 1, 0);\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.java/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.cs/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid CountingSortNaive(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n foreach (int num in nums) {\n m = Math.Max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n foreach (int num in nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.go/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums []int) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m := 0\n for _, num := range nums {\n if num > m {\n m = num\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter := make([]int, m+1)\n for _, num := range nums {\n counter[num]++\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n for i, num := 0, 0; num < m+1; num++ {\n for j := 0; j < counter[num]; j++ {\n nums[i] = num\n i++\n }\n }\n}\n
counting_sort.swift/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums: inout [Int]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = nums.max()!\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n var counter = Array(repeating: 0, count: m + 1)\n for num in nums {\n counter[num] += 1\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n var i = 0\n for num in stride(from: 0, to: m + 1, by: 1) {\n for _ in stride(from: 0, to: counter[num], by: 1) {\n nums[i] = num\n i += 1\n }\n }\n}\n
counting_sort.js/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter = new Array(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n let i = 0;\n for (let num = 0; num < m + 1; num++) {\n for (let j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.ts/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums: number[]): void {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter: number[] = new Array<number>(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n let i = 0;\n for (let num = 0; num < m + 1; num++) {\n for (let j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.dart/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(List<int> nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int _num in nums) {\n m = max(m, _num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[_num] \u4ee3\u8868 _num \u7684\u51fa\u73b0\u6b21\u6570\n List<int> counter = List.filled(m + 1, 0);\n for (int _num in nums) {\n counter[_num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int _num = 0; _num < m + 1; _num++) {\n for (int j = 0; j < counter[_num]; j++, i++) {\n nums[i] = _num;\n }\n }\n}\n
counting_sort.rs/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfn counting_sort_naive(nums: &mut [i32]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = *nums.into_iter().max().unwrap();\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n let mut counter = vec![0; m as usize + 1];\n for &num in &*nums {\n counter[num as usize] += 1;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n let mut i = 0;\n for num in 0..m + 1 {\n for _ in 0..counter[num as usize] {\n nums[i] = num;\n i += 1;\n }\n }\n}\n
counting_sort.c/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int nums[], int size) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int i = 0; i < size; i++) {\n if (nums[i] > m) {\n m = nums[i];\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int *counter = calloc(m, sizeof(int));\n for (int i = 0; i < size; i++) {\n counter[nums[i]]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n // 4. \u91ca\u653e\u5185\u5b58\n free(counter);\n}\n
counting_sort.zig[class]{}-[func]{countingSortNaive}\n
\u8ba1\u6570\u6392\u5e8f\u4e0e\u6876\u6392\u5e8f\u7684\u8054\u7cfb
\u4ece\u6876\u6392\u5e8f\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u8ba1\u6570\u6392\u5e8f\u4e2d\u7684\u8ba1\u6570\u6570\u7ec4 counter \u7684\u6bcf\u4e2a\u7d22\u5f15\u89c6\u4e3a\u4e00\u4e2a\u6876\uff0c\u5c06\u7edf\u8ba1\u6570\u91cf\u7684\u8fc7\u7a0b\u770b\u4f5c\u5c06\u5404\u4e2a\u5143\u7d20\u5206\u914d\u5230\u5bf9\u5e94\u7684\u6876\u4e2d\u3002\u672c\u8d28\u4e0a\uff0c\u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u5728\u6574\u578b\u6570\u636e\u4e0b\u7684\u4e00\u4e2a\u7279\u4f8b\u3002
"},{"location":"chapter_sorting/counting_sort/#1192","title":"11.9.2 \u00a0 \u5b8c\u6574\u5b9e\u73b0","text":"\u7ec6\u5fc3\u7684\u8bfb\u8005\u53ef\u80fd\u53d1\u73b0\u4e86\uff0c\u5982\u679c\u8f93\u5165\u6570\u636e\u662f\u5bf9\u8c61\uff0c\u4e0a\u8ff0\u6b65\u9aa4 3. \u5c31\u5931\u6548\u4e86\u3002\u5047\u8bbe\u8f93\u5165\u6570\u636e\u662f\u5546\u54c1\u5bf9\u8c61\uff0c\u6211\u4eec\u60f3\u6309\u7167\u5546\u54c1\u4ef7\u683c\uff08\u7c7b\u7684\u6210\u5458\u53d8\u91cf\uff09\u5bf9\u5546\u54c1\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u4e0a\u8ff0\u7b97\u6cd5\u53ea\u80fd\u7ed9\u51fa\u4ef7\u683c\u7684\u6392\u5e8f\u7ed3\u679c\u3002
\u90a3\u4e48\u5982\u4f55\u624d\u80fd\u5f97\u5230\u539f\u6570\u636e\u7684\u6392\u5e8f\u7ed3\u679c\u5462\uff1f\u6211\u4eec\u9996\u5148\u8ba1\u7b97 counter \u7684\u201c\u524d\u7f00\u548c\u201d\u3002\u987e\u540d\u601d\u4e49\uff0c\u7d22\u5f15 i \u5904\u7684\u524d\u7f00\u548c prefix[i] \u7b49\u4e8e\u6570\u7ec4\u524d i \u4e2a\u5143\u7d20\u4e4b\u548c\uff1a
\\[ \\text{prefix}[i] = \\sum_{j=0}^i \\text{counter[j]} \\] \u524d\u7f00\u548c\u5177\u6709\u660e\u786e\u7684\u610f\u4e49\uff0cprefix[num] - 1 \u4ee3\u8868\u5143\u7d20 num \u5728\u7ed3\u679c\u6570\u7ec4 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\u3002\u8fd9\u4e2a\u4fe1\u606f\u975e\u5e38\u5173\u952e\uff0c\u56e0\u4e3a\u5b83\u544a\u8bc9\u6211\u4eec\u5404\u4e2a\u5143\u7d20\u5e94\u8be5\u51fa\u73b0\u5728\u7ed3\u679c\u6570\u7ec4\u7684\u54ea\u4e2a\u4f4d\u7f6e\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5012\u5e8f\u904d\u5386\u539f\u6570\u7ec4 nums \u7684\u6bcf\u4e2a\u5143\u7d20 num \uff0c\u5728\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\u6267\u884c\u4ee5\u4e0b\u4e24\u6b65\u3002
- \u5c06
num \u586b\u5165\u6570\u7ec4 res \u7684\u7d22\u5f15 prefix[num] - 1 \u5904\u3002 - \u4ee4\u524d\u7f00\u548c
prefix[num] \u51cf\u5c0f \\(1\\) \uff0c\u4ece\u800c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\u3002
\u904d\u5386\u5b8c\u6210\u540e\uff0c\u6570\u7ec4 res \u4e2d\u5c31\u662f\u6392\u5e8f\u597d\u7684\u7ed3\u679c\uff0c\u6700\u540e\u4f7f\u7528 res \u8986\u76d6\u539f\u6570\u7ec4 nums \u5373\u53ef\u3002\u56fe 11-17 \u5c55\u793a\u4e86\u5b8c\u6574\u7684\u8ba1\u6570\u6392\u5e8f\u6d41\u7a0b\u3002
<1><2><3><4><5><6><7><8> \u56fe 11-17 \u00a0 \u8ba1\u6570\u6392\u5e8f\u6b65\u9aa4
\u8ba1\u6570\u6392\u5e8f\u7684\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig counting_sort.pydef counting_sort(nums: list[int]):\n \"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n # \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\n # 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m = max(nums)\n # 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n # counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter = [0] * (m + 1)\n for num in nums:\n counter[num] += 1\n # 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n # \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i in range(m):\n counter[i + 1] += counter[i]\n # 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n # \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n n = len(nums)\n res = [0] * n\n for i in range(n - 1, -1, -1):\n num = nums[i]\n res[counter[num] - 1] = num # \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num] -= 1 # \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n # \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in range(n):\n nums[i] = res[i]\n
counting_sort.cpp/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(vector<int> &nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n vector<int> counter(m + 1, 0);\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.size();\n vector<int> res(n);\n for (int i = n - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n nums = res;\n}\n
counting_sort.java/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.length;\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.cs/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid CountingSort(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n foreach (int num in nums) {\n m = Math.Max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n foreach (int num in nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.Length;\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.go/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums []int) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m := 0\n for _, num := range nums {\n if num > m {\n m = num\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter := make([]int, m+1)\n for _, num := range nums {\n counter[num]++\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i := 0; i < m; i++ {\n counter[i+1] += counter[i]\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n n := len(nums)\n res := make([]int, n)\n for i := n - 1; i >= 0; i-- {\n num := nums[i]\n // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n res[counter[num]-1] = num\n // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n counter[num]--\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n copy(nums, res)\n}\n
counting_sort.swift/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums: inout [Int]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = nums.max()!\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n var counter = Array(repeating: 0, count: m + 1)\n for num in nums {\n counter[num] += 1\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i in stride(from: 0, to: m, by: 1) {\n counter[i + 1] += counter[i]\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n var res = Array(repeating: 0, count: nums.count)\n for i in stride(from: nums.count - 1, through: 0, by: -1) {\n let num = nums[i]\n res[counter[num] - 1] = num // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num] -= 1 // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in stride(from: 0, to: nums.count, by: 1) {\n nums[i] = res[i]\n }\n}\n
counting_sort.js/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter = new Array(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (let i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n const n = nums.length;\n const res = new Array(n);\n for (let i = n - 1; i >= 0; i--) {\n const num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.ts/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums: number[]): void {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter: number[] = new Array<number>(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (let i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n const n = nums.length;\n const res: number[] = new Array<number>(n);\n for (let i = n - 1; i >= 0; i--) {\n const num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.dart/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(List<int> nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int _num in nums) {\n m = max(m, _num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[_num] \u4ee3\u8868 _num \u7684\u51fa\u73b0\u6b21\u6570\n List<int> counter = List.filled(m + 1, 0);\n for (int _num in nums) {\n counter[_num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[_num]-1 \u662f _num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.length;\n List<int> res = List.filled(n, 0);\n for (int i = n - 1; i >= 0; i--) {\n int _num = nums[i];\n res[counter[_num] - 1] = _num; // \u5c06 _num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[_num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e _num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n nums.setAll(0, res);\n}\n
counting_sort.rs/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfn counting_sort(nums: &mut [i32]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = *nums.into_iter().max().unwrap();\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n let mut counter = vec![0; m as usize + 1];\n for &num in &*nums {\n counter[num as usize] += 1;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i in 0..m as usize {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n let n = nums.len();\n let mut res = vec![0; n];\n for i in (0..n).rev() {\n let num = nums[i];\n res[counter[num as usize] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num as usize] -= 1; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in 0..n {\n nums[i] = res[i];\n }\n}\n
counting_sort.c/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int nums[], int size) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int i = 0; i < size; i++) {\n if (nums[i] > m) {\n m = nums[i];\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int *counter = calloc(m, sizeof(int));\n for (int i = 0; i < size; i++) {\n counter[nums[i]]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int *res = malloc(sizeof(int) * size);\n for (int i = size - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n memcpy(nums, res, size * sizeof(int));\n // 5. \u91ca\u653e\u5185\u5b58\n free(counter);\n}\n
counting_sort.zig[class]{}-[func]{countingSort}\n
"},{"location":"chapter_sorting/counting_sort/#1193","title":"11.9.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n + m)\\) \uff1a\u6d89\u53ca\u904d\u5386
nums \u548c\u904d\u5386 counter \uff0c\u90fd\u4f7f\u7528\u7ebf\u6027\u65f6\u95f4\u3002\u4e00\u822c\u60c5\u51b5\u4e0b \\(n \\gg m\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u4e8e \\(O(n)\\) \u3002 - \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + m)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u501f\u52a9\u4e86\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \u7684\u6570\u7ec4
res \u548c counter \u3002 - \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5411
res \u4e2d\u586b\u5145\u5143\u7d20\u7684\u987a\u5e8f\u662f\u201c\u4ece\u53f3\u5411\u5de6\u201d\u7684\uff0c\u56e0\u6b64\u5012\u5e8f\u904d\u5386 nums \u53ef\u4ee5\u907f\u514d\u6539\u53d8\u76f8\u7b49\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b9e\u73b0\u7a33\u5b9a\u6392\u5e8f\u3002\u5b9e\u9645\u4e0a\uff0c\u6b63\u5e8f\u904d\u5386 nums \u4e5f\u53ef\u4ee5\u5f97\u5230\u6b63\u786e\u7684\u6392\u5e8f\u7ed3\u679c\uff0c\u4f46\u7ed3\u679c\u662f\u975e\u7a33\u5b9a\u7684\u3002
"},{"location":"chapter_sorting/counting_sort/#1194","title":"11.9.4 \u00a0 \u5c40\u9650\u6027","text":"\u770b\u5230\u8fd9\u91cc\uff0c\u4f60\u4e5f\u8bb8\u4f1a\u89c9\u5f97\u8ba1\u6570\u6392\u5e8f\u975e\u5e38\u5de7\u5999\uff0c\u4ec5\u901a\u8fc7\u7edf\u8ba1\u6570\u91cf\u5c31\u53ef\u4ee5\u5b9e\u73b0\u9ad8\u6548\u7684\u6392\u5e8f\u3002\u7136\u800c\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\u76f8\u5bf9\u8f83\u4e3a\u4e25\u683c\u3002
\u8ba1\u6570\u6392\u5e8f\u53ea\u9002\u7528\u4e8e\u975e\u8d1f\u6574\u6570\u3002\u82e5\u60f3\u5c06\u5176\u7528\u4e8e\u5176\u4ed6\u7c7b\u578b\u7684\u6570\u636e\uff0c\u9700\u8981\u786e\u4fdd\u8fd9\u4e9b\u6570\u636e\u53ef\u4ee5\u8f6c\u6362\u4e3a\u975e\u8d1f\u6574\u6570\uff0c\u5e76\u4e14\u5728\u8f6c\u6362\u8fc7\u7a0b\u4e2d\u4e0d\u80fd\u6539\u53d8\u5404\u4e2a\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u5927\u5c0f\u5173\u7cfb\u3002\u4f8b\u5982\uff0c\u5bf9\u4e8e\u5305\u542b\u8d1f\u6570\u7684\u6574\u6570\u6570\u7ec4\uff0c\u53ef\u4ee5\u5148\u7ed9\u6240\u6709\u6570\u5b57\u52a0\u4e0a\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5168\u90e8\u6570\u5b57\u8f6c\u5316\u4e3a\u6b63\u6570\uff0c\u6392\u5e8f\u5b8c\u6210\u540e\u518d\u8f6c\u6362\u56de\u53bb\u3002
\u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u6bd4\u5982\uff0c\u5728\u4e0a\u8ff0\u793a\u4f8b\u4e2d \\(m\\) \u4e0d\u80fd\u592a\u5927\uff0c\u5426\u5219\u4f1a\u5360\u7528\u8fc7\u591a\u7a7a\u95f4\u3002\u800c\u5f53 \\(n \\ll m\\) \u65f6\uff0c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\uff0c\u53ef\u80fd\u6bd4 \\(O(n \\log n)\\) \u7684\u6392\u5e8f\u7b97\u6cd5\u8fd8\u8981\u6162\u3002
"},{"location":"chapter_sorting/heap_sort/","title":"11.7 \u00a0 \u5806\u6392\u5e8f","text":"Tip
\u9605\u8bfb\u672c\u8282\u524d\uff0c\u8bf7\u786e\u4fdd\u5df2\u5b66\u5b8c\u201c\u5806\u201c\u7ae0\u8282\u3002
\u300c\u5806\u6392\u5e8f heap sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5806\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\u7684\u9ad8\u6548\u6392\u5e8f\u7b97\u6cd5\u3002\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u5df2\u7ecf\u5b66\u8fc7\u7684\u201c\u5efa\u5806\u64cd\u4f5c\u201d\u548c\u201c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u201d\u5b9e\u73b0\u5806\u6392\u5e8f\u3002
- \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5c0f\u9876\u5806\uff0c\u6b64\u65f6\u6700\u5c0f\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
- \u4e0d\u65ad\u6267\u884c\u51fa\u5806\u64cd\u4f5c\uff0c\u4f9d\u6b21\u8bb0\u5f55\u51fa\u5806\u5143\u7d20\uff0c\u5373\u53ef\u5f97\u5230\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u7684\u5e8f\u5217\u3002
\u4ee5\u4e0a\u65b9\u6cd5\u867d\u7136\u53ef\u884c\uff0c\u4f46\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u989d\u5916\u6570\u7ec4\u6765\u4fdd\u5b58\u5f39\u51fa\u7684\u5143\u7d20\uff0c\u6bd4\u8f83\u6d6a\u8d39\u7a7a\u95f4\u3002\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u4e00\u79cd\u66f4\u52a0\u4f18\u96c5\u7684\u5b9e\u73b0\u65b9\u5f0f\u3002
"},{"location":"chapter_sorting/heap_sort/#1171","title":"11.7.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5806\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u56fe 11-12 \u6240\u793a\u3002
- \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5927\u9876\u5806\u3002\u5b8c\u6210\u540e\uff0c\u6700\u5927\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
- \u5c06\u5806\u9876\u5143\u7d20\uff08\u7b2c\u4e00\u4e2a\u5143\u7d20\uff09\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u6700\u540e\u4e00\u4e2a\u5143\u7d20\uff09\u4ea4\u6362\u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u5806\u7684\u957f\u5ea6\u51cf \\(1\\) \uff0c\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u52a0 \\(1\\) \u3002
- \u4ece\u5806\u9876\u5143\u7d20\u5f00\u59cb\uff0c\u4ece\u9876\u5230\u5e95\u6267\u884c\u5806\u5316\u64cd\u4f5c\uff08Sift Down\uff09\u3002\u5b8c\u6210\u5806\u5316\u540e\uff0c\u5806\u7684\u6027\u8d28\u5f97\u5230\u4fee\u590d\u3002
- \u5faa\u73af\u6267\u884c\u7b2c
2. \u6b65\u548c\u7b2c 3. \u6b65\u3002\u5faa\u73af \\(n - 1\\) \u8f6e\u540e\uff0c\u5373\u53ef\u5b8c\u6210\u6570\u7ec4\u6392\u5e8f\u3002
Tip
\u5b9e\u9645\u4e0a\uff0c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u4e2d\u4e5f\u5305\u542b\u7b2c 2. \u6b65\u548c\u7b2c 3. \u6b65\uff0c\u53ea\u662f\u591a\u4e86\u4e00\u4e2a\u5f39\u51fa\u5143\u7d20\u7684\u6b65\u9aa4\u3002
<1><2><3><4><5><6><7><8><9><10><11><12> \u56fe 11-12 \u00a0 \u5806\u6392\u5e8f\u6b65\u9aa4
\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4f7f\u7528\u4e86\u4e0e\u201c\u5806\u201d\u7ae0\u8282\u76f8\u540c\u7684\u4ece\u9876\u81f3\u5e95\u5806\u5316 sift_down() \u51fd\u6570\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u5806\u7684\u957f\u5ea6\u4f1a\u968f\u7740\u63d0\u53d6\u6700\u5927\u5143\u7d20\u800c\u51cf\u5c0f\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u7ed9 sift_down() \u51fd\u6570\u6dfb\u52a0\u4e00\u4e2a\u957f\u5ea6\u53c2\u6570 \\(n\\) \uff0c\u7528\u4e8e\u6307\u5b9a\u5806\u7684\u5f53\u524d\u6709\u6548\u957f\u5ea6\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig heap_sort.pydef sift_down(nums: list[int], n: int, i: int):\n \"\"\"\u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\n while True:\n # \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n l = 2 * i + 1\n r = 2 * i + 2\n ma = i\n if l < n and nums[l] > nums[ma]:\n ma = l\n if r < n and nums[r] > nums[ma]:\n ma = r\n # \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i:\n break\n # \u4ea4\u6362\u4e24\u8282\u70b9\n nums[i], nums[ma] = nums[ma], nums[i]\n # \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n\ndef heap_sort(nums: list[int]):\n \"\"\"\u5806\u6392\u5e8f\"\"\"\n # \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in range(len(nums) // 2 - 1, -1, -1):\n sift_down(nums, len(nums), i)\n # \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i in range(len(nums) - 1, 0, -1):\n # \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n nums[0], nums[i] = nums[i], nums[0]\n # \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n sift_down(nums, i, 0)\n
heap_sort.cpp/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(vector<int> &nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(nums[i], nums[ma]);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(vector<int> &nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.size() / 2 - 1; i >= 0; --i) {\n siftDown(nums, nums.size(), i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.size() - 1; i > 0; --i) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(nums[0], nums[i]);\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.java/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int[] nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n int temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int[] nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.length / 2 - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n int tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.cs/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid SiftDown(int[] nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n (nums[ma], nums[i]) = (nums[i], nums[ma]);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid HeapSort(int[] nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.Length / 2 - 1; i >= 0; i--) {\n SiftDown(nums, nums.Length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n (nums[i], nums[0]) = (nums[0], nums[i]);\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n SiftDown(nums, i, 0);\n }\n}\n
heap_sort.go/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums *[]int, n, i int) {\n for true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n l := 2*i + 1\n r := 2*i + 2\n ma := i\n if l < n && (*nums)[l] > (*nums)[ma] {\n ma = l\n }\n if r < n && (*nums)[r] > (*nums)[ma] {\n ma = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n (*nums)[i], (*nums)[ma] = (*nums)[ma], (*nums)[i]\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums *[]int) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i := len(*nums)/2 - 1; i >= 0; i-- {\n siftDown(nums, len(*nums), i)\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i := len(*nums) - 1; i > 0; i-- {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n (*nums)[0], (*nums)[i] = (*nums)[i], (*nums)[0]\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0)\n }\n}\n
heap_sort.swift/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums: inout [Int], n: Int, i: Int) {\n var i = i\n while true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1\n let r = 2 * i + 2\n var ma = i\n if l < n, nums[l] > nums[ma] {\n ma = l\n }\n if r < n, nums[r] > nums[ma] {\n ma = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n nums.swapAt(i, ma)\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums: inout [Int]) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in stride(from: nums.count / 2 - 1, through: 0, by: -1) {\n siftDown(nums: &nums, n: nums.count, i: i)\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n nums.swapAt(0, i)\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums: &nums, n: i, i: 0)\n }\n}\n
heap_sort.js/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums, n, i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1;\n let r = 2 * i + 2;\n let ma = i;\n if (l < n && nums[l] > nums[ma]) {\n ma = l;\n }\n if (r < n && nums[r] > nums[ma]) {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n [nums[i], nums[ma]] = [nums[ma], nums[i]];\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (let i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n [nums[0], nums[i]] = [nums[i], nums[0]];\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.ts/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums: number[], n: number, i: number): void {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1;\n let r = 2 * i + 2;\n let ma = i;\n if (l < n && nums[l] > nums[ma]) {\n ma = l;\n }\n if (r < n && nums[r] > nums[ma]) {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n [nums[i], nums[ma]] = [nums[ma], nums[i]];\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums: number[]): void {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (let i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n [nums[0], nums[i]] = [nums[i], nums[0]];\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.dart/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(List<int> nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma]) ma = l;\n if (r < n && nums[r] > nums[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n int temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(List<int> nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.length ~/ 2 - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n int tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.rs/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(nums: &mut [i32], n: usize, mut i: usize) {\n loop {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1;\n let r = 2 * i + 2;\n let mut ma = i;\n if l < n && nums[l] > nums[ma] {\n ma = l;\n }\n if r < n && nums[r] > nums[ma] {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n let temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfn heap_sort(nums: &mut [i32]) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in (0..=nums.len() / 2 - 1).rev() {\n sift_down(nums, nums.len(), i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i in (1..=nums.len() - 1).rev() {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n let tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n sift_down(nums, i, 0);\n }\n}\n
heap_sort.c/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int nums[], int n, int i) {\n while (1) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n int temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int nums[], int n) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = n / 2 - 1; i >= 0; --i) {\n siftDown(nums, n, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = n - 1; i > 0; --i) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n int tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.zig[class]{}-[func]{siftDown}\n\n[class]{}-[func]{heapSort}\n
"},{"location":"chapter_sorting/heap_sort/#1172","title":"11.7.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\)\u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5efa\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \uff0c\u5171\u5faa\u73af \\(n - 1\\) \u8f6e\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\u4f7f\u7528 \\(O(1)\\) \u7a7a\u95f4\u3002\u5143\u7d20\u4ea4\u6362\u548c\u5806\u5316\u64cd\u4f5c\u90fd\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\u3002
- \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u4ea4\u6362\u5806\u9876\u5143\u7d20\u548c\u5806\u5e95\u5143\u7d20\u65f6\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u76f8\u5bf9\u4f4d\u7f6e\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002
"},{"location":"chapter_sorting/insertion_sort/","title":"11.4 \u00a0 \u63d2\u5165\u6392\u5e8f","text":"\u300c\u63d2\u5165\u6392\u5e8f insertion sort\u300d\u662f\u4e00\u79cd\u7b80\u5355\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5b83\u7684\u5de5\u4f5c\u539f\u7406\u4e0e\u624b\u52a8\u6574\u7406\u4e00\u526f\u724c\u7684\u8fc7\u7a0b\u975e\u5e38\u76f8\u4f3c\u3002
\u5177\u4f53\u6765\u8bf4\uff0c\u6211\u4eec\u5728\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u4e00\u4e2a\u57fa\u51c6\u5143\u7d20\uff0c\u5c06\u8be5\u5143\u7d20\u4e0e\u5176\u5de6\u4fa7\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u5143\u7d20\u9010\u4e00\u6bd4\u8f83\u5927\u5c0f\uff0c\u5e76\u5c06\u8be5\u5143\u7d20\u63d2\u5165\u5230\u6b63\u786e\u7684\u4f4d\u7f6e\u3002
\u56fe 11-6 \u5c55\u793a\u4e86\u6570\u7ec4\u63d2\u5165\u5143\u7d20\u7684\u64cd\u4f5c\u6d41\u7a0b\u3002\u8bbe\u57fa\u51c6\u5143\u7d20\u4e3a base \uff0c\u6211\u4eec\u9700\u8981\u5c06\u4ece\u76ee\u6807\u7d22\u5f15\u5230 base \u4e4b\u95f4\u7684\u6240\u6709\u5143\u7d20\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\uff0c\u7136\u540e\u5c06 base \u8d4b\u503c\u7ed9\u76ee\u6807\u7d22\u5f15\u3002
\u56fe 11-6 \u00a0 \u5355\u6b21\u63d2\u5165\u64cd\u4f5c
"},{"location":"chapter_sorting/insertion_sort/#1141","title":"11.4.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u63d2\u5165\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u56fe 11-7 \u6240\u793a\u3002
- \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6570\u7ec4\u7684\u7b2c 1 \u4e2a\u5143\u7d20\u5df2\u5b8c\u6210\u6392\u5e8f\u3002
- \u9009\u53d6\u6570\u7ec4\u7684\u7b2c 2 \u4e2a\u5143\u7d20\u4f5c\u4e3a
base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002 - \u9009\u53d6\u7b2c 3 \u4e2a\u5143\u7d20\u4f5c\u4e3a
base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 3 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002 - \u4ee5\u6b64\u7c7b\u63a8\uff0c\u5728\u6700\u540e\u4e00\u8f6e\u4e2d\uff0c\u9009\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a
base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6240\u6709\u5143\u7d20\u5747\u5df2\u6392\u5e8f\u3002
\u56fe 11-7 \u00a0 \u63d2\u5165\u6392\u5e8f\u6d41\u7a0b
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig insertion_sort.pydef insertion_sort(nums: list[int]):\n \"\"\"\u63d2\u5165\u6392\u5e8f\"\"\"\n # \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u533a\u95f4\u4e3a [0, i-1]\n for i in range(1, len(nums)):\n base = nums[i]\n j = i - 1\n # \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4 [0, i-1] \u4e2d\u7684\u6b63\u786e\u4f4d\u7f6e\n while j >= 0 and nums[j] > base:\n nums[j + 1] = nums[j] # \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j -= 1\n nums[j + 1] = base # \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n
insertion_sort.cpp/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(vector<int> &nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.size(); i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.java/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.length; i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.cs/* \u63d2\u5165\u6392\u5e8f */\nvoid InsertionSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.Length; i++) {\n int bas = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > bas) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = bas; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.go/* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums []int) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := 1; i < len(nums); i++ {\n base := nums[i]\n j := i - 1\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n for j >= 0 && nums[j] > base {\n nums[j+1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--\n }\n nums[j+1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.swift/* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for i in stride(from: 1, to: nums.count, by: 1) {\n let base = nums[i]\n var j = i - 1\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while j >= 0, nums[j] > base {\n nums[j + 1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j -= 1\n }\n nums[j + 1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.js/* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (let i = 1; i < nums.length; i++) {\n let base = nums[i],\n j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.ts/* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums: number[]): void {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (let i = 1; i < nums.length; i++) {\n const base = nums[i];\n let j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.dart/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(List<int> nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.length; i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.rs/* \u63d2\u5165\u6392\u5e8f */\nfn insertion_sort(nums: &mut [i32]) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for i in 1..nums.len() {\n let (base, mut j) = (nums[i], (i - 1) as i32);\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while j >= 0 && nums[j as usize] > base {\n nums[(j + 1) as usize] = nums[j as usize]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j -= 1;\n }\n nums[(j + 1) as usize] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.c/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int nums[], int size) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < size; i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n nums[j + 1] = nums[j];\n j--;\n }\n // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n nums[j + 1] = base;\n }\n}\n
insertion_sort.zig// \u63d2\u5165\u6392\u5e8f\nfn insertionSort(nums: []i32) void {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n var i: usize = 1;\n while (i < nums.len) : (i += 1) {\n var base = nums[i];\n var j: usize = i;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 1 and nums[j - 1] > base) : (j -= 1) {\n nums[j] = nums[j - 1]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n }\n nums[j] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
"},{"location":"chapter_sorting/insertion_sort/#1142","title":"11.4.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n^2)\\)\u3001\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u6b21\u63d2\u5165\u64cd\u4f5c\u5206\u522b\u9700\u8981\u5faa\u73af \\(n - 1\\)\u3001\\(n-2\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \u6b21\uff0c\u6c42\u548c\u5f97\u5230 \\((n - 1) n / 2\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u5728\u9047\u5230\u6709\u5e8f\u6570\u636e\u65f6\uff0c\u63d2\u5165\u64cd\u4f5c\u4f1a\u63d0\u524d\u7ec8\u6b62\u3002\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u63d2\u5165\u6392\u5e8f\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u63d2\u5165\u64cd\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u4f1a\u5c06\u5143\u7d20\u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\uff0c\u4e0d\u4f1a\u6539\u53d8\u5b83\u4eec\u7684\u987a\u5e8f\u3002
"},{"location":"chapter_sorting/insertion_sort/#1143","title":"11.4.3 \u00a0 \u63d2\u5165\u6392\u5e8f\u4f18\u52bf","text":"\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u800c\u6211\u4eec\u5373\u5c06\u5b66\u4e60\u7684\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u5c3d\u7ba1\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u66f4\u9ad8\uff0c\u4f46\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u7684\u60c5\u51b5\u4e0b\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u66f4\u5feb\u3002
\u8fd9\u4e2a\u7ed3\u8bba\u4e0e\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u7684\u9002\u7528\u60c5\u51b5\u7684\u7ed3\u8bba\u7c7b\u4f3c\u3002\u5feb\u901f\u6392\u5e8f\u8fd9\u7c7b \\(O(n \\log n)\\) \u7684\u7b97\u6cd5\u5c5e\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5f80\u5f80\u5305\u542b\u66f4\u591a\u5355\u5143\u8ba1\u7b97\u64cd\u4f5c\u3002\u800c\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\\(n^2\\) \u548c \\(n \\log n\\) \u7684\u6570\u503c\u6bd4\u8f83\u63a5\u8fd1\uff0c\u590d\u6742\u5ea6\u4e0d\u5360\u4e3b\u5bfc\u5730\u4f4d\uff1b\u6bcf\u8f6e\u4e2d\u7684\u5355\u5143\u64cd\u4f5c\u6570\u91cf\u8d77\u5230\u51b3\u5b9a\u6027\u4f5c\u7528\u3002
\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java\uff09\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\u91c7\u7528\u4e86\u63d2\u5165\u6392\u5e8f\uff0c\u5927\u81f4\u601d\u8def\u4e3a\uff1a\u5bf9\u4e8e\u957f\u6570\u7ec4\uff0c\u91c7\u7528\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\uff1b\u5bf9\u4e8e\u77ed\u6570\u7ec4\uff0c\u76f4\u63a5\u4f7f\u7528\u63d2\u5165\u6392\u5e8f\u3002
\u867d\u7136\u5192\u6ce1\u6392\u5e8f\u3001\u9009\u62e9\u6392\u5e8f\u548c\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u63d2\u5165\u6392\u5e8f\u7684\u4f7f\u7528\u9891\u7387\u663e\u8457\u9ad8\u4e8e\u5192\u6ce1\u6392\u5e8f\u548c\u9009\u62e9\u6392\u5e8f\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u5192\u6ce1\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u4ea4\u6362\u5b9e\u73b0\uff0c\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u4e34\u65f6\u53d8\u91cf\uff0c\u5171\u6d89\u53ca 3 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u63d2\u5165\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u8d4b\u503c\u5b9e\u73b0\uff0c\u4ec5\u9700 1 \u4e2a\u5355\u5143\u64cd\u4f5c\u3002\u56e0\u6b64\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u8ba1\u7b97\u5f00\u9500\u901a\u5e38\u6bd4\u63d2\u5165\u6392\u5e8f\u66f4\u9ad8\u3002
- \u9009\u62e9\u6392\u5e8f\u5728\u4efb\u4f55\u60c5\u51b5\u4e0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \u3002\u5982\u679c\u7ed9\u5b9a\u4e00\u7ec4\u90e8\u5206\u6709\u5e8f\u7684\u6570\u636e\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u6bd4\u9009\u62e9\u6392\u5e8f\u6548\u7387\u66f4\u9ad8\u3002
- \u9009\u62e9\u6392\u5e8f\u4e0d\u7a33\u5b9a\uff0c\u65e0\u6cd5\u5e94\u7528\u4e8e\u591a\u7ea7\u6392\u5e8f\u3002
"},{"location":"chapter_sorting/merge_sort/","title":"11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f","text":"\u300c\u5f52\u5e76\u6392\u5e8f merge sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5305\u542b\u56fe 11-10 \u6240\u793a\u7684\u201c\u5212\u5206\u201d\u548c\u201c\u5408\u5e76\u201d\u9636\u6bb5\u3002
- \u5212\u5206\u9636\u6bb5\uff1a\u901a\u8fc7\u9012\u5f52\u4e0d\u65ad\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5206\u5f00\uff0c\u5c06\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u8f6c\u6362\u4e3a\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002
- \u5408\u5e76\u9636\u6bb5\uff1a\u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u5212\u5206\uff0c\u5f00\u59cb\u5408\u5e76\uff0c\u6301\u7eed\u5730\u5c06\u5de6\u53f3\u4e24\u4e2a\u8f83\u77ed\u7684\u6709\u5e8f\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u8f83\u957f\u7684\u6709\u5e8f\u6570\u7ec4\uff0c\u76f4\u81f3\u7ed3\u675f\u3002
\u56fe 11-10 \u00a0 \u5f52\u5e76\u6392\u5e8f\u7684\u5212\u5206\u4e0e\u5408\u5e76\u9636\u6bb5
"},{"location":"chapter_sorting/merge_sort/#1161","title":"11.6.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u5982\u56fe 11-11 \u6240\u793a\uff0c\u201c\u5212\u5206\u9636\u6bb5\u201d\u4ece\u9876\u81f3\u5e95\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5207\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\u3002
- \u8ba1\u7b97\u6570\u7ec4\u4e2d\u70b9
mid \uff0c\u9012\u5f52\u5212\u5206\u5de6\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [left, mid] \uff09\u548c\u53f3\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [mid + 1, right] \uff09\u3002 - \u9012\u5f52\u6267\u884c\u6b65\u9aa4
1. \uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u533a\u95f4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u3002
\u201c\u5408\u5e76\u9636\u6bb5\u201d\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ece\u957f\u5ea6\u4e3a 1 \u7684\u5b50\u6570\u7ec4\u5f00\u59cb\u5408\u5e76\uff0c\u5408\u5e76\u9636\u6bb5\u4e2d\u7684\u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u662f\u6709\u5e8f\u7684\u3002
<1><2><3><4><5><6><7><8><9><10> \u56fe 11-11 \u00a0 \u5f52\u5e76\u6392\u5e8f\u6b65\u9aa4
\u89c2\u5bdf\u53d1\u73b0\uff0c\u5f52\u5e76\u6392\u5e8f\u4e0e\u4e8c\u53c9\u6811\u540e\u5e8f\u904d\u5386\u7684\u9012\u5f52\u987a\u5e8f\u662f\u4e00\u81f4\u7684\u3002
- \u540e\u5e8f\u904d\u5386\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6811\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6811\uff0c\u6700\u540e\u5904\u7406\u6839\u8282\u70b9\u3002
- \u5f52\u5e76\u6392\u5e8f\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6570\u7ec4\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6570\u7ec4\uff0c\u6700\u540e\u5904\u7406\u5408\u5e76\u3002
\u5f52\u5e76\u6392\u5e8f\u7684\u5b9e\u73b0\u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\u3002\u8bf7\u6ce8\u610f\uff0cnums \u7684\u5f85\u5408\u5e76\u533a\u95f4\u4e3a [left, right] \uff0c\u800c tmp \u7684\u5bf9\u5e94\u533a\u95f4\u4e3a [0, right - left] \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig merge_sort.pydef merge(nums: list[int], left: int, mid: int, right: int):\n \"\"\"\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\"\"\"\n # \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n # \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n tmp = [0] * (right - left + 1)\n # \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n i, j, k = left, mid + 1, 0\n # \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid and j <= right:\n if nums[i] <= nums[j]:\n tmp[k] = nums[i]\n i += 1\n else:\n tmp[k] = nums[j]\n j += 1\n k += 1\n # \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid:\n tmp[k] = nums[i]\n i += 1\n k += 1\n while j <= right:\n tmp[k] = nums[j]\n j += 1\n k += 1\n # \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k in range(0, len(tmp)):\n nums[left + k] = tmp[k]\n\ndef merge_sort(nums: list[int], left: int, right: int):\n \"\"\"\u5f52\u5e76\u6392\u5e8f\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if left >= right:\n return # \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n # \u5212\u5206\u9636\u6bb5\n mid = (left + right) // 2 # \u8ba1\u7b97\u4e2d\u70b9\n merge_sort(nums, left, mid) # \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n merge_sort(nums, mid + 1, right) # \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n # \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right)\n
merge_sort.cpp/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(vector<int> &nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n vector<int> tmp(right - left + 1);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.size(); k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(vector<int> &nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right)\n return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.java/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(int[] nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n int[] tmp = new int[right - left + 1];\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int[] nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right)\n return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.cs/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid Merge(int[] nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n int[] tmp = new int[right - left + 1];\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.Length; ++k) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid MergeSort(int[] nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n MergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n MergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n Merge(nums, left, mid, right);\n}\n
merge_sort.go/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunc merge(nums []int, left, mid, right int) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n tmp := make([]int, right-left+1)\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n i, j, k := left, mid+1, 0\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n for i <= mid && j <= right {\n if nums[i] <= nums[j] {\n tmp[k] = nums[i]\n i++\n } else {\n tmp[k] = nums[j]\n j++\n }\n k++\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n for i <= mid {\n tmp[k] = nums[i]\n i++\n k++\n }\n for j <= right {\n tmp[k] = nums[j]\n j++\n k++\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k := 0; k < len(tmp); k++ {\n nums[left+k] = tmp[k]\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums []int, left, right int) {\n // \u7ec8\u6b62\u6761\u4ef6\n if left >= right {\n return\n }\n // \u5212\u5206\u9636\u6bb5\n mid := (left + right) / 2\n mergeSort(nums, left, mid)\n mergeSort(nums, mid+1, right)\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right)\n}\n
merge_sort.swift/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunc merge(nums: inout [Int], left: Int, mid: Int, right: Int) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n var tmp = Array(repeating: 0, count: right - left + 1)\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n var i = left, j = mid + 1, k = 0\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid, j <= right {\n if nums[i] <= nums[j] {\n tmp[k] = nums[i]\n i += 1\n k += 1\n } else {\n tmp[k] = nums[j]\n j += 1\n k += 1\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid {\n tmp[k] = nums[i]\n i += 1\n k += 1\n }\n while j <= right {\n tmp[k] = nums[j]\n j += 1\n k += 1\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k in tmp.indices {\n nums[left + k] = tmp[k]\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums: inout [Int], left: Int, right: Int) {\n // \u7ec8\u6b62\u6761\u4ef6\n if left >= right { // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n return\n }\n // \u5212\u5206\u9636\u6bb5\n let mid = (left + right) / 2 // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums: &nums, left: left, right: mid) // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums: &nums, left: mid + 1, right: right) // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums: &nums, left: left, mid: mid, right: right)\n}\n
merge_sort.js/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunction merge(nums, left, mid, right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n const tmp = new Array(right - left + 1);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n let i = left,\n j = mid + 1,\n k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j]) {\n tmp[k++] = nums[i++];\n } else {\n tmp[k++] = nums[j++];\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums, left, right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n let mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.ts/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunction merge(nums: number[], left: number, mid: number, right: number): void {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n const tmp = new Array(right - left + 1);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n let i = left,\n j = mid + 1,\n k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j]) {\n tmp[k++] = nums[i++];\n } else {\n tmp[k++] = nums[j++];\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums: number[], left: number, right: number): void {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n let mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.dart/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(List<int> nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n List<int> tmp = List.filled(right - left + 1, 0);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(List<int> nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.rs/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfn merge(nums: &mut [i32], left: usize, mid: usize, right: usize) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n let tmp_size = right - left + 1;\n let mut tmp = vec![0; tmp_size];\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n let (mut i, mut j, mut k) = (left, mid + 1, 0);\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid && j <= right {\n if nums[i] <= nums[j] {\n tmp[k] = nums[j];\n i += 1;\n } else {\n tmp[k] = nums[j];\n j += 1;\n }\n k += 1;\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid {\n tmp[k] = nums[i];\n k += 1;\n i += 1;\n }\n while j <= right {\n tmp[k] = nums[j];\n k += 1;\n j += 1;\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k in 0..tmp_size {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfn merge_sort(nums: &mut [i32], left: usize, right: usize) {\n // \u7ec8\u6b62\u6761\u4ef6\n if left >= right { return; } // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n let mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n merge_sort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n merge_sort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.c/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(int *nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n int tmpSize = right - left + 1;\n int *tmp = (int *)malloc(tmpSize * sizeof(int));\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j]) {\n tmp[k++] = nums[i++];\n } else {\n tmp[k++] = nums[j++];\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmpSize; ++k) {\n nums[left + k] = tmp[k];\n }\n // \u91ca\u653e\u5185\u5b58\n free(tmp);\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int *nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right)\n return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.zig// \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfn merge(nums: []i32, left: usize, mid: usize, right: usize) !void {\n // \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\n var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\n defer mem_arena.deinit();\n const mem_allocator = mem_arena.allocator();\n var tmp = try mem_allocator.alloc(i32, right + 1 - left);\n std.mem.copy(i32, tmp, nums[left..right+1]);\n // \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15 \n var leftStart = left - left;\n var leftEnd = mid - left;\n // \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15 \n var rightStart = mid + 1 - left;\n var rightEnd = right - left;\n // i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\n var i = leftStart;\n var j = rightStart;\n // \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\n var k = left;\n while (k <= right) : (k += 1) {\n // \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n if (i > leftEnd) {\n nums[k] = tmp[j];\n j += 1;\n // \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n } else if (j > rightEnd or tmp[i] <= tmp[j]) {\n nums[k] = tmp[i];\n i += 1;\n // \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n } else {\n nums[k] = tmp[j];\n j += 1;\n }\n }\n}\n\n// \u5f52\u5e76\u6392\u5e8f\nfn mergeSort(nums: []i32, left: usize, right: usize) !void {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n var mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n try mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n try mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n try merge(nums, left, mid, right);\n}\n
"},{"location":"chapter_sorting/merge_sort/#1162","title":"11.6.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\)\u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5212\u5206\u4ea7\u751f\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u5c42\u5408\u5e76\u7684\u603b\u64cd\u4f5c\u6570\u91cf\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u9012\u5f52\u6df1\u5ea6\u4e3a \\(\\log n\\) \uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002\u5408\u5e76\u64cd\u4f5c\u9700\u8981\u501f\u52a9\u8f85\u52a9\u6570\u7ec4\u5b9e\u73b0\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u5408\u5e76\u8fc7\u7a0b\u4e2d\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u6b21\u5e8f\u4fdd\u6301\u4e0d\u53d8\u3002
"},{"location":"chapter_sorting/merge_sort/#1163","title":"11.6.3 \u00a0 \u94fe\u8868\u6392\u5e8f","text":"\u5bf9\u4e8e\u94fe\u8868\uff0c\u5f52\u5e76\u6392\u5e8f\u76f8\u8f83\u4e8e\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\u5177\u6709\u663e\u8457\u4f18\u52bf\uff0c\u53ef\u4ee5\u5c06\u94fe\u8868\u6392\u5e8f\u4efb\u52a1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(1)\\) \u3002
- \u5212\u5206\u9636\u6bb5\uff1a\u53ef\u4ee5\u4f7f\u7528\u201c\u8fed\u4ee3\u201d\u66ff\u4ee3\u201c\u9012\u5f52\u201d\u6765\u5b9e\u73b0\u94fe\u8868\u5212\u5206\u5de5\u4f5c\uff0c\u4ece\u800c\u7701\u53bb\u9012\u5f52\u4f7f\u7528\u7684\u6808\u5e27\u7a7a\u95f4\u3002
- \u5408\u5e76\u9636\u6bb5\uff1a\u5728\u94fe\u8868\u4e2d\uff0c\u8282\u70b9\u589e\u5220\u64cd\u4f5c\u4ec5\u9700\u6539\u53d8\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\u5b9e\u73b0\uff0c\u56e0\u6b64\u5408\u5e76\u9636\u6bb5\uff08\u5c06\u4e24\u4e2a\u77ed\u6709\u5e8f\u94fe\u8868\u5408\u5e76\u4e3a\u4e00\u4e2a\u957f\u6709\u5e8f\u94fe\u8868\uff09\u65e0\u987b\u521b\u5efa\u989d\u5916\u94fe\u8868\u3002
\u5177\u4f53\u5b9e\u73b0\u7ec6\u8282\u6bd4\u8f83\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u67e5\u9605\u76f8\u5173\u8d44\u6599\u8fdb\u884c\u5b66\u4e60\u3002
"},{"location":"chapter_sorting/quick_sort/","title":"11.5 \u00a0 \u5feb\u901f\u6392\u5e8f","text":"\u300c\u5feb\u901f\u6392\u5e8f quick sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u8fd0\u884c\u9ad8\u6548\uff0c\u5e94\u7528\u5e7f\u6cdb\u3002
\u5feb\u901f\u6392\u5e8f\u7684\u6838\u5fc3\u64cd\u4f5c\u662f\u201c\u54e8\u5175\u5212\u5206\u201d\uff0c\u5176\u76ee\u6807\u662f\uff1a\u9009\u62e9\u6570\u7ec4\u4e2d\u7684\u67d0\u4e2a\u5143\u7d20\u4f5c\u4e3a\u201c\u57fa\u51c6\u6570\u201d\uff0c\u5c06\u6240\u6709\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u5de6\u4fa7\uff0c\u800c\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u53f3\u4fa7\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u54e8\u5175\u5212\u5206\u7684\u6d41\u7a0b\u5982\u56fe 11-8 \u6240\u793a\u3002
- \u9009\u53d6\u6570\u7ec4\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u521d\u59cb\u5316\u4e24\u4e2a\u6307\u9488
i \u548c j \u5206\u522b\u6307\u5411\u6570\u7ec4\u7684\u4e24\u7aef\u3002 - \u8bbe\u7f6e\u4e00\u4e2a\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u4f7f\u7528
i\uff08j\uff09\u5206\u522b\u5bfb\u627e\u7b2c\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u5927\uff08\u5c0f\uff09\u7684\u5143\u7d20\uff0c\u7136\u540e\u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\u3002 - \u5faa\u73af\u6267\u884c\u6b65\u9aa4
2. \uff0c\u76f4\u5230 i \u548c j \u76f8\u9047\u65f6\u505c\u6b62\uff0c\u6700\u540e\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 11-8 \u00a0 \u54e8\u5175\u5212\u5206\u6b65\u9aa4
\u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u539f\u6570\u7ec4\u88ab\u5212\u5206\u6210\u4e09\u90e8\u5206\uff1a\u5de6\u5b50\u6570\u7ec4\u3001\u57fa\u51c6\u6570\u3001\u53f3\u5b50\u6570\u7ec4\uff0c\u4e14\u6ee1\u8db3\u201c\u5de6\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20 \\(\\leq\\) \u57fa\u51c6\u6570 \\(\\leq\\) \u53f3\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20\u201d\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u53ea\u9700\u5bf9\u8fd9\u4e24\u4e2a\u5b50\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\u3002
\u5feb\u901f\u6392\u5e8f\u7684\u5206\u6cbb\u7b56\u7565
\u54e8\u5175\u5212\u5206\u7684\u5b9e\u8d28\u662f\u5c06\u4e00\u4e2a\u8f83\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u7b80\u5316\u4e3a\u4e24\u4e2a\u8f83\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef partition(self, nums: list[int], left: int, right: int) -> int:\n \"\"\"\u54e8\u5175\u5212\u5206\"\"\"\n # \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j = left, right\n while i < j:\n while i < j and nums[j] >= nums[left]:\n j -= 1 # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while i < j and nums[i] <= nums[left]:\n i += 1 # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n # \u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n # \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
quick_sort.cpp/* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(vector<int> &nums, int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint partition(vector<int> &nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.java/* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int[] nums, int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint partition(int[] nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.cs/* \u5143\u7d20\u4ea4\u6362 */\nvoid Swap(int[] nums, int i, int j) {\n (nums[j], nums[i]) = (nums[i], nums[j]);\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint Partition(int[] nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n Swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n Swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.go/* \u54e8\u5175\u5212\u5206 */\nfunc (q *quickSort) partition(nums []int, left, right int) int {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j := left, right\n for i < j {\n for i < j && nums[j] >= nums[left] {\n j-- // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n for i < j && nums[i] <= nums[left] {\n i++ // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n // \u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n }\n // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.swift/* \u5143\u7d20\u4ea4\u6362 */\nfunc swap(nums: inout [Int], i: Int, j: Int) {\n let tmp = nums[i]\n nums[i] = nums[j]\n nums[j] = tmp\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nfunc partition(nums: inout [Int], left: Int, right: Int) -> Int {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n var i = left\n var j = right\n while i < j {\n while i < j, nums[j] >= nums[left] {\n j -= 1 // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while i < j, nums[i] <= nums[left] {\n i += 1 // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n swap(nums: &nums, i: i, j: j) // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums: &nums, i: i, j: left) // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.js/* \u5143\u7d20\u4ea4\u6362 */\nswap(nums, i, j) {\n let tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums, left, right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while (i < j && nums[i] <= nums[left]) {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n // \u5143\u7d20\u4ea4\u6362\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.ts/* \u5143\u7d20\u4ea4\u6362 */\nswap(nums: number[], i: number, j: number): void {\n let tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums: number[], left: number, right: number): number {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while (i < j && nums[i] <= nums[left]) {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n // \u5143\u7d20\u4ea4\u6362\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.dart/* \u5143\u7d20\u4ea4\u6362 */\nvoid _swap(List<int> nums, int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint _partition(List<int> nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n _swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n _swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.rs/* \u54e8\u5175\u5212\u5206 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let (mut i, mut j) = (left, right);\n while i < j {\n while i < j && nums[j] >= nums[left] {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while i < j && nums[i] <= nums[left] {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n nums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n nums.swap(i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.c/* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int nums[], int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n j--;\n }\n while (i < j && nums[i] <= nums[left]) {\n // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n i++;\n }\n // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n swap(nums, i, j);\n }\n // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n swap(nums, i, left);\n // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n return i;\n}\n
quick_sort.zig// \u5143\u7d20\u4ea4\u6362\nfn swap(nums: []i32, i: usize, j: usize) void {\n var tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n// \u54e8\u5175\u5212\u5206\nfn partition(nums: []i32, left: usize, right: usize) usize {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n var i = left;\n var j = right;\n while (i < j) {\n while (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
"},{"location":"chapter_sorting/quick_sort/#1151","title":"11.5.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u5feb\u901f\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u56fe 11-9 \u6240\u793a\u3002
- \u9996\u5148\uff0c\u5bf9\u539f\u6570\u7ec4\u6267\u884c\u4e00\u6b21\u201c\u54e8\u5175\u5212\u5206\u201d\uff0c\u5f97\u5230\u672a\u6392\u5e8f\u7684\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u3002
- \u7136\u540e\uff0c\u5bf9\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5206\u522b\u9012\u5f52\u6267\u884c\u201c\u54e8\u5175\u5212\u5206\u201d\u3002
- \u6301\u7eed\u9012\u5f52\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\uff0c\u4ece\u800c\u5b8c\u6210\u6574\u4e2a\u6570\u7ec4\u7684\u6392\u5e8f\u3002
\u56fe 11-9 \u00a0 \u5feb\u901f\u6392\u5e8f\u6d41\u7a0b
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef quick_sort(self, nums: list[int], left: int, right: int):\n \"\"\"\u5feb\u901f\u6392\u5e8f\"\"\"\n # \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right:\n return\n # \u54e8\u5175\u5212\u5206\n pivot = self.partition(nums, left, right)\n # \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n self.quick_sort(nums, left, pivot - 1)\n self.quick_sort(nums, pivot + 1, right)\n
quick_sort.cpp/* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(vector<int> &nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right)\n return;\n // \u54e8\u5175\u5212\u5206\n int pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.java/* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right)\n return;\n // \u54e8\u5175\u5212\u5206\n int pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.cs/* \u5feb\u901f\u6392\u5e8f */\nvoid QuickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right)\n return;\n // \u54e8\u5175\u5212\u5206\n int pivot = Partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n QuickSort(nums, left, pivot - 1);\n QuickSort(nums, pivot + 1, right);\n}\n
quick_sort.go/* \u5feb\u901f\u6392\u5e8f */\nfunc (q *quickSort) quickSort(nums []int, left, right int) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right {\n return\n }\n // \u54e8\u5175\u5212\u5206\n pivot := q.partition(nums, left, right)\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n q.quickSort(nums, left, pivot-1)\n q.quickSort(nums, pivot+1, right)\n}\n
quick_sort.swift/* \u5feb\u901f\u6392\u5e8f */\nfunc quickSort(nums: inout [Int], left: Int, right: Int) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right {\n return\n }\n // \u54e8\u5175\u5212\u5206\n let pivot = partition(nums: &nums, left: left, right: right)\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums: &nums, left: left, right: pivot - 1)\n quickSort(nums: &nums, left: pivot + 1, right: right)\n}\n
quick_sort.js/* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums, left, right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) return;\n // \u54e8\u5175\u5212\u5206\n const pivot = this.partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n this.quickSort(nums, left, pivot - 1);\n this.quickSort(nums, pivot + 1, right);\n}\n
quick_sort.ts/* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums: number[], left: number, right: number): void {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) {\n return;\n }\n // \u54e8\u5175\u5212\u5206\n const pivot = this.partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n this.quickSort(nums, left, pivot - 1);\n this.quickSort(nums, pivot + 1, right);\n}\n
quick_sort.dart/* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(List<int> nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) return;\n // \u54e8\u5175\u5212\u5206\n int pivot = _partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.rs/* \u5feb\u901f\u6392\u5e8f */\npub fn quick_sort(left: i32, right: i32, nums: &mut [i32]) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right {\n return;\n }\n // \u54e8\u5175\u5212\u5206\n let pivot = Self::partition(nums, left as usize, right as usize) as i32;\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n Self::quick_sort(left, pivot - 1, nums);\n Self::quick_sort(pivot + 1, right, nums);\n}\n
quick_sort.c/* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n j--;\n }\n while (i < j && nums[i] <= nums[left]) {\n // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n i++;\n }\n // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n swap(nums, i, j);\n }\n // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n swap(nums, i, left);\n // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n return i;\n}\n\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u5feb\u901f\u6392\u5e8f\nvoid quickSort(int nums[], int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) {\n return;\n }\n // \u54e8\u5175\u5212\u5206\n int pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.zig// \u5feb\u901f\u6392\u5e8f\nfn quickSort(nums: []i32, left: usize, right: usize) void {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) return;\n // \u54e8\u5175\u5212\u5206\n var pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
"},{"location":"chapter_sorting/quick_sort/#1152","title":"11.5.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\)\u3001\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u5e73\u5747\u60c5\u51b5\u4e0b\uff0c\u54e8\u5175\u5212\u5206\u7684\u9012\u5f52\u5c42\u6570\u4e3a \\(\\log n\\) \uff0c\u6bcf\u5c42\u4e2d\u7684\u603b\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n \\log n)\\) \u65f6\u95f4\u3002\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u90fd\u5c06\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u5212\u5206\u4e3a\u957f\u5ea6\u4e3a \\(0\\) \u548c \\(n - 1\\) \u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u6b64\u65f6\u9012\u5f52\u5c42\u6570\u8fbe\u5230 \\(n\\) \uff0c\u6bcf\u5c42\u4e2d\u7684\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u5728\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u5012\u5e8f\u7684\u60c5\u51b5\u4e0b\uff0c\u8fbe\u5230\u6700\u5dee\u9012\u5f52\u6df1\u5ea6 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u6392\u5e8f\u64cd\u4f5c\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\uff0c\u672a\u501f\u52a9\u989d\u5916\u6570\u7ec4\u3002
- \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u54e8\u5175\u5212\u5206\u7684\u6700\u540e\u4e00\u6b65\uff0c\u57fa\u51c6\u6570\u53ef\u80fd\u4f1a\u88ab\u4ea4\u6362\u81f3\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\u3002
"},{"location":"chapter_sorting/quick_sort/#1153","title":"11.5.3 \u00a0 \u5feb\u901f\u6392\u5e8f\u4e3a\u4ec0\u4e48\u5feb","text":"\u4ece\u540d\u79f0\u4e0a\u5c31\u80fd\u770b\u51fa\uff0c\u5feb\u901f\u6392\u5e8f\u5728\u6548\u7387\u65b9\u9762\u5e94\u8be5\u5177\u6709\u4e00\u5b9a\u7684\u4f18\u52bf\u3002\u5c3d\u7ba1\u5feb\u901f\u6392\u5e8f\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e0e\u201c\u5f52\u5e76\u6392\u5e8f\u201d\u548c\u201c\u5806\u6392\u5e8f\u201d\u76f8\u540c\uff0c\u4f46\u901a\u5e38\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u51fa\u73b0\u6700\u5dee\u60c5\u51b5\u7684\u6982\u7387\u5f88\u4f4e\uff1a\u867d\u7136\u5feb\u901f\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u6ca1\u6709\u5f52\u5e76\u6392\u5e8f\u7a33\u5b9a\uff0c\u4f46\u5728\u7edd\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u80fd\u5728 \\(O(n \\log n)\\) \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u8fd0\u884c\u3002
- \u7f13\u5b58\u4f7f\u7528\u6548\u7387\u9ad8\uff1a\u5728\u6267\u884c\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u65f6\uff0c\u7cfb\u7edf\u53ef\u5c06\u6574\u4e2a\u5b50\u6570\u7ec4\u52a0\u8f7d\u5230\u7f13\u5b58\uff0c\u56e0\u6b64\u8bbf\u95ee\u5143\u7d20\u7684\u6548\u7387\u8f83\u9ad8\u3002\u800c\u50cf\u201c\u5806\u6392\u5e8f\u201d\u8fd9\u7c7b\u7b97\u6cd5\u9700\u8981\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u5143\u7d20\uff0c\u4ece\u800c\u7f3a\u4e4f\u8fd9\u4e00\u7279\u6027\u3002
- \u590d\u6742\u5ea6\u7684\u5e38\u6570\u7cfb\u6570\u5c0f\uff1a\u5728\u4e0a\u8ff0\u4e09\u79cd\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u6bd4\u8f83\u3001\u8d4b\u503c\u3001\u4ea4\u6362\u7b49\u64cd\u4f5c\u7684\u603b\u6570\u91cf\u6700\u5c11\u3002\u8fd9\u4e0e\u201c\u63d2\u5165\u6392\u5e8f\u201d\u6bd4\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u66f4\u5feb\u7684\u539f\u56e0\u7c7b\u4f3c\u3002
"},{"location":"chapter_sorting/quick_sort/#1154","title":"11.5.4 \u00a0 \u57fa\u51c6\u6570\u4f18\u5316","text":"\u5feb\u901f\u6392\u5e8f\u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\u7684\u65f6\u95f4\u6548\u7387\u53ef\u80fd\u964d\u4f4e\u3002\u4e3e\u4e00\u4e2a\u6781\u7aef\u4f8b\u5b50\uff0c\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u662f\u5b8c\u5168\u5012\u5e8f\u7684\uff0c\u7531\u4e8e\u6211\u4eec\u9009\u62e9\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u5728\u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u57fa\u51c6\u6570\u88ab\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u53f3\u7aef\uff0c\u5bfc\u81f4\u5de6\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n - 1\\)\u3001\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(0\\) \u3002\u5982\u6b64\u9012\u5f52\u4e0b\u53bb\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u540e\u7684\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u90fd\u4e3a \\(0\\) \uff0c\u5206\u6cbb\u7b56\u7565\u5931\u6548\uff0c\u5feb\u901f\u6392\u5e8f\u9000\u5316\u4e3a\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u3002
\u4e3a\u4e86\u5c3d\u91cf\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u53d1\u751f\uff0c\u6211\u4eec\u53ef\u4ee5\u4f18\u5316\u54e8\u5175\u5212\u5206\u4e2d\u7684\u57fa\u51c6\u6570\u7684\u9009\u53d6\u7b56\u7565\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u53ef\u4ee5\u968f\u673a\u9009\u53d6\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u7136\u800c\uff0c\u5982\u679c\u8fd0\u6c14\u4e0d\u4f73\uff0c\u6bcf\u6b21\u90fd\u9009\u5230\u4e0d\u7406\u60f3\u7684\u57fa\u51c6\u6570\uff0c\u6548\u7387\u4ecd\u7136\u4e0d\u5c3d\u5982\u4eba\u610f\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u751f\u6210\u7684\u662f\u201c\u4f2a\u968f\u673a\u6570\u201d\u3002\u5982\u679c\u6211\u4eec\u9488\u5bf9\u4f2a\u968f\u673a\u6570\u5e8f\u5217\u6784\u5efa\u4e00\u4e2a\u7279\u5b9a\u7684\u6d4b\u8bd5\u6837\u4f8b\uff0c\u90a3\u4e48\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u4ecd\u7136\u53ef\u80fd\u52a3\u5316\u3002
\u4e3a\u4e86\u8fdb\u4e00\u6b65\u6539\u8fdb\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6570\u7ec4\u4e2d\u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\uff08\u901a\u5e38\u4e3a\u6570\u7ec4\u7684\u9996\u3001\u5c3e\u3001\u4e2d\u70b9\u5143\u7d20\uff09\uff0c\u5e76\u5c06\u8fd9\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u57fa\u51c6\u6570\u201c\u65e2\u4e0d\u592a\u5c0f\u4e5f\u4e0d\u592a\u5927\u201d\u7684\u6982\u7387\u5c06\u5927\u5e45\u63d0\u5347\u3002\u5f53\u7136\uff0c\u6211\u4eec\u8fd8\u53ef\u4ee5\u9009\u53d6\u66f4\u591a\u5019\u9009\u5143\u7d20\uff0c\u4ee5\u8fdb\u4e00\u6b65\u63d0\u9ad8\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002\u91c7\u7528\u8fd9\u79cd\u65b9\u6cd5\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u7684\u6982\u7387\u5927\u5927\u964d\u4f4e\u3002
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef median_three(self, nums: list[int], left: int, mid: int, right: int) -> int:\n \"\"\"\u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\"\"\"\n # \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n # \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]):\n return left\n elif (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]):\n return mid\n return right\n\ndef partition(self, nums: list[int], left: int, right: int) -> int:\n \"\"\"\u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\"\"\"\n # \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n med = self.median_three(nums, left, (left + right) // 2, right)\n # \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n nums[left], nums[med] = nums[med], nums[left]\n # \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j = left, right\n while i < j:\n while i < j and nums[j] >= nums[left]:\n j -= 1 # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while i < j and nums[i] <= nums[left]:\n i += 1 # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n # \u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n # \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
quick_sort.cpp/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(vector<int> &nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(vector<int> &nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.java/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(int[] nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(int[] nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.cs/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint MedianThree(int[] nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint Partition(int[] nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = MedianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n Swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n Swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n Swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.go/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc (q *quickSortMedian) medianThree(nums []int, left, mid, right int) int {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\uff08!= \u5728\u8fd9\u91cc\u8d77\u5230\u5f02\u6216\u7684\u4f5c\u7528\uff09\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\n return left\n } else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\n return mid\n }\n return right\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09*/\nfunc (q *quickSortMedian) partition(nums []int, left, right int) int {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n med := q.medianThree(nums, left, (left+right)/2, right)\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n nums[left], nums[med] = nums[med], nums[left]\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j := left, right\n for i < j {\n for i < j && nums[j] >= nums[left] {\n j-- //\u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n for i < j && nums[i] <= nums[left] {\n i++ //\u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n //\u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n }\n //\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i //\u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.swift/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc medianThree(nums: [Int], left: Int, mid: Int, right: Int) -> Int {\n if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\n return left\n } else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\n return mid\n } else {\n return right\n }\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfunc partitionMedian(nums: inout [Int], left: Int, right: Int) -> Int {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = medianThree(nums: nums, left: left, mid: (left + right) / 2, right: right)\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums: &nums, i: left, j: med)\n return partition(nums: &nums, left: left, right: right)\n}\n
quick_sort.js/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(nums, left, mid, right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right])) return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums, left, right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = this.medianThree(\n nums,\n left,\n Math.floor((left + right) / 2),\n right\n );\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n this.swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.ts/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(\n nums: number[],\n left: number,\n mid: number,\n right: number\n): number {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (Number(nums[left] < nums[mid]) ^ Number(nums[left] < nums[right])) {\n return left;\n } else if (\n Number(nums[mid] < nums[left]) ^ Number(nums[mid] < nums[right])\n ) {\n return mid;\n } else {\n return right;\n }\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums: number[], left: number, right: number): number {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = this.medianThree(\n nums,\n left,\n Math.floor((left + right) / 2),\n right\n );\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n this.swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while (i < j && nums[i] <= nums[left]) {\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.dart/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint _medianThree(List<int> nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint _partition(List<int> nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = _medianThree(nums, left, (left + right) ~/ 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n _swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n _swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n _swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.rs/* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfn median_three(nums: &mut [i32], left: usize, mid: usize, right: usize) -> usize {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]) {\n return left;\n } else if (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]) {\n return mid;\n } \n right\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = Self::median_three(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n nums.swap(left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let (mut i, mut j) = (left, right);\n while i < j {\n while i < j && nums[j] >= nums[left] {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while i < j && nums[i] <= nums[left] {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n nums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n nums.swap(i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.c/* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u4e2d\u4f4d\u57fa\u51c6\u6570\u4f18\u5316\uff09 */\n// \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint medianThree(int nums[], int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */ \nint partitionMedian(int nums[], int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.zig// \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nfn medianThree(nums: []i32, left: usize, mid: usize, right: usize) usize {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) != (nums[left] < nums[right])) {\n return left;\n } else if ((nums[mid] < nums[left]) != (nums[mid] < nums[right])) {\n return mid;\n } else {\n return right;\n }\n}\n\n// \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\nfn partition(nums: []i32, left: usize, right: usize) usize {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n var med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n var i = left;\n var j = right;\n while (i < j) {\n while (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
"},{"location":"chapter_sorting/quick_sort/#1155","title":"11.5.5 \u00a0 \u5c3e\u9012\u5f52\u4f18\u5316","text":"\u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u53ef\u80fd\u5360\u7528\u7a7a\u95f4\u8f83\u591a\u3002\u4ee5\u5b8c\u5168\u6709\u5e8f\u7684\u8f93\u5165\u6570\u7ec4\u4e3a\u4f8b\uff0c\u8bbe\u9012\u5f52\u4e2d\u7684\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(m\\) \uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u90fd\u5c06\u4ea7\u751f\u957f\u5ea6\u4e3a \\(0\\) \u7684\u5de6\u5b50\u6570\u7ec4\u548c\u957f\u5ea6\u4e3a \\(m - 1\\) \u7684\u53f3\u5b50\u6570\u7ec4\uff0c\u8fd9\u610f\u5473\u7740\u6bcf\u4e00\u5c42\u9012\u5f52\u8c03\u7528\u51cf\u5c11\u7684\u95ee\u9898\u89c4\u6a21\u975e\u5e38\u5c0f\uff08\u53ea\u51cf\u5c11\u4e00\u4e2a\u5143\u7d20\uff09\uff0c\u9012\u5f52\u6811\u7684\u9ad8\u5ea6\u4f1a\u8fbe\u5230 \\(n - 1\\) \uff0c\u6b64\u65f6\u9700\u8981\u5360\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002
\u4e3a\u4e86\u9632\u6b62\u6808\u5e27\u7a7a\u95f4\u7684\u7d2f\u79ef\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6bcf\u8f6e\u54e8\u5175\u6392\u5e8f\u5b8c\u6210\u540e\uff0c\u6bd4\u8f83\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\uff0c\u4ec5\u5bf9\u8f83\u77ed\u7684\u5b50\u6570\u7ec4\u8fdb\u884c\u9012\u5f52\u3002\u7531\u4e8e\u8f83\u77ed\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(n / 2\\) \uff0c\u56e0\u6b64\u8fd9\u79cd\u65b9\u6cd5\u80fd\u786e\u4fdd\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff0c\u4ece\u800c\u5c06\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef quick_sort(self, nums: list[int], left: int, right: int):\n \"\"\"\u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\"\"\"\n # \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while left < right:\n # \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n pivot = self.partition(nums, left, right)\n # \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if pivot - left < right - pivot:\n self.quick_sort(nums, left, pivot - 1) # \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1 # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n else:\n self.quick_sort(nums, pivot + 1, right) # \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1 # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n
quick_sort.cpp/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(vector<int> &nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.java/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.cs/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid QuickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = Partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n QuickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n QuickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.go/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09*/\nfunc (q *quickSortTailCall) quickSort(nums []int, left, right int) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n for left < right {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n pivot := q.partition(nums, left, right)\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if pivot-left < right-pivot {\n q.quickSort(nums, left, pivot-1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n q.quickSort(nums, pivot+1, right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.swift/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nfunc quickSortTailCall(nums: inout [Int], left: Int, right: Int) {\n var left = left\n var right = right\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while left < right {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = partition(nums: &nums, left: left, right: right)\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left) < (right - pivot) {\n quickSortTailCall(nums: &nums, left: left, right: pivot - 1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSortTailCall(nums: &nums, left: pivot + 1, right: right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.js/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums, left, right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = this.partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n this.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n this.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.ts/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums: number[], left: number, right: number): void {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = this.partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n this.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n this.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.dart/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(List<int> nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = _partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.rs/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\npub fn quick_sort(mut left: i32, mut right: i32, nums: &mut [i32]) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while left < right {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = Self::partition(nums, left as usize, right as usize) as i32;\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if pivot - left < right - pivot {\n Self::quick_sort(left, pivot - 1, nums); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n Self::quick_sort(pivot + 1, right, nums); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.c/* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\n// \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nvoid quickSortTailCall(int nums[], int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSortTailCall(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSortTailCall(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.zig// \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nfn quickSort(nums: []i32, left_: usize, right_: usize) void {\n var left = left_;\n var right = right_;\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n var pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
"},{"location":"chapter_sorting/radix_sort/","title":"11.10 \u00a0 \u57fa\u6570\u6392\u5e8f","text":"\u4e0a\u4e00\u8282\u4ecb\u7ecd\u4e86\u8ba1\u6570\u6392\u5e8f\uff0c\u5b83\u9002\u7528\u4e8e\u6570\u636e\u91cf \\(n\\) \u8f83\u5927\u4f46\u6570\u636e\u8303\u56f4 \\(m\\) \u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u5bf9 \\(n = 10^6\\) \u4e2a\u5b66\u53f7\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u5b66\u53f7\u662f\u4e00\u4e2a \\(8\\) \u4f4d\u6570\u5b57\uff0c\u8fd9\u610f\u5473\u7740\u6570\u636e\u8303\u56f4 \\(m = 10^8\\) \u975e\u5e38\u5927\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u9700\u8981\u5206\u914d\u5927\u91cf\u5185\u5b58\u7a7a\u95f4\uff0c\u800c\u57fa\u6570\u6392\u5e8f\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u3002
\u300c\u57fa\u6570\u6392\u5e8f radix sort\u300d\u7684\u6838\u5fc3\u601d\u60f3\u4e0e\u8ba1\u6570\u6392\u5e8f\u4e00\u81f4\uff0c\u4e5f\u901a\u8fc7\u7edf\u8ba1\u4e2a\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u57fa\u6570\u6392\u5e8f\u5229\u7528\u6570\u5b57\u5404\u4f4d\u4e4b\u95f4\u7684\u9012\u8fdb\u5173\u7cfb\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e00\u4f4d\u8fdb\u884c\u6392\u5e8f\uff0c\u4ece\u800c\u5f97\u5230\u6700\u7ec8\u7684\u6392\u5e8f\u7ed3\u679c\u3002
"},{"location":"chapter_sorting/radix_sort/#11101","title":"11.10.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u4ee5\u5b66\u53f7\u6570\u636e\u4e3a\u4f8b\uff0c\u5047\u8bbe\u6570\u5b57\u7684\u6700\u4f4e\u4f4d\u662f\u7b2c \\(1\\) \u4f4d\uff0c\u6700\u9ad8\u4f4d\u662f\u7b2c \\(8\\) \u4f4d\uff0c\u57fa\u6570\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u56fe 11-18 \u6240\u793a\u3002
- \u521d\u59cb\u5316\u4f4d\u6570 \\(k = 1\\) \u3002
- \u5bf9\u5b66\u53f7\u7684\u7b2c \\(k\\) \u4f4d\u6267\u884c\u201c\u8ba1\u6570\u6392\u5e8f\u201d\u3002\u5b8c\u6210\u540e\uff0c\u6570\u636e\u4f1a\u6839\u636e\u7b2c \\(k\\) \u4f4d\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u3002
- \u5c06 \\(k\\) \u589e\u52a0 \\(1\\) \uff0c\u7136\u540e\u8fd4\u56de\u6b65\u9aa4
2. \u7ee7\u7eed\u8fed\u4ee3\uff0c\u76f4\u5230\u6240\u6709\u4f4d\u90fd\u6392\u5e8f\u5b8c\u6210\u540e\u7ed3\u675f\u3002
\u56fe 11-18 \u00a0 \u57fa\u6570\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b
\u4e0b\u9762\u5256\u6790\u4ee3\u7801\u5b9e\u73b0\u3002\u5bf9\u4e8e\u4e00\u4e2a \\(d\\) \u8fdb\u5236\u7684\u6570\u5b57 \\(x\\) \uff0c\u8981\u83b7\u53d6\u5176\u7b2c \\(k\\) \u4f4d \\(x_k\\) \uff0c\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u8ba1\u7b97\u516c\u5f0f\uff1a
\\[ x_k = \\lfloor\\frac{x}{d^{k-1}}\\rfloor \\bmod d \\] \u5176\u4e2d \\(\\lfloor a \\rfloor\\) \u8868\u793a\u5bf9\u6d6e\u70b9\u6570 \\(a\\) \u5411\u4e0b\u53d6\u6574\uff0c\u800c \\(\\bmod \\: d\\) \u8868\u793a\u5bf9 \\(d\\) \u53d6\u4f59\u3002\u5bf9\u4e8e\u5b66\u53f7\u6570\u636e\uff0c\\(d = 10\\) \u4e14 \\(k \\in [1, 8]\\) \u3002
\u6b64\u5916\uff0c\u6211\u4eec\u9700\u8981\u5c0f\u5e45\u6539\u52a8\u8ba1\u6570\u6392\u5e8f\u4ee3\u7801\uff0c\u4f7f\u4e4b\u53ef\u4ee5\u6839\u636e\u6570\u5b57\u7684\u7b2c \\(k\\) \u4f4d\u8fdb\u884c\u6392\u5e8f\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig radix_sort.pydef digit(num: int, exp: int) -> int:\n \"\"\"\u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\"\"\"\n # \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num // exp) % 10\n\ndef counting_sort_digit(nums: list[int], exp: int):\n \"\"\"\u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\"\"\"\n # \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n counter = [0] * 10\n n = len(nums)\n # \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i in range(n):\n d = digit(nums[i], exp) # \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1 # \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n # \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i in range(1, 10):\n counter[i] += counter[i - 1]\n # \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n res = [0] * n\n for i in range(n - 1, -1, -1):\n d = digit(nums[i], exp)\n j = counter[d] - 1 # \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i] # \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1 # \u5c06 d \u7684\u6570\u91cf\u51cf 1\n # \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in range(n):\n nums[i] = res[i]\n\ndef radix_sort(nums: list[int]):\n \"\"\"\u57fa\u6570\u6392\u5e8f\"\"\"\n # \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n m = max(nums)\n # \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n exp = 1\n while exp <= m:\n # \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n # k = 1 -> exp = 1\n # k = 2 -> exp = 10\n # \u5373 exp = 10^(k-1)\n counting_sort_digit(nums, exp)\n exp *= 10\n
radix_sort.cpp/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(vector<int> &nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n vector<int> counter(10, 0);\n int n = nums.size();\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n vector<int> res(n, 0);\n for (int i = n - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++)\n nums[i] = res[i];\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(vector<int> &nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int m = *max_element(nums.begin(), nums.end());\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n}\n
radix_sort.java/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int[] nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n int[] counter = new int[10];\n int n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++)\n nums[i] = res[i];\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int[] nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int m = Integer.MIN_VALUE;\n for (int num : nums)\n if (num > m)\n m = num;\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n}\n
radix_sort.cs/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint Digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid CountingSortDigit(int[] nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n int[] counter = new int[10];\n int n = nums.Length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = Digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int d = Digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid RadixSort(int[] nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int m = int.MinValue;\n foreach (int num in nums) {\n if (num > m) m = num;\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n CountingSortDigit(nums, exp);\n }\n}\n
radix_sort.go/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num, exp int) int {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums []int, exp int) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n counter := make([]int, 10)\n n := len(nums)\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i := 0; i < n; i++ {\n d := digit(nums[i], exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++ // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i := 1; i < 10; i++ {\n counter[i] += counter[i-1]\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n res := make([]int, n)\n for i := n - 1; i >= 0; i-- {\n d := digit(nums[i], exp)\n j := counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i] // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]-- // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i := 0; i < n; i++ {\n nums[i] = res[i]\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums []int) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n max := math.MinInt\n for _, num := range nums {\n if num > max {\n max = num\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for exp := 1; max >= exp; exp *= 10 {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp)\n }\n}\n
radix_sort.swift/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num: Int, exp: Int) -> Int {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n (num / exp) % 10\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums: inout [Int], exp: Int) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n var counter = Array(repeating: 0, count: 10)\n let n = nums.count\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i in nums.indices {\n let d = digit(num: nums[i], exp: exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1 // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i in 1 ..< 10 {\n counter[i] += counter[i - 1]\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n var res = Array(repeating: 0, count: n)\n for i in stride(from: n - 1, through: 0, by: -1) {\n let d = digit(num: nums[i], exp: exp)\n let j = counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i] // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1 // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in nums.indices {\n nums[i] = res[i]\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums: inout [Int]) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n var m = Int.min\n for num in nums {\n if num > m {\n m = num\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for exp in sequence(first: 1, next: { m >= ($0 * 10) ? $0 * 10 : nil }) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums: &nums, exp: exp)\n }\n}\n
radix_sort.js/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num, exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return Math.floor(num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums, exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n const counter = new Array(10).fill(0);\n const n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (let i = 0; i < n; i++) {\n const d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (let i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n const res = new Array(n).fill(0);\n for (let i = n - 1; i >= 0; i--) {\n const d = digit(nums[i], exp);\n const j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n let m = Number.MIN_VALUE;\n for (const num of nums) {\n if (num > m) {\n m = num;\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (let exp = 1; exp <= m; exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n }\n}\n
radix_sort.ts/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num: number, exp: number): number {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return Math.floor(num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums: number[], exp: number): void {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n const counter = new Array(10).fill(0);\n const n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (let i = 0; i < n; i++) {\n const d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (let i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n const res = new Array(n).fill(0);\n for (let i = n - 1; i >= 0; i--) {\n const d = digit(nums[i], exp);\n const j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums: number[]): void {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n let m = Number.MIN_VALUE;\n for (const num of nums) {\n if (num > m) {\n m = num;\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (let exp = 1; exp <= m; exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n }\n}\n
radix_sort.dart/* \u83b7\u53d6\u5143\u7d20 _num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int _num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (_num ~/ exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(List<int> nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n List<int> counter = List<int>.filled(10, 0);\n int n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n List<int> res = List<int>.filled(n, 0);\n for (int i = n - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) nums[i] = res[i];\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(List<int> nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n // dart \u4e2d int \u7684\u957f\u5ea6\u662f 64 \u4f4d\u7684\n int m = -1 << 63;\n for (int _num in nums) if (_num > m) m = _num;\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n}\n
radix_sort.rs/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfn digit(num: i32, exp: i32) -> usize {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return ((num / exp) % 10) as usize;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfn counting_sort_digit(nums: &mut [i32], exp: i32) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n let mut counter = [0; 10];\n let n = nums.len();\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i in 0..n {\n let d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i in 1..10 {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n let mut res = vec![0; n];\n for i in (0..n).rev() {\n let d = digit(nums[i], exp);\n let j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in 0..n {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfn radix_sort(nums: &mut [i32]) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n let m = *nums.into_iter().max().unwrap();\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n let mut exp = 1;\n while exp <= m {\n counting_sort_digit(nums, exp);\n exp *= 10;\n }\n}\n
radix_sort.c/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int nums[], int size, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n int *counter = (int *)malloc((sizeof(int) * 10));\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < size; i++) {\n // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n int d = digit(nums[i], exp);\n // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n counter[d]++;\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n int *res = (int *)malloc(sizeof(int) * size);\n for (int i = size - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < size; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int nums[], int size) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int max = INT32_MIN;\n for (size_t i = 0; i < size - 1; i++) {\n if (nums[i] > max) {\n max = nums[i];\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; max >= exp; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, size, exp);\n}\n
radix_sort.zig// \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\nfn digit(num: i32, exp: i32) i32 {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return @mod(@divFloor(num, exp), 10);\n}\n\n// \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\nfn countingSortDigit(nums: []i32, exp: i32) !void {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\n // defer mem_arena.deinit();\n const mem_allocator = mem_arena.allocator();\n var counter = try mem_allocator.alloc(usize, 10);\n @memset(counter, 0);\n var n = nums.len;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (nums) |num| {\n var d: u32 = @bitCast(digit(num, exp)); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n var i: usize = 1;\n while (i < 10) : (i += 1) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n var res = try mem_allocator.alloc(i32, n);\n i = n - 1;\n while (i >= 0) : (i -= 1) {\n var d: u32 = @bitCast(digit(nums[i], exp));\n var j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n if (i == 0) break;\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n i = 0;\n while (i < n) : (i += 1) {\n nums[i] = res[i];\n }\n}\n\n// \u57fa\u6570\u6392\u5e8f\nfn radixSort(nums: []i32) !void {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n var m: i32 = std.math.minInt(i32);\n for (nums) |num| {\n if (num > m) m = num;\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n var exp: i32 = 1;\n while (exp <= m) : (exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n try countingSortDigit(nums, exp); \n }\n} \n
\u4e3a\u4ec0\u4e48\u4ece\u6700\u4f4e\u4f4d\u5f00\u59cb\u6392\u5e8f\uff1f
\u5728\u8fde\u7eed\u7684\u6392\u5e8f\u8f6e\u6b21\u4e2d\uff0c\u540e\u4e00\u8f6e\u6392\u5e8f\u4f1a\u8986\u76d6\u524d\u4e00\u8f6e\u6392\u5e8f\u7684\u7ed3\u679c\u3002\u4e3e\u4f8b\u6765\u8bf4\uff0c\u5982\u679c\u7b2c\u4e00\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a < b\\) \uff0c\u800c\u7b2c\u4e8c\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a > b\\) \uff0c\u90a3\u4e48\u7b2c\u4e8c\u8f6e\u7684\u7ed3\u679c\u5c06\u53d6\u4ee3\u7b2c\u4e00\u8f6e\u7684\u7ed3\u679c\u3002\u7531\u4e8e\u6570\u5b57\u7684\u9ad8\u4f4d\u4f18\u5148\u7ea7\u9ad8\u4e8e\u4f4e\u4f4d\uff0c\u56e0\u6b64\u5e94\u8be5\u5148\u6392\u5e8f\u4f4e\u4f4d\u518d\u6392\u5e8f\u9ad8\u4f4d\u3002
"},{"location":"chapter_sorting/radix_sort/#11102","title":"11.10.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"\u76f8\u8f83\u4e8e\u8ba1\u6570\u6392\u5e8f\uff0c\u57fa\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u503c\u8303\u56f4\u8f83\u5927\u7684\u60c5\u51b5\uff0c\u4f46\u524d\u63d0\u662f\u6570\u636e\u5fc5\u987b\u53ef\u4ee5\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u683c\u5f0f\uff0c\u4e14\u4f4d\u6570\u4e0d\u80fd\u8fc7\u5927\u3002\u4f8b\u5982\uff0c\u6d6e\u70b9\u6570\u4e0d\u9002\u5408\u4f7f\u7528\u57fa\u6570\u6392\u5e8f\uff0c\u56e0\u4e3a\u5176\u4f4d\u6570 \\(k\\) \u8fc7\u5927\uff0c\u53ef\u80fd\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(nk) \\gg O(n^2)\\) \u3002
- \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(nk)\\)\uff1a\u8bbe\u6570\u636e\u91cf\u4e3a \\(n\\)\u3001\u6570\u636e\u4e3a \\(d\\) \u8fdb\u5236\u3001\u6700\u5927\u4f4d\u6570\u4e3a \\(k\\) \uff0c\u5219\u5bf9\u67d0\u4e00\u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(n + d)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6240\u6709 \\(k\\) \u4f4d\u4f7f\u7528 \\(O((n + d)k)\\) \u65f6\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\\(d\\) \u548c \\(k\\) \u90fd\u76f8\u5bf9\u8f83\u5c0f\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + d)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u4e0e\u8ba1\u6570\u6392\u5e8f\u76f8\u540c\uff0c\u57fa\u6570\u6392\u5e8f\u9700\u8981\u501f\u52a9\u957f\u5ea6\u4e3a \\(n\\) \u548c \\(d\\) \u7684\u6570\u7ec4
res \u548c counter \u3002 - \u7a33\u5b9a\u6392\u5e8f\uff1a\u5f53\u8ba1\u6570\u6392\u5e8f\u7a33\u5b9a\u65f6\uff0c\u57fa\u6570\u6392\u5e8f\u4e5f\u7a33\u5b9a\uff1b\u5f53\u8ba1\u6570\u6392\u5e8f\u4e0d\u7a33\u5b9a\u65f6\uff0c\u57fa\u6570\u6392\u5e8f\u65e0\u6cd5\u4fdd\u8bc1\u5f97\u5230\u6b63\u786e\u7684\u6392\u5e8f\u7ed3\u679c\u3002
"},{"location":"chapter_sorting/selection_sort/","title":"11.2 \u00a0 \u9009\u62e9\u6392\u5e8f","text":"\u300c\u9009\u62e9\u6392\u5e8f selection sort\u300d\u7684\u5de5\u4f5c\u539f\u7406\u975e\u5e38\u7b80\u5355\uff1a\u5f00\u542f\u4e00\u4e2a\u5faa\u73af\uff0c\u6bcf\u8f6e\u4ece\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u6700\u5c0f\u7684\u5143\u7d20\uff0c\u5c06\u5176\u653e\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u672b\u5c3e\u3002
\u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u9009\u62e9\u6392\u5e8f\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u56fe 11-2 \u6240\u793a\u3002
- \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u672a\u6392\u5e8f\uff0c\u5373\u672a\u6392\u5e8f\uff08\u7d22\u5f15\uff09\u533a\u95f4\u4e3a \\([0, n-1]\\) \u3002
- \u9009\u53d6\u533a\u95f4 \\([0, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(0\\) \u5904\u7684\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 1 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
- \u9009\u53d6\u533a\u95f4 \\([1, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(1\\) \u5904\u7684\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
- \u4ee5\u6b64\u7c7b\u63a8\u3002\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u9009\u62e9\u4e0e\u4ea4\u6362\u540e\uff0c\u6570\u7ec4\u524d \\(n - 1\\) \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
- \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5927\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 11-2 \u00a0 \u9009\u62e9\u6392\u5e8f\u6b65\u9aa4
\u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u7528 \\(k\\) \u6765\u8bb0\u5f55\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig selection_sort.pydef selection_sort(nums: list[int]):\n \"\"\"\u9009\u62e9\u6392\u5e8f\"\"\"\n n = len(nums)\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i in range(n - 1):\n # \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n k = i\n for j in range(i + 1, n):\n if nums[j] < nums[k]:\n k = j # \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n # \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums[i], nums[k] = nums[k], nums[i]\n
selection_sort.cpp/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(vector<int> &nums) {\n int n = nums.size();\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n swap(nums[i], nums[k]);\n }\n}\n
selection_sort.java/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int[] nums) {\n int n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n int temp = nums[i];\n nums[i] = nums[k];\n nums[k] = temp;\n }\n}\n
selection_sort.cs/* \u9009\u62e9\u6392\u5e8f */\nvoid SelectionSort(int[] nums) {\n int n = nums.Length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n (nums[k], nums[i]) = (nums[i], nums[k]);\n }\n}\n
selection_sort.go/* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums []int) {\n n := len(nums)\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i := 0; i < n-1; i++ {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n k := i\n for j := i + 1; j < n; j++ {\n if nums[j] < nums[k] {\n // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n k = j\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums[i], nums[k] = nums[k], nums[i]\n\n }\n}\n
selection_sort.swift/* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i in nums.indices.dropLast() {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n var k = i\n for j in nums.indices.dropFirst(i + 1) {\n if nums[j] < nums[k] {\n k = j // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums.swapAt(i, k)\n }\n}\n
selection_sort.js/* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums) {\n let n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (let i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n let k = i;\n for (let j = i + 1; j < n; j++) {\n if (nums[j] < nums[k]) {\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n [nums[i], nums[k]] = [nums[k], nums[i]];\n }\n}\n
selection_sort.ts/* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums: number[]): void {\n let n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (let i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n let k = i;\n for (let j = i + 1; j < n; j++) {\n if (nums[j] < nums[k]) {\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n [nums[i], nums[k]] = [nums[k], nums[i]];\n }\n}\n
selection_sort.dart/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(List<int> nums) {\n int n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k]) k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n int temp = nums[i];\n nums[i] = nums[k];\n nums[k] = temp;\n }\n}\n
selection_sort.rs/* \u9009\u62e9\u6392\u5e8f */\nfn selection_sort(nums: &mut [i32]) {\n let n = nums.len();\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i in 0..n-1 {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n let mut k = i;\n for j in i+1..n {\n if nums[j] < nums[k] {\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums.swap(i, k);\n }\n}\n
selection_sort.c/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int nums[], int n) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n int temp = nums[i];\n nums[i] = nums[k];\n nums[k] = temp;\n }\n}\n
selection_sort.zig[class]{}-[func]{selectionSort}\n
"},{"location":"chapter_sorting/selection_sort/#1121","title":"11.2.1 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\)\u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5916\u5faa\u73af\u5171 \\(n - 1\\) \u8f6e\uff0c\u7b2c\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u6700\u540e\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(2\\) \uff0c\u5373\u5404\u8f6e\u5916\u5faa\u73af\u5206\u522b\u5305\u542b \\(n\\)\u3001\\(n - 1\\)\u3001\\(\\dots\\)\u3001\\(3\\)\u3001\\(2\\) \u8f6e\u5185\u5faa\u73af\uff0c\u6c42\u548c\u4e3a \\(\\frac{(n - 1)(n + 2)}{2}\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5982\u56fe 11-3 \u6240\u793a\uff0c\u5143\u7d20
nums[i] \u6709\u53ef\u80fd\u88ab\u4ea4\u6362\u81f3\u4e0e\u5176\u76f8\u7b49\u7684\u5143\u7d20\u7684\u53f3\u8fb9\uff0c\u5bfc\u81f4\u4e24\u8005\u7684\u76f8\u5bf9\u987a\u5e8f\u53d1\u751f\u6539\u53d8\u3002
\u56fe 11-3 \u00a0 \u9009\u62e9\u6392\u5e8f\u975e\u7a33\u5b9a\u793a\u4f8b
"},{"location":"chapter_sorting/sorting_algorithm/","title":"11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5","text":"\u300c\u6392\u5e8f\u7b97\u6cd5 sorting algorithm\u300d\u7528\u4e8e\u5bf9\u4e00\u7ec4\u6570\u636e\u6309\u7167\u7279\u5b9a\u987a\u5e8f\u8fdb\u884c\u6392\u5217\u3002\u6392\u5e8f\u7b97\u6cd5\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\uff0c\u56e0\u4e3a\u6709\u5e8f\u6570\u636e\u901a\u5e38\u80fd\u591f\u88ab\u66f4\u9ad8\u6548\u5730\u67e5\u627e\u3001\u5206\u6790\u548c\u5904\u7406\u3002
\u5982\u56fe 11-1 \u6240\u793a\uff0c\u6392\u5e8f\u7b97\u6cd5\u4e2d\u7684\u6570\u636e\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u6570\u3001\u6d6e\u70b9\u6570\u3001\u5b57\u7b26\u6216\u5b57\u7b26\u4e32\u7b49\u3002\u6392\u5e8f\u7684\u5224\u65ad\u89c4\u5219\u53ef\u6839\u636e\u9700\u6c42\u8bbe\u5b9a\uff0c\u5982\u6570\u5b57\u5927\u5c0f\u3001\u5b57\u7b26 ASCII \u7801\u987a\u5e8f\u6216\u81ea\u5b9a\u4e49\u89c4\u5219\u3002
\u56fe 11-1 \u00a0 \u6570\u636e\u7c7b\u578b\u548c\u5224\u65ad\u89c4\u5219\u793a\u4f8b
"},{"location":"chapter_sorting/sorting_algorithm/#1111","title":"11.1.1 \u00a0 \u8bc4\u4ef7\u7ef4\u5ea6","text":"\u8fd0\u884c\u6548\u7387\uff1a\u6211\u4eec\u671f\u671b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c3d\u91cf\u4f4e\uff0c\u4e14\u603b\u4f53\u64cd\u4f5c\u6570\u91cf\u8f83\u5c11\uff08\u65f6\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u53d8\u5c0f\uff09\u3002\u5bf9\u4e8e\u5927\u6570\u636e\u91cf\u7684\u60c5\u51b5\uff0c\u8fd0\u884c\u6548\u7387\u663e\u5f97\u5c24\u4e3a\u91cd\u8981\u3002
\u5c31\u5730\u6027\uff1a\u987e\u540d\u601d\u4e49\uff0c\u300c\u539f\u5730\u6392\u5e8f\u300d\u901a\u8fc7\u5728\u539f\u6570\u7ec4\u4e0a\u76f4\u63a5\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\uff0c\u65e0\u987b\u501f\u52a9\u989d\u5916\u7684\u8f85\u52a9\u6570\u7ec4\uff0c\u4ece\u800c\u8282\u7701\u5185\u5b58\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u539f\u5730\u6392\u5e8f\u7684\u6570\u636e\u642c\u8fd0\u64cd\u4f5c\u8f83\u5c11\uff0c\u8fd0\u884c\u901f\u5ea6\u4e5f\u66f4\u5feb\u3002
\u7a33\u5b9a\u6027\uff1a\u300c\u7a33\u5b9a\u6392\u5e8f\u300d\u5728\u5b8c\u6210\u6392\u5e8f\u540e\uff0c\u76f8\u7b49\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u76f8\u5bf9\u987a\u5e8f\u4e0d\u53d1\u751f\u6539\u53d8\u3002
\u7a33\u5b9a\u6392\u5e8f\u662f\u591a\u7ea7\u6392\u5e8f\u573a\u666f\u7684\u5fc5\u8981\u6761\u4ef6\u3002\u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u5b58\u50a8\u5b66\u751f\u4fe1\u606f\u7684\u8868\u683c\uff0c\u7b2c 1 \u5217\u548c\u7b2c 2 \u5217\u5206\u522b\u662f\u59d3\u540d\u548c\u5e74\u9f84\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u300c\u975e\u7a33\u5b9a\u6392\u5e8f\u300d\u53ef\u80fd\u5bfc\u81f4\u8f93\u5165\u6570\u636e\u7684\u6709\u5e8f\u6027\u4e27\u5931\uff1a
# \u8f93\u5165\u6570\u636e\u662f\u6309\u7167\u59d3\u540d\u6392\u5e8f\u597d\u7684\n# (name, age)\n ('A', 19)\n ('B', 18)\n ('C', 21)\n ('D', 19)\n ('E', 23)\n\n# \u5047\u8bbe\u4f7f\u7528\u975e\u7a33\u5b9a\u6392\u5e8f\u7b97\u6cd5\u6309\u5e74\u9f84\u6392\u5e8f\u5217\u8868\uff0c\n# \u7ed3\u679c\u4e2d ('D', 19) \u548c ('A', 19) \u7684\u76f8\u5bf9\u4f4d\u7f6e\u6539\u53d8\uff0c\n# \u8f93\u5165\u6570\u636e\u6309\u59d3\u540d\u6392\u5e8f\u7684\u6027\u8d28\u4e22\u5931\n ('B', 18)\n ('D', 19)\n ('A', 19)\n ('C', 21)\n ('E', 23)\n
\u81ea\u9002\u5e94\u6027\uff1a\u300c\u81ea\u9002\u5e94\u6392\u5e8f\u300d\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u53d7\u8f93\u5165\u6570\u636e\u7684\u5f71\u54cd\uff0c\u5373\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u3001\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5e76\u4e0d\u5b8c\u5168\u76f8\u7b49\u3002
\u81ea\u9002\u5e94\u6027\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u6765\u8bc4\u4f30\u3002\u5982\u679c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u5dee\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8bf4\u660e\u6392\u5e8f\u7b97\u6cd5\u5728\u67d0\u4e9b\u6570\u636e\u4e0b\u6027\u80fd\u53ef\u80fd\u52a3\u5316\uff0c\u56e0\u6b64\u88ab\u89c6\u4e3a\u8d1f\u9762\u5c5e\u6027\uff1b\u800c\u5982\u679c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u5219\u88ab\u89c6\u4e3a\u6b63\u9762\u5c5e\u6027\u3002
\u662f\u5426\u57fa\u4e8e\u6bd4\u8f83\uff1a\u300c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u300d\u4f9d\u8d56\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff08\\(<\\)\u3001\\(=\\)\u3001\\(>\\)\uff09\u6765\u5224\u65ad\u5143\u7d20\u7684\u76f8\u5bf9\u987a\u5e8f\uff0c\u4ece\u800c\u6392\u5e8f\u6574\u4e2a\u6570\u7ec4\uff0c\u7406\u8bba\u6700\u4f18\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u800c\u300c\u975e\u6bd4\u8f83\u6392\u5e8f\u300d\u4e0d\u4f7f\u7528\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(n)\\) \uff0c\u4f46\u5176\u901a\u7528\u6027\u76f8\u5bf9\u8f83\u5dee\u3002
"},{"location":"chapter_sorting/sorting_algorithm/#1112","title":"11.1.2 \u00a0 \u7406\u60f3\u6392\u5e8f\u7b97\u6cd5","text":"\u8fd0\u884c\u5feb\u3001\u539f\u5730\u3001\u7a33\u5b9a\u3001\u6b63\u5411\u81ea\u9002\u5e94\u3001\u901a\u7528\u6027\u597d\u3002\u663e\u7136\uff0c\u8fc4\u4eca\u4e3a\u6b62\u5c1a\u672a\u53d1\u73b0\u517c\u5177\u4ee5\u4e0a\u6240\u6709\u7279\u6027\u7684\u6392\u5e8f\u7b97\u6cd5\u3002\u56e0\u6b64\uff0c\u5728\u9009\u62e9\u6392\u5e8f\u7b97\u6cd5\u65f6\uff0c\u9700\u8981\u6839\u636e\u5177\u4f53\u7684\u6570\u636e\u7279\u70b9\u548c\u95ee\u9898\u9700\u6c42\u6765\u51b3\u5b9a\u3002
\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u5171\u540c\u5b66\u4e60\u5404\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5e76\u57fa\u4e8e\u4e0a\u8ff0\u8bc4\u4ef7\u7ef4\u5ea6\u5bf9\u5404\u4e2a\u6392\u5e8f\u7b97\u6cd5\u7684\u4f18\u7f3a\u70b9\u8fdb\u884c\u5206\u6790\u3002
"},{"location":"chapter_sorting/summary/","title":"11.11 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_sorting/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u5192\u6ce1\u6392\u5e8f\u901a\u8fc7\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u901a\u8fc7\u6dfb\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d\u6765\u5b9e\u73b0\u63d0\u524d\u8fd4\u56de\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(n)\\) \u3002
- \u63d2\u5165\u6392\u5e8f\u6bcf\u8f6e\u5c06\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u5143\u7d20\u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u6b63\u786e\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002\u867d\u7136\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u7531\u4e8e\u5355\u5143\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u56e0\u6b64\u5728\u5c0f\u6570\u636e\u91cf\u7684\u6392\u5e8f\u4efb\u52a1\u4e2d\u975e\u5e38\u53d7\u6b22\u8fce\u3002
- \u5feb\u901f\u6392\u5e8f\u57fa\u4e8e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u54e8\u5175\u5212\u5206\u4e2d\uff0c\u6709\u53ef\u80fd\u6bcf\u6b21\u90fd\u9009\u53d6\u5230\u6700\u5dee\u7684\u57fa\u51c6\u6570\uff0c\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u3002\u5f15\u5165\u4e2d\u4f4d\u6570\u57fa\u51c6\u6570\u6216\u968f\u673a\u57fa\u51c6\u6570\u53ef\u4ee5\u964d\u4f4e\u8fd9\u79cd\u52a3\u5316\u7684\u6982\u7387\u3002\u5c3e\u9012\u5f52\u65b9\u6cd5\u53ef\u4ee5\u6709\u6548\u5730\u51cf\u5c11\u9012\u5f52\u6df1\u5ea6\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(\\log n)\\) \u3002
- \u5f52\u5e76\u6392\u5e8f\u5305\u62ec\u5212\u5206\u548c\u5408\u5e76\u4e24\u4e2a\u9636\u6bb5\uff0c\u5178\u578b\u5730\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\u3002\u5728\u5f52\u5e76\u6392\u5e8f\u4e2d\uff0c\u6392\u5e8f\u6570\u7ec4\u9700\u8981\u521b\u5efa\u8f85\u52a9\u6570\u7ec4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1b\u7136\u800c\u6392\u5e8f\u94fe\u8868\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \u3002
- \u6876\u6392\u5e8f\u5305\u542b\u4e09\u4e2a\u6b65\u9aa4\uff1a\u6570\u636e\u5206\u6876\u3001\u6876\u5185\u6392\u5e8f\u548c\u5408\u5e76\u7ed3\u679c\u3002\u5b83\u540c\u6837\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u9002\u7528\u4e8e\u6570\u636e\u4f53\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u3002\u6876\u6392\u5e8f\u7684\u5173\u952e\u5728\u4e8e\u5bf9\u6570\u636e\u8fdb\u884c\u5e73\u5747\u5206\u914d\u3002
- \u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5b83\u901a\u8fc7\u7edf\u8ba1\u6570\u636e\u51fa\u73b0\u7684\u6b21\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u6709\u9650\u7684\u60c5\u51b5\uff0c\u5e76\u4e14\u8981\u6c42\u6570\u636e\u80fd\u591f\u8f6c\u6362\u4e3a\u6b63\u6574\u6570\u3002
- \u57fa\u6570\u6392\u5e8f\u901a\u8fc7\u9010\u4f4d\u6392\u5e8f\u6765\u5b9e\u73b0\u6570\u636e\u6392\u5e8f\uff0c\u8981\u6c42\u6570\u636e\u80fd\u591f\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u6570\u5b57\u3002
- \u603b\u7684\u6765\u8bf4\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5177\u6709\u9ad8\u6548\u7387\u3001\u7a33\u5b9a\u3001\u539f\u5730\u4ee5\u53ca\u6b63\u5411\u81ea\u9002\u5e94\u6027\u7b49\u4f18\u70b9\u3002\u7136\u800c\uff0c\u6b63\u5982\u5176\u4ed6\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e00\u6837\uff0c\u6ca1\u6709\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\u80fd\u591f\u540c\u65f6\u6ee1\u8db3\u6240\u6709\u8fd9\u4e9b\u6761\u4ef6\u3002\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u6839\u636e\u6570\u636e\u7684\u7279\u6027\u6765\u9009\u62e9\u5408\u9002\u7684\u6392\u5e8f\u7b97\u6cd5\u3002
- \u56fe 11-19 \u5bf9\u6bd4\u4e86\u4e3b\u6d41\u6392\u5e8f\u7b97\u6cd5\u7684\u6548\u7387\u3001\u7a33\u5b9a\u6027\u3001\u5c31\u5730\u6027\u548c\u81ea\u9002\u5e94\u6027\u7b49\u3002
\u56fe 11-19 \u00a0 \u6392\u5e8f\u7b97\u6cd5\u5bf9\u6bd4
"},{"location":"chapter_sorting/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6392\u5e8f\u7b97\u6cd5\u7a33\u5b9a\u6027\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u662f\u5fc5\u9700\u7684\uff1f
\u5728\u73b0\u5b9e\u4e2d\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u662f\u57fa\u4e8e\u5bf9\u8c61\u7684\u67d0\u4e2a\u5c5e\u6027\u8fdb\u884c\u6392\u5e8f\u3002\u4f8b\u5982\uff0c\u5b66\u751f\u6709\u59d3\u540d\u548c\u8eab\u9ad8\u4e24\u4e2a\u5c5e\u6027\uff0c\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u4e00\u4e2a\u591a\u7ea7\u6392\u5e8f\uff1a
\u5148\u6309\u7167\u59d3\u540d\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u5230 (A, 180) (B, 185) (C, 170) (D, 170) \uff1b\u518d\u5bf9\u8eab\u9ad8\u8fdb\u884c\u6392\u5e8f\u3002\u7531\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e0d\u7a33\u5b9a\uff0c\u56e0\u6b64\u53ef\u80fd\u5f97\u5230 (D, 170) (C, 170) (A, 180) (B, 185) \u3002
\u53ef\u4ee5\u53d1\u73b0\uff0c\u5b66\u751f D \u548c C \u7684\u4f4d\u7f6e\u53d1\u751f\u4e86\u4ea4\u6362\uff0c\u59d3\u540d\u7684\u6709\u5e8f\u6027\u88ab\u7834\u574f\u4e86\uff0c\u800c\u8fd9\u662f\u6211\u4eec\u4e0d\u5e0c\u671b\u770b\u5230\u7684\u3002
\u54e8\u5175\u5212\u5206\u4e2d\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u4e0e\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u7684\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\u5417\uff1f
\u4e0d\u884c\uff0c\u5f53\u6211\u4eec\u4ee5\u6700\u5de6\u7aef\u5143\u7d20\u4e3a\u57fa\u51c6\u6570\u65f6\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u518d\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002\u8fd9\u4e2a\u7ed3\u8bba\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u6211\u4eec\u6765\u5256\u6790\u4e00\u4e0b\u539f\u56e0\u3002
\u54e8\u5175\u5212\u5206 partition() \u7684\u6700\u540e\u4e00\u6b65\u662f\u4ea4\u6362 nums[left] \u548c nums[i] \u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u57fa\u51c6\u6570\u5de6\u8fb9\u7684\u5143\u7d20\u90fd <= \u57fa\u51c6\u6570\uff0c\u8fd9\u5c31\u8981\u6c42\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u524d nums[left] >= nums[i] \u5fc5\u987b\u6210\u7acb\u3002\u5047\u8bbe\u6211\u4eec\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\uff0c\u90a3\u4e48\u5982\u679c\u627e\u4e0d\u5230\u6bd4\u57fa\u51c6\u6570\u66f4\u5927\u7684\u5143\u7d20\uff0c\u5219\u4f1a\u5728 i == j \u65f6\u8df3\u51fa\u5faa\u73af\uff0c\u6b64\u65f6\u53ef\u80fd nums[j] == nums[i] > nums[left]\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u6b64\u65f6\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u64cd\u4f5c\u4f1a\u628a\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u66f4\u5927\u7684\u5143\u7d20\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\uff0c\u5bfc\u81f4\u54e8\u5175\u5212\u5206\u5931\u8d25\u3002
\u4e3e\u4e2a\u4f8b\u5b50\uff0c\u7ed9\u5b9a\u6570\u7ec4 [0, 0, 0, 0, 1] \uff0c\u5982\u679c\u5148\u201c\u4ece\u5de6\u5411\u53f3\u67e5\u627e\u201d\uff0c\u54e8\u5175\u5212\u5206\u540e\u6570\u7ec4\u4e3a [1, 0, 0, 0, 0] \uff0c\u8fd9\u4e2a\u7ed3\u679c\u662f\u4e0d\u6b63\u786e\u7684\u3002
\u518d\u6df1\u5165\u601d\u8003\u4e00\u4e0b\uff0c\u5982\u679c\u6211\u4eec\u9009\u62e9 nums[right] \u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u6b63\u597d\u53cd\u8fc7\u6765\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002
\u5173\u4e8e\u5c3e\u9012\u5f52\u4f18\u5316\uff0c\u4e3a\u4ec0\u4e48\u9009\u77ed\u7684\u6570\u7ec4\u80fd\u4fdd\u8bc1\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff1f
\u9012\u5f52\u6df1\u5ea6\u5c31\u662f\u5f53\u524d\u672a\u8fd4\u56de\u7684\u9012\u5f52\u65b9\u6cd5\u7684\u6570\u91cf\u3002\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u6211\u4eec\u5c06\u539f\u6570\u7ec4\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\u3002\u5728\u5c3e\u9012\u5f52\u4f18\u5316\u540e\uff0c\u5411\u4e0b\u9012\u5f52\u7684\u5b50\u6570\u7ec4\u957f\u5ea6\u6700\u5927\u4e3a\u539f\u6570\u7ec4\u957f\u5ea6\u7684\u4e00\u534a\u3002\u5047\u8bbe\u6700\u5dee\u60c5\u51b5\uff0c\u4e00\u76f4\u4e3a\u4e00\u534a\u957f\u5ea6\uff0c\u90a3\u4e48\u6700\u7ec8\u7684\u9012\u5f52\u6df1\u5ea6\u5c31\u662f \\(\\log n\\) \u3002
\u56de\u987e\u539f\u59cb\u7684\u5feb\u901f\u6392\u5e8f\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u4f1a\u8fde\u7eed\u5730\u9012\u5f52\u957f\u5ea6\u8f83\u5927\u7684\u6570\u7ec4\uff0c\u6700\u5dee\u60c5\u51b5\u4e0b\u4e3a \\(n\\)\u3001\\(n - 1\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \uff0c\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \u3002\u5c3e\u9012\u5f52\u4f18\u5316\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u51fa\u73b0\u3002
\u5f53\u6570\u7ec4\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u76f8\u7b49\u65f6\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(n^2)\\) \u5417\uff1f\u8be5\u5982\u4f55\u5904\u7406\u8fd9\u79cd\u9000\u5316\u60c5\u51b5\uff1f
\u662f\u7684\u3002\u5bf9\u4e8e\u8fd9\u79cd\u60c5\u51b5\uff0c\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u54e8\u5175\u5212\u5206\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\uff1a\u5c0f\u4e8e\u3001\u7b49\u4e8e\u3001\u5927\u4e8e\u57fa\u51c6\u6570\u3002\u4ec5\u5411\u4e0b\u9012\u5f52\u5c0f\u4e8e\u548c\u5927\u4e8e\u7684\u4e24\u90e8\u5206\u3002\u5728\u8be5\u65b9\u6cd5\u4e0b\uff0c\u8f93\u5165\u5143\u7d20\u5168\u90e8\u76f8\u7b49\u7684\u6570\u7ec4\uff0c\u4ec5\u4e00\u8f6e\u54e8\u5175\u5212\u5206\u5373\u53ef\u5b8c\u6210\u6392\u5e8f\u3002
\u6876\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u4ec0\u4e48\u662f \\(O(n^2)\\) \uff1f
\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u88ab\u5206\u81f3\u540c\u4e00\u4e2a\u6876\u4e2d\u3002\u5982\u679c\u6211\u4eec\u91c7\u7528\u4e00\u4e2a \\(O(n^2)\\) \u7b97\u6cd5\u6765\u6392\u5e8f\u8fd9\u4e9b\u5143\u7d20\uff0c\u5219\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_stack_and_queue/","title":"\u7b2c 5 \u7ae0 \u00a0 \u6808\u4e0e\u961f\u5217","text":"Abstract
\u6808\u5982\u540c\u53e0\u732b\u732b\uff0c\u800c\u961f\u5217\u5c31\u50cf\u732b\u732b\u6392\u961f\u3002
\u4e24\u8005\u5206\u522b\u4ee3\u8868\u5148\u5165\u540e\u51fa\u548c\u5148\u5165\u5148\u51fa\u7684\u903b\u8f91\u5173\u7cfb\u3002
"},{"location":"chapter_stack_and_queue/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 5.1 \u00a0 \u6808
- 5.2 \u00a0 \u961f\u5217
- 5.3 \u00a0 \u53cc\u5411\u961f\u5217
- 5.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_stack_and_queue/deque/","title":"5.3 \u00a0 \u53cc\u5411\u961f\u5217","text":"\u5728\u961f\u5217\u4e2d\uff0c\u6211\u4eec\u4ec5\u80fd\u5220\u9664\u5934\u90e8\u5143\u7d20\u6216\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u3002\u5982\u56fe 5-7 \u6240\u793a\uff0c\u300c\u53cc\u5411\u961f\u5217 double-ended queue\u300d\u63d0\u4f9b\u4e86\u66f4\u9ad8\u7684\u7075\u6d3b\u6027\uff0c\u5141\u8bb8\u5728\u5934\u90e8\u548c\u5c3e\u90e8\u6267\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u6216\u5220\u9664\u64cd\u4f5c\u3002
\u56fe 5-7 \u00a0 \u53cc\u5411\u961f\u5217\u7684\u64cd\u4f5c
"},{"location":"chapter_stack_and_queue/deque/#531","title":"5.3.1 \u00a0 \u53cc\u5411\u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"\u53cc\u5411\u961f\u5217\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u8868 5-3 \u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u79f0\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002
\u8868 5-3 \u00a0 \u53cc\u5411\u961f\u5217\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 pushFirst() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u9996 \\(O(1)\\) pushLast() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) popFirst() \u5220\u9664\u961f\u9996\u5143\u7d20 \\(O(1)\\) popLast() \u5220\u9664\u961f\u5c3e\u5143\u7d20 \\(O(1)\\) peekFirst() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\) peekLast() \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 \\(O(1)\\) \u540c\u6837\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u5df2\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\u7c7b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig deque.pyfrom collections import deque\n\n# \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217\ndeque: deque[int] = deque()\n\n# \u5143\u7d20\u5165\u961f\ndeque.append(2) # \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.appendleft(3) # \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.appendleft(1)\n\n# \u8bbf\u95ee\u5143\u7d20\nfront: int = deque[0] # \u961f\u9996\u5143\u7d20\nrear: int = deque[-1] # \u961f\u5c3e\u5143\u7d20\n\n# \u5143\u7d20\u51fa\u961f\npop_front: int = deque.popleft() # \u961f\u9996\u5143\u7d20\u51fa\u961f\npop_rear: int = deque.pop() # \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n# \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(deque)\n\n# \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(deque) == 0\n
deque.cpp/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\ndeque<int> deque;\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.push_back(5);\ndeque.push_back(4);\ndeque.push_front(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.push_front(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint front = deque.front(); // \u961f\u9996\u5143\u7d20\nint back = deque.back(); // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\ndeque.pop_front(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.pop_back(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = deque.empty();\n
deque.java/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\nDeque<Integer> deque = new LinkedList<>();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.offerLast(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.offerLast(5);\ndeque.offerLast(4);\ndeque.offerFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.offerFirst(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.peekFirst(); // \u961f\u9996\u5143\u7d20\nint peekLast = deque.peekLast(); // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.pollFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.pollLast(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = deque.isEmpty();\n
deque.cs/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 C# \u4e2d\uff0c\u5c06\u94fe\u8868 LinkedList \u770b\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nLinkedList<int> deque = new();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.AddLast(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.AddLast(5);\ndeque.AddLast(4);\ndeque.AddFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.AddFirst(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.First.Value; // \u961f\u9996\u5143\u7d20\nint peekLast = deque.Last.Value; // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\ndeque.RemoveFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.RemoveLast(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.Count;\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.Count == 0;\n
deque_test.go/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u4f7f\u7528\ndeque := list.New()\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.PushBack(2) // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.PushBack(5)\ndeque.PushBack(4)\ndeque.PushFront(3) // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.PushFront(1)\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nfront := deque.Front() // \u961f\u9996\u5143\u7d20\nrear := deque.Back() // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\ndeque.Remove(front) // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.Remove(rear) // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize := deque.Len()\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := deque.Len() == 0\n
deque.swift/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u5411\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nvar deque: [Int] = []\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.append(2) // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.insert(3, at: 0) // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.insert(1, at: 0)\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nlet peekFirst = deque.first! // \u961f\u9996\u5143\u7d20\nlet peekLast = deque.last! // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u4f7f\u7528 Array \u6a21\u62df\u65f6 popFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet popFirst = deque.removeFirst() // \u961f\u9996\u5143\u7d20\u51fa\u961f\nlet popLast = deque.removeLast() // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.count\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = deque.isEmpty\n
deque.js/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque = [];\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront = deque.shift();\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack = deque.pop();\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
deque.ts/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque: number[] = [];\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst: number = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast: number = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront: number = deque.shift() as number;\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack: number = deque.pop() as number;\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size: number = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty: boolean = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
deque.dart/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0cQueue \u88ab\u5b9a\u4e49\u4e3a\u53cc\u5411\u961f\u5217\nQueue<int> deque = Queue<int>();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.addLast(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.addLast(5);\ndeque.addLast(4);\ndeque.addFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.addFirst(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.first; // \u961f\u9996\u5143\u7d20\nint peekLast = deque.last; // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.removeFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.removeLast(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.length;\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.isEmpty;W\n
deque.rs/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\nlet mut deque: VecDeque<u32> = VecDeque::new();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.push_back(5);\ndeque.push_back(4);\ndeque.push_front(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.push_front(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nif let Some(front) = deque.front() { // \u961f\u9996\u5143\u7d20\n}\nif let Some(rear) = deque.back() { // \u961f\u5c3e\u5143\u7d20\n}\n\n/* \u5143\u7d20\u51fa\u961f */\nif let Some(pop_front) = deque.pop_front() { // \u961f\u9996\u5143\u7d20\u51fa\u961f\n}\nif let Some(pop_rear) = deque.pop_back() { // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.len();\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = deque.is_empty();\n
deque.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u53cc\u5411\u961f\u5217\n
deque.zig\n
"},{"location":"chapter_stack_and_queue/deque/#532","title":"5.3.2 \u00a0 \u53cc\u5411\u961f\u5217\u5b9e\u73b0 *","text":"\u53cc\u5411\u961f\u5217\u7684\u5b9e\u73b0\u4e0e\u961f\u5217\u7c7b\u4f3c\uff0c\u53ef\u4ee5\u9009\u62e9\u94fe\u8868\u6216\u6570\u7ec4\u4f5c\u4e3a\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
"},{"location":"chapter_stack_and_queue/deque/#1","title":"1. \u00a0 \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u7684\u5b9e\u73b0","text":"\u56de\u987e\u4e0a\u4e00\u8282\u5185\u5bb9\uff0c\u6211\u4eec\u4f7f\u7528\u666e\u901a\u5355\u5411\u94fe\u8868\u6765\u5b9e\u73b0\u961f\u5217\uff0c\u56e0\u4e3a\u5b83\u53ef\u4ee5\u65b9\u4fbf\u5730\u5220\u9664\u5934\u8282\u70b9\uff08\u5bf9\u5e94\u51fa\u961f\u64cd\u4f5c\uff09\u548c\u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0\u65b0\u8282\u70b9\uff08\u5bf9\u5e94\u5165\u961f\u64cd\u4f5c\uff09\u3002
\u5bf9\u4e8e\u53cc\u5411\u961f\u5217\u800c\u8a00\uff0c\u5934\u90e8\u548c\u5c3e\u90e8\u90fd\u53ef\u4ee5\u6267\u884c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u53cc\u5411\u961f\u5217\u9700\u8981\u5b9e\u73b0\u53e6\u4e00\u4e2a\u5bf9\u79f0\u65b9\u5411\u7684\u64cd\u4f5c\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u201c\u53cc\u5411\u94fe\u8868\u201d\u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
\u5982\u56fe 5-8 \u6240\u793a\uff0c\u6211\u4eec\u5c06\u53cc\u5411\u94fe\u8868\u7684\u5934\u8282\u70b9\u548c\u5c3e\u8282\u70b9\u89c6\u4e3a\u53cc\u5411\u961f\u5217\u7684\u961f\u9996\u548c\u961f\u5c3e\uff0c\u540c\u65f6\u5b9e\u73b0\u5728\u4e24\u7aef\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u7684\u529f\u80fd\u3002
LinkedListDequepushLast()pushFirst()popLast()popFirst() \u56fe 5-8 \u00a0 \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linkedlist_deque.pyclass ListNode:\n \"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\"\"\"\n\n def __init__(self, val: int):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self.val: int = val\n self.next: ListNode | None = None # \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n self.prev: ListNode | None = None # \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\nclass LinkedListDeque:\n \"\"\"\u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._front: ListNode | None = None # \u5934\u8282\u70b9 front\n self._rear: ListNode | None = None # \u5c3e\u8282\u70b9 rear\n self._size: int = 0 # \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self.size() == 0\n\n def push(self, num: int, is_front: bool):\n \"\"\"\u5165\u961f\u64cd\u4f5c\"\"\"\n node = ListNode(num)\n # \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if self.is_empty():\n self._front = self._rear = node\n # \u961f\u9996\u5165\u961f\u64cd\u4f5c\n elif is_front:\n # \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n self._front.prev = node\n node.next = self._front\n self._front = node # \u66f4\u65b0\u5934\u8282\u70b9\n # \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else:\n # \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n self._rear.next = node\n node.prev = self._rear\n self._rear = node # \u66f4\u65b0\u5c3e\u8282\u70b9\n self._size += 1 # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n\n def push_first(self, num: int):\n \"\"\"\u961f\u9996\u5165\u961f\"\"\"\n self.push(num, True)\n\n def push_last(self, num: int):\n \"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\n self.push(num, False)\n\n def pop(self, is_front: bool) -> int:\n \"\"\"\u51fa\u961f\u64cd\u4f5c\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n # \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if is_front:\n val: int = self._front.val # \u6682\u5b58\u5934\u8282\u70b9\u503c\n # \u5220\u9664\u5934\u8282\u70b9\n fnext: ListNode | None = self._front.next\n if fnext != None:\n fnext.prev = None\n self._front.next = None\n self._front = fnext # \u66f4\u65b0\u5934\u8282\u70b9\n # \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else:\n val: int = self._rear.val # \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n # \u5220\u9664\u5c3e\u8282\u70b9\n rprev: ListNode | None = self._rear.prev\n if rprev != None:\n rprev.next = None\n self._rear.prev = None\n self._rear = rprev # \u66f4\u65b0\u5c3e\u8282\u70b9\n self._size -= 1 # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val\n\n def pop_first(self) -> int:\n \"\"\"\u961f\u9996\u51fa\u961f\"\"\"\n return self.pop(True)\n\n def pop_last(self) -> int:\n \"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\n return self.pop(False)\n\n def peek_first(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n return self._front.val\n\n def peek_last(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n return self._rear.val\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\n node = self._front\n res = [0] * self.size()\n for i in range(self.size()):\n res[i] = node.val\n node = node.next\n return res\n
linkedlist_deque.cpp/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nstruct DoublyListNode {\n int val; // \u8282\u70b9\u503c\n DoublyListNode *next; // \u540e\u7ee7\u8282\u70b9\u6307\u9488\n DoublyListNode *prev; // \u524d\u9a71\u8282\u70b9\u6307\u9488\n DoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {\n }\n};\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private:\n DoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n LinkedListDeque() : front(nullptr), rear(nullptr) {\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~LinkedListDeque() {\n // \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\n DoublyListNode *pre, *cur = front;\n while (cur != nullptr) {\n pre = cur;\n cur = cur->next;\n delete pre;\n }\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n void push(int num, bool isFront) {\n DoublyListNode *node = new DoublyListNode(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (isEmpty())\n front = rear = node;\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front->prev = node;\n node->next = front;\n front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear->next = node;\n node->prev = rear;\n rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int num) {\n push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int num) {\n push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n int pop(bool isFront) {\n if (isEmpty())\n throw out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\n int val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = front->val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n DoublyListNode *fNext = front->next;\n if (fNext != nullptr) {\n fNext->prev = nullptr;\n front->next = nullptr;\n delete front;\n }\n front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n } else {\n val = rear->val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n DoublyListNode *rPrev = rear->prev;\n if (rPrev != nullptr) {\n rPrev->next = nullptr;\n rear->prev = nullptr;\n delete rear;\n }\n rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int popFirst() {\n return pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int popLast() {\n return pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peekFirst() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return front->val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int peekLast() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return rear->val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n DoublyListNode *node = front;\n vector<int> res(size());\n for (int i = 0; i < res.size(); i++) {\n res[i] = node->val;\n node = node->next;\n }\n return res;\n }\n};\n
linkedlist_deque.java/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n ListNode prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\n ListNode(int val) {\n this.val = val;\n prev = next = null;\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n private int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n public LinkedListDeque() {\n front = rear = null;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n private void push(int num, boolean isFront) {\n ListNode node = new ListNode(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (isEmpty())\n front = rear = node;\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front.prev = node;\n node.next = front;\n front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear.next = node;\n node.prev = rear;\n rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void pushFirst(int num) {\n push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void pushLast(int num) {\n push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n private int pop(boolean isFront) {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n int val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = front.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode fNext = front.next;\n if (fNext != null) {\n fNext.prev = null;\n front.next = null;\n }\n front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n } else {\n val = rear.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n ListNode rPrev = rear.prev;\n if (rPrev != null) {\n rPrev.next = null;\n rear.prev = null;\n }\n rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int popFirst() {\n return pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int popLast() {\n return pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peekFirst() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return front.val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int peekLast() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return rear.val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int[] toArray() {\n ListNode node = front;\n int[] res = new int[size()];\n for (int i = 0; i < res.length; i++) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_deque.cs/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode(int val) {\n public int val = val; // \u8282\u70b9\u503c\n public ListNode? next = null; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n public ListNode? prev = null; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n ListNode? front, rear; // \u5934\u8282\u70b9 front, \u5c3e\u8282\u70b9 rear\n int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n public LinkedListDeque() {\n front = null;\n rear = null;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n void Push(int num, bool isFront) {\n ListNode node = new(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (IsEmpty()) {\n front = node;\n rear = node;\n }\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front!.prev = node;\n node.next = front;\n front = node; // \u66f4\u65b0\u5934\u8282\u70b9 \n }\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear!.next = node;\n node.prev = rear;\n rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n\n queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void PushFirst(int num) {\n Push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void PushLast(int num) {\n Push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n int? Pop(bool isFront) {\n if (IsEmpty())\n throw new Exception();\n int? val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = front?.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode? fNext = front?.next;\n if (fNext != null) {\n fNext.prev = null;\n front!.next = null;\n }\n front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n val = rear?.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n ListNode? rPrev = rear?.prev;\n if (rPrev != null) {\n rPrev.next = null;\n rear!.prev = null;\n }\n rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n\n queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int? PopFirst() {\n return Pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int? PopLast() {\n return Pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int? PeekFirst() {\n if (IsEmpty())\n throw new Exception();\n return front?.val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int? PeekLast() {\n if (IsEmpty())\n throw new Exception();\n return rear?.val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int?[] ToArray() {\n ListNode? node = front;\n int?[] res = new int?[Size()];\n for (int i = 0; i < res.Length; i++) {\n res[i] = node?.val;\n node = node?.next;\n }\n\n return res;\n }\n}\n
linkedlist_deque.go/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype linkedListDeque struct {\n // \u4f7f\u7528\u5185\u7f6e\u5305 list\n data *list.List\n}\n\n/* \u521d\u59cb\u5316\u53cc\u7aef\u961f\u5217 */\nfunc newLinkedListDeque() *linkedListDeque {\n return &linkedListDeque{\n data: list.New(),\n }\n}\n\n/* \u961f\u9996\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushFirst(value any) {\n s.data.PushFront(value)\n}\n\n/* \u961f\u5c3e\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushLast(value any) {\n s.data.PushBack(value)\n}\n\n/* \u961f\u9996\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popFirst() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u961f\u5c3e\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popLast() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListDeque) peekFirst() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n return e.Value\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (s *linkedListDeque) peekLast() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n return e.Value\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListDeque) size() int {\n return s.data.Len()\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListDeque) isEmpty() bool {\n return s.data.Len() == 0\n}\n\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListDeque) toList() *list.List {\n return s.data\n}\n
linkedlist_deque.swift/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n var val: Int // \u8282\u70b9\u503c\n var next: ListNode? // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n weak var prev: ListNode? // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\n init(val: Int) {\n self.val = val\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private var front: ListNode? // \u5934\u8282\u70b9 front\n private var rear: ListNode? // \u5c3e\u8282\u70b9 rear\n private var queSize: Int // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n init() {\n queSize = 0\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n queSize\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n private func push(num: Int, isFront: Bool) {\n let node = ListNode(val: num)\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if isEmpty() {\n front = node\n rear = node\n }\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if isFront {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front?.prev = node\n node.next = front\n front = node // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear?.next = node\n node.prev = rear\n rear = node // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize += 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n func pushFirst(num: Int) {\n push(num: num, isFront: true)\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n func pushLast(num: Int) {\n push(num: num, isFront: false)\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n private func pop(isFront: Bool) -> Int {\n if isEmpty() {\n fatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n }\n let val: Int\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if isFront {\n val = front!.val // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n let fNext = front?.next\n if fNext != nil {\n fNext?.prev = nil\n front?.next = nil\n }\n front = fNext // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n val = rear!.val // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n let rPrev = rear?.prev\n if rPrev != nil {\n rPrev?.next = nil\n rear?.prev = nil\n }\n rear = rPrev // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize -= 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val\n }\n\n /* \u961f\u9996\u51fa\u961f */\n func popFirst() -> Int {\n pop(isFront: true)\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n func popLast() -> Int {\n pop(isFront: false)\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peekFirst() -> Int? {\n isEmpty() ? nil : front?.val\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n func peekLast() -> Int? {\n isEmpty() ? nil : rear?.val\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n func toArray() -> [Int] {\n var node = front\n var res = Array(repeating: 0, count: size())\n for i in res.indices {\n res[i] = node!.val\n node = node?.next\n }\n return res\n }\n}\n
linkedlist_deque.js/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n val; // \u8282\u70b9\u503c\n\n constructor(val) {\n this.val = val;\n this.next = null;\n this.prev = null;\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n #front; // \u5934\u8282\u70b9 front\n #rear; // \u5c3e\u8282\u70b9 rear\n #queSize; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n constructor() {\n this.#front = null;\n this.#rear = null;\n this.#queSize = 0;\n }\n\n /* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\n pushLast(val) {\n const node = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.#queSize === 0) {\n this.#front = node;\n this.#rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n this.#rear.next = node;\n node.prev = this.#rear;\n this.#rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n this.#queSize++;\n }\n\n /* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\n pushFirst(val) {\n const node = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.#queSize === 0) {\n this.#front = node;\n this.#rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n this.#front.prev = node;\n node.next = this.#front;\n this.#front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n this.#queSize++;\n }\n\n /* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\n popLast() {\n if (this.#queSize === 0) {\n return null;\n }\n const value = this.#rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n let temp = this.#rear.prev;\n if (temp !== null) {\n temp.next = null;\n this.#rear.prev = null;\n }\n this.#rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\n this.#queSize--;\n return value;\n }\n\n /* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\n popFirst() {\n if (this.#queSize === 0) {\n return null;\n }\n const value = this.#front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n let temp = this.#front.next;\n if (temp !== null) {\n temp.prev = null;\n this.#front.next = null;\n }\n this.#front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\n this.#queSize--;\n return value;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast() {\n return this.#queSize === 0 ? null : this.#rear.val;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst() {\n return this.#queSize === 0 ? null : this.#front.val;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#queSize === 0;\n }\n\n /* \u6253\u5370\u53cc\u5411\u961f\u5217 */\n print() {\n const arr = [];\n let temp = this.#front;\n while (temp !== null) {\n arr.push(temp.val);\n temp = temp.next;\n }\n console.log('[' + arr.join(', ') + ']');\n }\n}\n
linkedlist_deque.ts/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n prev: ListNode; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n next: ListNode; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n val: number; // \u8282\u70b9\u503c\n\n constructor(val: number) {\n this.val = val;\n this.next = null;\n this.prev = null;\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private front: ListNode; // \u5934\u8282\u70b9 front\n private rear: ListNode; // \u5c3e\u8282\u70b9 rear\n private queSize: number; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n constructor() {\n this.front = null;\n this.rear = null;\n this.queSize = 0;\n }\n\n /* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\n pushLast(val: number): void {\n const node: ListNode = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.queSize === 0) {\n this.front = node;\n this.rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n this.rear.next = node;\n node.prev = this.rear;\n this.rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n this.queSize++;\n }\n\n /* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\n pushFirst(val: number): void {\n const node: ListNode = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.queSize === 0) {\n this.front = node;\n this.rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n this.front.prev = node;\n node.next = this.front;\n this.front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n this.queSize++;\n }\n\n /* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\n popLast(): number {\n if (this.queSize === 0) {\n return null;\n }\n const value: number = this.rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n let temp: ListNode = this.rear.prev;\n if (temp !== null) {\n temp.next = null;\n this.rear.prev = null;\n }\n this.rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\n this.queSize--;\n return value;\n }\n\n /* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\n popFirst(): number {\n if (this.queSize === 0) {\n return null;\n }\n const value: number = this.front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n let temp: ListNode = this.front.next;\n if (temp !== null) {\n temp.prev = null;\n this.front.next = null;\n }\n this.front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\n this.queSize--;\n return value;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast(): number {\n return this.queSize === 0 ? null : this.rear.val;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst(): number {\n return this.queSize === 0 ? null : this.front.val;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.queSize === 0;\n }\n\n /* \u6253\u5370\u53cc\u5411\u961f\u5217 */\n print(): void {\n const arr: number[] = [];\n let temp: ListNode = this.front;\n while (temp !== null) {\n arr.push(temp.val);\n temp = temp.next;\n }\n console.log('[' + arr.join(', ') + ']');\n }\n}\n
linkedlist_deque.dart/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode? next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n ListNode? prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\n ListNode(this.val, {this.next, this.prev});\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u5bf9\u5217 */\nclass LinkedListDeque {\n late ListNode? _front; // \u5934\u8282\u70b9 _front\n late ListNode? _rear; // \u5c3e\u8282\u70b9 _rear\n int _queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n LinkedListDeque() {\n this._front = null;\n this._rear = null;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u957f\u5ea6 */\n int size() {\n return this._queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n void push(int _num, bool isFront) {\n final ListNode node = ListNode(_num);\n if (isEmpty()) {\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 _front \u548c _rear \u90fd\u6307\u5411 node\n _front = _rear = node;\n } else if (isFront) {\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n _front!.prev = node;\n node.next = _front;\n _front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n } else {\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n _rear!.next = node;\n node.prev = _rear;\n _rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n _queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int _num) {\n push(_num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int _num) {\n push(_num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n int? pop(bool isFront) {\n // \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\n if (isEmpty()) {\n return null;\n }\n final int val;\n if (isFront) {\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n val = _front!.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode? fNext = _front!.next;\n if (fNext != null) {\n fNext.prev = null;\n _front!.next = null;\n }\n _front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n } else {\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n val = _rear!.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n ListNode? rPrev = _rear!.prev;\n if (rPrev != null) {\n rPrev.next = null;\n _rear!.prev = null;\n }\n _rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n _queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int? popFirst() {\n return pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int? popLast() {\n return pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int? peekFirst() {\n return _front?.val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int? peekLast() {\n return _rear?.val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n List<int> toArray() {\n ListNode? node = _front;\n final List<int> res = [];\n for (int i = 0; i < _queSize; i++) {\n res.add(node!.val);\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_deque.rs/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\npub struct ListNode<T> {\n pub val: T, // \u8282\u70b9\u503c\n pub next: Option<Rc<RefCell<ListNode<T>>>>, // \u540e\u7ee7\u8282\u70b9\u6307\u9488\n pub prev: Option<Rc<RefCell<ListNode<T>>>>, // \u524d\u9a71\u8282\u70b9\u6307\u9488\n}\n\nimpl<T> ListNode<T> {\n pub fn new(val: T) -> Rc<RefCell<ListNode<T>>> {\n Rc::new(RefCell::new(ListNode {\n val,\n next: None,\n prev: None,\n }))\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListDeque<T> {\n front: Option<Rc<RefCell<ListNode<T>>>>, // \u5934\u8282\u70b9 front\n rear: Option<Rc<RefCell<ListNode<T>>>>, // \u5c3e\u8282\u70b9 rear \n que_size: usize, // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n}\n\nimpl<T: Copy> LinkedListDeque<T> {\n pub fn new() -> Self {\n Self {\n front: None,\n rear: None,\n que_size: 0, \n }\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n return self.que_size;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n return self.size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n pub fn push(&mut self, num: T, is_front: bool) {\n let node = ListNode::new(num);\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n if is_front {\n match self.front.take() {\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n None => {\n self.rear = Some(node.clone());\n self.front = Some(node);\n }\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n Some(old_front) => {\n old_front.borrow_mut().prev = Some(node.clone());\n node.borrow_mut().next = Some(old_front);\n self.front = Some(node); // \u66f4\u65b0\u5934\u8282\u70b9\n }\n }\n } \n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n match self.rear.take() {\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n None => {\n self.front = Some(node.clone());\n self.rear = Some(node);\n }\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n Some(old_rear) => {\n old_rear.borrow_mut().next = Some(node.clone());\n node.borrow_mut().prev = Some(old_rear);\n self.rear = Some(node); // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n }\n }\n self.que_size += 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n pub fn push_first(&mut self, num: T) {\n self.push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pub fn push_last(&mut self, num: T) {\n self.push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n pub fn pop(&mut self, is_front: bool) -> Option<T> {\n // \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de None\n if self.is_empty() { \n return None \n };\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if is_front {\n self.front.take().map(|old_front| {\n match old_front.borrow_mut().next.take() {\n Some(new_front) => {\n new_front.borrow_mut().prev.take();\n self.front = Some(new_front); // \u66f4\u65b0\u5934\u8282\u70b9\n }\n None => {\n self.rear.take();\n }\n }\n self.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n Rc::try_unwrap(old_front).ok().unwrap().into_inner().val\n })\n\n } \n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n self.rear.take().map(|old_rear| {\n match old_rear.borrow_mut().prev.take() {\n Some(new_rear) => {\n new_rear.borrow_mut().next.take();\n self.rear = Some(new_rear); // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n None => {\n self.front.take();\n }\n }\n self.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n Rc::try_unwrap(old_rear).ok().unwrap().into_inner().val\n })\n }\n }\n\n /* \u961f\u9996\u51fa\u961f */\n pub fn pop_first(&mut self) -> Option<T> {\n return self.pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n pub fn pop_last(&mut self) -> Option<T> {\n return self.pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n pub fn peek_first(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.front.as_ref()\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n pub fn peek_last(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.rear.as_ref()\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\n if let Some(node) = head {\n let mut nums = self.to_array(node.borrow().next.as_ref());\n nums.insert(0, node.borrow().val);\n return nums;\n }\n return Vec::new();\n }\n}\n
linkedlist_deque.c/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\ntypedef struct DoublyListNode {\n int val; // \u8282\u70b9\u503c\n struct DoublyListNode *next; // \u540e\u7ee7\u8282\u70b9\n struct DoublyListNode *prev; // \u524d\u9a71\u8282\u70b9\n} DoublyListNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nDoublyListNode *newDoublyListNode(int num) {\n DoublyListNode *new = (DoublyListNode *)malloc(sizeof(DoublyListNode));\n new->val = num;\n new->next = NULL;\n new->prev = NULL;\n return new;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delDoublyListNode(DoublyListNode *node) {\n free(node);\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntypedef struct {\n DoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n int queSize; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n} LinkedListDeque;\n\n/* \u6784\u9020\u51fd\u6570 */\nLinkedListDeque *newLinkedListDeque() {\n LinkedListDeque *deque = (LinkedListDeque *)malloc(sizeof(LinkedListDeque));\n deque->front = NULL;\n deque->rear = NULL;\n deque->queSize = 0;\n return deque;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListdeque(LinkedListDeque *deque) {\n // \u91ca\u653e\u6240\u6709\u8282\u70b9\n for (int i = 0; i < deque->queSize && deque->front != NULL; i++) {\n DoublyListNode *tmp = deque->front;\n deque->front = deque->front->next;\n free(tmp);\n }\n // \u91ca\u653e deque \u7ed3\u6784\u4f53\n free(deque);\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(LinkedListDeque *deque) {\n return deque->queSize;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(LinkedListDeque *deque) {\n return (size(deque) == 0);\n}\n\n/* \u5165\u961f */\nvoid push(LinkedListDeque *deque, int num, bool isFront) {\n DoublyListNode *node = newDoublyListNode(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411node\n if (empty(deque)) {\n deque->front = deque->rear = node;\n }\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n deque->front->prev = node;\n node->next = deque->front;\n deque->front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n deque->rear->next = node;\n node->prev = deque->rear;\n deque->rear = node;\n }\n deque->queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(LinkedListDeque *deque, int num) {\n push(deque, num, true);\n}\n\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(LinkedListDeque *deque, int num) {\n push(deque, num, false);\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(LinkedListDeque *deque) {\n assert(size(deque) && deque->front);\n return deque->front->val;\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(LinkedListDeque *deque) {\n assert(size(deque) && deque->rear);\n return deque->rear->val;\n}\n\n/* \u51fa\u961f */\nint pop(LinkedListDeque *deque, bool isFront) {\n if (empty(deque))\n return -1;\n int val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = peekFirst(deque); // \u6682\u5b58\u5934\u8282\u70b9\u503c\n DoublyListNode *fNext = deque->front->next;\n if (fNext) {\n fNext->prev = NULL;\n deque->front->next = NULL;\n delDoublyListNode(deque->front);\n }\n deque->front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n val = peekLast(deque); // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n DoublyListNode *rPrev = deque->rear->prev;\n if (rPrev) {\n rPrev->next = NULL;\n deque->rear->prev = NULL;\n delDoublyListNode(deque->rear);\n }\n deque->rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n deque->queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n}\n\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(LinkedListDeque *deque) {\n return pop(deque, true);\n}\n\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(LinkedListDeque *deque) {\n return pop(deque, false);\n}\n\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListDeque(LinkedListDeque *deque) {\n int *arr = malloc(sizeof(int) * deque->queSize);\n // \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\n int i;\n DoublyListNode *node;\n for (i = 0, node = deque->front; i < deque->queSize; i++) {\n arr[i] = node->val;\n node = node->next;\n }\n printArray(arr, deque->queSize);\n free(arr);\n}\n
linkedlist_deque.zig// \u53cc\u5411\u94fe\u8868\u8282\u70b9\nfn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = undefined, // \u8282\u70b9\u503c\n next: ?*Self = null, // \u540e\u7ee7\u8282\u70b9\u6307\u9488\n prev: ?*Self = null, // \u524d\u9a71\u8282\u70b9\u6307\u9488\n\n // Initialize a list node with specific value\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n self.prev = null;\n }\n };\n}\n\n// \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\nfn LinkedListDeque(comptime T: type) type {\n return struct {\n const Self = @This();\n\n front: ?*ListNode(T) = null, // \u5934\u8282\u70b9 front\n rear: ?*ListNode(T) = null, // \u5c3e\u8282\u70b9 rear\n que_size: usize = 0, // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.front = null;\n self.rear = null;\n self.que_size = 0;\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.que_size;\n }\n\n // \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u5165\u961f\u64cd\u4f5c\n pub fn push(self: *Self, num: T, is_front: bool) !void {\n var node = try self.mem_allocator.create(ListNode(T));\n node.init(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (self.isEmpty()) {\n self.front = node;\n self.rear = node;\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n } else if (is_front) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n self.front.?.prev = node;\n node.next = self.front;\n self.front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n self.rear.?.next = node;\n node.prev = self.rear;\n self.rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n self.que_size += 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n } \n\n // \u961f\u9996\u5165\u961f\n pub fn pushFirst(self: *Self, num: T) !void {\n try self.push(num, true);\n } \n\n // \u961f\u5c3e\u5165\u961f\n pub fn pushLast(self: *Self, num: T) !void {\n try self.push(num, false);\n } \n\n // \u51fa\u961f\u64cd\u4f5c\n pub fn pop(self: *Self, is_front: bool) T {\n if (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n var val: T = undefined;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (is_front) {\n val = self.front.?.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n var fNext = self.front.?.next;\n if (fNext != null) {\n fNext.?.prev = null;\n self.front.?.next = null;\n }\n self.front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n } else {\n val = self.rear.?.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n var rPrev = self.rear.?.prev;\n if (rPrev != null) {\n rPrev.?.next = null;\n self.rear.?.prev = null;\n }\n self.rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n self.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n } \n\n // \u961f\u9996\u51fa\u961f\n pub fn popFirst(self: *Self) T {\n return self.pop(true);\n } \n\n // \u961f\u5c3e\u51fa\u961f\n pub fn popLast(self: *Self) T {\n return self.pop(false);\n } \n\n // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\n pub fn peekFirst(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return self.front.?.val;\n } \n\n // \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\n pub fn peekLast(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return self.rear.?.val;\n }\n\n // \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\n pub fn toArray(self: *Self) ![]T {\n var node = self.front;\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n while (i < res.len) : (i += 1) {\n res[i] = node.?.val;\n node = node.?.next;\n }\n return res;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/deque/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"\u5982\u56fe 5-9 \u6240\u793a\uff0c\u4e0e\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7c7b\u4f3c\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u4f7f\u7528\u73af\u5f62\u6570\u7ec4\u6765\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u3002
ArrayDequepushLast()pushFirst()popLast()popFirst() \u56fe 5-9 \u00a0 \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u5728\u961f\u5217\u7684\u5b9e\u73b0\u57fa\u7840\u4e0a\uff0c\u4ec5\u9700\u589e\u52a0\u201c\u961f\u9996\u5165\u961f\u201d\u548c\u201c\u961f\u5c3e\u51fa\u961f\u201d\u7684\u65b9\u6cd5\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_deque.pyclass ArrayDeque:\n \"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\n\n def __init__(self, capacity: int):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._nums: list[int] = [0] * capacity\n self._front: int = 0\n self._size: int = 0\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\n return len(self._nums)\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self._size == 0\n\n def index(self, i: int) -> int:\n \"\"\"\u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15\"\"\"\n # \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n # \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n # \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + self.capacity()) % self.capacity()\n\n def push_first(self, num: int):\n \"\"\"\u961f\u9996\u5165\u961f\"\"\"\n if self._size == self.capacity():\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n # \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n # \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n self._front = self.index(self._front - 1)\n # \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n self._nums[self._front] = num\n self._size += 1\n\n def push_last(self, num: int):\n \"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\n if self._size == self.capacity():\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n # \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n rear = self.index(self._front + self._size)\n # \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self._nums[rear] = num\n self._size += 1\n\n def pop_first(self) -> int:\n \"\"\"\u961f\u9996\u51fa\u961f\"\"\"\n num = self.peek_first()\n # \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n self._front = self.index(self._front + 1)\n self._size -= 1\n return num\n\n def pop_last(self) -> int:\n \"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\n num = self.peek_last()\n self._size -= 1\n return num\n\n def peek_first(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n return self._nums[self._front]\n\n def peek_last(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n # \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n last = self.index(self._front + self._size - 1)\n return self._nums[last]\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\n # \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n res = []\n for i in range(self._size):\n res.append(self._nums[self.index(self._front + i)])\n return res\n
array_deque.cpp/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private:\n vector<int> nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayDeque(int capacity) {\n nums.resize(capacity);\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n int capacity() {\n return nums.size();\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n int index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + capacity()) % capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int num) {\n if (queSize == capacity()) {\n cout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = index(front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num;\n queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int num) {\n if (queSize == capacity()) {\n cout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = index(front + queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int popFirst() {\n int num = peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = index(front + 1);\n queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int popLast() {\n int num = peekLast();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peekFirst() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return nums[front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int peekLast() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = index(front + queSize - 1);\n return nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> res(queSize);\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[index(j)];\n }\n return res;\n }\n};\n
array_deque.java/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private int[] nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public ArrayDeque(int capacity) {\n this.nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n public int capacity() {\n return nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n private int index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + capacity()) % capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void pushFirst(int num) {\n if (queSize == capacity()) {\n System.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = index(front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num;\n queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void pushLast(int num) {\n if (queSize == capacity()) {\n System.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = index(front + queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int popFirst() {\n int num = peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = index(front + 1);\n queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int popLast() {\n int num = peekLast();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peekFirst() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return nums[front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int peekLast() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = index(front + queSize - 1);\n return nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int[] toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[index(j)];\n }\n return res;\n }\n}\n
array_deque.cs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n int[] nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public ArrayDeque(int capacity) {\n nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n int Capacity() {\n return nums.Length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n int Index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + Capacity()) % Capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void PushFirst(int num) {\n if (queSize == Capacity()) {\n Console.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = Index(front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num;\n queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void PushLast(int num) {\n if (queSize == Capacity()) {\n Console.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = Index(front + queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int PopFirst() {\n int num = PeekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = Index(front + 1);\n queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int PopLast() {\n int num = PeekLast();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int PeekFirst() {\n if (IsEmpty()) {\n throw new InvalidOperationException();\n }\n return nums[front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int PeekLast() {\n if (IsEmpty()) {\n throw new InvalidOperationException();\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = Index(front + queSize - 1);\n return nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[Index(j)];\n }\n return res;\n }\n}\n
array_deque.go/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype arrayDeque struct {\n nums []int // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n queSize int // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n queCapacity int // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayDeque(queCapacity int) *arrayDeque {\n return &arrayDeque{\n nums: make([]int, queCapacity),\n queCapacity: queCapacity,\n front: 0,\n queSize: 0,\n }\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayDeque) size() int {\n return q.queSize\n}\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayDeque) isEmpty() bool {\n return q.queSize == 0\n}\n\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nfunc (q *arrayDeque) index(i int) int {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + q.queCapacity) % q.queCapacity\n}\n\n/* \u961f\u9996\u5165\u961f */\nfunc (q *arrayDeque) pushFirst(num int) {\n if q.queSize == q.queCapacity {\n fmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n q.front = q.index(q.front - 1)\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n q.nums[q.front] = num\n q.queSize++\n}\n\n/* \u961f\u5c3e\u5165\u961f */\nfunc (q *arrayDeque) pushLast(num int) {\n if q.queSize == q.queCapacity {\n fmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n rear := q.index(q.front + q.queSize)\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n q.nums[rear] = num\n q.queSize++\n}\n\n/* \u961f\u9996\u51fa\u961f */\nfunc (q *arrayDeque) popFirst() any {\n num := q.peekFirst()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n q.front = q.index(q.front + 1)\n q.queSize--\n return num\n}\n\n/* \u961f\u5c3e\u51fa\u961f */\nfunc (q *arrayDeque) popLast() any {\n num := q.peekLast()\n q.queSize--\n return num\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayDeque) peekFirst() any {\n if q.isEmpty() {\n return nil\n }\n return q.nums[q.front]\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (q *arrayDeque) peekLast() any {\n if q.isEmpty() {\n return nil\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n last := q.index(q.front + q.queSize - 1)\n return q.nums[last]\n}\n\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayDeque) toSlice() []int {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n res := make([]int, q.queSize)\n for i, j := 0, q.front; i < q.queSize; i++ {\n res[i] = q.nums[q.index(j)]\n j++\n }\n return res\n}\n
array_deque.swift/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private var front: Int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private var queSize: Int // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init(capacity: Int) {\n nums = Array(repeating: 0, count: capacity)\n front = 0\n queSize = 0\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n func capacity() -> Int {\n nums.count\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n queSize\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n private func index(i: Int) -> Int {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n (i + capacity()) % capacity()\n }\n\n /* \u961f\u9996\u5165\u961f */\n func pushFirst(num: Int) {\n if size() == capacity() {\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = index(i: front - 1)\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num\n queSize += 1\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n func pushLast(num: Int) {\n if size() == capacity() {\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n let rear = index(i: front + size())\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num\n queSize += 1\n }\n\n /* \u961f\u9996\u51fa\u961f */\n func popFirst() -> Int {\n let num = peekFirst()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = index(i: front + 1)\n queSize -= 1\n return num\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n func popLast() -> Int {\n let num = peekLast()\n queSize -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peekFirst() -> Int {\n if isEmpty() {\n fatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n }\n return nums[front]\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n func peekLast() -> Int {\n if isEmpty() {\n fatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n let last = index(i: front + size() - 1)\n return nums[last]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n func toArray() -> [Int] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var res = Array(repeating: 0, count: size())\n for (i, j) in sequence(first: (0, front), next: { $0 < self.size() - 1 ? ($0 + 1, $1 + 1) : nil }) {\n res[i] = nums[index(i: j)]\n }\n return res\n }\n}\n
array_deque.js/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n #nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n #front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n #queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(capacity) {\n this.#nums = new Array(capacity);\n this.#front = 0;\n this.#queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n capacity() {\n return this.#nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#queSize === 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n index(i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + this.capacity()) % this.capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n pushFirst(num) {\n if (this.#queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n this.#front = this.index(this.#front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n this.#nums[this.#front] = num;\n this.#queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pushLast(num) {\n if (this.#queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n const rear = this.index(this.#front + this.#queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.#nums[rear] = num;\n this.#queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n popFirst() {\n const num = this.peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n this.#front = this.index(this.#front + 1);\n this.#queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n popLast() {\n const num = this.peekLast();\n this.#queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst() {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n return this.#nums[this.#front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast() {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n const last = this.index(this.#front + this.#queSize - 1);\n return this.#nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const res = [];\n for (let i = 0, j = this.#front; i < this.#queSize; i++, j++) {\n res[i] = this.#nums[this.index(j)];\n }\n return res;\n }\n}\n
array_deque.ts/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private queSize: number; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(capacity: number) {\n this.nums = new Array(capacity);\n this.front = 0;\n this.queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n capacity(): number {\n return this.nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.queSize === 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n index(i: number): number {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + this.capacity()) % this.capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n pushFirst(num: number): void {\n if (this.queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n this.front = this.index(this.front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n this.nums[this.front] = num;\n this.queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pushLast(num: number): void {\n if (this.queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n const rear: number = this.index(this.front + this.queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.nums[rear] = num;\n this.queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n popFirst(): number {\n const num: number = this.peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n this.front = this.index(this.front + 1);\n this.queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n popLast(): number {\n const num: number = this.peekLast();\n this.queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst(): number {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n return this.nums[this.front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast(): number {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n const last = this.index(this.front + this.queSize - 1);\n return this.nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n toArray(): number[] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const res: number[] = [];\n for (let i = 0, j = this.front; i < this.queSize; i++, j++) {\n res[i] = this.nums[this.index(j)];\n }\n return res;\n }\n}\n
array_deque.dart/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n late List<int> _nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n late int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n late int _queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayDeque(int capacity) {\n this._nums = List.filled(capacity, 0);\n this._front = this._queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n int capacity() {\n return _nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return _queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n int index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + capacity()) % capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int _num) {\n if (_queSize == capacity()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 _front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n _front = index(_front - 1);\n // \u5c06 _num \u6dfb\u52a0\u81f3\u961f\u9996\n _nums[_front] = _num;\n _queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int _num) {\n if (_queSize == capacity()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = index(_front + _queSize);\n // \u5c06 _num \u6dfb\u52a0\u81f3\u961f\u5c3e\n _nums[rear] = _num;\n _queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int popFirst() {\n int _num = peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n _front = index(_front + 1);\n _queSize--;\n return _num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int popLast() {\n int _num = peekLast();\n _queSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peekFirst() {\n if (isEmpty()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n }\n return _nums[_front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int peekLast() {\n if (isEmpty()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = index(_front + _queSize - 1);\n return _nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n List<int> toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n List<int> res = List.filled(_queSize, 0);\n for (int i = 0, j = _front; i < _queSize; i++, j++) {\n res[i] = _nums[index(j)];\n }\n return res;\n }\n}\n
array_deque.rs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct ArrayDeque {\n nums: Vec<i32>, // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front: usize, // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n que_size: usize, // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n}\n\nimpl ArrayDeque {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(capacity: usize) -> Self {\n Self {\n nums: vec![0; capacity],\n front: 0,\n que_size: 0,\n }\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n pub fn capacity(&self) -> usize {\n self.nums.len()\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n self.que_size\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n self.que_size == 0\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n fn index(&self, i: i32) -> usize {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return ((i + self.capacity() as i32) % self.capacity() as i32) as usize;\n }\n\n /* \u961f\u9996\u5165\u961f */\n pub fn push_first(&mut self, num: i32) {\n if self.que_size == self.capacity() {\n println!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n self.front = self.index(self.front as i32 - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n self.nums[self.front] = num;\n self.que_size += 1;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pub fn push_last(&mut self, num: i32) {\n if self.que_size == self.capacity() {\n println!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n let rear = self.index(self.front as i32 + self.que_size as i32);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self.nums[rear] = num;\n self.que_size += 1;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n fn pop_first(&mut self) -> i32 {\n let num = self.peek_first();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n self.front = self.index(self.front as i32 + 1);\n self.que_size -= 1;\n num\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n fn pop_last(&mut self) -> i32 {\n let num = self.peek_last();\n self.que_size -= 1;\n num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n fn peek_first(&self) -> i32 {\n if self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\n self.nums[self.front]\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n fn peek_last(&self) -> i32 {\n if self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n let last = self.index(self.front as i32 + self.que_size as i32 - 1);\n self.nums[last]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n fn to_array(&self) -> Vec<i32> {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n let mut res = vec![0; self.que_size];\n let mut j = self.front;\n for i in 0..self.que_size {\n res[i] = self.nums[self.index(j as i32)];\n j += 1;\n }\n res\n }\n}\n
array_deque.c/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntypedef struct {\n int *nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\n int queCapacity; // \u961f\u5217\u5bb9\u91cf\n} ArrayDeque;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayDeque *newArrayDeque(int capacity) {\n ArrayDeque *deque = (ArrayDeque *)malloc(sizeof(ArrayDeque));\n // \u521d\u59cb\u5316\u6570\u7ec4\n deque->queCapacity = capacity;\n deque->nums = (int *)malloc(sizeof(int) * deque->queCapacity);\n deque->front = deque->queSize = 0;\n return deque;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayDeque(ArrayDeque *deque) {\n free(deque->nums);\n free(deque);\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(ArrayDeque *deque) {\n return deque->queCapacity;\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size(ArrayDeque *deque) {\n return deque->queSize;\n}\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(ArrayDeque *deque) {\n return deque->queSize == 0;\n}\n\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint dequeIndex(ArrayDeque *deque, int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return ((i + capacity(deque)) % capacity(deque));\n}\n\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(ArrayDeque *deque, int num) {\n if (deque->queSize == capacity(deque)) {\n printf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u56de\u5230\u5c3e\u90e8\n deque->front = dequeIndex(deque, deque->front - 1);\n // \u5c06 num \u6dfb\u52a0\u5230\u961f\u9996\n deque->nums[deque->front] = num;\n deque->queSize++;\n}\n\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(ArrayDeque *deque, int num) {\n if (deque->queSize == capacity(deque)) {\n printf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = dequeIndex(deque, deque->front + deque->queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n deque->nums[rear] = num;\n deque->queSize++;\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(ArrayDeque *deque) {\n // \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\n assert(empty(deque) == 0);\n return deque->nums[deque->front];\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(ArrayDeque *deque) {\n // \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\n assert(empty(deque) == 0);\n int last = dequeIndex(deque, deque->front + deque->queSize - 1);\n return deque->nums[last];\n}\n\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(ArrayDeque *deque) {\n int num = peekFirst(deque);\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n deque->front = dequeIndex(deque, deque->front + 1);\n deque->queSize--;\n return num;\n}\n\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(ArrayDeque *deque) {\n int num = peekLast(deque);\n deque->queSize--;\n return num;\n}\n
array_deque.zig[class]{ArrayDeque}-[func]{}\n
"},{"location":"chapter_stack_and_queue/deque/#533","title":"5.3.3 \u00a0 \u53cc\u5411\u961f\u5217\u5e94\u7528","text":"\u53cc\u5411\u961f\u5217\u517c\u5177\u6808\u4e0e\u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u5b83\u53ef\u4ee5\u5b9e\u73b0\u8fd9\u4e24\u8005\u7684\u6240\u6709\u5e94\u7528\u573a\u666f\uff0c\u540c\u65f6\u63d0\u4f9b\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\u3002
\u6211\u4eec\u77e5\u9053\uff0c\u8f6f\u4ef6\u7684\u201c\u64a4\u9500\u201d\u529f\u80fd\u901a\u5e38\u4f7f\u7528\u6808\u6765\u5b9e\u73b0\uff1a\u7cfb\u7edf\u5c06\u6bcf\u6b21\u66f4\u6539\u64cd\u4f5c push \u5230\u6808\u4e2d\uff0c\u7136\u540e\u901a\u8fc7 pop \u5b9e\u73b0\u64a4\u9500\u3002\u7136\u800c\uff0c\u8003\u8651\u5230\u7cfb\u7edf\u8d44\u6e90\u7684\u9650\u5236\uff0c\u8f6f\u4ef6\u901a\u5e38\u4f1a\u9650\u5236\u64a4\u9500\u7684\u6b65\u6570\uff08\u4f8b\u5982\u4ec5\u5141\u8bb8\u4fdd\u5b58 \\(50\\) \u6b65\uff09\u3002\u5f53\u6808\u7684\u957f\u5ea6\u8d85\u8fc7 \\(50\\) \u65f6\uff0c\u8f6f\u4ef6\u9700\u8981\u5728\u6808\u5e95\uff08\u961f\u9996\uff09\u6267\u884c\u5220\u9664\u64cd\u4f5c\u3002\u4f46\u6808\u65e0\u6cd5\u5b9e\u73b0\u8be5\u529f\u80fd\uff0c\u6b64\u65f6\u5c31\u9700\u8981\u4f7f\u7528\u53cc\u5411\u961f\u5217\u6765\u66ff\u4ee3\u6808\u3002\u8bf7\u6ce8\u610f\uff0c\u201c\u64a4\u9500\u201d\u7684\u6838\u5fc3\u903b\u8f91\u4ecd\u7136\u9075\u5faa\u6808\u7684\u5148\u5165\u540e\u51fa\u539f\u5219\uff0c\u53ea\u662f\u53cc\u5411\u961f\u5217\u80fd\u591f\u66f4\u52a0\u7075\u6d3b\u5730\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u903b\u8f91\u3002
"},{"location":"chapter_stack_and_queue/queue/","title":"5.2 \u00a0 \u961f\u5217","text":"\u300c\u961f\u5217 queue\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\u89c4\u5219\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u987e\u540d\u601d\u4e49\uff0c\u961f\u5217\u6a21\u62df\u4e86\u6392\u961f\u73b0\u8c61\uff0c\u5373\u65b0\u6765\u7684\u4eba\u4e0d\u65ad\u52a0\u5165\u961f\u5217\u5c3e\u90e8\uff0c\u800c\u4f4d\u4e8e\u961f\u5217\u5934\u90e8\u7684\u4eba\u9010\u4e2a\u79bb\u5f00\u3002
\u5982\u56fe 5-4 \u6240\u793a\uff0c\u6211\u4eec\u5c06\u961f\u5217\u5934\u90e8\u79f0\u4e3a\u201c\u961f\u9996\u201d\uff0c\u5c3e\u90e8\u79f0\u4e3a\u201c\u961f\u5c3e\u201d\uff0c\u5c06\u628a\u5143\u7d20\u52a0\u5165\u961f\u5c3e\u7684\u64cd\u4f5c\u79f0\u4e3a\u201c\u5165\u961f\u201d\uff0c\u5220\u9664\u961f\u9996\u5143\u7d20\u7684\u64cd\u4f5c\u79f0\u4e3a\u201c\u51fa\u961f\u201d\u3002
\u56fe 5-4 \u00a0 \u961f\u5217\u7684\u5148\u5165\u5148\u51fa\u89c4\u5219
"},{"location":"chapter_stack_and_queue/queue/#521","title":"5.2.1 \u00a0 \u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"\u961f\u5217\u7684\u5e38\u89c1\u64cd\u4f5c\u5982\u8868 5-2 \u6240\u793a\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u65b9\u6cd5\u540d\u79f0\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c\u3002\u6211\u4eec\u5728\u6b64\u91c7\u7528\u4e0e\u6808\u76f8\u540c\u7684\u65b9\u6cd5\u547d\u540d\u3002
\u8868 5-2 \u00a0 \u961f\u5217\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u961f\uff0c\u5373\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) pop() \u961f\u9996\u5143\u7d20\u51fa\u961f \\(O(1)\\) peek() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\) \u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u73b0\u6210\u7684\u961f\u5217\u7c7b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig queue.pyfrom collections import deque\n\n# \u521d\u59cb\u5316\u961f\u5217\n# \u5728 Python \u4e2d\uff0c\u6211\u4eec\u4e00\u822c\u5c06\u53cc\u5411\u961f\u5217\u7c7b deque \u5f53\u4f5c\u961f\u5217\u4f7f\u7528\n# \u867d\u7136 queue.Queue() \u662f\u7eaf\u6b63\u7684\u961f\u5217\u7c7b\uff0c\u4f46\u4e0d\u592a\u597d\u7528\uff0c\u56e0\u6b64\u4e0d\u63a8\u8350\nque: deque[int] = deque()\n\n# \u5143\u7d20\u5165\u961f\nque.append(1)\nque.append(3)\nque.append(2)\nque.append(5)\nque.append(4)\n\n# \u8bbf\u95ee\u961f\u9996\u5143\u7d20\nfront: int = que[0];\n\n# \u5143\u7d20\u51fa\u961f\npop: int = que.popleft()\n\n# \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(que)\n\n# \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(que) == 0\n
queue.cpp/* \u521d\u59cb\u5316\u961f\u5217 */\nqueue<int> queue;\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint front = queue.front();\n\n/* \u5143\u7d20\u51fa\u961f */\nqueue.pop();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = queue.empty();\n
queue.java/* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<Integer> queue = new LinkedList<>();\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.offer(1);\nqueue.offer(3);\nqueue.offer(2);\nqueue.offer(5);\nqueue.offer(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.peek();\n\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.poll();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = queue.isEmpty();\n
queue.cs/* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<int> queue = new();\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.Enqueue(1);\nqueue.Enqueue(3);\nqueue.Enqueue(2);\nqueue.Enqueue(5);\nqueue.Enqueue(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.Peek();\n\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.Dequeue();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.Count;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.Count == 0;\n
queue_test.go/* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u961f\u5217\u6765\u4f7f\u7528\nqueue := list.New()\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.PushBack(1)\nqueue.PushBack(3)\nqueue.PushBack(2)\nqueue.PushBack(5)\nqueue.PushBack(4)\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek := queue.Front()\n\n/* \u5143\u7d20\u51fa\u961f */\npop := queue.Front()\nqueue.Remove(pop)\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nsize := queue.Len()\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := queue.Len() == 0\n
queue.swift/* \u521d\u59cb\u5316\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nvar queue: [Int] = []\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.append(1)\nqueue.append(3)\nqueue.append(2)\nqueue.append(5)\nqueue.append(4)\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nlet peek = queue.first!\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u7531\u4e8e\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 removeFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet pool = queue.removeFirst()\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = queue.count\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = queue.isEmpty\n
queue.js/* \u521d\u59cb\u5316\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nconst queue = [];\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
queue.ts/* \u521d\u59cb\u5316\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528 \nconst queue: number[] = [];\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
queue.dart/* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0c\u961f\u5217\u7c7b Qeque \u662f\u53cc\u5411\u961f\u5217\uff0c\u4e5f\u53ef\u4f5c\u4e3a\u961f\u5217\u4f7f\u7528\nQueue<int> queue = Queue();\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.add(1);\nqueue.add(3);\nqueue.add(2);\nqueue.add(5);\nqueue.add(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.first;\n\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.removeFirst();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.length;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.isEmpty;\n
queue.rs/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Rust \u4e2d\u4f7f\u7528\u53cc\u5411\u961f\u5217\u4f5c\u4e3a\u666e\u901a\u961f\u5217\u6765\u4f7f\u7528\nlet mut deque: VecDeque<u32> = VecDeque::new();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(1);\ndeque.push_back(3);\ndeque.push_back(2);\ndeque.push_back(5);\ndeque.push_back(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nif let Some(front) = deque.front() {\n}\n\n/* \u5143\u7d20\u51fa\u961f */\nif let Some(pop) = deque.pop_front() {\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.len();\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = deque.is_empty();\n
queue.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u961f\u5217\n
queue.zig\n
"},{"location":"chapter_stack_and_queue/queue/#522","title":"5.2.2 \u00a0 \u961f\u5217\u5b9e\u73b0","text":"\u4e3a\u4e86\u5b9e\u73b0\u961f\u5217\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u4ee5\u5728\u4e00\u7aef\u6dfb\u52a0\u5143\u7d20\uff0c\u5e76\u5728\u53e6\u4e00\u7aef\u5220\u9664\u5143\u7d20\u3002\u94fe\u8868\u548c\u6570\u7ec4\u90fd\u7b26\u5408\u8981\u6c42\u3002
"},{"location":"chapter_stack_and_queue/queue/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"\u5982\u56fe 5-5 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u201c\u5934\u8282\u70b9\u201d\u548c\u201c\u5c3e\u8282\u70b9\u201d\u5206\u522b\u89c6\u4e3a\u201c\u961f\u9996\u201d\u548c\u201c\u961f\u5c3e\u201d\uff0c\u89c4\u5b9a\u961f\u5c3e\u4ec5\u53ef\u6dfb\u52a0\u8282\u70b9\uff0c\u961f\u9996\u4ec5\u53ef\u5220\u9664\u8282\u70b9\u3002
LinkedListQueuepush()pop() \u56fe 5-5 \u00a0 \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u4ee5\u4e0b\u662f\u7528\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linkedlist_queue.pyclass LinkedListQueue:\n \"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._front: ListNode | None = None # \u5934\u8282\u70b9 front\n self._rear: ListNode | None = None # \u5c3e\u8282\u70b9 rear\n self._size: int = 0\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return not self._front\n\n def push(self, num: int):\n \"\"\"\u5165\u961f\"\"\"\n # \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n node = ListNode(num)\n # \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if self._front is None:\n self._front = node\n self._rear = node\n # \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else:\n self._rear.next = node\n self._rear = node\n self._size += 1\n\n def pop(self) -> int:\n \"\"\"\u51fa\u961f\"\"\"\n num = self.peek()\n # \u5220\u9664\u5934\u8282\u70b9\n self._front = self._front.next\n self._size -= 1\n return num\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u961f\u5217\u4e3a\u7a7a\")\n return self._front.val\n\n def to_list(self) -> list[int]:\n \"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n queue = []\n temp = self._front\n while temp:\n queue.append(temp.val)\n temp = temp.next\n return queue\n
linkedlist_queue.cpp/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private:\n ListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n int queSize;\n\n public:\n LinkedListQueue() {\n front = nullptr;\n rear = nullptr;\n queSize = 0;\n }\n\n ~LinkedListQueue() {\n // \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\n freeMemoryLinkedList(front);\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return queSize == 0;\n }\n\n /* \u5165\u961f */\n void push(int num) {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n ListNode *node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (front == nullptr) {\n front = node;\n rear = node;\n }\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else {\n rear->next = node;\n rear = node;\n }\n queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n int num = peek();\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode *tmp = front;\n front = front->next;\n // \u91ca\u653e\u5185\u5b58\n delete tmp;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (size() == 0)\n throw out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\n return front->val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\n vector<int> toVector() {\n ListNode *node = front;\n vector<int> res(size());\n for (int i = 0; i < res.size(); i++) {\n res[i] = node->val;\n node = node->next;\n }\n return res;\n }\n};\n
linkedlist_queue.java/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n private int queSize = 0;\n\n public LinkedListQueue() {\n front = null;\n rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f */\n public void push(int num) {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n ListNode node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (front == null) {\n front = node;\n rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n rear.next = node;\n rear = node;\n }\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int pop() {\n int num = peek();\n // \u5220\u9664\u5934\u8282\u70b9\n front = front.next;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return front.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] toArray() {\n ListNode node = front;\n int[] res = new int[size()];\n for (int i = 0; i < res.length; i++) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_queue.cs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n ListNode? front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear \n int queSize = 0;\n\n public LinkedListQueue() {\n front = null;\n rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u961f */\n public void Push(int num) {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n ListNode node = new(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (front == null) {\n front = node;\n rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else if (rear != null) {\n rear.next = node;\n rear = node;\n }\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int Pop() {\n int num = Peek();\n // \u5220\u9664\u5934\u8282\u70b9\n front = front?.next;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return front!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] ToArray() {\n if (front == null)\n return [];\n\n ListNode? node = front;\n int[] res = new int[Size()];\n for (int i = 0; i < res.Length; i++) {\n res[i] = node!.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_queue.go/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\ntype linkedListQueue struct {\n // \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u961f\u5217\n data *list.List\n}\n\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newLinkedListQueue() *linkedListQueue {\n return &linkedListQueue{\n data: list.New(),\n }\n}\n\n/* \u5165\u961f */\nfunc (s *linkedListQueue) push(value any) {\n s.data.PushBack(value)\n}\n\n/* \u51fa\u961f */\nfunc (s *linkedListQueue) pop() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListQueue) peek() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n return e.Value\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListQueue) size() int {\n return s.data.Len()\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListQueue) isEmpty() bool {\n return s.data.Len() == 0\n}\n\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListQueue) toList() *list.List {\n return s.data\n}\n
linkedlist_queue.swift/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private var front: ListNode? // \u5934\u8282\u70b9\n private var rear: ListNode? // \u5c3e\u8282\u70b9\n private var _size = 0\n\n init() {}\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n _size\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u5165\u961f */\n func push(num: Int) {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n let node = ListNode(x: num)\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if front == nil {\n front = node\n rear = node\n }\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else {\n rear?.next = node\n rear = node\n }\n _size += 1\n }\n\n /* \u51fa\u961f */\n @discardableResult\n func pop() -> Int {\n let num = peek()\n // \u5220\u9664\u5934\u8282\u70b9\n front = front?.next\n _size -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n }\n return front!.val\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n func toArray() -> [Int] {\n var node = front\n var res = Array(repeating: 0, count: size())\n for i in res.indices {\n res[i] = node!.val\n node = node?.next\n }\n return res\n }\n}\n
linkedlist_queue.js/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n #front; // \u5934\u8282\u70b9 #front\n #rear; // \u5c3e\u8282\u70b9 #rear\n #queSize = 0;\n\n constructor() {\n this.#front = null;\n this.#rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.size === 0;\n }\n\n /* \u5165\u961f */\n push(num) {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n const node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (!this.#front) {\n this.#front = node;\n this.#rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n this.#rear.next = node;\n this.#rear = node;\n }\n this.#queSize++;\n }\n\n /* \u51fa\u961f */\n pop() {\n const num = this.peek();\n // \u5220\u9664\u5934\u8282\u70b9\n this.#front = this.#front.next;\n this.#queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek() {\n if (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.#front.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray() {\n let node = this.#front;\n const res = new Array(this.size);\n for (let i = 0; i < res.length; i++) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_queue.ts/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private front: ListNode | null; // \u5934\u8282\u70b9 front\n private rear: ListNode | null; // \u5c3e\u8282\u70b9 rear\n private queSize: number = 0;\n\n constructor() {\n this.front = null;\n this.rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.size === 0;\n }\n\n /* \u5165\u961f */\n push(num: number): void {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n const node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (!this.front) {\n this.front = node;\n this.rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n this.rear!.next = node;\n this.rear = node;\n }\n this.queSize++;\n }\n\n /* \u51fa\u961f */\n pop(): number {\n const num = this.peek();\n if (!this.front) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n // \u5220\u9664\u5934\u8282\u70b9\n this.front = this.front.next;\n this.queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek(): number {\n if (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.front!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray(): number[] {\n let node = this.front;\n const res = new Array<number>(this.size);\n for (let i = 0; i < res.length; i++) {\n res[i] = node!.val;\n node = node!.next;\n }\n return res;\n }\n}\n
linkedlist_queue.dart/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n ListNode? _front; // \u5934\u8282\u70b9 _front\n ListNode? _rear; // \u5c3e\u8282\u70b9 _rear\n int _queSize = 0; // \u961f\u5217\u957f\u5ea6\n\n LinkedListQueue() {\n _front = null;\n _rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return _queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _queSize == 0;\n }\n\n /* \u5165\u961f */\n void push(int _num) {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 _num\n final node = ListNode(_num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (_front == null) {\n _front = node;\n _rear = node;\n } else {\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n _rear!.next = node;\n _rear = node;\n }\n _queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n final int _num = peek();\n // \u5220\u9664\u5934\u8282\u70b9\n _front = _front!.next;\n _queSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (_queSize == 0) {\n throw Exception('\u961f\u5217\u4e3a\u7a7a');\n }\n return _front!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n List<int> toArray() {\n ListNode? node = _front;\n final List<int> queue = [];\n while (node != null) {\n queue.add(node.val);\n node = node.next;\n }\n return queue;\n }\n}\n
linkedlist_queue.rs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListQueue<T> {\n front: Option<Rc<RefCell<ListNode<T>>>>, // \u5934\u8282\u70b9 front\n rear: Option<Rc<RefCell<ListNode<T>>>>, // \u5c3e\u8282\u70b9 rear \n que_size: usize, // \u961f\u5217\u7684\u957f\u5ea6\n}\n\nimpl<T: Copy> LinkedListQueue<T> {\n pub fn new() -> Self {\n Self {\n front: None,\n rear: None,\n que_size: 0, \n }\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n return self.que_size;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n return self.size() == 0;\n }\n\n /* \u5165\u961f */\n pub fn push(&mut self, num: T) {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n let new_rear = ListNode::new(num);\n match self.rear.take() {\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n Some(old_rear) => {\n old_rear.borrow_mut().next = Some(new_rear.clone());\n self.rear = Some(new_rear);\n }\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n None => {\n self.front = Some(new_rear.clone());\n self.rear = Some(new_rear);\n }\n }\n self.que_size += 1;\n }\n\n /* \u51fa\u961f */\n pub fn pop(&mut self) -> Option<T> {\n self.front.take().map(|old_front| {\n match old_front.borrow_mut().next.take() {\n Some(new_front) => {\n self.front = Some(new_front);\n }\n None => {\n self.rear.take();\n }\n }\n self.que_size -= 1;\n Rc::try_unwrap(old_front).ok().unwrap().into_inner().val\n })\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n pub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.front.as_ref()\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\n if let Some(node) = head {\n let mut nums = self.to_array(node.borrow().next.as_ref());\n nums.insert(0, node.borrow().val);\n return nums;\n }\n return Vec::new();\n }\n}\n
linkedlist_queue.c/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\ntypedef struct {\n ListNode *front, *rear;\n int queSize;\n} LinkedListQueue;\n\n/* \u6784\u9020\u51fd\u6570 */\nLinkedListQueue *newLinkedListQueue() {\n LinkedListQueue *queue = (LinkedListQueue *)malloc(sizeof(LinkedListQueue));\n queue->front = NULL;\n queue->rear = NULL;\n queue->queSize = 0;\n return queue;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListQueue(LinkedListQueue *queue) {\n // \u91ca\u653e\u6240\u6709\u8282\u70b9\n for (int i = 0; i < queue->queSize && queue->front != NULL; i++) {\n ListNode *tmp = queue->front;\n queue->front = queue->front->next;\n free(tmp);\n }\n // \u91ca\u653e queue \u7ed3\u6784\u4f53\n free(queue);\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(LinkedListQueue *queue) {\n return queue->queSize;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(LinkedListQueue *queue) {\n return (size(queue) == 0);\n}\n\n/* \u5165\u961f */\nvoid push(LinkedListQueue *queue, int num) {\n // \u5c3e\u8282\u70b9\u5904\u6dfb\u52a0 node\n ListNode *node = newListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (queue->front == NULL) {\n queue->front = node;\n queue->rear = node;\n }\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else {\n queue->rear->next = node;\n queue->rear = node;\n }\n queue->queSize++;\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(LinkedListQueue *queue) {\n assert(size(queue) && queue->front);\n return queue->front->val;\n}\n\n/* \u51fa\u961f */\nint pop(LinkedListQueue *queue) {\n int num = peek(queue);\n ListNode *tmp = queue->front;\n queue->front = queue->front->next;\n free(tmp);\n queue->queSize--;\n return num;\n}\n\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListQueue(LinkedListQueue *queue) {\n int *arr = malloc(sizeof(int) * queue->queSize);\n // \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\n int i;\n ListNode *node;\n for (i = 0, node = queue->front; i < queue->queSize; i++) {\n arr[i] = node->val;\n node = node->next;\n }\n printArray(arr, queue->queSize);\n free(arr);\n}\n
linkedlist_queue.zig// \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\nfn LinkedListQueue(comptime T: type) type {\n return struct {\n const Self = @This();\n\n front: ?*inc.ListNode(T) = null, // \u5934\u8282\u70b9 front\n rear: ?*inc.ListNode(T) = null, // \u5c3e\u8282\u70b9 rear\n que_size: usize = 0, // \u961f\u5217\u7684\u957f\u5ea6\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.front = null;\n self.rear = null;\n self.que_size = 0;\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.que_size;\n }\n\n // \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.size() == 0) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\n return self.front.?.val;\n } \n\n // \u5165\u961f\n pub fn push(self: *Self, num: T) !void {\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n var node = try self.mem_allocator.create(inc.ListNode(T));\n node.init(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (self.front == null) {\n self.front = node;\n self.rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n self.rear.?.next = node;\n self.rear = node;\n }\n self.que_size += 1;\n } \n\n // \u51fa\u961f\n pub fn pop(self: *Self) T {\n var num = self.peek();\n // \u5220\u9664\u5934\u8282\u70b9\n self.front = self.front.?.next;\n self.que_size -= 1;\n return num;\n } \n\n // \u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n var node = self.front;\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n while (i < res.len) : (i += 1) {\n res[i] = node.?.val;\n node = node.?.next;\n }\n return res;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/queue/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"\u5728\u6570\u7ec4\u4e2d\u5220\u9664\u9996\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4f1a\u5bfc\u81f4\u51fa\u961f\u64cd\u4f5c\u6548\u7387\u8f83\u4f4e\u3002\u7136\u800c\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u4ee5\u4e0b\u5de7\u5999\u65b9\u6cd5\u6765\u907f\u514d\u8fd9\u4e2a\u95ee\u9898\u3002
\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf front \u6307\u5411\u961f\u9996\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u5e76\u7ef4\u62a4\u4e00\u4e2a\u53d8\u91cf size \u7528\u4e8e\u8bb0\u5f55\u961f\u5217\u957f\u5ea6\u3002\u5b9a\u4e49 rear = front + size \uff0c\u8fd9\u4e2a\u516c\u5f0f\u8ba1\u7b97\u51fa\u7684 rear \u6307\u5411\u961f\u5c3e\u5143\u7d20\u4e4b\u540e\u7684\u4e0b\u4e00\u4e2a\u4f4d\u7f6e\u3002
\u57fa\u4e8e\u6b64\u8bbe\u8ba1\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u5143\u7d20\u7684\u6709\u6548\u533a\u95f4\u4e3a [front, rear - 1]\uff0c\u5404\u79cd\u64cd\u4f5c\u7684\u5b9e\u73b0\u65b9\u6cd5\u5982\u56fe 5-6 \u6240\u793a\u3002
- \u5165\u961f\u64cd\u4f5c\uff1a\u5c06\u8f93\u5165\u5143\u7d20\u8d4b\u503c\u7ed9
rear \u7d22\u5f15\u5904\uff0c\u5e76\u5c06 size \u589e\u52a0 1 \u3002 - \u51fa\u961f\u64cd\u4f5c\uff1a\u53ea\u9700\u5c06
front \u589e\u52a0 1 \uff0c\u5e76\u5c06 size \u51cf\u5c11 1 \u3002
\u53ef\u4ee5\u770b\u5230\uff0c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u90fd\u53ea\u9700\u8fdb\u884c\u4e00\u6b21\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002
ArrayQueuepush()pop() \u56fe 5-6 \u00a0 \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u4e00\u4e2a\u95ee\u9898\uff1a\u5728\u4e0d\u65ad\u8fdb\u884c\u5165\u961f\u548c\u51fa\u961f\u7684\u8fc7\u7a0b\u4e2d\uff0cfront \u548c rear \u90fd\u5728\u5411\u53f3\u79fb\u52a8\uff0c\u5f53\u5b83\u4eec\u5230\u8fbe\u6570\u7ec4\u5c3e\u90e8\u65f6\u5c31\u65e0\u6cd5\u7ee7\u7eed\u79fb\u52a8\u4e86\u3002\u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u89c6\u4e3a\u9996\u5c3e\u76f8\u63a5\u7684\u201c\u73af\u5f62\u6570\u7ec4\u201d\u3002
\u5bf9\u4e8e\u73af\u5f62\u6570\u7ec4\uff0c\u6211\u4eec\u9700\u8981\u8ba9 front \u6216 rear \u5728\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u76f4\u63a5\u56de\u5230\u6570\u7ec4\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002\u8fd9\u79cd\u5468\u671f\u6027\u89c4\u5f8b\u53ef\u4ee5\u901a\u8fc7\u201c\u53d6\u4f59\u64cd\u4f5c\u201d\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_queue.pyclass ArrayQueue:\n \"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\n\n def __init__(self, size: int):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._nums: list[int] = [0] * size # \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n self._front: int = 0 # \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n self._size: int = 0 # \u961f\u5217\u957f\u5ea6\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\n return len(self._nums)\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self._size == 0\n\n def push(self, num: int):\n \"\"\"\u5165\u961f\"\"\"\n if self._size == self.capacity():\n raise IndexError(\"\u961f\u5217\u5df2\u6ee1\")\n # \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n # \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n rear: int = (self._front + self._size) % self.capacity()\n # \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self._nums[rear] = num\n self._size += 1\n\n def pop(self) -> int:\n \"\"\"\u51fa\u961f\"\"\"\n num: int = self.peek()\n # \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n self._front = (self._front + 1) % self.capacity()\n self._size -= 1\n return num\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u961f\u5217\u4e3a\u7a7a\")\n return self._nums[self._front]\n\n def to_list(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n res = [0] * self.size()\n j: int = self._front\n for i in range(self.size()):\n res[i] = self._nums[(j % self.capacity())]\n j += 1\n return res\n
array_queue.cpp/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private:\n int *nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u961f\u5217\u957f\u5ea6\n int queCapacity; // \u961f\u5217\u5bb9\u91cf\n\n public:\n ArrayQueue(int capacity) {\n // \u521d\u59cb\u5316\u6570\u7ec4\n nums = new int[capacity];\n queCapacity = capacity;\n front = queSize = 0;\n }\n\n ~ArrayQueue() {\n delete[] nums;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n int capacity() {\n return queCapacity;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f */\n void push(int num) {\n if (queSize == queCapacity) {\n cout << \"\u961f\u5217\u5df2\u6ee1\" << endl;\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (front + queSize) % queCapacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n int num = peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % queCapacity;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (isEmpty())\n throw out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\n return nums[front];\n }\n\n /* \u5c06\u6570\u7ec4\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> arr(queSize);\n for (int i = 0, j = front; i < queSize; i++, j++) {\n arr[i] = nums[j % queCapacity];\n }\n return arr;\n }\n};\n
array_queue.java/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private int[] nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private int queSize; // \u961f\u5217\u957f\u5ea6\n\n public ArrayQueue(int capacity) {\n nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n public int capacity() {\n return nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return queSize == 0;\n }\n\n /* \u5165\u961f */\n public void push(int num) {\n if (queSize == capacity()) {\n System.out.println(\"\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (front + queSize) % capacity();\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int pop() {\n int num = peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % capacity();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return nums[front];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n public int[] toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[j % capacity()];\n }\n return res;\n }\n}\n
array_queue.cs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n int[] nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u961f\u5217\u957f\u5ea6\n\n public ArrayQueue(int capacity) {\n nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n int Capacity() {\n return nums.Length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return queSize == 0;\n }\n\n /* \u5165\u961f */\n public void Push(int num) {\n if (queSize == Capacity()) {\n Console.WriteLine(\"\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (front + queSize) % Capacity();\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int Pop() {\n int num = Peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % Capacity();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return nums[front];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[j % this.Capacity()];\n }\n return res;\n }\n}\n
array_queue.go/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\ntype arrayQueue struct {\n nums []int // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n queSize int // \u961f\u5217\u957f\u5ea6\n queCapacity int // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayQueue(queCapacity int) *arrayQueue {\n return &arrayQueue{\n nums: make([]int, queCapacity),\n queCapacity: queCapacity,\n front: 0,\n queSize: 0,\n }\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayQueue) size() int {\n return q.queSize\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayQueue) isEmpty() bool {\n return q.queSize == 0\n}\n\n/* \u5165\u961f */\nfunc (q *arrayQueue) push(num int) {\n // \u5f53 rear == queCapacity \u8868\u793a\u961f\u5217\u5df2\u6ee1\n if q.queSize == q.queCapacity {\n return\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n rear := (q.front + q.queSize) % q.queCapacity\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n q.nums[rear] = num\n q.queSize++\n}\n\n/* \u51fa\u961f */\nfunc (q *arrayQueue) pop() any {\n num := q.peek()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n q.front = (q.front + 1) % q.queCapacity\n q.queSize--\n return num\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayQueue) peek() any {\n if q.isEmpty() {\n return nil\n }\n return q.nums[q.front]\n}\n\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayQueue) toSlice() []int {\n rear := (q.front + q.queSize)\n if rear >= q.queCapacity {\n rear %= q.queCapacity\n return append(q.nums[q.front:], q.nums[:rear]...)\n }\n return q.nums[q.front:rear]\n}\n
array_queue.swift/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private var front = 0 // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private var queSize = 0 // \u961f\u5217\u957f\u5ea6\n\n init(capacity: Int) {\n // \u521d\u59cb\u5316\u6570\u7ec4\n nums = Array(repeating: 0, count: capacity)\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n func capacity() -> Int {\n nums.count\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n queSize\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n queSize == 0\n }\n\n /* \u5165\u961f */\n func push(num: Int) {\n if size() == capacity() {\n print(\"\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n let rear = (front + queSize) % capacity()\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num\n queSize += 1\n }\n\n /* \u51fa\u961f */\n @discardableResult\n func pop() -> Int {\n let num = peek()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % capacity()\n queSize -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n }\n return nums[front]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n func toArray() -> [Int] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var res = Array(repeating: 0, count: queSize)\n for (i, j) in sequence(first: (0, front), next: { $0 < self.queSize - 1 ? ($0 + 1, $1 + 1) : nil }) {\n res[i] = nums[j % capacity()]\n }\n return res\n }\n}\n
array_queue.js/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n #nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n #front = 0; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n #queSize = 0; // \u961f\u5217\u957f\u5ea6\n\n constructor(capacity) {\n this.#nums = new Array(capacity);\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n get capacity() {\n return this.#nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#queSize === 0;\n }\n\n /* \u5165\u961f */\n push(num) {\n if (this.size === this.capacity) {\n console.log('\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n const rear = (this.#front + this.size) % this.capacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.#nums[rear] = num;\n this.#queSize++;\n }\n\n /* \u51fa\u961f */\n pop() {\n const num = this.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n this.#front = (this.#front + 1) % this.capacity;\n this.#queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek() {\n if (this.isEmpty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.#nums[this.#front];\n }\n\n /* \u8fd4\u56de Array */\n toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(this.size);\n for (let i = 0, j = this.#front; i < this.size; i++, j++) {\n arr[i] = this.#nums[j % this.capacity];\n }\n return arr;\n }\n}\n
array_queue.ts/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private queSize: number; // \u961f\u5217\u957f\u5ea6\n\n constructor(capacity: number) {\n this.nums = new Array(capacity);\n this.front = this.queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n get capacity(): number {\n return this.nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.queSize === 0;\n }\n\n /* \u5165\u961f */\n push(num: number): void {\n if (this.size === this.capacity) {\n console.log('\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n const rear = (this.front + this.queSize) % this.capacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.nums[rear] = num;\n this.queSize++;\n }\n\n /* \u51fa\u961f */\n pop(): number {\n const num = this.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n this.front = (this.front + 1) % this.capacity;\n this.queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek(): number {\n if (this.isEmpty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.nums[this.front];\n }\n\n /* \u8fd4\u56de Array */\n toArray(): number[] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(this.size);\n for (let i = 0, j = this.front; i < this.size; i++, j++) {\n arr[i] = this.nums[j % this.capacity];\n }\n return arr;\n }\n}\n
array_queue.dart/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n late List<int> _nums; // \u7528\u4e8e\u50a8\u5b58\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n late int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n late int _queSize; // \u961f\u5217\u957f\u5ea6\n\n ArrayQueue(int capacity) {\n _nums = List.filled(capacity, 0);\n _front = _queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n int capaCity() {\n return _nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return _queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _queSize == 0;\n }\n\n /* \u5165\u961f */\n void push(int _num) {\n if (_queSize == capaCity()) {\n throw Exception(\"\u961f\u5217\u5df2\u6ee1\");\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (_front + _queSize) % capaCity();\n // \u5c06 _num \u6dfb\u52a0\u81f3\u961f\u5c3e\n _nums[rear] = _num;\n _queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n int _num = peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n _front = (_front + 1) % capaCity();\n _queSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (isEmpty()) {\n throw Exception(\"\u961f\u5217\u4e3a\u7a7a\");\n }\n return _nums[_front];\n }\n\n /* \u8fd4\u56de Array */\n List<int> toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n final List<int> res = List.filled(_queSize, 0);\n for (int i = 0, j = _front; i < _queSize; i++, j++) {\n res[i] = _nums[j % capaCity()];\n }\n return res;\n }\n}\n
array_queue.rs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct ArrayQueue {\n nums: Vec<i32>, // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front: i32, // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n que_size: i32, // \u961f\u5217\u957f\u5ea6\n que_capacity: i32, // \u961f\u5217\u5bb9\u91cf\n}\n\nimpl ArrayQueue {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(capacity: i32) -> ArrayQueue {\n ArrayQueue {\n nums: vec![0; capacity as usize],\n front: 0,\n que_size: 0,\n que_capacity: capacity,\n }\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n fn capacity(&self) -> i32 {\n self.que_capacity\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n fn size(&self) -> i32 {\n self.que_size\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n fn is_empty(&self) -> bool {\n self.que_size == 0\n }\n\n /* \u5165\u961f */\n fn push(&mut self, num: i32) {\n if self.que_size == self.capacity() {\n println!(\"\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n let rear = (self.front + self.que_size) % self.que_capacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self.nums[rear as usize] = num;\n self.que_size += 1;\n }\n\n /* \u51fa\u961f */\n fn pop(&mut self) -> i32 {\n let num = self.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n self.front = (self.front + 1) % self.que_capacity;\n self.que_size -= 1;\n num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n fn peek(&self) -> i32 {\n if self.is_empty() {\n panic!(\"index out of bounds\");\n }\n self.nums[self.front as usize]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n fn to_vector(&self) -> Vec<i32> {\n let cap = self.que_capacity;\n let mut j = self.front;\n let mut arr = vec![0; self.que_size as usize];\n for i in 0..self.que_size {\n arr[i as usize] = self.nums[(j % cap) as usize];\n j += 1;\n }\n arr\n }\n}\n
array_queue.c/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\ntypedef struct {\n int *nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\n int queCapacity; // \u961f\u5217\u5bb9\u91cf\n} ArrayQueue;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayQueue *newArrayQueue(int capacity) {\n ArrayQueue *queue = (ArrayQueue *)malloc(sizeof(ArrayQueue));\n // \u521d\u59cb\u5316\u6570\u7ec4\n queue->queCapacity = capacity;\n queue->nums = (int *)malloc(sizeof(int) * queue->queCapacity);\n queue->front = queue->queSize = 0;\n return queue;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayQueue(ArrayQueue *queue) {\n free(queue->nums);\n free(queue);\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(ArrayQueue *queue) {\n return queue->queCapacity;\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(ArrayQueue *queue) {\n return queue->queSize;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(ArrayQueue *queue) {\n return queue->queSize == 0;\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(ArrayQueue *queue) {\n assert(size(queue) != 0);\n return queue->nums[queue->front];\n}\n\n/* \u5165\u961f */\nvoid push(ArrayQueue *queue, int num) {\n if (size(queue) == capacity(queue)) {\n printf(\"\u961f\u5217\u5df2\u6ee1\\r\\n\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (queue->front + queue->queSize) % queue->queCapacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n queue->nums[rear] = num;\n queue->queSize++;\n}\n\n/* \u51fa\u961f */\nint pop(ArrayQueue *queue) {\n int num = peek(queue);\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n queue->front = (queue->front + 1) % queue->queCapacity;\n queue->queSize--;\n return num;\n}\n
array_queue.zig// \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\nfn ArrayQueue(comptime T: type) type {\n return struct {\n const Self = @This();\n\n nums: []T = undefined, // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4 \n cap: usize = 0, // \u961f\u5217\u5bb9\u91cf\n front: usize = 0, // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n queSize: usize = 0, // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6570\u7ec4\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator, cap: usize) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.cap = cap;\n self.nums = try self.mem_allocator.alloc(T, self.cap);\n @memset(self.nums, @as(T, 0));\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\n pub fn capacity(self: *Self) usize {\n return self.cap;\n }\n\n // \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.queSize;\n }\n\n // \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.queSize == 0;\n }\n\n // \u5165\u961f\n pub fn push(self: *Self, num: T) !void {\n if (self.size() == self.capacity()) {\n std.debug.print(\"\u961f\u5217\u5df2\u6ee1\\n\", .{});\n return;\n }\n // \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n var rear = (self.front + self.queSize) % self.capacity();\n // \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n self.nums[rear] = num;\n self.queSize += 1;\n } \n\n // \u51fa\u961f\n pub fn pop(self: *Self) T {\n var num = self.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n self.front = (self.front + 1) % self.capacity();\n self.queSize -= 1;\n return num;\n } \n\n // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\n return self.nums[self.front];\n } \n\n // \u8fd4\u56de\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n var j: usize = self.front;\n while (i < self.size()) : ({ i += 1; j += 1; }) {\n res[i] = self.nums[j % self.capacity()];\n }\n return res;\n }\n };\n}\n
\u4ee5\u4e0a\u5b9e\u73b0\u7684\u961f\u5217\u4ecd\u7136\u5177\u6709\u5c40\u9650\u6027\uff1a\u5176\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u7136\u800c\uff0c\u8fd9\u4e2a\u95ee\u9898\u4e0d\u96be\u89e3\u51b3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u66ff\u6362\u4e3a\u52a8\u6001\u6570\u7ec4\uff0c\u4ece\u800c\u5f15\u5165\u6269\u5bb9\u673a\u5236\u3002\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u5c1d\u8bd5\u81ea\u884c\u5b9e\u73b0\u3002
\u4e24\u79cd\u5b9e\u73b0\u7684\u5bf9\u6bd4\u7ed3\u8bba\u4e0e\u6808\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002
"},{"location":"chapter_stack_and_queue/queue/#523","title":"5.2.3 \u00a0 \u961f\u5217\u5178\u578b\u5e94\u7528","text":" - \u6dd8\u5b9d\u8ba2\u5355\u3002\u8d2d\u7269\u8005\u4e0b\u5355\u540e\uff0c\u8ba2\u5355\u5c06\u52a0\u5165\u961f\u5217\u4e2d\uff0c\u7cfb\u7edf\u968f\u540e\u4f1a\u6839\u636e\u987a\u5e8f\u5904\u7406\u961f\u5217\u4e2d\u7684\u8ba2\u5355\u3002\u5728\u53cc\u5341\u4e00\u671f\u95f4\uff0c\u77ed\u65f6\u95f4\u5185\u4f1a\u4ea7\u751f\u6d77\u91cf\u8ba2\u5355\uff0c\u9ad8\u5e76\u53d1\u6210\u4e3a\u5de5\u7a0b\u5e08\u4eec\u9700\u8981\u91cd\u70b9\u653b\u514b\u7684\u95ee\u9898\u3002
- \u5404\u7c7b\u5f85\u529e\u4e8b\u9879\u3002\u4efb\u4f55\u9700\u8981\u5b9e\u73b0\u201c\u5148\u6765\u540e\u5230\u201d\u529f\u80fd\u7684\u573a\u666f\uff0c\u4f8b\u5982\u6253\u5370\u673a\u7684\u4efb\u52a1\u961f\u5217\u3001\u9910\u5385\u7684\u51fa\u9910\u961f\u5217\u7b49\uff0c\u961f\u5217\u5728\u8fd9\u4e9b\u573a\u666f\u4e2d\u53ef\u4ee5\u6709\u6548\u5730\u7ef4\u62a4\u5904\u7406\u987a\u5e8f\u3002
"},{"location":"chapter_stack_and_queue/stack/","title":"5.1 \u00a0 \u6808","text":"\u300c\u6808 stack\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\u7684\u903b\u8f91\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002
\u6211\u4eec\u53ef\u4ee5\u5c06\u6808\u7c7b\u6bd4\u4e3a\u684c\u9762\u4e0a\u7684\u4e00\u645e\u76d8\u5b50\uff0c\u5982\u679c\u60f3\u53d6\u51fa\u5e95\u90e8\u7684\u76d8\u5b50\uff0c\u5219\u9700\u8981\u5148\u5c06\u4e0a\u9762\u7684\u76d8\u5b50\u4f9d\u6b21\u79fb\u8d70\u3002\u6211\u4eec\u5c06\u76d8\u5b50\u66ff\u6362\u4e3a\u5404\u79cd\u7c7b\u578b\u7684\u5143\u7d20\uff08\u5982\u6574\u6570\u3001\u5b57\u7b26\u3001\u5bf9\u8c61\u7b49\uff09\uff0c\u5c31\u5f97\u5230\u4e86\u6808\u8fd9\u79cd\u6570\u636e\u7ed3\u6784\u3002
\u5982\u56fe 5-1 \u6240\u793a\uff0c\u6211\u4eec\u628a\u5806\u53e0\u5143\u7d20\u7684\u9876\u90e8\u79f0\u4e3a\u201c\u6808\u9876\u201d\uff0c\u5e95\u90e8\u79f0\u4e3a\u201c\u6808\u5e95\u201d\u3002\u5c06\u628a\u5143\u7d20\u6dfb\u52a0\u5230\u6808\u9876\u7684\u64cd\u4f5c\u53eb\u4f5c\u201c\u5165\u6808\u201d\uff0c\u5220\u9664\u6808\u9876\u5143\u7d20\u7684\u64cd\u4f5c\u53eb\u4f5c\u201c\u51fa\u6808\u201d\u3002
\u56fe 5-1 \u00a0 \u6808\u7684\u5148\u5165\u540e\u51fa\u89c4\u5219
"},{"location":"chapter_stack_and_queue/stack/#511","title":"5.1.1 \u00a0 \u6808\u5e38\u7528\u64cd\u4f5c","text":"\u6808\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u8868 5-1 \u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002\u5728\u6b64\uff0c\u6211\u4eec\u4ee5\u5e38\u89c1\u7684 push()\u3001pop()\u3001peek() \u547d\u540d\u4e3a\u4f8b\u3002
\u8868 5-1 \u00a0 \u6808\u7684\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5 \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u6808\uff08\u6dfb\u52a0\u81f3\u6808\u9876\uff09 \\(O(1)\\) pop() \u6808\u9876\u5143\u7d20\u51fa\u6808 \\(O(1)\\) peek() \u8bbf\u95ee\u6808\u9876\u5143\u7d20 \\(O(1)\\) \u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u6808\u7c7b\u3002\u7136\u800c\uff0c\u67d0\u4e9b\u8bed\u8a00\u53ef\u80fd\u6ca1\u6709\u4e13\u95e8\u63d0\u4f9b\u6808\u7c7b\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u5c06\u8be5\u8bed\u8a00\u7684\u201c\u6570\u7ec4\u201d\u6216\u201c\u94fe\u8868\u201d\u5f53\u4f5c\u6808\u6765\u4f7f\u7528\uff0c\u5e76\u5728\u7a0b\u5e8f\u903b\u8f91\u4e0a\u5ffd\u7565\u4e0e\u6808\u65e0\u5173\u7684\u64cd\u4f5c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig stack.py# \u521d\u59cb\u5316\u6808\n# Python \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a List \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nstack: list[int] = []\n\n# \u5143\u7d20\u5165\u6808\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n\n# \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npeek: int = stack[-1]\n\n# \u5143\u7d20\u51fa\u6808\npop: int = stack.pop()\n\n# \u83b7\u53d6\u6808\u7684\u957f\u5ea6\nsize: int = len(stack)\n\n# \u5224\u65ad\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(stack) == 0\n
stack.cpp/* \u521d\u59cb\u5316\u6808 */\nstack<int> stack;\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top = stack.top();\n\n/* \u5143\u7d20\u51fa\u6808 */\nstack.pop(); // \u65e0\u8fd4\u56de\u503c\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool empty = stack.empty();\n
stack.java/* \u521d\u59cb\u5316\u6808 */\nStack<Integer> stack = new Stack<>();\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.peek();\n\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = stack.isEmpty();\n
stack.cs/* \u521d\u59cb\u5316\u6808 */\nStack<int> stack = new();\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.Push(1);\nstack.Push(3);\nstack.Push(2);\nstack.Push(5);\nstack.Push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.Peek();\n\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.Pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.Count;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.Count == 0;\n
stack_test.go/* \u521d\u59cb\u5316\u6808 */\n// \u5728 Go \u4e2d\uff0c\u63a8\u8350\u5c06 Slice \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack []int\n\n/* \u5143\u7d20\u5165\u6808 */\nstack = append(stack, 1)\nstack = append(stack, 3)\nstack = append(stack, 2)\nstack = append(stack, 5)\nstack = append(stack, 4)\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek := stack[len(stack)-1]\n\n/* \u5143\u7d20\u51fa\u6808 */\npop := stack[len(stack)-1]\nstack = stack[:len(stack)-1]\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nsize := len(stack)\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nisEmpty := len(stack) == 0\n
stack.swift/* \u521d\u59cb\u5316\u6808 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack: [Int] = []\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nlet peek = stack.last!\n\n/* \u5143\u7d20\u51fa\u6808 */\nlet pop = stack.removeLast()\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nlet size = stack.count\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = stack.isEmpty\n
stack.js/* \u521d\u59cb\u5316\u6808 */\n// Javascript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack = [];\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length-1];\n\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
stack.ts/* \u521d\u59cb\u5316\u6808 */\n// Typescript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack: number[] = [];\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length - 1];\n\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
stack.dart/* \u521d\u59cb\u5316\u6808 */\n// Dart \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a List \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nList<int> stack = [];\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.add(1);\nstack.add(3);\nstack.add(2);\nstack.add(5);\nstack.add(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.last;\n\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.removeLast();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.length;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.isEmpty;\n
stack.rs/* \u521d\u59cb\u5316\u6808 */\n// \u628a Vec \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nlet mut stack: Vec<i32> = Vec::new();\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nlet top = stack.last().unwrap();\n\n/* \u5143\u7d20\u51fa\u6808 */\nlet pop = stack.pop().unwrap();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nlet size = stack.len();\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = stack.is_empty();\n
stack.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u6808\n
stack.zig\n
"},{"location":"chapter_stack_and_queue/stack/#512","title":"5.1.2 \u00a0 \u6808\u7684\u5b9e\u73b0","text":"\u4e3a\u4e86\u6df1\u5165\u4e86\u89e3\u6808\u7684\u8fd0\u884c\u673a\u5236\uff0c\u6211\u4eec\u6765\u5c1d\u8bd5\u81ea\u5df1\u5b9e\u73b0\u4e00\u4e2a\u6808\u7c7b\u3002
\u6808\u9075\u5faa\u5148\u5165\u540e\u51fa\u7684\u539f\u5219\uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u80fd\u5728\u6808\u9876\u6dfb\u52a0\u6216\u5220\u9664\u5143\u7d20\u3002\u7136\u800c\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u90fd\u53ef\u4ee5\u5728\u4efb\u610f\u4f4d\u7f6e\u6dfb\u52a0\u548c\u5220\u9664\u5143\u7d20\uff0c\u56e0\u6b64\u6808\u53ef\u4ee5\u89c6\u4e3a\u4e00\u79cd\u53d7\u9650\u5236\u7684\u6570\u7ec4\u6216\u94fe\u8868\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u201c\u5c4f\u853d\u201d\u6570\u7ec4\u6216\u94fe\u8868\u7684\u90e8\u5206\u65e0\u5173\u64cd\u4f5c\uff0c\u4f7f\u5176\u5bf9\u5916\u8868\u73b0\u7684\u903b\u8f91\u7b26\u5408\u6808\u7684\u7279\u6027\u3002
"},{"location":"chapter_stack_and_queue/stack/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u5934\u8282\u70b9\u89c6\u4e3a\u6808\u9876\uff0c\u5c3e\u8282\u70b9\u89c6\u4e3a\u6808\u5e95\u3002
\u5982\u56fe 5-2 \u6240\u793a\uff0c\u5bf9\u4e8e\u5165\u6808\u64cd\u4f5c\uff0c\u6211\u4eec\u53ea\u9700\u5c06\u5143\u7d20\u63d2\u5165\u94fe\u8868\u5934\u90e8\uff0c\u8fd9\u79cd\u8282\u70b9\u63d2\u5165\u65b9\u6cd5\u88ab\u79f0\u4e3a\u201c\u5934\u63d2\u6cd5\u201d\u3002\u800c\u5bf9\u4e8e\u51fa\u6808\u64cd\u4f5c\uff0c\u53ea\u9700\u5c06\u5934\u8282\u70b9\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u5373\u53ef\u3002
LinkedListStackpush()pop() \u56fe 5-2 \u00a0 \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c
\u4ee5\u4e0b\u662f\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u793a\u4f8b\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linkedlist_stack.pyclass LinkedListStack:\n \"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._peek: ListNode | None = None\n self._size: int = 0\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\n return not self._peek\n\n def push(self, val: int):\n \"\"\"\u5165\u6808\"\"\"\n node = ListNode(val)\n node.next = self._peek\n self._peek = node\n self._size += 1\n\n def pop(self) -> int:\n \"\"\"\u51fa\u6808\"\"\"\n num = self.peek()\n self._peek = self._peek.next\n self._size -= 1\n return num\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u6808\u4e3a\u7a7a\")\n return self._peek.val\n\n def to_list(self) -> list[int]:\n \"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n arr = []\n node = self._peek\n while node:\n arr.append(node.val)\n node = node.next\n arr.reverse()\n return arr\n
linkedlist_stack.cpp/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private:\n ListNode *stackTop; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int stkSize; // \u6808\u7684\u957f\u5ea6\n\n public:\n LinkedListStack() {\n stackTop = nullptr;\n stkSize = 0;\n }\n\n ~LinkedListStack() {\n // \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\n freeMemoryLinkedList(stackTop);\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u6808 */\n void push(int num) {\n ListNode *node = new ListNode(num);\n node->next = stackTop;\n stackTop = node;\n stkSize++;\n }\n\n /* \u51fa\u6808 */\n int pop() {\n int num = top();\n ListNode *tmp = stackTop;\n stackTop = stackTop->next;\n // \u91ca\u653e\u5185\u5b58\n delete tmp;\n stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int top() {\n if (isEmpty())\n throw out_of_range(\"\u6808\u4e3a\u7a7a\");\n return stackTop->val;\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n vector<int> toVector() {\n ListNode *node = stackTop;\n vector<int> res(size());\n for (int i = res.size() - 1; i >= 0; i--) {\n res[i] = node->val;\n node = node->next;\n }\n return res;\n }\n};\n
linkedlist_stack.java/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private ListNode stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n private int stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n public LinkedListStack() {\n stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int size() {\n return stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u6808 */\n public void push(int num) {\n ListNode node = new ListNode(num);\n node.next = stackPeek;\n stackPeek = node;\n stkSize++;\n }\n\n /* \u51fa\u6808 */\n public int pop() {\n int num = peek();\n stackPeek = stackPeek.next;\n stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return stackPeek.val;\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] toArray() {\n ListNode node = stackPeek;\n int[] res = new int[size()];\n for (int i = res.length - 1; i >= 0; i--) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_stack.cs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n ListNode? stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n public LinkedListStack() {\n stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int Size() {\n return stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u6808 */\n public void Push(int num) {\n ListNode node = new(num) {\n next = stackPeek\n };\n stackPeek = node;\n stkSize++;\n }\n\n /* \u51fa\u6808 */\n public int Pop() {\n int num = Peek();\n stackPeek = stackPeek!.next;\n stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return stackPeek!.val;\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] ToArray() {\n if (stackPeek == null)\n return [];\n\n ListNode? node = stackPeek;\n int[] res = new int[Size()];\n for (int i = res.Length - 1; i >= 0; i--) {\n res[i] = node!.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_stack.go/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\ntype linkedListStack struct {\n // \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u6808\n data *list.List\n}\n\n/* \u521d\u59cb\u5316\u6808 */\nfunc newLinkedListStack() *linkedListStack {\n return &linkedListStack{\n data: list.New(),\n }\n}\n\n/* \u5165\u6808 */\nfunc (s *linkedListStack) push(value int) {\n s.data.PushBack(value)\n}\n\n/* \u51fa\u6808 */\nfunc (s *linkedListStack) pop() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc (s *linkedListStack) peek() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n return e.Value\n}\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc (s *linkedListStack) size() int {\n return s.data.Len()\n}\n\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListStack) isEmpty() bool {\n return s.data.Len() == 0\n}\n\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListStack) toList() *list.List {\n return s.data\n}\n
linkedlist_stack.swift/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private var _peek: ListNode? // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n private var _size = 0 // \u6808\u7684\u957f\u5ea6\n\n init() {}\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n func size() -> Int {\n _size\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u5165\u6808 */\n func push(num: Int) {\n let node = ListNode(x: num)\n node.next = _peek\n _peek = node\n _size += 1\n }\n\n /* \u51fa\u6808 */\n @discardableResult\n func pop() -> Int {\n let num = peek()\n _peek = _peek?.next\n _size -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u6808\u4e3a\u7a7a\")\n }\n return _peek!.val\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n func toArray() -> [Int] {\n var node = _peek\n var res = Array(repeating: 0, count: _size)\n for i in sequence(first: res.count - 1, next: { $0 >= 0 + 1 ? $0 - 1 : nil }) {\n res[i] = node!.val\n node = node?.next\n }\n return res\n }\n}\n
linkedlist_stack.js/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n #stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n #stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n constructor() {\n this.#stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size() {\n return this.#stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.size === 0;\n }\n\n /* \u5165\u6808 */\n push(num) {\n const node = new ListNode(num);\n node.next = this.#stackPeek;\n this.#stackPeek = node;\n this.#stkSize++;\n }\n\n /* \u51fa\u6808 */\n pop() {\n const num = this.peek();\n this.#stackPeek = this.#stackPeek.next;\n this.#stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n peek() {\n if (!this.#stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\n return this.#stackPeek.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray() {\n let node = this.#stackPeek;\n const res = new Array(this.size);\n for (let i = res.length - 1; i >= 0; i--) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_stack.ts/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private stackPeek: ListNode | null; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n private stkSize: number = 0; // \u6808\u7684\u957f\u5ea6\n\n constructor() {\n this.stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size(): number {\n return this.stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.size === 0;\n }\n\n /* \u5165\u6808 */\n push(num: number): void {\n const node = new ListNode(num);\n node.next = this.stackPeek;\n this.stackPeek = node;\n this.stkSize++;\n }\n\n /* \u51fa\u6808 */\n pop(): number {\n const num = this.peek();\n if (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\n this.stackPeek = this.stackPeek.next;\n this.stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n peek(): number {\n if (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\n return this.stackPeek.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray(): number[] {\n let node = this.stackPeek;\n const res = new Array<number>(this.size);\n for (let i = res.length - 1; i >= 0; i--) {\n res[i] = node!.val;\n node = node!.next;\n }\n return res;\n }\n}\n
linkedlist_stack.dart/* \u57fa\u4e8e\u94fe\u8868\u7c7b\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n ListNode? _stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int _stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n LinkedListStack() {\n _stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return _stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _stkSize == 0;\n }\n\n /* \u5165\u6808 */\n void push(int _num) {\n final ListNode node = ListNode(_num);\n node.next = _stackPeek;\n _stackPeek = node;\n _stkSize++;\n }\n\n /* \u51fa\u6808 */\n int pop() {\n final int _num = peek();\n _stackPeek = _stackPeek!.next;\n _stkSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int peek() {\n if (_stackPeek == null) {\n throw Exception(\"\u6808\u4e3a\u7a7a\");\n }\n return _stackPeek!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a List \u5e76\u8fd4\u56de */\n List<int> toList() {\n ListNode? node = _stackPeek;\n List<int> list = [];\n while (node != null) {\n list.add(node.val);\n node = node.next;\n }\n list = list.reversed.toList();\n return list;\n }\n}\n
linkedlist_stack.rs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\n#[allow(dead_code)]\npub struct LinkedListStack<T> {\n stack_peek: Option<Rc<RefCell<ListNode<T>>>>, // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n stk_size: usize, // \u6808\u7684\u957f\u5ea6\n}\n\nimpl<T: Copy> LinkedListStack<T> {\n pub fn new() -> Self {\n Self {\n stack_peek: None,\n stk_size: 0,\n }\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n return self.stk_size;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n return self.size() == 0;\n }\n\n /* \u5165\u6808 */\n pub fn push(&mut self, num: T) {\n let node = ListNode::new(num);\n node.borrow_mut().next = self.stack_peek.take();\n self.stack_peek = Some(node);\n self.stk_size += 1;\n }\n\n /* \u51fa\u6808 */\n pub fn pop(&mut self) -> Option<T> {\n self.stack_peek.take().map(|old_head| {\n match old_head.borrow_mut().next.take() {\n Some(new_head) => {\n self.stack_peek = Some(new_head);\n }\n None => {\n self.stack_peek = None;\n }\n }\n self.stk_size -= 1;\n Rc::try_unwrap(old_head).ok().unwrap().into_inner().val\n })\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n pub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.stack_peek.as_ref()\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\n if let Some(node) = head {\n let mut nums = self.to_array(node.borrow().next.as_ref());\n nums.push(node.borrow().val);\n return nums;\n }\n return Vec::new();\n }\n}\n
linkedlist_stack.c/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\ntypedef struct {\n ListNode *top; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int size; // \u6808\u7684\u957f\u5ea6\n} LinkedListStack;\n\n/* \u6784\u9020\u51fd\u6570 */\nLinkedListStack *newLinkedListStack() {\n LinkedListStack *s = malloc(sizeof(LinkedListStack));\n s->top = NULL;\n s->size = 0;\n return s;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListStack(LinkedListStack *s) {\n while (s->top) {\n ListNode *n = s->top->next;\n free(s->top);\n s->top = n;\n }\n free(s);\n}\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(LinkedListStack *s) {\n return s->size;\n}\n\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(LinkedListStack *s) {\n return size(s) == 0;\n}\n\n/* \u5165\u6808 */\nvoid push(LinkedListStack *s, int num) {\n ListNode *node = (ListNode *)malloc(sizeof(ListNode));\n node->next = s->top; // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6307\u9488\u57df\n node->val = num; // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6570\u636e\u57df\n s->top = node; // \u66f4\u65b0\u6808\u9876\n s->size++; // \u66f4\u65b0\u6808\u5927\u5c0f\n}\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(LinkedListStack *s) {\n if (s->size == 0) {\n printf(\"\u6808\u4e3a\u7a7a\\n\");\n return INT_MAX;\n }\n return s->top->val;\n}\n\n/* \u51fa\u6808 */\nint pop(LinkedListStack *s) {\n int val = peek(s);\n ListNode *tmp = s->top;\n s->top = s->top->next;\n // \u91ca\u653e\u5185\u5b58\n free(tmp);\n s->size--;\n return val;\n}\n
linkedlist_stack.zig// \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\nfn LinkedListStack(comptime T: type) type {\n return struct {\n const Self = @This();\n\n stack_top: ?*inc.ListNode(T) = null, // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n stk_size: usize = 0, // \u6808\u7684\u957f\u5ea6\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.stack_top = null;\n self.stk_size = 0;\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u6808\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.stk_size;\n }\n\n // \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u8bbf\u95ee\u6808\u9876\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.size() == 0) @panic(\"\u6808\u4e3a\u7a7a\");\n return self.stack_top.?.val;\n } \n\n // \u5165\u6808\n pub fn push(self: *Self, num: T) !void {\n var node = try self.mem_allocator.create(inc.ListNode(T));\n node.init(num);\n node.next = self.stack_top;\n self.stack_top = node;\n self.stk_size += 1;\n } \n\n // \u51fa\u6808\n pub fn pop(self: *Self) T {\n var num = self.peek();\n self.stack_top = self.stack_top.?.next;\n self.stk_size -= 1;\n return num;\n } \n\n // \u5c06\u6808\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n var node = self.stack_top;\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n while (i < res.len) : (i += 1) {\n res[res.len - i - 1] = node.?.val;\n node = node.?.next;\n }\n return res;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/stack/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u7684\u5c3e\u90e8\u4f5c\u4e3a\u6808\u9876\u3002\u5982\u56fe 5-3 \u6240\u793a\uff0c\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u5206\u522b\u5bf9\u5e94\u5728\u6570\u7ec4\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u4e0e\u5220\u9664\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(1)\\) \u3002
ArrayStackpush()pop() \u56fe 5-3 \u00a0 \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c
\u7531\u4e8e\u5165\u6808\u7684\u5143\u7d20\u53ef\u80fd\u4f1a\u6e90\u6e90\u4e0d\u65ad\u5730\u589e\u52a0\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u52a8\u6001\u6570\u7ec4\uff0c\u8fd9\u6837\u5c31\u65e0\u987b\u81ea\u884c\u5904\u7406\u6570\u7ec4\u6269\u5bb9\u95ee\u9898\u3002\u4ee5\u4e0b\u4e3a\u793a\u4f8b\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_stack.pyclass ArrayStack:\n \"\"\"\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._stack: list[int] = []\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\n return len(self._stack)\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self._stack == []\n\n def push(self, item: int):\n \"\"\"\u5165\u6808\"\"\"\n self._stack.append(item)\n\n def pop(self) -> int:\n \"\"\"\u51fa\u6808\"\"\"\n if self.is_empty():\n raise IndexError(\"\u6808\u4e3a\u7a7a\")\n return self._stack.pop()\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u6808\u4e3a\u7a7a\")\n return self._stack[-1]\n\n def to_list(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n return self._stack\n
array_stack.cpp/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private:\n vector<int> stack;\n\n public:\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return stack.size();\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return stack.size() == 0;\n }\n\n /* \u5165\u6808 */\n void push(int num) {\n stack.push_back(num);\n }\n\n /* \u51fa\u6808 */\n int pop() {\n int num = top();\n stack.pop_back();\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int top() {\n if (isEmpty())\n throw out_of_range(\"\u6808\u4e3a\u7a7a\");\n return stack.back();\n }\n\n /* \u8fd4\u56de Vector */\n vector<int> toVector() {\n return stack;\n }\n};\n
array_stack.java/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private ArrayList<Integer> stack;\n\n public ArrayStack() {\n // \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\n stack = new ArrayList<>();\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int size() {\n return stack.size();\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u6808 */\n public void push(int num) {\n stack.add(num);\n }\n\n /* \u51fa\u6808 */\n public int pop() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return stack.remove(size() - 1);\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return stack.get(size() - 1);\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public Object[] toArray() {\n return stack.toArray();\n }\n}\n
array_stack.cs/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n List<int> stack;\n public ArrayStack() {\n // \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\n stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int Size() {\n return stack.Count;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u6808 */\n public void Push(int num) {\n stack.Add(num);\n }\n\n /* \u51fa\u6808 */\n public int Pop() {\n if (IsEmpty())\n throw new Exception();\n var val = Peek();\n stack.RemoveAt(Size() - 1);\n return val;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return stack[Size() - 1];\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] ToArray() {\n return [.. stack];\n }\n}\n
array_stack.go/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\ntype arrayStack struct {\n data []int // \u6570\u636e\n}\n\n/* \u521d\u59cb\u5316\u6808 */\nfunc newArrayStack() *arrayStack {\n return &arrayStack{\n // \u8bbe\u7f6e\u6808\u7684\u957f\u5ea6\u4e3a 0\uff0c\u5bb9\u91cf\u4e3a 16\n data: make([]int, 0, 16),\n }\n}\n\n/* \u6808\u7684\u957f\u5ea6 */\nfunc (s *arrayStack) size() int {\n return len(s.data)\n}\n\n/* \u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *arrayStack) isEmpty() bool {\n return s.size() == 0\n}\n\n/* \u5165\u6808 */\nfunc (s *arrayStack) push(v int) {\n // \u5207\u7247\u4f1a\u81ea\u52a8\u6269\u5bb9\n s.data = append(s.data, v)\n}\n\n/* \u51fa\u6808 */\nfunc (s *arrayStack) pop() any {\n val := s.peek()\n s.data = s.data[:len(s.data)-1]\n return val\n}\n\n/* \u83b7\u53d6\u6808\u9876\u5143\u7d20 */\nfunc (s *arrayStack) peek() any {\n if s.isEmpty() {\n return nil\n }\n val := s.data[len(s.data)-1]\n return val\n}\n\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (s *arrayStack) toSlice() []int {\n return s.data\n}\n
array_stack.swift/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private var stack: [Int]\n\n init() {\n // \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\n stack = []\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n func size() -> Int {\n stack.count\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n stack.isEmpty\n }\n\n /* \u5165\u6808 */\n func push(num: Int) {\n stack.append(num)\n }\n\n /* \u51fa\u6808 */\n @discardableResult\n func pop() -> Int {\n if isEmpty() {\n fatalError(\"\u6808\u4e3a\u7a7a\")\n }\n return stack.removeLast()\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u6808\u4e3a\u7a7a\")\n }\n return stack.last!\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n func toArray() -> [Int] {\n stack\n }\n}\n
array_stack.js/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n #stack;\n constructor() {\n this.#stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size() {\n return this.#stack.length;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#stack.length === 0;\n }\n\n /* \u5165\u6808 */\n push(num) {\n this.#stack.push(num);\n }\n\n /* \u51fa\u6808 */\n pop() {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.#stack.pop();\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n top() {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.#stack[this.#stack.length - 1];\n }\n\n /* \u8fd4\u56de Array */\n toArray() {\n return this.#stack;\n }\n}\n
array_stack.ts/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private stack: number[];\n constructor() {\n this.stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size(): number {\n return this.stack.length;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.stack.length === 0;\n }\n\n /* \u5165\u6808 */\n push(num: number): void {\n this.stack.push(num);\n }\n\n /* \u51fa\u6808 */\n pop(): number | undefined {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.stack.pop();\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n top(): number | undefined {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.stack[this.stack.length - 1];\n }\n\n /* \u8fd4\u56de Array */\n toArray() {\n return this.stack;\n }\n}\n
array_stack.dart/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n late List<int> _stack;\n ArrayStack() {\n _stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return _stack.length;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _stack.isEmpty;\n }\n\n /* \u5165\u6808 */\n void push(int _num) {\n _stack.add(_num);\n }\n\n /* \u51fa\u6808 */\n int pop() {\n if (isEmpty()) {\n throw Exception(\"\u6808\u4e3a\u7a7a\");\n }\n return _stack.removeLast();\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int peek() {\n if (isEmpty()) {\n throw Exception(\"\u6808\u4e3a\u7a7a\");\n }\n return _stack.last;\n }\n\n /* \u5c06\u6808\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n List<int> toArray() => _stack;\n}\n
array_stack.rs/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nstruct ArrayStack<T> {\n stack: Vec<T>,\n}\n\nimpl<T> ArrayStack<T> {\n /* \u521d\u59cb\u5316\u6808 */\n fn new() -> ArrayStack<T> {\n ArrayStack::<T> { stack: Vec::<T>::new() }\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n fn size(&self) -> usize {\n self.stack.len()\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n fn is_empty(&self) -> bool {\n self.size() == 0\n }\n\n /* \u5165\u6808 */\n fn push(&mut self, num: T) {\n self.stack.push(num);\n }\n\n /* \u51fa\u6808 */\n fn pop(&mut self) -> Option<T> {\n match self.stack.pop() {\n Some(num) => Some(num),\n None => None,\n }\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n fn peek(&self) -> Option<&T> {\n if self.is_empty() { panic!(\"\u6808\u4e3a\u7a7a\") };\n self.stack.last()\n }\n\n /* \u8fd4\u56de &Vec */\n fn to_array(&self) -> &Vec<T> {\n &self.stack\n }\n}\n
array_stack.c/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\ntypedef struct {\n int *data;\n int size;\n} ArrayStack;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayStack *newArrayStack() {\n ArrayStack *stack = malloc(sizeof(ArrayStack));\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5927\u5bb9\u91cf\uff0c\u907f\u514d\u6269\u5bb9\n stack->data = malloc(sizeof(int) * MAX_SIZE);\n stack->size = 0;\n return stack;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayStack(ArrayStack *stack) {\n free(stack->data);\n free(stack);\n}\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(ArrayStack *stack) {\n return stack->size;\n}\n\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(ArrayStack *stack) {\n return stack->size == 0;\n}\n\n/* \u5165\u6808 */\nvoid push(ArrayStack *stack, int num) {\n if (stack->size == MAX_SIZE) {\n printf(\"\u6808\u5df2\u6ee1\\n\");\n return;\n }\n stack->data[stack->size] = num;\n stack->size++;\n}\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(ArrayStack *stack) {\n if (stack->size == 0) {\n printf(\"\u6808\u4e3a\u7a7a\\n\");\n return INT_MAX;\n }\n return stack->data[stack->size - 1];\n}\n\n/* \u51fa\u6808 */\nint pop(ArrayStack *stack) {\n int val = peek(stack);\n stack->size--;\n return val;\n}\n
array_stack.zig// \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\nfn ArrayStack(comptime T: type) type {\n return struct {\n const Self = @This();\n\n stack: ?std.ArrayList(T) = null, \n\n // \u6784\u9020\u65b9\u6cd5\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) void {\n if (self.stack == null) {\n self.stack = std.ArrayList(T).init(allocator);\n }\n }\n\n // \u6790\u6784\u65b9\u6cd5\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.stack == null) return;\n self.stack.?.deinit();\n }\n\n // \u83b7\u53d6\u6808\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.stack.?.items.len;\n }\n\n // \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u8bbf\u95ee\u6808\u9876\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u6808\u4e3a\u7a7a\");\n return self.stack.?.items[self.size() - 1];\n } \n\n // \u5165\u6808\n pub fn push(self: *Self, num: T) !void {\n try self.stack.?.append(num);\n } \n\n // \u51fa\u6808\n pub fn pop(self: *Self) T {\n var num = self.stack.?.pop();\n return num;\n } \n\n // \u8fd4\u56de ArrayList\n pub fn toList(self: *Self) std.ArrayList(T) {\n return self.stack.?;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/stack/#513","title":"5.1.3 \u00a0 \u4e24\u79cd\u5b9e\u73b0\u5bf9\u6bd4","text":"\u652f\u6301\u64cd\u4f5c
\u4e24\u79cd\u5b9e\u73b0\u90fd\u652f\u6301\u6808\u5b9a\u4e49\u4e2d\u7684\u5404\u9879\u64cd\u4f5c\u3002\u6570\u7ec4\u5b9e\u73b0\u989d\u5916\u652f\u6301\u968f\u673a\u8bbf\u95ee\uff0c\u4f46\u8fd9\u5df2\u8d85\u51fa\u4e86\u6808\u7684\u5b9a\u4e49\u8303\u7574\uff0c\u56e0\u6b64\u4e00\u822c\u4e0d\u4f1a\u7528\u5230\u3002
\u65f6\u95f4\u6548\u7387
\u5728\u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0\u4e2d\uff0c\u5165\u6808\u548c\u51fa\u6808\u64cd\u4f5c\u90fd\u5728\u9884\u5148\u5206\u914d\u597d\u7684\u8fde\u7eed\u5185\u5b58\u4e2d\u8fdb\u884c\uff0c\u5177\u6709\u5f88\u597d\u7684\u7f13\u5b58\u672c\u5730\u6027\uff0c\u56e0\u6b64\u6548\u7387\u8f83\u9ad8\u3002\u7136\u800c\uff0c\u5982\u679c\u5165\u6808\u65f6\u8d85\u51fa\u6570\u7ec4\u5bb9\u91cf\uff0c\u4f1a\u89e6\u53d1\u6269\u5bb9\u673a\u5236\uff0c\u5bfc\u81f4\u8be5\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53d8\u4e3a \\(O(n)\\) \u3002
\u5728\u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0\u4e2d\uff0c\u94fe\u8868\u7684\u6269\u5bb9\u975e\u5e38\u7075\u6d3b\uff0c\u4e0d\u5b58\u5728\u4e0a\u8ff0\u6570\u7ec4\u6269\u5bb9\u65f6\u6548\u7387\u964d\u4f4e\u7684\u95ee\u9898\u3002\u4f46\u662f\uff0c\u5165\u6808\u64cd\u4f5c\u9700\u8981\u521d\u59cb\u5316\u8282\u70b9\u5bf9\u8c61\u5e76\u4fee\u6539\u6307\u9488\uff0c\u56e0\u6b64\u6548\u7387\u76f8\u5bf9\u8f83\u4f4e\u3002\u4e0d\u8fc7\uff0c\u5982\u679c\u5165\u6808\u5143\u7d20\u672c\u8eab\u5c31\u662f\u8282\u70b9\u5bf9\u8c61\uff0c\u90a3\u4e48\u53ef\u4ee5\u7701\u53bb\u521d\u59cb\u5316\u6b65\u9aa4\uff0c\u4ece\u800c\u63d0\u9ad8\u6548\u7387\u3002
\u7efc\u4e0a\u6240\u8ff0\uff0c\u5f53\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u7684\u5143\u7d20\u662f\u57fa\u672c\u6570\u636e\u7c7b\u578b\u65f6\uff0c\u4f8b\u5982 int \u6216 double \uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\u3002
- \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u5728\u89e6\u53d1\u6269\u5bb9\u65f6\u6548\u7387\u4f1a\u964d\u4f4e\uff0c\u4f46\u7531\u4e8e\u6269\u5bb9\u662f\u4f4e\u9891\u64cd\u4f5c\uff0c\u56e0\u6b64\u5e73\u5747\u6548\u7387\u66f4\u9ad8\u3002
- \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u53ef\u4ee5\u63d0\u4f9b\u66f4\u52a0\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
\u7a7a\u95f4\u6548\u7387
\u5728\u521d\u59cb\u5316\u5217\u8868\u65f6\uff0c\u7cfb\u7edf\u4f1a\u4e3a\u5217\u8868\u5206\u914d\u201c\u521d\u59cb\u5bb9\u91cf\u201d\uff0c\u8be5\u5bb9\u91cf\u53ef\u80fd\u8d85\u51fa\u5b9e\u9645\u9700\u6c42\uff1b\u5e76\u4e14\uff0c\u6269\u5bb9\u673a\u5236\u901a\u5e38\u662f\u6309\u7167\u7279\u5b9a\u500d\u7387\uff08\u4f8b\u5982 2 \u500d\uff09\u8fdb\u884c\u6269\u5bb9\u7684\uff0c\u6269\u5bb9\u540e\u7684\u5bb9\u91cf\u4e5f\u53ef\u80fd\u8d85\u51fa\u5b9e\u9645\u9700\u6c42\u3002\u56e0\u6b64\uff0c\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u53ef\u80fd\u9020\u6210\u4e00\u5b9a\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002
\u7136\u800c\uff0c\u7531\u4e8e\u94fe\u8868\u8282\u70b9\u9700\u8981\u989d\u5916\u5b58\u50a8\u6307\u9488\uff0c\u56e0\u6b64\u94fe\u8868\u8282\u70b9\u5360\u7528\u7684\u7a7a\u95f4\u76f8\u5bf9\u8f83\u5927\u3002
\u7efc\u4e0a\uff0c\u6211\u4eec\u4e0d\u80fd\u7b80\u5355\u5730\u786e\u5b9a\u54ea\u79cd\u5b9e\u73b0\u66f4\u52a0\u8282\u7701\u5185\u5b58\uff0c\u9700\u8981\u9488\u5bf9\u5177\u4f53\u60c5\u51b5\u8fdb\u884c\u5206\u6790\u3002
"},{"location":"chapter_stack_and_queue/stack/#514","title":"5.1.4 \u00a0 \u6808\u5178\u578b\u5e94\u7528","text":" - \u6d4f\u89c8\u5668\u4e2d\u7684\u540e\u9000\u4e0e\u524d\u8fdb\u3001\u8f6f\u4ef6\u4e2d\u7684\u64a4\u9500\u4e0e\u53cd\u64a4\u9500\u3002\u6bcf\u5f53\u6211\u4eec\u6253\u5f00\u65b0\u7684\u7f51\u9875\uff0c\u6d4f\u89c8\u5668\u5c31\u4f1a\u5bf9\u4e0a\u4e00\u4e2a\u7f51\u9875\u6267\u884c\u5165\u6808\uff0c\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u901a\u8fc7\u540e\u9000\u64cd\u4f5c\u56de\u5230\u4e0a\u4e00\u4e2a\u7f51\u9875\u3002\u540e\u9000\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5728\u6267\u884c\u51fa\u6808\u3002\u5982\u679c\u8981\u540c\u65f6\u652f\u6301\u540e\u9000\u548c\u524d\u8fdb\uff0c\u90a3\u4e48\u9700\u8981\u4e24\u4e2a\u6808\u6765\u914d\u5408\u5b9e\u73b0\u3002
- \u7a0b\u5e8f\u5185\u5b58\u7ba1\u7406\u3002\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\uff0c\u7cfb\u7edf\u90fd\u4f1a\u5728\u6808\u9876\u6dfb\u52a0\u4e00\u4e2a\u6808\u5e27\uff0c\u7528\u4e8e\u8bb0\u5f55\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u4fe1\u606f\u3002\u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u5411\u4e0b\u9012\u63a8\u9636\u6bb5\u4f1a\u4e0d\u65ad\u6267\u884c\u5165\u6808\u64cd\u4f5c\uff0c\u800c\u5411\u4e0a\u56de\u6eaf\u9636\u6bb5\u5219\u4f1a\u4e0d\u65ad\u6267\u884c\u51fa\u6808\u64cd\u4f5c\u3002
"},{"location":"chapter_stack_and_queue/summary/","title":"5.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_stack_and_queue/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u6808\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002
- \u5728\u65f6\u95f4\u6548\u7387\u65b9\u9762\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u5177\u6709\u8f83\u9ad8\u7684\u5e73\u5747\u6548\u7387\uff0c\u4f46\u5728\u6269\u5bb9\u8fc7\u7a0b\u4e2d\uff0c\u5355\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u52a3\u5316\u81f3 \\(O(n)\\) \u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u6808\u7684\u94fe\u8868\u5b9e\u73b0\u5177\u6709\u66f4\u4e3a\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
- \u5728\u7a7a\u95f4\u6548\u7387\u65b9\u9762\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u53ef\u80fd\u5bfc\u81f4\u4e00\u5b9a\u7a0b\u5ea6\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002\u4f46\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u94fe\u8868\u8282\u70b9\u6240\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u6bd4\u6570\u7ec4\u5143\u7d20\u66f4\u5927\u3002
- \u961f\u5217\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u540c\u6837\u53ef\u4ee5\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u7684\u5bf9\u6bd4\u4e0a\uff0c\u961f\u5217\u7684\u7ed3\u8bba\u4e0e\u524d\u8ff0\u6808\u7684\u7ed3\u8bba\u76f8\u4f3c\u3002
- \u53cc\u5411\u961f\u5217\u662f\u4e00\u79cd\u5177\u6709\u66f4\u9ad8\u81ea\u7531\u5ea6\u7684\u961f\u5217\uff0c\u5b83\u5141\u8bb8\u5728\u4e24\u7aef\u8fdb\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u3002
"},{"location":"chapter_stack_and_queue/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u662f\u5426\u662f\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\uff1f
\u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u529f\u80fd\u672c\u8d28\u4e0a\u662f\u201c\u6808\u201d\u7684\u4f53\u73b0\u3002\u5f53\u7528\u6237\u8bbf\u95ee\u4e00\u4e2a\u65b0\u9875\u9762\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u88ab\u6dfb\u52a0\u5230\u6808\u9876\uff1b\u5f53\u7528\u6237\u70b9\u51fb\u540e\u9000\u6309\u94ae\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u4ece\u6808\u9876\u5f39\u51fa\u3002\u4f7f\u7528\u53cc\u5411\u961f\u5217\u53ef\u4ee5\u65b9\u4fbf\u5730\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u64cd\u4f5c\uff0c\u8fd9\u4e2a\u5728\u201c\u53cc\u5411\u961f\u5217\u201d\u7ae0\u8282\u6709\u63d0\u5230\u3002
\u5728\u51fa\u6808\u540e\uff0c\u662f\u5426\u9700\u8981\u91ca\u653e\u51fa\u6808\u8282\u70b9\u7684\u5185\u5b58\uff1f
\u5982\u679c\u540e\u7eed\u4ecd\u9700\u8981\u4f7f\u7528\u5f39\u51fa\u8282\u70b9\uff0c\u5219\u4e0d\u9700\u8981\u91ca\u653e\u5185\u5b58\u3002\u82e5\u4e4b\u540e\u4e0d\u9700\u8981\u7528\u5230\uff0cJava \u548c Python \u7b49\u8bed\u8a00\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u673a\u5236\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\uff1b\u5728 C \u548c C++ \u4e2d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\u3002
\u53cc\u5411\u961f\u5217\u50cf\u662f\u4e24\u4e2a\u6808\u62fc\u63a5\u5728\u4e86\u4e00\u8d77\uff0c\u5b83\u7684\u7528\u9014\u662f\u4ec0\u4e48\uff1f
\u53cc\u5411\u961f\u5217\u5c31\u50cf\u662f\u6808\u548c\u961f\u5217\u7684\u7ec4\u5408\uff0c\u6216\u4e24\u4e2a\u6808\u62fc\u5728\u4e86\u4e00\u8d77\u3002\u5b83\u8868\u73b0\u7684\u662f\u6808 + \u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u53ef\u4ee5\u5b9e\u73b0\u6808\u4e0e\u961f\u5217\u7684\u6240\u6709\u5e94\u7528\uff0c\u5e76\u4e14\u66f4\u52a0\u7075\u6d3b\u3002
\u64a4\u9500\uff08undo\uff09\u548c\u53cd\u64a4\u9500\uff08redo\uff09\u5177\u4f53\u662f\u5982\u4f55\u5b9e\u73b0\u7684\uff1f
\u4f7f\u7528\u4e24\u4e2a\u6808\uff0c\u6808 A \u7528\u4e8e\u64a4\u9500\uff0c\u6808 B \u7528\u4e8e\u53cd\u64a4\u9500\u3002
- \u6bcf\u5f53\u7528\u6237\u6267\u884c\u4e00\u4e2a\u64cd\u4f5c\uff0c\u5c06\u8fd9\u4e2a\u64cd\u4f5c\u538b\u5165\u6808
A \uff0c\u5e76\u6e05\u7a7a\u6808 B \u3002 - \u5f53\u7528\u6237\u6267\u884c\u201c\u64a4\u9500\u201d\u65f6\uff0c\u4ece\u6808
A \u4e2d\u5f39\u51fa\u6700\u8fd1\u7684\u64cd\u4f5c\uff0c\u5e76\u5c06\u5176\u538b\u5165\u6808 B \u3002 - \u5f53\u7528\u6237\u6267\u884c\u201c\u53cd\u64a4\u9500\u201d\u65f6\uff0c\u4ece\u6808
B \u4e2d\u5f39\u51fa\u6700\u8fd1\u7684\u64cd\u4f5c\uff0c\u5e76\u5c06\u5176\u538b\u5165\u6808 A \u3002
"},{"location":"chapter_tree/","title":"\u7b2c 7 \u7ae0 \u00a0 \u6811","text":"Abstract
\u53c2\u5929\u5927\u6811\u5145\u6ee1\u751f\u547d\u529b\uff0c\u6839\u6df1\u53f6\u8302\uff0c\u5206\u679d\u6276\u758f\u3002
\u5b83\u4e3a\u6211\u4eec\u5c55\u73b0\u4e86\u6570\u636e\u5206\u6cbb\u7684\u751f\u52a8\u5f62\u6001\u3002
"},{"location":"chapter_tree/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 7.1 \u00a0 \u4e8c\u53c9\u6811
- 7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386
- 7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a
- 7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811
- 7.5 \u00a0 AVL \u6811 *
- 7.6 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_tree/array_representation_of_tree/","title":"7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a","text":"\u5728\u94fe\u8868\u8868\u793a\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u5b58\u50a8\u5355\u5143\u4e3a\u8282\u70b9 TreeNode \uff0c\u8282\u70b9\u4e4b\u95f4\u901a\u8fc7\u6307\u9488\u76f8\u8fde\u63a5\u3002\u4e0a\u4e00\u8282\u4ecb\u7ecd\u4e86\u94fe\u8868\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7684\u5404\u9879\u57fa\u672c\u64cd\u4f5c\u3002
\u90a3\u4e48\uff0c\u6211\u4eec\u80fd\u5426\u7528\u6570\u7ec4\u6765\u8868\u793a\u4e8c\u53c9\u6811\u5462\uff1f\u7b54\u6848\u662f\u80af\u5b9a\u7684\u3002
"},{"location":"chapter_tree/array_representation_of_tree/#731","title":"7.3.1 \u00a0 \u8868\u793a\u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"\u5148\u5206\u6790\u4e00\u4e2a\u7b80\u5355\u6848\u4f8b\u3002\u7ed9\u5b9a\u4e00\u68f5\u5b8c\u7f8e\u4e8c\u53c9\u6811\uff0c\u6211\u4eec\u5c06\u6240\u6709\u8282\u70b9\u6309\u7167\u5c42\u5e8f\u904d\u5386\u7684\u987a\u5e8f\u5b58\u50a8\u5728\u4e00\u4e2a\u6570\u7ec4\u4e2d\uff0c\u5219\u6bcf\u4e2a\u8282\u70b9\u90fd\u5bf9\u5e94\u552f\u4e00\u7684\u6570\u7ec4\u7d22\u5f15\u3002
\u6839\u636e\u5c42\u5e8f\u904d\u5386\u7684\u7279\u6027\uff0c\u6211\u4eec\u53ef\u4ee5\u63a8\u5bfc\u51fa\u7236\u8282\u70b9\u7d22\u5f15\u4e0e\u5b50\u8282\u70b9\u7d22\u5f15\u4e4b\u95f4\u7684\u201c\u6620\u5c04\u516c\u5f0f\u201d\uff1a\u82e5\u67d0\u8282\u70b9\u7684\u7d22\u5f15\u4e3a \\(i\\) \uff0c\u5219\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 2\\) \u3002\u56fe 7-12 \u5c55\u793a\u4e86\u5404\u4e2a\u8282\u70b9\u7d22\u5f15\u4e4b\u95f4\u7684\u6620\u5c04\u5173\u7cfb\u3002
\u56fe 7-12 \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a
\u6620\u5c04\u516c\u5f0f\u7684\u89d2\u8272\u76f8\u5f53\u4e8e\u94fe\u8868\u4e2d\u7684\u6307\u9488\u3002\u7ed9\u5b9a\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u8282\u70b9\uff0c\u6211\u4eec\u90fd\u53ef\u4ee5\u901a\u8fc7\u6620\u5c04\u516c\u5f0f\u6765\u8bbf\u95ee\u5b83\u7684\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3002
"},{"location":"chapter_tree/array_representation_of_tree/#732","title":"7.3.2 \u00a0 \u8868\u793a\u4efb\u610f\u4e8c\u53c9\u6811","text":"\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u4e00\u4e2a\u7279\u4f8b\uff0c\u5728\u4e8c\u53c9\u6811\u7684\u4e2d\u95f4\u5c42\u901a\u5e38\u5b58\u5728\u8bb8\u591a \\(\\text{None}\\) \u3002\u7531\u4e8e\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5e76\u4e0d\u5305\u542b\u8fd9\u4e9b \\(\\text{None}\\) \uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u6cd5\u4ec5\u51ed\u8be5\u5e8f\u5217\u6765\u63a8\u6d4b \\(\\text{None}\\) \u7684\u6570\u91cf\u548c\u5206\u5e03\u4f4d\u7f6e\u3002\u8fd9\u610f\u5473\u7740\u5b58\u5728\u591a\u79cd\u4e8c\u53c9\u6811\u7ed3\u6784\u90fd\u7b26\u5408\u8be5\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002
\u5982\u56fe 7-13 \u6240\u793a\uff0c\u7ed9\u5b9a\u4e00\u68f5\u975e\u5b8c\u7f8e\u4e8c\u53c9\u6811\uff0c\u4e0a\u8ff0\u6570\u7ec4\u8868\u793a\u65b9\u6cd5\u5df2\u7ecf\u5931\u6548\u3002
\u56fe 7-13 \u00a0 \u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5bf9\u5e94\u591a\u79cd\u4e8c\u53c9\u6811\u53ef\u80fd\u6027
\u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u4e2d\u663e\u5f0f\u5730\u5199\u51fa\u6240\u6709 \\(\\text{None}\\) \u3002\u5982\u56fe 7-14 \u6240\u793a\uff0c\u8fd9\u6837\u5904\u7406\u540e\uff0c\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5c31\u53ef\u4ee5\u552f\u4e00\u8868\u793a\u4e8c\u53c9\u6811\u4e86\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\n# \u4f7f\u7528 None \u6765\u8868\u793a\u7a7a\u4f4d\ntree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c INT_MAX \u6807\u8bb0\u7a7a\u4f4d\nvector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u7684\u5305\u88c5\u7c7b Integer \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nInteger[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nint?[] tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 any \u7c7b\u578b\u7684\u5207\u7247, \u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\ntree := []any{1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15}\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 Int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\nlet tree: [Int?] = [1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15]\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree: (number | null)[] = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nList<int?> tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 None \u6765\u6807\u8bb0\u7a7a\u4f4d\nlet tree = [Some(1), Some(2), Some(3), Some(4), None, Some(6), Some(7), Some(8), Some(9), None, None, Some(12), None, None, Some(15)];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c\u6807\u8bb0\u7a7a\u4f4d\uff0c\u56e0\u6b64\u8981\u6c42\u8282\u70b9\u503c\u4e0d\u80fd\u4e3a INT_MAX\nint tree[] = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
\n
\u56fe 7-14 \u00a0 \u4efb\u610f\u7c7b\u578b\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u4f7f\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u56de\u987e\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u5b9a\u4e49\uff0c\\(\\text{None}\\) \u53ea\u51fa\u73b0\u5728\u6700\u5e95\u5c42\u4e14\u9760\u53f3\u7684\u4f4d\u7f6e\uff0c\u56e0\u6b64\u6240\u6709 \\(\\text{None}\\) \u4e00\u5b9a\u51fa\u73b0\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u672b\u5c3e\u3002
\u8fd9\u610f\u5473\u7740\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u5b8c\u5168\u4e8c\u53c9\u6811\u65f6\uff0c\u53ef\u4ee5\u7701\u7565\u5b58\u50a8\u6240\u6709 \\(\\text{None}\\) \uff0c\u975e\u5e38\u65b9\u4fbf\u3002\u56fe 7-15 \u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50\u3002
\u56fe 7-15 \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a
\u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u68f5\u57fa\u4e8e\u6570\u7ec4\u8868\u793a\u7684\u4e8c\u53c9\u6811\uff0c\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u64cd\u4f5c\u3002
- \u7ed9\u5b9a\u67d0\u8282\u70b9\uff0c\u83b7\u53d6\u5b83\u7684\u503c\u3001\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3001\u7236\u8282\u70b9\u3002
- \u83b7\u53d6\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u3001\u540e\u5e8f\u904d\u5386\u3001\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_binary_tree.pyclass ArrayBinaryTree:\n \"\"\"\u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b\"\"\"\n\n def __init__(self, arr: list[int | None]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._tree = list(arr)\n\n def size(self):\n \"\"\"\u8282\u70b9\u6570\u91cf\"\"\"\n return len(self._tree)\n\n def val(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c\"\"\"\n # \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 or i >= self.size():\n return None\n return self._tree[i]\n\n def left(self, i: int) -> int | None:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return 2 * i + 1\n\n def right(self, i: int) -> int | None:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return 2 * i + 2\n\n def parent(self, i: int) -> int | None:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return (i - 1) // 2\n\n def level_order(self) -> list[int]:\n \"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\n self.res = []\n # \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i in range(self.size()):\n if self.val(i) is not None:\n self.res.append(self.val(i))\n return self.res\n\n def dfs(self, i: int, order: str):\n \"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\"\"\"\n if self.val(i) is None:\n return\n # \u524d\u5e8f\u904d\u5386\n if order == \"pre\":\n self.res.append(self.val(i))\n self.dfs(self.left(i), order)\n # \u4e2d\u5e8f\u904d\u5386\n if order == \"in\":\n self.res.append(self.val(i))\n self.dfs(self.right(i), order)\n # \u540e\u5e8f\u904d\u5386\n if order == \"post\":\n self.res.append(self.val(i))\n\n def pre_order(self) -> list[int]:\n \"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\n self.res = []\n self.dfs(0, order=\"pre\")\n return self.res\n\n def in_order(self) -> list[int]:\n \"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\n self.res = []\n self.dfs(0, order=\"in\")\n return self.res\n\n def post_order(self) -> list[int]:\n \"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\n self.res = []\n self.dfs(0, order=\"post\")\n return self.res\n
array_binary_tree.cpp/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayBinaryTree(vector<int> arr) {\n tree = arr;\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n int size() {\n return tree.size();\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n int val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size())\n return INT_MAX;\n return tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n int parent(int i) {\n return (i - 1) / 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n vector<int> levelOrder() {\n vector<int> res;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n if (val(i) != INT_MAX)\n res.push_back(val(i));\n }\n return res;\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n vector<int> preOrder() {\n vector<int> res;\n dfs(0, \"pre\", res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n vector<int> inOrder() {\n vector<int> res;\n dfs(0, \"in\", res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n vector<int> postOrder() {\n vector<int> res;\n dfs(0, \"post\", res);\n return res;\n }\n\n private:\n vector<int> tree;\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n void dfs(int i, string order, vector<int> &res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(i) == INT_MAX)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (order == \"pre\")\n res.push_back(val(i));\n dfs(left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order == \"in\")\n res.push_back(val(i));\n dfs(right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order == \"post\")\n res.push_back(val(i));\n }\n};\n
array_binary_tree.java/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n private List<Integer> tree;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public ArrayBinaryTree(List<Integer> arr) {\n tree = new ArrayList<>(arr);\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n public int size() {\n return tree.size();\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n public Integer val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size())\n return null;\n return tree.get(i);\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public Integer left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public Integer right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n public Integer parent(int i) {\n return (i - 1) / 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n public List<Integer> levelOrder() {\n List<Integer> res = new ArrayList<>();\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n if (val(i) != null)\n res.add(val(i));\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n private void dfs(Integer i, String order, List<Integer> res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(i) == null)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (\"pre\".equals(order))\n res.add(val(i));\n dfs(left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (\"in\".equals(order))\n res.add(val(i));\n dfs(right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (\"post\".equals(order))\n res.add(val(i));\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n public List<Integer> preOrder() {\n List<Integer> res = new ArrayList<>();\n dfs(0, \"pre\", res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n public List<Integer> inOrder() {\n List<Integer> res = new ArrayList<>();\n dfs(0, \"in\", res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n public List<Integer> postOrder() {\n List<Integer> res = new ArrayList<>();\n dfs(0, \"post\", res);\n return res;\n }\n}\n
array_binary_tree.cs/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree(List<int?> arr) {\n List<int?> tree = new(arr);\n\n /* \u8282\u70b9\u6570\u91cf */\n public int Size() {\n return tree.Count;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n public int? Val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= Size())\n return null;\n return tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public int Left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public int Right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n public int Parent(int i) {\n return (i - 1) / 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n public List<int> LevelOrder() {\n List<int> res = [];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < Size(); i++) {\n if (Val(i).HasValue)\n res.Add(Val(i)!.Value);\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n void DFS(int i, string order, List<int> res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (!Val(i).HasValue)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (order == \"pre\")\n res.Add(Val(i)!.Value);\n DFS(Left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order == \"in\")\n res.Add(Val(i)!.Value);\n DFS(Right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order == \"post\")\n res.Add(Val(i)!.Value);\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n public List<int> PreOrder() {\n List<int> res = [];\n DFS(0, \"pre\", res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n public List<int> InOrder() {\n List<int> res = [];\n DFS(0, \"in\", res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n public List<int> PostOrder() {\n List<int> res = [];\n DFS(0, \"post\", res);\n return res;\n }\n}\n
array_binary_tree.go/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\ntype arrayBinaryTree struct {\n tree []any\n}\n\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newArrayBinaryTree(arr []any) *arrayBinaryTree {\n return &arrayBinaryTree{\n tree: arr,\n }\n}\n\n/* \u8282\u70b9\u6570\u91cf */\nfunc (abt *arrayBinaryTree) size() int {\n return len(abt.tree)\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfunc (abt *arrayBinaryTree) val(i int) any {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 || i >= abt.size() {\n return nil\n }\n return abt.tree[i]\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) left(i int) int {\n return 2*i + 1\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) right(i int) int {\n return 2*i + 2\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) parent(i int) int {\n return (i - 1) / 2\n}\n\n/* \u5c42\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) levelOrder() []any {\n var res []any\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i := 0; i < abt.size(); i++ {\n if abt.val(i) != nil {\n res = append(res, abt.val(i))\n }\n }\n return res\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nfunc (abt *arrayBinaryTree) dfs(i int, order string, res *[]any) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if abt.val(i) == nil {\n return\n }\n // \u524d\u5e8f\u904d\u5386\n if order == \"pre\" {\n *res = append(*res, abt.val(i))\n }\n abt.dfs(abt.left(i), order, res)\n // \u4e2d\u5e8f\u904d\u5386\n if order == \"in\" {\n *res = append(*res, abt.val(i))\n }\n abt.dfs(abt.right(i), order, res)\n // \u540e\u5e8f\u904d\u5386\n if order == \"post\" {\n *res = append(*res, abt.val(i))\n }\n}\n\n/* \u524d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) preOrder() []any {\n var res []any\n abt.dfs(0, \"pre\", &res)\n return res\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) inOrder() []any {\n var res []any\n abt.dfs(0, \"in\", &res)\n return res\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) postOrder() []any {\n var res []any\n abt.dfs(0, \"post\", &res)\n return res\n}\n
array_binary_tree.swift/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n private var tree: [Int?]\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init(arr: [Int?]) {\n tree = arr\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n func size() -> Int {\n tree.count\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n func val(i: Int) -> Int? {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 || i >= size() {\n return nil\n }\n return tree[i]\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n func left(i: Int) -> Int {\n 2 * i + 1\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n func right(i: Int) -> Int {\n 2 * i + 2\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n func parent(i: Int) -> Int {\n (i - 1) / 2\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n func levelOrder() -> [Int] {\n var res: [Int] = []\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i in stride(from: 0, to: size(), by: 1) {\n if let val = val(i: i) {\n res.append(val)\n }\n }\n return res\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n private func dfs(i: Int, order: String, res: inout [Int]) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n guard let val = val(i: i) else {\n return\n }\n // \u524d\u5e8f\u904d\u5386\n if order == \"pre\" {\n res.append(val)\n }\n dfs(i: left(i: i), order: order, res: &res)\n // \u4e2d\u5e8f\u904d\u5386\n if order == \"in\" {\n res.append(val)\n }\n dfs(i: right(i: i), order: order, res: &res)\n // \u540e\u5e8f\u904d\u5386\n if order == \"post\" {\n res.append(val)\n }\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n func preOrder() -> [Int] {\n var res: [Int] = []\n dfs(i: 0, order: \"pre\", res: &res)\n return res\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n func inOrder() -> [Int] {\n var res: [Int] = []\n dfs(i: 0, order: \"in\", res: &res)\n return res\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n func postOrder() -> [Int] {\n var res: [Int] = []\n dfs(i: 0, order: \"post\", res: &res)\n return res\n }\n}\n
array_binary_tree.js/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n #tree;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(arr) {\n this.#tree = arr;\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n size() {\n return this.#tree.length;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n val(i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= this.size()) return null;\n return this.#tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n left(i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n right(i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n parent(i) {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n levelOrder() {\n let res = [];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < this.size(); i++) {\n if (this.val(i) !== null) res.push(this.val(i));\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n #dfs(i, order, res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (this.val(i) === null) return;\n // \u524d\u5e8f\u904d\u5386\n if (order === 'pre') res.push(this.val(i));\n this.#dfs(this.left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order === 'in') res.push(this.val(i));\n this.#dfs(this.right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order === 'post') res.push(this.val(i));\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n preOrder() {\n const res = [];\n this.#dfs(0, 'pre', res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n inOrder() {\n const res = [];\n this.#dfs(0, 'in', res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n postOrder() {\n const res = [];\n this.#dfs(0, 'post', res);\n return res;\n }\n}\n
array_binary_tree.ts/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n #tree: (number | null)[];\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(arr: (number | null)[]) {\n this.#tree = arr;\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n size(): number {\n return this.#tree.length;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n val(i: number): number | null {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= this.size()) return null;\n return this.#tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n left(i: number): number {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n right(i: number): number {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n parent(i: number): number {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n levelOrder(): number[] {\n let res = [];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < this.size(); i++) {\n if (this.val(i) !== null) res.push(this.val(i));\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n #dfs(i: number, order: Order, res: (number | null)[]): void {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (this.val(i) === null) return;\n // \u524d\u5e8f\u904d\u5386\n if (order === 'pre') res.push(this.val(i));\n this.#dfs(this.left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order === 'in') res.push(this.val(i));\n this.#dfs(this.right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order === 'post') res.push(this.val(i));\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n preOrder(): (number | null)[] {\n const res = [];\n this.#dfs(0, 'pre', res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n inOrder(): (number | null)[] {\n const res = [];\n this.#dfs(0, 'in', res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n postOrder(): (number | null)[] {\n const res = [];\n this.#dfs(0, 'post', res);\n return res;\n }\n}\n
array_binary_tree.dart/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n late List<int?> _tree;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayBinaryTree(this._tree);\n\n /* \u8282\u70b9\u6570\u91cf */\n int size() {\n return _tree.length;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n int? val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size()) {\n return null;\n }\n return _tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int? left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int? right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n int? parent(int i) {\n return (i - 1) ~/ 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n List<int> levelOrder() {\n List<int> res = [];\n for (int i = 0; i < size(); i++) {\n if (val(i) != null) {\n res.add(val(i)!);\n }\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n void dfs(int i, String order, List<int?> res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(i) == null) {\n return;\n }\n // \u524d\u5e8f\u904d\u5386\n if (order == 'pre') {\n res.add(val(i));\n }\n dfs(left(i)!, order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order == 'in') {\n res.add(val(i));\n }\n dfs(right(i)!, order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order == 'post') {\n res.add(val(i));\n }\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n List<int?> preOrder() {\n List<int?> res = [];\n dfs(0, 'pre', res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n List<int?> inOrder() {\n List<int?> res = [];\n dfs(0, 'in', res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n List<int?> postOrder() {\n List<int?> res = [];\n dfs(0, 'post', res);\n return res;\n }\n}\n
array_binary_tree.rs/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nstruct ArrayBinaryTree {\n tree: Vec<Option<i32>>,\n}\n\nimpl ArrayBinaryTree {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(arr: Vec<Option<i32>>) -> Self {\n Self { tree: arr }\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n fn size(&self) -> i32 {\n self.tree.len() as i32\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n fn val(&self, i: i32) -> Option<i32> {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 || i >= self.size() {\n None\n } else {\n self.tree[i as usize]\n }\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n fn left(&self, i: i32) -> i32 {\n 2 * i + 1\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n fn right(&self, i: i32) -> i32 {\n 2 * i + 2\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n fn parent(&self, i: i32) -> i32 {\n (i - 1) / 2\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n fn level_order(&self) -> Vec<i32> {\n let mut res = vec![];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i in 0..self.size() {\n if let Some(val) = self.val(i) {\n res.push(val)\n }\n }\n res\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n fn dfs(&self, i: i32, order: &str, res: &mut Vec<i32>) {\n if self.val(i).is_none() {\n return;\n }\n let val = self.val(i).unwrap();\n // \u524d\u5e8f\u904d\u5386\n if order == \"pre\" {\n res.push(val);\n }\n self.dfs(self.left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if order == \"in\" {\n res.push(val);\n }\n self.dfs(self.right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if order == \"post\" {\n res.push(val);\n }\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n fn pre_order(&self) -> Vec<i32> {\n let mut res = vec![];\n self.dfs(0, \"pre\", &mut res);\n res\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n fn in_order(&self) -> Vec<i32> {\n let mut res = vec![];\n self.dfs(0, \"in\", &mut res);\n res\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n fn post_order(&self) -> Vec<i32> {\n let mut res = vec![];\n self.dfs(0, \"post\", &mut res);\n res\n }\n}\n
array_binary_tree.c/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7ed3\u6784\u4f53 */\ntypedef struct {\n int *tree;\n int size;\n} ArrayBinaryTree;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayBinaryTree *newArrayBinaryTree(int *arr, int arrSize) {\n ArrayBinaryTree *abt = (ArrayBinaryTree *)malloc(sizeof(ArrayBinaryTree));\n abt->tree = malloc(sizeof(int) * arrSize);\n memcpy(abt->tree, arr, sizeof(int) * arrSize);\n abt->size = arrSize;\n return abt;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayBinaryTree(ArrayBinaryTree *abt) {\n free(abt->tree);\n free(abt);\n}\n\n/* \u8282\u70b9\u6570\u91cf */\nint size(ArrayBinaryTree *abt) {\n return abt->size;\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint val(ArrayBinaryTree *abt, int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size(abt))\n return INT_MAX;\n return abt->tree[i];\n}\n\n/* \u5c42\u5e8f\u904d\u5386 */\nint *levelOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size(abt); i++) {\n if (val(abt, i) != INT_MAX)\n res[index++] = val(abt, i);\n }\n *returnSize = index;\n return res;\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(ArrayBinaryTree *abt, int i, char *order, int *res, int *index) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(abt, i) == INT_MAX)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (strcmp(order, \"pre\") == 0)\n res[(*index)++] = val(abt, i);\n dfs(abt, left(i), order, res, index);\n // \u4e2d\u5e8f\u904d\u5386\n if (strcmp(order, \"in\") == 0)\n res[(*index)++] = val(abt, i);\n dfs(abt, right(i), order, res, index);\n // \u540e\u5e8f\u904d\u5386\n if (strcmp(order, \"post\") == 0)\n res[(*index)++] = val(abt, i);\n}\n\n/* \u524d\u5e8f\u904d\u5386 */\nint *preOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n dfs(abt, 0, \"pre\", res, &index);\n *returnSize = index;\n return res;\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nint *inOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n dfs(abt, 0, \"in\", res, &index);\n *returnSize = index;\n return res;\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nint *postOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n dfs(abt, 0, \"post\", res, &index);\n *returnSize = index;\n return res;\n}\n
array_binary_tree.zig[class]{ArrayBinaryTree}-[func]{}\n
"},{"location":"chapter_tree/array_representation_of_tree/#733","title":"7.3.3 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\u4e3b\u8981\u6709\u4ee5\u4e0b\u4f18\u70b9\u3002
- \u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u5bf9\u7f13\u5b58\u53cb\u597d\uff0c\u8bbf\u95ee\u4e0e\u904d\u5386\u901f\u5ea6\u8f83\u5feb\u3002
- \u4e0d\u9700\u8981\u5b58\u50a8\u6307\u9488\uff0c\u6bd4\u8f83\u8282\u7701\u7a7a\u95f4\u3002
- \u5141\u8bb8\u968f\u673a\u8bbf\u95ee\u8282\u70b9\u3002
\u7136\u800c\uff0c\u6570\u7ec4\u8868\u793a\u4e5f\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\u3002
- \u6570\u7ec4\u5b58\u50a8\u9700\u8981\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5b58\u50a8\u6570\u636e\u91cf\u8fc7\u5927\u7684\u6811\u3002
- \u589e\u5220\u8282\u70b9\u9700\u8981\u901a\u8fc7\u6570\u7ec4\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u5b9e\u73b0\uff0c\u6548\u7387\u8f83\u4f4e\u3002
- \u5f53\u4e8c\u53c9\u6811\u4e2d\u5b58\u5728\u5927\u91cf \\(\\text{None}\\) \u65f6\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u7684\u8282\u70b9\u6570\u636e\u6bd4\u91cd\u8f83\u4f4e\uff0c\u7a7a\u95f4\u5229\u7528\u7387\u8f83\u4f4e\u3002
"},{"location":"chapter_tree/avl_tree/","title":"7.5 \u00a0 AVL \u6811 *","text":"\u5728\u201c\u4e8c\u53c9\u641c\u7d22\u6811\u201d\u7ae0\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\uff0c\u5728\u591a\u6b21\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u540e\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u9000\u5316\u4e3a\u94fe\u8868\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c06\u4ece \\(O(\\log n)\\) \u6076\u5316\u4e3a \\(O(n)\\) \u3002
\u5982\u56fe 7-24 \u6240\u793a\uff0c\u7ecf\u8fc7\u4e24\u6b21\u5220\u9664\u8282\u70b9\u64cd\u4f5c\uff0c\u8fd9\u68f5\u4e8c\u53c9\u641c\u7d22\u6811\u4fbf\u4f1a\u9000\u5316\u4e3a\u94fe\u8868\u3002
\u56fe 7-24 \u00a0 AVL \u6811\u5728\u5220\u9664\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316
\u518d\u4f8b\u5982\uff0c\u5728\u56fe 7-25 \u6240\u793a\u7684\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e24\u4e2a\u8282\u70b9\u540e\uff0c\u6811\u5c06\u4e25\u91cd\u5411\u5de6\u503e\u659c\uff0c\u67e5\u627e\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u968f\u4e4b\u6076\u5316\u3002
\u56fe 7-25 \u00a0 AVL \u6811\u5728\u63d2\u5165\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316
1962 \u5e74 G. M. Adelson-Velsky \u548c E. M. Landis \u5728\u8bba\u6587 \"An algorithm for the organization of information\" \u4e2d\u63d0\u51fa\u4e86\u300cAVL \u6811\u300d\u3002\u8bba\u6587\u4e2d\u8be6\u7ec6\u63cf\u8ff0\u4e86\u4e00\u7cfb\u5217\u64cd\u4f5c\uff0c\u786e\u4fdd\u5728\u6301\u7eed\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4e0d\u4f1a\u9000\u5316\uff0c\u4ece\u800c\u4f7f\u5f97\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4fdd\u6301\u5728 \\(O(\\log n)\\) \u7ea7\u522b\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u5728\u9700\u8981\u9891\u7e41\u8fdb\u884c\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u7684\u573a\u666f\u4e2d\uff0cAVL \u6811\u80fd\u59cb\u7ec8\u4fdd\u6301\u9ad8\u6548\u7684\u6570\u636e\u64cd\u4f5c\u6027\u80fd\uff0c\u5177\u6709\u5f88\u597d\u7684\u5e94\u7528\u4ef7\u503c\u3002
"},{"location":"chapter_tree/avl_tree/#751-avl","title":"7.5.1 \u00a0 AVL \u6811\u5e38\u89c1\u672f\u8bed","text":"AVL \u6811\u65e2\u662f\u4e8c\u53c9\u641c\u7d22\u6811\u4e5f\u662f\u5e73\u8861\u4e8c\u53c9\u6811\uff0c\u540c\u65f6\u6ee1\u8db3\u8fd9\u4e24\u7c7b\u4e8c\u53c9\u6811\u7684\u6240\u6709\u6027\u8d28\uff0c\u56e0\u6b64\u4e5f\u88ab\u79f0\u4e3a\u300c\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811 balanced binary search tree\u300d\u3002
"},{"location":"chapter_tree/avl_tree/#1","title":"1. \u00a0 \u8282\u70b9\u9ad8\u5ea6","text":"\u7531\u4e8e AVL \u6811\u7684\u76f8\u5173\u64cd\u4f5c\u9700\u8981\u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u4e3a\u8282\u70b9\u7c7b\u6dfb\u52a0 height \u53d8\u91cf\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig class TreeNode:\n \"\"\"AVL \u6811\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.height: int = 0 # \u8282\u70b9\u9ad8\u5ea6\n self.left: TreeNode | None = None # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n self.right: TreeNode | None = None # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nstruct TreeNode {\n int val{}; // \u8282\u70b9\u503c\n int height = 0; // \u8282\u70b9\u9ad8\u5ea6\n TreeNode *left{}; // \u5de6\u5b50\u8282\u70b9\n TreeNode *right{}; // \u53f3\u5b50\u8282\u70b9\n TreeNode() = default;\n explicit TreeNode(int x) : val(x){}\n};\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n public int val; // \u8282\u70b9\u503c\n public int height; // \u8282\u70b9\u9ad8\u5ea6\n public TreeNode left; // \u5de6\u5b50\u8282\u70b9\n public TreeNode right; // \u53f3\u5b50\u8282\u70b9\n public TreeNode(int x) { val = x; }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode(int? x) {\n public int? val = x; // \u8282\u70b9\u503c\n public int height; // \u8282\u70b9\u9ad8\u5ea6\n public TreeNode? left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n public TreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
/* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\n Val int // \u8282\u70b9\u503c\n Height int // \u8282\u70b9\u9ad8\u5ea6\n Left *TreeNode // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n Right *TreeNode // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n var val: Int // \u8282\u70b9\u503c\n var height: Int // \u8282\u70b9\u9ad8\u5ea6\n var left: TreeNode? // \u5de6\u5b50\u8282\u70b9\n var right: TreeNode? // \u53f3\u5b50\u8282\u70b9\n\n init(x: Int) {\n val = x\n height = 0\n }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val; // \u8282\u70b9\u503c\n height; //\u8282\u70b9\u9ad8\u5ea6\n left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n constructor(val, left, right, height) {\n this.val = val === undefined ? 0 : val;\n this.height = height === undefined ? 0 : height;\n this.left = left === undefined ? null : left;\n this.right = right === undefined ? null : right;\n }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val: number; // \u8282\u70b9\u503c\n height: number; // \u8282\u70b9\u9ad8\u5ea6\n left: TreeNode | null; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n right: TreeNode | null; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {\n this.val = val === undefined ? 0 : val;\n this.height = height === undefined ? 0 : height; \n this.left = left === undefined ? null : left; \n this.right = right === undefined ? null : right; \n }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n int val; // \u8282\u70b9\u503c\n int height; // \u8282\u70b9\u9ad8\u5ea6\n TreeNode? left; // \u5de6\u5b50\u8282\u70b9\n TreeNode? right; // \u53f3\u5b50\u8282\u70b9\n TreeNode(this.val, [this.height = 0, this.left, this.right]);\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\n val: i32, // \u8282\u70b9\u503c\n height: i32, // \u8282\u70b9\u9ad8\u5ea6\n left: Option<Rc<RefCell<TreeNode>>>, // \u5de6\u5b50\u8282\u70b9\n right: Option<Rc<RefCell<TreeNode>>>, // \u53f3\u5b50\u8282\u70b9\n}\n\nimpl TreeNode {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(val: i32) -> Rc<RefCell<Self>> {\n Rc::new(RefCell::new(Self {\n val,\n height: 0,\n left: None,\n right: None\n }))\n }\n}\n
/* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nTreeNode struct TreeNode {\n int val;\n int height;\n struct TreeNode *left;\n struct TreeNode *right;\n} TreeNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\n TreeNode *node;\n\n node = (TreeNode *)malloc(sizeof(TreeNode));\n node->val = val;\n node->height = 0;\n node->left = NULL;\n node->right = NULL;\n return node;\n}\n
\n
\u201c\u8282\u70b9\u9ad8\u5ea6\u201d\u662f\u6307\u4ece\u8be5\u8282\u70b9\u5230\u5176\u6700\u8fdc\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u5373\u6240\u7ecf\u8fc7\u7684\u201c\u8fb9\u201d\u7684\u6570\u91cf\u3002\u9700\u8981\u7279\u522b\u6ce8\u610f\u7684\u662f\uff0c\u53f6\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a \\(0\\) \uff0c\u800c\u7a7a\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a \\(-1\\) \u3002\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u5de5\u5177\u51fd\u6570\uff0c\u5206\u522b\u7528\u4e8e\u83b7\u53d6\u548c\u66f4\u65b0\u8282\u70b9\u7684\u9ad8\u5ea6\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef height(self, node: TreeNode | None) -> int:\n \"\"\"\u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\"\"\"\n # \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n if node is not None:\n return node.height\n return -1\n\ndef update_height(self, node: TreeNode | None):\n \"\"\"\u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\"\"\"\n # \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height = max([self.height(node.left), self.height(node.right)]) + 1\n
avl_tree.cpp/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == nullptr ? -1 : node->height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node->height = max(height(node->left), height(node->right)) + 1;\n}\n
avl_tree.java/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height = Math.max(height(node.left), height(node.right)) + 1;\n}\n
avl_tree.cs/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint Height(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid UpdateHeight(TreeNode node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height = Math.Max(Height(node.left), Height(node.right)) + 1;\n}\n
avl_tree.go/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) height(node *TreeNode) int {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n if node != nil {\n return node.Height\n }\n return -1\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) updateHeight(node *TreeNode) {\n lh := t.height(node.Left)\n rh := t.height(node.Right)\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n if lh > rh {\n node.Height = lh + 1\n } else {\n node.Height = rh + 1\n }\n}\n
avl_tree.swift/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc height(node: TreeNode?) -> Int {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n node == nil ? -1 : node!.height\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc updateHeight(node: TreeNode?) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node?.height = max(height(node: node?.left), height(node: node?.right)) + 1\n}\n
avl_tree.js/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node === null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\n#updateHeight(node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height =\n Math.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
avl_tree.ts/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node: TreeNode): number {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node === null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nupdateHeight(node: TreeNode): void {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height =\n Math.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
avl_tree.dart/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode? node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node!.height = max(height(node.left), height(node.right)) + 1;\n}\n
avl_tree.rs/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfn height(node: OptionTreeNodeRc) -> i32 {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n match node {\n Some(node) => node.borrow().height,\n None => -1,\n }\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfn update_height(node: OptionTreeNodeRc) {\n if let Some(node) = node {\n let left = node.borrow().left.clone();\n let right = node.borrow().right.clone();\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.borrow_mut().height = std::cmp::max(Self::height(left), Self::height(right)) + 1;\n }\n}\n
avl_tree.c/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n if (node != NULL) {\n return node->height;\n }\n return -1;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\n int lh = height(node->left);\n int rh = height(node->right);\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n if (lh > rh) {\n node->height = lh + 1;\n } else {\n node->height = rh + 1;\n }\n}\n
avl_tree.zig// \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\nfn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n _ = self;\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return if (node == null) -1 else node.?.height;\n}\n\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nfn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.?.height = @max(self.height(node.?.left), self.height(node.?.right)) + 1;\n}\n
"},{"location":"chapter_tree/avl_tree/#2","title":"2. \u00a0 \u8282\u70b9\u5e73\u8861\u56e0\u5b50","text":"\u8282\u70b9\u7684\u300c\u5e73\u8861\u56e0\u5b50 balance factor\u300d\u5b9a\u4e49\u4e3a\u8282\u70b9\u5de6\u5b50\u6811\u7684\u9ad8\u5ea6\u51cf\u53bb\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\uff0c\u540c\u65f6\u89c4\u5b9a\u7a7a\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4e3a \\(0\\) \u3002\u6211\u4eec\u540c\u6837\u5c06\u83b7\u53d6\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u7684\u529f\u80fd\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef balance_factor(self, node: TreeNode | None) -> int:\n \"\"\"\u83b7\u53d6\u5e73\u8861\u56e0\u5b50\"\"\"\n # \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if node is None:\n return 0\n # \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return self.height(node.left) - self.height(node.right)\n
avl_tree.cpp/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == nullptr)\n return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node->left) - height(node->right);\n}\n
avl_tree.java/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null)\n return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node.left) - height(node.right);\n}\n
avl_tree.cs/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint BalanceFactor(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return Height(node.left) - Height(node.right);\n}\n
avl_tree.go/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc (t *aVLTree) balanceFactor(node *TreeNode) int {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if node == nil {\n return 0\n }\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return t.height(node.Left) - t.height(node.Right)\n}\n
avl_tree.swift/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc balanceFactor(node: TreeNode?) -> Int {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n guard let node = node else { return 0 }\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node: node.left) - height(node: node.right)\n}\n
avl_tree.js/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node === null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return this.height(node.left) - this.height(node.right);\n}\n
avl_tree.ts/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node: TreeNode): number {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node === null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return this.height(node.left) - this.height(node.right);\n}\n
avl_tree.dart/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node.left) - height(node.right);\n}\n
avl_tree.rs/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfn balance_factor(node: OptionTreeNodeRc) -> i32 {\n match node {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n None => 0,\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n Some(node) => {\n Self::height(node.borrow().left.clone()) - Self::height(node.borrow().right.clone())\n }\n }\n}\n
avl_tree.c/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == NULL) {\n return 0;\n }\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node->left) - height(node->right);\n}\n
avl_tree.zig// \u83b7\u53d6\u5e73\u8861\u56e0\u5b50\nfn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return self.height(node.?.left) - self.height(node.?.right);\n}\n
Note
\u8bbe\u5e73\u8861\u56e0\u5b50\u4e3a \\(f\\) \uff0c\u5219\u4e00\u68f5 AVL \u6811\u7684\u4efb\u610f\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7686\u6ee1\u8db3 \\(-1 \\le f \\le 1\\) \u3002
"},{"location":"chapter_tree/avl_tree/#752-avl","title":"7.5.2 \u00a0 AVL \u6811\u65cb\u8f6c","text":"AVL \u6811\u7684\u7279\u70b9\u5728\u4e8e\u201c\u65cb\u8f6c\u201d\u64cd\u4f5c\uff0c\u5b83\u80fd\u591f\u5728\u4e0d\u5f71\u54cd\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u524d\u63d0\u4e0b\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u65cb\u8f6c\u64cd\u4f5c\u65e2\u80fd\u4fdd\u6301\u201c\u4e8c\u53c9\u641c\u7d22\u6811\u201d\u7684\u6027\u8d28\uff0c\u4e5f\u80fd\u4f7f\u6811\u91cd\u65b0\u53d8\u4e3a\u201c\u5e73\u8861\u4e8c\u53c9\u6811\u201d\u3002
\u6211\u4eec\u5c06\u5e73\u8861\u56e0\u5b50\u7edd\u5bf9\u503c \\(> 1\\) \u7684\u8282\u70b9\u79f0\u4e3a\u201c\u5931\u8861\u8282\u70b9\u201d\u3002\u6839\u636e\u8282\u70b9\u5931\u8861\u60c5\u51b5\u7684\u4e0d\u540c\uff0c\u65cb\u8f6c\u64cd\u4f5c\u5206\u4e3a\u56db\u79cd\uff1a\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u540e\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u540e\u53f3\u65cb\u3002\u4e0b\u9762\u8be6\u7ec6\u4ecb\u7ecd\u8fd9\u4e9b\u65cb\u8f6c\u64cd\u4f5c\u3002
"},{"location":"chapter_tree/avl_tree/#1_1","title":"1. \u00a0 \u53f3\u65cb","text":"\u5982\u56fe 7-26 \u6240\u793a\uff0c\u8282\u70b9\u4e0b\u65b9\u4e3a\u5e73\u8861\u56e0\u5b50\u3002\u4ece\u5e95\u81f3\u9876\u770b\uff0c\u4e8c\u53c9\u6811\u4e2d\u9996\u4e2a\u5931\u8861\u8282\u70b9\u662f\u201c\u8282\u70b9 3\u201d\u3002\u6211\u4eec\u5173\u6ce8\u4ee5\u8be5\u5931\u8861\u8282\u70b9\u4e3a\u6839\u8282\u70b9\u7684\u5b50\u6811\uff0c\u5c06\u8be5\u8282\u70b9\u8bb0\u4e3a node \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u8bb0\u4e3a child \uff0c\u6267\u884c\u201c\u53f3\u65cb\u201d\u64cd\u4f5c\u3002\u5b8c\u6210\u53f3\u65cb\u540e\uff0c\u5b50\u6811\u6062\u590d\u5e73\u8861\uff0c\u5e76\u4e14\u4ecd\u7136\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6027\u8d28\u3002
<1><2><3><4> \u56fe 7-26 \u00a0 \u53f3\u65cb\u64cd\u4f5c\u6b65\u9aa4
\u5982\u56fe 7-27 \u6240\u793a\uff0c\u5f53\u8282\u70b9 child \u6709\u53f3\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grandChild \uff09\u65f6\uff0c\u9700\u8981\u5728\u53f3\u65cb\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grandChild \u4f5c\u4e3a node \u7684\u5de6\u5b50\u8282\u70b9\u3002
\u56fe 7-27 \u00a0 \u6709 grandChild \u7684\u53f3\u65cb\u64cd\u4f5c
\u201c\u5411\u53f3\u65cb\u8f6c\u201d\u662f\u4e00\u79cd\u5f62\u8c61\u5316\u7684\u8bf4\u6cd5\uff0c\u5b9e\u9645\u4e0a\u9700\u8981\u901a\u8fc7\u4fee\u6539\u8282\u70b9\u6307\u9488\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef right_rotate(self, node: TreeNode | None) -> TreeNode | None:\n \"\"\"\u53f3\u65cb\u64cd\u4f5c\"\"\"\n child = node.left\n grand_child = child.right\n # \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node\n node.left = grand_child\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n self.update_height(child)\n # \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n
avl_tree.cpp/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\n TreeNode *child = node->left;\n TreeNode *grandChild = child->right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child->right = node;\n node->left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.java/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode rightRotate(TreeNode node) {\n TreeNode child = node.left;\n TreeNode grandChild = child.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.cs/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? RightRotate(TreeNode? node) {\n TreeNode? child = node?.left;\n TreeNode? grandChild = child?.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n UpdateHeight(node);\n UpdateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.go/* \u53f3\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) rightRotate(node *TreeNode) *TreeNode {\n child := node.Left\n grandChild := child.Right\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.Right = node\n node.Left = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n t.updateHeight(child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.swift/* \u53f3\u65cb\u64cd\u4f5c */\nfunc rightRotate(node: TreeNode?) -> TreeNode? {\n let child = node?.left\n let grandChild = child?.right\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child?.right = node\n node?.left = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node: node)\n updateHeight(node: child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.js/* \u53f3\u65cb\u64cd\u4f5c */\n#rightRotate(node) {\n const child = node.left;\n const grandChild = child.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.#updateHeight(node);\n this.#updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.ts/* \u53f3\u65cb\u64cd\u4f5c */\nrightRotate(node: TreeNode): TreeNode {\n const child = node.left;\n const grandChild = child.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.updateHeight(node);\n this.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.dart/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? rightRotate(TreeNode? node) {\n TreeNode? child = node!.left;\n TreeNode? grandChild = child!.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.rs/* \u53f3\u65cb\u64cd\u4f5c */\nfn right_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n match node {\n Some(node) => {\n let child = node.borrow().left.clone().unwrap();\n let grand_child = child.borrow().right.clone();\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.borrow_mut().right = Some(node.clone());\n node.borrow_mut().left = grand_child;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n Self::update_height(Some(node));\n Self::update_height(Some(child.clone()));\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(child)\n }\n None => None,\n }\n}\n
avl_tree.c/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\n TreeNode *child, *grandChild;\n child = node->left;\n grandChild = child->right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child->right = node;\n node->left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.zig// \u53f3\u65cb\u64cd\u4f5c\nfn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n var child = node.?.left;\n var grandChild = child.?.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.?.right = node;\n node.?.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.updateHeight(node);\n self.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
"},{"location":"chapter_tree/avl_tree/#2_1","title":"2. \u00a0 \u5de6\u65cb","text":"\u76f8\u5e94\u5730\uff0c\u5982\u679c\u8003\u8651\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u201c\u955c\u50cf\u201d\uff0c\u5219\u9700\u8981\u6267\u884c\u56fe 7-28 \u6240\u793a\u7684\u201c\u5de6\u65cb\u201d\u64cd\u4f5c\u3002
\u56fe 7-28 \u00a0 \u5de6\u65cb\u64cd\u4f5c
\u540c\u7406\uff0c\u5982\u56fe 7-29 \u6240\u793a\uff0c\u5f53\u8282\u70b9 child \u6709\u5de6\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grandChild \uff09\u65f6\uff0c\u9700\u8981\u5728\u5de6\u65cb\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grandChild \u4f5c\u4e3a node \u7684\u53f3\u5b50\u8282\u70b9\u3002
\u56fe 7-29 \u00a0 \u6709 grandChild \u7684\u5de6\u65cb\u64cd\u4f5c
\u53ef\u4ee5\u89c2\u5bdf\u5230\uff0c\u53f3\u65cb\u548c\u5de6\u65cb\u64cd\u4f5c\u5728\u903b\u8f91\u4e0a\u662f\u955c\u50cf\u5bf9\u79f0\u7684\uff0c\u5b83\u4eec\u5206\u522b\u89e3\u51b3\u7684\u4e24\u79cd\u5931\u8861\u60c5\u51b5\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u57fa\u4e8e\u5bf9\u79f0\u6027\uff0c\u6211\u4eec\u53ea\u9700\u5c06\u53f3\u65cb\u7684\u5b9e\u73b0\u4ee3\u7801\u4e2d\u7684\u6240\u6709\u7684 left \u66ff\u6362\u4e3a right \uff0c\u5c06\u6240\u6709\u7684 right \u66ff\u6362\u4e3a left \uff0c\u5373\u53ef\u5f97\u5230\u5de6\u65cb\u7684\u5b9e\u73b0\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef left_rotate(self, node: TreeNode | None) -> TreeNode | None:\n \"\"\"\u5de6\u65cb\u64cd\u4f5c\"\"\"\n child = node.right\n grand_child = child.left\n # \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node\n node.right = grand_child\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n self.update_height(child)\n # \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n
avl_tree.cpp/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\n TreeNode *child = node->right;\n TreeNode *grandChild = child->left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child->left = node;\n node->right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.java/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode leftRotate(TreeNode node) {\n TreeNode child = node.right;\n TreeNode grandChild = child.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.cs/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? LeftRotate(TreeNode? node) {\n TreeNode? child = node?.right;\n TreeNode? grandChild = child?.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n UpdateHeight(node);\n UpdateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.go/* \u5de6\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) leftRotate(node *TreeNode) *TreeNode {\n child := node.Right\n grandChild := child.Left\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.Left = node\n node.Right = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n t.updateHeight(child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.swift/* \u5de6\u65cb\u64cd\u4f5c */\nfunc leftRotate(node: TreeNode?) -> TreeNode? {\n let child = node?.right\n let grandChild = child?.left\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child?.left = node\n node?.right = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node: node)\n updateHeight(node: child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.js/* \u5de6\u65cb\u64cd\u4f5c */\n#leftRotate(node) {\n const child = node.right;\n const grandChild = child.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.#updateHeight(node);\n this.#updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.ts/* \u5de6\u65cb\u64cd\u4f5c */\nleftRotate(node: TreeNode): TreeNode {\n const child = node.right;\n const grandChild = child.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.updateHeight(node);\n this.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.dart/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? leftRotate(TreeNode? node) {\n TreeNode? child = node!.right;\n TreeNode? grandChild = child!.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.rs/* \u5de6\u65cb\u64cd\u4f5c */\nfn left_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n match node {\n Some(node) => {\n let child = node.borrow().right.clone().unwrap();\n let grand_child = child.borrow().left.clone();\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.borrow_mut().left = Some(node.clone());\n node.borrow_mut().right = grand_child;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n Self::update_height(Some(node));\n Self::update_height(Some(child.clone()));\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(child)\n }\n None => None,\n }\n}\n
avl_tree.c/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\n TreeNode *child, *grandChild;\n child = node->right;\n grandChild = child->left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child->left = node;\n node->right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.zig// \u5de6\u65cb\u64cd\u4f5c\nfn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n var child = node.?.right;\n var grandChild = child.?.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.?.left = node;\n node.?.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.updateHeight(node);\n self.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
"},{"location":"chapter_tree/avl_tree/#3","title":"3. \u00a0 \u5148\u5de6\u65cb\u540e\u53f3\u65cb","text":"\u5bf9\u4e8e\u56fe 7-30 \u4e2d\u7684\u5931\u8861\u8282\u70b9 3 \uff0c\u4ec5\u4f7f\u7528\u5de6\u65cb\u6216\u53f3\u65cb\u90fd\u65e0\u6cd5\u4f7f\u5b50\u6811\u6062\u590d\u5e73\u8861\u3002\u6b64\u65f6\u9700\u8981\u5148\u5bf9 child \u6267\u884c\u201c\u5de6\u65cb\u201d\uff0c\u518d\u5bf9 node \u6267\u884c\u201c\u53f3\u65cb\u201d\u3002
\u56fe 7-30 \u00a0 \u5148\u5de6\u65cb\u540e\u53f3\u65cb
"},{"location":"chapter_tree/avl_tree/#4","title":"4. \u00a0 \u5148\u53f3\u65cb\u540e\u5de6\u65cb","text":"\u5982\u56fe 7-31 \u6240\u793a\uff0c\u5bf9\u4e8e\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u955c\u50cf\u60c5\u51b5\uff0c\u9700\u8981\u5148\u5bf9 child \u6267\u884c\u201c\u53f3\u65cb\u201d\uff0c\u518d\u5bf9 node \u6267\u884c\u201c\u5de6\u65cb\u201d\u3002
\u56fe 7-31 \u00a0 \u5148\u53f3\u65cb\u540e\u5de6\u65cb
"},{"location":"chapter_tree/avl_tree/#5","title":"5. \u00a0 \u65cb\u8f6c\u7684\u9009\u62e9","text":"\u56fe 7-32 \u5c55\u793a\u7684\u56db\u79cd\u5931\u8861\u60c5\u51b5\u4e0e\u4e0a\u8ff0\u6848\u4f8b\u9010\u4e2a\u5bf9\u5e94\uff0c\u5206\u522b\u9700\u8981\u91c7\u7528\u53f3\u65cb\u3001\u5148\u5de6\u65cb\u540e\u53f3\u65cb\u3001\u5148\u53f3\u65cb\u540e\u5de6\u65cb\u3001\u5de6\u65cb\u7684\u64cd\u4f5c\u3002
\u56fe 7-32 \u00a0 AVL \u6811\u7684\u56db\u79cd\u65cb\u8f6c\u60c5\u51b5
\u5982\u4e0b\u8868\u6240\u793a\uff0c\u6211\u4eec\u901a\u8fc7\u5224\u65ad\u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4ee5\u53ca\u8f83\u9ad8\u4e00\u4fa7\u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7684\u6b63\u8d1f\u53f7\uff0c\u6765\u786e\u5b9a\u5931\u8861\u8282\u70b9\u5c5e\u4e8e\u56fe 7-32 \u4e2d\u7684\u54ea\u79cd\u60c5\u51b5\u3002
\u8868 7-3 \u00a0 \u56db\u79cd\u65cb\u8f6c\u60c5\u51b5\u7684\u9009\u62e9\u6761\u4ef6
\u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5e94\u91c7\u7528\u7684\u65cb\u8f6c\u65b9\u6cd5 \\(> 1\\) \uff08\u5de6\u504f\u6811\uff09 \\(\\geq 0\\) \u53f3\u65cb \\(> 1\\) \uff08\u5de6\u504f\u6811\uff09 \\(<0\\) \u5148\u5de6\u65cb\u540e\u53f3\u65cb \\(< -1\\) \uff08\u53f3\u504f\u6811\uff09 \\(\\leq 0\\) \u5de6\u65cb \\(< -1\\) \uff08\u53f3\u504f\u6811\uff09 \\(>0\\) \u5148\u53f3\u65cb\u540e\u5de6\u65cb \u4e3a\u4e86\u4fbf\u4e8e\u4f7f\u7528\uff0c\u6211\u4eec\u5c06\u65cb\u8f6c\u64cd\u4f5c\u5c01\u88c5\u6210\u4e00\u4e2a\u51fd\u6570\u3002\u6709\u4e86\u8fd9\u4e2a\u51fd\u6570\uff0c\u6211\u4eec\u5c31\u80fd\u5bf9\u5404\u79cd\u5931\u8861\u60c5\u51b5\u8fdb\u884c\u65cb\u8f6c\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef rotate(self, node: TreeNode | None) -> TreeNode | None:\n \"\"\"\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\"\"\"\n # \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n balance_factor = self.balance_factor(node)\n # \u5de6\u504f\u6811\n if balance_factor > 1:\n if self.balance_factor(node.left) >= 0:\n # \u53f3\u65cb\n return self.right_rotate(node)\n else:\n # \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = self.left_rotate(node.left)\n return self.right_rotate(node)\n # \u53f3\u504f\u6811\n elif balance_factor < -1:\n if self.balance_factor(node.right) <= 0:\n # \u5de6\u65cb\n return self.left_rotate(node)\n else:\n # \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = self.right_rotate(node.right)\n return self.left_rotate(node)\n # \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n
avl_tree.cpp/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int _balanceFactor = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (_balanceFactor > 1) {\n if (balanceFactor(node->left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node->left = leftRotate(node->left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (_balanceFactor < -1) {\n if (balanceFactor(node->right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node->right = rightRotate(node->right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.java/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode rotate(TreeNode node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int balanceFactor = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactor > 1) {\n if (balanceFactor(node.left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = leftRotate(node.left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactor < -1) {\n if (balanceFactor(node.right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = rightRotate(node.right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.cs/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? Rotate(TreeNode? node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int balanceFactorInt = BalanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactorInt > 1) {\n if (BalanceFactor(node?.left) >= 0) {\n // \u53f3\u65cb\n return RightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node!.left = LeftRotate(node!.left);\n return RightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactorInt < -1) {\n if (BalanceFactor(node?.right) <= 0) {\n // \u5de6\u65cb\n return LeftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node!.right = RightRotate(node!.right);\n return LeftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.go/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc (t *aVLTree) rotate(node *TreeNode) *TreeNode {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n // Go \u63a8\u8350\u77ed\u53d8\u91cf\uff0c\u8fd9\u91cc bf \u6307\u4ee3 t.balanceFactor\n bf := t.balanceFactor(node)\n // \u5de6\u504f\u6811\n if bf > 1 {\n if t.balanceFactor(node.Left) >= 0 {\n // \u53f3\u65cb\n return t.rightRotate(node)\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.Left = t.leftRotate(node.Left)\n return t.rightRotate(node)\n }\n }\n // \u53f3\u504f\u6811\n if bf < -1 {\n if t.balanceFactor(node.Right) <= 0 {\n // \u5de6\u65cb\n return t.leftRotate(node)\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.Right = t.rightRotate(node.Right)\n return t.leftRotate(node)\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n}\n
avl_tree.swift/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc rotate(node: TreeNode?) -> TreeNode? {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n let balanceFactor = balanceFactor(node: node)\n // \u5de6\u504f\u6811\n if balanceFactor > 1 {\n if self.balanceFactor(node: node?.left) >= 0 {\n // \u53f3\u65cb\n return rightRotate(node: node)\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node?.left = leftRotate(node: node?.left)\n return rightRotate(node: node)\n }\n }\n // \u53f3\u504f\u6811\n if balanceFactor < -1 {\n if self.balanceFactor(node: node?.right) <= 0 {\n // \u5de6\u65cb\n return leftRotate(node: node)\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node?.right = rightRotate(node: node?.right)\n return leftRotate(node: node)\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n}\n
avl_tree.js/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n#rotate(node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n const balanceFactor = this.balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactor > 1) {\n if (this.balanceFactor(node.left) >= 0) {\n // \u53f3\u65cb\n return this.#rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = this.#leftRotate(node.left);\n return this.#rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactor < -1) {\n if (this.balanceFactor(node.right) <= 0) {\n // \u5de6\u65cb\n return this.#leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = this.#rightRotate(node.right);\n return this.#leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.ts/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nrotate(node: TreeNode): TreeNode {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n const balanceFactor = this.balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactor > 1) {\n if (this.balanceFactor(node.left) >= 0) {\n // \u53f3\u65cb\n return this.rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = this.leftRotate(node.left);\n return this.rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactor < -1) {\n if (this.balanceFactor(node.right) <= 0) {\n // \u5de6\u65cb\n return this.leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = this.rightRotate(node.right);\n return this.leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.dart/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? rotate(TreeNode? node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int factor = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (factor > 1) {\n if (balanceFactor(node!.left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = leftRotate(node.left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (factor < -1) {\n if (balanceFactor(node!.right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = rightRotate(node.right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.rs/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfn rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n let balance_factor = Self::balance_factor(node.clone());\n // \u5de6\u504f\u6811\n if balance_factor > 1 {\n let node = node.unwrap();\n if Self::balance_factor(node.borrow().left.clone()) >= 0 {\n // \u53f3\u65cb\n Self::right_rotate(Some(node))\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n let left = node.borrow().left.clone();\n node.borrow_mut().left = Self::left_rotate(left);\n Self::right_rotate(Some(node))\n }\n }\n // \u53f3\u504f\u6811\n else if balance_factor < -1 {\n let node = node.unwrap();\n if Self::balance_factor(node.borrow().right.clone()) <= 0 {\n // \u5de6\u65cb\n Self::left_rotate(Some(node))\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::right_rotate(right);\n Self::left_rotate(Some(node))\n }\n } else {\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n node\n }\n}\n
avl_tree.c/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int bf = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (bf > 1) {\n if (balanceFactor(node->left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node->left = leftRotate(node->left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (bf < -1) {\n if (balanceFactor(node->right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node->right = rightRotate(node->right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.zig// \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nfn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n var balance_factor = self.balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balance_factor > 1) {\n if (self.balanceFactor(node.?.left) >= 0) {\n // \u53f3\u65cb\n return self.rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.?.left = self.leftRotate(node.?.left);\n return self.rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balance_factor < -1) {\n if (self.balanceFactor(node.?.right) <= 0) {\n // \u5de6\u65cb\n return self.leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.?.right = self.rightRotate(node.?.right);\n return self.leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
"},{"location":"chapter_tree/avl_tree/#753-avl","title":"7.5.3 \u00a0 AVL \u6811\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_tree/avl_tree/#1_2","title":"1. \u00a0 \u63d2\u5165\u8282\u70b9","text":"AVL \u6811\u7684\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u4e0e\u4e8c\u53c9\u641c\u7d22\u6811\u5728\u4e3b\u4f53\u4e0a\u7c7b\u4f3c\u3002\u552f\u4e00\u7684\u533a\u522b\u5728\u4e8e\uff0c\u5728 AVL \u6811\u4e2d\u63d2\u5165\u8282\u70b9\u540e\uff0c\u4ece\u8be5\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u53ef\u80fd\u4f1a\u51fa\u73b0\u4e00\u7cfb\u5217\u5931\u8861\u8282\u70b9\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4ece\u8fd9\u4e2a\u8282\u70b9\u5f00\u59cb\uff0c\u81ea\u5e95\u5411\u4e0a\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef insert(self, val):\n \"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\n self._root = self.insert_helper(self._root, val)\n\ndef insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:\n \"\"\"\u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\n if node is None:\n return TreeNode(val)\n # 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9\n if val < node.val:\n node.left = self.insert_helper(node.left, val)\n elif val > node.val:\n node.right = self.insert_helper(node.right, val)\n else:\n # \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n # 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n return self.rotate(node)\n
avl_tree.cpp/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\n root = insertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\n if (node == nullptr)\n return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node->val)\n node->left = insertHelper(node->left, val);\n else if (val > node->val)\n node->right = insertHelper(node->right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.java/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\n root = insertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode insertHelper(TreeNode node, int val) {\n if (node == null)\n return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val)\n node.left = insertHelper(node.left, val);\n else if (val > node.val)\n node.right = insertHelper(node.right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.cs/* \u63d2\u5165\u8282\u70b9 */\nvoid Insert(int val) {\n root = InsertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? InsertHelper(TreeNode? node, int val) {\n if (node == null) return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val)\n node.left = InsertHelper(node.left, val);\n else if (val > node.val)\n node.right = InsertHelper(node.right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n UpdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.go/* \u63d2\u5165\u8282\u70b9 */\nfunc (t *aVLTree) insert(val int) {\n t.root = t.insertHelper(t.root, val)\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) insertHelper(node *TreeNode, val int) *TreeNode {\n if node == nil {\n return NewTreeNode(val)\n }\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if val < node.Val.(int) {\n node.Left = t.insertHelper(node.Left, val)\n } else if val > node.Val.(int) {\n node.Right = t.insertHelper(node.Right, val)\n } else {\n // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = t.rotate(node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.swift/* \u63d2\u5165\u8282\u70b9 */\nfunc insert(val: Int) {\n root = insertHelper(node: root, val: val)\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc insertHelper(node: TreeNode?, val: Int) -> TreeNode? {\n var node = node\n if node == nil {\n return TreeNode(x: val)\n }\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if val < node!.val {\n node?.left = insertHelper(node: node?.left, val: val)\n } else if val > node!.val {\n node?.right = insertHelper(node: node?.right, val: val)\n } else {\n return node // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n updateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node: node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.js/* \u63d2\u5165\u8282\u70b9 */\ninsert(val) {\n this.root = this.#insertHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#insertHelper(node, val) {\n if (node === null) return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val) node.left = this.#insertHelper(node.left, val);\n else if (val > node.val)\n node.right = this.#insertHelper(node.right, val);\n else return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n this.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.#rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.ts/* \u63d2\u5165\u8282\u70b9 */\ninsert(val: number): void {\n this.root = this.insertHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\ninsertHelper(node: TreeNode, val: number): TreeNode {\n if (node === null) return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val) {\n node.left = this.insertHelper(node.left, val);\n } else if (val > node.val) {\n node.right = this.insertHelper(node.right, val);\n } else {\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n this.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.dart/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\n root = insertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? insertHelper(TreeNode? node, int val) {\n if (node == null) return TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val)\n node.left = insertHelper(node.left, val);\n else if (val > node.val)\n node.right = insertHelper(node.right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.rs/* \u63d2\u5165\u8282\u70b9 */\nfn insert(&mut self, val: i32) {\n self.root = Self::insert_helper(self.root.clone(), val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn insert_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\n match node {\n Some(mut node) => {\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n match {\n let node_val = node.borrow().val;\n node_val\n }\n .cmp(&val)\n {\n Ordering::Greater => {\n let left = node.borrow().left.clone();\n node.borrow_mut().left = Self::insert_helper(left, val);\n }\n Ordering::Less => {\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::insert_helper(right, val);\n }\n Ordering::Equal => {\n return Some(node); // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n }\n Self::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Self::rotate(Some(node)).unwrap();\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(node)\n }\n None => Some(TreeNode::new(val)),\n }\n}\n
avl_tree.c/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(AVLTree *tree, int val) {\n tree->root = insertHelper(tree->root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\n if (node == NULL) {\n return newTreeNode(val);\n }\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node->val) {\n node->left = insertHelper(node->left, val);\n } else if (val > node->val) {\n node->right = insertHelper(node->right, val);\n } else {\n // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.zig// \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, val: T) !void {\n self.root = (try self.insertHelper(self.root, val)).?;\n}\n\n// \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {\n var node = node_;\n if (node == null) {\n var tmp_node = try self.mem_allocator.create(inc.TreeNode(T));\n tmp_node.init(val);\n return tmp_node;\n }\n // 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9\n if (val < node.?.val) {\n node.?.left = try self.insertHelper(node.?.left, val);\n } else if (val > node.?.val) {\n node.?.right = try self.insertHelper(node.?.right, val);\n } else {\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n self.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n // 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n node = self.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
"},{"location":"chapter_tree/avl_tree/#2_2","title":"2. \u00a0 \u5220\u9664\u8282\u70b9","text":"\u7c7b\u4f3c\u5730\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5220\u9664\u8282\u70b9\u65b9\u6cd5\u7684\u57fa\u7840\u4e0a\uff0c\u9700\u8981\u4ece\u5e95\u81f3\u9876\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef remove(self, val: int):\n \"\"\"\u5220\u9664\u8282\u70b9\"\"\"\n self._root = self.remove_helper(self._root, val)\n\ndef remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:\n \"\"\"\u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\n if node is None:\n return None\n # 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b\n if val < node.val:\n node.left = self.remove_helper(node.left, val)\n elif val > node.val:\n node.right = self.remove_helper(node.right, val)\n else:\n if node.left is None or node.right is None:\n child = node.left or node.right\n # \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if child is None:\n return None\n # \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else:\n node = child\n else:\n # \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n temp = node.right\n while temp.left is not None:\n temp = temp.left\n node.right = self.remove_helper(node.right, temp.val)\n node.val = temp.val\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n # 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n return self.rotate(node)\n
avl_tree.cpp/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\n root = removeHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\n if (node == nullptr)\n return nullptr;\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if (val < node->val)\n node->left = removeHelper(node->left, val);\n else if (val > node->val)\n node->right = removeHelper(node->right, val);\n else {\n if (node->left == nullptr || node->right == nullptr) {\n TreeNode *child = node->left != nullptr ? node->left : node->right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == nullptr) {\n delete node;\n return nullptr;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else {\n delete node;\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode *temp = node->right;\n while (temp->left != nullptr) {\n temp = temp->left;\n }\n int tempVal = temp->val;\n node->right = removeHelper(node->right, temp->val);\n node->val = tempVal;\n }\n }\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.java/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\n root = removeHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode removeHelper(TreeNode node, int val) {\n if (node == null)\n return null;\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if (val < node.val)\n node.left = removeHelper(node.left, val);\n else if (val > node.val)\n node.right = removeHelper(node.right, val);\n else {\n if (node.left == null || node.right == null) {\n TreeNode child = node.left != null ? node.left : node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null)\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else\n node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode temp = node.right;\n while (temp.left != null) {\n temp = temp.left;\n }\n node.right = removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.cs/* \u5220\u9664\u8282\u70b9 */\nvoid Remove(int val) {\n root = RemoveHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? RemoveHelper(TreeNode? node, int val) {\n if (node == null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if (val < node.val)\n node.left = RemoveHelper(node.left, val);\n else if (val > node.val)\n node.right = RemoveHelper(node.right, val);\n else {\n if (node.left == null || node.right == null) {\n TreeNode? child = node.left ?? node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null)\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else\n node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode? temp = node.right;\n while (temp.left != null) {\n temp = temp.left;\n }\n node.right = RemoveHelper(node.right, temp.val!.Value);\n node.val = temp.val;\n }\n }\n UpdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.go/* \u5220\u9664\u8282\u70b9 */\nfunc (t *aVLTree) remove(val int) {\n t.root = t.removeHelper(t.root, val)\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) removeHelper(node *TreeNode, val int) *TreeNode {\n if node == nil {\n return nil\n }\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if val < node.Val.(int) {\n node.Left = t.removeHelper(node.Left, val)\n } else if val > node.Val.(int) {\n node.Right = t.removeHelper(node.Right, val)\n } else {\n if node.Left == nil || node.Right == nil {\n child := node.Left\n if node.Right != nil {\n child = node.Right\n }\n if child == nil {\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n return nil\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n node = child\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n temp := node.Right\n for temp.Left != nil {\n temp = temp.Left\n }\n node.Right = t.removeHelper(node.Right, temp.Val.(int))\n node.Val = temp.Val\n }\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = t.rotate(node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.swift/* \u5220\u9664\u8282\u70b9 */\nfunc remove(val: Int) {\n root = removeHelper(node: root, val: val)\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc removeHelper(node: TreeNode?, val: Int) -> TreeNode? {\n var node = node\n if node == nil {\n return nil\n }\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if val < node!.val {\n node?.left = removeHelper(node: node?.left, val: val)\n } else if val > node!.val {\n node?.right = removeHelper(node: node?.right, val: val)\n } else {\n if node?.left == nil || node?.right == nil {\n let child = node?.left != nil ? node?.left : node?.right\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if child == nil {\n return nil\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else {\n node = child\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n var temp = node?.right\n while temp?.left != nil {\n temp = temp?.left\n }\n node?.right = removeHelper(node: node?.right, val: temp!.val)\n node?.val = temp!.val\n }\n }\n updateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node: node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.js/* \u5220\u9664\u8282\u70b9 */\nremove(val) {\n this.root = this.#removeHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#removeHelper(node, val) {\n if (node === null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if (val < node.val) node.left = this.#removeHelper(node.left, val);\n else if (val > node.val)\n node.right = this.#removeHelper(node.right, val);\n else {\n if (node.left === null || node.right === null) {\n const child = node.left !== null ? node.left : node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child === null) return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n let temp = node.right;\n while (temp.left !== null) {\n temp = temp.left;\n }\n node.right = this.#removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n this.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.#rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.ts/* \u5220\u9664\u8282\u70b9 */\nremove(val: number): void {\n this.root = this.removeHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nremoveHelper(node: TreeNode, val: number): TreeNode {\n if (node === null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if (val < node.val) {\n node.left = this.removeHelper(node.left, val);\n } else if (val > node.val) {\n node.right = this.removeHelper(node.right, val);\n } else {\n if (node.left === null || node.right === null) {\n const child = node.left !== null ? node.left : node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child === null) {\n return null;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n let temp = node.right;\n while (temp.left !== null) {\n temp = temp.left;\n }\n node.right = this.removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n this.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.dart/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\n root = removeHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? removeHelper(TreeNode? node, int val) {\n if (node == null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if (val < node.val)\n node.left = removeHelper(node.left, val);\n else if (val > node.val)\n node.right = removeHelper(node.right, val);\n else {\n if (node.left == null || node.right == null) {\n TreeNode? child = node.left ?? node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null)\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else\n node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode? temp = node.right;\n while (temp!.left != null) {\n temp = temp.left;\n }\n node.right = removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.rs/* \u5220\u9664\u8282\u70b9 */\nfn remove(&self, val: i32) {\n Self::remove_helper(self.root.clone(), val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn remove_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\n match node {\n Some(mut node) => {\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if val < node.borrow().val {\n let left = node.borrow().left.clone();\n node.borrow_mut().left = Self::remove_helper(left, val);\n } else if val > node.borrow().val {\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::remove_helper(right, val);\n } else if node.borrow().left.is_none() || node.borrow().right.is_none() {\n let child = if node.borrow().left.is_some() {\n node.borrow().left.clone()\n } else {\n node.borrow().right.clone()\n };\n match child {\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n None => {\n return None;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n Some(child) => node = child,\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n let mut temp = node.borrow().right.clone().unwrap();\n loop {\n let temp_left = temp.borrow().left.clone();\n if temp_left.is_none() {\n break;\n }\n temp = temp_left.unwrap();\n }\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::remove_helper(right, temp.borrow().val);\n node.borrow_mut().val = temp.borrow().val;\n }\n Self::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Self::rotate(Some(node)).unwrap();\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(node)\n }\n None => None,\n }\n}\n
avl_tree.c/* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeItem(AVLTree *tree, int val) {\n TreeNode *root = removeHelper(tree->root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\n TreeNode *child, *grandChild;\n if (node == NULL) {\n return NULL;\n }\n /* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\n if (val < node->val) {\n node->left = removeHelper(node->left, val);\n } else if (val > node->val) {\n node->right = removeHelper(node->right, val);\n } else {\n if (node->left == NULL || node->right == NULL) {\n child = node->left;\n if (node->right != NULL) {\n child = node->right;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == NULL) {\n return NULL;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode *temp = node->right;\n while (temp->left != NULL) {\n temp = temp->left;\n }\n int tempVal = temp->val;\n node->right = removeHelper(node->right, temp->val);\n node->val = tempVal;\n }\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.zig// \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, val: T) void {\n self.root = self.removeHelper(self.root, val).?;\n}\n\n// \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {\n var node = node_;\n if (node == null) return null;\n // 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b\n if (val < node.?.val) {\n node.?.left = self.removeHelper(node.?.left, val);\n } else if (val > node.?.val) {\n node.?.right = self.removeHelper(node.?.right, val);\n } else {\n if (node.?.left == null or node.?.right == null) {\n var child = if (node.?.left != null) node.?.left else node.?.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null) {\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n } else {\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n var temp = node.?.right;\n while (temp.?.left != null) {\n temp = temp.?.left;\n }\n node.?.right = self.removeHelper(node.?.right, temp.?.val);\n node.?.val = temp.?.val;\n }\n }\n self.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n // 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n node = self.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
"},{"location":"chapter_tree/avl_tree/#3_1","title":"3. \u00a0 \u67e5\u627e\u8282\u70b9","text":"AVL \u6811\u7684\u8282\u70b9\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u53c9\u641c\u7d22\u6811\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002
"},{"location":"chapter_tree/avl_tree/#754-avl","title":"7.5.4 \u00a0 AVL \u6811\u5178\u578b\u5e94\u7528","text":" - \u7ec4\u7ec7\u548c\u5b58\u50a8\u5927\u578b\u6570\u636e\uff0c\u9002\u7528\u4e8e\u9ad8\u9891\u67e5\u627e\u3001\u4f4e\u9891\u589e\u5220\u7684\u573a\u666f\u3002
- \u7528\u4e8e\u6784\u5efa\u6570\u636e\u5e93\u4e2d\u7684\u7d22\u5f15\u7cfb\u7edf\u3002
- \u7ea2\u9ed1\u6811\u5728\u8bb8\u591a\u5e94\u7528\u4e2d\u6bd4 AVL \u6811\u66f4\u53d7\u6b22\u8fce\u3002\u8fd9\u662f\u56e0\u4e3a\u7ea2\u9ed1\u6811\u7684\u5e73\u8861\u6761\u4ef6\u76f8\u5bf9\u5bbd\u677e\uff0c\u5728\u7ea2\u9ed1\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u6240\u9700\u7684\u65cb\u8f6c\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u5176\u8282\u70b9\u589e\u5220\u64cd\u4f5c\u7684\u5e73\u5747\u6548\u7387\u66f4\u9ad8\u3002
"},{"location":"chapter_tree/binary_search_tree/","title":"7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811","text":"\u5982\u56fe 7-16 \u6240\u793a\uff0c\u300c\u4e8c\u53c9\u641c\u7d22\u6811 binary search tree\u300d\u6ee1\u8db3\u4ee5\u4e0b\u6761\u4ef6\u3002
- \u5bf9\u4e8e\u6839\u8282\u70b9\uff0c\u5de6\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c \\(<\\) \u6839\u8282\u70b9\u7684\u503c \\(<\\) \u53f3\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c\u3002
- \u4efb\u610f\u8282\u70b9\u7684\u5de6\u3001\u53f3\u5b50\u6811\u4e5f\u662f\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5373\u540c\u6837\u6ee1\u8db3\u6761\u4ef6
1. \u3002
\u56fe 7-16 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811
"},{"location":"chapter_tree/binary_search_tree/#741","title":"7.4.1 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u64cd\u4f5c","text":"\u6211\u4eec\u5c06\u4e8c\u53c9\u641c\u7d22\u6811\u5c01\u88c5\u4e3a\u4e00\u4e2a\u7c7b BinarySearchTree \uff0c\u5e76\u58f0\u660e\u4e00\u4e2a\u6210\u5458\u53d8\u91cf root \uff0c\u6307\u5411\u6811\u7684\u6839\u8282\u70b9\u3002
"},{"location":"chapter_tree/binary_search_tree/#1","title":"1. \u00a0 \u67e5\u627e\u8282\u70b9","text":"\u7ed9\u5b9a\u76ee\u6807\u8282\u70b9\u503c num \uff0c\u53ef\u4ee5\u6839\u636e\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6027\u8d28\u6765\u67e5\u627e\u3002\u5982\u56fe 7-17 \u6240\u793a\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u8282\u70b9 cur \uff0c\u4ece\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9 root \u51fa\u53d1\uff0c\u5faa\u73af\u6bd4\u8f83\u8282\u70b9\u503c cur.val \u548c num \u4e4b\u95f4\u7684\u5927\u5c0f\u5173\u7cfb\u3002
- \u82e5
cur.val < num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.right \u3002 - \u82e5
cur.val > num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.left \u3002 - \u82e5
cur.val = num \uff0c\u8bf4\u660e\u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\u5e76\u8fd4\u56de\u8be5\u8282\u70b9\u3002
<1><2><3><4> \u56fe 7-17 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u8282\u70b9\u793a\u4f8b
\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u4e00\u81f4\uff0c\u90fd\u662f\u6bcf\u8f6e\u6392\u9664\u4e00\u534a\u60c5\u51b5\u3002\u5faa\u73af\u6b21\u6570\u6700\u591a\u4e3a\u4e8c\u53c9\u6811\u7684\u9ad8\u5ea6\uff0c\u5f53\u4e8c\u53c9\u6811\u5e73\u8861\u65f6\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_tree.pydef search(self, num: int) -> TreeNode | None:\n \"\"\"\u67e5\u627e\u8282\u70b9\"\"\"\n cur = self._root\n # \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur is not None:\n # \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur.val < num:\n cur = cur.right\n # \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n elif cur.val > num:\n cur = cur.left\n # \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else:\n break\n return cur\n
binary_search_tree.cpp/* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(int num) {\n TreeNode *cur = root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != nullptr) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur->val < num)\n cur = cur->right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur->val > num)\n cur = cur->left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.java/* \u67e5\u627e\u8282\u70b9 */\nTreeNode search(int num) {\n TreeNode cur = root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num)\n cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.cs/* \u67e5\u627e\u8282\u70b9 */\nTreeNode? Search(int num) {\n TreeNode? cur = root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur =\n cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num)\n cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.go/* \u67e5\u627e\u8282\u70b9 */\nfunc (bst *binarySearchTree) search(num int) *TreeNode {\n node := bst.root\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n for node != nil {\n if node.Val.(int) < num {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n node = node.Right\n } else if node.Val.(int) > num {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n node = node.Left\n } else {\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n break\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return node\n}\n
binary_search_tree.swift/* \u67e5\u627e\u8282\u70b9 */\nfunc search(num: Int) -> TreeNode? {\n var cur = root\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur != nil {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur!.val < num {\n cur = cur?.right\n }\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if cur!.val > num {\n cur = cur?.left\n }\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else {\n break\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur\n}\n
binary_search_tree.js/* \u67e5\u627e\u8282\u70b9 */\nsearch(num) {\n let cur = this.root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num) cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.ts/* \u67e5\u627e\u8282\u70b9 */\nsearch(num: number): TreeNode | null {\n let cur = this.root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num) cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.dart/* \u67e5\u627e\u8282\u70b9 */\nTreeNode? search(int _num) {\n TreeNode? cur = _root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < _num)\n cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > _num)\n cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.rs/* \u67e5\u627e\u8282\u70b9 */\npub fn search(&self, num: i32) -> OptionTreeNodeRc {\n let mut cur = self.root.clone();\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while let Some(node) = cur.clone() {\n match num.cmp(&node.borrow().val) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n Ordering::Greater => cur = node.borrow().right.clone(),\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n Ordering::Less => cur = node.borrow().left.clone(),\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n Ordering::Equal => break,\n }\n }\n\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n cur\n}\n
binary_search_tree.c/* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(BinarySearchTree *bst, int num) {\n TreeNode *cur = bst->root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != NULL) {\n if (cur->val < num) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n cur = cur->right;\n } else if (cur->val > num) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n cur = cur->left;\n } else {\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.zig// \u67e5\u627e\u8282\u70b9\nfn search(self: *Self, num: T) ?*inc.TreeNode(T) {\n var cur = self.root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.?.val < num) {\n cur = cur.?.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n } else if (cur.?.val > num) {\n cur = cur.?.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n } else {\n break;\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
"},{"location":"chapter_tree/binary_search_tree/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"\u7ed9\u5b9a\u4e00\u4e2a\u5f85\u63d2\u5165\u5143\u7d20 num \uff0c\u4e3a\u4e86\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\uff0c\u63d2\u5165\u64cd\u4f5c\u6d41\u7a0b\u5982\u56fe 7-18 \u6240\u793a\u3002
- \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff1a\u4e0e\u67e5\u627e\u64cd\u4f5c\u76f8\u4f3c\uff0c\u4ece\u6839\u8282\u70b9\u51fa\u53d1\uff0c\u6839\u636e\u5f53\u524d\u8282\u70b9\u503c\u548c
num \u7684\u5927\u5c0f\u5173\u7cfb\u5faa\u73af\u5411\u4e0b\u641c\u7d22\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\uff08\u904d\u5386\u81f3 \\(\\text{None}\\) \uff09\u65f6\u8df3\u51fa\u5faa\u73af\u3002 - \u5728\u8be5\u4f4d\u7f6e\u63d2\u5165\u8282\u70b9\uff1a\u521d\u59cb\u5316\u8282\u70b9
num \uff0c\u5c06\u8be5\u8282\u70b9\u7f6e\u4e8e \\(\\text{None}\\) \u7684\u4f4d\u7f6e\u3002
\u56fe 7-18 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u63d2\u5165\u8282\u70b9
\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u9700\u8981\u6ce8\u610f\u4ee5\u4e0b\u4e24\u70b9\u3002
- \u4e8c\u53c9\u641c\u7d22\u6811\u4e0d\u5141\u8bb8\u5b58\u5728\u91cd\u590d\u8282\u70b9\uff0c\u5426\u5219\u5c06\u8fdd\u53cd\u5176\u5b9a\u4e49\u3002\u56e0\u6b64\uff0c\u82e5\u5f85\u63d2\u5165\u8282\u70b9\u5728\u6811\u4e2d\u5df2\u5b58\u5728\uff0c\u5219\u4e0d\u6267\u884c\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\u3002
- \u4e3a\u4e86\u5b9e\u73b0\u63d2\u5165\u8282\u70b9\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u8282\u70b9
pre \u4fdd\u5b58\u4e0a\u4e00\u8f6e\u5faa\u73af\u7684\u8282\u70b9\u3002\u8fd9\u6837\u5728\u904d\u5386\u81f3 \\(\\text{None}\\) \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u83b7\u53d6\u5230\u5176\u7236\u8282\u70b9\uff0c\u4ece\u800c\u5b8c\u6210\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_tree.pydef insert(self, num: int):\n \"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\n # \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if self._root is None:\n self._root = TreeNode(num)\n return\n # \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n cur, pre = self._root, None\n while cur is not None:\n # \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if cur.val == num:\n return\n pre = cur\n # \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur.val < num:\n cur = cur.right\n # \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else:\n cur = cur.left\n # \u63d2\u5165\u8282\u70b9\n node = TreeNode(num)\n if pre.val < num:\n pre.right = node\n else:\n pre.left = node\n
binary_search_tree.cpp/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (root == nullptr) {\n root = new TreeNode(num);\n return;\n }\n TreeNode *cur = root, *pre = nullptr;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != nullptr) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur->val == num)\n return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur->val < num)\n cur = cur->right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur->left;\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode *node = new TreeNode(num);\n if (pre->val < num)\n pre->right = node;\n else\n pre->left = node;\n}\n
binary_search_tree.java/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (root == null) {\n root = new TreeNode(num);\n return;\n }\n TreeNode cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val == num)\n return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode node = new TreeNode(num);\n if (pre.val < num)\n pre.right = node;\n else\n pre.left = node;\n}\n
binary_search_tree.cs/* \u63d2\u5165\u8282\u70b9 */\nvoid Insert(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (root == null) {\n root = new TreeNode(num);\n return;\n }\n TreeNode? cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val == num)\n return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n\n // \u63d2\u5165\u8282\u70b9\n TreeNode node = new(num);\n if (pre != null) {\n if (pre.val < num)\n pre.right = node;\n else\n pre.left = node;\n }\n}\n
binary_search_tree.go/* \u63d2\u5165\u8282\u70b9 */\nfunc (bst *binarySearchTree) insert(num int) {\n cur := bst.root\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if cur == nil {\n bst.root = NewTreeNode(num)\n return\n }\n // \u5f85\u63d2\u5165\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\n var pre *TreeNode = nil\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n for cur != nil {\n if cur.Val == num {\n return\n }\n pre = cur\n if cur.Val.(int) < num {\n cur = cur.Right\n } else {\n cur = cur.Left\n }\n }\n // \u63d2\u5165\u8282\u70b9\n node := NewTreeNode(num)\n if pre.Val.(int) < num {\n pre.Right = node\n } else {\n pre.Left = node\n }\n}\n
binary_search_tree.swift/* \u63d2\u5165\u8282\u70b9 */\nfunc insert(num: Int) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if root == nil {\n root = TreeNode(x: num)\n return\n }\n var cur = root\n var pre: TreeNode?\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur != nil {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if cur!.val == num {\n return\n }\n pre = cur\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur!.val < num {\n cur = cur?.right\n }\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else {\n cur = cur?.left\n }\n }\n // \u63d2\u5165\u8282\u70b9\n let node = TreeNode(x: num)\n if pre!.val < num {\n pre?.right = node\n } else {\n pre?.left = node\n }\n}\n
binary_search_tree.js/* \u63d2\u5165\u8282\u70b9 */\ninsert(num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (this.root === null) {\n this.root = new TreeNode(num);\n return;\n }\n let cur = this.root,\n pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val === num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n const node = new TreeNode(num);\n if (pre.val < num) pre.right = node;\n else pre.left = node;\n}\n
binary_search_tree.ts/* \u63d2\u5165\u8282\u70b9 */\ninsert(num: number): void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (this.root === null) {\n this.root = new TreeNode(num);\n return;\n }\n let cur: TreeNode | null = this.root,\n pre: TreeNode | null = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val === num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n const node = new TreeNode(num);\n if (pre!.val < num) pre!.right = node;\n else pre!.left = node;\n}\n
binary_search_tree.dart/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int _num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (_root == null) {\n _root = TreeNode(_num);\n return;\n }\n TreeNode? cur = _root;\n TreeNode? pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val == _num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < _num)\n cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode? node = TreeNode(_num);\n if (pre!.val < _num)\n pre.right = node;\n else\n pre.left = node;\n}\n
binary_search_tree.rs/* \u63d2\u5165\u8282\u70b9 */\npub fn insert(&mut self, num: i32) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if self.root.is_none() {\n self.root = Some(TreeNode::new(num));\n return;\n }\n let mut cur = self.root.clone();\n let mut pre = None;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while let Some(node) = cur.clone() {\n match num.cmp(&node.borrow().val) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n Ordering::Equal => return,\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n Ordering::Greater => {\n pre = cur.clone();\n cur = node.borrow().right.clone();\n }\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n Ordering::Less => {\n pre = cur.clone();\n cur = node.borrow().left.clone();\n }\n }\n }\n // \u63d2\u5165\u8282\u70b9\n let pre = pre.unwrap();\n let node = Some(TreeNode::new(num));\n if num > pre.borrow().val {\n pre.borrow_mut().right = node;\n } else {\n pre.borrow_mut().left = node;\n }\n}\n
binary_search_tree.c/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(BinarySearchTree *bst, int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (bst->root == NULL) {\n bst->root = newTreeNode(num);\n return;\n }\n TreeNode *cur = bst->root, *pre = NULL;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != NULL) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur->val == num) {\n return;\n }\n pre = cur;\n if (cur->val < num) {\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n cur = cur->right;\n } else {\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n cur = cur->left;\n }\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode *node = newTreeNode(num);\n if (pre->val < num) {\n pre->right = node;\n } else {\n pre->left = node;\n }\n}\n
binary_search_tree.zig// \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, num: T) !void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (self.root == null) {\n self.root = try self.mem_allocator.create(inc.TreeNode(T));\n return;\n }\n var cur = self.root;\n var pre: ?*inc.TreeNode(T) = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.?.val == num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.?.val < num) {\n cur = cur.?.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n } else {\n cur = cur.?.left;\n }\n }\n // \u63d2\u5165\u8282\u70b9\n var node = try self.mem_allocator.create(inc.TreeNode(T));\n node.init(num);\n if (pre.?.val < num) {\n pre.?.right = node;\n } else {\n pre.?.left = node;\n }\n}\n
\u4e0e\u67e5\u627e\u8282\u70b9\u76f8\u540c\uff0c\u63d2\u5165\u8282\u70b9\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002
"},{"location":"chapter_tree/binary_search_tree/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"\u5148\u5728\u4e8c\u53c9\u6811\u4e2d\u67e5\u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u518d\u5c06\u5176\u5220\u9664\u3002
\u4e0e\u63d2\u5165\u8282\u70b9\u7c7b\u4f3c\uff0c\u6211\u4eec\u9700\u8981\u4fdd\u8bc1\u5728\u5220\u9664\u64cd\u4f5c\u5b8c\u6210\u540e\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\u4ecd\u7136\u6ee1\u8db3\u3002
\u56e0\u6b64\uff0c\u6211\u4eec\u6839\u636e\u76ee\u6807\u8282\u70b9\u7684\u5b50\u8282\u70b9\u6570\u91cf\uff0c\u5206 0\u30011 \u548c 2 \u4e09\u79cd\u60c5\u51b5\uff0c\u6267\u884c\u5bf9\u5e94\u7684\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u3002
\u5982\u56fe 7-19 \u6240\u793a\uff0c\u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \u65f6\uff0c\u8868\u793a\u8be5\u8282\u70b9\u662f\u53f6\u8282\u70b9\uff0c\u53ef\u4ee5\u76f4\u63a5\u5220\u9664\u3002
\u56fe 7-19 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 0 \uff09
\u5982\u56fe 7-20 \u6240\u793a\uff0c\u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(1\\) \u65f6\uff0c\u5c06\u5f85\u5220\u9664\u8282\u70b9\u66ff\u6362\u4e3a\u5176\u5b50\u8282\u70b9\u5373\u53ef\u3002
\u56fe 7-20 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 1 \uff09
\u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(2\\) \u65f6\uff0c\u6211\u4eec\u65e0\u6cd5\u76f4\u63a5\u5220\u9664\u5b83\uff0c\u800c\u9700\u8981\u4f7f\u7528\u4e00\u4e2a\u8282\u70b9\u66ff\u6362\u8be5\u8282\u70b9\u3002\u7531\u4e8e\u8981\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6\u5b50\u6811 \\(<\\) \u6839\u8282\u70b9 \\(<\\) \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\uff0c\u56e0\u6b64\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\u6216\u5de6\u5b50\u6811\u7684\u6700\u5927\u8282\u70b9\u3002
\u5047\u8bbe\u6211\u4eec\u9009\u62e9\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\uff08\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\uff0c\u5219\u5220\u9664\u64cd\u4f5c\u6d41\u7a0b\u5982\u56fe 7-21 \u6240\u793a\u3002
- \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\u5728\u201c\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u201d\u4e2d\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff0c\u8bb0\u4e3a
tmp \u3002 - \u7528
tmp \u7684\u503c\u8986\u76d6\u5f85\u5220\u9664\u8282\u70b9\u7684\u503c\uff0c\u5e76\u5728\u6811\u4e2d\u9012\u5f52\u5220\u9664\u8282\u70b9 tmp \u3002
<1><2><3><4> \u56fe 7-21 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 2 \uff09
\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u540c\u6837\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d\u67e5\u627e\u5f85\u5220\u9664\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u540e\u7ee7\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_tree.pydef remove(self, num: int):\n \"\"\"\u5220\u9664\u8282\u70b9\"\"\"\n # \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if self._root is None:\n return\n # \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n cur, pre = self._root, None\n while cur is not None:\n # \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if cur.val == num:\n break\n pre = cur\n # \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur.val < num:\n cur = cur.right\n # \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else:\n cur = cur.left\n # \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur is None:\n return\n\n # \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if cur.left is None or cur.right is None:\n # \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n child = cur.left or cur.right\n # \u5220\u9664\u8282\u70b9 cur\n if cur != self._root:\n if pre.left == cur:\n pre.left = child\n else:\n pre.right = child\n else:\n # \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n self._root = child\n # \u5b50\u8282\u70b9\u6570\u91cf = 2\n else:\n # \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n tmp: TreeNode = cur.right\n while tmp.left is not None:\n tmp = tmp.left\n # \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n self.remove(tmp.val)\n # \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val\n
binary_search_tree.cpp/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (root == nullptr)\n return;\n TreeNode *cur = root, *pre = nullptr;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != nullptr) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur->val == num)\n break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur->val < num)\n cur = cur->right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur->left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == nullptr)\n return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur->left == nullptr || cur->right == nullptr) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\n TreeNode *child = cur->left != nullptr ? cur->left : cur->right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != root) {\n if (pre->left == cur)\n pre->left = child;\n else\n pre->right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child;\n }\n // \u91ca\u653e\u5185\u5b58\n delete cur;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode *tmp = cur->right;\n while (tmp->left != nullptr) {\n tmp = tmp->left;\n }\n int tmpVal = tmp->val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(tmp->val);\n // \u7528 tmp \u8986\u76d6 cur\n cur->val = tmpVal;\n }\n}\n
binary_search_tree.java/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (root == null)\n return;\n TreeNode cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val == num)\n break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == null)\n return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left == null || cur.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n TreeNode child = cur.left != null ? cur.left : cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != root) {\n if (pre.left == cur)\n pre.left = child;\n else\n pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode tmp = cur.right;\n while (tmp.left != null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(tmp.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.cs/* \u5220\u9664\u8282\u70b9 */\nvoid Remove(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (root == null)\n return;\n TreeNode? cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val == num)\n break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == null)\n return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left == null || cur.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n TreeNode? child = cur.left ?? cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != root) {\n if (pre!.left == cur)\n pre.left = child;\n else\n pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode? tmp = cur.right;\n while (tmp.left != null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n Remove(tmp.val!.Value);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.go/* \u5220\u9664\u8282\u70b9 */\nfunc (bst *binarySearchTree) remove(num int) {\n cur := bst.root\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if cur == nil {\n return\n }\n // \u5f85\u5220\u9664\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\n var pre *TreeNode = nil\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n for cur != nil {\n if cur.Val == num {\n break\n }\n pre = cur\n if cur.Val.(int) < num {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728\u53f3\u5b50\u6811\u4e2d\n cur = cur.Right\n } else {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728\u5de6\u5b50\u6811\u4e2d\n cur = cur.Left\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur == nil {\n return\n }\n // \u5b50\u8282\u70b9\u6570\u4e3a 0 \u6216 1\n if cur.Left == nil || cur.Right == nil {\n var child *TreeNode = nil\n // \u53d6\u51fa\u5f85\u5220\u9664\u8282\u70b9\u7684\u5b50\u8282\u70b9\n if cur.Left != nil {\n child = cur.Left\n } else {\n child = cur.Right\n }\n // \u5220\u9664\u8282\u70b9 cur\n if cur != bst.root {\n if pre.Left == cur {\n pre.Left = child\n } else {\n pre.Right = child\n }\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n bst.root = child\n }\n // \u5b50\u8282\u70b9\u6570\u4e3a 2\n } else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d\u5f85\u5220\u9664\u8282\u70b9 cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n tmp := cur.Right\n for tmp.Left != nil {\n tmp = tmp.Left\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n bst.remove(tmp.Val.(int))\n // \u7528 tmp \u8986\u76d6 cur\n cur.Val = tmp.Val\n }\n}\n
binary_search_tree.swift/* \u5220\u9664\u8282\u70b9 */\nfunc remove(num: Int) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if root == nil {\n return\n }\n var cur = root\n var pre: TreeNode?\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur != nil {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if cur!.val == num {\n break\n }\n pre = cur\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur!.val < num {\n cur = cur?.right\n }\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else {\n cur = cur?.left\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur == nil {\n return\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if cur?.left == nil || cur?.right == nil {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n let child = cur?.left != nil ? cur?.left : cur?.right\n // \u5220\u9664\u8282\u70b9 cur\n if cur !== root {\n if pre?.left === cur {\n pre?.left = child\n } else {\n pre?.right = child\n }\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n var tmp = cur?.right\n while tmp?.left != nil {\n tmp = tmp?.left\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(num: tmp!.val)\n // \u7528 tmp \u8986\u76d6 cur\n cur?.val = tmp!.val\n }\n}\n
binary_search_tree.js/* \u5220\u9664\u8282\u70b9 */\nremove(num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (this.root === null) return;\n let cur = this.root,\n pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val === num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur === null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left === null || cur.right === null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n const child = cur.left !== null ? cur.left : cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur !== this.root) {\n if (pre.left === cur) pre.left = child;\n else pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n this.root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n let tmp = cur.right;\n while (tmp.left !== null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n this.remove(tmp.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.ts/* \u5220\u9664\u8282\u70b9 */\nremove(num: number): void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (this.root === null) return;\n let cur: TreeNode | null = this.root,\n pre: TreeNode | null = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val === num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur === null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left === null || cur.right === null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n const child: TreeNode | null =\n cur.left !== null ? cur.left : cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur !== this.root) {\n if (pre!.left === cur) pre!.left = child;\n else pre!.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n this.root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n let tmp: TreeNode | null = cur.right;\n while (tmp!.left !== null) {\n tmp = tmp!.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n this.remove(tmp!.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp!.val;\n }\n}\n
binary_search_tree.dart/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int _num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (_root == null) return;\n TreeNode? cur = _root;\n TreeNode? pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val == _num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < _num)\n cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur == null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left == null || cur.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n TreeNode? child = cur.left ?? cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != _root) {\n if (pre!.left == cur)\n pre.left = child;\n else\n pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n _root = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode? tmp = cur.right;\n while (tmp!.left != null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(tmp.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.rs/* \u5220\u9664\u8282\u70b9 */\npub fn remove(&mut self, num: i32) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if self.root.is_none() { \n return; \n }\n let mut cur = self.root.clone();\n let mut pre = None;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while let Some(node) = cur.clone() {\n match num.cmp(&node.borrow().val) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n Ordering::Equal => break,\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n Ordering::Greater => {\n pre = cur.clone();\n cur = node.borrow().right.clone();\n }\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n Ordering::Less => {\n pre = cur.clone();\n cur = node.borrow().left.clone();\n }\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur.is_none() {\n return;\n }\n let cur = cur.unwrap();\n let (left_child, right_child) = (cur.borrow().left.clone(), cur.borrow().right.clone());\n match (left_child.clone(), right_child.clone()) {\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n (None, None) | (Some(_), None) | (None, Some(_)) => {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\n let child = left_child.or(right_child);\n let pre = pre.unwrap();\n // \u5220\u9664\u8282\u70b9 cur\n if !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) {\n let left = pre.borrow().left.clone();\n if left.is_some() && Rc::ptr_eq(&left.as_ref().unwrap(), &cur) {\n pre.borrow_mut().left = child;\n } else {\n pre.borrow_mut().right = child;\n }\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n self.root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n (Some(_), Some(_)) => {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n let mut tmp = cur.borrow().right.clone();\n while let Some(node) = tmp.clone() {\n if node.borrow().left.is_some() {\n tmp = node.borrow().left.clone();\n } else {\n break;\n }\n }\n let tmpval = tmp.unwrap().borrow().val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n self.remove(tmpval);\n // \u7528 tmp \u8986\u76d6 cur\n cur.borrow_mut().val = tmpval;\n }\n }\n}\n
binary_search_tree.c/* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeItem(BinarySearchTree *bst, int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (bst->root == NULL)\n return;\n TreeNode *cur = bst->root, *pre = NULL;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != NULL) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur->val == num)\n break;\n pre = cur;\n if (cur->val < num) {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u53f3\u5b50\u6811\u4e2d\n cur = cur->right;\n } else {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u5de6\u5b50\u6811\u4e2d\n cur = cur->left;\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == NULL)\n return;\n // \u5224\u65ad\u5f85\u5220\u9664\u8282\u70b9\u662f\u5426\u5b58\u5728\u5b50\u8282\u70b9\n if (cur->left == NULL || cur->right == NULL) {\n /* \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1 */\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\n TreeNode *child = cur->left != NULL ? cur->left : cur->right;\n // \u5220\u9664\u8282\u70b9 cur\n if (pre->left == cur) {\n pre->left = child;\n } else {\n pre->right = child;\n }\n } else {\n /* \u5b50\u8282\u70b9\u6570\u91cf = 2 */\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode *tmp = cur->right;\n while (tmp->left != NULL) {\n tmp = tmp->left;\n }\n int tmpVal = tmp->val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n removeItem(bst, tmp->val);\n // \u7528 tmp \u8986\u76d6 cur\n cur->val = tmpVal;\n }\n}\n
binary_search_tree.zig// \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, num: T) void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (self.root == null) return;\n var cur = self.root;\n var pre: ?*inc.TreeNode(T) = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.?.val == num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.?.val < num) {\n cur = cur.?.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n } else {\n cur = cur.?.left;\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.?.left == null or cur.?.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n var child = if (cur.?.left != null) cur.?.left else cur.?.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (pre.?.left == cur) {\n pre.?.left = child;\n } else {\n pre.?.right = child;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n } else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n var tmp = cur.?.right;\n while (tmp.?.left != null) {\n tmp = tmp.?.left;\n }\n var tmp_val = tmp.?.val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n self.remove(tmp.?.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.?.val = tmp_val;\n }\n}\n
"},{"location":"chapter_tree/binary_search_tree/#4","title":"4. \u00a0 \u4e2d\u5e8f\u904d\u5386\u6709\u5e8f","text":"\u5982\u56fe 7-22 \u6240\u793a\uff0c\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u9075\u5faa\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u7684\u904d\u5386\u987a\u5e8f\uff0c\u800c\u4e8c\u53c9\u641c\u7d22\u6811\u6ee1\u8db3\u201c\u5de6\u5b50\u8282\u70b9 \\(<\\) \u6839\u8282\u70b9 \\(<\\) \u53f3\u5b50\u8282\u70b9\u201d\u7684\u5927\u5c0f\u5173\u7cfb\u3002
\u8fd9\u610f\u5473\u7740\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u8fdb\u884c\u4e2d\u5e8f\u904d\u5386\u65f6\uff0c\u603b\u662f\u4f1a\u4f18\u5148\u904d\u5386\u4e0b\u4e00\u4e2a\u6700\u5c0f\u8282\u70b9\uff0c\u4ece\u800c\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u6027\u8d28\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u662f\u5347\u5e8f\u7684\u3002
\u5229\u7528\u4e2d\u5e8f\u904d\u5386\u5347\u5e8f\u7684\u6027\u8d28\uff0c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u83b7\u53d6\u6709\u5e8f\u6570\u636e\u4ec5\u9700 \\(O(n)\\) \u65f6\u95f4\uff0c\u65e0\u987b\u8fdb\u884c\u989d\u5916\u7684\u6392\u5e8f\u64cd\u4f5c\uff0c\u975e\u5e38\u9ad8\u6548\u3002
\u56fe 7-22 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217
"},{"location":"chapter_tree/binary_search_tree/#742","title":"7.4.2 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387","text":"\u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528\u6570\u7ec4\u6216\u4e8c\u53c9\u641c\u7d22\u6811\u5b58\u50a8\u3002\u89c2\u5bdf\u8868 7-2 \uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5404\u9879\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f\u5bf9\u6570\u9636\uff0c\u5177\u6709\u7a33\u5b9a\u4e14\u9ad8\u6548\u7684\u6027\u80fd\u3002\u53ea\u6709\u5728\u9ad8\u9891\u6dfb\u52a0\u3001\u4f4e\u9891\u67e5\u627e\u5220\u9664\u6570\u636e\u7684\u573a\u666f\u4e0b\uff0c\u6570\u7ec4\u6bd4\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387\u66f4\u9ad8\u3002
\u8868 7-2 \u00a0 \u6570\u7ec4\u4e0e\u641c\u7d22\u6811\u7684\u6548\u7387\u5bf9\u6bd4
\u65e0\u5e8f\u6570\u7ec4 \u4e8c\u53c9\u641c\u7d22\u6811 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(\\log n)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \u5728\u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u662f\u201c\u5e73\u8861\u201d\u7684\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728 \\(\\log n\\) \u8f6e\u5faa\u73af\u5185\u67e5\u627e\u4efb\u610f\u8282\u70b9\u3002
\u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u4e0d\u65ad\u5730\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\uff0c\u53ef\u80fd\u5bfc\u81f4\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u56fe 7-23 \u6240\u793a\u7684\u94fe\u8868\uff0c\u8fd9\u65f6\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4f1a\u9000\u5316\u4e3a \\(O(n)\\) \u3002
\u56fe 7-23 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u9000\u5316
"},{"location":"chapter_tree/binary_search_tree/#743","title":"7.4.3 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u5e38\u89c1\u5e94\u7528","text":" - \u7528\u4f5c\u7cfb\u7edf\u4e2d\u7684\u591a\u7ea7\u7d22\u5f15\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u67e5\u627e\u3001\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u3002
- \u4f5c\u4e3a\u67d0\u4e9b\u641c\u7d22\u7b97\u6cd5\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
- \u7528\u4e8e\u5b58\u50a8\u6570\u636e\u6d41\uff0c\u4ee5\u4fdd\u6301\u5176\u6709\u5e8f\u72b6\u6001\u3002
"},{"location":"chapter_tree/binary_tree/","title":"7.1 \u00a0 \u4e8c\u53c9\u6811","text":"\u300c\u4e8c\u53c9\u6811 binary tree\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4ee3\u8868\u201c\u7956\u5148\u201d\u4e0e\u201c\u540e\u4ee3\u201d\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff0c\u4f53\u73b0\u4e86\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u4e8c\u53c9\u6811\u7684\u57fa\u672c\u5355\u5143\u662f\u8282\u70b9\uff0c\u6bcf\u4e2a\u8282\u70b9\u5305\u542b\u503c\u3001\u5de6\u5b50\u8282\u70b9\u5f15\u7528\u548c\u53f3\u5b50\u8282\u70b9\u5f15\u7528\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig class TreeNode:\n \"\"\"\u4e8c\u53c9\u6811\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.left: TreeNode | None = None # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n self.right: TreeNode | None = None # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\n int val; // \u8282\u70b9\u503c\n TreeNode *left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n TreeNode *right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}\n};\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n int val; // \u8282\u70b9\u503c\n TreeNode left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode(int x) { val = x; }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode(int? x) {\n public int? val = x; // \u8282\u70b9\u503c\n public TreeNode? left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n public TreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\n Val int\n Left *TreeNode\n Right *TreeNode\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc NewTreeNode(v int) *TreeNode {\n return &TreeNode{\n Left: nil, // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n Right: nil, // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n Val: v, // \u8282\u70b9\u503c\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n var val: Int // \u8282\u70b9\u503c\n var left: TreeNode? // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n var right: TreeNode? // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n\n init(x: Int) {\n val = x\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val; // \u8282\u70b9\u503c\n left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n constructor(val, left, right) {\n this.val = val === undefined ? 0 : val;\n this.left = left === undefined ? null : left;\n this.right = right === undefined ? null : right;\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val: number;\n left: TreeNode | null;\n right: TreeNode | null;\n\n constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.left = left === undefined ? null : left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n this.right = right === undefined ? null : right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n int val; // \u8282\u70b9\u503c\n TreeNode? left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode(this.val, [this.left, this.right]);\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\n val: i32, // \u8282\u70b9\u503c\n left: Option<Rc<RefCell<TreeNode>>>, // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n right: Option<Rc<RefCell<TreeNode>>>, // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n\nimpl TreeNode {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(val: i32) -> Rc<RefCell<Self>> {\n Rc::new(RefCell::new(Self {\n val,\n left: None,\n right: None\n }))\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct TreeNode {\n int val; // \u8282\u70b9\u503c\n int height; // \u8282\u70b9\u9ad8\u5ea6\n struct TreeNode *left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n struct TreeNode *right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n} TreeNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\n TreeNode *node;\n\n node = (TreeNode *)malloc(sizeof(TreeNode));\n node->val = val;\n node->height = 0;\n node->left = NULL;\n node->right = NULL;\n return node;\n}\n
\n
\u6bcf\u4e2a\u8282\u70b9\u90fd\u6709\u4e24\u4e2a\u5f15\u7528\uff08\u6307\u9488\uff09\uff0c\u5206\u522b\u6307\u5411\u300c\u5de6\u5b50\u8282\u70b9 left-child node\u300d\u548c\u300c\u53f3\u5b50\u8282\u70b9 right-child node\u300d\uff0c\u8be5\u8282\u70b9\u88ab\u79f0\u4e3a\u8fd9\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u300c\u7236\u8282\u70b9 parent node\u300d\u3002\u5f53\u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u65f6\uff0c\u6211\u4eec\u5c06\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u300c\u5de6\u5b50\u6811 left subtree\u300d\uff0c\u540c\u7406\u53ef\u5f97\u300c\u53f3\u5b50\u6811 right subtree\u300d\u3002
\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u9664\u53f6\u8282\u70b9\u5916\uff0c\u5176\u4ed6\u6240\u6709\u8282\u70b9\u90fd\u5305\u542b\u5b50\u8282\u70b9\u548c\u975e\u7a7a\u5b50\u6811\u3002\u5982\u56fe 7-1 \u6240\u793a\uff0c\u5982\u679c\u5c06\u201c\u8282\u70b9 2\u201d\u89c6\u4e3a\u7236\u8282\u70b9\uff0c\u5219\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u5206\u522b\u662f\u201c\u8282\u70b9 4\u201d\u548c\u201c\u8282\u70b9 5\u201d\uff0c\u5de6\u5b50\u6811\u662f\u201c\u8282\u70b9 4 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\uff0c\u53f3\u5b50\u6811\u662f\u201c\u8282\u70b9 5 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\u3002
\u56fe 7-1 \u00a0 \u7236\u8282\u70b9\u3001\u5b50\u8282\u70b9\u3001\u5b50\u6811
"},{"location":"chapter_tree/binary_tree/#711","title":"7.1.1 \u00a0 \u4e8c\u53c9\u6811\u5e38\u89c1\u672f\u8bed","text":"\u4e8c\u53c9\u6811\u7684\u5e38\u7528\u672f\u8bed\u5982\u56fe 7-2 \u6240\u793a\u3002
- \u300c\u6839\u8282\u70b9 root node\u300d\uff1a\u4f4d\u4e8e\u4e8c\u53c9\u6811\u9876\u5c42\u7684\u8282\u70b9\uff0c\u6ca1\u6709\u7236\u8282\u70b9\u3002
- \u300c\u53f6\u8282\u70b9 leaf node\u300d\uff1a\u6ca1\u6709\u5b50\u8282\u70b9\u7684\u8282\u70b9\uff0c\u5176\u4e24\u4e2a\u6307\u9488\u5747\u6307\u5411 \\(\\text{None}\\) \u3002
- \u300c\u8fb9 edge\u300d\uff1a\u8fde\u63a5\u4e24\u4e2a\u8282\u70b9\u7684\u7ebf\u6bb5\uff0c\u5373\u8282\u70b9\u5f15\u7528\uff08\u6307\u9488\uff09\u3002
- \u8282\u70b9\u6240\u5728\u7684\u300c\u5c42 level\u300d\uff1a\u4ece\u9876\u81f3\u5e95\u9012\u589e\uff0c\u6839\u8282\u70b9\u6240\u5728\u5c42\u4e3a 1 \u3002
- \u8282\u70b9\u7684\u300c\u5ea6 degree\u300d\uff1a\u8282\u70b9\u7684\u5b50\u8282\u70b9\u7684\u6570\u91cf\u3002\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u5ea6\u7684\u53d6\u503c\u8303\u56f4\u662f 0\u30011\u30012 \u3002
- \u4e8c\u53c9\u6811\u7684\u300c\u9ad8\u5ea6 height\u300d\uff1a\u4ece\u6839\u8282\u70b9\u5230\u6700\u8fdc\u53f6\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
- \u8282\u70b9\u7684\u300c\u6df1\u5ea6 depth\u300d\uff1a\u4ece\u6839\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
- \u8282\u70b9\u7684\u300c\u9ad8\u5ea6 height\u300d\uff1a\u4ece\u8ddd\u79bb\u8be5\u8282\u70b9\u6700\u8fdc\u7684\u53f6\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
\u56fe 7-2 \u00a0 \u4e8c\u53c9\u6811\u7684\u5e38\u7528\u672f\u8bed
Tip
\u8bf7\u6ce8\u610f\uff0c\u6211\u4eec\u901a\u5e38\u5c06\u201c\u9ad8\u5ea6\u201d\u548c\u201c\u6df1\u5ea6\u201d\u5b9a\u4e49\u4e3a\u201c\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u201d\uff0c\u4f46\u6709\u4e9b\u9898\u76ee\u6216\u6559\u6750\u53ef\u80fd\u4f1a\u5c06\u5176\u5b9a\u4e49\u4e3a\u201c\u7ecf\u8fc7\u7684\u8282\u70b9\u7684\u6570\u91cf\u201d\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u9ad8\u5ea6\u548c\u6df1\u5ea6\u90fd\u9700\u8981\u52a0 1 \u3002
"},{"location":"chapter_tree/binary_tree/#712","title":"7.1.2 \u00a0 \u4e8c\u53c9\u6811\u57fa\u672c\u64cd\u4f5c","text":""},{"location":"chapter_tree/binary_tree/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u4e8c\u53c9\u6811","text":"\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u9996\u5148\u521d\u59cb\u5316\u8282\u70b9\uff0c\u7136\u540e\u6784\u5efa\u5f15\u7528\uff08\u6307\u9488\uff09\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree.py# \u521d\u59cb\u5316\u4e8c\u53c9\u6811\n# \u521d\u59cb\u5316\u8282\u70b9\nn1 = TreeNode(val=1)\nn2 = TreeNode(val=2)\nn3 = TreeNode(val=3)\nn4 = TreeNode(val=4)\nn5 = TreeNode(val=5)\n# \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
binary_tree.cpp/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode* n1 = new TreeNode(1);\nTreeNode* n2 = new TreeNode(2);\nTreeNode* n3 = new TreeNode(3);\nTreeNode* n4 = new TreeNode(4);\nTreeNode* n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
binary_tree.java// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.cs/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new(1);\nTreeNode n2 = new(2);\nTreeNode n3 = new(3);\nTreeNode n4 = new(4);\nTreeNode n5 = new(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.go/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nn1 := NewTreeNode(1)\nn2 := NewTreeNode(2)\nn3 := NewTreeNode(3)\nn4 := NewTreeNode(4)\nn5 := NewTreeNode(5)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.Left = n2\nn1.Right = n3\nn2.Left = n4\nn2.Right = n5\n
binary_tree.swift// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = TreeNode(x: 1)\nlet n2 = TreeNode(x: 2)\nlet n3 = TreeNode(x: 3)\nlet n4 = TreeNode(x: 4)\nlet n5 = TreeNode(x: 5)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
binary_tree.js/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\n n2 = new TreeNode(2),\n n3 = new TreeNode(3),\n n4 = new TreeNode(4),\n n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.ts/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\n n2 = new TreeNode(2),\n n3 = new TreeNode(3),\n n4 = new TreeNode(4),\n n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.dart/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.rs// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = TreeNode::new(1);\nlet n2 = TreeNode::new(2);\nlet n3 = TreeNode::new(3);\nlet n4 = TreeNode::new(4);\nlet n5 = TreeNode::new(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.borrow_mut().left = Some(n2.clone());\nn1.borrow_mut().right = Some(n3);\nn2.borrow_mut().left = Some(n4);\nn2.borrow_mut().right = Some(n5);\n
binary_tree.c/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode *n1 = newTreeNode(1);\nTreeNode *n2 = newTreeNode(2);\nTreeNode *n3 = newTreeNode(3);\nTreeNode *n4 = newTreeNode(4);\nTreeNode *n5 = newTreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
binary_tree.zig\n
"},{"location":"chapter_tree/binary_tree/#2","title":"2. \u00a0 \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9","text":"\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u5728\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u6307\u9488\u6765\u5b9e\u73b0\u3002\u56fe 7-3 \u7ed9\u51fa\u4e86\u4e00\u4e2a\u793a\u4f8b\u3002
\u56fe 7-3 \u00a0 \u5728\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree.py# \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\np = TreeNode(0)\n# \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = p\np.left = n2\n# \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
binary_tree.cpp/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode* P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
binary_tree.javaTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.cs/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.go/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\np := NewTreeNode(0)\nn1.Left = p\np.Left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.Left = n2\n
binary_tree.swiftlet P = TreeNode(x: 0)\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P\nP.left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
binary_tree.js/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nlet P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.ts/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nconst P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.dart/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.rslet p = TreeNode::new(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.borrow_mut().left = Some(p.clone());\np.borrow_mut().left = Some(n2.clone());\n// \u5220\u9664\u8282\u70b9 p\nn1.borrow_mut().left = Some(n2);\n
binary_tree.c/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode *P = newTreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
binary_tree.zig\n
Note
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u63d2\u5165\u8282\u70b9\u53ef\u80fd\u4f1a\u6539\u53d8\u4e8c\u53c9\u6811\u7684\u539f\u6709\u903b\u8f91\u7ed3\u6784\uff0c\u800c\u5220\u9664\u8282\u70b9\u901a\u5e38\u610f\u5473\u7740\u5220\u9664\u8be5\u8282\u70b9\u53ca\u5176\u6240\u6709\u5b50\u6811\u3002\u56e0\u6b64\uff0c\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u901a\u5e38\u662f\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\u7684\uff0c\u4ee5\u5b9e\u73b0\u6709\u5b9e\u9645\u610f\u4e49\u7684\u64cd\u4f5c\u3002
"},{"location":"chapter_tree/binary_tree/#713","title":"7.1.3 \u00a0 \u5e38\u89c1\u4e8c\u53c9\u6811\u7c7b\u578b","text":""},{"location":"chapter_tree/binary_tree/#1_1","title":"1. \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-4 \u6240\u793a\uff0c\u300c\u5b8c\u7f8e\u4e8c\u53c9\u6811 perfect binary tree\u300d\u6240\u6709\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u5b8c\u5168\u586b\u6ee1\u3002\u5728\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\uff0c\u53f6\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u7684\u5ea6\u90fd\u4e3a \\(2\\) \uff1b\u82e5\u6811\u7684\u9ad8\u5ea6\u4e3a \\(h\\) \uff0c\u5219\u8282\u70b9\u603b\u6570\u4e3a \\(2^{h+1} - 1\\) \uff0c\u5448\u73b0\u6807\u51c6\u7684\u6307\u6570\u7ea7\u5173\u7cfb\uff0c\u53cd\u6620\u4e86\u81ea\u7136\u754c\u4e2d\u5e38\u89c1\u7684\u7ec6\u80de\u5206\u88c2\u73b0\u8c61\u3002
Tip
\u8bf7\u6ce8\u610f\uff0c\u5728\u4e2d\u6587\u793e\u533a\u4e2d\uff0c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u5e38\u88ab\u79f0\u4e3a\u300c\u6ee1\u4e8c\u53c9\u6811\u300d\u3002
\u56fe 7-4 \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#2_1","title":"2. \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-5 \u6240\u793a\uff0c\u300c\u5b8c\u5168\u4e8c\u53c9\u6811 complete binary tree\u300d\u53ea\u6709\u6700\u5e95\u5c42\u7684\u8282\u70b9\u672a\u88ab\u586b\u6ee1\uff0c\u4e14\u6700\u5e95\u5c42\u8282\u70b9\u5c3d\u91cf\u9760\u5de6\u586b\u5145\u3002
\u56fe 7-5 \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#3","title":"3. \u00a0 \u5b8c\u6ee1\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-6 \u6240\u793a\uff0c\u300c\u5b8c\u6ee1\u4e8c\u53c9\u6811 full binary tree\u300d\u9664\u4e86\u53f6\u8282\u70b9\u4e4b\u5916\uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u90fd\u6709\u4e24\u4e2a\u5b50\u8282\u70b9\u3002
\u56fe 7-6 \u00a0 \u5b8c\u6ee1\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#4","title":"4. \u00a0 \u5e73\u8861\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-7 \u6240\u793a\uff0c\u300c\u5e73\u8861\u4e8c\u53c9\u6811 balanced binary tree\u300d\u4e2d\u4efb\u610f\u8282\u70b9\u7684\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\u4e4b\u5dee\u7684\u7edd\u5bf9\u503c\u4e0d\u8d85\u8fc7 1 \u3002
\u56fe 7-7 \u00a0 \u5e73\u8861\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#714","title":"7.1.4 \u00a0 \u4e8c\u53c9\u6811\u7684\u9000\u5316","text":"\u56fe 7-8 \u5c55\u793a\u4e86\u4e8c\u53c9\u6811\u7684\u7406\u60f3\u7ed3\u6784\u4e0e\u9000\u5316\u7ed3\u6784\u3002\u5f53\u4e8c\u53c9\u6811\u7684\u6bcf\u5c42\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u65f6\uff0c\u8fbe\u5230\u201c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u201d\uff1b\u800c\u5f53\u6240\u6709\u8282\u70b9\u90fd\u504f\u5411\u4e00\u4fa7\u65f6\uff0c\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u201c\u94fe\u8868\u201d\u3002
- \u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u7406\u60f3\u60c5\u51b5\uff0c\u53ef\u4ee5\u5145\u5206\u53d1\u6325\u4e8c\u53c9\u6811\u201c\u5206\u6cbb\u201d\u7684\u4f18\u52bf\u3002
- \u94fe\u8868\u5219\u662f\u53e6\u4e00\u4e2a\u6781\u7aef\uff0c\u5404\u9879\u64cd\u4f5c\u90fd\u53d8\u4e3a\u7ebf\u6027\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002
\u56fe 7-8 \u00a0 \u4e8c\u53c9\u6811\u7684\u6700\u4f73\u7ed3\u6784\u4e0e\u6700\u5dee\u7ed3\u6784
\u5982\u8868 7-1 \u6240\u793a\uff0c\u5728\u6700\u4f73\u7ed3\u6784\u548c\u6700\u5dee\u7ed3\u6784\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf\u3001\u8282\u70b9\u603b\u6570\u3001\u9ad8\u5ea6\u7b49\u8fbe\u5230\u6781\u5927\u503c\u6216\u6781\u5c0f\u503c\u3002
\u8868 7-1 \u00a0 \u4e8c\u53c9\u6811\u7684\u6700\u4f73\u7ed3\u6784\u4e0e\u6700\u5dee\u7ed3\u6784
\u5b8c\u7f8e\u4e8c\u53c9\u6811 \u94fe\u8868 \u7b2c \\(i\\) \u5c42\u7684\u8282\u70b9\u6570\u91cf \\(2^{i-1}\\) \\(1\\) \u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf \\(2^h\\) \\(1\\) \u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u6811\u7684\u8282\u70b9\u603b\u6570 \\(2^{h+1} - 1\\) \\(h + 1\\) \u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \u7684\u6811\u7684\u9ad8\u5ea6 \\(\\log_2 (n+1) - 1\\) \\(n - 1\\)"},{"location":"chapter_tree/binary_tree_traversal/","title":"7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386","text":"\u4ece\u7269\u7406\u7ed3\u6784\u7684\u89d2\u5ea6\u6765\u770b\uff0c\u6811\u662f\u4e00\u79cd\u57fa\u4e8e\u94fe\u8868\u7684\u6570\u636e\u7ed3\u6784\uff0c\u56e0\u6b64\u5176\u904d\u5386\u65b9\u5f0f\u662f\u901a\u8fc7\u6307\u9488\u9010\u4e2a\u8bbf\u95ee\u8282\u70b9\u3002\u7136\u800c\uff0c\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u8fd9\u4f7f\u5f97\u904d\u5386\u6811\u6bd4\u904d\u5386\u94fe\u8868\u66f4\u52a0\u590d\u6742\uff0c\u9700\u8981\u501f\u52a9\u641c\u7d22\u7b97\u6cd5\u6765\u5b9e\u73b0\u3002
\u4e8c\u53c9\u6811\u5e38\u89c1\u7684\u904d\u5386\u65b9\u5f0f\u5305\u62ec\u5c42\u5e8f\u904d\u5386\u3001\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u7b49\u3002
"},{"location":"chapter_tree/binary_tree_traversal/#721","title":"7.2.1 \u00a0 \u5c42\u5e8f\u904d\u5386","text":"\u5982\u56fe 7-9 \u6240\u793a\uff0c\u300c\u5c42\u5e8f\u904d\u5386 level-order traversal\u300d\u4ece\u9876\u90e8\u5230\u5e95\u90e8\u9010\u5c42\u904d\u5386\u4e8c\u53c9\u6811\uff0c\u5e76\u5728\u6bcf\u4e00\u5c42\u6309\u7167\u4ece\u5de6\u5230\u53f3\u7684\u987a\u5e8f\u8bbf\u95ee\u8282\u70b9\u3002
\u5c42\u5e8f\u904d\u5386\u672c\u8d28\u4e0a\u5c5e\u4e8e\u300c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 breadth-first traversal, BFS\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u6269\u5c55\u201d\u7684\u9010\u5c42\u904d\u5386\u65b9\u5f0f\u3002
\u56fe 7-9 \u00a0 \u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386
"},{"location":"chapter_tree/binary_tree_traversal/#1","title":"1. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u901a\u5e38\u501f\u52a9\u201c\u961f\u5217\u201d\u6765\u5b9e\u73b0\u3002\u961f\u5217\u9075\u5faa\u201c\u5148\u8fdb\u5148\u51fa\u201d\u7684\u89c4\u5219\uff0c\u800c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5219\u9075\u5faa\u201c\u9010\u5c42\u63a8\u8fdb\u201d\u7684\u89c4\u5219\uff0c\u4e24\u8005\u80cc\u540e\u7684\u601d\u60f3\u662f\u4e00\u81f4\u7684\u3002\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree_bfs.pydef level_order(root: TreeNode | None) -> list[int]:\n \"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\n # \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n queue: deque[TreeNode] = deque()\n queue.append(root)\n # \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n res = []\n while queue:\n node: TreeNode = queue.popleft() # \u961f\u5217\u51fa\u961f\n res.append(node.val) # \u4fdd\u5b58\u8282\u70b9\u503c\n if node.left is not None:\n queue.append(node.left) # \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if node.right is not None:\n queue.append(node.right) # \u53f3\u5b50\u8282\u70b9\u5165\u961f\n return res\n
binary_tree_bfs.cpp/* \u5c42\u5e8f\u904d\u5386 */\nvector<int> levelOrder(TreeNode *root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n queue<TreeNode *> queue;\n queue.push(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n vector<int> vec;\n while (!queue.empty()) {\n TreeNode *node = queue.front();\n queue.pop(); // \u961f\u5217\u51fa\u961f\n vec.push_back(node->val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node->left != nullptr)\n queue.push(node->left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node->right != nullptr)\n queue.push(node->right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return vec;\n}\n
binary_tree_bfs.java/* \u5c42\u5e8f\u904d\u5386 */\nList<Integer> levelOrder(TreeNode root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n Queue<TreeNode> queue = new LinkedList<>();\n queue.add(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n List<Integer> list = new ArrayList<>();\n while (!queue.isEmpty()) {\n TreeNode node = queue.poll(); // \u961f\u5217\u51fa\u961f\n list.add(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null)\n queue.offer(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right != null)\n queue.offer(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return list;\n}\n
binary_tree_bfs.cs/* \u5c42\u5e8f\u904d\u5386 */\nList<int> LevelOrder(TreeNode root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n Queue<TreeNode> queue = new();\n queue.Enqueue(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n List<int> list = [];\n while (queue.Count != 0) {\n TreeNode node = queue.Dequeue(); // \u961f\u5217\u51fa\u961f\n list.Add(node.val!.Value); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null)\n queue.Enqueue(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right != null)\n queue.Enqueue(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return list;\n}\n
binary_tree_bfs.go/* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root *TreeNode) []any {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n queue := list.New()\n queue.PushBack(root)\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5207\u7247\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n nums := make([]any, 0)\n for queue.Len() > 0 {\n // \u961f\u5217\u51fa\u961f\n node := queue.Remove(queue.Front()).(*TreeNode)\n // \u4fdd\u5b58\u8282\u70b9\u503c\n nums = append(nums, node.Val)\n if node.Left != nil {\n // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n queue.PushBack(node.Left)\n }\n if node.Right != nil {\n // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n queue.PushBack(node.Right)\n }\n }\n return nums\n}\n
binary_tree_bfs.swift/* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root: TreeNode) -> [Int] {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n var queue: [TreeNode] = [root]\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n var list: [Int] = []\n while !queue.isEmpty {\n let node = queue.removeFirst() // \u961f\u5217\u51fa\u961f\n list.append(node.val) // \u4fdd\u5b58\u8282\u70b9\u503c\n if let left = node.left {\n queue.append(left) // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if let right = node.right {\n queue.append(right) // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n }\n return list\n}\n
binary_tree_bfs.js/* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n const queue = [root];\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n const list = [];\n while (queue.length) {\n let node = queue.shift(); // \u961f\u5217\u51fa\u961f\n list.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left) queue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right) queue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return list;\n}\n
binary_tree_bfs.ts/* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root: TreeNode | null): number[] {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n const queue = [root];\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n const list: number[] = [];\n while (queue.length) {\n let node = queue.shift() as TreeNode; // \u961f\u5217\u51fa\u961f\n list.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left) {\n queue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if (node.right) {\n queue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n }\n return list;\n}\n
binary_tree_bfs.dart/* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder(TreeNode? root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n Queue<TreeNode?> queue = Queue();\n queue.add(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n List<int> res = [];\n while (queue.isNotEmpty) {\n TreeNode? node = queue.removeFirst(); // \u961f\u5217\u51fa\u961f\n res.add(node!.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null) queue.add(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right != null) queue.add(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return res;\n}\n
binary_tree_bfs.rs/* \u5c42\u5e8f\u904d\u5386 */\nfn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n let mut que = VecDeque::new();\n que.push_back(Rc::clone(&root));\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n let mut vec = Vec::new();\n\n while let Some(node) = que.pop_front() { // \u961f\u5217\u51fa\u961f\n vec.push(node.borrow().val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if let Some(left) = node.borrow().left.as_ref() {\n que.push_back(Rc::clone(left)); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if let Some(right) = node.borrow().right.as_ref() {\n que.push_back(Rc::clone(right)); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n };\n }\n vec\n}\n
binary_tree_bfs.c/* \u5c42\u5e8f\u904d\u5386 */\nint *levelOrder(TreeNode *root, int *size) {\n /* \u8f85\u52a9\u961f\u5217 */\n int front, rear;\n int index, *arr;\n TreeNode *node;\n TreeNode **queue;\n\n /* \u8f85\u52a9\u961f\u5217 */\n queue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_SIZE);\n // \u961f\u5217\u6307\u9488\n front = 0, rear = 0;\n // \u52a0\u5165\u6839\u8282\u70b9\n queue[rear++] = root;\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n /* \u8f85\u52a9\u6570\u7ec4 */\n arr = (int *)malloc(sizeof(int) * MAX_SIZE);\n // \u6570\u7ec4\u6307\u9488\n index = 0;\n while (front < rear) {\n // \u961f\u5217\u51fa\u961f\n node = queue[front++];\n // \u4fdd\u5b58\u8282\u70b9\u503c\n arr[index++] = node->val;\n if (node->left != NULL) {\n // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n queue[rear++] = node->left;\n }\n if (node->right != NULL) {\n // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n queue[rear++] = node->right;\n }\n }\n // \u66f4\u65b0\u6570\u7ec4\u957f\u5ea6\u7684\u503c\n *size = index;\n arr = realloc(arr, sizeof(int) * (*size));\n\n // \u91ca\u653e\u8f85\u52a9\u6570\u7ec4\u7a7a\u95f4\n free(queue);\n return arr;\n}\n
binary_tree_bfs.zig// \u5c42\u5e8f\u904d\u5386\nfn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n const L = std.TailQueue(*inc.TreeNode(T));\n var queue = L{};\n var root_node = try mem_allocator.create(L.Node);\n root_node.data = root;\n queue.append(root_node); \n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n var list = std.ArrayList(T).init(std.heap.page_allocator);\n while (queue.len > 0) {\n var queue_node = queue.popFirst().?; // \u961f\u5217\u51fa\u961f\n var node = queue_node.data;\n try list.append(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null) {\n var tmp_node = try mem_allocator.create(L.Node);\n tmp_node.data = node.left.?;\n queue.append(tmp_node); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if (node.right != null) {\n var tmp_node = try mem_allocator.create(L.Node);\n tmp_node.data = node.right.?;\n queue.append(tmp_node); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n } \n }\n return list;\n}\n
"},{"location":"chapter_tree/binary_tree_traversal/#2","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":" - \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d \\(n\\) \u4e3a\u8282\u70b9\u6570\u91cf\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6ee1\u4e8c\u53c9\u6811\u65f6\uff0c\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u6700\u591a\u540c\u65f6\u5b58\u5728 \\((n + 1) / 2\\) \u4e2a\u8282\u70b9\uff0c\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002
"},{"location":"chapter_tree/binary_tree_traversal/#722","title":"7.2.2 \u00a0 \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386","text":"\u76f8\u5e94\u5730\uff0c\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386 depth-first traversal, DFS\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u5148\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u6eaf\u7ee7\u7eed\u201d\u7684\u904d\u5386\u65b9\u5f0f\u3002
\u56fe 7-10 \u5c55\u793a\u4e86\u5bf9\u4e8c\u53c9\u6811\u8fdb\u884c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5de5\u4f5c\u539f\u7406\u3002\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5c31\u50cf\u662f\u7ed5\u7740\u6574\u68f5\u4e8c\u53c9\u6811\u7684\u5916\u56f4\u201c\u8d70\u201d\u4e00\u5708\uff0c\u5728\u6bcf\u4e2a\u8282\u70b9\u90fd\u4f1a\u9047\u5230\u4e09\u4e2a\u4f4d\u7f6e\uff0c\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u3002
\u56fe 7-10 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386
"},{"location":"chapter_tree/binary_tree_traversal/#1_1","title":"1. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree_dfs.pydef pre_order(root: TreeNode | None):\n \"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\n if root is None:\n return\n # \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n res.append(root.val)\n pre_order(root=root.left)\n pre_order(root=root.right)\n\ndef in_order(root: TreeNode | None):\n \"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\n if root is None:\n return\n # \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n in_order(root=root.left)\n res.append(root.val)\n in_order(root=root.right)\n\ndef post_order(root: TreeNode | None):\n \"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\n if root is None:\n return\n # \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n post_order(root=root.left)\n post_order(root=root.right)\n res.append(root.val)\n
binary_tree_dfs.cpp/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root) {\n if (root == nullptr)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n vec.push_back(root->val);\n preOrder(root->left);\n preOrder(root->right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root) {\n if (root == nullptr)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root->left);\n vec.push_back(root->val);\n inOrder(root->right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root) {\n if (root == nullptr)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root->left);\n postOrder(root->right);\n vec.push_back(root->val);\n}\n
binary_tree_dfs.java/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode root) {\n if (root == null)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.add(root.val);\n preOrder(root.left);\n preOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode root) {\n if (root == null)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root.left);\n list.add(root.val);\n inOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode root) {\n if (root == null)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root.left);\n postOrder(root.right);\n list.add(root.val);\n}\n
binary_tree_dfs.cs/* \u524d\u5e8f\u904d\u5386 */\nvoid PreOrder(TreeNode? root) {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.Add(root.val!.Value);\n PreOrder(root.left);\n PreOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid InOrder(TreeNode? root) {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n InOrder(root.left);\n list.Add(root.val!.Value);\n InOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid PostOrder(TreeNode? root) {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n PostOrder(root.left);\n PostOrder(root.right);\n list.Add(root.val!.Value);\n}\n
binary_tree_dfs.go/* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(node *TreeNode) {\n if node == nil {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n nums = append(nums, node.Val)\n preOrder(node.Left)\n preOrder(node.Right)\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(node *TreeNode) {\n if node == nil {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(node.Left)\n nums = append(nums, node.Val)\n inOrder(node.Right)\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(node *TreeNode) {\n if node == nil {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(node.Left)\n postOrder(node.Right)\n nums = append(nums, node.Val)\n}\n
binary_tree_dfs.swift/* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.append(root.val)\n preOrder(root: root.left)\n preOrder(root: root.right)\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root: root.left)\n list.append(root.val)\n inOrder(root: root.right)\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root: root.left)\n postOrder(root: root.right)\n list.append(root.val)\n}\n
binary_tree_dfs.js/* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root) {\n if (root === null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.push(root.val);\n preOrder(root.left);\n preOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root) {\n if (root === null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root.left);\n list.push(root.val);\n inOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root) {\n if (root === null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root.left);\n postOrder(root.right);\n list.push(root.val);\n}\n
binary_tree_dfs.ts/* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root: TreeNode | null): void {\n if (root === null) {\n return;\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.push(root.val);\n preOrder(root.left);\n preOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root: TreeNode | null): void {\n if (root === null) {\n return;\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root.left);\n list.push(root.val);\n inOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root: TreeNode | null): void {\n if (root === null) {\n return;\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root.left);\n postOrder(root.right);\n list.push(root.val);\n}\n
binary_tree_dfs.dart/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode? node) {\n if (node == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.add(node.val);\n preOrder(node.left);\n preOrder(node.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode? node) {\n if (node == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(node.left);\n list.add(node.val);\n inOrder(node.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode? node) {\n if (node == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(node.left);\n postOrder(node.right);\n list.add(node.val);\n}\n
binary_tree_dfs.rs/* \u524d\u5e8f\u904d\u5386 */\nfn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\n let mut result = vec![];\n\n if let Some(node) = root {\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n result.push(node.borrow().val);\n result.append(&mut pre_order(node.borrow().left.as_ref()));\n result.append(&mut pre_order(node.borrow().right.as_ref()));\n }\n result\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\n let mut result = vec![];\n\n if let Some(node) = root {\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n result.append(&mut in_order(node.borrow().left.as_ref()));\n result.push(node.borrow().val);\n result.append(&mut in_order(node.borrow().right.as_ref()));\n }\n result\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\n let mut result = vec![];\n\n if let Some(node) = root {\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n result.append(&mut post_order(node.borrow().left.as_ref()));\n result.append(&mut post_order(node.borrow().right.as_ref()));\n result.push(node.borrow().val);\n }\n result\n}\n
binary_tree_dfs.c/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root, int *size) {\n if (root == NULL)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n arr[(*size)++] = root->val;\n preOrder(root->left, size);\n preOrder(root->right, size);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root, int *size) {\n if (root == NULL)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root->left, size);\n arr[(*size)++] = root->val;\n inOrder(root->right, size);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root, int *size) {\n if (root == NULL)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root->left, size);\n postOrder(root->right, size);\n arr[(*size)++] = root->val;\n}\n
binary_tree_dfs.zig// \u524d\u5e8f\u904d\u5386\nfn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n try list.append(root.?.val);\n try preOrder(T, root.?.left);\n try preOrder(T, root.?.right);\n}\n\n// \u4e2d\u5e8f\u904d\u5386\nfn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n try inOrder(T, root.?.left);\n try list.append(root.?.val);\n try inOrder(T, root.?.right);\n}\n\n// \u540e\u5e8f\u904d\u5386\nfn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n try postOrder(T, root.?.left);\n try postOrder(T, root.?.right);\n try list.append(root.?.val);\n}\n
Tip
\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u4e5f\u53ef\u4ee5\u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u7814\u7a76\u3002
\u56fe 7-11 \u5c55\u793a\u4e86\u524d\u5e8f\u904d\u5386\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5176\u53ef\u5206\u4e3a\u201c\u9012\u201d\u548c\u201c\u5f52\u201d\u4e24\u4e2a\u9006\u5411\u7684\u90e8\u5206\u3002
- \u201c\u9012\u201d\u8868\u793a\u5f00\u542f\u65b0\u65b9\u6cd5\uff0c\u7a0b\u5e8f\u5728\u6b64\u8fc7\u7a0b\u4e2d\u8bbf\u95ee\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002
- \u201c\u5f52\u201d\u8868\u793a\u51fd\u6570\u8fd4\u56de\uff0c\u4ee3\u8868\u5f53\u524d\u8282\u70b9\u5df2\u7ecf\u8bbf\u95ee\u5b8c\u6bd5\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 7-11 \u00a0 \u524d\u5e8f\u904d\u5386\u7684\u9012\u5f52\u8fc7\u7a0b
"},{"location":"chapter_tree/binary_tree_traversal/#2_1","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":" - \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u7cfb\u7edf\u5360\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002
"},{"location":"chapter_tree/summary/","title":"7.6 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_tree/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u4e8c\u53c9\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4f53\u73b0\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u6bcf\u4e2a\u4e8c\u53c9\u6811\u8282\u70b9\u5305\u542b\u4e00\u4e2a\u503c\u4ee5\u53ca\u4e24\u4e2a\u6307\u9488\uff0c\u5206\u522b\u6307\u5411\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u3002
- \u5bf9\u4e8e\u4e8c\u53c9\u6811\u4e2d\u7684\u67d0\u4e2a\u8282\u70b9\uff0c\u5176\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u5f62\u6210\u7684\u6811\u88ab\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u5de6\uff08\u53f3\uff09\u5b50\u6811\u3002
- \u4e8c\u53c9\u6811\u7684\u76f8\u5173\u672f\u8bed\u5305\u62ec\u6839\u8282\u70b9\u3001\u53f6\u8282\u70b9\u3001\u5c42\u3001\u5ea6\u3001\u8fb9\u3001\u9ad8\u5ea6\u548c\u6df1\u5ea6\u7b49\u3002
- \u4e8c\u53c9\u6811\u7684\u521d\u59cb\u5316\u3001\u8282\u70b9\u63d2\u5165\u548c\u8282\u70b9\u5220\u9664\u64cd\u4f5c\u4e0e\u94fe\u8868\u64cd\u4f5c\u65b9\u6cd5\u7c7b\u4f3c\u3002
- \u5e38\u89c1\u7684\u4e8c\u53c9\u6811\u7c7b\u578b\u6709\u5b8c\u7f8e\u4e8c\u53c9\u6811\u3001\u5b8c\u5168\u4e8c\u53c9\u6811\u3001\u5b8c\u6ee1\u4e8c\u53c9\u6811\u548c\u5e73\u8861\u4e8c\u53c9\u6811\u3002\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u6700\u7406\u60f3\u7684\u72b6\u6001\uff0c\u800c\u94fe\u8868\u662f\u9000\u5316\u540e\u7684\u6700\u5dee\u72b6\u6001\u3002
- \u4e8c\u53c9\u6811\u53ef\u4ee5\u7528\u6570\u7ec4\u8868\u793a\uff0c\u65b9\u6cd5\u662f\u5c06\u8282\u70b9\u503c\u548c\u7a7a\u4f4d\u6309\u5c42\u5e8f\u904d\u5386\u987a\u5e8f\u6392\u5217\uff0c\u5e76\u6839\u636e\u7236\u8282\u70b9\u4e0e\u5b50\u8282\u70b9\u4e4b\u95f4\u7684\u7d22\u5f15\u6620\u5c04\u5173\u7cfb\u6765\u5b9e\u73b0\u6307\u9488\u3002
- \u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386\u662f\u4e00\u79cd\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u65b9\u6cd5\uff0c\u5b83\u4f53\u73b0\u4e86\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u6269\u5c55\u201d\u7684\u9010\u5c42\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u901a\u8fc7\u961f\u5217\u6765\u5b9e\u73b0\u3002
- \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\u7686\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u5b83\u4eec\u4f53\u73b0\u4e86\u201c\u5148\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u6eaf\u7ee7\u7eed\u201d\u7684\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u6765\u5b9e\u73b0\u3002
- \u4e8c\u53c9\u641c\u7d22\u6811\u662f\u4e00\u79cd\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u627e\u6570\u636e\u7ed3\u6784\uff0c\u5176\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \u3002\u5f53\u4e8c\u53c9\u641c\u7d22\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u5404\u9879\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
- AVL \u6811\uff0c\u4e5f\u79f0\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5b83\u901a\u8fc7\u65cb\u8f6c\u64cd\u4f5c\u786e\u4fdd\u5728\u4e0d\u65ad\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\u540e\u6811\u4ecd\u7136\u4fdd\u6301\u5e73\u8861\u3002
- AVL \u6811\u7684\u65cb\u8f6c\u64cd\u4f5c\u5305\u62ec\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u518d\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u518d\u53f3\u65cb\u3002\u5728\u63d2\u5165\u6216\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4f1a\u4ece\u5e95\u5411\u9876\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002
"},{"location":"chapter_tree/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u5bf9\u4e8e\u53ea\u6709\u4e00\u4e2a\u8282\u70b9\u7684\u4e8c\u53c9\u6811\uff0c\u6811\u7684\u9ad8\u5ea6\u548c\u6839\u8282\u70b9\u7684\u6df1\u5ea6\u90fd\u662f \\(0\\) \u5417\uff1f
\u662f\u7684\uff0c\u56e0\u4e3a\u9ad8\u5ea6\u548c\u6df1\u5ea6\u901a\u5e38\u5b9a\u4e49\u4e3a\u201c\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u201d\u3002
\u4e8c\u53c9\u6811\u4e2d\u7684\u63d2\u5165\u4e0e\u5220\u9664\u4e00\u822c\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\uff0c\u8fd9\u91cc\u7684\u201c\u4e00\u5957\u64cd\u4f5c\u201d\u6307\u4ec0\u4e48\u5462\uff1f\u53ef\u4ee5\u7406\u89e3\u4e3a\u8d44\u6e90\u7684\u5b50\u8282\u70b9\u7684\u8d44\u6e90\u91ca\u653e\u5417\uff1f
\u62ff\u4e8c\u53c9\u641c\u7d22\u6811\u6765\u4e3e\u4f8b\uff0c\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u8981\u5206\u4e09\u79cd\u60c5\u51b5\u5904\u7406\uff0c\u5176\u4e2d\u6bcf\u79cd\u60c5\u51b5\u90fd\u9700\u8981\u8fdb\u884c\u591a\u4e2a\u6b65\u9aa4\u7684\u8282\u70b9\u64cd\u4f5c\u3002
\u4e3a\u4ec0\u4e48 DFS \u904d\u5386\u4e8c\u53c9\u6811\u6709\u524d\u3001\u4e2d\u3001\u540e\u4e09\u79cd\u987a\u5e8f\uff0c\u5206\u522b\u6709\u4ec0\u4e48\u7528\u5462\uff1f
\u4e0e\u987a\u5e8f\u548c\u9006\u5e8f\u904d\u5386\u6570\u7ec4\u7c7b\u4f3c\uff0c\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\u662f\u4e09\u79cd\u4e8c\u53c9\u6811\u904d\u5386\u65b9\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u4eec\u5f97\u5230\u4e00\u4e2a\u7279\u5b9a\u987a\u5e8f\u7684\u904d\u5386\u7ed3\u679c\u3002\u4f8b\u5982\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\uff0c\u7531\u4e8e\u8282\u70b9\u5927\u5c0f\u6ee1\u8db3 \u5de6\u5b50\u8282\u70b9\u503c < \u6839\u8282\u70b9\u503c < \u53f3\u5b50\u8282\u70b9\u503c \uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u8981\u6309\u7167 \u5de6 $\\rightarrow$ \u6839 $\\rightarrow$ \u53f3 \u7684\u4f18\u5148\u7ea7\u904d\u5386\u6811\uff0c\u5c31\u53ef\u4ee5\u83b7\u5f97\u6709\u5e8f\u7684\u8282\u70b9\u5e8f\u5217\u3002
\u53f3\u65cb\u64cd\u4f5c\u662f\u5904\u7406\u5931\u8861\u8282\u70b9 node\u3001child\u3001grand_child \u4e4b\u95f4\u7684\u5173\u7cfb\uff0c\u90a3 node \u7684\u7236\u8282\u70b9\u548c node \u539f\u6765\u7684\u8fde\u63a5\u4e0d\u9700\u8981\u7ef4\u62a4\u5417\uff1f\u53f3\u65cb\u64cd\u4f5c\u540e\u5c82\u4e0d\u662f\u65ad\u6389\u4e86\uff1f
\u6211\u4eec\u9700\u8981\u4ece\u9012\u5f52\u7684\u89c6\u89d2\u6765\u770b\u8fd9\u4e2a\u95ee\u9898\u3002\u53f3\u65cb\u64cd\u4f5c right_rotate(root) \u4f20\u5165\u7684\u662f\u5b50\u6811\u7684\u6839\u8282\u70b9\uff0c\u6700\u7ec8 return child \u8fd4\u56de\u65cb\u8f6c\u4e4b\u540e\u7684\u5b50\u6811\u7684\u6839\u8282\u70b9\u3002\u5b50\u6811\u7684\u6839\u8282\u70b9\u548c\u5176\u7236\u8282\u70b9\u7684\u8fde\u63a5\u662f\u5728\u8be5\u51fd\u6570\u8fd4\u56de\u540e\u5b8c\u6210\u7684\uff0c\u4e0d\u5c5e\u4e8e\u53f3\u65cb\u64cd\u4f5c\u7684\u7ef4\u62a4\u8303\u56f4\u3002
\u5728 C++ \u4e2d\uff0c\u51fd\u6570\u88ab\u5212\u5206\u5230 private \u548c public \u4e2d\uff0c\u8fd9\u65b9\u9762\u6709\u4ec0\u4e48\u8003\u91cf\u5417\uff1f\u4e3a\u4ec0\u4e48\u8981\u5c06 height() \u51fd\u6570\u548c updateHeight() \u51fd\u6570\u5206\u522b\u653e\u5728 public \u548c private \u4e2d\u5462\uff1f
\u4e3b\u8981\u770b\u65b9\u6cd5\u7684\u4f7f\u7528\u8303\u56f4\uff0c\u5982\u679c\u65b9\u6cd5\u53ea\u5728\u7c7b\u5185\u90e8\u4f7f\u7528\uff0c\u90a3\u4e48\u5c31\u8bbe\u8ba1\u4e3a private \u3002\u4f8b\u5982\uff0c\u7528\u6237\u5355\u72ec\u8c03\u7528 updateHeight() \u662f\u6ca1\u6709\u610f\u4e49\u7684\uff0c\u5b83\u53ea\u662f\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u4e2d\u7684\u4e00\u6b65\u3002\u800c height() \u662f\u8bbf\u95ee\u8282\u70b9\u9ad8\u5ea6\uff0c\u7c7b\u4f3c\u4e8e vector.size() \uff0c\u56e0\u6b64\u8bbe\u7f6e\u6210 public \u4ee5\u4fbf\u4f7f\u7528\u3002
\u5982\u4f55\u4ece\u4e00\u7ec4\u8f93\u5165\u6570\u636e\u6784\u5efa\u4e00\u68f5\u4e8c\u53c9\u641c\u7d22\u6811\uff1f\u6839\u8282\u70b9\u7684\u9009\u62e9\u662f\u4e0d\u662f\u5f88\u91cd\u8981\uff1f
\u662f\u7684\uff0c\u6784\u5efa\u6811\u7684\u65b9\u6cd5\u5df2\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4ee3\u7801\u4e2d\u7684 build_tree() \u65b9\u6cd5\u4e2d\u7ed9\u51fa\u3002\u81f3\u4e8e\u6839\u8282\u70b9\u7684\u9009\u62e9\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u8f93\u5165\u6570\u636e\u6392\u5e8f\uff0c\u7136\u540e\u5c06\u4e2d\u70b9\u5143\u7d20\u4f5c\u4e3a\u6839\u8282\u70b9\uff0c\u518d\u9012\u5f52\u5730\u6784\u5efa\u5de6\u53f3\u5b50\u6811\u3002\u8fd9\u6837\u505a\u53ef\u4ee5\u6700\u5927\u7a0b\u5ea6\u4fdd\u8bc1\u6811\u7684\u5e73\u8861\u6027\u3002
\u5728 Java \u4e2d\uff0c\u5b57\u7b26\u4e32\u5bf9\u6bd4\u662f\u5426\u4e00\u5b9a\u8981\u7528 equals() \u65b9\u6cd5\uff1f
\u5728 Java \u4e2d\uff0c\u5bf9\u4e8e\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c== \u7528\u4e8e\u5bf9\u6bd4\u4e24\u4e2a\u53d8\u91cf\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002\u5bf9\u4e8e\u5f15\u7528\u7c7b\u578b\uff0c\u4e24\u79cd\u7b26\u53f7\u7684\u5de5\u4f5c\u539f\u7406\u662f\u4e0d\u540c\u7684\u3002
== \uff1a\u7528\u6765\u6bd4\u8f83\u4e24\u4e2a\u53d8\u91cf\u662f\u5426\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u5373\u5b83\u4eec\u5728\u5185\u5b58\u4e2d\u7684\u4f4d\u7f6e\u662f\u5426\u76f8\u540c\u3002 equals()\uff1a\u7528\u6765\u5bf9\u6bd4\u4e24\u4e2a\u5bf9\u8c61\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002
\u56e0\u6b64\uff0c\u5982\u679c\u8981\u5bf9\u6bd4\u503c\uff0c\u6211\u4eec\u5e94\u8be5\u4f7f\u7528 equals() \u3002\u7136\u800c\uff0c\u901a\u8fc7 String a = \"hi\"; String b = \"hi\"; \u521d\u59cb\u5316\u7684\u5b57\u7b26\u4e32\u90fd\u5b58\u50a8\u5728\u5b57\u7b26\u4e32\u5e38\u91cf\u6c60\u4e2d\uff0c\u5b83\u4eec\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u56e0\u6b64\u4e5f\u53ef\u4ee5\u7528 a == b \u6765\u6bd4\u8f83\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5185\u5bb9\u3002
\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u7684\u8282\u70b9\u6570\u91cf\u662f \\(2^h\\) \u5417\uff1f
\u662f\u7684\uff0c\u4f8b\u5982\u9ad8\u5ea6 \\(h = 2\\) \u7684\u6ee1\u4e8c\u53c9\u6811\uff0c\u5176\u8282\u70b9\u603b\u6570 \\(n = 7\\) \uff0c\u5219\u5e95\u5c42\u8282\u70b9\u6570\u91cf \\(4 = 2^h = (n + 1) / 2\\) \u3002
"}]}
\ No newline at end of file
+{"config":{"lang":["en"],"separator":"[\\s\\u200b\\u3000\\-\u3001\u3002\uff0c\uff0e\uff1f\uff01\uff1b]+","pipeline":["stemmer"]},"docs":[{"location":"","title":"Home","text":"\u300a Hello \u7b97\u6cd5 \u300b \u52a8\u753b\u56fe\u89e3\u3001\u4e00\u952e\u8fd0\u884c\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6559\u7a0b
\u5f00\u59cb\u9605\u8bfb \u4e0b\u8f7d\u4ee3\u7801 \u4e0b\u8f7d PDF
\u63a8\u8350\u8bed Quote
\u201c\u4e00\u672c\u901a\u4fd7\u6613\u61c2\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u4e66\uff0c\u5f15\u5bfc\u8bfb\u8005\u624b\u8111\u5e76\u7528\u5730\u5b66\u4e60\uff0c\u5f3a\u70c8\u63a8\u8350\u7b97\u6cd5\u521d\u5b66\u8005\u9605\u8bfb\u3002\u201d
\u2014\u2014 \u9093\u4fca\u8f89\uff0c\u6e05\u534e\u5927\u5b66\u8ba1\u7b97\u673a\u7cfb\u6559\u6388
Quote
\u201c\u5982\u679c\u6211\u5f53\u5e74\u5b66\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u65f6\u5019\u6709\u300aHello \u7b97\u6cd5\u300b\uff0c\u5b66\u8d77\u6765\u5e94\u8be5\u4f1a\u7b80\u5355 10 \u500d\uff01\u201d
\u2014\u2014 \u674e\u6c90\uff0c\u4e9a\u9a6c\u900a\u8d44\u6df1\u9996\u5e2d\u79d1\u5b66\u5bb6
\u52a8\u753b\u56fe\u89e3 \u5185\u5bb9\u6e05\u6670\u6613\u61c2\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1
\"A picture is worth a thousand words.\"
\u201c\u4e00\u56fe\u80dc\u5343\u8a00\u201d
\u4e00\u952e\u8fd0\u884c \u5341\u4f59\u79cd\u7f16\u7a0b\u8bed\u8a00\u4ee3\u7801\u53ef\u76f4\u63a5\u8fd0\u884c
\"Talk is cheap. Show me the code.\"
\u201c\u5c11\u5439\u725b\uff0c\u770b\u4ee3\u7801\u201d
\u4e92\u52a9\u5b66\u4e60 \u6b22\u8fce\u8ba8\u8bba\u4e0e\u63d0\u95ee\u8bfb\u8005\u95f4\u643a\u624b\u5171\u8fdb
\"\u8ffd\u98ce\u8d76\u6708\u83ab\u505c\u7559\"
\u201c\u5e73\u829c\u5c3d\u5904\u662f\u6625\u5c71\u201d
\u5e8f \u4e24\u5e74\u524d\uff0c\u6211\u5728\u529b\u6263\u4e0a\u5206\u4eab\u4e86\u201c\u5251\u6307 Offer\u201d\u7cfb\u5217\u9898\u89e3\uff0c\u53d7\u5230\u4e86\u8bb8\u591a\u540c\u5b66\u7684\u559c\u7231\u548c\u652f\u6301\u3002\u5728\u4e0e\u8bfb\u8005\u4ea4\u6d41\u671f\u95f4\uff0c\u6211\u6700\u5e38\u6536\u5230\u7684\u4e00\u4e2a\u95ee\u9898\u662f\u201c\u5982\u4f55\u5165\u95e8\u7b97\u6cd5\u201d\u3002\u9010\u6e10\u5730\uff0c\u6211\u5bf9\u8fd9\u4e2a\u95ee\u9898\u4ea7\u751f\u4e86\u6d53\u539a\u7684\u5174\u8da3\u3002
\u4e24\u773c\u4e00\u62b9\u9ed1\u5730\u5237\u9898\u4f3c\u4e4e\u662f\u6700\u53d7\u6b22\u8fce\u7684\u65b9\u6cd5\uff0c\u7b80\u5355\u76f4\u63a5\u4e14\u6709\u6548\u3002\u7136\u800c\u5237\u9898\u5c31\u5982\u540c\u73a9\u201c\u626b\u96f7\u201d\u6e38\u620f\uff0c\u81ea\u5b66\u80fd\u529b\u5f3a\u7684\u540c\u5b66\u80fd\u591f\u987a\u5229\u5c06\u5730\u96f7\u9010\u4e2a\u6392\u6389\uff0c\u800c\u57fa\u7840\u4e0d\u8db3\u7684\u540c\u5b66\u5f88\u53ef\u80fd\u88ab\u70b8\u7684\u6ee1\u5934\u662f\u5305\uff0c\u5e76\u5728\u632b\u6298\u4e2d\u6b65\u6b65\u9000\u7f29\u3002\u901a\u8bfb\u6559\u6750\u4e5f\u662f\u4e00\u79cd\u5e38\u89c1\u505a\u6cd5\uff0c\u4f46\u5bf9\u4e8e\u9762\u5411\u6c42\u804c\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u6bd5\u4e1a\u5b63\u3001\u6295\u9012\u7b80\u5386\u3001\u51c6\u5907\u7b14\u8bd5\u9762\u8bd5\u5df2\u7ecf\u6d88\u8017\u4e86\u5927\u90e8\u5206\u7cbe\u529b\uff0c\u5543\u539a\u91cd\u7684\u4e66\u5f80\u5f80\u53d8\u6210\u4e86\u4e00\u9879\u8270\u5de8\u7684\u6311\u6218\u3002
\u5982\u679c\u4f60\u4e5f\u9762\u4e34\u7c7b\u4f3c\u7684\u56f0\u6270\uff0c\u90a3\u4e48\u5f88\u5e78\u8fd0\u8fd9\u672c\u4e66\u627e\u5230\u4e86\u4f60\u3002\u672c\u4e66\u662f\u6211\u5bf9\u8fd9\u4e2a\u95ee\u9898\u7ed9\u51fa\u7684\u7b54\u6848\uff0c\u5373\u4f7f\u4e0d\u662f\u6700\u4f18\u89e3\uff0c\u4e5f\u81f3\u5c11\u662f\u4e00\u6b21\u79ef\u6781\u7684\u5c1d\u8bd5\u3002\u672c\u4e66\u867d\u7136\u4e0d\u8db3\u4ee5\u8ba9\u4f60\u76f4\u63a5\u62ff\u5230 Offer \uff0c\u4f46\u4f1a\u5f15\u5bfc\u4f60\u63a2\u7d22\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u201c\u77e5\u8bc6\u5730\u56fe\u201d\uff0c\u5e26\u4f60\u4e86\u89e3\u4e0d\u540c\u201c\u5730\u96f7\u201d\u7684\u5f62\u72b6\u3001\u5927\u5c0f\u548c\u5206\u5e03\u4f4d\u7f6e\uff0c\u8ba9\u4f60\u638c\u63e1\u5404\u79cd\u201c\u6392\u96f7\u65b9\u6cd5\u201d\u3002\u6709\u4e86\u8fd9\u4e9b\u672c\u9886\uff0c\u76f8\u4fe1\u4f60\u53ef\u4ee5\u66f4\u52a0\u81ea\u5982\u5730\u5237\u9898\u548c\u9605\u8bfb\u6587\u732e\uff0c\u9010\u6b65\u6784\u5efa\u8d77\u5b8c\u6574\u7684\u77e5\u8bc6\u4f53\u7cfb\u3002
\u6211\u6df1\u6df1\u8d5e\u540c\u8d39\u66fc\u6559\u6388\u6240\u8a00\uff1a\u201cKnowledge isn't free. You have to pay attention.\u201d\u4ece\u8fd9\u4e2a\u610f\u4e49\u4e0a\u770b\uff0c\u8fd9\u672c\u4e66\u5e76\u975e\u5b8c\u5168\u201c\u514d\u8d39\u201d\u3002\u4e3a\u4e86\u4e0d\u8f9c\u8d1f\u4f60\u4e3a\u672c\u4e66\u6240\u4ed8\u51fa\u7684\u5b9d\u8d35\u201c\u6ce8\u610f\u529b\u201d\uff0c\u6211\u4f1a\u5c3d\u6211\u6240\u80fd\uff0c\u6295\u5165\u6700\u5927\u7684\u201c\u6ce8\u610f\u529b\u201d\u6765\u5b8c\u6210\u8fd9\u672c\u4e66\u7684\u521b\u4f5c\u3002
\u4f5c\u8005 \u9773\u5b87\u680b (Krahets)\uff0c\u5927\u5382\u9ad8\u7ea7\u7b97\u6cd5\u5de5\u7a0b\u5e08\uff0c\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\u7855\u58eb\u3002\u529b\u6263\uff08LeetCode\uff09\u5168\u7f51\u9605\u8bfb\u91cf\u6700\u9ad8\u535a\u4e3b\uff0c\u53d1\u8868\u7684\u300a\u56fe\u89e3\u7b97\u6cd5\u6570\u636e\u7ed3\u6784\u300b\u5df2\u88ab\u8ba2\u9605 30 \u4e07\u672c\u3002
\u8d21\u732e \u672c\u4e66\u5728\u5f00\u6e90\u793e\u533a\u4f17\u591a\u8d21\u732e\u8005\u7684\u5171\u540c\u52aa\u529b\u4e0b\u4e0d\u65ad\u5b8c\u5584\u3002\u611f\u8c22\u6bcf\u4e00\u4f4d\u6295\u5165\u65f6\u95f4\u4e0e\u7cbe\u529b\u7684\u64b0\u7a3f\u4eba\uff0c\u4ed6\u4eec\u662f\uff08\u6309\u7167 GitHub \u81ea\u52a8\u751f\u6210\u7684\u987a\u5e8f\u6392\u5217\uff09\uff1a
\u672c\u4e66\u7684\u4ee3\u7801\u5ba1\u9605\u5de5\u4f5c\u7531 Gonglja\u3001gvenusleo\u3001hpstory\u3001justin\u2010tse\u3001krahets\u3001night-cruise\u3001nuomi1\u3001Reanon \u548c sjinzh \u5b8c\u6210\uff08\u6309\u7167\u9996\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\uff09\u3002\u611f\u8c22\u4ed6\u4eec\u4ed8\u51fa\u7684\u65f6\u95f4\u4e0e\u7cbe\u529b\uff0c\u6b63\u662f\u4ed6\u4eec\u786e\u4fdd\u4e86\u5404\u8bed\u8a00\u4ee3\u7801\u7684\u89c4\u8303\u4e0e\u7edf\u4e00\u3002
GongljaC, C++ gvenusleoDart hpstoryC# justin-tseJS, TS krahetsJava, Python night-cruiseRust nuomi1Swift ReanonGo, C sjinzhRust, Zig"},{"location":"chapter_appendix/","title":"\u7b2c 16 \u7ae0 \u00a0 \u9644\u5f55","text":""},{"location":"chapter_appendix/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5
- 16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c
- 16.3 \u00a0 \u672f\u8bed\u8868
"},{"location":"chapter_appendix/contribution/","title":"16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c","text":"\u7531\u4e8e\u7b14\u8005\u80fd\u529b\u6709\u9650\uff0c\u4e66\u4e2d\u96be\u514d\u5b58\u5728\u4e00\u4e9b\u9057\u6f0f\u548c\u9519\u8bef\uff0c\u8bf7\u60a8\u8c05\u89e3\u3002\u5982\u679c\u60a8\u53d1\u73b0\u4e86\u7b14\u8bef\u3001\u94fe\u63a5\u5931\u6548\u3001\u5185\u5bb9\u7f3a\u5931\u3001\u6587\u5b57\u6b67\u4e49\u3001\u89e3\u91ca\u4e0d\u6e05\u6670\u6216\u884c\u6587\u7ed3\u6784\u4e0d\u5408\u7406\u7b49\u95ee\u9898\uff0c\u8bf7\u534f\u52a9\u6211\u4eec\u8fdb\u884c\u4fee\u6b63\uff0c\u4ee5\u7ed9\u8bfb\u8005\u63d0\u4f9b\u66f4\u4f18\u8d28\u7684\u5b66\u4e60\u8d44\u6e90\u3002
\u6240\u6709\u64b0\u7a3f\u4eba\u7684 GitHub ID \u5c06\u5728\u672c\u4e66\u4ed3\u5e93\u3001\u7f51\u9875\u7248\u548c PDF \u7248\u7684\u4e3b\u9875\u4e0a\u8fdb\u884c\u5c55\u793a\uff0c\u4ee5\u611f\u8c22\u4ed6\u4eec\u5bf9\u5f00\u6e90\u793e\u533a\u7684\u65e0\u79c1\u5949\u732e\u3002
\u5f00\u6e90\u7684\u9b45\u529b
\u7eb8\u8d28\u56fe\u4e66\u7684\u4e24\u6b21\u5370\u5237\u7684\u95f4\u9694\u65f6\u95f4\u5f80\u5f80\u8f83\u4e45\uff0c\u5185\u5bb9\u66f4\u65b0\u975e\u5e38\u4e0d\u65b9\u4fbf\u3002
\u800c\u5728\u672c\u5f00\u6e90\u4e66\u4e2d\uff0c\u5185\u5bb9\u66f4\u8fed\u7684\u65f6\u95f4\u88ab\u7f29\u77ed\u81f3\u6570\u65e5\u751a\u81f3\u51e0\u4e2a\u5c0f\u65f6\u3002
"},{"location":"chapter_appendix/contribution/#1","title":"1. \u00a0 \u5185\u5bb9\u5fae\u8c03","text":"\u5982\u56fe 16-3 \u6240\u793a\uff0c\u6bcf\u4e2a\u9875\u9762\u7684\u53f3\u4e0a\u89d2\u90fd\u6709\u201c\u7f16\u8f91\u56fe\u6807\u201d\u3002\u60a8\u53ef\u4ee5\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u4fee\u6539\u6587\u672c\u6216\u4ee3\u7801\u3002
- \u70b9\u51fb\u201c\u7f16\u8f91\u56fe\u6807\u201d\uff0c\u5982\u679c\u9047\u5230\u201c\u9700\u8981 Fork \u6b64\u4ed3\u5e93\u201d\u7684\u63d0\u793a\uff0c\u8bf7\u540c\u610f\u8be5\u64cd\u4f5c\u3002
- \u4fee\u6539 Markdown \u6e90\u6587\u4ef6\u5185\u5bb9\uff0c\u68c0\u67e5\u5185\u5bb9\u7684\u6b63\u786e\u6027\uff0c\u5e76\u5c3d\u91cf\u4fdd\u6301\u6392\u7248\u683c\u5f0f\u7684\u7edf\u4e00\u3002
- \u5728\u9875\u9762\u5e95\u90e8\u586b\u5199\u4fee\u6539\u8bf4\u660e\uff0c\u7136\u540e\u70b9\u51fb\u201cPropose file change\u201d\u6309\u94ae\u3002\u9875\u9762\u8df3\u8f6c\u540e\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002
\u56fe 16-3 \u00a0 \u9875\u9762\u7f16\u8f91\u6309\u952e
\u56fe\u7247\u65e0\u6cd5\u76f4\u63a5\u4fee\u6539\uff0c\u9700\u8981\u901a\u8fc7\u65b0\u5efa Issue \u6216\u8bc4\u8bba\u7559\u8a00\u6765\u63cf\u8ff0\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5c3d\u5feb\u91cd\u65b0\u7ed8\u5236\u5e76\u66ff\u6362\u56fe\u7247\u3002
"},{"location":"chapter_appendix/contribution/#2","title":"2. \u00a0 \u5185\u5bb9\u521b\u4f5c","text":"\u5982\u679c\u60a8\u6709\u5174\u8da3\u53c2\u4e0e\u6b64\u5f00\u6e90\u9879\u76ee\uff0c\u5305\u62ec\u5c06\u4ee3\u7801\u7ffb\u8bd1\u6210\u5176\u4ed6\u7f16\u7a0b\u8bed\u8a00\u3001\u6269\u5c55\u6587\u7ae0\u5185\u5bb9\u7b49\uff0c\u90a3\u4e48\u9700\u8981\u5b9e\u65bd\u4ee5\u4e0b Pull Request \u5de5\u4f5c\u6d41\u7a0b\u3002
- \u767b\u5f55 GitHub \uff0c\u5c06\u672c\u4e66\u7684\u4ee3\u7801\u4ed3\u5e93 Fork \u5230\u4e2a\u4eba\u8d26\u53f7\u4e0b\u3002
- \u8fdb\u5165\u60a8\u7684 Fork \u4ed3\u5e93\u7f51\u9875\uff0c\u4f7f\u7528
git clone \u547d\u4ee4\u5c06\u4ed3\u5e93\u514b\u9686\u81f3\u672c\u5730\u3002 - \u5728\u672c\u5730\u8fdb\u884c\u5185\u5bb9\u521b\u4f5c\uff0c\u5e76\u8fdb\u884c\u5b8c\u6574\u6d4b\u8bd5\uff0c\u9a8c\u8bc1\u4ee3\u7801\u7684\u6b63\u786e\u6027\u3002
- \u5c06\u672c\u5730\u6240\u505a\u66f4\u6539 Commit \uff0c\u7136\u540e Push \u81f3\u8fdc\u7a0b\u4ed3\u5e93\u3002
- \u5237\u65b0\u4ed3\u5e93\u7f51\u9875\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002
"},{"location":"chapter_appendix/contribution/#3-docker","title":"3. \u00a0 Docker \u90e8\u7f72","text":"\u5728 hello-algo \u6839\u76ee\u5f55\u4e0b\uff0c\u6267\u884c\u4ee5\u4e0b Docker \u811a\u672c\uff0c\u5373\u53ef\u5728 http://localhost:8000 \u8bbf\u95ee\u672c\u9879\u76ee\uff1a
docker-compose up -d\n
\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u5373\u53ef\u5220\u9664\u90e8\u7f72\uff1a
docker-compose down\n
"},{"location":"chapter_appendix/installation/","title":"16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5","text":""},{"location":"chapter_appendix/installation/#1611-ide","title":"16.1.1 \u00a0 \u5b89\u88c5 IDE","text":"\u63a8\u8350\u4f7f\u7528\u5f00\u6e90\u3001\u8f7b\u91cf\u7684 VS Code \u4f5c\u4e3a\u672c\u5730\u96c6\u6210\u5f00\u53d1\u73af\u5883\uff08IDE\uff09\u3002\u8bbf\u95ee VS Code \u5b98\u7f51\uff0c\u6839\u636e\u64cd\u4f5c\u7cfb\u7edf\u9009\u62e9\u76f8\u5e94\u7248\u672c\u7684 VS Code \u8fdb\u884c\u4e0b\u8f7d\u548c\u5b89\u88c5\u3002
\u56fe 16-1 \u00a0 \u4ece\u5b98\u7f51\u4e0b\u8f7d VS Code
VS Code \u62e5\u6709\u5f3a\u5927\u7684\u6269\u5c55\u5305\u751f\u6001\u7cfb\u7edf\uff0c\u652f\u6301\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u7684\u8fd0\u884c\u548c\u8c03\u8bd5\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u5b89\u88c5\u201cPython Extension Pack\u201d\u6269\u5c55\u5305\u4e4b\u540e\uff0c\u5373\u53ef\u8fdb\u884c Python \u4ee3\u7801\u8c03\u8bd5\u3002\u5b89\u88c5\u6b65\u9aa4\u5982\u56fe 16-2 \u6240\u793a\u3002
\u56fe 16-2 \u00a0 \u5b89\u88c5 VS Code \u6269\u5c55\u5305
"},{"location":"chapter_appendix/installation/#1612","title":"16.1.2 \u00a0 \u5b89\u88c5\u8bed\u8a00\u73af\u5883","text":""},{"location":"chapter_appendix/installation/#1-python","title":"1. \u00a0 Python \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Miniconda3 \uff0c\u9700\u8981 Python 3.10 \u6216\u66f4\u65b0\u7248\u672c\u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
python \uff0c\u5b89\u88c5 Python Extension Pack \u3002 - \uff08\u53ef\u9009\uff09\u5728\u547d\u4ee4\u884c\u8f93\u5165
pip install black \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
"},{"location":"chapter_appendix/installation/#2-cc","title":"2. \u00a0 C/C++ \u73af\u5883","text":" - Windows \u7cfb\u7edf\u9700\u8981\u5b89\u88c5 MinGW\uff08\u914d\u7f6e\u6559\u7a0b\uff09\uff1bMacOS \u81ea\u5e26 Clang \uff0c\u65e0\u987b\u5b89\u88c5\u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
c++ \uff0c\u5b89\u88c5 C/C++ Extension Pack \u3002 - \uff08\u53ef\u9009\uff09\u6253\u5f00 Settings \u9875\u9762\uff0c\u641c\u7d22
Clang_format_fallback Style \u4ee3\u7801\u683c\u5f0f\u5316\u9009\u9879\uff0c\u8bbe\u7f6e\u4e3a { BasedOnStyle: Microsoft, BreakBeforeBraces: Attach } \u3002
"},{"location":"chapter_appendix/installation/#3-java","title":"3. \u00a0 Java \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 OpenJDK\uff08\u7248\u672c\u9700\u6ee1\u8db3 > JDK 9\uff09\u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
java \uff0c\u5b89\u88c5 Extension Pack for Java \u3002
"},{"location":"chapter_appendix/installation/#4-c","title":"4. \u00a0 C# \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 .Net 8.0 \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
C# Dev Kit \uff0c\u5b89\u88c5 C# Dev Kit \uff08\u914d\u7f6e\u6559\u7a0b\uff09\u3002 - \u4e5f\u53ef\u4f7f\u7528 Visual Studio\uff08\u5b89\u88c5\u6559\u7a0b\uff09\u3002
"},{"location":"chapter_appendix/installation/#5-go","title":"5. \u00a0 Go \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 go \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
go \uff0c\u5b89\u88c5 Go \u3002 - \u6309\u5feb\u6377\u952e
Ctrl + Shift + P \u547c\u51fa\u547d\u4ee4\u680f\uff0c\u8f93\u5165 go \uff0c\u9009\u62e9 Go: Install/Update Tools \uff0c\u5168\u90e8\u52fe\u9009\u5e76\u5b89\u88c5\u5373\u53ef\u3002
"},{"location":"chapter_appendix/installation/#6-swift","title":"6. \u00a0 Swift \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Swift \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
swift \uff0c\u5b89\u88c5 Swift for Visual Studio Code \u3002
"},{"location":"chapter_appendix/installation/#7-javascript","title":"7. \u00a0 JavaScript \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 node.js \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
javascript \uff0c\u5b89\u88c5 JavaScript (ES6) code snippets \u3002 - \uff08\u53ef\u9009\uff09\u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
Prettier \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
"},{"location":"chapter_appendix/installation/#8-dart","title":"8. \u00a0 Dart \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Dart \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
dart \uff0c\u5b89\u88c5 Dart \u3002
"},{"location":"chapter_appendix/installation/#9-rust","title":"9. \u00a0 Rust \u73af\u5883","text":" - \u4e0b\u8f7d\u5e76\u5b89\u88c5 Rust \u3002
- \u5728 VS Code \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22
rust \uff0c\u5b89\u88c5 rust-analyzer \u3002
"},{"location":"chapter_appendix/terminology/","title":"16.3 \u00a0 \u672f\u8bed\u8868","text":"\u8868 16-1 \u5217\u51fa\u4e86\u4e66\u4e2d\u51fa\u73b0\u7684\u91cd\u8981\u672f\u8bed\u3002\u5efa\u8bae\u8bfb\u8005\u540c\u65f6\u8bb0\u4f4f\u5b83\u4eec\u7684\u4e2d\u82f1\u6587\u53eb\u6cd5\uff0c\u4ee5\u4fbf\u9605\u8bfb\u82f1\u6587\u6587\u732e\u3002
\u8868 16-1 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u91cd\u8981\u540d\u8bcd
\u4e2d\u6587 English \u4e2d\u6587 English \u7b97\u6cd5 algorithm \u5c42\u5e8f\u904d\u5386 level-order traversal \u6570\u636e\u7ed3\u6784 data structure \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 breadth-first traversal \u6e10\u8fd1\u590d\u6742\u5ea6\u5206\u6790 asymptotic complexity analysis \u6df1\u5ea6\u4f18\u5148\u904d\u5386 depth-first traversal \u65f6\u95f4\u590d\u6742\u5ea6 time complexity \u4e8c\u53c9\u641c\u7d22\u6811 binary search tree \u7a7a\u95f4\u590d\u6742\u5ea6 space complexity \u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811 balanced binary search tree \u8fed\u4ee3 iteration \u5e73\u8861\u56e0\u5b50 balance factor \u9012\u5f52 recursion \u5806 heap \u5c3e\u9012\u5f52 tail recursion \u5927\u9876\u5806 max heap \u9012\u5f52\u6811 recursion tree \u5c0f\u9876\u5806 min heap \u5927 \\(O\\) \u8bb0\u53f7 big-\\(O\\) notation \u4f18\u5148\u961f\u5217 priority queue \u6e10\u8fd1\u4e0a\u754c asymptotic upper bound \u5806\u5316 heapify \u539f\u7801 sign-magnitude \u56fe graph \u53cd\u7801 1\u2019s complement \u9876\u70b9 vertex \u8865\u7801 2\u2019s complement \u65e0\u5411\u56fe undirected graph \u6570\u7ec4 array \u6709\u5411\u56fe directed graph \u7d22\u5f15 index \u8fde\u901a\u56fe connected graph \u94fe\u8868 linked list \u975e\u8fde\u901a\u56fe disconnected graph \u94fe\u8868\u8282\u70b9 linked list node, list node \u6709\u6743\u56fe weighted graph \u5217\u8868 list \u90bb\u63a5 adjacency \u52a8\u6001\u6570\u7ec4 dynamic array \u8def\u5f84 path \u786c\u76d8 hard disk \u5165\u5ea6 in-degree \u5185\u5b58 random-access memory (RAM) \u51fa\u5ea6 out-degree \u7f13\u5b58 cache memory \u90bb\u63a5\u77e9\u9635 adjacency matrix \u7f13\u5b58\u672a\u547d\u4e2d cache miss \u90bb\u63a5\u8868 adjacency list \u7f13\u5b58\u547d\u4e2d\u7387 cache hit rate \u5e7f\u5ea6\u4f18\u5148\u641c\u7d22 breadth-first search \u6808 stack \u6df1\u5ea6\u4f18\u5148\u641c\u7d22 depth-first search \u961f\u5217 queue \u4e8c\u5206\u67e5\u627e binary search \u53cc\u5411\u961f\u5217 double-ended queue \u641c\u7d22\u7b97\u6cd5 searching algorithm \u54c8\u5e0c\u8868 hash table \u6392\u5e8f\u7b97\u6cd5 sorting algorithm \u6876 bucket \u9009\u62e9\u6392\u5e8f selection sort \u54c8\u5e0c\u51fd\u6570 hash function \u5192\u6ce1\u6392\u5e8f bubble sort \u54c8\u5e0c\u51b2\u7a81 hash collision \u63d2\u5165\u6392\u5e8f insertion sort \u8d1f\u8f7d\u56e0\u5b50 load factor \u5feb\u901f\u6392\u5e8f quick sort \u94fe\u5f0f\u5730\u5740 separate chaining \u5f52\u5e76\u6392\u5e8f merge sort \u5f00\u653e\u5bfb\u5740 open addressing \u5806\u6392\u5e8f heap sort \u7ebf\u6027\u63a2\u6d4b linear probing \u6876\u6392\u5e8f bucket sort \u61d2\u5220\u9664 lazy deletion \u8ba1\u6570\u6392\u5e8f counting sort \u4e8c\u53c9\u6811 binary tree \u57fa\u6570\u6392\u5e8f radix sort \u6811\u8282\u70b9 tree node \u5206\u6cbb divide and conquer \u5de6\u5b50\u8282\u70b9 left-child node \u6c49\u8bfa\u5854\u95ee\u9898 hanota problem \u53f3\u5b50\u8282\u70b9 right-child node \u56de\u6eaf\u7b97\u6cd5 backtracking algorithm \u7236\u8282\u70b9 parent node \u7ea6\u675f constraint \u5de6\u5b50\u6811 left subtree \u89e3 solution \u53f3\u5b50\u6811 right subtree \u72b6\u6001 state \u6839\u8282\u70b9 root node \u526a\u679d pruning \u53f6\u8282\u70b9 leaf node \u5168\u6392\u5217\u95ee\u9898 permutations problem \u8fb9 edge \u5b50\u96c6\u548c\u95ee\u9898 subset-sum problem \u5c42 level N \u7687\u540e\u95ee\u9898 N-queens problem \u5ea6 degree \u52a8\u6001\u89c4\u5212 dynamic programming \u9ad8\u5ea6 height \u521d\u59cb\u72b6\u6001 initial state \u6df1\u5ea6 depth \u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b state-trasition equation \u5b8c\u7f8e\u4e8c\u53c9\u6811 perfect binary tree \u80cc\u5305\u95ee\u9898 knapsack problem \u5b8c\u5168\u4e8c\u53c9\u6811 complete binary tree \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898 edit distance problem \u5b8c\u6ee1\u4e8c\u53c9\u6811 full binary tree \u8d2a\u5fc3\u7b97\u6cd5 greedy algorithm \u5e73\u8861\u4e8c\u53c9\u6811 balanced binary tree AVL \u6811 AVL tree \u7ea2\u9ed1\u6811 red-black tree"},{"location":"chapter_array_and_linkedlist/","title":"\u7b2c 4 \u7ae0 \u00a0 \u6570\u7ec4\u4e0e\u94fe\u8868","text":"Abstract
\u6570\u636e\u7ed3\u6784\u7684\u4e16\u754c\u5982\u540c\u4e00\u5835\u539a\u5b9e\u7684\u7816\u5899\u3002
\u6570\u7ec4\u7684\u7816\u5757\u6574\u9f50\u6392\u5217\uff0c\u9010\u4e2a\u7d27\u8d34\u3002\u94fe\u8868\u7684\u7816\u5757\u5206\u6563\u5404\u5904\uff0c\u8fde\u63a5\u7684\u85e4\u8513\u81ea\u7531\u5730\u7a7f\u68ad\u4e8e\u7816\u7f1d\u4e4b\u95f4\u3002
"},{"location":"chapter_array_and_linkedlist/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 4.1 \u00a0 \u6570\u7ec4
- 4.2 \u00a0 \u94fe\u8868
- 4.3 \u00a0 \u5217\u8868
- 4.4 \u00a0 \u5185\u5b58\u4e0e\u7f13\u5b58 *
- 4.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_array_and_linkedlist/array/","title":"4.1 \u00a0 \u6570\u7ec4","text":"\u300c\u6570\u7ec4 array\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5c06\u76f8\u540c\u7c7b\u578b\u7684\u5143\u7d20\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\u3002\u6211\u4eec\u5c06\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u4f4d\u7f6e\u79f0\u4e3a\u8be5\u5143\u7d20\u7684\u300c\u7d22\u5f15 index\u300d\u3002\u56fe 4-1 \u5c55\u793a\u4e86\u6570\u7ec4\u7684\u4e3b\u8981\u6982\u5ff5\u548c\u5b58\u50a8\u65b9\u5f0f\u3002
\u56fe 4-1 \u00a0 \u6570\u7ec4\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f
"},{"location":"chapter_array_and_linkedlist/array/#411","title":"4.1.1 \u00a0 \u6570\u7ec4\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/array/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u6570\u7ec4","text":"\u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9700\u6c42\u9009\u7528\u6570\u7ec4\u7684\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\uff1a\u65e0\u521d\u59cb\u503c\u3001\u7ed9\u5b9a\u521d\u59cb\u503c\u3002\u5728\u672a\u6307\u5b9a\u521d\u59cb\u503c\u7684\u60c5\u51b5\u4e0b\uff0c\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4f1a\u5c06\u6570\u7ec4\u5143\u7d20\u521d\u59cb\u5316\u4e3a \\(0\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.py# \u521d\u59cb\u5316\u6570\u7ec4\narr: list[int] = [0] * 5 # [ 0, 0, 0, 0, 0 ]\nnums: list[int] = [1, 3, 2, 5, 4] \n
array.cpp/* \u521d\u59cb\u5316\u6570\u7ec4 */\n// \u5b58\u50a8\u5728\u6808\u4e0a\nint arr[5];\nint nums[5] = { 1, 3, 2, 5, 4 };\n// \u5b58\u50a8\u5728\u5806\u4e0a\uff08\u9700\u8981\u624b\u52a8\u91ca\u653e\u7a7a\u95f4\uff09\nint* arr1 = new int[5];\nint* nums1 = new int[5] { 1, 3, 2, 5, 4 };\n
array.java/* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
array.cs/* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = [1, 3, 2, 5, 4];\n
array.go/* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr [5]int\n// \u5728 Go \u4e2d\uff0c\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[5]int\uff09\u4e3a\u6570\u7ec4\uff0c\u4e0d\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[]int\uff09\u4e3a\u5207\u7247\n// \u7531\u4e8e Go \u7684\u6570\u7ec4\u88ab\u8bbe\u8ba1\u4e3a\u5728\u7f16\u8bd1\u671f\u786e\u5b9a\u957f\u5ea6\uff0c\u56e0\u6b64\u53ea\u80fd\u4f7f\u7528\u5e38\u91cf\u6765\u6307\u5b9a\u957f\u5ea6\n// \u4e3a\u4e86\u65b9\u4fbf\u5b9e\u73b0\u6269\u5bb9 extend() \u65b9\u6cd5\uff0c\u4ee5\u4e0b\u5c06\u5207\u7247\uff08Slice\uff09\u770b\u4f5c\u6570\u7ec4\uff08Array\uff09\nnums := []int{1, 3, 2, 5, 4}\n
array.swift/* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]\nlet nums = [1, 3, 2, 5, 4]\n
array.js/* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr = new Array(5).fill(0);\nvar nums = [1, 3, 2, 5, 4];\n
array.ts/* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: number[] = new Array(5).fill(0);\nlet nums: number[] = [1, 3, 2, 5, 4];\n
array.dart/* \u521d\u59cb\u5316\u6570\u7ec4 */\nList<int> arr = List.filled(5, 0); // [0, 0, 0, 0, 0]\nList<int> nums = [1, 3, 2, 5, 4];\n
array.rs/* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: Vec<i32> = vec![0; 5]; // [0, 0, 0, 0, 0]\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
array.c/* \u521d\u59cb\u5316\u6570\u7ec4 */\nint arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }\nint nums[5] = { 1, 3, 2, 5, 4 };\n
array.zig// \u521d\u59cb\u5316\u6570\u7ec4\nvar arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }\nvar nums = [_]i32{ 1, 3, 2, 5, 4 };\n
"},{"location":"chapter_array_and_linkedlist/array/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"\u6570\u7ec4\u5143\u7d20\u88ab\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u8fd9\u610f\u5473\u7740\u8ba1\u7b97\u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u975e\u5e38\u5bb9\u6613\u3002\u7ed9\u5b9a\u6570\u7ec4\u5185\u5b58\u5730\u5740\uff08\u9996\u5143\u7d20\u5185\u5b58\u5730\u5740\uff09\u548c\u67d0\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u56fe 4-2 \u6240\u793a\u7684\u516c\u5f0f\u8ba1\u7b97\u5f97\u5230\u8be5\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u76f4\u63a5\u8bbf\u95ee\u8be5\u5143\u7d20\u3002
\u56fe 4-2 \u00a0 \u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u8ba1\u7b97
\u89c2\u5bdf\u56fe 4-2 \uff0c\u6211\u4eec\u53d1\u73b0\u6570\u7ec4\u9996\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u4e3a \\(0\\) \uff0c\u8fd9\u4f3c\u4e4e\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\u4f1a\u66f4\u81ea\u7136\u3002\u4f46\u4ece\u5730\u5740\u8ba1\u7b97\u516c\u5f0f\u7684\u89d2\u5ea6\u770b\uff0c\u7d22\u5f15\u672c\u8d28\u4e0a\u662f\u5185\u5b58\u5730\u5740\u7684\u504f\u79fb\u91cf\u3002\u9996\u4e2a\u5143\u7d20\u7684\u5730\u5740\u504f\u79fb\u91cf\u662f \\(0\\) \uff0c\u56e0\u6b64\u5b83\u7684\u7d22\u5f15\u4e3a \\(0\\) \u662f\u5408\u7406\u7684\u3002
\u5728\u6570\u7ec4\u4e2d\u8bbf\u95ee\u5143\u7d20\u975e\u5e38\u9ad8\u6548\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u968f\u673a\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u5143\u7d20\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef random_access(nums: list[int]) -> int:\n \"\"\"\u968f\u673a\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u5728\u533a\u95f4 [0, len(nums)-1] \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n random_index = random.randint(0, len(nums) - 1)\n # \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n random_num = nums[random_index]\n return random_num\n
array.cpp/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.java/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = ThreadLocalRandom.current().nextInt(0, nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.cs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint RandomAccess(int[] nums) {\n Random random = new();\n // \u5728\u533a\u95f4 [0, nums.Length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = random.Next(nums.Length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.go/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums []int) (randomNum int) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n randomIndex := rand.Intn(len(nums))\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n randomNum = nums[randomIndex]\n return\n}\n
array.swift/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums: [Int]) -> Int {\n // \u5728\u533a\u95f4 [0, nums.count) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let randomIndex = nums.indices.randomElement()!\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let randomNum = nums[randomIndex]\n return randomNum\n}\n
array.js/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.ts/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums: number[]): number {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n const random_index = Math.floor(Math.random() * nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n const random_num = nums[random_index];\n return random_num;\n}\n
array.dart/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(List<int> nums) {\n // \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = Random().nextInt(nums.length);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.rs/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfn random_access(nums: &[i32]) -> i32 {\n // \u5728\u533a\u95f4 [0, nums.len()) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n let random_index = rand::thread_rng().gen_range(0..nums.len());\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n let random_num = nums[random_index];\n random_num\n}\n
array.c/* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n // \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\n int randomIndex = rand() % size;\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n int randomNum = nums[randomIndex];\n return randomNum;\n}\n
array.zig// \u968f\u673a\u8bbf\u95ee\u5143\u7d20\nfn randomAccess(nums: []i32) i32 {\n // \u5728\u533a\u95f4 [0, nums.len) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6574\u6570\n var randomIndex = std.crypto.random.intRangeLessThan(usize, 0, nums.len);\n // \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\n var randomNum = nums[randomIndex];\n return randomNum;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#3","title":"3. \u00a0 \u63d2\u5165\u5143\u7d20","text":"\u6570\u7ec4\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u662f\u201c\u7d27\u6328\u7740\u7684\u201d\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u7a7a\u95f4\u518d\u5b58\u653e\u4efb\u4f55\u6570\u636e\u3002\u5982\u56fe 4-3 \u6240\u793a\uff0c\u5982\u679c\u60f3\u5728\u6570\u7ec4\u4e2d\u95f4\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\uff0c\u5219\u9700\u8981\u5c06\u8be5\u5143\u7d20\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u4e4b\u540e\u518d\u628a\u5143\u7d20\u8d4b\u503c\u7ed9\u8be5\u7d22\u5f15\u3002
\u56fe 4-3 \u00a0 \u6570\u7ec4\u63d2\u5165\u5143\u7d20\u793a\u4f8b
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u56fa\u5b9a\u7684\uff0c\u56e0\u6b64\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u4f1a\u5bfc\u81f4\u6570\u7ec4\u5c3e\u90e8\u5143\u7d20\u201c\u4e22\u5931\u201d\u3002\u6211\u4eec\u5c06\u8fd9\u4e2a\u95ee\u9898\u7684\u89e3\u51b3\u65b9\u6848\u7559\u5728\u201c\u5217\u8868\u201d\u7ae0\u8282\u4e2d\u8ba8\u8bba\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef insert(nums: list[int], num: int, index: int):\n \"\"\"\u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\"\"\"\n # \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in range(len(nums) - 1, index, -1):\n nums[i] = nums[i - 1]\n # \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n
array.cpp/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.java/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.cs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid Insert(int[] nums, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = nums.Length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.go/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums []int, num int, index int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i := len(nums) - 1; i > index; i-- {\n nums[i] = nums[i-1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.swift/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums: inout [Int], num: Int, index: Int) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).reversed() {\n nums[i] = nums[i - 1]\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num\n}\n
array.js/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums, num, index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.ts/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums: number[], num: number, index: number): void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.dart/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 _num */\nvoid insert(List<int> nums, int _num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var i = nums.length - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 _num \u8d4b\u7ed9 index \u5904\u5143\u7d20\n nums[index] = _num;\n}\n
array.rs/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfn insert(nums: &mut Vec<i32>, num: i32, index: usize) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for i in (index + 1..nums.len()).rev() {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.c/* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int i = size - 1; i > index; i--) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
array.zig// \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\nfn insert(nums: []i32, num: i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var i = nums.len - 1;\n while (i > index) : (i -= 1) {\n nums[i] = nums[i - 1];\n }\n // \u5c06 num \u8d4b\u7ed9 index \u5904\u7684\u5143\u7d20\n nums[index] = num;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#4","title":"4. \u00a0 \u5220\u9664\u5143\u7d20","text":"\u540c\u7406\uff0c\u5982\u56fe 4-4 \u6240\u793a\uff0c\u82e5\u60f3\u5220\u9664\u7d22\u5f15 \\(i\\) \u5904\u7684\u5143\u7d20\uff0c\u5219\u9700\u8981\u628a\u7d22\u5f15 \\(i\\) \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\u3002
\u56fe 4-4 \u00a0 \u6570\u7ec4\u5220\u9664\u5143\u7d20\u793a\u4f8b
\u8bf7\u6ce8\u610f\uff0c\u5220\u9664\u5143\u7d20\u5b8c\u6210\u540e\uff0c\u539f\u5148\u672b\u5c3e\u7684\u5143\u7d20\u53d8\u5f97\u201c\u65e0\u610f\u4e49\u201d\u4e86\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u987b\u7279\u610f\u53bb\u4fee\u6539\u5b83\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef remove(nums: list[int], index: int):\n \"\"\"\u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\"\"\"\n # \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in range(index, len(nums) - 1):\n nums[i] = nums[i + 1]\n
array.cpp/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.java/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.cs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid Remove(int[] nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < nums.Length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.go/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums []int, index int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i := index; i < len(nums)-1; i++ {\n nums[i] = nums[i+1]\n }\n}\n
array.swift/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunc remove(nums: inout [Int], index: Int) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in nums.indices.dropFirst(index).dropLast() {\n nums[i] = nums[i + 1]\n }\n}\n
array.js/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums, index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.ts/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfunction remove(nums: number[], index: number): void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.dart/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nvoid remove(List<int> nums, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var i = index; i < nums.length - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.rs/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\nfn remove(nums: &mut Vec<i32>, index: usize) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for i in index..nums.len() - 1 {\n nums[i] = nums[i + 1];\n }\n}\n
array.c/* \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(int *nums, int size, int index) {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int i = index; i < size - 1; i++) {\n nums[i] = nums[i + 1];\n }\n}\n
array.zig// \u5220\u9664\u7d22\u5f15 index \u5904\u7684\u5143\u7d20\nfn remove(nums: []i32, index: usize) void {\n // \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var i = index;\n while (i < nums.len - 1) : (i += 1) {\n nums[i] = nums[i + 1];\n }\n}\n
\u603b\u7684\u6765\u770b\uff0c\u6570\u7ec4\u7684\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u6709\u4ee5\u4e0b\u7f3a\u70b9\u3002
- \u65f6\u95f4\u590d\u6742\u5ea6\u9ad8\uff1a\u6570\u7ec4\u7684\u63d2\u5165\u548c\u5220\u9664\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u957f\u5ea6\u3002
- \u4e22\u5931\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u53ef\u53d8\uff0c\u56e0\u6b64\u5728\u63d2\u5165\u5143\u7d20\u540e\uff0c\u8d85\u51fa\u6570\u7ec4\u957f\u5ea6\u8303\u56f4\u7684\u5143\u7d20\u4f1a\u4e22\u5931\u3002
- \u5185\u5b58\u6d6a\u8d39\uff1a\u6211\u4eec\u53ef\u4ee5\u521d\u59cb\u5316\u4e00\u4e2a\u6bd4\u8f83\u957f\u7684\u6570\u7ec4\uff0c\u53ea\u7528\u524d\u9762\u4e00\u90e8\u5206\uff0c\u8fd9\u6837\u5728\u63d2\u5165\u6570\u636e\u65f6\uff0c\u4e22\u5931\u7684\u672b\u5c3e\u5143\u7d20\u90fd\u662f\u201c\u65e0\u610f\u4e49\u201d\u7684\uff0c\u4f46\u8fd9\u6837\u505a\u4f1a\u9020\u6210\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
"},{"location":"chapter_array_and_linkedlist/array/#5","title":"5. \u00a0 \u904d\u5386\u6570\u7ec4","text":"\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u65e2\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u83b7\u53d6\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef traverse(nums: list[int]):\n \"\"\"\u904d\u5386\u6570\u7ec4\"\"\"\n count = 0\n # \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in range(len(nums)):\n count += nums[i]\n # \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums:\n count += num\n # \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num in enumerate(nums):\n count += nums[i]\n count += num\n
array.cpp/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.java/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int num : nums) {\n count += num;\n }\n}\n
array.cs/* \u904d\u5386\u6570\u7ec4 */\nvoid Traverse(int[] nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n foreach (int num in nums) {\n count += num;\n }\n}\n
array.go/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums []int) {\n count := 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i := 0; i < len(nums); i++ {\n count += nums[i]\n }\n count = 0\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for _, num := range nums {\n count += num\n }\n // \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\n for i, num := range nums {\n count += nums[i]\n count += num\n }\n}\n
array.swift/* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums: [Int]) {\n var count = 0\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in nums.indices {\n count += nums[i]\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n count += num\n }\n}\n
array.js/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums) {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.ts/* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums: number[]): void {\n let count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (const num of nums) {\n count += num;\n }\n}\n
array.dart/* \u904d\u5386\u6570\u7ec4\u5143\u7d20 */\nvoid traverse(List<int> nums) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (int _num in nums) {\n count += _num;\n }\n // \u901a\u8fc7 forEach \u65b9\u6cd5\u904d\u5386\u6570\u7ec4\n nums.forEach((_num) {\n count += _num;\n });\n}\n
array.rs/* \u904d\u5386\u6570\u7ec4 */\nfn traverse(nums: &[i32]) {\n let mut _count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for i in 0..nums.len() {\n _count += nums[i];\n }\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for num in nums {\n _count += num;\n }\n}\n
array.c/* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\n int count = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n count += nums[i];\n }\n}\n
array.zig// \u904d\u5386\u6570\u7ec4\nfn traverse(nums: []i32) void {\n var count: i32 = 0;\n // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\n var i: i32 = 0;\n while (i < nums.len) : (i += 1) {\n count += nums[i];\n }\n count = 0;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\u5143\u7d20\n for (nums) |num| {\n count += num;\n }\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#6","title":"6. \u00a0 \u67e5\u627e\u5143\u7d20","text":"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\u9700\u8981\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u5224\u65ad\u5143\u7d20\u503c\u662f\u5426\u5339\u914d\uff0c\u82e5\u5339\u914d\u5219\u8f93\u51fa\u5bf9\u5e94\u7d22\u5f15\u3002
\u56e0\u4e3a\u6570\u7ec4\u662f\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u6240\u4ee5\u4e0a\u8ff0\u67e5\u627e\u64cd\u4f5c\u88ab\u79f0\u4e3a\u201c\u7ebf\u6027\u67e5\u627e\u201d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef find(nums: list[int], target: int) -> int:\n \"\"\"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\"\"\"\n for i in range(len(nums)):\n if nums[i] == target:\n return i\n return -1\n
array.cpp/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.java/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\n for (int i = 0; i < nums.length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.cs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint Find(int[] nums, int target) {\n for (int i = 0; i < nums.Length; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.go/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums []int, target int) (index int) {\n index = -1\n for i := 0; i < len(nums); i++ {\n if nums[i] == target {\n index = i\n break\n }\n }\n return\n}\n
array.swift/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums: [Int], target: Int) -> Int {\n for i in nums.indices {\n if nums[i] == target {\n return i\n }\n }\n return -1\n}\n
array.js/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums, target) {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) return i;\n }\n return -1;\n}\n
array.ts/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums: number[], target: number): number {\n for (let i = 0; i < nums.length; i++) {\n if (nums[i] === target) {\n return i;\n }\n }\n return -1;\n}\n
array.dart/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(List<int> nums, int target) {\n for (var i = 0; i < nums.length; i++) {\n if (nums[i] == target) return i;\n }\n return -1;\n}\n
array.rs/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfn find(nums: &[i32], target: i32) -> Option<usize> {\n for i in 0..nums.len() {\n if nums[i] == target {\n return Some(i);\n }\n }\n None\n}\n
array.c/* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\n for (int i = 0; i < size; i++) {\n if (nums[i] == target)\n return i;\n }\n return -1;\n}\n
array.zig// \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\nfn find(nums: []i32, target: i32) i32 {\n for (nums, 0..) |num, i| {\n if (num == target) return @intCast(i);\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#7","title":"7. \u00a0 \u6269\u5bb9\u6570\u7ec4","text":"\u5728\u590d\u6742\u7684\u7cfb\u7edf\u73af\u5883\u4e2d\uff0c\u7a0b\u5e8f\u96be\u4ee5\u4fdd\u8bc1\u6570\u7ec4\u4e4b\u540e\u7684\u5185\u5b58\u7a7a\u95f4\u662f\u53ef\u7528\u7684\uff0c\u4ece\u800c\u65e0\u6cd5\u5b89\u5168\u5730\u6269\u5c55\u6570\u7ec4\u5bb9\u91cf\u3002\u56e0\u6b64\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u4e0d\u53ef\u53d8\u7684\u3002
\u5982\u679c\u6211\u4eec\u5e0c\u671b\u6269\u5bb9\u6570\u7ec4\uff0c\u5219\u9700\u91cd\u65b0\u5efa\u7acb\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u7136\u540e\u628a\u539f\u6570\u7ec4\u5143\u7d20\u4f9d\u6b21\u590d\u5236\u5230\u65b0\u6570\u7ec4\u3002\u8fd9\u662f\u4e00\u4e2a \\(O(n)\\) \u7684\u64cd\u4f5c\uff0c\u5728\u6570\u7ec4\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\u975e\u5e38\u8017\u65f6\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array.pydef extend(nums: list[int], enlarge: int) -> list[int]:\n \"\"\"\u6269\u5c55\u6570\u7ec4\u957f\u5ea6\"\"\"\n # \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res = [0] * (len(nums) + enlarge)\n # \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in range(len(nums)):\n res[i] = nums[i]\n # \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n
array.cpp/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = new int[size + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] nums;\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.java/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.cs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] Extend(int[] nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int[] res = new int[nums.Length + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < nums.Length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.go/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums []int, enlarge int) []int {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n res := make([]int, len(nums)+enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i, num := range nums {\n res[i] = num\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.swift/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums: [Int], enlarge: Int) -> [Int] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = Array(repeating: 0, count: nums.count + enlarge)\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for i in nums.indices {\n res[i] = nums[i]\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res\n}\n
array.js/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cJavaScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums, enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.ts/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cTypeScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums: number[], enlarge: number): number[] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n const res = new Array(nums.length + enlarge).fill(0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (let i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.dart/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nList<int> extend(List<int> nums, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n List<int> res = List.filled(nums.length + enlarge, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (var i = 0; i < nums.length; i++) {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.rs/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfn extend(nums: Vec<i32>, enlarge: usize) -> Vec<i32> {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n let mut res: Vec<i32> = vec![0; nums.len() + enlarge];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\n for i in 0..nums.len() {\n res[i] = nums[i];\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n res\n}\n
array.c/* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n int *res = (int *)malloc(sizeof(int) * (size + enlarge));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size; i++) {\n res[i] = nums[i];\n }\n // \u521d\u59cb\u5316\u6269\u5c55\u540e\u7684\u7a7a\u95f4\n for (int i = size; i < size + enlarge; i++) {\n res[i] = 0;\n }\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
array.zig// \u6269\u5c55\u6570\u7ec4\u957f\u5ea6\nfn extend(mem_allocator: std.mem.Allocator, nums: []i32, enlarge: usize) ![]i32 {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\n var res = try mem_allocator.alloc(i32, nums.len + enlarge);\n @memset(res, 0);\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(i32, res, nums);\n // \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\n return res;\n}\n
"},{"location":"chapter_array_and_linkedlist/array/#412","title":"4.1.2 \u00a0 \u6570\u7ec4\u7684\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u5185\uff0c\u4e14\u5143\u7d20\u7c7b\u578b\u76f8\u540c\u3002\u8fd9\u79cd\u505a\u6cd5\u5305\u542b\u4e30\u5bcc\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u7cfb\u7edf\u53ef\u4ee5\u5229\u7528\u8fd9\u4e9b\u4fe1\u606f\u6765\u4f18\u5316\u6570\u636e\u7ed3\u6784\u7684\u64cd\u4f5c\u6548\u7387\u3002
- \u7a7a\u95f4\u6548\u7387\u9ad8\uff1a\u6570\u7ec4\u4e3a\u6570\u636e\u5206\u914d\u4e86\u8fde\u7eed\u7684\u5185\u5b58\u5757\uff0c\u65e0\u987b\u989d\u5916\u7684\u7ed3\u6784\u5f00\u9500\u3002
- \u652f\u6301\u968f\u673a\u8bbf\u95ee\uff1a\u6570\u7ec4\u5141\u8bb8\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u4efb\u4f55\u5143\u7d20\u3002
- \u7f13\u5b58\u5c40\u90e8\u6027\uff1a\u5f53\u8bbf\u95ee\u6570\u7ec4\u5143\u7d20\u65f6\uff0c\u8ba1\u7b97\u673a\u4e0d\u4ec5\u4f1a\u52a0\u8f7d\u5b83\uff0c\u8fd8\u4f1a\u7f13\u5b58\u5176\u5468\u56f4\u7684\u5176\u4ed6\u6570\u636e\uff0c\u4ece\u800c\u501f\u52a9\u9ad8\u901f\u7f13\u5b58\u6765\u63d0\u5347\u540e\u7eed\u64cd\u4f5c\u7684\u6267\u884c\u901f\u5ea6\u3002
\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u662f\u4e00\u628a\u53cc\u5203\u5251\uff0c\u5176\u5b58\u5728\u4ee5\u4e0b\u5c40\u9650\u6027\u3002
- \u63d2\u5165\u4e0e\u5220\u9664\u6548\u7387\u4f4e\uff1a\u5f53\u6570\u7ec4\u4e2d\u5143\u7d20\u8f83\u591a\u65f6\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u9700\u8981\u79fb\u52a8\u5927\u91cf\u7684\u5143\u7d20\u3002
- \u957f\u5ea6\u4e0d\u53ef\u53d8\uff1a\u6570\u7ec4\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u5c31\u56fa\u5b9a\u4e86\uff0c\u6269\u5bb9\u6570\u7ec4\u9700\u8981\u5c06\u6240\u6709\u6570\u636e\u590d\u5236\u5230\u65b0\u6570\u7ec4\uff0c\u5f00\u9500\u5f88\u5927\u3002
- \u7a7a\u95f4\u6d6a\u8d39\uff1a\u5982\u679c\u6570\u7ec4\u5206\u914d\u7684\u5927\u5c0f\u8d85\u8fc7\u5b9e\u9645\u6240\u9700\uff0c\u90a3\u4e48\u591a\u4f59\u7684\u7a7a\u95f4\u5c31\u88ab\u6d6a\u8d39\u4e86\u3002
"},{"location":"chapter_array_and_linkedlist/array/#413","title":"4.1.3 \u00a0 \u6570\u7ec4\u5178\u578b\u5e94\u7528","text":"\u6570\u7ec4\u662f\u4e00\u79cd\u57fa\u7840\u4e14\u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\uff0c\u65e2\u9891\u7e41\u5e94\u7528\u5728\u5404\u7c7b\u7b97\u6cd5\u4e4b\u4e2d\uff0c\u4e5f\u53ef\u7528\u4e8e\u5b9e\u73b0\u5404\u79cd\u590d\u6742\u6570\u636e\u7ed3\u6784\u3002
- \u968f\u673a\u8bbf\u95ee\uff1a\u5982\u679c\u6211\u4eec\u60f3\u968f\u673a\u62bd\u53d6\u4e00\u4e9b\u6837\u672c\uff0c\u90a3\u4e48\u53ef\u4ee5\u7528\u6570\u7ec4\u5b58\u50a8\uff0c\u5e76\u751f\u6210\u4e00\u4e2a\u968f\u673a\u5e8f\u5217\uff0c\u6839\u636e\u7d22\u5f15\u5b9e\u73b0\u968f\u673a\u62bd\u6837\u3002
- \u6392\u5e8f\u548c\u641c\u7d22\uff1a\u6570\u7ec4\u662f\u6392\u5e8f\u548c\u641c\u7d22\u7b97\u6cd5\u6700\u5e38\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u4e8c\u5206\u67e5\u627e\u7b49\u90fd\u4e3b\u8981\u5728\u6570\u7ec4\u4e0a\u8fdb\u884c\u3002
- \u67e5\u627e\u8868\uff1a\u5f53\u9700\u8981\u5feb\u901f\u67e5\u627e\u4e00\u4e2a\u5143\u7d20\u6216\u5176\u5bf9\u5e94\u5173\u7cfb\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u4f5c\u4e3a\u67e5\u627e\u8868\u3002\u5047\u5982\u6211\u4eec\u60f3\u5b9e\u73b0\u5b57\u7b26\u5230 ASCII \u7801\u7684\u6620\u5c04\uff0c\u5219\u53ef\u4ee5\u5c06\u5b57\u7b26\u7684 ASCII \u7801\u503c\u4f5c\u4e3a\u7d22\u5f15\uff0c\u5bf9\u5e94\u7684\u5143\u7d20\u5b58\u653e\u5728\u6570\u7ec4\u4e2d\u7684\u5bf9\u5e94\u4f4d\u7f6e\u3002
- \u673a\u5668\u5b66\u4e60\uff1a\u795e\u7ecf\u7f51\u7edc\u4e2d\u5927\u91cf\u4f7f\u7528\u4e86\u5411\u91cf\u3001\u77e9\u9635\u3001\u5f20\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97\uff0c\u8fd9\u4e9b\u6570\u636e\u90fd\u662f\u4ee5\u6570\u7ec4\u7684\u5f62\u5f0f\u6784\u5efa\u7684\u3002\u6570\u7ec4\u662f\u795e\u7ecf\u7f51\u7edc\u7f16\u7a0b\u4e2d\u6700\u5e38\u4f7f\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002
- \u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff1a\u6570\u7ec4\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002\u4f8b\u5982\uff0c\u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u4e8c\u7ef4\u6570\u7ec4\u3002
"},{"location":"chapter_array_and_linkedlist/linked_list/","title":"4.2 \u00a0 \u94fe\u8868","text":"\u5185\u5b58\u7a7a\u95f4\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u516c\u5171\u8d44\u6e90\uff0c\u5728\u4e00\u4e2a\u590d\u6742\u7684\u7cfb\u7edf\u8fd0\u884c\u73af\u5883\u4e0b\uff0c\u7a7a\u95f2\u7684\u5185\u5b58\u7a7a\u95f4\u53ef\u80fd\u6563\u843d\u5728\u5185\u5b58\u5404\u5904\u3002\u6211\u4eec\u77e5\u9053\uff0c\u5b58\u50a8\u6570\u7ec4\u7684\u5185\u5b58\u7a7a\u95f4\u5fc5\u987b\u662f\u8fde\u7eed\u7684\uff0c\u800c\u5f53\u6570\u7ec4\u975e\u5e38\u5927\u65f6\uff0c\u5185\u5b58\u53ef\u80fd\u65e0\u6cd5\u63d0\u4f9b\u5982\u6b64\u5927\u7684\u8fde\u7eed\u7a7a\u95f4\u3002\u6b64\u65f6\u94fe\u8868\u7684\u7075\u6d3b\u6027\u4f18\u52bf\u5c31\u4f53\u73b0\u51fa\u6765\u4e86\u3002
\u300c\u94fe\u8868 linked list\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u662f\u4e00\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u5404\u4e2a\u8282\u70b9\u901a\u8fc7\u201c\u5f15\u7528\u201d\u76f8\u8fde\u63a5\u3002\u5f15\u7528\u8bb0\u5f55\u4e86\u4e0b\u4e00\u4e2a\u8282\u70b9\u7684\u5185\u5b58\u5730\u5740\uff0c\u901a\u8fc7\u5b83\u53ef\u4ee5\u4ece\u5f53\u524d\u8282\u70b9\u8bbf\u95ee\u5230\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002
\u94fe\u8868\u7684\u8bbe\u8ba1\u4f7f\u5f97\u5404\u4e2a\u8282\u70b9\u53ef\u4ee5\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\uff0c\u5b83\u4eec\u7684\u5185\u5b58\u5730\u5740\u65e0\u987b\u8fde\u7eed\u3002
\u56fe 4-5 \u00a0 \u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f
\u89c2\u5bdf\u56fe 4-5 \uff0c\u94fe\u8868\u7684\u7ec4\u6210\u5355\u4f4d\u662f\u300c\u8282\u70b9 node\u300d\u5bf9\u8c61\u3002\u6bcf\u4e2a\u8282\u70b9\u90fd\u5305\u542b\u4e24\u9879\u6570\u636e\uff1a\u8282\u70b9\u7684\u201c\u503c\u201d\u548c\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u201c\u5f15\u7528\u201d\u3002
- \u94fe\u8868\u7684\u9996\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5934\u8282\u70b9\u201d\uff0c\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5c3e\u8282\u70b9\u201d\u3002
- \u5c3e\u8282\u70b9\u6307\u5411\u7684\u662f\u201c\u7a7a\u201d\uff0c\u5b83\u5728 Java\u3001C++ \u548c Python \u4e2d\u5206\u522b\u88ab\u8bb0\u4e3a
null\u3001nullptr \u548c None \u3002 - \u5728 C\u3001C++\u3001Go \u548c Rust \u7b49\u652f\u6301\u6307\u9488\u7684\u8bed\u8a00\u4e2d\uff0c\u4e0a\u8ff0\u201c\u5f15\u7528\u201d\u5e94\u88ab\u66ff\u6362\u4e3a\u201c\u6307\u9488\u201d\u3002
\u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff0c\u94fe\u8868\u8282\u70b9 ListNode \u9664\u4e86\u5305\u542b\u503c\uff0c\u8fd8\u9700\u989d\u5916\u4fdd\u5b58\u4e00\u4e2a\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u56e0\u6b64\u5728\u76f8\u540c\u6570\u636e\u91cf\u4e0b\uff0c\u94fe\u8868\u6bd4\u6570\u7ec4\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.next: ListNode | None = None # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n
/* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode *next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n ListNode(int x) : val(x), next(nullptr) {} // \u6784\u9020\u51fd\u6570\n};\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n ListNode(int x) { val = x; } // \u6784\u9020\u51fd\u6570\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode(int x) { //\u6784\u9020\u51fd\u6570\n int val = x; // \u8282\u70b9\u503c\n ListNode? next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n
/* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype ListNode struct {\n Val int // \u8282\u70b9\u503c\n Next *ListNode // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n\n// NewListNode \u6784\u9020\u51fd\u6570\uff0c\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u94fe\u8868\nfunc NewListNode(val int) *ListNode {\n return &ListNode{\n Val: val,\n Next: nil,\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n var val: Int // \u8282\u70b9\u503c\n var next: ListNode? // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n\n init(x: Int) { // \u6784\u9020\u51fd\u6570\n val = x\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n constructor(val, next) {\n this.val = (val === undefined ? 0 : val); // \u8282\u70b9\u503c\n this.next = (next === undefined ? null : next); // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n val: number;\n next: ListNode | null;\n constructor(val?: number, next?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = next === undefined ? null : next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode? next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n ListNode(this.val, [this.next]); // \u6784\u9020\u51fd\u6570\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n/* \u94fe\u8868\u8282\u70b9\u7c7b */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // \u8282\u70b9\u503c\n next: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n
/* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct ListNode {\n int val; // \u8282\u70b9\u503c\n struct ListNode *next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n} ListNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\n ListNode *node;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n return node;\n}\n
// \u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // \u8282\u70b9\u503c\n next: ?*Self = null, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n\n // \u6784\u9020\u51fd\u6570\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#421","title":"4.2.1 \u00a0 \u94fe\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/linked_list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u94fe\u8868","text":"\u5efa\u7acb\u94fe\u8868\u5206\u4e3a\u4e24\u6b65\uff0c\u7b2c\u4e00\u6b65\u662f\u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u7b2c\u4e8c\u6b65\u662f\u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\u5173\u7cfb\u3002\u521d\u59cb\u5316\u5b8c\u6210\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u4ece\u94fe\u8868\u7684\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u901a\u8fc7\u5f15\u7528\u6307\u5411 next \u4f9d\u6b21\u8bbf\u95ee\u6240\u6709\u8282\u70b9\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.py# \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4\n# \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 = ListNode(1)\nn1 = ListNode(3)\nn2 = ListNode(2)\nn3 = ListNode(5)\nn4 = ListNode(4)\n# \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.cpp/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = new ListNode(1);\nListNode* n1 = new ListNode(3);\nListNode* n2 = new ListNode(2);\nListNode* n3 = new ListNode(5);\nListNode* n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.java/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.cs/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new(1);\nListNode n1 = new(3);\nListNode n2 = new(2);\nListNode n3 = new(5);\nListNode n4 = new(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.go/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 := NewListNode(1)\nn1 := NewListNode(3)\nn2 := NewListNode(2)\nn3 := NewListNode(5)\nn4 := NewListNode(4)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.Next = n1\nn1.Next = n2\nn2.Next = n3\nn3.Next = n4\n
linked_list.swift/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = ListNode(x: 1)\nlet n1 = ListNode(x: 3)\nlet n2 = ListNode(x: 2)\nlet n3 = ListNode(x: 5)\nlet n4 = ListNode(x: 4)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
linked_list.js/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.ts/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.dart/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\\\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = ListNode(1);\nListNode n1 = ListNode(3);\nListNode n2 = ListNode(2);\nListNode n3 = ListNode(5);\nListNode n4 = ListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
linked_list.rs/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));\nlet n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));\nlet n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));\nlet n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));\nlet n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));\n\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.borrow_mut().next = Some(n1.clone());\nn1.borrow_mut().next = Some(n2.clone());\nn2.borrow_mut().next = Some(n3.clone());\nn3.borrow_mut().next = Some(n4.clone());\n
linked_list.c/* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = newListNode(1);\nListNode* n1 = newListNode(3);\nListNode* n2 = newListNode(2);\nListNode* n3 = newListNode(5);\nListNode* n4 = newListNode(4);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
linked_list.zig// \u521d\u59cb\u5316\u94fe\u8868\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nvar n0 = inc.ListNode(i32){.val = 1};\nvar n1 = inc.ListNode(i32){.val = 3};\nvar n2 = inc.ListNode(i32){.val = 2};\nvar n3 = inc.ListNode(i32){.val = 5};\nvar n4 = inc.ListNode(i32){.val = 4};\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\nn0.next = &n1;\nn1.next = &n2;\nn2.next = &n3;\nn3.next = &n4;\n
\u6570\u7ec4\u6574\u4f53\u662f\u4e00\u4e2a\u53d8\u91cf\uff0c\u6bd4\u5982\u6570\u7ec4 nums \u5305\u542b\u5143\u7d20 nums[0] \u548c nums[1] \u7b49\uff0c\u800c\u94fe\u8868\u662f\u7531\u591a\u4e2a\u72ec\u7acb\u7684\u8282\u70b9\u5bf9\u8c61\u7ec4\u6210\u7684\u3002\u6211\u4eec\u901a\u5e38\u5c06\u5934\u8282\u70b9\u5f53\u4f5c\u94fe\u8868\u7684\u4ee3\u79f0\uff0c\u6bd4\u5982\u4ee5\u4e0a\u4ee3\u7801\u4e2d\u7684\u94fe\u8868\u53ef\u8bb0\u4f5c\u94fe\u8868 n0 \u3002
"},{"location":"chapter_array_and_linkedlist/linked_list/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"\u5728\u94fe\u8868\u4e2d\u63d2\u5165\u8282\u70b9\u975e\u5e38\u5bb9\u6613\u3002\u5982\u56fe 4-6 \u6240\u793a\uff0c\u5047\u8bbe\u6211\u4eec\u60f3\u5728\u76f8\u90bb\u7684\u4e24\u4e2a\u8282\u70b9 n0 \u548c n1 \u4e4b\u95f4\u63d2\u5165\u4e00\u4e2a\u65b0\u8282\u70b9 P \uff0c\u5219\u53ea\u9700\u6539\u53d8\u4e24\u4e2a\u8282\u70b9\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u5728\u6570\u7ec4\u4e2d\u63d2\u5165\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u6548\u7387\u8f83\u4f4e\u3002
\u56fe 4-6 \u00a0 \u94fe\u8868\u63d2\u5165\u8282\u70b9\u793a\u4f8b
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef insert(n0: ListNode, P: ListNode):\n \"\"\"\u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\"\"\"\n n1 = n0.next\n P.next = n1\n n0.next = P\n
linked_list.cpp/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid Insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insertNode(n0 *ListNode, P *ListNode) {\n n1 := n0.Next\n P.Next = n1\n n0.Next = P\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insert(n0: ListNode, P: ListNode) {\n let n1 = n0.next\n P.next = n1\n n0.next = P\n}\n
linked_list.js/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0, P) {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0: ListNode, P: ListNode): void {\n const n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\n ListNode? n1 = n0.next;\n P.next = n1;\n n0.next = P;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\n#[allow(non_snake_case)]\npub fn insert<T>(n0: &Rc<RefCell<ListNode<T>>>, P: Rc<RefCell<ListNode<T>>>) {\n let n1 = n0.borrow_mut().next.take();\n P.borrow_mut().next = n1;\n n0.borrow_mut().next = Some(P);\n}\n
linked_list.c/* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\n ListNode *n1 = n0->next;\n P->next = n1;\n n0->next = P;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\nfn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {\n var n1 = n0.?.next;\n P.?.next = n1;\n n0.?.next = P;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"\u5982\u56fe 4-7 \u6240\u793a\uff0c\u5728\u94fe\u8868\u4e2d\u5220\u9664\u8282\u70b9\u4e5f\u975e\u5e38\u65b9\u4fbf\uff0c\u53ea\u9700\u6539\u53d8\u4e00\u4e2a\u8282\u70b9\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\u3002
\u8bf7\u6ce8\u610f\uff0c\u5c3d\u7ba1\u5728\u5220\u9664\u64cd\u4f5c\u5b8c\u6210\u540e\u8282\u70b9 P \u4ecd\u7136\u6307\u5411 n1 \uff0c\u4f46\u5b9e\u9645\u4e0a\u904d\u5386\u6b64\u94fe\u8868\u5df2\u7ecf\u65e0\u6cd5\u8bbf\u95ee\u5230 P \uff0c\u8fd9\u610f\u5473\u7740 P \u5df2\u7ecf\u4e0d\u518d\u5c5e\u4e8e\u8be5\u94fe\u8868\u4e86\u3002
\u56fe 4-7 \u00a0 \u94fe\u8868\u5220\u9664\u8282\u70b9
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef remove(n0: ListNode):\n \"\"\"\u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n if not n0.next:\n return\n # n0 -> P -> n1\n P = n0.next\n n1 = P.next\n n0.next = n1\n
linked_list.cpp/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode *n0) {\n if (n0->next == nullptr)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n delete P;\n}\n
linked_list.java/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode n1 = P.next;\n n0.next = n1;\n}\n
linked_list.cs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid Remove(ListNode n0) {\n if (n0.next == null)\n return;\n // n0 -> P -> n1\n ListNode P = n0.next;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.go/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc removeItem(n0 *ListNode) {\n if n0.Next == nil {\n return\n }\n // n0 -> P -> n1\n P := n0.Next\n n1 := P.Next\n n0.Next = n1\n}\n
linked_list.swift/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc remove(n0: ListNode) {\n if n0.next == nil {\n return\n }\n // n0 -> P -> n1\n let P = n0.next\n let n1 = P?.next\n n0.next = n1\n P?.next = nil\n}\n
linked_list.js/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0) {\n if (!n0.next) return;\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.ts/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0: ListNode): void {\n if (!n0.next) {\n return;\n }\n // n0 -> P -> n1\n const P = n0.next;\n const n1 = P.next;\n n0.next = n1;\n}\n
linked_list.dart/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\n if (n0.next == null) return;\n // n0 -> P -> n1\n ListNode P = n0.next!;\n ListNode? n1 = P.next;\n n0.next = n1;\n}\n
linked_list.rs/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n#[allow(non_snake_case)]\npub fn remove<T>(n0: &Rc<RefCell<ListNode<T>>>) {\n if n0.borrow().next.is_none() {return};\n // n0 -> P -> n1\n let P = n0.borrow_mut().next.take();\n if let Some(node) = P {\n let n1 = node.borrow_mut().next.take();\n n0.borrow_mut().next = n1;\n }\n}\n
linked_list.c/* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(ListNode *n0) {\n if (!n0->next)\n return;\n // n0 -> P -> n1\n ListNode *P = n0->next;\n ListNode *n1 = P->next;\n n0->next = n1;\n // \u91ca\u653e\u5185\u5b58\n free(P);\n}\n
linked_list.zig// \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\nfn remove(n0: ?*inc.ListNode(i32)) void {\n if (n0.?.next == null) return;\n // n0 -> P -> n1\n var P = n0.?.next;\n var n1 = P.?.next;\n n0.?.next = n1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#4","title":"4. \u00a0 \u8bbf\u95ee\u8282\u70b9","text":"\u5728\u94fe\u8868\u4e2d\u8bbf\u95ee\u8282\u70b9\u7684\u6548\u7387\u8f83\u4f4e\u3002\u5982\u4e0a\u4e00\u8282\u6240\u8ff0\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u4e0b\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u5143\u7d20\u3002\u94fe\u8868\u5219\u4e0d\u7136\uff0c\u7a0b\u5e8f\u9700\u8981\u4ece\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u9010\u4e2a\u5411\u540e\u904d\u5386\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u8282\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8bbf\u95ee\u94fe\u8868\u7684\u7b2c \\(i\\) \u4e2a\u8282\u70b9\u9700\u8981\u5faa\u73af \\(i - 1\\) \u8f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef access(head: ListNode, index: int) -> ListNode | None:\n \"\"\"\u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\"\"\"\n for _ in range(index):\n if not head:\n return None\n head = head.next\n return head\n
linked_list.cpp/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == nullptr)\n return nullptr;\n head = head->next;\n }\n return head;\n}\n
linked_list.java/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode access(ListNode head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.cs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? Access(ListNode? head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == null)\n return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.go/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head *ListNode, index int) *ListNode {\n for i := 0; i < index; i++ {\n if head == nil {\n return nil\n }\n head = head.Next\n }\n return head\n}\n
linked_list.swift/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head: ListNode, index: Int) -> ListNode? {\n var head: ListNode? = head\n for _ in 0 ..< index {\n if head == nil {\n return nil\n }\n head = head?.next\n }\n return head\n}\n
linked_list.js/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head, index) {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.ts/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head: ListNode | null, index: number): ListNode | null {\n for (let i = 0; i < index; i++) {\n if (!head) {\n return null;\n }\n head = head.next;\n }\n return head;\n}\n
linked_list.dart/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode? head, int index) {\n for (var i = 0; i < index; i++) {\n if (head == null) return null;\n head = head.next;\n }\n return head;\n}\n
linked_list.rs/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\npub fn access<T>(head: Rc<RefCell<ListNode<T>>>, index: i32) -> Rc<RefCell<ListNode<T>>> {\n if index <= 0 {return head};\n if let Some(node) = &head.borrow_mut().next {\n return access(node.clone(), index - 1);\n }\n return head;\n}\n
linked_list.c/* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\n for (int i = 0; i < index; i++) {\n if (head == NULL)\n return NULL;\n head = head->next;\n }\n return head;\n}\n
linked_list.zig// \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\nfn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {\n var head = node;\n var i: i32 = 0;\n while (i < index) : (i += 1) {\n head = head.?.next;\n if (head == null) return null;\n }\n return head;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#5","title":"5. \u00a0 \u67e5\u627e\u8282\u70b9","text":"\u904d\u5386\u94fe\u8868\uff0c\u67e5\u627e\u5176\u4e2d\u503c\u4e3a target \u7684\u8282\u70b9\uff0c\u8f93\u51fa\u8be5\u8282\u70b9\u5728\u94fe\u8868\u4e2d\u7684\u7d22\u5f15\u3002\u6b64\u8fc7\u7a0b\u4e5f\u5c5e\u4e8e\u7ebf\u6027\u67e5\u627e\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linked_list.pydef find(head: ListNode, target: int) -> int:\n \"\"\"\u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\"\"\"\n index = 0\n while head:\n if head.val == target:\n return index\n head = head.next\n index += 1\n return -1\n
linked_list.cpp/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head != nullptr) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.java/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.cs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint Find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target)\n return index;\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.go/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc findNode(head *ListNode, target int) int {\n index := 0\n for head != nil {\n if head.Val == target {\n return index\n }\n head = head.Next\n index++\n }\n return -1\n}\n
linked_list.swift/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc find(head: ListNode, target: Int) -> Int {\n var head: ListNode? = head\n var index = 0\n while head != nil {\n if head?.val == target {\n return index\n }\n head = head?.next\n index += 1\n }\n return -1\n}\n
linked_list.js/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head, target) {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.ts/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head: ListNode | null, target: number): number {\n let index = 0;\n while (head !== null) {\n if (head.val === target) {\n return index;\n }\n head = head.next;\n index += 1;\n }\n return -1;\n}\n
linked_list.dart/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode? head, int target) {\n int index = 0;\n while (head != null) {\n if (head.val == target) {\n return index;\n }\n head = head.next;\n index++;\n }\n return -1;\n}\n
linked_list.rs/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\npub fn find<T: PartialEq>(head: Rc<RefCell<ListNode<T>>>, target: T, index: i32) -> i32 {\n if head.borrow().val == target {return index};\n if let Some(node) = &head.borrow_mut().next {\n return find(node.clone(), target, index + 1);\n }\n return -1;\n}\n
linked_list.c/* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\n int index = 0;\n while (head) {\n if (head->val == target)\n return index;\n head = head->next;\n index++;\n }\n return -1;\n}\n
linked_list.zig// \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\nfn find(node: ?*inc.ListNode(i32), target: i32) i32 {\n var head = node;\n var index: i32 = 0;\n while (head != null) {\n if (head.?.val == target) return index;\n head = head.?.next;\n index += 1;\n }\n return -1;\n}\n
"},{"location":"chapter_array_and_linkedlist/linked_list/#422-vs","title":"4.2.2 \u00a0 \u6570\u7ec4 vs. \u94fe\u8868","text":"\u8868 4-1 \u603b\u7ed3\u4e86\u6570\u7ec4\u548c\u94fe\u8868\u7684\u5404\u9879\u7279\u70b9\u5e76\u5bf9\u6bd4\u4e86\u64cd\u4f5c\u6548\u7387\u3002\u7531\u4e8e\u5b83\u4eec\u91c7\u7528\u4e24\u79cd\u76f8\u53cd\u7684\u5b58\u50a8\u7b56\u7565\uff0c\u56e0\u6b64\u5404\u79cd\u6027\u8d28\u548c\u64cd\u4f5c\u6548\u7387\u4e5f\u5448\u73b0\u5bf9\u7acb\u7684\u7279\u70b9\u3002
\u8868 4-1 \u00a0 \u6570\u7ec4\u4e0e\u94fe\u8868\u7684\u6548\u7387\u5bf9\u6bd4
\u6570\u7ec4 \u94fe\u8868 \u5b58\u50a8\u65b9\u5f0f \u8fde\u7eed\u5185\u5b58\u7a7a\u95f4 \u5206\u6563\u5185\u5b58\u7a7a\u95f4 \u5bb9\u91cf\u6269\u5c55 \u957f\u5ea6\u4e0d\u53ef\u53d8 \u53ef\u7075\u6d3b\u6269\u5c55 \u5185\u5b58\u6548\u7387 \u5143\u7d20\u5360\u7528\u5185\u5b58\u5c11\u3001\u4f46\u53ef\u80fd\u6d6a\u8d39\u7a7a\u95f4 \u5143\u7d20\u5360\u7528\u5185\u5b58\u591a \u8bbf\u95ee\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(1)\\)"},{"location":"chapter_array_and_linkedlist/linked_list/#423","title":"4.2.3 \u00a0 \u5e38\u89c1\u94fe\u8868\u7c7b\u578b","text":"\u5982\u56fe 4-8 \u6240\u793a\uff0c\u5e38\u89c1\u7684\u94fe\u8868\u7c7b\u578b\u5305\u62ec\u4e09\u79cd\u3002
- \u5355\u5411\u94fe\u8868\uff1a\u5373\u524d\u9762\u4ecb\u7ecd\u7684\u666e\u901a\u94fe\u8868\u3002\u5355\u5411\u94fe\u8868\u7684\u8282\u70b9\u5305\u542b\u503c\u548c\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\u4e24\u9879\u6570\u636e\u3002\u6211\u4eec\u5c06\u9996\u4e2a\u8282\u70b9\u79f0\u4e3a\u5934\u8282\u70b9\uff0c\u5c06\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u79f0\u4e3a\u5c3e\u8282\u70b9\uff0c\u5c3e\u8282\u70b9\u6307\u5411\u7a7a
None \u3002 - \u73af\u5f62\u94fe\u8868\uff1a\u5982\u679c\u6211\u4eec\u4ee4\u5355\u5411\u94fe\u8868\u7684\u5c3e\u8282\u70b9\u6307\u5411\u5934\u8282\u70b9\uff08\u9996\u5c3e\u76f8\u63a5\uff09\uff0c\u5219\u5f97\u5230\u4e00\u4e2a\u73af\u5f62\u94fe\u8868\u3002\u5728\u73af\u5f62\u94fe\u8868\u4e2d\uff0c\u4efb\u610f\u8282\u70b9\u90fd\u53ef\u4ee5\u89c6\u4f5c\u5934\u8282\u70b9\u3002
- \u53cc\u5411\u94fe\u8868\uff1a\u4e0e\u5355\u5411\u94fe\u8868\u76f8\u6bd4\uff0c\u53cc\u5411\u94fe\u8868\u8bb0\u5f55\u4e86\u4e24\u4e2a\u65b9\u5411\u7684\u5f15\u7528\u3002\u53cc\u5411\u94fe\u8868\u7684\u8282\u70b9\u5b9a\u4e49\u540c\u65f6\u5305\u542b\u6307\u5411\u540e\u7ee7\u8282\u70b9\uff08\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\u548c\u524d\u9a71\u8282\u70b9\uff08\u4e0a\u4e00\u4e2a\u8282\u70b9\uff09\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u76f8\u8f83\u4e8e\u5355\u5411\u94fe\u8868\uff0c\u53cc\u5411\u94fe\u8868\u66f4\u5177\u7075\u6d3b\u6027\uff0c\u53ef\u4ee5\u671d\u4e24\u4e2a\u65b9\u5411\u904d\u5386\u94fe\u8868\uff0c\u4f46\u76f8\u5e94\u5730\u4e5f\u9700\u8981\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig class ListNode:\n \"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.next: ListNode | None = None # \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n self.prev: ListNode | None = None # \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode *next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n ListNode *prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // \u6784\u9020\u51fd\u6570\n};\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n ListNode prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n ListNode(int x) { val = x; } // \u6784\u9020\u51fd\u6570\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode(int x) { // \u6784\u9020\u51fd\u6570\n int val = x; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n ListNode prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype DoublyListNode struct {\n Val int // \u8282\u70b9\u503c\n Next *DoublyListNode // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n Prev *DoublyListNode // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n\n// NewDoublyListNode \u521d\u59cb\u5316\nfunc NewDoublyListNode(val int) *DoublyListNode {\n return &DoublyListNode{\n Val: val,\n Next: nil,\n Prev: nil,\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n var val: Int // \u8282\u70b9\u503c\n var next: ListNode? // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n var prev: ListNode? // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n\n init(x: Int) { // \u6784\u9020\u51fd\u6570\n val = x\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n constructor(val, next, prev) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = next === undefined ? null : next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n this.prev = prev === undefined ? null : prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n val: number;\n next: ListNode | null;\n prev: ListNode | null;\n constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = next === undefined ? null : next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n this.prev = prev === undefined ? null : prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\n ListNode prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n ListNode(this.val, [this.next, this.prev]); // \u6784\u9020\u51fd\u6570\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\u578b */\n#[derive(Debug)]\nstruct ListNode {\n val: i32, // \u8282\u70b9\u503c\n next: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n prev: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nimpl ListNode {\n fn new(val: i32) -> Self {\n ListNode {\n val,\n next: None,\n prev: None,\n }\n }\n}\n
/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct ListNode {\n int val; // \u8282\u70b9\u503c\n struct ListNode *next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n struct ListNode *prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n} ListNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\n ListNode *node;\n node = (ListNode *) malloc(sizeof(ListNode));\n node->val = val;\n node->next = NULL;\n node->prev = NULL;\n return node;\n}\n
// \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = 0, // \u8282\u70b9\u503c\n next: ?*Self = null, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\n prev: ?*Self = null, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n\n // \u6784\u9020\u51fd\u6570\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n self.prev = null;\n }\n };\n}\n
\u56fe 4-8 \u00a0 \u5e38\u89c1\u94fe\u8868\u79cd\u7c7b
"},{"location":"chapter_array_and_linkedlist/linked_list/#424","title":"4.2.4 \u00a0 \u94fe\u8868\u5178\u578b\u5e94\u7528","text":"\u5355\u5411\u94fe\u8868\u901a\u5e38\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u548c\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002
- \u6808\u4e0e\u961f\u5217\uff1a\u5f53\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u90fd\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\u65f6\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u540e\u51fa\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u6808\uff1b\u5f53\u63d2\u5165\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\uff0c\u5220\u9664\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u53e6\u4e00\u7aef\u8fdb\u884c\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u5148\u51fa\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u961f\u5217\u3002
- \u54c8\u5e0c\u8868\uff1a\u94fe\u5f0f\u5730\u5740\u662f\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\u7684\u4e3b\u6d41\u65b9\u6848\u4e4b\u4e00\uff0c\u5728\u8be5\u65b9\u6848\u4e2d\uff0c\u6240\u6709\u51b2\u7a81\u7684\u5143\u7d20\u90fd\u4f1a\u88ab\u653e\u5230\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002
- \u56fe\uff1a\u90bb\u63a5\u8868\u662f\u8868\u793a\u56fe\u7684\u4e00\u79cd\u5e38\u7528\u65b9\u5f0f\uff0c\u5176\u4e2d\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u90fd\u4e0e\u4e00\u4e2a\u94fe\u8868\u76f8\u5173\u8054\uff0c\u94fe\u8868\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u4ee3\u8868\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u5176\u4ed6\u9876\u70b9\u3002
\u53cc\u5411\u94fe\u8868\u5e38\u7528\u4e8e\u9700\u8981\u5feb\u901f\u67e5\u627e\u524d\u4e00\u4e2a\u548c\u540e\u4e00\u4e2a\u5143\u7d20\u7684\u573a\u666f\u3002
- \u9ad8\u7ea7\u6570\u636e\u7ed3\u6784\uff1a\u6bd4\u5982\u5728\u7ea2\u9ed1\u6811\u3001B \u6811\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u8bbf\u95ee\u8282\u70b9\u7684\u7236\u8282\u70b9\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u5728\u8282\u70b9\u4e2d\u4fdd\u5b58\u4e00\u4e2a\u6307\u5411\u7236\u8282\u70b9\u7684\u5f15\u7528\u6765\u5b9e\u73b0\uff0c\u7c7b\u4f3c\u4e8e\u53cc\u5411\u94fe\u8868\u3002
- \u6d4f\u89c8\u5668\u5386\u53f2\uff1a\u5728\u7f51\u9875\u6d4f\u89c8\u5668\u4e2d\uff0c\u5f53\u7528\u6237\u70b9\u51fb\u524d\u8fdb\u6216\u540e\u9000\u6309\u94ae\u65f6\uff0c\u6d4f\u89c8\u5668\u9700\u8981\u77e5\u9053\u7528\u6237\u8bbf\u95ee\u8fc7\u7684\u524d\u4e00\u4e2a\u548c\u540e\u4e00\u4e2a\u7f51\u9875\u3002\u53cc\u5411\u94fe\u8868\u7684\u7279\u6027\u4f7f\u5f97\u8fd9\u79cd\u64cd\u4f5c\u53d8\u5f97\u7b80\u5355\u3002
- LRU \u7b97\u6cd5\uff1a\u5728\u7f13\u5b58\u6dd8\u6c70\uff08LRU\uff09\u7b97\u6cd5\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5feb\u901f\u627e\u5230\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u652f\u6301\u5feb\u901f\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u3002\u8fd9\u65f6\u5019\u4f7f\u7528\u53cc\u5411\u94fe\u8868\u5c31\u975e\u5e38\u5408\u9002\u3002
\u73af\u5f62\u94fe\u8868\u5e38\u7528\u4e8e\u9700\u8981\u5468\u671f\u6027\u64cd\u4f5c\u7684\u573a\u666f\uff0c\u6bd4\u5982\u64cd\u4f5c\u7cfb\u7edf\u7684\u8d44\u6e90\u8c03\u5ea6\u3002
- \u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\uff1a\u5728\u64cd\u4f5c\u7cfb\u7edf\u4e2d\uff0c\u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684 CPU \u8c03\u5ea6\u7b97\u6cd5\uff0c\u5b83\u9700\u8981\u5bf9\u4e00\u7ec4\u8fdb\u7a0b\u8fdb\u884c\u5faa\u73af\u3002\u6bcf\u4e2a\u8fdb\u7a0b\u88ab\u8d4b\u4e88\u4e00\u4e2a\u65f6\u95f4\u7247\uff0c\u5f53\u65f6\u95f4\u7247\u7528\u5b8c\u65f6\uff0cCPU \u5c06\u5207\u6362\u5230\u4e0b\u4e00\u4e2a\u8fdb\u7a0b\u3002\u8fd9\u79cd\u5faa\u73af\u64cd\u4f5c\u53ef\u4ee5\u901a\u8fc7\u73af\u5f62\u94fe\u8868\u6765\u5b9e\u73b0\u3002
- \u6570\u636e\u7f13\u51b2\u533a\uff1a\u5728\u67d0\u4e9b\u6570\u636e\u7f13\u51b2\u533a\u7684\u5b9e\u73b0\u4e2d\uff0c\u4e5f\u53ef\u80fd\u4f1a\u4f7f\u7528\u73af\u5f62\u94fe\u8868\u3002\u6bd4\u5982\u5728\u97f3\u9891\u3001\u89c6\u9891\u64ad\u653e\u5668\u4e2d\uff0c\u6570\u636e\u6d41\u53ef\u80fd\u4f1a\u88ab\u5206\u6210\u591a\u4e2a\u7f13\u51b2\u5757\u5e76\u653e\u5165\u4e00\u4e2a\u73af\u5f62\u94fe\u8868\uff0c\u4ee5\u4fbf\u5b9e\u73b0\u65e0\u7f1d\u64ad\u653e\u3002
"},{"location":"chapter_array_and_linkedlist/list/","title":"4.3 \u00a0 \u5217\u8868","text":"\u300c\u5217\u8868 list\u300d\u662f\u4e00\u4e2a\u62bd\u8c61\u7684\u6570\u636e\u7ed3\u6784\u6982\u5ff5\uff0c\u5b83\u8868\u793a\u5143\u7d20\u7684\u6709\u5e8f\u96c6\u5408\uff0c\u652f\u6301\u5143\u7d20\u8bbf\u95ee\u3001\u4fee\u6539\u3001\u6dfb\u52a0\u3001\u5220\u9664\u548c\u904d\u5386\u7b49\u64cd\u4f5c\uff0c\u65e0\u987b\u4f7f\u7528\u8005\u8003\u8651\u5bb9\u91cf\u9650\u5236\u7684\u95ee\u9898\u3002\u5217\u8868\u53ef\u4ee5\u57fa\u4e8e\u94fe\u8868\u6216\u6570\u7ec4\u5b9e\u73b0\u3002
- \u94fe\u8868\u5929\u7136\u53ef\u4ee5\u770b\u4f5c\u4e00\u4e2a\u5217\u8868\uff0c\u5176\u652f\u6301\u5143\u7d20\u589e\u5220\u67e5\u6539\u64cd\u4f5c\uff0c\u5e76\u4e14\u53ef\u4ee5\u7075\u6d3b\u52a8\u6001\u6269\u5bb9\u3002
- \u6570\u7ec4\u4e5f\u652f\u6301\u5143\u7d20\u589e\u5220\u67e5\u6539\uff0c\u4f46\u7531\u4e8e\u5176\u957f\u5ea6\u4e0d\u53ef\u53d8\uff0c\u56e0\u6b64\u53ea\u80fd\u770b\u4f5c\u4e00\u4e2a\u5177\u6709\u957f\u5ea6\u9650\u5236\u7684\u5217\u8868\u3002
\u5f53\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u5217\u8868\u65f6\uff0c\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6027\u8d28\u4f1a\u5bfc\u81f4\u5217\u8868\u7684\u5b9e\u7528\u6027\u964d\u4f4e\u3002\u8fd9\u662f\u56e0\u4e3a\u6211\u4eec\u901a\u5e38\u65e0\u6cd5\u4e8b\u5148\u786e\u5b9a\u9700\u8981\u5b58\u50a8\u591a\u5c11\u6570\u636e\uff0c\u4ece\u800c\u96be\u4ee5\u9009\u62e9\u5408\u9002\u7684\u5217\u8868\u957f\u5ea6\u3002\u82e5\u957f\u5ea6\u8fc7\u5c0f\uff0c\u5219\u5f88\u53ef\u80fd\u65e0\u6cd5\u6ee1\u8db3\u4f7f\u7528\u9700\u6c42\uff1b\u82e5\u957f\u5ea6\u8fc7\u5927\uff0c\u5219\u4f1a\u9020\u6210\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
\u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u300c\u52a8\u6001\u6570\u7ec4 dynamic array\u300d\u6765\u5b9e\u73b0\u5217\u8868\u3002\u5b83\u7ee7\u627f\u4e86\u6570\u7ec4\u7684\u5404\u9879\u4f18\u70b9\uff0c\u5e76\u4e14\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u52a8\u6001\u6269\u5bb9\u3002
\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u6807\u51c6\u5e93\u63d0\u4f9b\u7684\u5217\u8868\u662f\u57fa\u4e8e\u52a8\u6001\u6570\u7ec4\u5b9e\u73b0\u7684\uff0c\u4f8b\u5982 Python \u4e2d\u7684 list \u3001Java \u4e2d\u7684 ArrayList \u3001C++ \u4e2d\u7684 vector \u548c C# \u4e2d\u7684 List \u7b49\u3002\u5728\u63a5\u4e0b\u6765\u7684\u8ba8\u8bba\u4e2d\uff0c\u6211\u4eec\u5c06\u628a\u201c\u5217\u8868\u201d\u548c\u201c\u52a8\u6001\u6570\u7ec4\u201d\u89c6\u4e3a\u7b49\u540c\u7684\u6982\u5ff5\u3002
"},{"location":"chapter_array_and_linkedlist/list/#431","title":"4.3.1 \u00a0 \u5217\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u5217\u8868","text":"\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u201c\u65e0\u521d\u59cb\u503c\u201d\u548c\u201c\u6709\u521d\u59cb\u503c\u201d\u8fd9\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u6cd5\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u521d\u59cb\u5316\u5217\u8868\n# \u65e0\u521d\u59cb\u503c\nnums1: list[int] = []\n# \u6709\u521d\u59cb\u503c\nnums: list[int] = [1, 3, 2, 5, 4]\n
list.cpp/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u9700\u6ce8\u610f\uff0cC++ \u4e2d vector \u5373\u662f\u672c\u6587\u63cf\u8ff0\u7684 nums\n// \u65e0\u521d\u59cb\u503c\nvector<int> nums1;\n// \u6709\u521d\u59cb\u503c\nvector<int> nums = { 1, 3, 2, 5, 4 };\n
list.java/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<Integer> nums1 = new ArrayList<>();\n// \u6709\u521d\u59cb\u503c\uff08\u6ce8\u610f\u6570\u7ec4\u7684\u5143\u7d20\u7c7b\u578b\u9700\u4e3a int[] \u7684\u5305\u88c5\u7c7b Integer[]\uff09\nInteger[] numbers = new Integer[] { 1, 3, 2, 5, 4 };\nList<Integer> nums = new ArrayList<>(Arrays.asList(numbers));\n
list.cs/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> nums1 = [];\n// \u6709\u521d\u59cb\u503c\nint[] numbers = [1, 3, 2, 5, 4];\nList<int> nums = [.. numbers];\n
list_test.go/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nnums1 := []int{}\n// \u6709\u521d\u59cb\u503c\nnums := []int{1, 3, 2, 5, 4}\n
list.swift/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet nums1: [Int] = []\n// \u6709\u521d\u59cb\u503c\nvar nums = [1, 3, 2, 5, 4]\n
list.js/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst nums1 = [];\n// \u6709\u521d\u59cb\u503c\nconst nums = [1, 3, 2, 5, 4];\n
list.ts/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst nums1: number[] = [];\n// \u6709\u521d\u59cb\u503c\nconst nums: number[] = [1, 3, 2, 5, 4];\n
list.dart/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> nums1 = [];\n// \u6709\u521d\u59cb\u503c\nList<int> nums = [1, 3, 2, 5, 4];\n
list.rs/* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet nums1: Vec<i32> = Vec::new();\n// \u6709\u521d\u59cb\u503c\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u521d\u59cb\u5316\u5217\u8868\nvar nums = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums.deinit();\ntry nums.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });\n
"},{"location":"chapter_array_and_linkedlist/list/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"\u5217\u8868\u672c\u8d28\u4e0a\u662f\u6570\u7ec4\uff0c\u56e0\u6b64\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u548c\u66f4\u65b0\u5143\u7d20\uff0c\u6548\u7387\u5f88\u9ad8\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u8bbf\u95ee\u5143\u7d20\nnum: int = nums[1] # \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n# \u66f4\u65b0\u5143\u7d20\nnums[1] = 0 # \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.cpp/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.java/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums.get(1); // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums.set(1, 0); // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.cs/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list_test.go/* \u8bbf\u95ee\u5143\u7d20 */\nnum := nums[1] // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0 // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.swift/* \u8bbf\u95ee\u5143\u7d20 */\nlet num = nums[1] // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0 // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.js/* \u8bbf\u95ee\u5143\u7d20 */\nconst num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.ts/* \u8bbf\u95ee\u5143\u7d20 */\nconst num: number = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.dart/* \u8bbf\u95ee\u5143\u7d20 */\nint num = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.rs/* \u8bbf\u95ee\u5143\u7d20 */\nlet num: i32 = nums[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nnums[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u8bbf\u95ee\u5143\u7d20\nvar num = nums.items[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n\n// \u66f4\u65b0\u5143\u7d20\nnums.items[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0 \n
"},{"location":"chapter_array_and_linkedlist/list/#3","title":"3. \u00a0 \u63d2\u5165\u4e0e\u5220\u9664\u5143\u7d20","text":"\u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5730\u6dfb\u52a0\u4e0e\u5220\u9664\u5143\u7d20\u3002\u5728\u5217\u8868\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u7684\u6548\u7387\u4ecd\u4e0e\u6570\u7ec4\u76f8\u540c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u6e05\u7a7a\u5217\u8868\nnums.clear()\n\n# \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n# \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\nnums.insert(3, 6) # \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n# \u5220\u9664\u5143\u7d20\nnums.pop(3) # \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.cpp/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push_back(1);\nnums.push_back(3);\nnums.push_back(2);\nnums.push_back(5);\nnums.push_back(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(nums.begin() + 3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.erase(nums.begin() + 3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.java/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.add(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.remove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.cs/* \u6e05\u7a7a\u5217\u8868 */\nnums.Clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.Add(1);\nnums.Add(3);\nnums.Add(2);\nnums.Add(5);\nnums.Add(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.Insert(3, 6);\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.RemoveAt(3);\n
list_test.go/* \u6e05\u7a7a\u5217\u8868 */\nnums = nil\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums = append(nums, 1)\nnums = append(nums, 3)\nnums = append(nums, 2)\nnums = append(nums, 5)\nnums = append(nums, 4)\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums = append(nums[:3], append([]int{6}, nums[3:]...)...) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums = append(nums[:3], nums[4:]...) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.swift/* \u6e05\u7a7a\u5217\u8868 */\nnums.removeAll()\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.append(1)\nnums.append(3)\nnums.append(2)\nnums.append(5)\nnums.append(4)\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(6, at: 3) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.remove(at: 3) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.js/* \u6e05\u7a7a\u5217\u8868 */\nnums.length = 0;\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.splice(3, 0, 6);\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.splice(3, 1);\n
list.ts/* \u6e05\u7a7a\u5217\u8868 */\nnums.length = 0;\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.splice(3, 0, 6);\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.splice(3, 1);\n
list.dart/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.add(1);\nnums.add(3);\nnums.add(2);\nnums.add(5);\nnums.add(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.removeAt(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.rs/* \u6e05\u7a7a\u5217\u8868 */\nnums.clear();\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nnums.push(1);\nnums.push(3);\nnums.push(2);\nnums.push(5);\nnums.push(4);\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nnums.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n/* \u5220\u9664\u5143\u7d20 */\nnums.remove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u6e05\u7a7a\u5217\u8868\nnums.clearRetainingCapacity();\n\n// \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\ntry nums.append(1);\ntry nums.append(3);\ntry nums.append(2);\ntry nums.append(5);\ntry nums.append(4);\n\n// \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\ntry nums.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n\n// \u5220\u9664\u5143\u7d20\n_ = nums.orderedRemove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
"},{"location":"chapter_array_and_linkedlist/list/#4","title":"4. \u00a0 \u904d\u5386\u5217\u8868","text":"\u4e0e\u6570\u7ec4\u4e00\u6837\uff0c\u5217\u8868\u53ef\u4ee5\u6839\u636e\u7d22\u5f15\u904d\u5386\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u5404\u5143\u7d20\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\ncount = 0\nfor i in range(len(nums)):\n count += nums[i]\n\n# \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\nfor num in nums:\n count += num\n
list.cpp/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int num : nums) {\n count += num;\n}\n
list.java/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < nums.size(); i++) {\n count += nums.get(i);\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\nfor (int num : nums) {\n count += num;\n}\n
list.cs/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < nums.Count; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nforeach (int num in nums) {\n count += num;\n}\n
list_test.go/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\ncount := 0\nfor i := 0; i < len(nums); i++ {\n count += nums[i]\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor _, num := range nums {\n count += num\n}\n
list.swift/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nvar count = 0\nfor i in nums.indices {\n count += nums[i]\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor num in nums {\n count += num\n}\n
list.js/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.ts/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const num of nums) {\n count += num;\n}\n
list.dart/* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (var i = 0; i < nums.length; i++) {\n count += nums[i];\n}\n\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (var num in nums) {\n count += num;\n}\n
list.rs// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\nlet mut _count = 0;\nfor i in 0..nums.len() {\n _count += nums[i];\n}\n\n// \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\n_count = 0;\nfor num in &nums {\n _count += num;\n}\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < nums.items.len) : (i += 1) {\n count += nums[i];\n}\n\n// \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\ncount = 0;\nfor (nums.items) |num| {\n count += num;\n}\n
"},{"location":"chapter_array_and_linkedlist/list/#5","title":"5. \u00a0 \u62fc\u63a5\u5217\u8868","text":"\u7ed9\u5b9a\u4e00\u4e2a\u65b0\u5217\u8868 nums1 \uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5176\u62fc\u63a5\u5230\u539f\u5217\u8868\u7684\u5c3e\u90e8\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nnums1: list[int] = [6, 8, 7, 10, 9]\nnums += nums1 # \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.cpp/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nvector<int> nums1 = { 6, 8, 7, 10, 9 };\n// \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\nnums.insert(nums.end(), nums1.begin(), nums1.end());\n
list.java/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<Integer> nums1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));\nnums.addAll(nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.cs/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.AddRange(nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list_test.go/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nnums1 := []int{6, 8, 7, 10, 9}\nnums = append(nums, nums1...) // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.swift/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet nums1 = [6, 8, 7, 10, 9]\nnums.append(contentsOf: nums1) // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.js/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst nums1 = [6, 8, 7, 10, 9];\nnums.push(...nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.ts/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst nums1: number[] = [6, 8, 7, 10, 9];\nnums.push(...nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.dart/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> nums1 = [6, 8, 7, 10, 9];\nnums.addAll(nums1); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
list.rs/* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet nums1: Vec<i32> = vec![6, 8, 7, 10, 9];\nnums.extend(nums1);\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nvar nums1 = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nums1.deinit();\ntry nums1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });\ntry nums.insertSlice(nums.items.len, nums1.items); // \u5c06\u5217\u8868 nums1 \u62fc\u63a5\u5230 nums \u4e4b\u540e\n
"},{"location":"chapter_array_and_linkedlist/list/#6","title":"6. \u00a0 \u6392\u5e8f\u5217\u8868","text":"\u5b8c\u6210\u5217\u8868\u6392\u5e8f\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u4ee5\u4f7f\u7528\u5728\u6570\u7ec4\u7c7b\u7b97\u6cd5\u9898\u4e2d\u7ecf\u5e38\u8003\u67e5\u7684\u201c\u4e8c\u5206\u67e5\u627e\u201d\u548c\u201c\u53cc\u6307\u9488\u201d\u7b97\u6cd5\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig list.py# \u6392\u5e8f\u5217\u8868\nnums.sort() # \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.cpp/* \u6392\u5e8f\u5217\u8868 */\nsort(nums.begin(), nums.end()); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.java/* \u6392\u5e8f\u5217\u8868 */\nCollections.sort(nums); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.cs/* \u6392\u5e8f\u5217\u8868 */\nnums.Sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list_test.go/* \u6392\u5e8f\u5217\u8868 */\nsort.Ints(nums) // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.swift/* \u6392\u5e8f\u5217\u8868 */\nnums.sort() // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.js/* \u6392\u5e8f\u5217\u8868 */ \nnums.sort((a, b) => a - b); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.ts/* \u6392\u5e8f\u5217\u8868 */\nnums.sort((a, b) => a - b); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.dart/* \u6392\u5e8f\u5217\u8868 */\nnums.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.rs/* \u6392\u5e8f\u5217\u8868 */\nnums.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
list.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
list.zig// \u6392\u5e8f\u5217\u8868\nstd.sort.sort(i32, nums.items, {}, comptime std.sort.asc(i32));\n
"},{"location":"chapter_array_and_linkedlist/list/#432","title":"4.3.2 \u00a0 \u5217\u8868\u5b9e\u73b0","text":"\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u4e86\u5217\u8868\uff0c\u4f8b\u5982 Java\u3001C++\u3001Python \u7b49\u3002\u5b83\u4eec\u7684\u5b9e\u73b0\u6bd4\u8f83\u590d\u6742\uff0c\u5404\u4e2a\u53c2\u6570\u7684\u8bbe\u5b9a\u4e5f\u975e\u5e38\u8003\u7a76\uff0c\u4f8b\u5982\u521d\u59cb\u5bb9\u91cf\u3001\u6269\u5bb9\u500d\u6570\u7b49\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u67e5\u9605\u6e90\u7801\u8fdb\u884c\u5b66\u4e60\u3002
\u4e3a\u4e86\u52a0\u6df1\u5bf9\u5217\u8868\u5de5\u4f5c\u539f\u7406\u7684\u7406\u89e3\uff0c\u6211\u4eec\u5c1d\u8bd5\u5b9e\u73b0\u4e00\u4e2a\u7b80\u6613\u7248\u5217\u8868\uff0c\u5305\u62ec\u4ee5\u4e0b\u4e09\u4e2a\u91cd\u70b9\u8bbe\u8ba1\u3002
- \u521d\u59cb\u5bb9\u91cf\uff1a\u9009\u53d6\u4e00\u4e2a\u5408\u7406\u7684\u6570\u7ec4\u521d\u59cb\u5bb9\u91cf\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u9009\u62e9 10 \u4f5c\u4e3a\u521d\u59cb\u5bb9\u91cf\u3002
- \u6570\u91cf\u8bb0\u5f55\uff1a\u58f0\u660e\u4e00\u4e2a\u53d8\u91cf
size \uff0c\u7528\u4e8e\u8bb0\u5f55\u5217\u8868\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff0c\u5e76\u968f\u7740\u5143\u7d20\u63d2\u5165\u548c\u5220\u9664\u5b9e\u65f6\u66f4\u65b0\u3002\u6839\u636e\u6b64\u53d8\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u5b9a\u4f4d\u5217\u8868\u5c3e\u90e8\uff0c\u4ee5\u53ca\u5224\u65ad\u662f\u5426\u9700\u8981\u6269\u5bb9\u3002 - \u6269\u5bb9\u673a\u5236\uff1a\u82e5\u63d2\u5165\u5143\u7d20\u65f6\u5217\u8868\u5bb9\u91cf\u5df2\u6ee1\uff0c\u5219\u9700\u8981\u8fdb\u884c\u6269\u5bb9\u3002\u5148\u6839\u636e\u6269\u5bb9\u500d\u6570\u521b\u5efa\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u518d\u5c06\u5f53\u524d\u6570\u7ec4\u7684\u6240\u6709\u5143\u7d20\u4f9d\u6b21\u79fb\u52a8\u81f3\u65b0\u6570\u7ec4\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u89c4\u5b9a\u6bcf\u6b21\u5c06\u6570\u7ec4\u6269\u5bb9\u81f3\u4e4b\u524d\u7684 2 \u500d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_list.pyclass MyList:\n \"\"\"\u5217\u8868\u7c7b\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._capacity: int = 10 # \u5217\u8868\u5bb9\u91cf\n self._arr: list[int] = [0] * self._capacity # \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n self._size: int = 0 # \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n self._extend_ratio: int = 2 # \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\"\"\"\n return self._size\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u5217\u8868\u5bb9\u91cf\"\"\"\n return self._capacity\n\n def get(self, index: int) -> int:\n \"\"\"\u8bbf\u95ee\u5143\u7d20\"\"\"\n # \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n return self._arr[index]\n\n def set(self, num: int, index: int):\n \"\"\"\u66f4\u65b0\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n self._arr[index] = num\n\n def add(self, num: int):\n \"\"\"\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\"\"\"\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size() == self.capacity():\n self.extend_capacity()\n self._arr[self._size] = num\n self._size += 1\n\n def insert(self, num: int, index: int):\n \"\"\"\u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n # \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self._size == self.capacity():\n self.extend_capacity()\n # \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in range(self._size - 1, index - 1, -1):\n self._arr[j + 1] = self._arr[j]\n self._arr[index] = num\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size += 1\n\n def remove(self, index: int) -> int:\n \"\"\"\u5220\u9664\u5143\u7d20\"\"\"\n if index < 0 or index >= self._size:\n raise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n num = self._arr[index]\n # \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in range(index, self._size - 1):\n self._arr[j] = self._arr[j + 1]\n # \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self._size -= 1\n # \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num\n\n def extend_capacity(self):\n \"\"\"\u5217\u8868\u6269\u5bb9\"\"\"\n # \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n self._arr = self._arr + [0] * self.capacity() * (self._extend_ratio - 1)\n # \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self._capacity = len(self._arr)\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868\"\"\"\n return self._arr[: self._size]\n
my_list.cpp/* \u5217\u8868\u7c7b */\nclass MyList {\n private:\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~MyList() {\n delete[] arr;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n arr[size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int num) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size() == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size() - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index < 0 || index >= size())\n throw out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size() - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n int newCapacity = capacity() * extendRatio;\n int *tmp = arr;\n arr = new int[newCapacity];\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n arr[i] = tmp[i];\n }\n // \u91ca\u653e\u5185\u5b58\n delete[] tmp;\n arrCapacity = newCapacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Vector \u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> vec(size());\n for (int i = 0; i < size(); i++) {\n vec[i] = arr[i];\n }\n return vec;\n }\n};\n
my_list.java/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int capacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[capacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\n public int size() {\n return size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int capacity() {\n return capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void set(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n arr[size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void insert(int index, int num) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size == capacity())\n extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = size - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int remove(int index) {\n if (index < 0 || index >= size)\n throw new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < size - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n arr = Arrays.copyOf(arr, capacity() * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n capacity = arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] toArray() {\n int size = size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[size];\n for (int i = 0; i < size; i++) {\n arr[i] = get(i);\n }\n return arr;\n }\n}\n
my_list.cs/* \u5217\u8868\u7c7b */\nclass MyList {\n private int[] arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private int arrCapacity = 10; // \u5217\u8868\u5bb9\u91cf\n private int arrSize = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private readonly int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public MyList() {\n arr = new int[arrCapacity];\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public int Size() {\n return arrSize;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public int Capacity() {\n return arrCapacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public int Get(int index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n return arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public void Set(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public void Add(int num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n arr[arrSize] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public void Insert(int index, int num) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (arrSize == arrCapacity)\n ExtendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (int j = arrSize - 1; j >= index; j--) {\n arr[j + 1] = arr[j];\n }\n arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public int Remove(int index) {\n if (index < 0 || index >= arrSize)\n throw new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n int num = arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (int j = index; j < arrSize - 1; j++) {\n arr[j] = arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n arrSize--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public void ExtendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a arrCapacity * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n Array.Resize(ref arr, arrCapacity * extendRatio);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n arrCapacity = arr.Length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] arr = new int[arrSize];\n for (int i = 0; i < arrSize; i++) {\n arr[i] = Get(i);\n }\n return arr;\n }\n}\n
my_list.go/* \u5217\u8868\u7c7b */\ntype myList struct {\n arrCapacity int\n arr []int\n arrSize int\n extendRatio int\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newMyList() *myList {\n return &myList{\n arrCapacity: 10, // \u5217\u8868\u5bb9\u91cf\n arr: make([]int, 10), // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrSize: 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n }\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\nfunc (l *myList) size() int {\n return l.arrSize\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc (l *myList) capacity() int {\n return l.arrCapacity\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc (l *myList) get(index int) int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return l.arr[index]\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc (l *myList) set(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n l.arr[index] = num\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc (l *myList) add(num int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n l.arr[l.arrSize] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc (l *myList) insert(num, index int) {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if l.arrSize == l.arrCapacity {\n l.extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j := l.arrSize - 1; j >= index; j-- {\n l.arr[j+1] = l.arr[j]\n }\n l.arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize++\n}\n\n/* \u5220\u9664\u5143\u7d20 */\nfunc (l *myList) remove(index int) int {\n if index < 0 || index >= l.arrSize {\n panic(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n num := l.arr[index]\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j := index; j < l.arrSize-1; j++ {\n l.arr[j] = l.arr[j+1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n l.arrSize--\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nfunc (l *myList) extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n l.arr = append(l.arr, make([]int, l.arrCapacity*(l.extendRatio-1))...)\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n l.arrCapacity = len(l.arr)\n}\n\n/* \u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868 */\nfunc (l *myList) toArray() []int {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n return l.arr[:l.arrSize]\n}\n
my_list.swift/* \u5217\u8868\u7c7b */\nclass MyList {\n private var arr: [Int] // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private var _capacity = 10 // \u5217\u8868\u5bb9\u91cf\n private var _size = 0 // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private let extendRatio = 2 // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n arr = Array(repeating: 0, count: _capacity)\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n func size() -> Int {\n _size\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n func capacity() -> Int {\n _capacity\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n func get(index: Int) -> Int {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u9519\u8bef\uff0c\u4e0b\u540c\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n return arr[index]\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n func set(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n arr[index] = num\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n func add(num: Int) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n arr[_size] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n func insert(index: Int, num: Int) {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if _size == _capacity {\n extendCapacity()\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in sequence(first: _size - 1, next: { $0 >= index + 1 ? $0 - 1 : nil }) {\n arr[j + 1] = arr[j]\n }\n arr[index] = num\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size += 1\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n @discardableResult\n func remove(index: Int) -> Int {\n if index < 0 || index >= _size {\n fatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n }\n let num = arr[index]\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in index ..< (_size - 1) {\n arr[j] = arr[j + 1]\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size -= 1\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n func extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n arr = arr + Array(repeating: 0, count: _capacity * (extendRatio - 1))\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = arr.count\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n func toArray() -> [Int] {\n var arr = Array(repeating: 0, count: _size)\n for i in 0 ..< _size {\n arr[i] = get(index: i)\n }\n return arr\n }\n}\n
my_list.js/* \u5217\u8868\u7c7b */\nclass MyList {\n #arr = new Array(); // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n #capacity = 10; // \u5217\u8868\u5bb9\u91cf\n #size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n #extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#arr = new Array(this.#capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n size() {\n return this.#size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n capacity() {\n return this.#capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n get(index) {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.#arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n set(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.#arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n add(num) {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.#arr[this.#size] = num;\n this.#size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n insert(index, num) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this.#size === this.#capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this.#size - 1; j >= index; j--) {\n this.#arr[j + 1] = this.#arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#arr[index] = num;\n this.#size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n remove(index) {\n if (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.#arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this.#size - 1; j++) {\n this.#arr[j] = this.#arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.#size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n this.#arr = this.#arr.concat(\n new Array(this.capacity() * (this.#extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this.#capacity = this.#arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n toArray() {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.ts/* \u5217\u8868\u7c7b */\nclass MyList {\n private arr: Array<number>; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n private _capacity: number = 10; // \u5217\u8868\u5bb9\u91cf\n private _size: number = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n private extendRatio: number = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.arr = new Array(this._capacity);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n public size(): number {\n return this._size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n public capacity(): number {\n return this._capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n public get(index: number): number {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n return this.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n public set(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n this.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n public add(num: number): void {\n // \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\n if (this._size === this._capacity) this.extendCapacity();\n // \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\n this.arr[this._size] = num;\n this._size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n public insert(index: number, num: number): void {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (this._size === this._capacity) {\n this.extendCapacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (let j = this._size - 1; j >= index; j--) {\n this.arr[j + 1] = this.arr[j];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this.arr[index] = num;\n this._size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n public remove(index: number): number {\n if (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n let num = this.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (let j = index; j < this._size - 1; j++) {\n this.arr[j] = this.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n this._size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n public extendCapacity(): void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n this.arr = this.arr.concat(\n new Array(this.capacity() * (this.extendRatio - 1))\n );\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n this._capacity = this.arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n public toArray(): number[] {\n let size = this.size();\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(size);\n for (let i = 0; i < size; i++) {\n arr[i] = this.get(i);\n }\n return arr;\n }\n}\n
my_list.dart/* \u5217\u8868\u7c7b */\nclass MyList {\n late List<int> _arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int _capacity = 10; // \u5217\u8868\u5bb9\u91cf\n int _size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n int _extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n\n /* \u6784\u9020\u65b9\u6cd5 */\n MyList() {\n _arr = List.filled(_capacity, 0);\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n int size() => _size;\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n int capacity() => _capacity;\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n int get(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n return _arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n void set(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n _arr[index] = _num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n void add(int _num) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n _arr[_size] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n void insert(int index, int _num) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (_size == _capacity) extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for (var j = _size - 1; j >= index; j--) {\n _arr[j + 1] = _arr[j];\n }\n _arr[index] = _num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size++;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n int remove(int index) {\n if (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n int _num = _arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for (var j = index; j < _size - 1; j++) {\n _arr[j] = _arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n _size--;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return _num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n void extendCapacity() {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extendRatio \u500d\u7684\u65b0\u6570\u7ec4\n final _newNums = List.filled(_capacity * _extendRatio, 0);\n // \u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n List.copyRange(_newNums, 0, _arr);\n // \u66f4\u65b0 _arr \u7684\u5f15\u7528\n _arr = _newNums;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n _capacity = _arr.length;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n List<int> toArray() {\n List<int> arr = [];\n for (var i = 0; i < _size; i++) {\n arr.add(get(i));\n }\n return arr;\n }\n}\n
my_list.rs/* \u5217\u8868\u7c7b */\n#[allow(dead_code)]\nstruct MyList {\n arr: Vec<i32>, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n capacity: usize, // \u5217\u8868\u5bb9\u91cf\n size: usize, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extend_ratio: usize, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n\n#[allow(unused,unused_comparisons)]\nimpl MyList {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(capacity: usize) -> Self {\n let mut vec = Vec::new(); \n vec.resize(capacity, 0);\n Self {\n arr: vec,\n capacity,\n size: 0,\n extend_ratio: 2,\n }\n }\n\n /* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\n pub fn size(&self) -> usize {\n return self.size;\n }\n\n /* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\n pub fn capacity(&self) -> usize {\n return self.capacity;\n }\n\n /* \u8bbf\u95ee\u5143\u7d20 */\n pub fn get(&self, index: usize) -> i32 {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n return self.arr[index];\n }\n\n /* \u66f4\u65b0\u5143\u7d20 */\n pub fn set(&mut self, index: usize, num: i32) {\n if index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n self.arr[index] = num;\n }\n\n /* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\n pub fn add(&mut self, num: i32) {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n self.arr[self.size] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\n pub fn insert(&mut self, index: usize, num: i32) {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if self.size == self.capacity() {\n self.extend_capacity();\n }\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size).rev() {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size += 1;\n }\n\n /* \u5220\u9664\u5143\u7d20 */\n pub fn remove(&mut self, index: usize) -> i32 {\n if index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n let num = self.arr[index];\n // \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n for j in (index..self.size - 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.size -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n /* \u5217\u8868\u6269\u5bb9 */\n pub fn extend_capacity(&mut self) {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n let new_capacity = self.capacity * self.extend_ratio;\n self.arr.resize(new_capacity, 0);\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.capacity = new_capacity;\n }\n\n /* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\n pub fn to_array(&mut self) -> Vec<i32> {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n let mut arr = Vec::new();\n for i in 0..self.size {\n arr.push(self.get(i));\n }\n arr\n }\n}\n
my_list.c/* \u5217\u8868\u7c7b */\ntypedef struct {\n int *arr; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n int capacity; // \u5217\u8868\u5bb9\u91cf\n int size; // \u5217\u8868\u5927\u5c0f\n int extendRatio; // \u5217\u8868\u6bcf\u6b21\u6269\u5bb9\u7684\u500d\u6570\n} MyList;\n\n/* \u6784\u9020\u51fd\u6570 */\nMyList *newMyList() {\n MyList *nums = malloc(sizeof(MyList));\n nums->capacity = 10;\n nums->arr = malloc(sizeof(int) * nums->capacity);\n nums->size = 0;\n nums->extendRatio = 2;\n return nums;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delMyList(MyList *nums) {\n free(nums->arr);\n free(nums);\n}\n\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6 */\nint size(MyList *nums) {\n return nums->size;\n}\n\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity(MyList *nums) {\n return nums->capacity;\n}\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(MyList *nums, int index) {\n assert(index >= 0 && index < nums->size);\n return nums->arr[index];\n}\n\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(MyList *nums, int index, int num) {\n assert(index >= 0 && index < nums->size);\n nums->arr[index] = num;\n}\n\n/* \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(MyList *nums, int num) {\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n nums->arr[size(nums)] = num;\n nums->size++;\n}\n\n/* \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(MyList *nums, int index, int num) {\n assert(index >= 0 && index < size(nums));\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (size(nums) == capacity(nums)) {\n extendCapacity(nums); // \u6269\u5bb9\n }\n for (int i = size(nums); i > index; --i) {\n nums->arr[i] = nums->arr[i - 1];\n }\n nums->arr[index] = num;\n nums->size++;\n}\n\n/* \u5220\u9664\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nint removeItem(MyList *nums, int index) {\n assert(index >= 0 && index < size(nums));\n int num = nums->arr[index];\n for (int i = index; i < size(nums) - 1; i++) {\n nums->arr[i] = nums->arr[i + 1];\n }\n nums->size--;\n return num;\n}\n\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity(MyList *nums) {\n // \u5148\u5206\u914d\u7a7a\u95f4\n int newCapacity = capacity(nums) * nums->extendRatio;\n int *extend = (int *)malloc(sizeof(int) * newCapacity);\n int *temp = nums->arr;\n\n // \u62f7\u8d1d\u65e7\u6570\u636e\u5230\u65b0\u6570\u636e\n for (int i = 0; i < size(nums); i++)\n extend[i] = nums->arr[i];\n\n // \u91ca\u653e\u65e7\u6570\u636e\n free(temp);\n\n // \u66f4\u65b0\u65b0\u6570\u636e\n nums->arr = extend;\n nums->capacity = newCapacity;\n}\n\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Array \u7528\u4e8e\u6253\u5370 */\nint *toArray(MyList *nums) {\n return nums->arr;\n}\n
my_list.zig// \u5217\u8868\u7c7b\nfn MyList(comptime T: type) type {\n return struct {\n const Self = @This();\n\n arr: []T = undefined, // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n arrCapacity: usize = 10, // \u5217\u8868\u5bb9\u91cf\n numSize: usize = 0, // \u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n extendRatio: usize = 2, // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u5217\u8868\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.arr = try self.mem_allocator.alloc(T, self.arrCapacity);\n @memset(self.arr, @as(T, 0));\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n pub fn size(self: *Self) usize {\n return self.numSize;\n }\n\n // \u83b7\u53d6\u5217\u8868\u5bb9\u91cf\n pub fn capacity(self: *Self) usize {\n return self.arrCapacity;\n }\n\n // \u8bbf\u95ee\u5143\u7d20\n pub fn get(self: *Self, index: usize) T {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n return self.arr[index];\n } \n\n // \u66f4\u65b0\u5143\u7d20\n pub fn set(self: *Self, index: usize, num: T) void {\n // \u7d22\u5f15\u5982\u679c\u8d8a\u754c\uff0c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n self.arr[index] = num;\n } \n\n // \u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\n pub fn add(self: *Self, num: T) !void {\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n self.arr[self.size()] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n } \n\n // \u5728\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\n pub fn insert(self: *Self, index: usize, num: T) !void {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n // \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\n if (self.size() == self.capacity()) try self.extendCapacity();\n // \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n var j = self.size() - 1;\n while (j >= index) : (j -= 1) {\n self.arr[j + 1] = self.arr[j];\n }\n self.arr[index] = num;\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize += 1;\n }\n\n // \u5220\u9664\u5143\u7d20\n pub fn remove(self: *Self, index: usize) T {\n if (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n var num = self.arr[index];\n // \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\n var j = index;\n while (j < self.size() - 1) : (j += 1) {\n self.arr[j] = self.arr[j + 1];\n }\n // \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n self.numSize -= 1;\n // \u8fd4\u56de\u88ab\u5220\u9664\u7684\u5143\u7d20\n return num;\n }\n\n // \u5217\u8868\u6269\u5bb9\n pub fn extendCapacity(self: *Self) !void {\n // \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u590d\u5236\u5230\u65b0\u6570\u7ec4\n var newCapacity = self.capacity() * self.extendRatio;\n var extend = try self.mem_allocator.alloc(T, newCapacity);\n @memset(extend, @as(T, 0));\n // \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\n std.mem.copy(T, extend, self.arr);\n self.arr = extend;\n // \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n self.arrCapacity = newCapacity;\n }\n\n // \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var arr = try self.mem_allocator.alloc(T, self.size());\n @memset(arr, @as(T, 0));\n for (arr, 0..) |*num, i| {\n num.* = self.get(i);\n }\n return arr;\n }\n };\n}\n
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/","title":"4.4 \u00a0 \u5185\u5b58\u4e0e\u7f13\u5b58 *","text":"\u5728\u672c\u7ae0\u7684\u524d\u4e24\u8282\u4e2d\uff0c\u6211\u4eec\u63a2\u8ba8\u4e86\u6570\u7ec4\u548c\u94fe\u8868\u8fd9\u4e24\u79cd\u57fa\u7840\u4e14\u91cd\u8981\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5b83\u4eec\u5206\u522b\u4ee3\u8868\u4e86\u201c\u8fde\u7eed\u5b58\u50a8\u201d\u548c\u201c\u5206\u6563\u5b58\u50a8\u201d\u4e24\u79cd\u7269\u7406\u7ed3\u6784\u3002
\u5b9e\u9645\u4e0a\uff0c\u7269\u7406\u7ed3\u6784\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u51b3\u5b9a\u4e86\u7a0b\u5e8f\u5bf9\u5185\u5b58\u548c\u7f13\u5b58\u7684\u4f7f\u7528\u6548\u7387\uff0c\u8fdb\u800c\u5f71\u54cd\u7b97\u6cd5\u7a0b\u5e8f\u7684\u6574\u4f53\u6027\u80fd\u3002
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#441","title":"4.4.1 \u00a0 \u8ba1\u7b97\u673a\u5b58\u50a8\u8bbe\u5907","text":"\u8ba1\u7b97\u673a\u4e2d\u5305\u62ec\u4e09\u79cd\u7c7b\u578b\u7684\u5b58\u50a8\u8bbe\u5907\uff1a\u300c\u786c\u76d8 hard disk\u300d\u3001\u300c\u5185\u5b58 random-access memory, RAM\u300d\u3001\u300c\u7f13\u5b58 cache memory\u300d\u3002\u8868 4-2 \u5c55\u793a\u4e86\u5b83\u4eec\u5728\u8ba1\u7b97\u673a\u7cfb\u7edf\u4e2d\u7684\u4e0d\u540c\u89d2\u8272\u548c\u6027\u80fd\u7279\u70b9\u3002
\u8868 4-2 \u00a0 \u8ba1\u7b97\u673a\u7684\u5b58\u50a8\u8bbe\u5907
\u786c\u76d8 \u5185\u5b58 \u7f13\u5b58 \u7528\u9014 \u957f\u671f\u5b58\u50a8\u6570\u636e\uff0c\u5305\u62ec\u64cd\u4f5c\u7cfb\u7edf\u3001\u7a0b\u5e8f\u3001\u6587\u4ef6\u7b49 \u4e34\u65f6\u5b58\u50a8\u5f53\u524d\u8fd0\u884c\u7684\u7a0b\u5e8f\u548c\u6b63\u5728\u5904\u7406\u7684\u6570\u636e \u5b58\u50a8\u7ecf\u5e38\u8bbf\u95ee\u7684\u6570\u636e\u548c\u6307\u4ee4\uff0c\u51cf\u5c11 CPU \u8bbf\u95ee\u5185\u5b58\u7684\u6b21\u6570 \u6613\u5931\u6027 \u65ad\u7535\u540e\u6570\u636e\u4e0d\u4f1a\u4e22\u5931 \u65ad\u7535\u540e\u6570\u636e\u4f1a\u4e22\u5931 \u65ad\u7535\u540e\u6570\u636e\u4f1a\u4e22\u5931 \u5bb9\u91cf \u8f83\u5927\uff0cTB \u7ea7\u522b \u8f83\u5c0f\uff0cGB \u7ea7\u522b \u975e\u5e38\u5c0f\uff0cMB \u7ea7\u522b \u901f\u5ea6 \u8f83\u6162\uff0c\u51e0\u767e\u5230\u51e0\u5343 MB/s \u8f83\u5feb\uff0c\u51e0\u5341 GB/s \u975e\u5e38\u5feb\uff0c\u51e0\u5341\u5230\u51e0\u767e GB/s \u4ef7\u683c \u8f83\u4fbf\u5b9c\uff0c\u51e0\u6bdb\u5230\u51e0\u5143 / GB \u8f83\u8d35\uff0c\u51e0\u5341\u5230\u51e0\u767e\u5143 / GB \u975e\u5e38\u8d35\uff0c\u968f CPU \u6253\u5305\u8ba1\u4ef7 \u6211\u4eec\u53ef\u4ee5\u5c06\u8ba1\u7b97\u673a\u5b58\u50a8\u7cfb\u7edf\u60f3\u8c61\u4e3a\u56fe 4-9 \u6240\u793a\u7684\u91d1\u5b57\u5854\u7ed3\u6784\u3002\u8d8a\u9760\u8fd1\u91d1\u5b57\u5854\u9876\u7aef\u7684\u5b58\u50a8\u8bbe\u5907\u7684\u901f\u5ea6\u8d8a\u5feb\u3001\u5bb9\u91cf\u8d8a\u5c0f\u3001\u6210\u672c\u8d8a\u9ad8\u3002\u8fd9\u79cd\u591a\u5c42\u7ea7\u7684\u8bbe\u8ba1\u5e76\u975e\u5076\u7136\uff0c\u800c\u662f\u8ba1\u7b97\u673a\u79d1\u5b66\u5bb6\u548c\u5de5\u7a0b\u5e08\u4eec\u7ecf\u8fc7\u6df1\u601d\u719f\u8651\u7684\u7ed3\u679c\u3002
- \u786c\u76d8\u96be\u4ee5\u88ab\u5185\u5b58\u53d6\u4ee3\u3002\u9996\u5148\uff0c\u5185\u5b58\u4e2d\u7684\u6570\u636e\u5728\u65ad\u7535\u540e\u4f1a\u4e22\u5931\uff0c\u56e0\u6b64\u5b83\u4e0d\u9002\u5408\u957f\u671f\u5b58\u50a8\u6570\u636e\uff1b\u5176\u6b21\uff0c\u5185\u5b58\u7684\u6210\u672c\u662f\u786c\u76d8\u7684\u51e0\u5341\u500d\uff0c\u8fd9\u4f7f\u5f97\u5b83\u96be\u4ee5\u5728\u6d88\u8d39\u8005\u5e02\u573a\u666e\u53ca\u3002
- \u7f13\u5b58\u7684\u5927\u5bb9\u91cf\u548c\u9ad8\u901f\u5ea6\u96be\u4ee5\u517c\u5f97\u3002\u968f\u7740 L1\u3001L2\u3001L3 \u7f13\u5b58\u7684\u5bb9\u91cf\u9010\u6b65\u589e\u5927\uff0c\u5176\u7269\u7406\u5c3a\u5bf8\u4f1a\u53d8\u5927\uff0c\u4e0e CPU \u6838\u5fc3\u4e4b\u95f4\u7684\u7269\u7406\u8ddd\u79bb\u4f1a\u53d8\u8fdc\uff0c\u4ece\u800c\u5bfc\u81f4\u6570\u636e\u4f20\u8f93\u65f6\u95f4\u589e\u52a0\uff0c\u5143\u7d20\u8bbf\u95ee\u5ef6\u8fdf\u53d8\u9ad8\u3002\u5728\u5f53\u524d\u6280\u672f\u4e0b\uff0c\u591a\u5c42\u7ea7\u7684\u7f13\u5b58\u7ed3\u6784\u662f\u5bb9\u91cf\u3001\u901f\u5ea6\u548c\u6210\u672c\u4e4b\u95f4\u7684\u6700\u4f73\u5e73\u8861\u70b9\u3002
\u56fe 4-9 \u00a0 \u8ba1\u7b97\u673a\u5b58\u50a8\u7cfb\u7edf
Note
\u8ba1\u7b97\u673a\u7684\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784\u4f53\u73b0\u4e86\u901f\u5ea6\u3001\u5bb9\u91cf\u548c\u6210\u672c\u4e09\u8005\u4e4b\u95f4\u7684\u7cbe\u5999\u5e73\u8861\u3002\u5b9e\u9645\u4e0a\uff0c\u8fd9\u79cd\u6743\u8861\u666e\u904d\u5b58\u5728\u4e8e\u6240\u6709\u5de5\u4e1a\u9886\u57df\uff0c\u5b83\u8981\u6c42\u6211\u4eec\u5728\u4e0d\u540c\u7684\u4f18\u52bf\u548c\u9650\u5236\u4e4b\u95f4\u627e\u5230\u6700\u4f73\u5e73\u8861\u70b9\u3002
\u603b\u7684\u6765\u8bf4\uff0c\u786c\u76d8\u7528\u4e8e\u957f\u671f\u5b58\u50a8\u5927\u91cf\u6570\u636e\uff0c\u5185\u5b58\u7528\u4e8e\u4e34\u65f6\u5b58\u50a8\u7a0b\u5e8f\u8fd0\u884c\u4e2d\u6b63\u5728\u5904\u7406\u7684\u6570\u636e\uff0c\u800c\u7f13\u5b58\u5219\u7528\u4e8e\u5b58\u50a8\u7ecf\u5e38\u8bbf\u95ee\u7684\u6570\u636e\u548c\u6307\u4ee4\uff0c\u4ee5\u63d0\u9ad8\u7a0b\u5e8f\u8fd0\u884c\u6548\u7387\u3002\u4e09\u8005\u5171\u540c\u534f\u4f5c\uff0c\u786e\u4fdd\u8ba1\u7b97\u673a\u7cfb\u7edf\u9ad8\u6548\u8fd0\u884c\u3002
\u5982\u56fe 4-10 \u6240\u793a\uff0c\u5728\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u4f1a\u4ece\u786c\u76d8\u4e2d\u88ab\u8bfb\u53d6\u5230\u5185\u5b58\u4e2d\uff0c\u4f9b CPU \u8ba1\u7b97\u4f7f\u7528\u3002\u7f13\u5b58\u53ef\u4ee5\u770b\u4f5c CPU \u7684\u4e00\u90e8\u5206\uff0c\u5b83\u901a\u8fc7\u667a\u80fd\u5730\u4ece\u5185\u5b58\u52a0\u8f7d\u6570\u636e\uff0c\u7ed9 CPU \u63d0\u4f9b\u9ad8\u901f\u7684\u6570\u636e\u8bfb\u53d6\uff0c\u4ece\u800c\u663e\u8457\u63d0\u5347\u7a0b\u5e8f\u7684\u6267\u884c\u6548\u7387\uff0c\u51cf\u5c11\u5bf9\u8f83\u6162\u7684\u5185\u5b58\u7684\u4f9d\u8d56\u3002
\u56fe 4-10 \u00a0 \u786c\u76d8\u3001\u5185\u5b58\u548c\u7f13\u5b58\u4e4b\u95f4\u7684\u6570\u636e\u6d41\u901a
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#442","title":"4.4.2 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u5185\u5b58\u6548\u7387","text":"\u5728\u5185\u5b58\u7a7a\u95f4\u5229\u7528\u65b9\u9762\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u5404\u81ea\u5177\u6709\u4f18\u52bf\u548c\u5c40\u9650\u6027\u3002
\u4e00\u65b9\u9762\uff0c\u5185\u5b58\u662f\u6709\u9650\u7684\uff0c\u4e14\u540c\u4e00\u5757\u5185\u5b58\u4e0d\u80fd\u88ab\u591a\u4e2a\u7a0b\u5e8f\u5171\u4eab\uff0c\u56e0\u6b64\u6211\u4eec\u5e0c\u671b\u6570\u636e\u7ed3\u6784\u80fd\u591f\u5c3d\u53ef\u80fd\u9ad8\u6548\u5730\u5229\u7528\u7a7a\u95f4\u3002\u6570\u7ec4\u7684\u5143\u7d20\u7d27\u5bc6\u6392\u5217\uff0c\u4e0d\u9700\u8981\u989d\u5916\u7684\u7a7a\u95f4\u6765\u5b58\u50a8\u94fe\u8868\u8282\u70b9\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\uff0c\u56e0\u6b64\u7a7a\u95f4\u6548\u7387\u66f4\u9ad8\u3002\u7136\u800c\uff0c\u6570\u7ec4\u9700\u8981\u4e00\u6b21\u6027\u5206\u914d\u8db3\u591f\u7684\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\uff0c\u8fd9\u53ef\u80fd\u5bfc\u81f4\u5185\u5b58\u6d6a\u8d39\uff0c\u6570\u7ec4\u6269\u5bb9\u4e5f\u9700\u8981\u989d\u5916\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u6210\u672c\u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u94fe\u8868\u4ee5\u201c\u8282\u70b9\u201d\u4e3a\u5355\u4f4d\u8fdb\u884c\u52a8\u6001\u5185\u5b58\u5206\u914d\u548c\u56de\u6536\uff0c\u63d0\u4f9b\u4e86\u66f4\u5927\u7684\u7075\u6d3b\u6027\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5728\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u968f\u7740\u53cd\u590d\u7533\u8bf7\u4e0e\u91ca\u653e\u5185\u5b58\uff0c\u7a7a\u95f2\u5185\u5b58\u7684\u788e\u7247\u5316\u7a0b\u5ea6\u4f1a\u8d8a\u6765\u8d8a\u9ad8\uff0c\u4ece\u800c\u5bfc\u81f4\u5185\u5b58\u7684\u5229\u7528\u6548\u7387\u964d\u4f4e\u3002\u6570\u7ec4\u7531\u4e8e\u5176\u8fde\u7eed\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u76f8\u5bf9\u4e0d\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u788e\u7247\u5316\u3002\u76f8\u53cd\uff0c\u94fe\u8868\u7684\u5143\u7d20\u662f\u5206\u6563\u5b58\u50a8\u7684\uff0c\u5728\u9891\u7e41\u7684\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u4e2d\uff0c\u66f4\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u788e\u7247\u5316\u3002
"},{"location":"chapter_array_and_linkedlist/ram_and_cache/#443","title":"4.4.3 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u7f13\u5b58\u6548\u7387","text":"\u7f13\u5b58\u867d\u7136\u5728\u7a7a\u95f4\u5bb9\u91cf\u4e0a\u8fdc\u5c0f\u4e8e\u5185\u5b58\uff0c\u4f46\u5b83\u6bd4\u5185\u5b58\u5feb\u5f97\u591a\uff0c\u5728\u7a0b\u5e8f\u6267\u884c\u901f\u5ea6\u4e0a\u8d77\u7740\u81f3\u5173\u91cd\u8981\u7684\u4f5c\u7528\u3002\u7531\u4e8e\u7f13\u5b58\u7684\u5bb9\u91cf\u6709\u9650\uff0c\u53ea\u80fd\u5b58\u50a8\u4e00\u5c0f\u90e8\u5206\u9891\u7e41\u8bbf\u95ee\u7684\u6570\u636e\uff0c\u56e0\u6b64\u5f53 CPU \u5c1d\u8bd5\u8bbf\u95ee\u7684\u6570\u636e\u4e0d\u5728\u7f13\u5b58\u4e2d\u65f6\uff0c\u5c31\u4f1a\u53d1\u751f\u300c\u7f13\u5b58\u672a\u547d\u4e2d cache miss\u300d\uff0c\u6b64\u65f6 CPU \u4e0d\u5f97\u4e0d\u4ece\u901f\u5ea6\u8f83\u6162\u7684\u5185\u5b58\u4e2d\u52a0\u8f7d\u6240\u9700\u6570\u636e\u3002
\u663e\u7136\uff0c\u201c\u7f13\u5b58\u672a\u547d\u4e2d\u201d\u8d8a\u5c11\uff0cCPU \u8bfb\u5199\u6570\u636e\u7684\u6548\u7387\u5c31\u8d8a\u9ad8\uff0c\u7a0b\u5e8f\u6027\u80fd\u4e5f\u5c31\u8d8a\u597d\u3002\u6211\u4eec\u5c06 CPU \u4ece\u7f13\u5b58\u4e2d\u6210\u529f\u83b7\u53d6\u6570\u636e\u7684\u6bd4\u4f8b\u79f0\u4e3a\u300c\u7f13\u5b58\u547d\u4e2d\u7387 cache hit rate\u300d\uff0c\u8fd9\u4e2a\u6307\u6807\u901a\u5e38\u7528\u6765\u8861\u91cf\u7f13\u5b58\u6548\u7387\u3002
\u4e3a\u4e86\u5c3d\u53ef\u80fd\u8fbe\u5230\u66f4\u9ad8\u7684\u6548\u7387\uff0c\u7f13\u5b58\u4f1a\u91c7\u53d6\u4ee5\u4e0b\u6570\u636e\u52a0\u8f7d\u673a\u5236\u3002
- \u7f13\u5b58\u884c\uff1a\u7f13\u5b58\u4e0d\u662f\u5355\u4e2a\u5b57\u8282\u5730\u5b58\u50a8\u4e0e\u52a0\u8f7d\u6570\u636e\uff0c\u800c\u662f\u4ee5\u7f13\u5b58\u884c\u4e3a\u5355\u4f4d\u3002\u76f8\u6bd4\u4e8e\u5355\u4e2a\u5b57\u8282\u7684\u4f20\u8f93\uff0c\u7f13\u5b58\u884c\u7684\u4f20\u8f93\u5f62\u5f0f\u66f4\u52a0\u9ad8\u6548\u3002
- \u9884\u53d6\u673a\u5236\uff1a\u5904\u7406\u5668\u4f1a\u5c1d\u8bd5\u9884\u6d4b\u6570\u636e\u8bbf\u95ee\u6a21\u5f0f\uff08\u4f8b\u5982\u987a\u5e8f\u8bbf\u95ee\u3001\u56fa\u5b9a\u6b65\u957f\u8df3\u8dc3\u8bbf\u95ee\u7b49\uff09\uff0c\u5e76\u6839\u636e\u7279\u5b9a\u6a21\u5f0f\u5c06\u6570\u636e\u52a0\u8f7d\u81f3\u7f13\u5b58\u4e4b\u4e2d\uff0c\u4ece\u800c\u63d0\u5347\u547d\u4e2d\u7387\u3002
- \u7a7a\u95f4\u5c40\u90e8\u6027\uff1a\u5982\u679c\u4e00\u4e2a\u6570\u636e\u88ab\u8bbf\u95ee\uff0c\u90a3\u4e48\u5b83\u9644\u8fd1\u7684\u6570\u636e\u53ef\u80fd\u8fd1\u671f\u4e5f\u4f1a\u88ab\u8bbf\u95ee\u3002\u56e0\u6b64\uff0c\u7f13\u5b58\u5728\u52a0\u8f7d\u67d0\u4e00\u6570\u636e\u65f6\uff0c\u4e5f\u4f1a\u52a0\u8f7d\u5176\u9644\u8fd1\u7684\u6570\u636e\uff0c\u4ee5\u63d0\u9ad8\u547d\u4e2d\u7387\u3002
- \u65f6\u95f4\u5c40\u90e8\u6027\uff1a\u5982\u679c\u4e00\u4e2a\u6570\u636e\u88ab\u8bbf\u95ee\uff0c\u90a3\u4e48\u5b83\u5728\u4e0d\u4e45\u7684\u5c06\u6765\u5f88\u53ef\u80fd\u518d\u6b21\u88ab\u8bbf\u95ee\u3002\u7f13\u5b58\u5229\u7528\u8fd9\u4e00\u539f\u7406\uff0c\u901a\u8fc7\u4fdd\u7559\u6700\u8fd1\u8bbf\u95ee\u8fc7\u7684\u6570\u636e\u6765\u63d0\u9ad8\u547d\u4e2d\u7387\u3002
\u5b9e\u9645\u4e0a\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u5bf9\u7f13\u5b58\u7684\u5229\u7528\u6548\u7387\u662f\u4e0d\u540c\u7684\uff0c\u4e3b\u8981\u4f53\u73b0\u5728\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762\u3002
- \u5360\u7528\u7a7a\u95f4\uff1a\u94fe\u8868\u5143\u7d20\u6bd4\u6570\u7ec4\u5143\u7d20\u5360\u7528\u7a7a\u95f4\u66f4\u591a\uff0c\u5bfc\u81f4\u7f13\u5b58\u4e2d\u5bb9\u7eb3\u7684\u6709\u6548\u6570\u636e\u91cf\u66f4\u5c11\u3002
- \u7f13\u5b58\u884c\uff1a\u94fe\u8868\u6570\u636e\u5206\u6563\u5728\u5185\u5b58\u5404\u5904\uff0c\u800c\u7f13\u5b58\u662f\u201c\u6309\u884c\u52a0\u8f7d\u201d\u7684\uff0c\u56e0\u6b64\u52a0\u8f7d\u5230\u65e0\u6548\u6570\u636e\u7684\u6bd4\u4f8b\u66f4\u9ad8\u3002
- \u9884\u53d6\u673a\u5236\uff1a\u6570\u7ec4\u6bd4\u94fe\u8868\u7684\u6570\u636e\u8bbf\u95ee\u6a21\u5f0f\u66f4\u5177\u201c\u53ef\u9884\u6d4b\u6027\u201d\uff0c\u5373\u7cfb\u7edf\u66f4\u5bb9\u6613\u731c\u51fa\u5373\u5c06\u88ab\u52a0\u8f7d\u7684\u6570\u636e\u3002
- \u7a7a\u95f4\u5c40\u90e8\u6027\uff1a\u6570\u7ec4\u88ab\u5b58\u50a8\u5728\u96c6\u4e2d\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u56e0\u6b64\u88ab\u52a0\u8f7d\u6570\u636e\u9644\u8fd1\u7684\u6570\u636e\u66f4\u6709\u53ef\u80fd\u5373\u5c06\u88ab\u8bbf\u95ee\u3002
\u603b\u4f53\u800c\u8a00\uff0c\u6570\u7ec4\u5177\u6709\u66f4\u9ad8\u7684\u7f13\u5b58\u547d\u4e2d\u7387\uff0c\u56e0\u6b64\u5b83\u5728\u64cd\u4f5c\u6548\u7387\u4e0a\u901a\u5e38\u4f18\u4e8e\u94fe\u8868\u3002\u8fd9\u4f7f\u5f97\u5728\u89e3\u51b3\u7b97\u6cd5\u95ee\u9898\u65f6\uff0c\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u5f80\u5f80\u66f4\u53d7\u6b22\u8fce\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u9ad8\u7f13\u5b58\u6548\u7387\u5e76\u4e0d\u610f\u5473\u7740\u6570\u7ec4\u5728\u6240\u6709\u60c5\u51b5\u4e0b\u90fd\u4f18\u4e8e\u94fe\u8868\u3002\u5b9e\u9645\u5e94\u7528\u4e2d\u9009\u62e9\u54ea\u79cd\u6570\u636e\u7ed3\u6784\uff0c\u5e94\u6839\u636e\u5177\u4f53\u9700\u6c42\u6765\u51b3\u5b9a\u3002\u4f8b\u5982\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u90fd\u53ef\u4ee5\u5b9e\u73b0\u201c\u6808\u201d\u6570\u636e\u7ed3\u6784\uff08\u4e0b\u4e00\u7ae0\u4f1a\u8be6\u7ec6\u4ecb\u7ecd\uff09\uff0c\u4f46\u5b83\u4eec\u9002\u7528\u4e8e\u4e0d\u540c\u573a\u666f\u3002
- \u5728\u505a\u7b97\u6cd5\u9898\u65f6\uff0c\u6211\u4eec\u4f1a\u503e\u5411\u4e8e\u9009\u62e9\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\uff0c\u56e0\u4e3a\u5b83\u63d0\u4f9b\u4e86\u66f4\u9ad8\u7684\u64cd\u4f5c\u6548\u7387\u548c\u968f\u673a\u8bbf\u95ee\u7684\u80fd\u529b\uff0c\u4ee3\u4ef7\u4ec5\u662f\u9700\u8981\u9884\u5148\u4e3a\u6570\u7ec4\u5206\u914d\u4e00\u5b9a\u7684\u5185\u5b58\u7a7a\u95f4\u3002
- \u5982\u679c\u6570\u636e\u91cf\u975e\u5e38\u5927\u3001\u52a8\u6001\u6027\u5f88\u9ad8\u3001\u6808\u7684\u9884\u671f\u5927\u5c0f\u96be\u4ee5\u4f30\u8ba1\uff0c\u90a3\u4e48\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u66f4\u52a0\u5408\u9002\u3002\u94fe\u8868\u80fd\u591f\u5c06\u5927\u91cf\u6570\u636e\u5206\u6563\u5b58\u50a8\u4e8e\u5185\u5b58\u7684\u4e0d\u540c\u90e8\u5206\uff0c\u5e76\u4e14\u907f\u514d\u4e86\u6570\u7ec4\u6269\u5bb9\u4ea7\u751f\u7684\u989d\u5916\u5f00\u9500\u3002
"},{"location":"chapter_array_and_linkedlist/summary/","title":"4.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_array_and_linkedlist/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u6570\u7ec4\u548c\u94fe\u8868\u662f\u4e24\u79cd\u57fa\u672c\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5206\u522b\u4ee3\u8868\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u4e24\u79cd\u5b58\u50a8\u65b9\u5f0f\uff1a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u548c\u5206\u6563\u7a7a\u95f4\u5b58\u50a8\u3002\u4e24\u8005\u7684\u7279\u70b9\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u6027\u3002
- \u6570\u7ec4\u652f\u6301\u968f\u673a\u8bbf\u95ee\u3001\u5360\u7528\u5185\u5b58\u8f83\u5c11\uff1b\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u6548\u7387\u4f4e\uff0c\u4e14\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002
- \u94fe\u8868\u901a\u8fc7\u66f4\u6539\u5f15\u7528\uff08\u6307\u9488\uff09\u5b9e\u73b0\u9ad8\u6548\u7684\u8282\u70b9\u63d2\u5165\u4e0e\u5220\u9664\uff0c\u4e14\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\uff1b\u4f46\u8282\u70b9\u8bbf\u95ee\u6548\u7387\u4f4e\u3001\u5360\u7528\u5185\u5b58\u8f83\u591a\u3002\u5e38\u89c1\u7684\u94fe\u8868\u7c7b\u578b\u5305\u62ec\u5355\u5411\u94fe\u8868\u3001\u73af\u5f62\u94fe\u8868\u3001\u53cc\u5411\u94fe\u8868\u3002
- \u5217\u8868\u662f\u4e00\u79cd\u652f\u6301\u589e\u5220\u67e5\u6539\u7684\u5143\u7d20\u6709\u5e8f\u96c6\u5408\uff0c\u901a\u5e38\u57fa\u4e8e\u52a8\u6001\u6570\u7ec4\u5b9e\u73b0\uff0c\u5b83\u4fdd\u7559\u4e86\u6570\u7ec4\u7684\u4f18\u52bf\uff0c\u540c\u65f6\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\u3002
- \u5217\u8868\u7684\u51fa\u73b0\u5927\u5e45\u5730\u63d0\u9ad8\u4e86\u6570\u7ec4\u7684\u5b9e\u7528\u6027\uff0c\u4f46\u53ef\u80fd\u5bfc\u81f4\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
- \u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u4e3b\u8981\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\u3002\u6570\u7ec4\u53ef\u63d0\u4f9b\u66f4\u9ad8\u7684\u5185\u5b58\u7a7a\u95f4\u6548\u7387\uff0c\u800c\u94fe\u8868\u5219\u5728\u5185\u5b58\u4f7f\u7528\u4e0a\u66f4\u52a0\u7075\u6d3b\u3002
- \u7f13\u5b58\u901a\u8fc7\u7f13\u5b58\u884c\u3001\u9884\u53d6\u673a\u5236\u4ee5\u53ca\u7a7a\u95f4\u5c40\u90e8\u6027\u548c\u65f6\u95f4\u5c40\u90e8\u6027\u7b49\u6570\u636e\u52a0\u8f7d\u673a\u5236\uff0c\u4e3a CPU \u63d0\u4f9b\u5feb\u901f\u6570\u636e\u8bbf\u95ee\uff0c\u663e\u8457\u63d0\u5347\u7a0b\u5e8f\u7684\u6267\u884c\u6548\u7387\u3002
- \u7531\u4e8e\u6570\u7ec4\u5177\u6709\u66f4\u9ad8\u7684\u7f13\u5b58\u547d\u4e2d\u7387\uff0c\u56e0\u6b64\u5b83\u901a\u5e38\u6bd4\u94fe\u8868\u66f4\u9ad8\u6548\u3002\u5728\u9009\u62e9\u6570\u636e\u7ed3\u6784\u65f6\uff0c\u5e94\u6839\u636e\u5177\u4f53\u9700\u6c42\u548c\u573a\u666f\u505a\u51fa\u6070\u5f53\u9009\u62e9\u3002
"},{"location":"chapter_array_and_linkedlist/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6570\u7ec4\u5b58\u50a8\u5728\u6808\u4e0a\u548c\u5b58\u50a8\u5728\u5806\u4e0a\uff0c\u5bf9\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u5426\u6709\u5f71\u54cd\uff1f
\u5b58\u50a8\u5728\u6808\u4e0a\u548c\u5806\u4e0a\u7684\u6570\u7ec4\u90fd\u88ab\u5b58\u50a8\u5728\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\u5185\uff0c\u6570\u636e\u64cd\u4f5c\u6548\u7387\u57fa\u672c\u4e00\u81f4\u3002\u7136\u800c\uff0c\u6808\u548c\u5806\u5177\u6709\u5404\u81ea\u7684\u7279\u70b9\uff0c\u4ece\u800c\u5bfc\u81f4\u4ee5\u4e0b\u4e0d\u540c\u70b9\u3002
- \u5206\u914d\u548c\u91ca\u653e\u6548\u7387\uff1a\u6808\u662f\u4e00\u5757\u8f83\u5c0f\u7684\u5185\u5b58\uff0c\u5206\u914d\u7531\u7f16\u8bd1\u5668\u81ea\u52a8\u5b8c\u6210\uff1b\u800c\u5806\u5185\u5b58\u76f8\u5bf9\u66f4\u5927\uff0c\u53ef\u4ee5\u5728\u4ee3\u7801\u4e2d\u52a8\u6001\u5206\u914d\uff0c\u66f4\u5bb9\u6613\u788e\u7247\u5316\u3002\u56e0\u6b64\uff0c\u5806\u4e0a\u7684\u5206\u914d\u548c\u91ca\u653e\u64cd\u4f5c\u901a\u5e38\u6bd4\u6808\u4e0a\u7684\u6162\u3002
- \u5927\u5c0f\u9650\u5236\uff1a\u6808\u5185\u5b58\u76f8\u5bf9\u8f83\u5c0f\uff0c\u5806\u7684\u5927\u5c0f\u4e00\u822c\u53d7\u9650\u4e8e\u53ef\u7528\u5185\u5b58\u3002\u56e0\u6b64\u5806\u66f4\u52a0\u9002\u5408\u5b58\u50a8\u5927\u578b\u6570\u7ec4\u3002
- \u7075\u6d3b\u6027\uff1a\u6808\u4e0a\u7684\u6570\u7ec4\u7684\u5927\u5c0f\u9700\u8981\u5728\u7f16\u8bd1\u65f6\u786e\u5b9a\uff0c\u800c\u5806\u4e0a\u7684\u6570\u7ec4\u7684\u5927\u5c0f\u53ef\u4ee5\u5728\u8fd0\u884c\u65f6\u52a8\u6001\u786e\u5b9a\u3002
\u4e3a\u4ec0\u4e48\u6570\u7ec4\u8981\u6c42\u76f8\u540c\u7c7b\u578b\u7684\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u5374\u6ca1\u6709\u5f3a\u8c03\u540c\u7c7b\u578b\u5462\uff1f
\u94fe\u8868\u7531\u8282\u70b9\u7ec4\u6210\uff0c\u8282\u70b9\u4e4b\u95f4\u901a\u8fc7\u5f15\u7528\uff08\u6307\u9488\uff09\u8fde\u63a5\uff0c\u5404\u4e2a\u8282\u70b9\u53ef\u4ee5\u5b58\u50a8\u4e0d\u540c\u7c7b\u578b\u7684\u6570\u636e\uff0c\u4f8b\u5982 int\u3001double\u3001string\u3001object \u7b49\u3002
\u76f8\u5bf9\u5730\uff0c\u6570\u7ec4\u5143\u7d20\u5219\u5fc5\u987b\u662f\u76f8\u540c\u7c7b\u578b\u7684\uff0c\u8fd9\u6837\u624d\u80fd\u901a\u8fc7\u8ba1\u7b97\u504f\u79fb\u91cf\u6765\u83b7\u53d6\u5bf9\u5e94\u5143\u7d20\u4f4d\u7f6e\u3002\u4f8b\u5982\uff0c\u6570\u7ec4\u540c\u65f6\u5305\u542b int \u548c long \u4e24\u79cd\u7c7b\u578b\uff0c\u5355\u4e2a\u5143\u7d20\u5206\u522b\u5360\u7528 4 \u5b57\u8282 \u548c 8 \u5b57\u8282 \uff0c\u6b64\u65f6\u5c31\u4e0d\u80fd\u7528\u4ee5\u4e0b\u516c\u5f0f\u8ba1\u7b97\u504f\u79fb\u91cf\u4e86\uff0c\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5305\u542b\u4e86\u4e24\u79cd\u201c\u5143\u7d20\u957f\u5ea6\u201d\u3002
# \u5143\u7d20\u5185\u5b58\u5730\u5740 = \u6570\u7ec4\u5185\u5b58\u5730\u5740 + \u5143\u7d20\u957f\u5ea6 * \u5143\u7d20\u7d22\u5f15\n
\u5220\u9664\u8282\u70b9\u540e\uff0c\u662f\u5426\u9700\u8981\u628a P.next \u8bbe\u4e3a None \u5462\uff1f
\u4e0d\u4fee\u6539 P.next \u4e5f\u53ef\u4ee5\u3002\u4ece\u8be5\u94fe\u8868\u7684\u89d2\u5ea6\u770b\uff0c\u4ece\u5934\u8282\u70b9\u904d\u5386\u5230\u5c3e\u8282\u70b9\u5df2\u7ecf\u4e0d\u4f1a\u9047\u5230 P \u4e86\u3002\u8fd9\u610f\u5473\u7740\u8282\u70b9 P \u5df2\u7ecf\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u4e86\uff0c\u6b64\u65f6\u8282\u70b9 P \u6307\u5411\u54ea\u91cc\u90fd\u4e0d\u4f1a\u5bf9\u8be5\u94fe\u8868\u4ea7\u751f\u5f71\u54cd\u3002
\u4ece\u5783\u573e\u56de\u6536\u7684\u89d2\u5ea6\u770b\uff0c\u5bf9\u4e8e Java\u3001Python\u3001Go \u7b49\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u673a\u5236\u7684\u8bed\u8a00\u6765\u8bf4\uff0c\u8282\u70b9 P \u662f\u5426\u88ab\u56de\u6536\u53d6\u51b3\u4e8e\u662f\u5426\u4ecd\u5b58\u5728\u6307\u5411\u5b83\u7684\u5f15\u7528\uff0c\u800c\u4e0d\u662f P.next \u7684\u503c\u3002\u5728 C \u548c C++ \u7b49\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u624b\u52a8\u91ca\u653e\u8282\u70b9\u5185\u5b58\u3002
\u5728\u94fe\u8868\u4e2d\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u4f46\u662f\u589e\u5220\u4e4b\u524d\u90fd\u9700\u8981 \\(O(n)\\) \u7684\u65f6\u95f4\u67e5\u627e\u5143\u7d20\uff0c\u90a3\u4e3a\u4ec0\u4e48\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u662f \\(O(n)\\) \u5462\uff1f
\u5982\u679c\u662f\u5148\u67e5\u627e\u5143\u7d20\u3001\u518d\u5220\u9664\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u786e\u5b9e\u662f \\(O(n)\\) \u3002\u7136\u800c\uff0c\u94fe\u8868\u7684 \\(O(1)\\) \u589e\u5220\u7684\u4f18\u52bf\u53ef\u4ee5\u5728\u5176\u4ed6\u5e94\u7528\u4e0a\u5f97\u5230\u4f53\u73b0\u3002\u4f8b\u5982\uff0c\u53cc\u5411\u961f\u5217\u9002\u5408\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff0c\u6211\u4eec\u7ef4\u62a4\u4e00\u4e2a\u6307\u9488\u53d8\u91cf\u59cb\u7ec8\u6307\u5411\u5934\u8282\u70b9\u3001\u5c3e\u8282\u70b9\uff0c\u6bcf\u6b21\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u90fd\u662f \\(O(1)\\) \u3002
\u56fe\u201c\u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f\u201d\u4e2d\uff0c\u6d45\u84dd\u8272\u7684\u5b58\u50a8\u8282\u70b9\u6307\u9488\u662f\u5360\u7528\u4e00\u5757\u5185\u5b58\u5730\u5740\u5417\uff1f\u8fd8\u662f\u548c\u8282\u70b9\u503c\u5404\u5360\u4e00\u534a\u5462\uff1f
\u8be5\u793a\u610f\u56fe\u53ea\u662f\u5b9a\u6027\u8868\u793a\uff0c\u5b9a\u91cf\u8868\u793a\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u8fdb\u884c\u5206\u6790\u3002
- \u4e0d\u540c\u7c7b\u578b\u7684\u8282\u70b9\u503c\u5360\u7528\u7684\u7a7a\u95f4\u662f\u4e0d\u540c\u7684\uff0c\u6bd4\u5982
int\u3001long\u3001double \u548c\u5b9e\u4f8b\u5bf9\u8c61\u7b49\u3002 - \u6307\u9488\u53d8\u91cf\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u5927\u5c0f\u6839\u636e\u6240\u4f7f\u7528\u7684\u64cd\u4f5c\u7cfb\u7edf\u53ca\u7f16\u8bd1\u73af\u5883\u800c\u5b9a\uff0c\u5927\u591a\u4e3a 8 \u5b57\u8282\u6216 4 \u5b57\u8282\u3002
\u5728\u5217\u8868\u672b\u5c3e\u6dfb\u52a0\u5143\u7d20\u662f\u5426\u65f6\u65f6\u523b\u523b\u90fd\u4e3a \\(O(1)\\) \uff1f
\u5982\u679c\u6dfb\u52a0\u5143\u7d20\u65f6\u8d85\u51fa\u5217\u8868\u957f\u5ea6\uff0c\u5219\u9700\u8981\u5148\u6269\u5bb9\u5217\u8868\u518d\u6dfb\u52a0\u3002\u7cfb\u7edf\u4f1a\u7533\u8bf7\u4e00\u5757\u65b0\u7684\u5185\u5b58\uff0c\u5e76\u5c06\u539f\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u642c\u8fd0\u8fc7\u53bb\uff0c\u8fd9\u65f6\u5019\u65f6\u95f4\u590d\u6742\u5ea6\u5c31\u4f1a\u662f \\(O(n)\\) \u3002
\u201c\u5217\u8868\u7684\u51fa\u73b0\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u6570\u7ec4\u7684\u5b9e\u7528\u6027\uff0c\u4f46\u53ef\u80fd\u5bfc\u81f4\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u201d\uff0c\u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u662f\u6307\u989d\u5916\u589e\u52a0\u7684\u53d8\u91cf\u5982\u5bb9\u91cf\u3001\u957f\u5ea6\u3001\u6269\u5bb9\u500d\u6570\u6240\u5360\u7684\u5185\u5b58\u5417\uff1f
\u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u4e3b\u8981\u6709\u4e24\u65b9\u9762\u542b\u4e49\uff1a\u4e00\u65b9\u9762\uff0c\u5217\u8868\u90fd\u4f1a\u8bbe\u5b9a\u4e00\u4e2a\u521d\u59cb\u957f\u5ea6\uff0c\u6211\u4eec\u4e0d\u4e00\u5b9a\u9700\u8981\u7528\u8fd9\u4e48\u591a\uff1b\u53e6\u4e00\u65b9\u9762\uff0c\u4e3a\u4e86\u9632\u6b62\u9891\u7e41\u6269\u5bb9\uff0c\u6269\u5bb9\u4e00\u822c\u4f1a\u4e58\u4ee5\u4e00\u4e2a\u7cfb\u6570\uff0c\u6bd4\u5982 \\(\\times 1.5\\) \u3002\u8fd9\u6837\u4e00\u6765\uff0c\u4e5f\u4f1a\u51fa\u73b0\u5f88\u591a\u7a7a\u4f4d\uff0c\u6211\u4eec\u901a\u5e38\u4e0d\u80fd\u5b8c\u5168\u586b\u6ee1\u5b83\u4eec\u3002
\u5728 Python \u4e2d\u521d\u59cb\u5316 n = [1, 2, 3] \u540e\uff0c\u8fd9 3 \u4e2a\u5143\u7d20\u7684\u5730\u5740\u662f\u76f8\u8fde\u7684\uff0c\u4f46\u662f\u521d\u59cb\u5316 m = [2, 1, 3] \u4f1a\u53d1\u73b0\u5b83\u4eec\u6bcf\u4e2a\u5143\u7d20\u7684 id \u5e76\u4e0d\u662f\u8fde\u7eed\u7684\uff0c\u800c\u662f\u5206\u522b\u8ddf n \u4e2d\u7684\u76f8\u540c\u3002\u8fd9\u4e9b\u5143\u7d20\u7684\u5730\u5740\u4e0d\u8fde\u7eed\uff0c\u90a3\u4e48 m \u8fd8\u662f\u6570\u7ec4\u5417\uff1f
\u5047\u5982\u628a\u5217\u8868\u5143\u7d20\u6362\u6210\u94fe\u8868\u8282\u70b9 n = [n1, n2, n3, n4, n5] \uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u8fd9 5 \u4e2a\u8282\u70b9\u5bf9\u8c61\u4e5f\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\u3002\u7136\u800c\uff0c\u7ed9\u5b9a\u4e00\u4e2a\u5217\u8868\u7d22\u5f15\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u8282\u70b9\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u8bbf\u95ee\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5b58\u50a8\u7684\u662f\u8282\u70b9\u7684\u5f15\u7528\uff0c\u800c\u975e\u8282\u70b9\u672c\u8eab\u3002
\u4e0e\u8bb8\u591a\u8bed\u8a00\u4e0d\u540c\uff0cPython \u4e2d\u7684\u6570\u5b57\u4e5f\u88ab\u5305\u88c5\u4e3a\u5bf9\u8c61\uff0c\u5217\u8868\u4e2d\u5b58\u50a8\u7684\u4e0d\u662f\u6570\u5b57\u672c\u8eab\uff0c\u800c\u662f\u5bf9\u6570\u5b57\u7684\u5f15\u7528\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u4f1a\u53d1\u73b0\u4e24\u4e2a\u6570\u7ec4\u4e2d\u7684\u76f8\u540c\u6570\u5b57\u62e5\u6709\u540c\u4e00\u4e2a id \uff0c\u5e76\u4e14\u8fd9\u4e9b\u6570\u5b57\u7684\u5185\u5b58\u5730\u5740\u65e0\u987b\u8fde\u7eed\u3002
C++ STL \u91cc\u9762\u7684 std::list \u5df2\u7ecf\u5b9e\u73b0\u4e86\u53cc\u5411\u94fe\u8868\uff0c\u4f46\u597d\u50cf\u4e00\u4e9b\u7b97\u6cd5\u4e66\u4e0a\u4e0d\u600e\u4e48\u76f4\u63a5\u4f7f\u7528\u5b83\uff0c\u662f\u4e0d\u662f\u56e0\u4e3a\u6709\u4ec0\u4e48\u5c40\u9650\u6027\u5462\uff1f
\u4e00\u65b9\u9762\uff0c\u6211\u4eec\u5f80\u5f80\u66f4\u9752\u7750\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u7b97\u6cd5\uff0c\u800c\u53ea\u5728\u5fc5\u8981\u65f6\u624d\u4f7f\u7528\u94fe\u8868\uff0c\u4e3b\u8981\u6709\u4e24\u4e2a\u539f\u56e0\u3002
- \u7a7a\u95f4\u5f00\u9500\uff1a\u7531\u4e8e\u6bcf\u4e2a\u5143\u7d20\u9700\u8981\u4e24\u4e2a\u989d\u5916\u7684\u6307\u9488\uff08\u4e00\u4e2a\u7528\u4e8e\u524d\u4e00\u4e2a\u5143\u7d20\uff0c\u4e00\u4e2a\u7528\u4e8e\u540e\u4e00\u4e2a\u5143\u7d20\uff09\uff0c\u6240\u4ee5
std::list \u901a\u5e38\u6bd4 std::vector \u66f4\u5360\u7528\u7a7a\u95f4\u3002 - \u7f13\u5b58\u4e0d\u53cb\u597d\uff1a\u7531\u4e8e\u6570\u636e\u4e0d\u662f\u8fde\u7eed\u5b58\u653e\u7684\uff0c\u56e0\u6b64
std::list \u5bf9\u7f13\u5b58\u7684\u5229\u7528\u7387\u8f83\u4f4e\u3002\u4e00\u822c\u60c5\u51b5\u4e0b\uff0cstd::vector \u7684\u6027\u80fd\u4f1a\u66f4\u597d\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5fc5\u8981\u4f7f\u7528\u94fe\u8868\u7684\u60c5\u51b5\u4e3b\u8981\u662f\u4e8c\u53c9\u6811\u548c\u56fe\u3002\u6808\u548c\u961f\u5217\u5f80\u5f80\u4f1a\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684 stack \u548c queue \uff0c\u800c\u975e\u94fe\u8868\u3002
\u521d\u59cb\u5316\u5217\u8868 res = [0] * self.size() \u64cd\u4f5c\uff0c\u4f1a\u5bfc\u81f4 res \u7684\u6bcf\u4e2a\u5143\u7d20\u5f15\u7528\u76f8\u540c\u7684\u5730\u5740\u5417\uff1f
\u4e0d\u4f1a\u3002\u4f46\u4e8c\u7ef4\u6570\u7ec4\u4f1a\u6709\u8fd9\u4e2a\u95ee\u9898\uff0c\u4f8b\u5982\u521d\u59cb\u5316\u4e8c\u7ef4\u5217\u8868 res = [[0] * self.size()] \uff0c\u5219\u591a\u6b21\u5f15\u7528\u4e86\u540c\u4e00\u4e2a\u5217\u8868 [0] \u3002
\u5728\u5220\u9664\u8282\u70b9\u4e2d\uff0c\u9700\u8981\u65ad\u5f00\u8be5\u8282\u70b9\u4e0e\u5176\u540e\u7ee7\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\u6307\u5411\u5417\uff1f
\u4ece\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\uff08\u505a\u9898\uff09\u7684\u89d2\u5ea6\u770b\uff0c\u4e0d\u65ad\u5f00\u6ca1\u6709\u5173\u7cfb\uff0c\u53ea\u8981\u4fdd\u8bc1\u7a0b\u5e8f\u7684\u903b\u8f91\u662f\u6b63\u786e\u7684\u5c31\u884c\u3002\u4ece\u6807\u51c6\u5e93\u7684\u89d2\u5ea6\u770b\uff0c\u65ad\u5f00\u66f4\u52a0\u5b89\u5168\u3001\u903b\u8f91\u66f4\u52a0\u6e05\u6670\u3002\u5982\u679c\u4e0d\u65ad\u5f00\uff0c\u5047\u8bbe\u88ab\u5220\u9664\u8282\u70b9\u672a\u88ab\u6b63\u5e38\u56de\u6536\uff0c\u90a3\u4e48\u5b83\u4f1a\u5f71\u54cd\u540e\u7ee7\u8282\u70b9\u7684\u5185\u5b58\u56de\u6536\u3002
"},{"location":"chapter_backtracking/","title":"\u7b2c 13 \u7ae0 \u00a0 \u56de\u6eaf","text":"Abstract
\u6211\u4eec\u5982\u540c\u8ff7\u5bab\u4e2d\u7684\u63a2\u7d22\u8005\uff0c\u5728\u524d\u8fdb\u7684\u9053\u8def\u4e0a\u53ef\u80fd\u4f1a\u9047\u5230\u56f0\u96be\u3002
\u56de\u6eaf\u7684\u529b\u91cf\u8ba9\u6211\u4eec\u80fd\u591f\u91cd\u65b0\u5f00\u59cb\uff0c\u4e0d\u65ad\u5c1d\u8bd5\uff0c\u6700\u7ec8\u627e\u5230\u901a\u5f80\u5149\u660e\u7684\u51fa\u53e3\u3002
"},{"location":"chapter_backtracking/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5
- 13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898
- 13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898
- 13.4 \u00a0 N \u7687\u540e\u95ee\u9898
- 13.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_backtracking/backtracking_algorithm/","title":"13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5","text":"\u300c\u56de\u6eaf\u7b97\u6cd5 backtracking algorithm\u300d\u662f\u4e00\u79cd\u901a\u8fc7\u7a77\u4e3e\u6765\u89e3\u51b3\u95ee\u9898\u7684\u65b9\u6cd5\uff0c\u5b83\u7684\u6838\u5fc3\u601d\u60f3\u662f\u4ece\u4e00\u4e2a\u521d\u59cb\u72b6\u6001\u51fa\u53d1\uff0c\u66b4\u529b\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u5f53\u9047\u5230\u6b63\u786e\u7684\u89e3\u5219\u5c06\u5176\u8bb0\u5f55\uff0c\u76f4\u5230\u627e\u5230\u89e3\u6216\u8005\u5c1d\u8bd5\u4e86\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u90fd\u65e0\u6cd5\u627e\u5230\u89e3\u4e3a\u6b62\u3002
\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u201c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u6765\u904d\u5386\u89e3\u7a7a\u95f4\u3002\u5728\u201c\u4e8c\u53c9\u6811\u201d\u7ae0\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5229\u7528\u524d\u5e8f\u904d\u5386\u6784\u9020\u4e00\u4e2a\u56de\u6eaf\u95ee\u9898\uff0c\u9010\u6b65\u4e86\u89e3\u56de\u6eaf\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002
\u4f8b\u9898\u4e00
\u7ed9\u5b9a\u4e00\u68f5\u4e8c\u53c9\u6811\uff0c\u641c\u7d22\u5e76\u8bb0\u5f55\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u8282\u70b9\u5217\u8868\u3002
\u5bf9\u4e8e\u6b64\u9898\uff0c\u6211\u4eec\u524d\u5e8f\u904d\u5386\u8fd9\u68f5\u6811\uff0c\u5e76\u5224\u65ad\u5f53\u524d\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \uff0c\u82e5\u662f\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u7684\u503c\u52a0\u5165\u7ed3\u679c\u5217\u8868 res \u4e4b\u4e2d\u3002\u76f8\u5173\u8fc7\u7a0b\u5b9e\u73b0\u5982\u56fe 13-1 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_i_compact.pydef pre_order(root: TreeNode):\n \"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00\"\"\"\n if root is None:\n return\n if root.val == 7:\n # \u8bb0\u5f55\u89e3\n res.append(root)\n pre_order(root.left)\n pre_order(root.right)\n
preorder_traversal_i_compact.cpp/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode *root) {\n if (root == nullptr) {\n return;\n }\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res.push_back(root);\n }\n preOrder(root->left);\n preOrder(root->right);\n}\n
preorder_traversal_i_compact.java/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode root) {\n if (root == null) {\n return;\n }\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(root);\n }\n preOrder(root.left);\n preOrder(root.right);\n}\n
preorder_traversal_i_compact.cs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid PreOrder(TreeNode? root) {\n if (root == null) {\n return;\n }\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.Add(root);\n }\n PreOrder(root.left);\n PreOrder(root.right);\n}\n
preorder_traversal_i_compact.go/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrderI(root *TreeNode, res *[]*TreeNode) {\n if root == nil {\n return\n }\n if (root.Val).(int) == 7 {\n // \u8bb0\u5f55\u89e3\n *res = append(*res, root)\n }\n preOrderI(root.Left, res)\n preOrderI(root.Right, res)\n}\n
preorder_traversal_i_compact.swift/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n if root.val == 7 {\n // \u8bb0\u5f55\u89e3\n res.append(root)\n }\n preOrder(root: root.left)\n preOrder(root: root.right)\n}\n
preorder_traversal_i_compact.js/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root, res) {\n if (root === null) {\n return;\n }\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push(root);\n }\n preOrder(root.left, res);\n preOrder(root.right, res);\n}\n
preorder_traversal_i_compact.ts/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root: TreeNode | null, res: TreeNode[]): void {\n if (root === null) {\n return;\n }\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push(root);\n }\n preOrder(root.left, res);\n preOrder(root.right, res);\n}\n
preorder_traversal_i_compact.dart/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode? root, List<TreeNode> res) {\n if (root == null) {\n return;\n }\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(root);\n }\n preOrder(root.left, res);\n preOrder(root.right, res);\n}\n
preorder_traversal_i_compact.rs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfn pre_order(res: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n if root.is_none() {\n return;\n }\n if let Some(node) = root {\n if node.borrow().val == 7 {\n // \u8bb0\u5f55\u89e3\n res.push(node.clone());\n }\n pre_order(res, node.borrow().left.clone());\n pre_order(res, node.borrow().right.clone());\n }\n}\n
preorder_traversal_i_compact.c/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode *root) {\n if (root == NULL) {\n return;\n }\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res[resSize++] = root;\n }\n preOrder(root->left);\n preOrder(root->right);\n}\n
preorder_traversal_i_compact.zig[class]{}-[func]{preOrder}\n
\u56fe 13-1 \u00a0 \u5728\u524d\u5e8f\u904d\u5386\u4e2d\u641c\u7d22\u8282\u70b9
"},{"location":"chapter_backtracking/backtracking_algorithm/#1311","title":"13.1.1 \u00a0 \u5c1d\u8bd5\u4e0e\u56de\u9000","text":"\u4e4b\u6240\u4ee5\u79f0\u4e4b\u4e3a\u56de\u6eaf\u7b97\u6cd5\uff0c\u662f\u56e0\u4e3a\u8be5\u7b97\u6cd5\u5728\u641c\u7d22\u89e3\u7a7a\u95f4\u65f6\u4f1a\u91c7\u7528\u201c\u5c1d\u8bd5\u201d\u4e0e\u201c\u56de\u9000\u201d\u7684\u7b56\u7565\u3002\u5f53\u7b97\u6cd5\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u9047\u5230\u67d0\u4e2a\u72b6\u6001\u65e0\u6cd5\u7ee7\u7eed\u524d\u8fdb\u6216\u65e0\u6cd5\u5f97\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u65f6\uff0c\u5b83\u4f1a\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u5c1d\u8bd5\u5176\u4ed6\u53ef\u80fd\u7684\u9009\u62e9\u3002
\u5bf9\u4e8e\u4f8b\u9898\u4e00\uff0c\u8bbf\u95ee\u6bcf\u4e2a\u8282\u70b9\u90fd\u4ee3\u8868\u4e00\u6b21\u201c\u5c1d\u8bd5\u201d\uff0c\u800c\u8d8a\u8fc7\u53f6\u8282\u70b9\u6216\u8fd4\u56de\u7236\u8282\u70b9\u7684 return \u5219\u8868\u793a\u201c\u56de\u9000\u201d\u3002
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u56de\u9000\u5e76\u4e0d\u4ec5\u4ec5\u5305\u62ec\u51fd\u6570\u8fd4\u56de\u3002\u4e3a\u89e3\u91ca\u8fd9\u4e00\u70b9\uff0c\u6211\u4eec\u5bf9\u4f8b\u9898\u4e00\u7a0d\u4f5c\u62d3\u5c55\u3002
\u4f8b\u9898\u4e8c
\u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\u3002
\u5728\u4f8b\u9898\u4e00\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u5217\u8868 path \u8bb0\u5f55\u8bbf\u95ee\u8fc7\u7684\u8282\u70b9\u8def\u5f84\u3002\u5f53\u8bbf\u95ee\u5230\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u590d\u5236 path \u5e76\u6dfb\u52a0\u8fdb\u7ed3\u679c\u5217\u8868 res \u3002\u904d\u5386\u5b8c\u6210\u540e\uff0cres \u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6240\u6709\u7684\u89e3\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_ii_compact.pydef pre_order(root: TreeNode):\n \"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c\"\"\"\n if root is None:\n return\n # \u5c1d\u8bd5\n path.append(root)\n if root.val == 7:\n # \u8bb0\u5f55\u89e3\n res.append(list(path))\n pre_order(root.left)\n pre_order(root.right)\n # \u56de\u9000\n path.pop()\n
preorder_traversal_ii_compact.cpp/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root) {\n if (root == nullptr) {\n return;\n }\n // \u5c1d\u8bd5\n path.push_back(root);\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res.push_back(path);\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n path.pop_back();\n}\n
preorder_traversal_ii_compact.java/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode root) {\n if (root == null) {\n return;\n }\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(new ArrayList<>(path));\n }\n preOrder(root.left);\n preOrder(root.right);\n // \u56de\u9000\n path.remove(path.size() - 1);\n}\n
preorder_traversal_ii_compact.cs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid PreOrder(TreeNode? root) {\n if (root == null) {\n return;\n }\n // \u5c1d\u8bd5\n path.Add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.Add(new List<TreeNode>(path));\n }\n PreOrder(root.left);\n PreOrder(root.right);\n // \u56de\u9000\n path.RemoveAt(path.Count - 1);\n}\n
preorder_traversal_ii_compact.go/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrderII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\n if root == nil {\n return\n }\n // \u5c1d\u8bd5\n *path = append(*path, root)\n if root.Val.(int) == 7 {\n // \u8bb0\u5f55\u89e3\n *res = append(*res, append([]*TreeNode{}, *path...))\n }\n preOrderII(root.Left, res, path)\n preOrderII(root.Right, res, path)\n // \u56de\u9000\n *path = (*path)[:len(*path)-1]\n}\n
preorder_traversal_ii_compact.swift/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u5c1d\u8bd5\n path.append(root)\n if root.val == 7 {\n // \u8bb0\u5f55\u89e3\n res.append(path)\n }\n preOrder(root: root.left)\n preOrder(root: root.right)\n // \u56de\u9000\n path.removeLast()\n}\n
preorder_traversal_ii_compact.js/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(root, path, res) {\n if (root === null) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_ii_compact.ts/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(\n root: TreeNode | null,\n path: TreeNode[],\n res: TreeNode[][]\n): void {\n if (root === null) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_ii_compact.dart/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(\n TreeNode? root,\n List<TreeNode> path,\n List<List<TreeNode>> res,\n) {\n if (root == null) {\n return;\n }\n\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(List.from(path));\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.removeLast();\n}\n
preorder_traversal_ii_compact.rs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n if root.is_none() {\n return;\n }\n if let Some(node) = root {\n // \u5c1d\u8bd5\n path.push(node.clone());\n if node.borrow().val == 7 {\n // \u8bb0\u5f55\u89e3\n res.push(path.clone());\n }\n pre_order(res, path, node.borrow().left.clone());\n pre_order(res, path, node.borrow().right.clone());\n // \u56de\u9000\n path.remove(path.len() - 1);\n }\n}\n
preorder_traversal_ii_compact.c/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root) {\n if (root == NULL) {\n return;\n }\n // \u5c1d\u8bd5\n path[pathSize++] = root;\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n for (int i = 0; i < pathSize; ++i) {\n res[resSize][i] = path[i];\n }\n resSize++;\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n pathSize--;\n}\n
preorder_traversal_ii_compact.zig[class]{}-[func]{preOrder}\n
\u5728\u6bcf\u6b21\u201c\u5c1d\u8bd5\u201d\u4e2d\uff0c\u6211\u4eec\u901a\u8fc7\u5c06\u5f53\u524d\u8282\u70b9\u6dfb\u52a0\u8fdb path \u6765\u8bb0\u5f55\u8def\u5f84\uff1b\u800c\u5728\u201c\u56de\u9000\u201d\u524d\uff0c\u6211\u4eec\u9700\u8981\u5c06\u8be5\u8282\u70b9\u4ece path \u4e2d\u5f39\u51fa\uff0c\u4ee5\u6062\u590d\u672c\u6b21\u5c1d\u8bd5\u4e4b\u524d\u7684\u72b6\u6001\u3002
\u89c2\u5bdf\u56fe 13-2 \u6240\u793a\u7684\u8fc7\u7a0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5c1d\u8bd5\u548c\u56de\u9000\u7406\u89e3\u4e3a\u201c\u524d\u8fdb\u201d\u4e0e\u201c\u64a4\u9500\u201d\uff0c\u4e24\u4e2a\u64cd\u4f5c\u4e92\u4e3a\u9006\u5411\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 13-2 \u00a0 \u5c1d\u8bd5\u4e0e\u56de\u9000
"},{"location":"chapter_backtracking/backtracking_algorithm/#1312","title":"13.1.2 \u00a0 \u526a\u679d","text":"\u590d\u6742\u7684\u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u4e00\u4e2a\u6216\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u7ea6\u675f\u6761\u4ef6\u901a\u5e38\u53ef\u7528\u4e8e\u201c\u526a\u679d\u201d\u3002
\u4f8b\u9898\u4e09
\u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\uff0c\u5e76\u8981\u6c42\u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u3002
\u4e3a\u4e86\u6ee1\u8db3\u4ee5\u4e0a\u7ea6\u675f\u6761\u4ef6\uff0c\u6211\u4eec\u9700\u8981\u6dfb\u52a0\u526a\u679d\u64cd\u4f5c\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u82e5\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\uff0c\u5219\u63d0\u524d\u8fd4\u56de\uff0c\u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_iii_compact.pydef pre_order(root: TreeNode):\n \"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09\"\"\"\n # \u526a\u679d\n if root is None or root.val == 3:\n return\n # \u5c1d\u8bd5\n path.append(root)\n if root.val == 7:\n # \u8bb0\u5f55\u89e3\n res.append(list(path))\n pre_order(root.left)\n pre_order(root.right)\n # \u56de\u9000\n path.pop()\n
preorder_traversal_iii_compact.cpp/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root) {\n // \u526a\u679d\n if (root == nullptr || root->val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.push_back(root);\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n res.push_back(path);\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n path.pop_back();\n}\n
preorder_traversal_iii_compact.java/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode root) {\n // \u526a\u679d\n if (root == null || root.val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(new ArrayList<>(path));\n }\n preOrder(root.left);\n preOrder(root.right);\n // \u56de\u9000\n path.remove(path.size() - 1);\n}\n
preorder_traversal_iii_compact.cs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid PreOrder(TreeNode? root) {\n // \u526a\u679d\n if (root == null || root.val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.Add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.Add(new List<TreeNode>(path));\n }\n PreOrder(root.left);\n PreOrder(root.right);\n // \u56de\u9000\n path.RemoveAt(path.Count - 1);\n}\n
preorder_traversal_iii_compact.go/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrderIII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\n // \u526a\u679d\n if root == nil || root.Val == 3 {\n return\n }\n // \u5c1d\u8bd5\n *path = append(*path, root)\n if root.Val.(int) == 7 {\n // \u8bb0\u5f55\u89e3\n *res = append(*res, *path)\n }\n preOrderIII(root.Left, res, path)\n preOrderIII(root.Right, res, path)\n // \u56de\u9000\n *path = (*path)[:len(*path)-1]\n}\n
preorder_traversal_iii_compact.swift/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrder(root: TreeNode?) {\n // \u526a\u679d\n guard let root = root, root.val != 3 else {\n return\n }\n // \u5c1d\u8bd5\n path.append(root)\n if root.val == 7 {\n // \u8bb0\u5f55\u89e3\n res.append(path)\n }\n preOrder(root: root.left)\n preOrder(root: root.right)\n // \u56de\u9000\n path.removeLast()\n}\n
preorder_traversal_iii_compact.js/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(root, path, res) {\n // \u526a\u679d\n if (root === null || root.val === 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_iii_compact.ts/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(\n root: TreeNode | null,\n path: TreeNode[],\n res: TreeNode[][]\n): void {\n // \u526a\u679d\n if (root === null || root.val === 3) {\n return;\n }\n // \u5c1d\u8bd5\n path.push(root);\n if (root.val === 7) {\n // \u8bb0\u5f55\u89e3\n res.push([...path]);\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.pop();\n}\n
preorder_traversal_iii_compact.dart/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(\n TreeNode? root,\n List<TreeNode> path,\n List<List<TreeNode>> res,\n) {\n if (root == null || root.val == 3) {\n return;\n }\n\n // \u5c1d\u8bd5\n path.add(root);\n if (root.val == 7) {\n // \u8bb0\u5f55\u89e3\n res.add(List.from(path));\n }\n preOrder(root.left, path, res);\n preOrder(root.right, path, res);\n // \u56de\u9000\n path.removeLast();\n}\n
preorder_traversal_iii_compact.rs/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n // \u526a\u679d\n if root.is_none() || root.as_ref().unwrap().borrow().val == 3 {\n return;\n }\n if let Some(node) = root {\n // \u5c1d\u8bd5\n path.push(node.clone());\n if node.borrow().val == 7 {\n // \u8bb0\u5f55\u89e3\n res.push(path.clone());\n }\n pre_order(res, path, node.borrow().left.clone());\n pre_order(res, path, node.borrow().right.clone());\n // \u56de\u9000\n path.remove(path.len() - 1);\n }\n}\n
preorder_traversal_iii_compact.c/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root) {\n // \u526a\u679d\n if (root == NULL || root->val == 3) {\n return;\n }\n // \u5c1d\u8bd5\n path[pathSize++] = root;\n if (root->val == 7) {\n // \u8bb0\u5f55\u89e3\n for (int i = 0; i < pathSize; i++) {\n res[resSize][i] = path[i];\n }\n resSize++;\n }\n preOrder(root->left);\n preOrder(root->right);\n // \u56de\u9000\n pathSize--;\n}\n
preorder_traversal_iii_compact.zig[class]{}-[func]{preOrder}\n
\u201c\u526a\u679d\u201d\u662f\u4e00\u4e2a\u975e\u5e38\u5f62\u8c61\u7684\u540d\u8bcd\u3002\u5982\u56fe 13-3 \u6240\u793a\uff0c\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u201c\u526a\u6389\u201d\u4e86\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u641c\u7d22\u5206\u652f\uff0c\u907f\u514d\u8bb8\u591a\u65e0\u610f\u4e49\u7684\u5c1d\u8bd5\uff0c\u4ece\u800c\u63d0\u9ad8\u4e86\u641c\u7d22\u6548\u7387\u3002
\u56fe 13-3 \u00a0 \u6839\u636e\u7ea6\u675f\u6761\u4ef6\u526a\u679d
"},{"location":"chapter_backtracking/backtracking_algorithm/#1313","title":"13.1.3 \u00a0 \u6846\u67b6\u4ee3\u7801","text":"\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c1d\u8bd5\u5c06\u56de\u6eaf\u7684\u201c\u5c1d\u8bd5\u3001\u56de\u9000\u3001\u526a\u679d\u201d\u7684\u4e3b\u4f53\u6846\u67b6\u63d0\u70bc\u51fa\u6765\uff0c\u63d0\u5347\u4ee3\u7801\u7684\u901a\u7528\u6027\u3002
\u5728\u4ee5\u4e0b\u6846\u67b6\u4ee3\u7801\u4e2d\uff0cstate \u8868\u793a\u95ee\u9898\u7684\u5f53\u524d\u72b6\u6001\uff0cchoices \u8868\u793a\u5f53\u524d\u72b6\u6001\u4e0b\u53ef\u4ee5\u505a\u51fa\u7684\u9009\u62e9\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def backtrack(state: State, choices: list[choice], res: list[state]):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\"\"\"\n # \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if is_solution(state):\n # \u8bb0\u5f55\u89e3\n record_solution(state, res)\n # \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices:\n # \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice):\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice)\n backtrack(state, choices, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice)\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, vector<Choice *> &choices, vector<State *> &res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Choice choice : choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice> choices, List<State> res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Choice choice : choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid Backtrack(State state, List<Choice> choices, List<State> res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (IsSolution(state)) {\n // \u8bb0\u5f55\u89e3\n RecordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n foreach (Choice choice in choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (IsValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n MakeChoice(state, choice);\n Backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n UndoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state *State, choices []Choice, res *[]State) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if isSolution(state) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res)\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for _, choice := range choices {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state, choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice)\n backtrack(state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice)\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state: inout State, choices: [Choice], res: inout [State]) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if isSolution(state: state) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state: state, res: &res)\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state: state, choice: choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state: &state, choice: choice)\n backtrack(state: &state, choices: choices, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state: &state, choice: choice)\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state, choices, res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let choice of choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state: State, choices: Choice[], res: State[]): void {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let choice of choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice>, List<State> res) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Choice choice in choices) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfn backtrack(state: &mut State, choices: &Vec<Choice>, res: &mut Vec<State>) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if is_solution(state) {\n // \u8bb0\u5f55\u89e3\n record_solution(state, res);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice);\n backtrack(state, choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice);\n }\n }\n}\n
/* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, Choice *choices, int numChoices, State *res, int numRes) {\n // \u5224\u65ad\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res, numRes);\n // \u4e0d\u518d\u7ee7\u7eed\u641c\u7d22\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < numChoices; i++) {\n // \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, &choices[i])) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, &choices[i]);\n backtrack(state, choices, numChoices, res, numRes);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, &choices[i]);\n }\n }\n}\n
\n
\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u57fa\u4e8e\u6846\u67b6\u4ee3\u7801\u6765\u89e3\u51b3\u4f8b\u9898\u4e09\u3002\u72b6\u6001 state \u4e3a\u8282\u70b9\u904d\u5386\u8def\u5f84\uff0c\u9009\u62e9 choices \u4e3a\u5f53\u524d\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\uff0c\u7ed3\u679c res \u662f\u8def\u5f84\u5217\u8868\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig preorder_traversal_iii_template.pydef is_solution(state: list[TreeNode]) -> bool:\n \"\"\"\u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3\"\"\"\n return state and state[-1].val == 7\n\ndef record_solution(state: list[TreeNode], res: list[list[TreeNode]]):\n \"\"\"\u8bb0\u5f55\u89e3\"\"\"\n res.append(list(state))\n\ndef is_valid(state: list[TreeNode], choice: TreeNode) -> bool:\n \"\"\"\u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5\"\"\"\n return choice is not None and choice.val != 3\n\ndef make_choice(state: list[TreeNode], choice: TreeNode):\n \"\"\"\u66f4\u65b0\u72b6\u6001\"\"\"\n state.append(choice)\n\ndef undo_choice(state: list[TreeNode], choice: TreeNode):\n \"\"\"\u6062\u590d\u72b6\u6001\"\"\"\n state.pop()\n\ndef backtrack(\n state: list[TreeNode], choices: list[TreeNode], res: list[list[TreeNode]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09\"\"\"\n # \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if is_solution(state):\n # \u8bb0\u5f55\u89e3\n record_solution(state, res)\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices:\n # \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice):\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice)\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice.left, choice.right], res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice)\n
preorder_traversal_iii_template.cpp/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(vector<TreeNode *> &state) {\n return !state.empty() && state.back()->val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(vector<TreeNode *> &state, vector<vector<TreeNode *>> &res) {\n res.push_back(state);\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(vector<TreeNode *> &state, TreeNode *choice) {\n return choice != nullptr && choice->val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(vector<TreeNode *> &state, TreeNode *choice) {\n state.push_back(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(vector<TreeNode *> &state, TreeNode *choice) {\n state.pop_back();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(vector<TreeNode *> &state, vector<TreeNode *> &choices, vector<vector<TreeNode *>> &res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (TreeNode *choice : choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n vector<TreeNode *> nextChoices{choice->left, choice->right};\n backtrack(state, nextChoices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.java/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nboolean isSolution(List<TreeNode> state) {\n return !state.isEmpty() && state.get(state.size() - 1).val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\n res.add(new ArrayList<>(state));\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nboolean isValid(List<TreeNode> state, TreeNode choice) {\n return choice != null && choice.val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode choice) {\n state.add(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode choice) {\n state.remove(state.size() - 1);\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (TreeNode choice : choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, Arrays.asList(choice.left, choice.right), res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.cs/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool IsSolution(List<TreeNode> state) {\n return state.Count != 0 && state[^1].val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid RecordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\n res.Add(new List<TreeNode>(state));\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool IsValid(List<TreeNode> state, TreeNode choice) {\n return choice != null && choice.val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid MakeChoice(List<TreeNode> state, TreeNode choice) {\n state.Add(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid UndoChoice(List<TreeNode> state, TreeNode choice) {\n state.RemoveAt(state.Count - 1);\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid Backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (IsSolution(state)) {\n // \u8bb0\u5f55\u89e3\n RecordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n foreach (TreeNode choice in choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (IsValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n MakeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, [choice.left!, choice.right!], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n UndoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.go/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state *[]*TreeNode) bool {\n return len(*state) != 0 && (*state)[len(*state)-1].Val == 7\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state *[]*TreeNode, res *[][]*TreeNode) {\n *res = append(*res, *state)\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state *[]*TreeNode, choice *TreeNode) bool {\n return choice != nil && choice.Val != 3\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state *[]*TreeNode, choice *TreeNode) {\n *state = append(*state, choice)\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state *[]*TreeNode, choice *TreeNode) {\n *state = (*state)[:len(*state)-1]\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrackIII(state *[]*TreeNode, choices *[]*TreeNode, res *[][]*TreeNode) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if isSolution(state) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for _, choice := range *choices {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state, choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n temp := make([]*TreeNode, 0)\n temp = append(temp, choice.Left, choice.Right)\n backtrackIII(state, &temp, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice)\n }\n }\n}\n
preorder_traversal_iii_template.swift/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state: [TreeNode]) -> Bool {\n !state.isEmpty && state.last!.val == 7\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state: [TreeNode], res: inout [[TreeNode]]) {\n res.append(state)\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state: [TreeNode], choice: TreeNode?) -> Bool {\n choice != nil && choice!.val != 3\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state: inout [TreeNode], choice: TreeNode) {\n state.append(choice)\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state: inout [TreeNode], choice: TreeNode) {\n state.removeLast()\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrack(state: inout [TreeNode], choices: [TreeNode], res: inout [[TreeNode]]) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if isSolution(state: state) {\n recordSolution(state: state, res: &res)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if isValid(state: state, choice: choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state: &state, choice: choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, choices: [choice.left, choice.right].compactMap { $0 }, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state: &state, choice: choice)\n }\n }\n}\n
preorder_traversal_iii_template.js/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state) {\n return state && state[state.length - 1]?.val === 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state, res) {\n res.push([...state]);\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state, choice) {\n return choice !== null && choice.val !== 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state, choice) {\n state.push(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state) {\n state.pop();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(state, choices, res) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice.left, choice.right], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state);\n }\n }\n}\n
preorder_traversal_iii_template.ts/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state: TreeNode[]): boolean {\n return state && state[state.length - 1]?.val === 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state: TreeNode[], res: TreeNode[][]): void {\n res.push([...state]);\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state: TreeNode[], choice: TreeNode): boolean {\n return choice !== null && choice.val !== 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state: TreeNode[], choice: TreeNode): void {\n state.push(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state: TreeNode[]): void {\n state.pop();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(\n state: TreeNode[],\n choices: TreeNode[],\n res: TreeNode[][]\n): void {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice.left, choice.right], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state);\n }\n }\n}\n
preorder_traversal_iii_template.dart/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(List<TreeNode> state) {\n return state.isNotEmpty && state.last.val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\n res.add(List.from(state));\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(List<TreeNode> state, TreeNode? choice) {\n return choice != null && choice.val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode? choice) {\n state.add(choice!);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode? choice) {\n state.removeLast();\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(\n List<TreeNode> state,\n List<TreeNode?> choices,\n List<List<TreeNode>> res,\n) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution(state)) {\n // \u8bb0\u5f55\u89e3\n recordSolution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (TreeNode? choice in choices) {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(state, choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(state, choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, [choice!.left, choice.right], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice(state, choice);\n }\n }\n}\n
preorder_traversal_iii_template.rs/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfn is_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>) -> bool {\n return !state.is_empty() && state.get(state.len() - 1).unwrap().borrow().val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nfn record_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\n res.push(state.clone());\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfn is_valid(_: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) -> bool {\n return choice.borrow().val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nfn make_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) {\n state.push(choice);\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nfn undo_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, _: Rc<RefCell<TreeNode>>) {\n state.remove(state.len() - 1);\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfn backtrack(state: &mut Vec<Rc<RefCell<TreeNode>>>, choices: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if is_solution(state) {\n // \u8bb0\u5f55\u89e3\n record_solution(state, res);\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if is_valid(state, choice.clone()) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n make_choice(state, choice.clone());\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, &mut vec![choice.borrow().left.clone().unwrap(), choice.borrow().right.clone().unwrap()], res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undo_choice(state, choice.clone());\n }\n }\n}\n
preorder_traversal_iii_template.c/* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(void) {\n return pathSize > 0 && path[pathSize - 1]->val == 7;\n}\n\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(void) {\n for (int i = 0; i < pathSize; i++) {\n res[resSize][i] = path[i];\n }\n resSize++;\n}\n\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(TreeNode *choice) {\n return choice != NULL && choice->val != 3;\n}\n\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(TreeNode *choice) {\n path[pathSize++] = choice;\n}\n\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(void) {\n pathSize--;\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(TreeNode *choices[2]) {\n // \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\n if (isSolution()) {\n // \u8bb0\u5f55\u89e3\n recordSolution();\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < 2; i++) {\n TreeNode *choice = choices[i];\n // \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\n if (isValid(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n makeChoice(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n TreeNode *nextChoices[2] = {choice->left, choice->right};\n backtrack(nextChoices);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n undoChoice();\n }\n }\n}\n
preorder_traversal_iii_template.zig[class]{}-[func]{isSolution}\n\n[class]{}-[func]{recordSolution}\n\n[class]{}-[func]{isValid}\n\n[class]{}-[func]{makeChoice}\n\n[class]{}-[func]{undoChoice}\n\n[class]{}-[func]{backtrack}\n
\u6839\u636e\u9898\u610f\uff0c\u6211\u4eec\u5728\u627e\u5230\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\u540e\u5e94\u8be5\u7ee7\u7eed\u641c\u7d22\uff0c\u56e0\u6b64\u9700\u8981\u5c06\u8bb0\u5f55\u89e3\u4e4b\u540e\u7684 return \u8bed\u53e5\u5220\u9664\u3002\u56fe 13-4 \u5bf9\u6bd4\u4e86\u4fdd\u7559\u6216\u5220\u9664 return \u8bed\u53e5\u7684\u641c\u7d22\u8fc7\u7a0b\u3002
\u56fe 13-4 \u00a0 \u4fdd\u7559\u4e0e\u5220\u9664 return \u7684\u641c\u7d22\u8fc7\u7a0b\u5bf9\u6bd4
\u76f8\u6bd4\u57fa\u4e8e\u524d\u5e8f\u904d\u5386\u7684\u4ee3\u7801\u5b9e\u73b0\uff0c\u57fa\u4e8e\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\u7684\u4ee3\u7801\u5b9e\u73b0\u867d\u7136\u663e\u5f97\u5570\u5506\uff0c\u4f46\u901a\u7528\u6027\u66f4\u597d\u3002\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u56de\u6eaf\u95ee\u9898\u53ef\u4ee5\u5728\u8be5\u6846\u67b6\u4e0b\u89e3\u51b3\u3002\u6211\u4eec\u53ea\u9700\u6839\u636e\u5177\u4f53\u95ee\u9898\u6765\u5b9a\u4e49 state \u548c choices \uff0c\u5e76\u5b9e\u73b0\u6846\u67b6\u4e2d\u7684\u5404\u4e2a\u65b9\u6cd5\u5373\u53ef\u3002
"},{"location":"chapter_backtracking/backtracking_algorithm/#1314","title":"13.1.4 \u00a0 \u5e38\u7528\u672f\u8bed","text":"\u4e3a\u4e86\u66f4\u6e05\u6670\u5730\u5206\u6790\u7b97\u6cd5\u95ee\u9898\uff0c\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b\u56de\u6eaf\u7b97\u6cd5\u4e2d\u5e38\u7528\u672f\u8bed\u7684\u542b\u4e49\uff0c\u5e76\u5bf9\u7167\u4f8b\u9898\u4e09\u7ed9\u51fa\u5bf9\u5e94\u793a\u4f8b\uff0c\u5982\u8868 13-1 \u6240\u793a\u3002
\u8868 13-1 \u00a0 \u5e38\u89c1\u7684\u56de\u6eaf\u7b97\u6cd5\u672f\u8bed
\u540d\u8bcd \u5b9a\u4e49 \u4f8b\u9898\u4e09 \u89e3\uff08solution\uff09 \u89e3\u662f\u6ee1\u8db3\u95ee\u9898\u7279\u5b9a\u6761\u4ef6\u7684\u7b54\u6848\uff0c\u53ef\u80fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2a \u6839\u8282\u70b9\u5230\u8282\u70b9 \\(7\\) \u7684\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u6240\u6709\u8def\u5f84 \u7ea6\u675f\u6761\u4ef6\uff08constraint\uff09 \u7ea6\u675f\u6761\u4ef6\u662f\u95ee\u9898\u4e2d\u9650\u5236\u89e3\u7684\u53ef\u884c\u6027\u7684\u6761\u4ef6\uff0c\u901a\u5e38\u7528\u4e8e\u526a\u679d \u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u8282\u70b9 \\(3\\) \u72b6\u6001\uff08state\uff09 \u72b6\u6001\u8868\u793a\u95ee\u9898\u5728\u67d0\u4e00\u65f6\u523b\u7684\u60c5\u51b5\uff0c\u5305\u62ec\u5df2\u7ecf\u505a\u51fa\u7684\u9009\u62e9 \u5f53\u524d\u5df2\u8bbf\u95ee\u7684\u8282\u70b9\u8def\u5f84\uff0c\u5373 path \u8282\u70b9\u5217\u8868 \u5c1d\u8bd5\uff08attempt\uff09 \u5c1d\u8bd5\u662f\u6839\u636e\u53ef\u7528\u9009\u62e9\u6765\u63a2\u7d22\u89e3\u7a7a\u95f4\u7684\u8fc7\u7a0b\uff0c\u5305\u62ec\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\uff0c\u68c0\u67e5\u662f\u5426\u4e3a\u89e3 \u9012\u5f52\u8bbf\u95ee\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\uff0c\u5c06\u8282\u70b9\u6dfb\u52a0\u8fdb path \uff0c\u5224\u65ad\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \u56de\u9000\uff08backtracking\uff09 \u56de\u9000\u6307\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u72b6\u6001\u65f6\uff0c\u64a4\u9500\u524d\u9762\u505a\u51fa\u7684\u9009\u62e9\uff0c\u56de\u5230\u4e0a\u4e00\u4e2a\u72b6\u6001 \u5f53\u8d8a\u8fc7\u53f6\u8282\u70b9\u3001\u7ed3\u675f\u8282\u70b9\u8bbf\u95ee\u3001\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\u7ec8\u6b62\u641c\u7d22\uff0c\u51fd\u6570\u8fd4\u56de \u526a\u679d\uff08pruning\uff09 \u526a\u679d\u662f\u6839\u636e\u95ee\u9898\u7279\u6027\u548c\u7ea6\u675f\u6761\u4ef6\u907f\u514d\u65e0\u610f\u4e49\u7684\u641c\u7d22\u8def\u5f84\u7684\u65b9\u6cd5\uff0c\u53ef\u63d0\u9ad8\u641c\u7d22\u6548\u7387 \u5f53\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u4e0d\u518d\u7ee7\u7eed\u641c\u7d22 Tip
\u95ee\u9898\u3001\u89e3\u3001\u72b6\u6001\u7b49\u6982\u5ff5\u662f\u901a\u7528\u7684\uff0c\u5728\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u4e2d\u90fd\u6709\u6d89\u53ca\u3002
"},{"location":"chapter_backtracking/backtracking_algorithm/#1315","title":"13.1.5 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u4e0a\u662f\u4e00\u79cd\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u7b97\u6cd5\uff0c\u5b83\u5c1d\u8bd5\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\u76f4\u5230\u627e\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u3002\u8fd9\u79cd\u65b9\u6cd5\u7684\u4f18\u70b9\u5728\u4e8e\u80fd\u591f\u627e\u5230\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e14\u5728\u5408\u7406\u7684\u526a\u679d\u64cd\u4f5c\u4e0b\uff0c\u5177\u6709\u5f88\u9ad8\u7684\u6548\u7387\u3002
\u7136\u800c\uff0c\u5728\u5904\u7406\u5927\u89c4\u6a21\u6216\u8005\u590d\u6742\u95ee\u9898\u65f6\uff0c\u56de\u6eaf\u7b97\u6cd5\u7684\u8fd0\u884c\u6548\u7387\u53ef\u80fd\u96be\u4ee5\u63a5\u53d7\u3002
- \u65f6\u95f4\uff1a\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u9700\u8981\u904d\u5386\u72b6\u6001\u7a7a\u95f4\u7684\u6240\u6709\u53ef\u80fd\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u6307\u6570\u9636\u6216\u9636\u4e58\u9636\u3002
- \u7a7a\u95f4\uff1a\u5728\u9012\u5f52\u8c03\u7528\u4e2d\u9700\u8981\u4fdd\u5b58\u5f53\u524d\u7684\u72b6\u6001\uff08\u4f8b\u5982\u8def\u5f84\u3001\u7528\u4e8e\u526a\u679d\u7684\u8f85\u52a9\u53d8\u91cf\u7b49\uff09\uff0c\u5f53\u6df1\u5ea6\u5f88\u5927\u65f6\uff0c\u7a7a\u95f4\u9700\u6c42\u53ef\u80fd\u4f1a\u53d8\u5f97\u5f88\u5927\u3002
\u5373\u4fbf\u5982\u6b64\uff0c\u56de\u6eaf\u7b97\u6cd5\u4ecd\u7136\u662f\u67d0\u4e9b\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u7684\u6700\u4f73\u89e3\u51b3\u65b9\u6848\u3002\u5bf9\u4e8e\u8fd9\u4e9b\u95ee\u9898\uff0c\u7531\u4e8e\u65e0\u6cd5\u9884\u6d4b\u54ea\u4e9b\u9009\u62e9\u53ef\u751f\u6210\u6709\u6548\u7684\u89e3\uff0c\u56e0\u6b64\u6211\u4eec\u5fc5\u987b\u5bf9\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u8fdb\u884c\u904d\u5386\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u5173\u952e\u662f\u5982\u4f55\u4f18\u5316\u6548\u7387\uff0c\u5e38\u89c1\u7684\u6548\u7387\u4f18\u5316\u65b9\u6cd5\u6709\u4e24\u79cd\u3002
- \u526a\u679d\uff1a\u907f\u514d\u641c\u7d22\u90a3\u4e9b\u80af\u5b9a\u4e0d\u4f1a\u4ea7\u751f\u89e3\u7684\u8def\u5f84\uff0c\u4ece\u800c\u8282\u7701\u65f6\u95f4\u548c\u7a7a\u95f4\u3002
- \u542f\u53d1\u5f0f\u641c\u7d22\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u5f15\u5165\u4e00\u4e9b\u7b56\u7565\u6216\u8005\u4f30\u8ba1\u503c\uff0c\u4ece\u800c\u4f18\u5148\u641c\u7d22\u6700\u6709\u53ef\u80fd\u4ea7\u751f\u6709\u6548\u89e3\u7684\u8def\u5f84\u3002
"},{"location":"chapter_backtracking/backtracking_algorithm/#1316","title":"13.1.6 \u00a0 \u56de\u6eaf\u5178\u578b\u4f8b\u9898","text":"\u56de\u6eaf\u7b97\u6cd5\u53ef\u7528\u4e8e\u89e3\u51b3\u8bb8\u591a\u641c\u7d22\u95ee\u9898\u3001\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u548c\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u3002
\u641c\u7d22\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u89e3\u51b3\u65b9\u6848\u3002
- \u5168\u6392\u5217\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff0c\u6c42\u51fa\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u7ec4\u5408\u3002
- \u5b50\u96c6\u548c\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\u548c\u4e00\u4e2a\u76ee\u6807\u548c\uff0c\u627e\u5230\u96c6\u5408\u4e2d\u6240\u6709\u548c\u4e3a\u76ee\u6807\u548c\u7684\u5b50\u96c6\u3002
- \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e09\u6839\u67f1\u5b50\u548c\u4e00\u7cfb\u5217\u5927\u5c0f\u4e0d\u540c\u7684\u5706\u76d8\uff0c\u8981\u6c42\u5c06\u6240\u6709\u5706\u76d8\u4ece\u4e00\u6839\u67f1\u5b50\u79fb\u52a8\u5230\u53e6\u4e00\u6839\u67f1\u5b50\uff0c\u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\uff0c\u4e14\u4e0d\u80fd\u5c06\u5927\u5706\u76d8\u653e\u5728\u5c0f\u5706\u76d8\u4e0a\u3002
\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u6240\u6709\u7ea6\u675f\u6761\u4ef6\u7684\u89e3\u3002
- \\(n\\) \u7687\u540e\uff1a\u5728 \\(n \\times n\\) \u7684\u68cb\u76d8\u4e0a\u653e\u7f6e \\(n\\) \u4e2a\u7687\u540e\uff0c\u4f7f\u5f97\u5b83\u4eec\u4e92\u4e0d\u653b\u51fb\u3002
- \u6570\u72ec\uff1a\u5728 \\(9 \\times 9\\) \u7684\u7f51\u683c\u4e2d\u586b\u5165\u6570\u5b57 \\(1\\) ~ \\(9\\) \uff0c\u4f7f\u5f97\u6bcf\u884c\u3001\u6bcf\u5217\u548c\u6bcf\u4e2a \\(3 \\times 3\\) \u5b50\u7f51\u683c\u4e2d\u7684\u6570\u5b57\u4e0d\u91cd\u590d\u3002
- \u56fe\u7740\u8272\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u7528\u6700\u5c11\u7684\u989c\u8272\u7ed9\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u7740\u8272\uff0c\u4f7f\u5f97\u76f8\u90bb\u9876\u70b9\u989c\u8272\u4e0d\u540c\u3002
\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u4e00\u4e2a\u7ec4\u5408\u7a7a\u95f4\u4e2d\u627e\u5230\u6ee1\u8db3\u67d0\u4e9b\u6761\u4ef6\u7684\u6700\u4f18\u89e3\u3002
- 0-1 \u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u80cc\u5305\uff0c\u6bcf\u4e2a\u7269\u54c1\u6709\u4e00\u5b9a\u7684\u4ef7\u503c\u548c\u91cd\u91cf\uff0c\u8981\u6c42\u5728\u80cc\u5305\u5bb9\u91cf\u9650\u5236\u5185\uff0c\u9009\u62e9\u7269\u54c1\u4f7f\u5f97\u603b\u4ef7\u503c\u6700\u5927\u3002
- \u65c5\u884c\u5546\u95ee\u9898\uff1a\u5728\u4e00\u4e2a\u56fe\u4e2d\uff0c\u4ece\u4e00\u4e2a\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u6240\u6709\u5176\u4ed6\u70b9\u6070\u597d\u4e00\u6b21\u540e\u8fd4\u56de\u8d77\u70b9\uff0c\u6c42\u6700\u77ed\u8def\u5f84\u3002
- \u6700\u5927\u56e2\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u627e\u5230\u6700\u5927\u7684\u5b8c\u5168\u5b50\u56fe\uff0c\u5373\u5b50\u56fe\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u90fd\u6709\u8fb9\u76f8\u8fde\u3002
\u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff0c\u56de\u6eaf\u4e0d\u662f\u6700\u4f18\u89e3\u51b3\u65b9\u6848\u3002
- 0-1 \u80cc\u5305\u95ee\u9898\u901a\u5e38\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\uff0c\u4ee5\u8fbe\u5230\u66f4\u9ad8\u7684\u65f6\u95f4\u6548\u7387\u3002
- \u65c5\u884c\u5546\u662f\u4e00\u4e2a\u8457\u540d\u7684 NP-Hard \u95ee\u9898\uff0c\u5e38\u7528\u89e3\u6cd5\u6709\u9057\u4f20\u7b97\u6cd5\u548c\u8681\u7fa4\u7b97\u6cd5\u7b49\u3002
- \u6700\u5927\u56e2\u95ee\u9898\u662f\u56fe\u8bba\u4e2d\u7684\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\uff0c\u53ef\u7528\u8d2a\u5fc3\u7b97\u6cd5\u7b49\u542f\u53d1\u5f0f\u7b97\u6cd5\u6765\u89e3\u51b3\u3002
"},{"location":"chapter_backtracking/n_queens_problem/","title":"13.4 \u00a0 N \u7687\u540e\u95ee\u9898","text":"Question
\u6839\u636e\u56fd\u9645\u8c61\u68cb\u7684\u89c4\u5219\uff0c\u7687\u540e\u53ef\u4ee5\u653b\u51fb\u4e0e\u540c\u5904\u4e00\u884c\u3001\u4e00\u5217\u6216\u4e00\u6761\u659c\u7ebf\u4e0a\u7684\u68cb\u5b50\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u7687\u540e\u548c\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5bfb\u627e\u4f7f\u5f97\u6240\u6709\u7687\u540e\u4e4b\u95f4\u65e0\u6cd5\u76f8\u4e92\u653b\u51fb\u7684\u6446\u653e\u65b9\u6848\u3002
\u5982\u56fe 13-15 \u6240\u793a\uff0c\u5f53 \\(n = 4\\) \u65f6\uff0c\u5171\u53ef\u4ee5\u627e\u5230\u4e24\u4e2a\u89e3\u3002\u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\u5171\u6709 \\(n^2\\) \u4e2a\u683c\u5b50\uff0c\u7ed9\u51fa\u4e86\u6240\u6709\u7684\u9009\u62e9 choices \u3002\u5728\u9010\u4e2a\u653e\u7f6e\u7687\u540e\u7684\u8fc7\u7a0b\u4e2d\uff0c\u68cb\u76d8\u72b6\u6001\u5728\u4e0d\u65ad\u5730\u53d8\u5316\uff0c\u6bcf\u4e2a\u65f6\u523b\u7684\u68cb\u76d8\u5c31\u662f\u72b6\u6001 state \u3002
\u56fe 13-15 \u00a0 4 \u7687\u540e\u95ee\u9898\u7684\u89e3
\u56fe 13-16 \u5c55\u793a\u4e86\u672c\u9898\u7684\u4e09\u4e2a\u7ea6\u675f\u6761\u4ef6\uff1a\u591a\u4e2a\u7687\u540e\u4e0d\u80fd\u5728\u540c\u4e00\u884c\u3001\u540c\u4e00\u5217\u3001\u540c\u4e00\u6761\u5bf9\u89d2\u7ebf\u4e0a\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u5bf9\u89d2\u7ebf\u5206\u4e3a\u4e3b\u5bf9\u89d2\u7ebf \\ \u548c\u6b21\u5bf9\u89d2\u7ebf / \u4e24\u79cd\u3002
\u56fe 13-16 \u00a0 n \u7687\u540e\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6
"},{"location":"chapter_backtracking/n_queens_problem/#1","title":"1. \u00a0 \u9010\u884c\u653e\u7f6e\u7b56\u7565","text":"\u7687\u540e\u7684\u6570\u91cf\u548c\u68cb\u76d8\u7684\u884c\u6570\u90fd\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u6211\u4eec\u5bb9\u6613\u5f97\u5230\u4e00\u4e2a\u63a8\u8bba\uff1a\u68cb\u76d8\u6bcf\u884c\u90fd\u5141\u8bb8\u4e14\u53ea\u5141\u8bb8\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u53d6\u9010\u884c\u653e\u7f6e\u7b56\u7565\uff1a\u4ece\u7b2c\u4e00\u884c\u5f00\u59cb\uff0c\u5728\u6bcf\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\uff0c\u76f4\u81f3\u6700\u540e\u4e00\u884c\u7ed3\u675f\u3002
\u56fe 13-17 \u6240\u793a\u4e3a \\(4\\) \u7687\u540e\u95ee\u9898\u7684\u9010\u884c\u653e\u7f6e\u8fc7\u7a0b\u3002\u53d7\u753b\u5e45\u9650\u5236\uff0c\u56fe 13-17 \u4ec5\u5c55\u5f00\u4e86\u7b2c\u4e00\u884c\u7684\u5176\u4e2d\u4e00\u4e2a\u641c\u7d22\u5206\u652f\uff0c\u5e76\u4e14\u5c06\u4e0d\u6ee1\u8db3\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u65b9\u6848\u90fd\u8fdb\u884c\u4e86\u526a\u679d\u3002
\u56fe 13-17 \u00a0 \u9010\u884c\u653e\u7f6e\u7b56\u7565
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u9010\u884c\u653e\u7f6e\u7b56\u7565\u8d77\u5230\u4e86\u526a\u679d\u7684\u4f5c\u7528\uff0c\u5b83\u907f\u514d\u4e86\u540c\u4e00\u884c\u51fa\u73b0\u591a\u4e2a\u7687\u540e\u7684\u6240\u6709\u641c\u7d22\u5206\u652f\u3002
"},{"location":"chapter_backtracking/n_queens_problem/#2","title":"2. \u00a0 \u5217\u4e0e\u5bf9\u89d2\u7ebf\u526a\u679d","text":"\u4e3a\u4e86\u6ee1\u8db3\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5e03\u5c14\u578b\u6570\u7ec4 cols \u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\u3002\u5728\u6bcf\u6b21\u51b3\u5b9a\u653e\u7f6e\u524d\uff0c\u6211\u4eec\u901a\u8fc7 cols \u5c06\u5df2\u6709\u7687\u540e\u7684\u5217\u8fdb\u884c\u526a\u679d\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u52a8\u6001\u66f4\u65b0 cols \u7684\u72b6\u6001\u3002
\u90a3\u4e48\uff0c\u5982\u4f55\u5904\u7406\u5bf9\u89d2\u7ebf\u7ea6\u675f\u5462\uff1f\u8bbe\u68cb\u76d8\u4e2d\u67d0\u4e2a\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\((row, col)\\) \uff0c\u9009\u5b9a\u77e9\u9635\u4e2d\u7684\u67d0\u6761\u4e3b\u5bf9\u89d2\u7ebf\uff0c\u6211\u4eec\u53d1\u73b0\u8be5\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684\u884c\u7d22\u5f15\u51cf\u5217\u7d22\u5f15\u90fd\u76f8\u7b49\uff0c\u5373\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684 \\(row - col\\) \u4e3a\u6052\u5b9a\u503c\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u5982\u679c\u4e24\u4e2a\u683c\u5b50\u6ee1\u8db3 \\(row_1 - col_1 = row_2 - col_2\\) \uff0c\u5219\u5b83\u4eec\u4e00\u5b9a\u5904\u5728\u540c\u4e00\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u3002\u5229\u7528\u8be5\u89c4\u5f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u501f\u52a9\u56fe 13-18 \u6240\u793a\u7684\u6570\u7ec4 diags1 \u8bb0\u5f55\u6bcf\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\u3002
\u540c\u7406\uff0c\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u7684\u6240\u6709\u683c\u5b50\u7684 \\(row + col\\) \u662f\u6052\u5b9a\u503c\u3002\u6211\u4eec\u540c\u6837\u4e5f\u53ef\u4ee5\u501f\u52a9\u6570\u7ec4 diags2 \u6765\u5904\u7406\u6b21\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002
\u56fe 13-18 \u00a0 \u5904\u7406\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f
"},{"location":"chapter_backtracking/n_queens_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u8bf7\u6ce8\u610f\uff0c\\(n\\) \u7ef4\u65b9\u9635\u4e2d \\(row - col\\) \u7684\u8303\u56f4\u662f \\([-n + 1, n - 1]\\) \uff0c\\(row + col\\) \u7684\u8303\u56f4\u662f \\([0, 2n - 2]\\) \uff0c\u6240\u4ee5\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\u7684\u6570\u91cf\u90fd\u4e3a \\(2n - 1\\) \uff0c\u5373\u6570\u7ec4 diags1 \u548c diags2 \u7684\u957f\u5ea6\u90fd\u4e3a \\(2n - 1\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig n_queens.pydef backtrack(\n row: int,\n n: int,\n state: list[list[str]],\n res: list[list[list[str]]],\n cols: list[bool],\n diags1: list[bool],\n diags2: list[bool],\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e\"\"\"\n # \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n:\n res.append([list(row) for row in state])\n return\n # \u904d\u5386\u6240\u6709\u5217\n for col in range(n):\n # \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n diag1 = row - col + n - 1\n diag2 = row + col\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if not cols[col] and not diags1[diag1] and not diags2[diag2]:\n # \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\"\n cols[col] = diags1[diag1] = diags2[diag2] = True\n # \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2)\n # \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\"\n cols[col] = diags1[diag1] = diags2[diag2] = False\n\ndef n_queens(n: int) -> list[list[list[str]]]:\n \"\"\"\u6c42\u89e3 N \u7687\u540e\"\"\"\n # \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n state = [[\"#\" for _ in range(n)] for _ in range(n)]\n cols = [False] * n # \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n diags1 = [False] * (2 * n - 1) # \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n diags2 = [False] * (2 * n - 1) # \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n res = []\n backtrack(0, n, state, res, cols, diags1, diags2)\n\n return res\n
n_queens.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,\n vector<bool> &diags1, vector<bool> &diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\";\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\";\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nvector<vector<vector<string>>> nQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n vector<vector<string>> state(n, vector<string>(n, \"#\"));\n vector<bool> cols(n, false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n vector<bool> diags1(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n vector<bool> diags2(2 * n - 1, false); // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n vector<vector<vector<string>>> res;\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.java/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,\n boolean[] cols, boolean[] diags1, boolean[] diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n List<List<String>> copyState = new ArrayList<>();\n for (List<String> sRow : state) {\n copyState.add(new ArrayList<>(sRow));\n }\n res.add(copyState);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state.get(row).set(col, \"Q\");\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state.get(row).set(col, \"#\");\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n List<List<String>> state = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n List<String> row = new ArrayList<>();\n for (int j = 0; j < n; j++) {\n row.add(\"#\");\n }\n state.add(row);\n }\n boolean[] cols = new boolean[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n boolean[] diags1 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n boolean[] diags2 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<List<List<String>>> res = new ArrayList<>();\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid Backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,\n bool[] cols, bool[] diags1, bool[] diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n List<List<string>> copyState = [];\n foreach (List<string> sRow in state) {\n copyState.Add(new List<string>(sRow));\n }\n res.Add(copyState);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\";\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n Backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\";\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<string>>> NQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n List<List<string>> state = [];\n for (int i = 0; i < n; i++) {\n List<string> row = [];\n for (int j = 0; j < n; j++) {\n row.Add(\"#\");\n }\n state.Add(row);\n }\n bool[] cols = new bool[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n bool[] diags1 = new bool[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n bool[] diags2 = new bool[2 * n - 1]; // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<List<List<string>>> res = [];\n\n Backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.go/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n newState := make([][]string, len(*state))\n for i, _ := range newState {\n newState[i] = make([]string, len((*state)[0]))\n copy(newState[i], (*state)[i])\n\n }\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col := 0; col < n; col++ {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n diag1 := row - col + n - 1\n diag2 := row + col\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n (*state)[row][col] = \"Q\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row+1, n, state, res, cols, diags1, diags2)\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n (*state)[row][col] = \"#\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n }\n }\n}\n\n/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n newState := make([][]string, len(*state))\n for i, _ := range newState {\n newState[i] = make([]string, len((*state)[0]))\n copy(newState[i], (*state)[i])\n\n }\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col := 0; col < n; col++ {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n diag1 := row - col + n - 1\n diag2 := row + col\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n (*state)[row][col] = \"Q\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row+1, n, state, res, cols, diags1, diags2)\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n (*state)[row][col] = \"#\"\n (*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n }\n }\n}\n\nfunc nQueens(n int) [][][]string {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n state := make([][]string, n)\n for i := 0; i < n; i++ {\n row := make([]string, n)\n for i := 0; i < n; i++ {\n row[i] = \"#\"\n }\n state[i] = row\n }\n // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n cols := make([]bool, n)\n diags1 := make([]bool, 2*n-1)\n diags2 := make([]bool, 2*n-1)\n res := make([][][]string, 0)\n backtrack(0, n, &state, &res, &cols, &diags1, &diags2)\n return res\n}\n
n_queens.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col in 0 ..< n {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n let diag1 = row - col + n - 1\n let diag2 = row + col\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !cols[col] && !diags1[diag1] && !diags2[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\"\n cols[col] = true\n diags1[diag1] = true\n diags2[diag2] = true\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\"\n cols[col] = false\n diags1[diag1] = false\n diags2[diag2] = false\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfunc nQueens(n: Int) -> [[[String]]] {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n var state = Array(repeating: Array(repeating: \"#\", count: n), count: n)\n var cols = Array(repeating: false, count: n) // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n var diags1 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n var diags2 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n var res: [[[String]]] = []\n\n backtrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\n\n return res\n}\n
n_queens.js/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(row, n, state, res, cols, diags1, diags2) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row === n) {\n res.push(state.map((row) => row.slice()));\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (let col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n const diag1 = row - col + n - 1;\n const diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = 'Q';\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = '#';\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n const state = Array.from({ length: n }, () => Array(n).fill('#'));\n const cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n const diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const res = [];\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n return res;\n}\n
n_queens.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(\n row: number,\n n: number,\n state: string[][],\n res: string[][][],\n cols: boolean[],\n diags1: boolean[],\n diags2: boolean[]\n): void {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row === n) {\n res.push(state.map((row) => row.slice()));\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (let col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n const diag1 = row - col + n - 1;\n const diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = 'Q';\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = '#';\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n: number): string[][][] {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n const state = Array.from({ length: n }, () => Array(n).fill('#'));\n const cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n const diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n const res: string[][][] = [];\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n return res;\n}\n
n_queens.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(\n int row,\n int n,\n List<List<String>> state,\n List<List<List<String>>> res,\n List<bool> cols,\n List<bool> diags1,\n List<bool> diags2,\n) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n List<List<String>> copyState = [];\n for (List<String> sRow in state) {\n copyState.add(List.from(sRow));\n }\n res.add(copyState);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = \"Q\";\n cols[col] = true;\n diags1[diag1] = true;\n diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = \"#\";\n cols[col] = false;\n diags1[diag1] = false;\n diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n List<List<String>> state = List.generate(n, (index) => List.filled(n, \"#\"));\n List<bool> cols = List.filled(n, false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n List<bool> diags1 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<bool> diags2 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n List<List<List<String>>> res = [];\n\n backtrack(0, n, state, res, cols, diags1, diags2);\n\n return res;\n}\n
n_queens.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfn backtrack(row: usize, n: usize, state: &mut Vec<Vec<String>>, res: &mut Vec<Vec<Vec<String>>>,\n cols: &mut [bool], diags1: &mut [bool], diags2: &mut [bool]) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if row == n {\n let mut copy_state: Vec<Vec<String>> = Vec::new();\n for s_row in state.clone() {\n copy_state.push(s_row);\n }\n res.push(copy_state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for col in 0..n {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n let diag1 = row + n - 1 - col;\n let diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if !cols[col] && !diags1[diag1] && !diags2[diag2] {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state.get_mut(row).unwrap()[col] = \"Q\".into();\n (cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state.get_mut(row).unwrap()[col] = \"#\".into();\n (cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nfn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n let mut state: Vec<Vec<String>> = Vec::new();\n for _ in 0..n {\n let mut row: Vec<String> = Vec::new();\n for _ in 0..n {\n row.push(\"#\".into());\n }\n state.push(row);\n }\n let mut cols = vec![false; n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n let mut diags1 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n let mut diags2 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n let mut res: Vec<Vec<Vec<String>>> = Vec::new();\n\n backtrack(0, n, &mut state, &mut res, &mut cols, &mut diags1, &mut diags2);\n\n res\n}\n
n_queens.c/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, char state[MAX_SIZE][MAX_SIZE], char ***res, int *resSize, bool cols[MAX_SIZE],\n bool diags1[2 * MAX_SIZE - 1], bool diags2[2 * MAX_SIZE - 1]) {\n // \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (row == n) {\n res[*resSize] = (char **)malloc(sizeof(char *) * n);\n for (int i = 0; i < n; ++i) {\n res[*resSize][i] = (char *)malloc(sizeof(char) * (n + 1));\n strcpy(res[*resSize][i], state[i]);\n }\n (*resSize)++;\n return;\n }\n // \u904d\u5386\u6240\u6709\u5217\n for (int col = 0; col < n; col++) {\n // \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\n int diag1 = row - col + n - 1;\n int diag2 = row + col;\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u5b58\u5728\u7687\u540e\n if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n // \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n state[row][col] = 'Q';\n cols[col] = diags1[diag1] = diags2[diag2] = true;\n // \u653e\u7f6e\u4e0b\u4e00\u884c\n backtrack(row + 1, n, state, res, resSize, cols, diags1, diags2);\n // \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n state[row][col] = '#';\n cols[col] = diags1[diag1] = diags2[diag2] = false;\n }\n }\n}\n\n/* \u6c42\u89e3 N \u7687\u540e */\nchar ***nQueens(int n, int *returnSize) {\n char state[MAX_SIZE][MAX_SIZE];\n // \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\n for (int i = 0; i < n; ++i) {\n for (int j = 0; j < n; ++j) {\n state[i][j] = '#';\n }\n state[i][n] = '\\0';\n }\n bool cols[MAX_SIZE] = {false}; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\n bool diags1[2 * MAX_SIZE - 1] = {false}; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n bool diags2[2 * MAX_SIZE - 1] = {false}; // \u8bb0\u5f55\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\n\n char ***res = (char ***)malloc(sizeof(char **) * MAX_SIZE);\n *returnSize = 0;\n backtrack(0, n, state, res, returnSize, cols, diags1, diags2);\n return res;\n}\n
n_queens.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{nQueens}\n
\u9010\u884c\u653e\u7f6e \\(n\\) \u6b21\uff0c\u8003\u8651\u5217\u7ea6\u675f\uff0c\u5219\u4ece\u7b2c\u4e00\u884c\u5230\u6700\u540e\u4e00\u884c\u5206\u522b\u6709 \\(n\\)\u3001\\(n-1\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \u4e2a\u9009\u62e9\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!)\\) \u3002\u5b9e\u9645\u4e0a\uff0c\u6839\u636e\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u526a\u679d\u4e5f\u80fd\u591f\u5927\u5e45\u7f29\u5c0f\u641c\u7d22\u7a7a\u95f4\uff0c\u56e0\u800c\u641c\u7d22\u6548\u7387\u5f80\u5f80\u4f18\u4e8e\u4ee5\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u3002
\u6570\u7ec4 state \u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\uff0c\u6570\u7ec4 cols\u3001diags1 \u548c diags2 \u7686\u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_backtracking/permutations_problem/","title":"13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898","text":"\u5168\u6392\u5217\u95ee\u9898\u662f\u56de\u6eaf\u7b97\u6cd5\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u7684\u5b9a\u4e49\u662f\u5728\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff08\u5982\u4e00\u4e2a\u6570\u7ec4\u6216\u5b57\u7b26\u4e32\uff09\u7684\u60c5\u51b5\u4e0b\uff0c\u627e\u51fa\u5176\u4e2d\u5143\u7d20\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002
\u8868 13-2 \u5217\u4e3e\u4e86\u51e0\u4e2a\u793a\u4f8b\u6570\u636e\uff0c\u5305\u62ec\u8f93\u5165\u6570\u7ec4\u548c\u5bf9\u5e94\u7684\u6240\u6709\u6392\u5217\u3002
\u8868 13-2 \u00a0 \u5168\u6392\u5217\u793a\u4f8b
\u8f93\u5165\u6570\u7ec4 \u6240\u6709\u6392\u5217 \\([1]\\) \\([1]\\) \\([1, 2]\\) \\([1, 2], [2, 1]\\) \\([1, 2, 3]\\) \\([1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]\\)"},{"location":"chapter_backtracking/permutations_problem/#1321","title":"13.2.1 \u00a0 \u65e0\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u5176\u4e2d\u4e0d\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002
\u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u751f\u6210\u6392\u5217\u7684\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\u3002\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 2, 3]\\) \uff0c\u5982\u679c\u6211\u4eec\u5148\u9009\u62e9 \\(1\\) \uff0c\u518d\u9009\u62e9 \\(3\\) \uff0c\u6700\u540e\u9009\u62e9 \\(2\\) \uff0c\u5219\u83b7\u5f97\u6392\u5217 \\([1, 3, 2]\\) \u3002\u56de\u9000\u8868\u793a\u64a4\u9500\u4e00\u4e2a\u9009\u62e9\uff0c\u4e4b\u540e\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002
\u4ece\u56de\u6eaf\u4ee3\u7801\u7684\u89d2\u5ea6\u770b\uff0c\u5019\u9009\u96c6\u5408 choices \u662f\u8f93\u5165\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u72b6\u6001 state \u662f\u76f4\u81f3\u76ee\u524d\u5df2\u88ab\u9009\u62e9\u7684\u5143\u7d20\u3002\u8bf7\u6ce8\u610f\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u5141\u8bb8\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u56e0\u6b64 state \u4e2d\u7684\u6240\u6709\u5143\u7d20\u90fd\u5e94\u8be5\u662f\u552f\u4e00\u7684\u3002
\u5982\u56fe 13-5 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u641c\u7d22\u8fc7\u7a0b\u5c55\u5f00\u6210\u4e00\u68f5\u9012\u5f52\u6811\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u5f53\u524d\u72b6\u6001 state \u3002\u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u7ecf\u8fc7\u4e09\u8f6e\u9009\u62e9\u540e\u5230\u8fbe\u53f6\u8282\u70b9\uff0c\u6bcf\u4e2a\u53f6\u8282\u70b9\u90fd\u5bf9\u5e94\u4e00\u4e2a\u6392\u5217\u3002
\u56fe 13-5 \u00a0 \u5168\u6392\u5217\u7684\u9012\u5f52\u6811
"},{"location":"chapter_backtracking/permutations_problem/#1","title":"1. \u00a0 \u91cd\u590d\u9009\u62e9\u526a\u679d","text":"\u4e3a\u4e86\u5b9e\u73b0\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u6211\u4eec\u8003\u8651\u5f15\u5165\u4e00\u4e2a\u5e03\u5c14\u578b\u6570\u7ec4 selected \uff0c\u5176\u4e2d selected[i] \u8868\u793a choices[i] \u662f\u5426\u5df2\u88ab\u9009\u62e9\uff0c\u5e76\u57fa\u4e8e\u5b83\u5b9e\u73b0\u4ee5\u4e0b\u526a\u679d\u64cd\u4f5c\u3002
- \u5728\u505a\u51fa\u9009\u62e9
choice[i] \u540e\uff0c\u6211\u4eec\u5c31\u5c06 selected[i] \u8d4b\u503c\u4e3a \\(\\text{True}\\) \uff0c\u4ee3\u8868\u5b83\u5df2\u88ab\u9009\u62e9\u3002 - \u904d\u5386\u9009\u62e9\u5217\u8868
choices \u65f6\uff0c\u8df3\u8fc7\u6240\u6709\u5df2\u88ab\u9009\u62e9\u7684\u8282\u70b9\uff0c\u5373\u526a\u679d\u3002
\u5982\u56fe 13-6 \u6240\u793a\uff0c\u5047\u8bbe\u6211\u4eec\u7b2c\u4e00\u8f6e\u9009\u62e9 1 \uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9 3 \uff0c\u7b2c\u4e09\u8f6e\u9009\u62e9 2 \uff0c\u5219\u9700\u8981\u5728\u7b2c\u4e8c\u8f6e\u526a\u6389\u5143\u7d20 1 \u7684\u5206\u652f\uff0c\u5728\u7b2c\u4e09\u8f6e\u526a\u6389\u5143\u7d20 1 \u548c\u5143\u7d20 3 \u7684\u5206\u652f\u3002
\u56fe 13-6 \u00a0 \u5168\u6392\u5217\u526a\u679d\u793a\u4f8b
\u89c2\u5bdf\u56fe 13-6 \u53d1\u73b0\uff0c\u8be5\u526a\u679d\u64cd\u4f5c\u5c06\u641c\u7d22\u7a7a\u95f4\u5927\u5c0f\u4ece \\(O(n^n)\\) \u51cf\u5c0f\u81f3 \\(O(n!)\\) \u3002
"},{"location":"chapter_backtracking/permutations_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u60f3\u6e05\u695a\u4ee5\u4e0a\u4fe1\u606f\u4e4b\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5728\u6846\u67b6\u4ee3\u7801\u4e2d\u505a\u201c\u5b8c\u5f62\u586b\u7a7a\u201d\u4e86\u3002\u4e3a\u4e86\u7f29\u77ed\u6574\u4f53\u4ee3\u7801\uff0c\u6211\u4eec\u4e0d\u5355\u72ec\u5b9e\u73b0\u6846\u67b6\u4ee3\u7801\u4e2d\u7684\u5404\u4e2a\u51fd\u6570\uff0c\u800c\u662f\u5c06\u5b83\u4eec\u5c55\u5f00\u5728 backtrack() \u51fd\u6570\u4e2d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig permutations_i.pydef backtrack(\n state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I\"\"\"\n # \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(state) == len(choices):\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for i, choice in enumerate(choices):\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if not selected[i]:\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = True\n state.append(choice)\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = False\n state.pop()\n\ndef permutations_i(nums: list[int]) -> list[list[int]]:\n \"\"\"\u5168\u6392\u5217 I\"\"\"\n res = []\n backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\n return res\n
permutations_i.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.size()) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.size(); i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push_back(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop_back();\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nvector<vector<int>> permutationsI(vector<int> nums) {\n vector<int> state;\n vector<bool> selected(nums.size(), false);\n vector<vector<int>> res;\n backtrack(state, nums, selected, res);\n return res;\n}\n
permutations_i.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.length) {\n res.add(new ArrayList<Integer>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.size() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nList<List<Integer>> permutationsI(int[] nums) {\n List<List<Integer>> res = new ArrayList<List<Integer>>();\n backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\n return res;\n}\n
permutations_i.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.Count == choices.Length) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.Length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.Add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.RemoveAt(state.Count - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nList<List<int>> PermutationsI(int[] nums) {\n List<List<int>> res = [];\n Backtrack([], nums, new bool[nums.Length], res);\n return res;\n}\n
permutations_i.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(*state) == len(*choices) {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i := 0; i < len(*choices); i++ {\n choice := (*choices)[i]\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if !(*selected)[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n (*selected)[i] = true\n *state = append(*state, choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackI(state, choices, selected, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n (*selected)[i] = false\n *state = (*state)[:len(*state)-1]\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums []int) [][]int {\n res := make([][]int, 0)\n state := make([]int, 0)\n selected := make([]bool, len(nums))\n backtrackI(&state, &nums, &selected, &res)\n return res\n}\n
permutations_i.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.count == choices.count {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (i, choice) in choices.enumerated() {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if !selected[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true\n state.append(choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, choices: choices, selected: &selected, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false\n state.removeLast()\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums: [Int]) -> [[Int]] {\n var state: [Int] = []\n var selected = Array(repeating: false, count: nums.count)\n var res: [[Int]] = []\n backtrack(state: &state, choices: nums, selected: &selected, res: &res)\n return res\n}\n
permutations_i.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(state, choices, selected, res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums) {\n const res = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_i.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(\n state: number[],\n choices: number[],\n selected: boolean[],\n res: number[][]\n): void {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums: number[]): number[][] {\n const res: number[][] = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_i.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(\n List<int> state,\n List<int> choices,\n List<bool> selected,\n List<List<int>> res,\n) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length == choices.length) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.removeLast();\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nList<List<int>> permutationsI(List<int> nums) {\n List<List<int>> res = [];\n backtrack([], nums, List.filled(nums.length, false), res);\n return res;\n}\n
permutations_i.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.len() == choices.len() {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in 0..choices.len() {\n let choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if !selected[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.len() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nfn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {\n let mut res = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\n res\n}\n
permutations_i.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (stateSize == choicesSize) {\n res[*resSize] = (int *)malloc(choicesSize * sizeof(int));\n for (int i = 0; i < choicesSize; i++) {\n res[*resSize][i] = state[i];\n }\n (*resSize)++;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choicesSize; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\n if (!selected[i]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n selected[i] = true;\n state[stateSize] = choice;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n }\n }\n}\n\n/* \u5168\u6392\u5217 I */\nint **permutationsI(int *nums, int numsSize, int *returnSize) {\n int *state = (int *)malloc(numsSize * sizeof(int));\n bool *selected = (bool *)malloc(numsSize * sizeof(bool));\n for (int i = 0; i < numsSize; i++) {\n selected[i] = false;\n }\n int **res = (int **)malloc(MAX_SIZE * sizeof(int *));\n *returnSize = 0;\n\n backtrack(state, 0, nums, numsSize, selected, res, returnSize);\n\n free(state);\n free(selected);\n\n return res;\n}\n
permutations_i.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{permutationsI}\n
"},{"location":"chapter_backtracking/permutations_problem/#1322","title":"13.2.2 \u00a0 \u8003\u8651\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u4e0d\u91cd\u590d\u7684\u6392\u5217\u3002
\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 1, 2]\\) \u3002\u4e3a\u4e86\u65b9\u4fbf\u533a\u5206\u4e24\u4e2a\u91cd\u590d\u5143\u7d20 \\(1\\) \uff0c\u6211\u4eec\u5c06\u7b2c\u4e8c\u4e2a \\(1\\) \u8bb0\u4e3a \\(\\hat{1}\\) \u3002
\u5982\u56fe 13-7 \u6240\u793a\uff0c\u4e0a\u8ff0\u65b9\u6cd5\u751f\u6210\u7684\u6392\u5217\u6709\u4e00\u534a\u662f\u91cd\u590d\u7684\u3002
\u56fe 13-7 \u00a0 \u91cd\u590d\u6392\u5217
\u90a3\u4e48\u5982\u4f55\u53bb\u9664\u91cd\u590d\u7684\u6392\u5217\u5462\uff1f\u6700\u76f4\u63a5\u5730\uff0c\u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u76f4\u63a5\u5bf9\u6392\u5217\u7ed3\u679c\u8fdb\u884c\u53bb\u91cd\u3002\u7136\u800c\u8fd9\u6837\u505a\u4e0d\u591f\u4f18\u96c5\uff0c\u56e0\u4e3a\u751f\u6210\u91cd\u590d\u6392\u5217\u7684\u641c\u7d22\u5206\u652f\u6ca1\u6709\u5fc5\u8981\uff0c\u5e94\u5f53\u63d0\u524d\u8bc6\u522b\u5e76\u526a\u679d\uff0c\u8fd9\u6837\u53ef\u4ee5\u8fdb\u4e00\u6b65\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002
"},{"location":"chapter_backtracking/permutations_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"\u89c2\u5bdf\u56fe 13-8 \uff0c\u5728\u7b2c\u4e00\u8f6e\u4e2d\uff0c\u9009\u62e9 \\(1\\) \u6216\u9009\u62e9 \\(\\hat{1}\\) \u662f\u7b49\u4ef7\u7684\uff0c\u5728\u8fd9\u4e24\u4e2a\u9009\u62e9\u4e4b\u4e0b\u751f\u6210\u7684\u6240\u6709\u6392\u5217\u90fd\u662f\u91cd\u590d\u7684\u3002\u56e0\u6b64\u5e94\u8be5\u628a \\(\\hat{1}\\) \u526a\u679d\u3002
\u540c\u7406\uff0c\u5728\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(2\\) \u4e4b\u540e\uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9\u4e2d\u7684 \\(1\\) \u548c \\(\\hat{1}\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5206\u652f\uff0c\u56e0\u6b64\u4e5f\u5e94\u5c06\u7b2c\u4e8c\u8f6e\u7684 \\(\\hat{1}\\) \u526a\u679d\u3002
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u5728\u67d0\u4e00\u8f6e\u9009\u62e9\u4e2d\uff0c\u4fdd\u8bc1\u591a\u4e2a\u76f8\u7b49\u7684\u5143\u7d20\u4ec5\u88ab\u9009\u62e9\u4e00\u6b21\u3002
\u56fe 13-8 \u00a0 \u91cd\u590d\u6392\u5217\u526a\u679d
"},{"location":"chapter_backtracking/permutations_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5728\u4e0a\u4e00\u9898\u7684\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u8003\u8651\u5728\u6bcf\u4e00\u8f6e\u9009\u62e9\u4e2d\u5f00\u542f\u4e00\u4e2a\u54c8\u5e0c\u8868 duplicated \uff0c\u7528\u4e8e\u8bb0\u5f55\u8be5\u8f6e\u4e2d\u5df2\u7ecf\u5c1d\u8bd5\u8fc7\u7684\u5143\u7d20\uff0c\u5e76\u5c06\u91cd\u590d\u5143\u7d20\u526a\u679d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig permutations_ii.pydef backtrack(\n state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II\"\"\"\n # \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(state) == len(choices):\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n duplicated = set[int]()\n for i, choice in enumerate(choices):\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if not selected[i] and choice not in duplicated:\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice) # \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = True\n state.append(choice)\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = False\n state.pop()\n\ndef permutations_ii(nums: list[int]) -> list[list[int]]:\n \"\"\"\u5168\u6392\u5217 II\"\"\"\n res = []\n backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\n return res\n
permutations_ii.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.size()) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n unordered_set<int> duplicated;\n for (int i = 0; i < choices.size(); i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && duplicated.find(choice) == duplicated.end()) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.emplace(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push_back(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop_back();\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nvector<vector<int>> permutationsII(vector<int> nums) {\n vector<int> state;\n vector<bool> selected(nums.size(), false);\n vector<vector<int>> res;\n backtrack(state, nums, selected, res);\n return res;\n}\n
permutations_ii.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.size() == choices.length) {\n res.add(new ArrayList<Integer>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n Set<Integer> duplicated = new HashSet<Integer>();\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.contains(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.size() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nList<List<Integer>> permutationsII(int[] nums) {\n List<List<Integer>> res = new ArrayList<List<Integer>>();\n backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\n return res;\n}\n
permutations_ii.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.Count == choices.Length) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n HashSet<int> duplicated = [];\n for (int i = 0; i < choices.Length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.Contains(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.Add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.Add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.RemoveAt(state.Count - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nList<List<int>> PermutationsII(int[] nums) {\n List<List<int>> res = [];\n Backtrack([], nums, new bool[nums.Length], res);\n return res;\n}\n
permutations_ii.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if len(*state) == len(*choices) {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n duplicated := make(map[int]struct{}, 0)\n for i := 0; i < len(*choices); i++ {\n choice := (*choices)[i]\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if _, ok := duplicated[choice]; !ok && !(*selected)[i] {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n duplicated[choice] = struct{}{}\n (*selected)[i] = true\n *state = append(*state, choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackI(state, choices, selected, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n (*selected)[i] = false\n *state = (*state)[:len(*state)-1]\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums []int) [][]int {\n res := make([][]int, 0)\n state := make([]int, 0)\n selected := make([]bool, len(nums))\n backtrackII(&state, &nums, &selected, &res)\n return res\n}\n
permutations_ii.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.count == choices.count {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n var duplicated: Set<Int> = []\n for (i, choice) in choices.enumerated() {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if !selected[i], !duplicated.contains(choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.insert(choice) // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true\n state.append(choice)\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, choices: choices, selected: &selected, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false\n state.removeLast()\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums: [Int]) -> [[Int]] {\n var state: [Int] = []\n var selected = Array(repeating: false, count: nums.count)\n var res: [[Int]] = []\n backtrack(state: &state, choices: nums, selected: &selected, res: &res)\n return res\n}\n
permutations_ii.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(state, choices, selected, res) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n const duplicated = new Set();\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.has(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums) {\n const res = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_ii.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(\n state: number[],\n choices: number[],\n selected: boolean[],\n res: number[][]\n): void {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length === choices.length) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n const duplicated = new Set();\n choices.forEach((choice, i) => {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.has(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.pop();\n }\n });\n}\n\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums: number[]): number[][] {\n const res: number[][] = [];\n backtrack([], nums, Array(nums.length).fill(false), res);\n return res;\n}\n
permutations_ii.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(\n List<int> state,\n List<int> choices,\n List<bool> selected,\n List<List<int>> res,\n) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (state.length == choices.length) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n Set<int> duplicated = {};\n for (int i = 0; i < choices.length; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated.contains(choice)) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.add(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.removeLast();\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nList<List<int>> permutationsII(List<int> nums) {\n List<List<int>> res = [];\n backtrack([], nums, List.filled(nums.length, false), res);\n return res;\n}\n
permutations_ii.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if state.len() == choices.len() {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n let mut duplicated = HashSet::<i32>::new();\n for i in 0..choices.len() {\n let choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if !selected[i] && !duplicated.contains(&choice) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated.insert(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state.push(choice);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), choices, selected, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n state.remove(state.len() - 1);\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nfn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {\n let mut res = Vec::new();\n backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\n res\n}\n
permutations_ii.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {\n // \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\n if (stateSize == choicesSize) {\n res[*resSize] = (int *)malloc(choicesSize * sizeof(int));\n for (int i = 0; i < choicesSize; i++) {\n res[*resSize][i] = state[i];\n }\n (*resSize)++;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n bool duplicated[MAX_SIZE] = {false};\n for (int i = 0; i < choicesSize; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\n if (!selected[i] && !duplicated[choice]) {\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n duplicated[choice] = true; // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\n selected[i] = true;\n state[stateSize] = choice;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n selected[i] = false;\n }\n }\n}\n\n/* \u5168\u6392\u5217 II */\nint **permutationsII(int *nums, int numsSize, int *returnSize) {\n int *state = (int *)malloc(numsSize * sizeof(int));\n bool *selected = (bool *)malloc(numsSize * sizeof(bool));\n for (int i = 0; i < numsSize; i++) {\n selected[i] = false;\n }\n int **res = (int **)malloc(MAX_SIZE * sizeof(int *));\n *returnSize = 0;\n\n backtrack(state, 0, nums, numsSize, selected, res, returnSize);\n\n free(state);\n free(selected);\n\n return res;\n}\n
permutations_ii.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{permutationsII}\n
\u5047\u8bbe\u5143\u7d20\u4e24\u4e24\u4e4b\u95f4\u4e92\u4e0d\u76f8\u540c\uff0c\u5219 \\(n\\) \u4e2a\u5143\u7d20\u5171\u6709 \\(n!\\) \u79cd\u6392\u5217\uff08\u9636\u4e58\uff09\uff1b\u5728\u8bb0\u5f55\u7ed3\u679c\u65f6\uff0c\u9700\u8981\u590d\u5236\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5217\u8868\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!n)\\) \u3002
\u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002selected \u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u540c\u4e00\u65f6\u523b\u6700\u591a\u5171\u6709 \\(n\\) \u4e2a duplicated \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\u3002\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_backtracking/permutations_problem/#3","title":"3. \u00a0 \u4e24\u79cd\u526a\u679d\u5bf9\u6bd4","text":"\u8bf7\u6ce8\u610f\uff0c\u867d\u7136 selected \u548c duplicated \u90fd\u7528\u4e8e\u526a\u679d\uff0c\u4f46\u4e24\u8005\u7684\u76ee\u6807\u4e0d\u540c\u3002
- \u91cd\u590d\u9009\u62e9\u526a\u679d\uff1a\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\u4e2d\u53ea\u6709\u4e00\u4e2a
selected \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5f53\u524d\u72b6\u6001\u4e2d\u5305\u542b\u54ea\u4e9b\u5143\u7d20\uff0c\u5176\u4f5c\u7528\u662f\u907f\u514d\u67d0\u4e2a\u5143\u7d20\u5728 state \u4e2d\u91cd\u590d\u51fa\u73b0\u3002 - \u76f8\u7b49\u5143\u7d20\u526a\u679d\uff1a\u6bcf\u8f6e\u9009\u62e9\uff08\u6bcf\u4e2a\u8c03\u7528\u7684
backtrack \u51fd\u6570\uff09\u90fd\u5305\u542b\u4e00\u4e2a duplicated \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5728\u672c\u8f6e\u904d\u5386\uff08for \u5faa\u73af\uff09\u4e2d\u54ea\u4e9b\u5143\u7d20\u5df2\u88ab\u9009\u62e9\u8fc7\uff0c\u5176\u4f5c\u7528\u662f\u4fdd\u8bc1\u76f8\u7b49\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002
\u56fe 13-9 \u5c55\u793a\u4e86\u4e24\u4e2a\u526a\u679d\u6761\u4ef6\u7684\u751f\u6548\u8303\u56f4\u3002\u6ce8\u610f\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u9009\u62e9\uff0c\u4ece\u6839\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\u6784\u6210\u4e00\u4e2a\u6392\u5217\u3002
\u56fe 13-9 \u00a0 \u4e24\u79cd\u526a\u679d\u6761\u4ef6\u7684\u4f5c\u7528\u8303\u56f4
"},{"location":"chapter_backtracking/subset_sum_problem/","title":"13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898","text":""},{"location":"chapter_backtracking/subset_sum_problem/#1331","title":"13.3.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u65e0\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ef\u4ee5\u88ab\u9009\u53d6\u591a\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002
\u4f8b\u5982\uff0c\u8f93\u5165\u96c6\u5408 \\(\\{3, 4, 5\\}\\) \u548c\u76ee\u6807\u6574\u6570 \\(9\\) \uff0c\u89e3\u4e3a \\(\\{3, 3, 3\\}, \\{4, 5\\}\\) \u3002\u9700\u8981\u6ce8\u610f\u4ee5\u4e0b\u4e24\u70b9\u3002
- \u8f93\u5165\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u91cd\u590d\u9009\u53d6\u3002
- \u5b50\u96c6\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\uff0c\u6bd4\u5982 \\(\\{4, 5\\}\\) \u548c \\(\\{5, 4\\}\\) \u662f\u540c\u4e00\u4e2a\u5b50\u96c6\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#1","title":"1. \u00a0 \u53c2\u8003\u5168\u6392\u5217\u89e3\u6cd5","text":"\u7c7b\u4f3c\u4e8e\u5168\u6392\u5217\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b50\u96c6\u7684\u751f\u6210\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\uff0c\u5e76\u5728\u9009\u62e9\u8fc7\u7a0b\u4e2d\u5b9e\u65f6\u66f4\u65b0\u201c\u5143\u7d20\u548c\u201d\uff0c\u5f53\u5143\u7d20\u548c\u7b49\u4e8e target \u65f6\uff0c\u5c31\u5c06\u5b50\u96c6\u8bb0\u5f55\u81f3\u7ed3\u679c\u5217\u8868\u3002
\u800c\u4e0e\u5168\u6392\u5217\u95ee\u9898\u4e0d\u540c\u7684\u662f\uff0c\u672c\u9898\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u9009\u53d6\uff0c\u56e0\u6b64\u65e0\u987b\u501f\u52a9 selected \u5e03\u5c14\u5217\u8868\u6765\u8bb0\u5f55\u5143\u7d20\u662f\u5426\u5df2\u88ab\u9009\u62e9\u3002\u6211\u4eec\u53ef\u4ee5\u5bf9\u5168\u6392\u5217\u4ee3\u7801\u8fdb\u884c\u5c0f\u5e45\u4fee\u6539\uff0c\u521d\u6b65\u5f97\u5230\u89e3\u9898\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig subset_sum_i_naive.pydef backtrack(\n state: list[int],\n target: int,\n total: int,\n choices: list[int],\n res: list[list[int]],\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n # \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if total == target:\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in range(len(choices)):\n # \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total + choices[i] > target:\n continue\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.append(choices[i])\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop()\n\ndef subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:\n \"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09\"\"\"\n state = [] # \u72b6\u6001\uff08\u5b50\u96c6\uff09\n total = 0 # \u5b50\u96c6\u548c\n res = [] # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res)\n return res\n
subset_sum_i_naive.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, int total, vector<int> &choices, vector<vector<int>> &res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (size_t i = 0; i < choices.size(); i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push_back(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop_back();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {\n vector<int> state; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5b50\u96c6\u548c\n vector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int total, int[] choices, List<List<Integer>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.add(new ArrayList<>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.remove(state.size() - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<Integer>> subsetSumINaive(int[] nums, int target) {\n List<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5b50\u96c6\u548c\n List<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid Backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.Length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.Add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.RemoveAt(state.Count - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> SubsetSumINaive(int[] nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5b50\u96c6\u548c\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n Backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == total {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i := 0; i < len(*choices); i++ {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total+(*choices)[i] > target {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n *state = append(*state, (*choices)[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n *state = (*state)[:len(*state)-1]\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums []int, target int) [][]int {\n state := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n total := 0 // \u5b50\u96c6\u548c\n res := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrackSubsetSumINaive(total, target, &state, &nums, &res)\n return res\n}\n
subset_sum_i_naive.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if total == target {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in stride(from: 0, to: choices.count, by: 1) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total + choices[i] > target {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.append(choices[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast()\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums: [Int], target: Int) -> [[Int]] {\n var state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let total = 0 // \u5b50\u96c6\u548c\n var res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state: &state, target: target, total: total, choices: nums, res: &res)\n return res\n}\n
subset_sum_i_naive.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, total, choices, res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total === target) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums, target) {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n const total = 0; // \u5b50\u96c6\u548c\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\n state: number[],\n target: number,\n total: number,\n choices: number[],\n res: number[][]\n): void {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total === target) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (let i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums: number[], target: number): number[][] {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n const total = 0; // \u5b50\u96c6\u548c\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\n List<int> state,\n int target,\n int total,\n List<int> choices,\n List<List<int>> res,\n) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choices.length; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> subsetSumINaive(List<int> nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n int total = 0; // \u5143\u7d20\u548c\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, res);\n return res;\n}\n
subset_sum_i_naive.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, total: i32, choices: &[i32], res: &mut Vec<Vec<i32>>) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if total == target {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for i in 0..choices.len() {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if total + choices[i] > target {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), target, total + choices[i], choices, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec<Vec<i32>> {\n let state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let total = 0; // \u5b50\u96c6\u548c\n let mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, total, nums, &mut res);\n res\n}\n
subset_sum_i_naive.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(int target, int total, int *choices, int choicesSize) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (total == target) {\n for (int i = 0; i < stateSize; i++) {\n res[resSize][i] = state[i];\n }\n resColSizes[resSize++] = stateSize;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < choicesSize; i++) {\n // \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\n if (total + choices[i] > target) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n state[stateSize++] = choices[i];\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(target, total + choices[i], choices, choicesSize);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n stateSize--;\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvoid subsetSumINaive(int *nums, int numsSize, int target) {\n resSize = 0; // \u521d\u59cb\u5316\u89e3\u7684\u6570\u91cf\u4e3a0\n backtrack(target, 0, nums, numsSize);\n}\n
subset_sum_i_naive.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{subsetSumINaive}\n
\u5411\u4ee5\u4e0a\u4ee3\u7801\u8f93\u5165\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u8f93\u51fa\u7ed3\u679c\u4e3a \\([3, 3, 3], [4, 5], [5, 4]\\) \u3002\u867d\u7136\u6210\u529f\u627e\u51fa\u4e86\u6240\u6709\u548c\u4e3a \\(9\\) \u7684\u5b50\u96c6\uff0c\u4f46\u5176\u4e2d\u5b58\u5728\u91cd\u590d\u7684\u5b50\u96c6 \\([4, 5]\\) \u548c \\([5, 4]\\) \u3002
\u8fd9\u662f\u56e0\u4e3a\u641c\u7d22\u8fc7\u7a0b\u662f\u533a\u5206\u9009\u62e9\u987a\u5e8f\u7684\uff0c\u7136\u800c\u5b50\u96c6\u4e0d\u533a\u5206\u9009\u62e9\u987a\u5e8f\u3002\u5982\u56fe 13-10 \u6240\u793a\uff0c\u5148\u9009 \\(4\\) \u540e\u9009 \\(5\\) \u4e0e\u5148\u9009 \\(5\\) \u540e\u9009 \\(4\\) \u662f\u4e0d\u540c\u7684\u5206\u652f\uff0c\u4f46\u5bf9\u5e94\u540c\u4e00\u4e2a\u5b50\u96c6\u3002
\u56fe 13-10 \u00a0 \u5b50\u96c6\u641c\u7d22\u4e0e\u8d8a\u754c\u526a\u679d
\u4e3a\u4e86\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u601d\u8def\u662f\u5bf9\u7ed3\u679c\u5217\u8868\u8fdb\u884c\u53bb\u91cd\u3002\u4f46\u8fd9\u4e2a\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\uff0c\u6709\u4e24\u65b9\u9762\u539f\u56e0\u3002
- \u5f53\u6570\u7ec4\u5143\u7d20\u8f83\u591a\uff0c\u5c24\u5176\u662f\u5f53
target \u8f83\u5927\u65f6\uff0c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u4ea7\u751f\u5927\u91cf\u7684\u91cd\u590d\u5b50\u96c6\u3002 - \u6bd4\u8f83\u5b50\u96c6\uff08\u6570\u7ec4\uff09\u7684\u5f02\u540c\u975e\u5e38\u8017\u65f6\uff0c\u9700\u8981\u5148\u6392\u5e8f\u6570\u7ec4\uff0c\u518d\u6bd4\u8f83\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u5f02\u540c\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#2","title":"2. \u00a0 \u91cd\u590d\u5b50\u96c6\u526a\u679d","text":"\u6211\u4eec\u8003\u8651\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u901a\u8fc7\u526a\u679d\u8fdb\u884c\u53bb\u91cd\u3002\u89c2\u5bdf\u56fe 13-11 \uff0c\u91cd\u590d\u5b50\u96c6\u662f\u5728\u4ee5\u4e0d\u540c\u987a\u5e8f\u9009\u62e9\u6570\u7ec4\u5143\u7d20\u65f6\u4ea7\u751f\u7684\uff0c\u4f8b\u5982\u4ee5\u4e0b\u60c5\u51b5\u3002
- \u5f53\u7b2c\u4e00\u8f6e\u548c\u7b2c\u4e8c\u8f6e\u5206\u522b\u9009\u62e9 \\(3\\) \u548c \\(4\\) \u65f6\uff0c\u4f1a\u751f\u6210\u5305\u542b\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u6240\u6709\u5b50\u96c6\uff0c\u8bb0\u4e3a \\([3, 4, \\dots]\\) \u3002
- \u4e4b\u540e\uff0c\u5f53\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(4\\) \u65f6\uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \uff0c\u56e0\u4e3a\u8be5\u9009\u62e9\u4ea7\u751f\u7684\u5b50\u96c6 \\([4, 3, \\dots]\\) \u548c\u7b2c
1. \u6b65\u4e2d\u751f\u6210\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002
\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u6bcf\u4e00\u5c42\u7684\u9009\u62e9\u90fd\u662f\u4ece\u5de6\u5230\u53f3\u88ab\u9010\u4e2a\u5c1d\u8bd5\u7684\uff0c\u56e0\u6b64\u8d8a\u9760\u53f3\u7684\u5206\u652f\u88ab\u526a\u6389\u7684\u8d8a\u591a\u3002
- \u524d\u4e24\u8f6e\u9009\u62e9 \\(3\\) \u548c \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([3, 5, \\dots]\\) \u3002
- \u524d\u4e24\u8f6e\u9009\u62e9 \\(4\\) \u548c \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([4, 5, \\dots]\\) \u3002
- \u82e5\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(5\\) \uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \u548c \\(4\\) \uff0c\u56e0\u4e3a\u5b50\u96c6 \\([5, 3, \\dots]\\) \u548c \\([5, 4, \\dots]\\) \u4e0e\u7b2c
1. \u6b65\u548c\u7b2c 2. \u6b65\u4e2d\u63cf\u8ff0\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002
\u56fe 13-11 \u00a0 \u4e0d\u540c\u9009\u62e9\u987a\u5e8f\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6
\u603b\u7ed3\u6765\u770b\uff0c\u7ed9\u5b9a\u8f93\u5165\u6570\u7ec4 \\([x_1, x_2, \\dots, x_n]\\) \uff0c\u8bbe\u641c\u7d22\u8fc7\u7a0b\u4e2d\u7684\u9009\u62e9\u5e8f\u5217\u4e3a \\([x_{i_1}, x_{i_2}, \\dots, x_{i_m}]\\) \uff0c\u5219\u8be5\u9009\u62e9\u5e8f\u5217\u9700\u8981\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\dots \\leq i_m\\) \uff0c\u4e0d\u6ee1\u8db3\u8be5\u6761\u4ef6\u7684\u9009\u62e9\u5e8f\u5217\u90fd\u4f1a\u9020\u6210\u91cd\u590d\uff0c\u5e94\u5f53\u526a\u679d\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u4e3a\u5b9e\u73b0\u8be5\u526a\u679d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u53d8\u91cf start \uff0c\u7528\u4e8e\u6307\u793a\u904d\u5386\u8d77\u59cb\u70b9\u3002\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i\\) \u5f00\u59cb\u904d\u5386\u3002\u8fd9\u6837\u505a\u5c31\u53ef\u4ee5\u8ba9\u9009\u62e9\u5e8f\u5217\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\dots \\leq i_m\\) \uff0c\u4ece\u800c\u4fdd\u8bc1\u5b50\u96c6\u552f\u4e00\u3002
\u9664\u6b64\u4e4b\u5916\uff0c\u6211\u4eec\u8fd8\u5bf9\u4ee3\u7801\u8fdb\u884c\u4e86\u4ee5\u4e0b\u4e24\u9879\u4f18\u5316\u3002
- \u5728\u5f00\u542f\u641c\u7d22\u524d\uff0c\u5148\u5c06\u6570\u7ec4
nums \u6392\u5e8f\u3002\u5728\u904d\u5386\u6240\u6709\u9009\u62e9\u65f6\uff0c\u5f53\u5b50\u96c6\u548c\u8d85\u8fc7 target \u65f6\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\uff0c\u56e0\u4e3a\u540e\u8fb9\u7684\u5143\u7d20\u66f4\u5927\uff0c\u5176\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target \u3002 - \u7701\u53bb\u5143\u7d20\u548c\u53d8\u91cf
total \uff0c\u901a\u8fc7\u5728 target \u4e0a\u6267\u884c\u51cf\u6cd5\u6765\u7edf\u8ba1\u5143\u7d20\u548c\uff0c\u5f53 target \u7b49\u4e8e \\(0\\) \u65f6\u8bb0\u5f55\u89e3\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig subset_sum_i.pydef backtrack(\n state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n # \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0:\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n # \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i in range(start, len(choices)):\n # \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n # \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0:\n break\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop()\n\ndef subset_sum_i(nums: list[int], target: int) -> list[list[int]]:\n \"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\"\"\"\n state = [] # \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort() # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start = 0 # \u904d\u5386\u8d77\u59cb\u70b9\n res = [] # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res)\n return res\n
subset_sum_i.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.size(); i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push_back(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop_back();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvector<vector<int>> subsetSumI(vector<int> &nums, int target) {\n vector<int> state; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n vector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(new ArrayList<>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.remove(state.size() - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<Integer>> subsetSumI(int[] nums, int target) {\n List<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Arrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.Length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.Add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.RemoveAt(state.Count - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> SubsetSumI(int[] nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Array.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n Backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i := start; i < len(*choices); i++ {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target-(*choices)[i] < 0 {\n break\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n *state = append(*state, (*choices)[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n *state = (*state)[:len(*state)-1]\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums []int, target int) [][]int {\n state := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort.Ints(nums) // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start := 0 // \u904d\u5386\u8d77\u59cb\u70b9\n res := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrackSubsetSumI(start, target, &state, &nums, &res)\n return res\n}\n
subset_sum_i.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i in stride(from: start, to: choices.count, by: 1) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast()\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums: [Int], target: Int) -> [[Int]] {\n var state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\n var res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state: &state, target: target, choices: nums, start: start, res: &res)\n return res\n}\n
subset_sum_i.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, choices, start, res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums, target) {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\n state: number[],\n target: number,\n choices: number[],\n start: number,\n res: number[][]\n): void {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums: number[], target: number): number[][] {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\n List<int> state,\n int target,\n List<int> choices,\n int start,\n List<List<int>> res,\n) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> subsetSumI(List<int> nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_i.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for i in start..choices.len() {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfn subset_sum_i(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\n let state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n let mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, &mut res);\n res\n}\n
subset_sum_i.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(int target, int *choices, int choicesSize, int start) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n for (int i = 0; i < stateSize; ++i) {\n res[resSize][i] = state[i];\n }\n resColSizes[resSize++] = stateSize;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n for (int i = start; i < choicesSize; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state[stateSize] = choices[i];\n stateSize++;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(target - choices[i], choices, choicesSize, i);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n stateSize--;\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvoid subsetSumI(int *nums, int numsSize, int target) {\n qsort(nums, numsSize, sizeof(int), cmp); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n backtrack(target, nums, numsSize, start);\n}\n
subset_sum_i.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{subsetSumI}\n
\u56fe 13-12 \u6240\u793a\u4e3a\u5c06\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u8f93\u5165\u4ee5\u4e0a\u4ee3\u7801\u540e\u7684\u6574\u4f53\u56de\u6eaf\u8fc7\u7a0b\u3002
\u56fe 13-12 \u00a0 \u5b50\u96c6\u548c I \u56de\u6eaf\u8fc7\u7a0b
"},{"location":"chapter_backtracking/subset_sum_problem/#1332","title":"13.3.2 \u00a0 \u8003\u8651\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u53ef\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002
\u76f8\u6bd4\u4e8e\u4e0a\u9898\uff0c\u672c\u9898\u7684\u8f93\u5165\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd9\u5f15\u5165\u4e86\u65b0\u7684\u95ee\u9898\u3002\u4f8b\u5982\uff0c\u7ed9\u5b9a\u6570\u7ec4 \\([4, \\hat{4}, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u5219\u73b0\u6709\u4ee3\u7801\u7684\u8f93\u51fa\u7ed3\u679c\u4e3a \\([4, 5], [\\hat{4}, 5]\\) \uff0c\u51fa\u73b0\u4e86\u91cd\u590d\u5b50\u96c6\u3002
\u9020\u6210\u8fd9\u79cd\u91cd\u590d\u7684\u539f\u56e0\u662f\u76f8\u7b49\u5143\u7d20\u5728\u67d0\u8f6e\u4e2d\u88ab\u591a\u6b21\u9009\u62e9\u3002\u5728\u56fe 13-13 \u4e2d\uff0c\u7b2c\u4e00\u8f6e\u5171\u6709\u4e09\u4e2a\u9009\u62e9\uff0c\u5176\u4e2d\u4e24\u4e2a\u90fd\u4e3a \\(4\\) \uff0c\u4f1a\u4ea7\u751f\u4e24\u4e2a\u91cd\u590d\u7684\u641c\u7d22\u5206\u652f\uff0c\u4ece\u800c\u8f93\u51fa\u91cd\u590d\u5b50\u96c6\uff1b\u540c\u7406\uff0c\u7b2c\u4e8c\u8f6e\u7684\u4e24\u4e2a \\(4\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002
\u56fe 13-13 \u00a0 \u76f8\u7b49\u5143\u7d20\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6
"},{"location":"chapter_backtracking/subset_sum_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"\u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u9700\u8981\u9650\u5236\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u4e00\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u8f83\u5de7\u5999\uff1a\u7531\u4e8e\u6570\u7ec4\u662f\u5df2\u6392\u5e8f\u7684\uff0c\u56e0\u6b64\u76f8\u7b49\u5143\u7d20\u90fd\u662f\u76f8\u90bb\u7684\u3002\u8fd9\u610f\u5473\u7740\u5728\u67d0\u8f6e\u9009\u62e9\u4e2d\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u4e0e\u5176\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u5219\u8bf4\u660e\u5b83\u5df2\u7ecf\u88ab\u9009\u62e9\u8fc7\uff0c\u56e0\u6b64\u76f4\u63a5\u8df3\u8fc7\u5f53\u524d\u5143\u7d20\u3002
\u4e0e\u6b64\u540c\u65f6\uff0c\u672c\u9898\u89c4\u5b9a\u6bcf\u4e2a\u6570\u7ec4\u5143\u7d20\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5e78\u8fd0\u7684\u662f\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u5229\u7528\u53d8\u91cf start \u6765\u6ee1\u8db3\u8be5\u7ea6\u675f\uff1a\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i + 1\\) \u5f00\u59cb\u5411\u540e\u904d\u5386\u3002\u8fd9\u6837\u65e2\u80fd\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e5f\u80fd\u907f\u514d\u91cd\u590d\u9009\u62e9\u5143\u7d20\u3002
"},{"location":"chapter_backtracking/subset_sum_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"PythonC++JavaC#GoSwiftJSTSDartRustCZig subset_sum_ii.pydef backtrack(\n state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n \"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II\"\"\"\n # \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0:\n res.append(list(state))\n return\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n # \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n # \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i in range(start, len(choices)):\n # \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n # \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0:\n break\n # \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start and choices[i] == choices[i - 1]:\n continue\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n # \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res)\n # \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop()\n\ndef subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:\n \"\"\"\u6c42\u89e3\u5b50\u96c6\u548c II\"\"\"\n state = [] # \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort() # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start = 0 # \u904d\u5386\u8d77\u59cb\u70b9\n res = [] # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res)\n return res\n
subset_sum_ii.cpp/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.push_back(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.size(); i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push_back(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop_back();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvector<vector<int>> subsetSumII(vector<int> &nums, int target) {\n vector<int> state; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n vector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.java/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(new ArrayList<>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.remove(state.size() - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<Integer>> subsetSumII(int[] nums, int target) {\n List<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Arrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.cs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.Add(new List<int>(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.Length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.Add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n Backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.RemoveAt(state.Count - 1);\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> SubsetSumII(int[] nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n Array.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n Backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.go/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n newState := append([]int{}, *state...)\n *res = append(*res, newState)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i := start; i < len(*choices); i++ {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target-(*choices)[i] < 0 {\n break\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start && (*choices)[i] == (*choices)[i-1] {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n *state = append(*state, (*choices)[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n *state = (*state)[:len(*state)-1]\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums []int, target int) [][]int {\n state := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n sort.Ints(nums) // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n start := 0 // \u904d\u5386\u8d77\u59cb\u70b9\n res := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrackSubsetSumII(start, target, &state, &nums, &res)\n return res\n}\n
subset_sum_ii.swift/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.append(state)\n return\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i in stride(from: start, to: choices.count, by: 1) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start, choices[i] == choices[i - 1] {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.append(choices[i])\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res)\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast()\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums: [Int], target: Int) -> [[Int]] {\n var state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n let nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\n var res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state: &state, target: target, choices: nums, start: start, res: &res)\n return res\n}\n
subset_sum_ii.js/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(state, target, choices, start, res) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] === choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums, target) {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.ts/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(\n state: number[],\n target: number,\n choices: number[],\n start: number,\n res: number[][]\n): void {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target === 0) {\n res.push([...state]);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (let i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] === choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums: number[], target: number): number[][] {\n const state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort((a, b) => a - b); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n const start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n const res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.dart/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(\n List<int> state,\n int target,\n List<int> choices,\n int start,\n List<List<int>> res,\n) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n res.add(List.from(state));\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choices.length; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if (target - choices[i] < 0) {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.add(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state, target - choices[i], choices, i + 1, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.removeLast();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> subsetSumII(List<int> nums, int target) {\n List<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n int start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n List<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, res);\n return res;\n}\n
subset_sum_ii.rs/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if target == 0 {\n res.push(state);\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for i in start..choices.len() {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n // \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\n if target - choices[i] < 0 {\n break;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if i > start && choices[i] == choices[i - 1] {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state.push(choices[i]);\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(state.clone(), target - choices[i], choices, i, res);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n state.pop();\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\n let state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\n nums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n let start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\n let mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\n backtrack(state, target, nums, start, &mut res);\n res\n}\n
subset_sum_ii.c/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(int target, int *choices, int choicesSize, int start) {\n // \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\n if (target == 0) {\n for (int i = 0; i < stateSize; i++) {\n res[resSize][i] = state[i];\n }\n resColSizes[resSize++] = stateSize;\n return;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n // \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n // \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\n for (int i = start; i < choicesSize; i++) {\n // \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\n if (target - choices[i] < 0) {\n continue;\n }\n // \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\n if (i > start && choices[i] == choices[i - 1]) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n state[stateSize] = choices[i];\n stateSize++;\n // \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\n backtrack(target - choices[i], choices, choicesSize, i + 1);\n // \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n stateSize--;\n }\n}\n\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvoid subsetSumII(int *nums, int numsSize, int target) {\n // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\n qsort(nums, numsSize, sizeof(int), cmp);\n // \u5f00\u59cb\u56de\u6eaf\n backtrack(target, nums, numsSize, 0);\n}\n
subset_sum_ii.zig[class]{}-[func]{backtrack}\n\n[class]{}-[func]{subsetSumII}\n
\u56fe 13-14 \u5c55\u793a\u4e86\u6570\u7ec4 \\([4, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u7684\u56de\u6eaf\u8fc7\u7a0b\uff0c\u5171\u5305\u542b\u56db\u79cd\u526a\u679d\u64cd\u4f5c\u3002\u8bf7\u4f60\u5c06\u56fe\u793a\u4e0e\u4ee3\u7801\u6ce8\u91ca\u76f8\u7ed3\u5408\uff0c\u7406\u89e3\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u6bcf\u79cd\u526a\u679d\u64cd\u4f5c\u662f\u5982\u4f55\u5de5\u4f5c\u7684\u3002
\u56fe 13-14 \u00a0 \u5b50\u96c6\u548c II \u56de\u6eaf\u8fc7\u7a0b
"},{"location":"chapter_backtracking/summary/","title":"13.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_backtracking/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u662f\u7a77\u4e3e\u6cd5\uff0c\u901a\u8fc7\u5bf9\u89e3\u7a7a\u95f4\u8fdb\u884c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6765\u5bfb\u627e\u7b26\u5408\u6761\u4ef6\u7684\u89e3\u3002\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u9047\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u5219\u8bb0\u5f55\uff0c\u76f4\u81f3\u627e\u5230\u6240\u6709\u89e3\u6216\u904d\u5386\u5b8c\u6210\u540e\u7ed3\u675f\u3002
- \u56de\u6eaf\u7b97\u6cd5\u7684\u641c\u7d22\u8fc7\u7a0b\u5305\u62ec\u5c1d\u8bd5\u4e0e\u56de\u9000\u4e24\u4e2a\u90e8\u5206\u3002\u5b83\u901a\u8fc7\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u6765\u5c1d\u8bd5\u5404\u79cd\u9009\u62e9\uff0c\u5f53\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u60c5\u51b5\u65f6\uff0c\u5219\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002\u5c1d\u8bd5\u4e0e\u56de\u9000\u662f\u4e24\u4e2a\u65b9\u5411\u76f8\u53cd\u7684\u64cd\u4f5c\u3002
- \u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u5b83\u4eec\u53ef\u7528\u4e8e\u5b9e\u73b0\u526a\u679d\u64cd\u4f5c\u3002\u526a\u679d\u53ef\u4ee5\u63d0\u524d\u7ed3\u675f\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\uff0c\u5927\u5e45\u63d0\u5347\u641c\u7d22\u6548\u7387\u3002
- \u56de\u6eaf\u7b97\u6cd5\u4e3b\u8981\u53ef\u7528\u4e8e\u89e3\u51b3\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u3002\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u867d\u7136\u53ef\u4ee5\u7528\u56de\u6eaf\u7b97\u6cd5\u89e3\u51b3\uff0c\u4f46\u5f80\u5f80\u5b58\u5728\u6548\u7387\u66f4\u9ad8\u6216\u6548\u679c\u66f4\u597d\u7684\u89e3\u6cd5\u3002
- \u5168\u6392\u5217\u95ee\u9898\u65e8\u5728\u641c\u7d22\u7ed9\u5b9a\u96c6\u5408\u5143\u7d20\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e2a\u5143\u7d20\u662f\u5426\u88ab\u9009\u62e9\uff0c\u526a\u6389\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\u7684\u641c\u7d22\u5206\u652f\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002
- \u5728\u5168\u6392\u5217\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u96c6\u5408\u4e2d\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff0c\u5219\u6700\u7ec8\u7ed3\u679c\u4f1a\u51fa\u73b0\u91cd\u590d\u6392\u5217\u3002\u6211\u4eec\u9700\u8981\u7ea6\u675f\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u8fd9\u901a\u5e38\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002
- \u5b50\u96c6\u548c\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u7ed9\u5b9a\u96c6\u5408\u4e2d\u627e\u5230\u548c\u4e3a\u76ee\u6807\u503c\u7684\u6240\u6709\u5b50\u96c6\u3002\u96c6\u5408\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\uff0c\u800c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u8f93\u51fa\u6240\u6709\u987a\u5e8f\u7684\u7ed3\u679c\uff0c\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002\u6211\u4eec\u5728\u56de\u6eaf\u524d\u5c06\u6570\u636e\u8fdb\u884c\u6392\u5e8f\uff0c\u5e76\u8bbe\u7f6e\u4e00\u4e2a\u53d8\u91cf\u6765\u6307\u793a\u6bcf\u4e00\u8f6e\u7684\u904d\u5386\u8d77\u59cb\u70b9\uff0c\u4ece\u800c\u5c06\u751f\u6210\u91cd\u590d\u5b50\u96c6\u7684\u641c\u7d22\u5206\u652f\u8fdb\u884c\u526a\u679d\u3002
- \u5bf9\u4e8e\u5b50\u96c6\u548c\u95ee\u9898\uff0c\u6570\u7ec4\u4e2d\u7684\u76f8\u7b49\u5143\u7d20\u4f1a\u4ea7\u751f\u91cd\u590d\u96c6\u5408\u3002\u6211\u4eec\u5229\u7528\u6570\u7ec4\u5df2\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\uff0c\u901a\u8fc7\u5224\u65ad\u76f8\u90bb\u5143\u7d20\u662f\u5426\u76f8\u7b49\u5b9e\u73b0\u526a\u679d\uff0c\u4ece\u800c\u786e\u4fdd\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u4e2d\u4e00\u6b21\u3002
- \\(n\\) \u7687\u540e\u95ee\u9898\u65e8\u5728\u5bfb\u627e\u5c06 \\(n\\) \u4e2a\u7687\u540e\u653e\u7f6e\u5230 \\(n \\times n\\) \u5c3a\u5bf8\u68cb\u76d8\u4e0a\u7684\u65b9\u6848\uff0c\u8981\u6c42\u6240\u6709\u7687\u540e\u4e24\u4e24\u4e4b\u95f4\u65e0\u6cd5\u653b\u51fb\u5bf9\u65b9\u3002\u8be5\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6\u6709\u884c\u7ea6\u675f\u3001\u5217\u7ea6\u675f\u3001\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002\u4e3a\u6ee1\u8db3\u884c\u7ea6\u675f\uff0c\u6211\u4eec\u91c7\u7528\u6309\u884c\u653e\u7f6e\u7684\u7b56\u7565\uff0c\u4fdd\u8bc1\u6bcf\u4e00\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002
- \u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u5904\u7406\u65b9\u5f0f\u7c7b\u4f3c\u3002\u5bf9\u4e8e\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\uff0c\u4ece\u800c\u6307\u793a\u9009\u4e2d\u7684\u683c\u5b50\u662f\u5426\u5408\u6cd5\u3002\u5bf9\u4e8e\u5bf9\u89d2\u7ebf\u7ea6\u675f\uff0c\u6211\u4eec\u501f\u52a9\u4e24\u4e2a\u6570\u7ec4\u6765\u5206\u522b\u8bb0\u5f55\u8be5\u4e3b\u3001\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u5b58\u5728\u7687\u540e\uff1b\u96be\u70b9\u5728\u4e8e\u627e\u5904\u5728\u5230\u540c\u4e00\u4e3b\uff08\u526f\uff09\u5bf9\u89d2\u7ebf\u4e0a\u683c\u5b50\u6ee1\u8db3\u7684\u884c\u5217\u7d22\u5f15\u89c4\u5f8b\u3002
"},{"location":"chapter_backtracking/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u600e\u4e48\u7406\u89e3\u56de\u6eaf\u548c\u9012\u5f52\u7684\u5173\u7cfb\uff1f
\u603b\u7684\u6765\u770b\uff0c\u56de\u6eaf\u662f\u4e00\u79cd\u201c\u7b97\u6cd5\u7b56\u7565\u201d\uff0c\u800c\u9012\u5f52\u66f4\u50cf\u662f\u4e00\u4e2a\u201c\u5de5\u5177\u201d\u3002
- \u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\u3002\u7136\u800c\uff0c\u56de\u6eaf\u662f\u9012\u5f52\u7684\u5e94\u7528\u573a\u666f\u4e4b\u4e00\uff0c\u662f\u9012\u5f52\u5728\u641c\u7d22\u95ee\u9898\u4e2d\u7684\u5e94\u7528\u3002
- \u9012\u5f52\u7684\u7ed3\u6784\u4f53\u73b0\u4e86\u201c\u5b50\u95ee\u9898\u5206\u89e3\u201d\u7684\u89e3\u9898\u8303\u5f0f\uff0c\u5e38\u7528\u4e8e\u89e3\u51b3\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\uff08\u8bb0\u5fc6\u5316\u9012\u5f52\uff09\u7b49\u95ee\u9898\u3002
"},{"location":"chapter_computational_complexity/","title":"\u7b2c 2 \u7ae0 \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"Abstract
\u590d\u6742\u5ea6\u5206\u6790\u72b9\u5982\u6d69\u701a\u7684\u7b97\u6cd5\u5b87\u5b99\u4e2d\u7684\u65f6\u7a7a\u5411\u5bfc\u3002
\u5b83\u5e26\u9886\u6211\u4eec\u5728\u65f6\u95f4\u4e0e\u7a7a\u95f4\u8fd9\u4e24\u4e2a\u7ef4\u5ea6\u4e0a\u6df1\u5165\u63a2\u7d22\uff0c\u5bfb\u627e\u66f4\u4f18\u96c5\u7684\u89e3\u51b3\u65b9\u6848\u3002
"},{"location":"chapter_computational_complexity/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30
- 2.2 \u00a0 \u8fed\u4ee3\u4e0e\u9012\u5f52
- 2.3 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6
- 2.4 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6
- 2.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_computational_complexity/iteration_and_recursion/","title":"2.2 \u00a0 \u8fed\u4ee3\u4e0e\u9012\u5f52","text":"\u5728\u7b97\u6cd5\u4e2d\uff0c\u91cd\u590d\u6267\u884c\u67d0\u4e2a\u4efb\u52a1\u662f\u5f88\u5e38\u89c1\u7684\uff0c\u5b83\u4e0e\u590d\u6742\u5ea6\u5206\u6790\u606f\u606f\u76f8\u5173\u3002\u56e0\u6b64\uff0c\u5728\u4ecb\u7ecd\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e4b\u524d\uff0c\u6211\u4eec\u5148\u6765\u4e86\u89e3\u5982\u4f55\u5728\u7a0b\u5e8f\u4e2d\u5b9e\u73b0\u91cd\u590d\u6267\u884c\u4efb\u52a1\uff0c\u5373\u4e24\u79cd\u57fa\u672c\u7684\u7a0b\u5e8f\u63a7\u5236\u7ed3\u6784\uff1a\u8fed\u4ee3\u3001\u9012\u5f52\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#221","title":"2.2.1 \u00a0 \u8fed\u4ee3","text":"\u300c\u8fed\u4ee3 iteration\u300d\u662f\u4e00\u79cd\u91cd\u590d\u6267\u884c\u67d0\u4e2a\u4efb\u52a1\u7684\u63a7\u5236\u7ed3\u6784\u3002\u5728\u8fed\u4ee3\u4e2d\uff0c\u7a0b\u5e8f\u4f1a\u5728\u6ee1\u8db3\u4e00\u5b9a\u7684\u6761\u4ef6\u4e0b\u91cd\u590d\u6267\u884c\u67d0\u6bb5\u4ee3\u7801\uff0c\u76f4\u5230\u8fd9\u4e2a\u6761\u4ef6\u4e0d\u518d\u6ee1\u8db3\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1-for","title":"1. \u00a0 for \u5faa\u73af","text":"for \u5faa\u73af\u662f\u6700\u5e38\u89c1\u7684\u8fed\u4ee3\u5f62\u5f0f\u4e4b\u4e00\uff0c\u9002\u5408\u5728\u9884\u5148\u77e5\u9053\u8fed\u4ee3\u6b21\u6570\u65f6\u4f7f\u7528\u3002
\u4ee5\u4e0b\u51fd\u6570\u57fa\u4e8e for \u5faa\u73af\u5b9e\u73b0\u4e86\u6c42\u548c \\(1 + 2 + \\dots + n\\) \uff0c\u6c42\u548c\u7ed3\u679c\u4f7f\u7528\u53d8\u91cf res \u8bb0\u5f55\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0cPython \u4e2d range(a, b) \u5bf9\u5e94\u7684\u533a\u95f4\u662f\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u7684\uff0c\u5bf9\u5e94\u7684\u904d\u5386\u8303\u56f4\u4e3a \\(a, a + 1, \\dots, b-1\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef for_loop(n: int) -> int:\n \"\"\"for \u5faa\u73af\"\"\"\n res = 0\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n res += i\n return res\n
iteration.cpp/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n res += i;\n }\n return res;\n}\n
iteration.java/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.cs/* for \u5faa\u73af */\nint ForLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.go/* for \u5faa\u73af */\nfunc forLoop(n int) int {\n res := 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n res += i\n }\n return res\n}\n
iteration.swift/* for \u5faa\u73af */\nfunc forLoop(n: Int) -> Int {\n var res = 0\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1 ... n {\n res += i\n }\n return res\n}\n
iteration.js/* for \u5faa\u73af */\nfunction forLoop(n) {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.ts/* for \u5faa\u73af */\nfunction forLoop(n: number): number {\n let res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.dart/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.rs/* for \u5faa\u73af */\nfn for_loop(n: i32) -> i32 {\n let mut res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i in 1..=n {\n res += i;\n }\n res\n} \n
iteration.c/* for \u5faa\u73af */\nint forLoop(int n) {\n int res = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n res += i;\n }\n return res;\n}\n
iteration.zig// for \u5faa\u73af\nfn forLoop(n: usize) i32 {\n var res: i32 = 0;\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n res = res + @as(i32, @intCast(i));\n }\n return res;\n} \n
\u56fe 2-1 \u662f\u8be5\u6c42\u548c\u51fd\u6570\u7684\u6d41\u7a0b\u6846\u56fe\u3002
\u56fe 2-1 \u00a0 \u6c42\u548c\u51fd\u6570\u7684\u6d41\u7a0b\u6846\u56fe
\u6b64\u6c42\u548c\u51fd\u6570\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u6210\u6b63\u6bd4\uff0c\u6216\u8005\u8bf4\u6210\u201c\u7ebf\u6027\u5173\u7cfb\u201d\u3002\u5b9e\u9645\u4e0a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u63cf\u8ff0\u7684\u5c31\u662f\u8fd9\u4e2a\u201c\u7ebf\u6027\u5173\u7cfb\u201d\u3002\u76f8\u5173\u5185\u5bb9\u5c06\u4f1a\u5728\u4e0b\u4e00\u8282\u4e2d\u8be6\u7ec6\u4ecb\u7ecd\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2-while","title":"2. \u00a0 while \u5faa\u73af","text":"\u4e0e for \u5faa\u73af\u7c7b\u4f3c\uff0cwhile \u5faa\u73af\u4e5f\u662f\u4e00\u79cd\u5b9e\u73b0\u8fed\u4ee3\u7684\u65b9\u6cd5\u3002\u5728 while \u5faa\u73af\u4e2d\uff0c\u7a0b\u5e8f\u6bcf\u8f6e\u90fd\u4f1a\u5148\u68c0\u67e5\u6761\u4ef6\uff0c\u5982\u679c\u6761\u4ef6\u4e3a\u771f\uff0c\u5219\u7ee7\u7eed\u6267\u884c\uff0c\u5426\u5219\u5c31\u7ed3\u675f\u5faa\u73af\u3002
\u4e0b\u9762\u6211\u4eec\u7528 while \u5faa\u73af\u6765\u5b9e\u73b0\u6c42\u548c \\(1 + 2 + \\dots + n\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop(n: int) -> int:\n \"\"\"while \u5faa\u73af\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n:\n res += i\n i += 1 # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n return res\n
iteration.cpp/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af */\nint WhileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af */\nfunc whileLoop(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af */\nfunc whileLoop(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i\n i += 1 // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af */\nfunction whileLoop(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af */\nfunction whileLoop(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af */\nfn while_loop(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while i <= n {\n res += i;\n i += 1; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n res\n}\n
iteration.c/* while \u5faa\u73af */\nint whileLoop(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += i;\n i++; // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\nfn whileLoop(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, ..., n-1, n\n while (i <= n) {\n res += @intCast(i);\n i += 1;\n }\n return res;\n}\n
while \u5faa\u73af\u6bd4 for \u5faa\u73af\u7684\u81ea\u7531\u5ea6\u66f4\u9ad8\u3002\u5728 while \u5faa\u73af\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u81ea\u7531\u5730\u8bbe\u8ba1\u6761\u4ef6\u53d8\u91cf\u7684\u521d\u59cb\u5316\u548c\u66f4\u65b0\u6b65\u9aa4\u3002
\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u6761\u4ef6\u53d8\u91cf \\(i\\) \u6bcf\u8f6e\u8fdb\u884c\u4e24\u6b21\u66f4\u65b0\uff0c\u8fd9\u79cd\u60c5\u51b5\u5c31\u4e0d\u592a\u65b9\u4fbf\u7528 for \u5faa\u73af\u5b9e\u73b0\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef while_loop_ii(n: int) -> int:\n \"\"\"while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\"\"\"\n res = 0\n i = 1 # \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n # \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n:\n res += i\n # \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n return res\n
iteration.cpp/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.java/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.cs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint WhileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 2, 4, 5...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1; \n i *= 2;\n }\n return res;\n}\n
iteration.go/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n int) int {\n res := 0\n // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n i := 1\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n for i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++\n i *= 2\n }\n return res\n}\n
iteration.swift/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunc whileLoopII(n: Int) -> Int {\n var res = 0\n var i = 1 // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1\n i *= 2\n }\n return res\n}\n
iteration.js/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n) {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.ts/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfunction whileLoopII(n: number): number {\n let res = 0;\n let i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.dart/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.rs/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nfn while_loop_ii(n: i32) -> i32 {\n let mut res = 0;\n let mut i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while i <= n {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n res\n}\n
iteration.c/* while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09 */\nint whileLoopII(int n) {\n int res = 0;\n int i = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += i;\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i++;\n i *= 2;\n }\n return res;\n}\n
iteration.zig// while \u5faa\u73af\uff08\u4e24\u6b21\u66f4\u65b0\uff09\nfn whileLoopII(n: i32) i32 {\n var res: i32 = 0;\n var i: i32 = 1; // \u521d\u59cb\u5316\u6761\u4ef6\u53d8\u91cf\n // \u5faa\u73af\u6c42\u548c 1, 4, 10, ...\n while (i <= n) {\n res += @intCast(i);\n // \u66f4\u65b0\u6761\u4ef6\u53d8\u91cf\n i += 1;\n i *= 2;\n }\n return res;\n}\n
\u603b\u7684\u6765\u8bf4\uff0cfor \u5faa\u73af\u7684\u4ee3\u7801\u66f4\u52a0\u7d27\u51d1\uff0cwhile \u5faa\u73af\u66f4\u52a0\u7075\u6d3b\uff0c\u4e24\u8005\u90fd\u53ef\u4ee5\u5b9e\u73b0\u8fed\u4ee3\u7ed3\u6784\u3002\u9009\u62e9\u4f7f\u7528\u54ea\u4e00\u4e2a\u5e94\u8be5\u6839\u636e\u7279\u5b9a\u95ee\u9898\u7684\u9700\u6c42\u6765\u51b3\u5b9a\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3","title":"3. \u00a0 \u5d4c\u5957\u5faa\u73af","text":"\u6211\u4eec\u53ef\u4ee5\u5728\u4e00\u4e2a\u5faa\u73af\u7ed3\u6784\u5185\u5d4c\u5957\u53e6\u4e00\u4e2a\u5faa\u73af\u7ed3\u6784\uff0c\u4e0b\u9762\u4ee5 for \u5faa\u73af\u4e3a\u4f8b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig iteration.pydef nested_for_loop(n: int) -> str:\n \"\"\"\u53cc\u5c42 for \u5faa\u73af\"\"\"\n res = \"\"\n # \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in range(1, n + 1):\n # \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in range(1, n + 1):\n res += f\"({i}, {j}), \"\n return res\n
iteration.cpp/* \u53cc\u5c42 for \u5faa\u73af */\nstring nestedForLoop(int n) {\n ostringstream res;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; ++i) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; ++j) {\n res << \"(\" << i << \", \" << j << \"), \";\n }\n }\n return res.str();\n}\n
iteration.java/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n StringBuilder res = new StringBuilder();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.append(\"(\" + i + \", \" + j + \"), \");\n }\n }\n return res.toString();\n}\n
iteration.cs/* \u53cc\u5c42 for \u5faa\u73af */\nstring NestedForLoop(int n) {\n StringBuilder res = new();\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res.Append($\"({i}, {j}), \");\n }\n }\n return res.ToString();\n}\n
iteration.go/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n int) string {\n res := \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i := 1; i <= n; i++ {\n for j := 1; j <= n; j++ {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n res += fmt.Sprintf(\"(%d, %d), \", i, j)\n }\n }\n return res\n}\n
iteration.swift/* \u53cc\u5c42 for \u5faa\u73af */\nfunc nestedForLoop(n: Int) -> String {\n var res = \"\"\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1 ... n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1 ... n {\n res.append(\"(\\(i), \\(j)), \")\n }\n }\n return res\n}\n
iteration.js/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n) {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.ts/* \u53cc\u5c42 for \u5faa\u73af */\nfunction nestedForLoop(n: number): string {\n let res = '';\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (let i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (let j = 1; j <= n; j++) {\n res += `(${i}, ${j}), `;\n }\n }\n return res;\n}\n
iteration.dart/* \u53cc\u5c42 for \u5faa\u73af */\nString nestedForLoop(int n) {\n String res = \"\";\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n res += \"($i, $j), \";\n }\n }\n return res;\n}\n
iteration.rs/* \u53cc\u5c42 for \u5faa\u73af */\nfn nested_for_loop(n: i32) -> String {\n let mut res = vec![];\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for i in 1..=n {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for j in 1..=n {\n res.push(format!(\"({}, {}), \", i, j));\n }\n }\n res.join(\"\")\n}\n
iteration.c/* \u53cc\u5c42 for \u5faa\u73af */\nchar *nestedForLoop(int n) {\n // n * n \u4e3a\u5bf9\u5e94\u70b9\u6570\u91cf\uff0c\"(i, j), \" \u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u6700\u5927\u4e3a 6+10*2\uff0c\u52a0\u4e0a\u6700\u540e\u4e00\u4e2a\u7a7a\u5b57\u7b26 \\0 \u7684\u989d\u5916\u7a7a\u95f4\n int size = n * n * 26 + 1;\n char *res = malloc(size * sizeof(char));\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (int i = 1; i <= n; i++) {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (int j = 1; j <= n; j++) {\n char tmp[26];\n snprintf(tmp, sizeof(tmp), \"(%d, %d), \", i, j);\n strncat(res, tmp, size - strlen(res) - 1);\n }\n }\n return res;\n}\n
iteration.zig// \u53cc\u5c42 for \u5faa\u73af\nfn nestedForLoop(allocator: Allocator, n: usize) ![]const u8 {\n var res = std.ArrayList(u8).init(allocator);\n defer res.deinit();\n var buffer: [20]u8 = undefined;\n // \u5faa\u73af i = 1, 2, ..., n-1, n\n for (1..n+1) |i| {\n // \u5faa\u73af j = 1, 2, ..., n-1, n\n for (1..n+1) |j| {\n var _str = try std.fmt.bufPrint(&buffer, \"({d}, {d}), \", .{i, j});\n try res.appendSlice(_str);\n }\n }\n return res.toOwnedSlice();\n}\n
\u56fe 2-2 \u662f\u8be5\u5d4c\u5957\u5faa\u73af\u7684\u6d41\u7a0b\u6846\u56fe\u3002
\u56fe 2-2 \u00a0 \u5d4c\u5957\u5faa\u73af\u7684\u6d41\u7a0b\u6846\u56fe
\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u51fd\u6570\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e \\(n^2\\) \u6210\u6b63\u6bd4\uff0c\u6216\u8005\u8bf4\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u548c\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u6210\u201c\u5e73\u65b9\u5173\u7cfb\u201d\u3002
\u6211\u4eec\u53ef\u4ee5\u7ee7\u7eed\u6dfb\u52a0\u5d4c\u5957\u5faa\u73af\uff0c\u6bcf\u4e00\u6b21\u5d4c\u5957\u90fd\u662f\u4e00\u6b21\u201c\u5347\u7ef4\u201d\uff0c\u5c06\u4f1a\u4f7f\u65f6\u95f4\u590d\u6742\u5ea6\u63d0\u9ad8\u81f3\u201c\u7acb\u65b9\u5173\u7cfb\u201d\u201c\u56db\u6b21\u65b9\u5173\u7cfb\u201d\uff0c\u4ee5\u6b64\u7c7b\u63a8\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#222","title":"2.2.2 \u00a0 \u9012\u5f52","text":"\u300c\u9012\u5f52 recursion\u300d\u662f\u4e00\u79cd\u7b97\u6cd5\u7b56\u7565\uff0c\u901a\u8fc7\u51fd\u6570\u8c03\u7528\u81ea\u8eab\u6765\u89e3\u51b3\u95ee\u9898\u3002\u5b83\u4e3b\u8981\u5305\u542b\u4e24\u4e2a\u9636\u6bb5\u3002
- \u9012\uff1a\u7a0b\u5e8f\u4e0d\u65ad\u6df1\u5165\u5730\u8c03\u7528\u81ea\u8eab\uff0c\u901a\u5e38\u4f20\u5165\u66f4\u5c0f\u6216\u66f4\u7b80\u5316\u7684\u53c2\u6570\uff0c\u76f4\u5230\u8fbe\u5230\u201c\u7ec8\u6b62\u6761\u4ef6\u201d\u3002
- \u5f52\uff1a\u89e6\u53d1\u201c\u7ec8\u6b62\u6761\u4ef6\u201d\u540e\uff0c\u7a0b\u5e8f\u4ece\u6700\u6df1\u5c42\u7684\u9012\u5f52\u51fd\u6570\u5f00\u59cb\u9010\u5c42\u8fd4\u56de\uff0c\u6c47\u805a\u6bcf\u4e00\u5c42\u7684\u7ed3\u679c\u3002
\u800c\u4ece\u5b9e\u73b0\u7684\u89d2\u5ea6\u770b\uff0c\u9012\u5f52\u4ee3\u7801\u4e3b\u8981\u5305\u542b\u4e09\u4e2a\u8981\u7d20\u3002
- \u7ec8\u6b62\u6761\u4ef6\uff1a\u7528\u4e8e\u51b3\u5b9a\u4ec0\u4e48\u65f6\u5019\u7531\u201c\u9012\u201d\u8f6c\u201c\u5f52\u201d\u3002
- \u9012\u5f52\u8c03\u7528\uff1a\u5bf9\u5e94\u201c\u9012\u201d\uff0c\u51fd\u6570\u8c03\u7528\u81ea\u8eab\uff0c\u901a\u5e38\u8f93\u5165\u66f4\u5c0f\u6216\u66f4\u7b80\u5316\u7684\u53c2\u6570\u3002
- \u8fd4\u56de\u7ed3\u679c\uff1a\u5bf9\u5e94\u201c\u5f52\u201d\uff0c\u5c06\u5f53\u524d\u9012\u5f52\u5c42\u7ea7\u7684\u7ed3\u679c\u8fd4\u56de\u81f3\u4e0a\u4e00\u5c42\u3002
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6211\u4eec\u53ea\u9700\u8c03\u7528\u51fd\u6570 recur(n) \uff0c\u5c31\u53ef\u4ee5\u5b8c\u6210 \\(1 + 2 + \\dots + n\\) \u7684\u8ba1\u7b97\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef recur(n: int) -> int:\n \"\"\"\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 1:\n return 1\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res = recur(n - 1)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n
recursion.cpp/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.java/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.cs/* \u9012\u5f52 */\nint Recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = Recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.go/* \u9012\u5f52 */\nfunc recur(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n res := recur(n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.swift/* \u9012\u5f52 */\nfunc recur(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n: n - 1)\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res\n}\n
recursion.js/* \u9012\u5f52 */\nfunction recur(n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.ts/* \u9012\u5f52 */\nfunction recur(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n const res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.dart/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.rs/* \u9012\u5f52 */\nfn recur(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 1 {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n let res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n n + res\n}\n
recursion.c/* \u9012\u5f52 */\nint recur(int n) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1)\n return 1;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n int res = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
recursion.zig// \u9012\u5f52\u51fd\u6570\nfn recur(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 1) {\n return 1;\n }\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var res: i32 = recur(n - 1);\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n return n + res;\n}\n
\u56fe 2-3 \u5c55\u793a\u4e86\u8be5\u51fd\u6570\u7684\u9012\u5f52\u8fc7\u7a0b\u3002
\u56fe 2-3 \u00a0 \u6c42\u548c\u51fd\u6570\u7684\u9012\u5f52\u8fc7\u7a0b
\u867d\u7136\u4ece\u8ba1\u7b97\u89d2\u5ea6\u770b\uff0c\u8fed\u4ee3\u4e0e\u9012\u5f52\u53ef\u4ee5\u5f97\u5230\u76f8\u540c\u7684\u7ed3\u679c\uff0c\u4f46\u5b83\u4eec\u4ee3\u8868\u4e86\u4e24\u79cd\u5b8c\u5168\u4e0d\u540c\u7684\u601d\u8003\u548c\u89e3\u51b3\u95ee\u9898\u7684\u8303\u5f0f\u3002
- \u8fed\u4ee3\uff1a\u201c\u81ea\u4e0b\u800c\u4e0a\u201d\u5730\u89e3\u51b3\u95ee\u9898\u3002\u4ece\u6700\u57fa\u7840\u7684\u6b65\u9aa4\u5f00\u59cb\uff0c\u7136\u540e\u4e0d\u65ad\u91cd\u590d\u6216\u7d2f\u52a0\u8fd9\u4e9b\u6b65\u9aa4\uff0c\u76f4\u5230\u4efb\u52a1\u5b8c\u6210\u3002
- \u9012\u5f52\uff1a\u201c\u81ea\u4e0a\u800c\u4e0b\u201d\u5730\u89e3\u51b3\u95ee\u9898\u3002\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u8fd9\u4e9b\u5b50\u95ee\u9898\u548c\u539f\u95ee\u9898\u5177\u6709\u76f8\u540c\u7684\u5f62\u5f0f\u3002\u63a5\u4e0b\u6765\u5c06\u5b50\u95ee\u9898\u7ee7\u7eed\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u5230\u57fa\u672c\u60c5\u51b5\u65f6\u505c\u6b62\uff08\u57fa\u672c\u60c5\u51b5\u7684\u89e3\u662f\u5df2\u77e5\u7684\uff09\u3002
\u4ee5\u4e0a\u8ff0\u6c42\u548c\u51fd\u6570\u4e3a\u4f8b\uff0c\u8bbe\u95ee\u9898 \\(f(n) = 1 + 2 + \\dots + n\\) \u3002
- \u8fed\u4ee3\uff1a\u5728\u5faa\u73af\u4e2d\u6a21\u62df\u6c42\u548c\u8fc7\u7a0b\uff0c\u4ece \\(1\\) \u904d\u5386\u5230 \\(n\\) \uff0c\u6bcf\u8f6e\u6267\u884c\u6c42\u548c\u64cd\u4f5c\uff0c\u5373\u53ef\u6c42\u5f97 \\(f(n)\\) \u3002
- \u9012\u5f52\uff1a\u5c06\u95ee\u9898\u5206\u89e3\u4e3a\u5b50\u95ee\u9898 \\(f(n) = n + f(n-1)\\) \uff0c\u4e0d\u65ad\uff08\u9012\u5f52\u5730\uff09\u5206\u89e3\u4e0b\u53bb\uff0c\u76f4\u81f3\u57fa\u672c\u60c5\u51b5 \\(f(1) = 1\\) \u65f6\u7ec8\u6b62\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#1","title":"1. \u00a0 \u8c03\u7528\u6808","text":"\u9012\u5f52\u51fd\u6570\u6bcf\u6b21\u8c03\u7528\u81ea\u8eab\u65f6\uff0c\u7cfb\u7edf\u90fd\u4f1a\u4e3a\u65b0\u5f00\u542f\u7684\u51fd\u6570\u5206\u914d\u5185\u5b58\uff0c\u4ee5\u5b58\u50a8\u5c40\u90e8\u53d8\u91cf\u3001\u8c03\u7528\u5730\u5740\u548c\u5176\u4ed6\u4fe1\u606f\u7b49\u3002\u8fd9\u5c06\u5bfc\u81f4\u4e24\u65b9\u9762\u7684\u7ed3\u679c\u3002
- \u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u6570\u636e\u90fd\u5b58\u50a8\u5728\u79f0\u4e3a\u201c\u6808\u5e27\u7a7a\u95f4\u201d\u7684\u5185\u5b58\u533a\u57df\u4e2d\uff0c\u76f4\u81f3\u51fd\u6570\u8fd4\u56de\u540e\u624d\u4f1a\u88ab\u91ca\u653e\u3002\u56e0\u6b64\uff0c\u9012\u5f52\u901a\u5e38\u6bd4\u8fed\u4ee3\u66f4\u52a0\u8017\u8d39\u5185\u5b58\u7a7a\u95f4\u3002
- \u9012\u5f52\u8c03\u7528\u51fd\u6570\u4f1a\u4ea7\u751f\u989d\u5916\u7684\u5f00\u9500\u3002\u56e0\u6b64\u9012\u5f52\u901a\u5e38\u6bd4\u5faa\u73af\u7684\u65f6\u95f4\u6548\u7387\u66f4\u4f4e\u3002
\u5982\u56fe 2-4 \u6240\u793a\uff0c\u5728\u89e6\u53d1\u7ec8\u6b62\u6761\u4ef6\u524d\uff0c\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684\u9012\u5f52\u51fd\u6570\uff0c\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \u3002
\u56fe 2-4 \u00a0 \u9012\u5f52\u8c03\u7528\u6df1\u5ea6
\u5728\u5b9e\u9645\u4e2d\uff0c\u7f16\u7a0b\u8bed\u8a00\u5141\u8bb8\u7684\u9012\u5f52\u6df1\u5ea6\u901a\u5e38\u662f\u6709\u9650\u7684\uff0c\u8fc7\u6df1\u7684\u9012\u5f52\u53ef\u80fd\u5bfc\u81f4\u6808\u6ea2\u51fa\u9519\u8bef\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#2","title":"2. \u00a0 \u5c3e\u9012\u5f52","text":"\u6709\u8da3\u7684\u662f\uff0c\u5982\u679c\u51fd\u6570\u5728\u8fd4\u56de\u524d\u7684\u6700\u540e\u4e00\u6b65\u624d\u8fdb\u884c\u9012\u5f52\u8c03\u7528\uff0c\u5219\u8be5\u51fd\u6570\u53ef\u4ee5\u88ab\u7f16\u8bd1\u5668\u6216\u89e3\u91ca\u5668\u4f18\u5316\uff0c\u4f7f\u5176\u5728\u7a7a\u95f4\u6548\u7387\u4e0a\u4e0e\u8fed\u4ee3\u76f8\u5f53\u3002\u8fd9\u79cd\u60c5\u51b5\u88ab\u79f0\u4e3a\u300c\u5c3e\u9012\u5f52 tail recursion\u300d\u3002
- \u666e\u901a\u9012\u5f52\uff1a\u5f53\u51fd\u6570\u8fd4\u56de\u5230\u4e0a\u4e00\u5c42\u7ea7\u7684\u51fd\u6570\u540e\uff0c\u9700\u8981\u7ee7\u7eed\u6267\u884c\u4ee3\u7801\uff0c\u56e0\u6b64\u7cfb\u7edf\u9700\u8981\u4fdd\u5b58\u4e0a\u4e00\u5c42\u8c03\u7528\u7684\u4e0a\u4e0b\u6587\u3002
- \u5c3e\u9012\u5f52\uff1a\u9012\u5f52\u8c03\u7528\u662f\u51fd\u6570\u8fd4\u56de\u524d\u7684\u6700\u540e\u4e00\u4e2a\u64cd\u4f5c\uff0c\u8fd9\u610f\u5473\u7740\u51fd\u6570\u8fd4\u56de\u5230\u4e0a\u4e00\u5c42\u7ea7\u540e\uff0c\u65e0\u987b\u7ee7\u7eed\u6267\u884c\u5176\u4ed6\u64cd\u4f5c\uff0c\u56e0\u6b64\u7cfb\u7edf\u65e0\u987b\u4fdd\u5b58\u4e0a\u4e00\u5c42\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u3002
\u4ee5\u8ba1\u7b97 \\(1 + 2 + \\dots + n\\) \u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u7ed3\u679c\u53d8\u91cf res \u8bbe\u4e3a\u51fd\u6570\u53c2\u6570\uff0c\u4ece\u800c\u5b9e\u73b0\u5c3e\u9012\u5f52\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef tail_recur(n, res):\n \"\"\"\u5c3e\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if n == 0:\n return res\n # \u5c3e\u9012\u5f52\u8c03\u7528\n return tail_recur(n - 1, res + n)\n
recursion.cpp/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.java/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.cs/* \u5c3e\u9012\u5f52 */\nint TailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return TailRecur(n - 1, res + n);\n}\n
recursion.go/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n int, res int) int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n-1, res+n)\n}\n
recursion.swift/* \u5c3e\u9012\u5f52 */\nfunc tailRecur(n: Int, res: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n: n - 1, res: res + n)\n}\n
recursion.js/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n, res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.ts/* \u5c3e\u9012\u5f52 */\nfunction tailRecur(n: number, res: number): number {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n === 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.dart/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.rs/* \u5c3e\u9012\u5f52 */\nfn tail_recur(n: i32, res: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if n == 0 {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n tail_recur(n - 1, res + n)\n}\n
recursion.c/* \u5c3e\u9012\u5f52 */\nint tailRecur(int n, int res) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0)\n return res;\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
recursion.zig// \u5c3e\u9012\u5f52\u51fd\u6570\nfn tailRecur(n: i32, res: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6\n if (n == 0) {\n return res;\n }\n // \u5c3e\u9012\u5f52\u8c03\u7528\n return tailRecur(n - 1, res + n);\n}\n
\u5c3e\u9012\u5f52\u7684\u6267\u884c\u8fc7\u7a0b\u5982\u56fe 2-5 \u6240\u793a\u3002\u5bf9\u6bd4\u666e\u901a\u9012\u5f52\u548c\u5c3e\u9012\u5f52\uff0c\u4e24\u8005\u7684\u6c42\u548c\u64cd\u4f5c\u7684\u6267\u884c\u70b9\u662f\u4e0d\u540c\u7684\u3002
- \u666e\u901a\u9012\u5f52\uff1a\u6c42\u548c\u64cd\u4f5c\u662f\u5728\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u4e2d\u6267\u884c\u7684\uff0c\u6bcf\u5c42\u8fd4\u56de\u540e\u90fd\u8981\u518d\u6267\u884c\u4e00\u6b21\u6c42\u548c\u64cd\u4f5c\u3002
- \u5c3e\u9012\u5f52\uff1a\u6c42\u548c\u64cd\u4f5c\u662f\u5728\u201c\u9012\u201d\u7684\u8fc7\u7a0b\u4e2d\u6267\u884c\u7684\uff0c\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u53ea\u9700\u5c42\u5c42\u8fd4\u56de\u3002
\u56fe 2-5 \u00a0 \u5c3e\u9012\u5f52\u8fc7\u7a0b
Tip
\u8bf7\u6ce8\u610f\uff0c\u8bb8\u591a\u7f16\u8bd1\u5668\u6216\u89e3\u91ca\u5668\u5e76\u4e0d\u652f\u6301\u5c3e\u9012\u5f52\u4f18\u5316\u3002\u4f8b\u5982\uff0cPython \u9ed8\u8ba4\u4e0d\u652f\u6301\u5c3e\u9012\u5f52\u4f18\u5316\uff0c\u56e0\u6b64\u5373\u4f7f\u51fd\u6570\u662f\u5c3e\u9012\u5f52\u5f62\u5f0f\uff0c\u4ecd\u7136\u53ef\u80fd\u4f1a\u9047\u5230\u6808\u6ea2\u51fa\u95ee\u9898\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#3_1","title":"3. \u00a0 \u9012\u5f52\u6811","text":"\u5f53\u5904\u7406\u4e0e\u201c\u5206\u6cbb\u201d\u76f8\u5173\u7684\u7b97\u6cd5\u95ee\u9898\u65f6\uff0c\u9012\u5f52\u5f80\u5f80\u6bd4\u8fed\u4ee3\u7684\u601d\u8def\u66f4\u52a0\u76f4\u89c2\u3001\u4ee3\u7801\u66f4\u52a0\u6613\u8bfb\u3002\u4ee5\u201c\u6590\u6ce2\u90a3\u5951\u6570\u5217\u201d\u4e3a\u4f8b\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u6590\u6ce2\u90a3\u5951\u6570\u5217 \\(0, 1, 1, 2, 3, 5, 8, 13, \\dots\\) \uff0c\u6c42\u8be5\u6570\u5217\u7684\u7b2c \\(n\\) \u4e2a\u6570\u5b57\u3002
\u8bbe\u6590\u6ce2\u90a3\u5951\u6570\u5217\u7684\u7b2c \\(n\\) \u4e2a\u6570\u5b57\u4e3a \\(f(n)\\) \uff0c\u6613\u5f97\u4e24\u4e2a\u7ed3\u8bba\u3002
- \u6570\u5217\u7684\u524d\u4e24\u4e2a\u6570\u5b57\u4e3a \\(f(1) = 0\\) \u548c \\(f(2) = 1\\) \u3002
- \u6570\u5217\u4e2d\u7684\u6bcf\u4e2a\u6570\u5b57\u662f\u524d\u4e24\u4e2a\u6570\u5b57\u7684\u548c\uff0c\u5373 \\(f(n) = f(n - 1) + f(n - 2)\\) \u3002
\u6309\u7167\u9012\u63a8\u5173\u7cfb\u8fdb\u884c\u9012\u5f52\u8c03\u7528\uff0c\u5c06\u524d\u4e24\u4e2a\u6570\u5b57\u4f5c\u4e3a\u7ec8\u6b62\u6761\u4ef6\uff0c\u4fbf\u53ef\u5199\u51fa\u9012\u5f52\u4ee3\u7801\u3002\u8c03\u7528 fib(n) \u5373\u53ef\u5f97\u5230\u6590\u6ce2\u90a3\u5951\u6570\u5217\u7684\u7b2c \\(n\\) \u4e2a\u6570\u5b57\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef fib(n: int) -> int:\n \"\"\"\u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 or n == 2:\n return n - 1\n # \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res = fib(n - 1) + fib(n - 2)\n # \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n
recursion.cpp/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.java/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.cs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint Fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = Fib(n - 1) + Fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.go/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n int) int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n res := fib(n-1) + fib(n-2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.swift/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunc fib(n: Int) -> Int {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n: n - 1) + fib(n: n - 2)\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res\n}\n
recursion.js/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.ts/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfunction fib(n: number): number {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n === 1 || n === 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n const res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.dart/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2) return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.rs/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nfn fib(n: i32) -> i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if n == 1 || n == 2 {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n let res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c\n res\n}\n
recursion.c/* \u6590\u6ce2\u90a3\u5951\u6570\u5217\uff1a\u9012\u5f52 */\nint fib(int n) {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 || n == 2)\n return n - 1;\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n int res = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
recursion.zig// \u6590\u6ce2\u90a3\u5951\u6570\u5217\nfn fib(n: i32) i32 {\n // \u7ec8\u6b62\u6761\u4ef6 f(1) = 0, f(2) = 1\n if (n == 1 or n == 2) {\n return n - 1;\n }\n // \u9012\u5f52\u8c03\u7528 f(n) = f(n-1) + f(n-2)\n var res: i32 = fib(n - 1) + fib(n - 2);\n // \u8fd4\u56de\u7ed3\u679c f(n)\n return res;\n}\n
\u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u6211\u4eec\u5728\u51fd\u6570\u5185\u9012\u5f52\u8c03\u7528\u4e86\u4e24\u4e2a\u51fd\u6570\uff0c\u8fd9\u610f\u5473\u7740\u4ece\u4e00\u4e2a\u8c03\u7528\u4ea7\u751f\u4e86\u4e24\u4e2a\u8c03\u7528\u5206\u652f\u3002\u5982\u56fe 2-6 \u6240\u793a\uff0c\u8fd9\u6837\u4e0d\u65ad\u9012\u5f52\u8c03\u7528\u4e0b\u53bb\uff0c\u6700\u7ec8\u5c06\u4ea7\u751f\u4e00\u68f5\u5c42\u6570\u4e3a \\(n\\) \u7684\u300c\u9012\u5f52\u6811 recursion tree\u300d\u3002
\u56fe 2-6 \u00a0 \u6590\u6ce2\u90a3\u5951\u6570\u5217\u7684\u9012\u5f52\u6811
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u9012\u5f52\u4f53\u73b0\u4e86\u201c\u5c06\u95ee\u9898\u5206\u89e3\u4e3a\u66f4\u5c0f\u5b50\u95ee\u9898\u201d\u7684\u601d\u7ef4\u8303\u5f0f\uff0c\u8fd9\u79cd\u5206\u6cbb\u7b56\u7565\u81f3\u5173\u91cd\u8981\u3002
- \u4ece\u7b97\u6cd5\u89d2\u5ea6\u770b\uff0c\u641c\u7d22\u3001\u6392\u5e8f\u3001\u56de\u6eaf\u3001\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u7b49\u8bb8\u591a\u91cd\u8981\u7b97\u6cd5\u7b56\u7565\u76f4\u63a5\u6216\u95f4\u63a5\u5730\u5e94\u7528\u4e86\u8fd9\u79cd\u601d\u7ef4\u65b9\u5f0f\u3002
- \u4ece\u6570\u636e\u7ed3\u6784\u89d2\u5ea6\u770b\uff0c\u9012\u5f52\u5929\u7136\u9002\u5408\u5904\u7406\u94fe\u8868\u3001\u6811\u548c\u56fe\u7684\u76f8\u5173\u95ee\u9898\uff0c\u56e0\u4e3a\u5b83\u4eec\u975e\u5e38\u9002\u5408\u7528\u5206\u6cbb\u601d\u60f3\u8fdb\u884c\u5206\u6790\u3002
"},{"location":"chapter_computational_complexity/iteration_and_recursion/#223","title":"2.2.3 \u00a0 \u4e24\u8005\u5bf9\u6bd4","text":"\u603b\u7ed3\u4ee5\u4e0a\u5185\u5bb9\uff0c\u5982\u8868 2-1 \u6240\u793a\uff0c\u8fed\u4ee3\u548c\u9012\u5f52\u5728\u5b9e\u73b0\u3001\u6027\u80fd\u548c\u9002\u7528\u6027\u4e0a\u6709\u6240\u4e0d\u540c\u3002
\u8868 2-1 \u00a0 \u8fed\u4ee3\u4e0e\u9012\u5f52\u7279\u70b9\u5bf9\u6bd4
\u8fed\u4ee3 \u9012\u5f52 \u5b9e\u73b0\u65b9\u5f0f \u5faa\u73af\u7ed3\u6784 \u51fd\u6570\u8c03\u7528\u81ea\u8eab \u65f6\u95f4\u6548\u7387 \u6548\u7387\u901a\u5e38\u8f83\u9ad8\uff0c\u65e0\u51fd\u6570\u8c03\u7528\u5f00\u9500 \u6bcf\u6b21\u51fd\u6570\u8c03\u7528\u90fd\u4f1a\u4ea7\u751f\u5f00\u9500 \u5185\u5b58\u4f7f\u7528 \u901a\u5e38\u4f7f\u7528\u56fa\u5b9a\u5927\u5c0f\u7684\u5185\u5b58\u7a7a\u95f4 \u7d2f\u79ef\u51fd\u6570\u8c03\u7528\u53ef\u80fd\u4f7f\u7528\u5927\u91cf\u7684\u6808\u5e27\u7a7a\u95f4 \u9002\u7528\u95ee\u9898 \u9002\u7528\u4e8e\u7b80\u5355\u5faa\u73af\u4efb\u52a1\uff0c\u4ee3\u7801\u76f4\u89c2\u3001\u53ef\u8bfb\u6027\u597d \u9002\u7528\u4e8e\u5b50\u95ee\u9898\u5206\u89e3\uff0c\u5982\u6811\u3001\u56fe\u3001\u5206\u6cbb\u3001\u56de\u6eaf\u7b49\uff0c\u4ee3\u7801\u7ed3\u6784\u7b80\u6d01\u3001\u6e05\u6670 Tip
\u5982\u679c\u611f\u89c9\u4ee5\u4e0b\u5185\u5bb9\u7406\u89e3\u56f0\u96be\uff0c\u53ef\u4ee5\u5728\u8bfb\u5b8c\u201c\u6808\u201d\u7ae0\u8282\u540e\u518d\u6765\u590d\u4e60\u3002
\u90a3\u4e48\uff0c\u8fed\u4ee3\u548c\u9012\u5f52\u5177\u6709\u4ec0\u4e48\u5185\u5728\u8054\u7cfb\u5462\uff1f\u4ee5\u4e0a\u8ff0\u9012\u5f52\u51fd\u6570\u4e3a\u4f8b\uff0c\u6c42\u548c\u64cd\u4f5c\u5728\u9012\u5f52\u7684\u201c\u5f52\u201d\u9636\u6bb5\u8fdb\u884c\u3002\u8fd9\u610f\u5473\u7740\u6700\u521d\u88ab\u8c03\u7528\u7684\u51fd\u6570\u5b9e\u9645\u4e0a\u662f\u6700\u540e\u5b8c\u6210\u5176\u6c42\u548c\u64cd\u4f5c\u7684\uff0c\u8fd9\u79cd\u5de5\u4f5c\u673a\u5236\u4e0e\u6808\u7684\u201c\u5148\u5165\u540e\u51fa\u201d\u539f\u5219\u5f02\u66f2\u540c\u5de5\u3002
\u4e8b\u5b9e\u4e0a\uff0c\u201c\u8c03\u7528\u6808\u201d\u548c\u201c\u6808\u5e27\u7a7a\u95f4\u201d\u8fd9\u7c7b\u9012\u5f52\u672f\u8bed\u5df2\u7ecf\u6697\u793a\u4e86\u9012\u5f52\u4e0e\u6808\u4e4b\u95f4\u7684\u5bc6\u5207\u5173\u7cfb\u3002
- \u9012\uff1a\u5f53\u51fd\u6570\u88ab\u8c03\u7528\u65f6\uff0c\u7cfb\u7edf\u4f1a\u5728\u201c\u8c03\u7528\u6808\u201d\u4e0a\u4e3a\u8be5\u51fd\u6570\u5206\u914d\u65b0\u7684\u6808\u5e27\uff0c\u7528\u4e8e\u5b58\u50a8\u51fd\u6570\u7684\u5c40\u90e8\u53d8\u91cf\u3001\u53c2\u6570\u3001\u8fd4\u56de\u5730\u5740\u7b49\u6570\u636e\u3002
- \u5f52\uff1a\u5f53\u51fd\u6570\u5b8c\u6210\u6267\u884c\u5e76\u8fd4\u56de\u65f6\uff0c\u5bf9\u5e94\u7684\u6808\u5e27\u4f1a\u88ab\u4ece\u201c\u8c03\u7528\u6808\u201d\u4e0a\u79fb\u9664\uff0c\u6062\u590d\u4e4b\u524d\u51fd\u6570\u7684\u6267\u884c\u73af\u5883\u3002
\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u8c03\u7528\u6808\u7684\u884c\u4e3a\uff0c\u4ece\u800c\u5c06\u9012\u5f52\u8f6c\u5316\u4e3a\u8fed\u4ee3\u5f62\u5f0f\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig recursion.pydef for_loop_recur(n: int) -> int:\n \"\"\"\u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\"\"\"\n # \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack = []\n res = 0\n # \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in range(n, 0, -1):\n # \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n # \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while stack:\n # \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop()\n # res = 1+2+3+...+n\n return res\n
recursion.cpp/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack<int> stack;\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.empty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.top();\n stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.java/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<Integer> stack = new Stack<>();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty()) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.cs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint ForLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n Stack<int> stack = new();\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.Push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.Count > 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.go/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n int) int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n stack := list.New()\n res := 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i := n; i > 0; i-- {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.PushBack(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n for stack.Len() != 0 {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.Back().Value.(int)\n stack.Remove(stack.Back())\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.swift/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunc forLoopRecur(n: Int) -> Int {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [Int] = []\n var res = 0\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in stride(from: n, to: 0, by: -1) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.append(i)\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.isEmpty {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast()\n }\n // res = 1+2+3+...+n\n return res\n}\n
recursion.js/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n const stack = [];\n let res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.ts/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfunction forLoopRecur(n: number): number {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808 \n const stack: number[] = [];\n let res: number = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (let i = 1; i <= n; i++) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (stack.length) { \n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.dart/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n List<int> stack = [];\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.add(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (!stack.isEmpty) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.removeLast();\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.rs/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nfn for_loop_recur(n: i32) -> i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n let mut stack = Vec::new();\n let mut res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for i in (1..=n).rev() {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack.push(i);\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while !stack.is_empty() {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack.pop().unwrap();\n }\n // res = 1+2+3+...+n\n res\n}\n
recursion.c/* \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52 */\nint forLoopRecur(int n) {\n int stack[1000]; // \u501f\u52a9\u4e00\u4e2a\u5927\u6570\u7ec4\u6765\u6a21\u62df\u6808\n int top = -1; // \u6808\u9876\u7d22\u5f15\n int res = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n for (int i = n; i > 0; i--) {\n // \u901a\u8fc7\u201c\u5165\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u9012\u201d\n stack[1 + top++] = i;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n while (top >= 0) {\n // \u901a\u8fc7\u201c\u51fa\u6808\u64cd\u4f5c\u201d\u6a21\u62df\u201c\u5f52\u201d\n res += stack[top--];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
recursion.zig// \u4f7f\u7528\u8fed\u4ee3\u6a21\u62df\u9012\u5f52\nfn forLoopRecur(comptime n: i32) i32 {\n // \u4f7f\u7528\u4e00\u4e2a\u663e\u5f0f\u7684\u6808\u6765\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\n var stack: [n]i32 = undefined;\n var res: i32 = 0;\n // \u9012\uff1a\u9012\u5f52\u8c03\u7528\n var i: usize = n;\n while (i > 0) {\n stack[i - 1] = @intCast(i);\n i -= 1;\n }\n // \u5f52\uff1a\u8fd4\u56de\u7ed3\u679c\n var index: usize = n;\n while (index > 0) {\n index -= 1;\n res += stack[index];\n }\n // res = 1+2+3+...+n\n return res;\n}\n
\u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u5f53\u9012\u5f52\u8f6c\u5316\u4e3a\u8fed\u4ee3\u540e\uff0c\u4ee3\u7801\u53d8\u5f97\u66f4\u52a0\u590d\u6742\u4e86\u3002\u5c3d\u7ba1\u8fed\u4ee3\u548c\u9012\u5f52\u5728\u5f88\u591a\u60c5\u51b5\u4e0b\u53ef\u4ee5\u4e92\u76f8\u8f6c\u5316\uff0c\u4f46\u4e0d\u4e00\u5b9a\u503c\u5f97\u8fd9\u6837\u505a\uff0c\u6709\u4ee5\u4e0b\u4e24\u70b9\u539f\u56e0\u3002
- \u8f6c\u5316\u540e\u7684\u4ee3\u7801\u53ef\u80fd\u66f4\u52a0\u96be\u4ee5\u7406\u89e3\uff0c\u53ef\u8bfb\u6027\u66f4\u5dee\u3002
- \u5bf9\u4e8e\u67d0\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u6a21\u62df\u7cfb\u7edf\u8c03\u7528\u6808\u7684\u884c\u4e3a\u53ef\u80fd\u975e\u5e38\u56f0\u96be\u3002
\u603b\u4e4b\uff0c\u9009\u62e9\u8fed\u4ee3\u8fd8\u662f\u9012\u5f52\u53d6\u51b3\u4e8e\u7279\u5b9a\u95ee\u9898\u7684\u6027\u8d28\u3002\u5728\u7f16\u7a0b\u5b9e\u8df5\u4e2d\uff0c\u6743\u8861\u4e24\u8005\u7684\u4f18\u52a3\u5e76\u6839\u636e\u60c5\u5883\u9009\u62e9\u5408\u9002\u7684\u65b9\u6cd5\u81f3\u5173\u91cd\u8981\u3002
"},{"location":"chapter_computational_complexity/performance_evaluation/","title":"2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30","text":"\u5728\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u8ffd\u6c42\u4ee5\u4e0b\u4e24\u4e2a\u5c42\u9762\u7684\u76ee\u6807\u3002
- \u627e\u5230\u95ee\u9898\u89e3\u6cd5\uff1a\u7b97\u6cd5\u9700\u8981\u5728\u89c4\u5b9a\u7684\u8f93\u5165\u8303\u56f4\u5185\u53ef\u9760\u5730\u6c42\u5f97\u95ee\u9898\u7684\u6b63\u786e\u89e3\u3002
- \u5bfb\u6c42\u6700\u4f18\u89e3\u6cd5\uff1a\u540c\u4e00\u4e2a\u95ee\u9898\u53ef\u80fd\u5b58\u5728\u591a\u79cd\u89e3\u6cd5\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u5c3d\u53ef\u80fd\u9ad8\u6548\u7684\u7b97\u6cd5\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u5728\u80fd\u591f\u89e3\u51b3\u95ee\u9898\u7684\u524d\u63d0\u4e0b\uff0c\u7b97\u6cd5\u6548\u7387\u5df2\u6210\u4e3a\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\uff0c\u5b83\u5305\u62ec\u4ee5\u4e0b\u4e24\u4e2a\u7ef4\u5ea6\u3002
- \u65f6\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u5feb\u6162\u3002
- \u7a7a\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u7684\u5927\u5c0f\u3002
\u7b80\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u8bbe\u8ba1\u201c\u65e2\u5feb\u53c8\u7701\u201d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u3002\u800c\u6709\u6548\u5730\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u81f3\u5173\u91cd\u8981\uff0c\u56e0\u4e3a\u53ea\u6709\u8fd9\u6837\u6211\u4eec\u624d\u80fd\u5c06\u5404\u79cd\u7b97\u6cd5\u8fdb\u884c\u5bf9\u6bd4\uff0c\u8fdb\u800c\u6307\u5bfc\u7b97\u6cd5\u8bbe\u8ba1\u4e0e\u4f18\u5316\u8fc7\u7a0b\u3002
\u6548\u7387\u8bc4\u4f30\u65b9\u6cd5\u4e3b\u8981\u5206\u4e3a\u4e24\u79cd\uff1a\u5b9e\u9645\u6d4b\u8bd5\u3001\u7406\u8bba\u4f30\u7b97\u3002
"},{"location":"chapter_computational_complexity/performance_evaluation/#211","title":"2.1.1 \u00a0 \u5b9e\u9645\u6d4b\u8bd5","text":"\u5047\u8bbe\u6211\u4eec\u73b0\u5728\u6709\u7b97\u6cd5 A \u548c\u7b97\u6cd5 B \uff0c\u5b83\u4eec\u90fd\u80fd\u89e3\u51b3\u540c\u4e00\u95ee\u9898\uff0c\u73b0\u5728\u9700\u8981\u5bf9\u6bd4\u8fd9\u4e24\u4e2a\u7b97\u6cd5\u7684\u6548\u7387\u3002\u6700\u76f4\u63a5\u7684\u65b9\u6cd5\u662f\u627e\u4e00\u53f0\u8ba1\u7b97\u673a\uff0c\u8fd0\u884c\u8fd9\u4e24\u4e2a\u7b97\u6cd5\uff0c\u5e76\u76d1\u63a7\u8bb0\u5f55\u5b83\u4eec\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u5185\u5b58\u5360\u7528\u60c5\u51b5\u3002\u8fd9\u79cd\u8bc4\u4f30\u65b9\u5f0f\u80fd\u591f\u53cd\u6620\u771f\u5b9e\u60c5\u51b5\uff0c\u4f46\u4e5f\u5b58\u5728\u8f83\u5927\u7684\u5c40\u9650\u6027\u3002
\u4e00\u65b9\u9762\uff0c\u96be\u4ee5\u6392\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5e72\u6270\u56e0\u7d20\u3002\u786c\u4ef6\u914d\u7f6e\u4f1a\u5f71\u54cd\u7b97\u6cd5\u7684\u6027\u80fd\u3002\u6bd4\u5982\u5728\u67d0\u53f0\u8ba1\u7b97\u673a\u4e2d\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u77ed\uff1b\u4f46\u5728\u53e6\u4e00\u53f0\u914d\u7f6e\u4e0d\u540c\u7684\u8ba1\u7b97\u673a\u4e2d\uff0c\u53ef\u80fd\u5f97\u5230\u76f8\u53cd\u7684\u6d4b\u8bd5\u7ed3\u679c\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u9700\u8981\u5728\u5404\u79cd\u673a\u5668\u4e0a\u8fdb\u884c\u6d4b\u8bd5\uff0c\u7edf\u8ba1\u5e73\u5747\u6548\u7387\uff0c\u800c\u8fd9\u662f\u4e0d\u73b0\u5b9e\u7684\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5c55\u5f00\u5b8c\u6574\u6d4b\u8bd5\u975e\u5e38\u8017\u8d39\u8d44\u6e90\u3002\u968f\u7740\u8f93\u5165\u6570\u636e\u91cf\u7684\u53d8\u5316\uff0c\u7b97\u6cd5\u4f1a\u8868\u73b0\u51fa\u4e0d\u540c\u7684\u6548\u7387\u3002\u4f8b\u5982\uff0c\u5728\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u77ed\uff1b\u800c\u5728\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5927\u65f6\uff0c\u6d4b\u8bd5\u7ed3\u679c\u53ef\u80fd\u6070\u6070\u76f8\u53cd\u3002\u56e0\u6b64\uff0c\u4e3a\u4e86\u5f97\u5230\u6709\u8bf4\u670d\u529b\u7684\u7ed3\u8bba\uff0c\u6211\u4eec\u9700\u8981\u6d4b\u8bd5\u5404\u79cd\u89c4\u6a21\u7684\u8f93\u5165\u6570\u636e\uff0c\u800c\u8fd9\u9700\u8981\u8017\u8d39\u5927\u91cf\u7684\u8ba1\u7b97\u8d44\u6e90\u3002
"},{"location":"chapter_computational_complexity/performance_evaluation/#212","title":"2.1.2 \u00a0 \u7406\u8bba\u4f30\u7b97","text":"\u7531\u4e8e\u5b9e\u9645\u6d4b\u8bd5\u5177\u6709\u8f83\u5927\u7684\u5c40\u9650\u6027\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u4ec5\u901a\u8fc7\u4e00\u4e9b\u8ba1\u7b97\u6765\u8bc4\u4f30\u7b97\u6cd5\u7684\u6548\u7387\u3002\u8fd9\u79cd\u4f30\u7b97\u65b9\u6cd5\u88ab\u79f0\u4e3a\u300c\u6e10\u8fd1\u590d\u6742\u5ea6\u5206\u6790 asymptotic complexity analysis\u300d\uff0c\u7b80\u79f0\u300c\u590d\u6742\u5ea6\u5206\u6790\u300d\u3002
\u590d\u6742\u5ea6\u5206\u6790\u80fd\u591f\u4f53\u73b0\u7b97\u6cd5\u8fd0\u884c\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e4b\u95f4\u7684\u5173\u7cfb\u3002\u5b83\u63cf\u8ff0\u4e86\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\uff0c\u7b97\u6cd5\u6267\u884c\u6240\u9700\u65f6\u95f4\u548c\u7a7a\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u5b9a\u4e49\u6709\u4e9b\u62d7\u53e3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5176\u5206\u4e3a\u4e09\u4e2a\u91cd\u70b9\u6765\u7406\u89e3\u3002
- \u201c\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\u201d\u5206\u522b\u5bf9\u5e94\u300c\u65f6\u95f4\u590d\u6742\u5ea6 time complexity\u300d\u548c\u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u3002
- \u201c\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\u201d\u610f\u5473\u7740\u590d\u6742\u5ea6\u53cd\u6620\u4e86\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u4e0e\u8f93\u5165\u6570\u636e\u4f53\u91cf\u4e4b\u95f4\u7684\u5173\u7cfb\u3002
- \u201c\u65f6\u95f4\u548c\u7a7a\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u201d\u8868\u793a\u590d\u6742\u5ea6\u5206\u6790\u5173\u6ce8\u7684\u4e0d\u662f\u8fd0\u884c\u65f6\u95f4\u6216\u5360\u7528\u7a7a\u95f4\u7684\u5177\u4f53\u503c\uff0c\u800c\u662f\u65f6\u95f4\u6216\u7a7a\u95f4\u589e\u957f\u7684\u201c\u5feb\u6162\u201d\u3002
\u590d\u6742\u5ea6\u5206\u6790\u514b\u670d\u4e86\u5b9e\u9645\u6d4b\u8bd5\u65b9\u6cd5\u7684\u5f0a\u7aef\uff0c\u4f53\u73b0\u5728\u4ee5\u4e0b\u4e24\u4e2a\u65b9\u9762\u3002
- \u5b83\u72ec\u7acb\u4e8e\u6d4b\u8bd5\u73af\u5883\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\u3002
- \u5b83\u53ef\u4ee5\u4f53\u73b0\u4e0d\u540c\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6548\u7387\uff0c\u5c24\u5176\u662f\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6027\u80fd\u3002
Tip
\u5982\u679c\u4f60\u4ecd\u5bf9\u590d\u6742\u5ea6\u7684\u6982\u5ff5\u611f\u5230\u56f0\u60d1\uff0c\u65e0\u987b\u62c5\u5fc3\uff0c\u6211\u4eec\u4f1a\u5728\u540e\u7eed\u7ae0\u8282\u4e2d\u8be6\u7ec6\u4ecb\u7ecd\u3002
\u590d\u6742\u5ea6\u5206\u6790\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u628a\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u7684\u201c\u6807\u5c3a\u201d\uff0c\u4f7f\u6211\u4eec\u53ef\u4ee5\u8861\u91cf\u6267\u884c\u67d0\u4e2a\u7b97\u6cd5\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\uff0c\u5bf9\u6bd4\u4e0d\u540c\u7b97\u6cd5\u4e4b\u95f4\u7684\u6548\u7387\u3002
\u590d\u6742\u5ea6\u662f\u4e2a\u6570\u5b66\u6982\u5ff5\uff0c\u5bf9\u4e8e\u521d\u5b66\u8005\u53ef\u80fd\u6bd4\u8f83\u62bd\u8c61\uff0c\u5b66\u4e60\u96be\u5ea6\u76f8\u5bf9\u8f83\u9ad8\u3002\u4ece\u8fd9\u4e2a\u89d2\u5ea6\u770b\uff0c\u590d\u6742\u5ea6\u5206\u6790\u53ef\u80fd\u4e0d\u592a\u9002\u5408\u4f5c\u4e3a\u6700\u5148\u4ecb\u7ecd\u7684\u5185\u5bb9\u3002\u7136\u800c\uff0c\u5f53\u6211\u4eec\u8ba8\u8bba\u67d0\u4e2a\u6570\u636e\u7ed3\u6784\u6216\u7b97\u6cd5\u7684\u7279\u70b9\u65f6\uff0c\u96be\u4ee5\u907f\u514d\u8981\u5206\u6790\u5176\u8fd0\u884c\u901f\u5ea6\u548c\u7a7a\u95f4\u4f7f\u7528\u60c5\u51b5\u3002
\u7efc\u4e0a\u6240\u8ff0\uff0c\u5efa\u8bae\u4f60\u5728\u6df1\u5165\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u524d\uff0c\u5148\u5bf9\u590d\u6742\u5ea6\u5206\u6790\u5efa\u7acb\u521d\u6b65\u7684\u4e86\u89e3\uff0c\u4ee5\u4fbf\u80fd\u591f\u5b8c\u6210\u7b80\u5355\u7b97\u6cd5\u7684\u590d\u6742\u5ea6\u5206\u6790\u3002
"},{"location":"chapter_computational_complexity/space_complexity/","title":"2.4 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6","text":"\u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u6982\u5ff5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u5e38\u7c7b\u4f3c\uff0c\u53ea\u9700\u5c06\u201c\u8fd0\u884c\u65f6\u95f4\u201d\u66ff\u6362\u4e3a\u201c\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u201d\u3002
"},{"location":"chapter_computational_complexity/space_complexity/#241","title":"2.4.1 \u00a0 \u7b97\u6cd5\u76f8\u5173\u7a7a\u95f4","text":"\u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u3002
- \u8f93\u5165\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u5165\u6570\u636e\u3002
- \u6682\u5b58\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u53d8\u91cf\u3001\u5bf9\u8c61\u3001\u51fd\u6570\u4e0a\u4e0b\u6587\u7b49\u6570\u636e\u3002
- \u8f93\u51fa\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u51fa\u6570\u636e\u3002
\u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u7edf\u8ba1\u8303\u56f4\u662f\u201c\u6682\u5b58\u7a7a\u95f4\u201d\u52a0\u4e0a\u201c\u8f93\u51fa\u7a7a\u95f4\u201d\u3002
\u6682\u5b58\u7a7a\u95f4\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\u3002
- \u6682\u5b58\u6570\u636e\uff1a\u7528\u4e8e\u4fdd\u5b58\u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u5404\u79cd\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u7b49\u3002
- \u6808\u5e27\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u8c03\u7528\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u6570\u636e\u3002\u7cfb\u7edf\u5728\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\u90fd\u4f1a\u5728\u6808\u9876\u90e8\u521b\u5efa\u4e00\u4e2a\u6808\u5e27\uff0c\u51fd\u6570\u8fd4\u56de\u540e\uff0c\u6808\u5e27\u7a7a\u95f4\u4f1a\u88ab\u91ca\u653e\u3002
- \u6307\u4ee4\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u7f16\u8bd1\u540e\u7684\u7a0b\u5e8f\u6307\u4ee4\uff0c\u5728\u5b9e\u9645\u7edf\u8ba1\u4e2d\u901a\u5e38\u5ffd\u7565\u4e0d\u8ba1\u3002
\u5728\u5206\u6790\u4e00\u6bb5\u7a0b\u5e8f\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u7edf\u8ba1\u6682\u5b58\u6570\u636e\u3001\u6808\u5e27\u7a7a\u95f4\u548c\u8f93\u51fa\u6570\u636e\u4e09\u90e8\u5206\uff0c\u5982\u56fe 2-15 \u6240\u793a\u3002
\u56fe 2-15 \u00a0 \u7b97\u6cd5\u4f7f\u7528\u7684\u76f8\u5173\u7a7a\u95f4
\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig class Node:\n \"\"\"\u7c7b\"\"\"\n def __init__(self, x: int):\n self.val: int = x # \u8282\u70b9\u503c\n self.next: Node | None = None # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n\ndef function() -> int:\n \"\"\"\u51fd\u6570\"\"\"\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n\ndef algorithm(n) -> int: # \u8f93\u5165\u6570\u636e\n A = 0 # \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff0c\u4e00\u822c\u7528\u5927\u5199\u5b57\u6bcd\u8868\u793a\uff09\n b = 0 # \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n node = Node(0) # \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n c = function() # \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return A + b + c # \u8f93\u51fa\u6570\u636e\n
/* \u7ed3\u6784\u4f53 */\nstruct Node {\n int val;\n Node *next;\n Node(int x) : val(x), next(nullptr) {}\n};\n\n/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node* node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = func(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n int val;\n Node next;\n Node(int x) { val = x; }\n}\n\n/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n final int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node(int x) {\n int val = x;\n Node next;\n}\n\n/* \u51fd\u6570 */\nint Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint Algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node node = new(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = Function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7ed3\u6784\u4f53 */\ntype node struct {\n val int\n next *node\n}\n\n/* \u521b\u5efa node \u7ed3\u6784\u4f53 */\nfunc newNode(val int) *node {\n return &node{val: val}\n}\n\n/* \u51fd\u6570 */\nfunc function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\nfunc algorithm(n int) int { // \u8f93\u5165\u6570\u636e\n const a = 0 // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n b := 0 // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n newNode(0) // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n c := function() // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n var val: Int\n var next: Node?\n\n init(x: Int) {\n val = x\n }\n}\n\n/* \u51fd\u6570 */\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\nfunc algorithm(n: Int) -> Int { // \u8f93\u5165\u6570\u636e\n let a = 0 // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n var b = 0 // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n let node = Node(x: 0) // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n let c = function() // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n val;\n next;\n constructor(val) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = null; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n\n/* \u51fd\u6570 */\nfunction constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\nfunction algorithm(n) { // \u8f93\u5165\u6570\u636e\n const a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n let b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n const node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n const c = constFunc(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n val: number;\n next: Node | null;\n constructor(val?: number) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.next = null; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n }\n}\n\n/* \u51fd\u6570 */\nfunction constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\nfunction algorithm(n: number): number { // \u8f93\u5165\u6570\u636e\n const a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n let b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n const node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n const c = constFunc(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u7c7b */\nclass Node {\n int val;\n Node next;\n Node(this.val, [this.next]);\n}\n\n/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n Node node = Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n int c = function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* \u7ed3\u6784\u4f53 */\nstruct Node {\n val: i32,\n next: Option<Rc<RefCell<Node>>>,\n}\n\n/* \u521b\u5efa Node \u7ed3\u6784\u4f53 */\nimpl Node {\n fn new(val: i32) -> Self {\n Self { val: val, next: None }\n }\n}\n\n/* \u51fd\u6570 */\nfn function() -> i32 { \n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nfn algorithm(n: i32) -> i32 { // \u8f93\u5165\u6570\u636e\n const a: i32 = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n let mut b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n let node = Node::new(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\n let c = function(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0;\n}\n\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\n const int a = 0; // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\n int b = 0; // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\n int c = func(); // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\n return a + b + c; // \u8f93\u51fa\u6570\u636e\n}\n
\n
"},{"location":"chapter_computational_complexity/space_complexity/#242","title":"2.4.2 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u5927\u81f4\u76f8\u540c\uff0c\u53ea\u9700\u5c06\u7edf\u8ba1\u5bf9\u8c61\u4ece\u201c\u64cd\u4f5c\u6570\u91cf\u201d\u8f6c\u4e3a\u201c\u4f7f\u7528\u7a7a\u95f4\u5927\u5c0f\u201d\u3002
\u800c\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u540c\u7684\u662f\uff0c\u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u3002\u8fd9\u662f\u56e0\u4e3a\u5185\u5b58\u7a7a\u95f4\u662f\u4e00\u9879\u786c\u6027\u8981\u6c42\uff0c\u6211\u4eec\u5fc5\u987b\u786e\u4fdd\u5728\u6240\u6709\u8f93\u5165\u6570\u636e\u4e0b\u90fd\u6709\u8db3\u591f\u7684\u5185\u5b58\u7a7a\u95f4\u9884\u7559\u3002
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u201c\u6700\u5dee\u201d\u6709\u4e24\u5c42\u542b\u4e49\u3002
- \u4ee5\u6700\u5dee\u8f93\u5165\u6570\u636e\u4e3a\u51c6\uff1a\u5f53 \\(n < 10\\) \u65f6\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff1b\u4f46\u5f53 \\(n > 10\\) \u65f6\uff0c\u521d\u59cb\u5316\u7684\u6570\u7ec4
nums \u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff0c\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002 - \u4ee5\u7b97\u6cd5\u8fd0\u884c\u4e2d\u7684\u5cf0\u503c\u5185\u5b58\u4e3a\u51c6\uff1a\u4f8b\u5982\uff0c\u7a0b\u5e8f\u5728\u6267\u884c\u6700\u540e\u4e00\u884c\u4e4b\u524d\uff0c\u5360\u7528 \\(O(1)\\) \u7a7a\u95f4\uff1b\u5f53\u521d\u59cb\u5316\u6570\u7ec4
nums \u65f6\uff0c\u7a0b\u5e8f\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff0c\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 0 # O(1)\n b = [0] * 10000 # O(1)\n if n > 10:\n nums = [0] * n # O(n)\n
void algorithm(int n) {\n int a = 0; // O(1)\n vector<int> b(10000); // O(1)\n if (n > 10)\n vector<int> nums(n); // O(n)\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10)\n int[] nums = new int[n]; // O(n)\n}\n
void Algorithm(int n) {\n int a = 0; // O(1)\n int[] b = new int[10000]; // O(1)\n if (n > 10) {\n int[] nums = new int[n]; // O(n)\n }\n}\n
func algorithm(n int) {\n a := 0 // O(1)\n b := make([]int, 10000) // O(1)\n var nums []int\n if n > 10 {\n nums := make([]int, n) // O(n)\n }\n fmt.Println(a, b, nums)\n}\n
func algorithm(n: Int) {\n let a = 0 // O(1)\n let b = Array(repeating: 0, count: 10000) // O(1)\n if n > 10 {\n let nums = Array(repeating: 0, count: n) // O(n)\n }\n}\n
function algorithm(n) {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
function algorithm(n: number): void {\n const a = 0; // O(1)\n const b = new Array(10000); // O(1)\n if (n > 10) {\n const nums = new Array(n); // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n List<int> b = List.filled(10000, 0); // O(1)\n if (n > 10) {\n List<int> nums = List.filled(n, 0); // O(n)\n }\n}\n
fn algorithm(n: i32) {\n let a = 0; // O(1)\n let b = [0; 10000]; // O(1)\n if n > 10 {\n let nums = vec![0; n as usize]; // O(n)\n }\n}\n
void algorithm(int n) {\n int a = 0; // O(1)\n int b[10000]; // O(1)\n if (n > 10)\n int nums[n] = {0}; // O(n)\n}\n
\n
\u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u9700\u8981\u6ce8\u610f\u7edf\u8ba1\u6808\u5e27\u7a7a\u95f4\u3002\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def function() -> int:\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n\ndef loop(n: int):\n \"\"\"\u5faa\u73af\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(1)\"\"\"\n for _ in range(n):\n function()\n\ndef recur(n: int) -> int:\n \"\"\"\u9012\u5f52\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\"\"\"\n if n == 1: return\n return recur(n - 1)\n
int func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
int Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid Loop(int n) {\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n/* \u9012\u5f52 O(n) */\nint Recur(int n) {\n if (n == 1) return 1;\n return Recur(n - 1);\n}\n
func function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5faa\u73af O(1) */\nfunc loop(n int) {\n for i := 0; i < n; i++ {\n function()\n }\n}\n\n/* \u9012\u5f52 O(n) */\nfunc recur(n int) {\n if n == 1 {\n return\n }\n recur(n - 1)\n}\n
@discardableResult\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5faa\u73af O(1) */\nfunc loop(n: Int) {\n for _ in 0 ..< n {\n function()\n }\n}\n\n/* \u9012\u5f52 O(n) */\nfunc recur(n: Int) {\n if n == 1 {\n return\n }\n recur(n: n - 1)\n}\n
function constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n) {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n) {\n if (n === 1) return;\n return recur(n - 1);\n}\n
function constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n: number): void {\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n: number): void {\n if (n === 1) return;\n return recur(n - 1);\n}\n
int function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
fn function() -> i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nfn loop(n: i32) {\n for i in 0..n {\n function();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(n: i32) {\n if n == 1 {\n return;\n }\n recur(n - 1);\n}\n
int func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\n if (n == 1) return;\n return recur(n - 1);\n}\n
\n
\u51fd\u6570 loop() \u548c recur() \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n)\\) \uff0c\u4f46\u7a7a\u95f4\u590d\u6742\u5ea6\u4e0d\u540c\u3002
- \u51fd\u6570
loop() \u5728\u5faa\u73af\u4e2d\u8c03\u7528\u4e86 \\(n\\) \u6b21 function() \uff0c\u6bcf\u8f6e\u4e2d\u7684 function() \u90fd\u8fd4\u56de\u5e76\u91ca\u653e\u4e86\u6808\u5e27\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \u3002 - \u9012\u5f52\u51fd\u6570
recur() \u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f1a\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 recur() \uff0c\u4ece\u800c\u5360\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002
"},{"location":"chapter_computational_complexity/space_complexity/#243","title":"2.4.3 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u56fe 2-16 \u5c55\u793a\u4e86\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\uff08\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\uff09\u3002
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n^2) < O(2^n) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} \\end{aligned} \\] \u56fe 2-16 \u00a0 \u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b
"},{"location":"chapter_computational_complexity/space_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"\u5e38\u6570\u9636\u5e38\u89c1\u4e8e\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u7684\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u5728\u5faa\u73af\u4e2d\u521d\u59cb\u5316\u53d8\u91cf\u6216\u8c03\u7528\u51fd\u6570\u800c\u5360\u7528\u7684\u5185\u5b58\uff0c\u5728\u8fdb\u5165\u4e0b\u4e00\u5faa\u73af\u540e\u5c31\u4f1a\u88ab\u91ca\u653e\uff0c\u56e0\u6b64\u4e0d\u4f1a\u7d2f\u79ef\u5360\u7528\u7a7a\u95f4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef function() -> int:\n \"\"\"\u51fd\u6570\"\"\"\n # \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n\ndef constant(n: int):\n \"\"\"\u5e38\u6570\u9636\"\"\"\n # \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n a = 0\n nums = [0] * 10000\n node = ListNode(0)\n # \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n c = 0\n # \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in range(n):\n function()\n
space_complexity.cpp/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n vector<int> nums(10000);\n ListNode node(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.java/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.cs/* \u51fd\u6570 */\nint Function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid Constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n int a = 0;\n int b = 0;\n int[] nums = new int[10000];\n ListNode node = new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n Function();\n }\n}\n
space_complexity.go/* \u51fd\u6570 */\nfunc function() int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c...\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc spaceConstant(n int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0\n b := 0\n nums := make([]int, 10000)\n ListNode := newNode(0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n var c int\n for i := 0; i < n; i++ {\n c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i := 0; i < n; i++ {\n function()\n }\n fmt.Println(a, b, nums, c, ListNode)\n}\n
space_complexity.swift/* \u51fd\u6570 */\n@discardableResult\nfunc function() -> Int {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0\n}\n\n/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n let a = 0\n var b = 0\n let nums = Array(repeating: 0, count: 10000)\n let node = ListNode(x: 0)\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n let c = 0\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for _ in 0 ..< n {\n function()\n }\n}\n
space_complexity.js/* \u51fd\u6570 */\nfunction constFunc() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.ts/* \u51fd\u6570 */\nfunction constFunc(): number {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nfunction constant(n: number): void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a = 0;\n const b = 0;\n const nums = new Array(10000);\n const node = new ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n const c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (let i = 0; i < n; i++) {\n constFunc();\n }\n}\n
space_complexity.dart/* \u51fd\u6570 */\nint function() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n final int a = 0;\n int b = 0;\n List<int> nums = List.filled(10000, 0);\n ListNode node = ListNode(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (var i = 0; i < n; i++) {\n function();\n }\n}\n
space_complexity.rs/* \u51fd\u6570 */\nfn function() ->i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\n#[allow(unused)]\nfn constant(n: i32) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const A: i32 = 0;\n let b = 0;\n let nums = vec![0; 10000];\n let node = ListNode::new(0);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n let c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for i in 0..n {\n function();\n }\n}\n
space_complexity.c/* \u51fd\u6570 */\nint func() {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const int a = 0;\n int b = 0;\n int nums[1000];\n ListNode *node = newListNode(0);\n free(node);\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n int c = 0;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n for (int i = 0; i < n; i++) {\n func();\n }\n}\n
space_complexity.zig// \u51fd\u6570\nfn function() i32 {\n // \u6267\u884c\u67d0\u4e9b\u64cd\u4f5c\n return 0;\n}\n\n// \u5e38\u6570\u9636\nfn constant(n: i32) void {\n // \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\n const a: i32 = 0;\n var b: i32 = 0;\n var nums = [_]i32{0}**10000;\n var node = inc.ListNode(i32){.val = 0};\n var i: i32 = 0;\n // \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\n while (i < n) : (i += 1) {\n var c: i32 = 0;\n _ = c;\n }\n // \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\n i = 0;\n while (i < n) : (i += 1) {\n _ = function();\n }\n _ = a;\n _ = b;\n _ = nums;\n _ = node;\n}\n
"},{"location":"chapter_computational_complexity/space_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"\u7ebf\u6027\u9636\u5e38\u89c1\u4e8e\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u6b63\u6bd4\u7684\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u7b49\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear(n: int):\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n # \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n nums = [0] * n\n # \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n hmap = dict[int, str]()\n for i in range(n):\n hmap[i] = str(i)\n
space_complexity.cpp/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n vector<int> nums(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n vector<ListNode> nodes;\n for (int i = 0; i < n; i++) {\n nodes.push_back(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n unordered_map<int, string> map;\n for (int i = 0; i < n; i++) {\n map[i] = to_string(i);\n }\n}\n
space_complexity.java/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n nodes.add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<Integer, String> map = new HashMap<>();\n for (int i = 0; i < n; i++) {\n map.put(i, String.valueOf(i));\n }\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636 */\nvoid Linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int[] nums = new int[n];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (int i = 0; i < n; i++) {\n nodes.Add(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Dictionary<int, string> map = [];\n for (int i = 0; i < n; i++) {\n map.Add(i, i.ToString());\n }\n}\n
space_complexity.go/* \u7ebf\u6027\u9636 */\nfunc spaceLinear(n int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n _ = make([]int, n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes []*node\n for i := 0; i < n; i++ {\n nodes = append(nodes, newNode(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n m := make(map[int]string, n)\n for i := 0; i < n; i++ {\n m[i] = strconv.Itoa(i)\n }\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let nums = Array(repeating: 0, count: n)\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let nodes = (0 ..< n).map { ListNode(x: $0) }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, \"\\($0)\") })\n}\n
space_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n const nums = new Array(n);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const nodes: ListNode[] = [];\n for (let i = 0; i < n; i++) {\n nodes.push(new ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n const map = new Map();\n for (let i = 0; i < n; i++) {\n map.set(i, i.toString());\n }\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n List<int> nums = List.filled(n, 0);\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n List<ListNode> nodes = [];\n for (var i = 0; i < n; i++) {\n nodes.add(ListNode(i));\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n Map<int, String> map = HashMap();\n for (var i = 0; i < n; i++) {\n map.putIfAbsent(i, () => i.toString());\n }\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636 */\n#[allow(unused)]\nfn linear(n: i32) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nums = vec![0; n as usize];\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut nodes = Vec::new();\n for i in 0..n {\n nodes.push(ListNode::new(i))\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n let mut map = HashMap::new();\n for i in 0..n {\n map.insert(i, i.to_string());\n }\n}\n
space_complexity.c/* \u54c8\u5e0c\u8868 */\ntypedef struct {\n int key;\n int val;\n UT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n} HashTable;\n\n/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n int *nums = malloc(sizeof(int) * n);\n free(nums);\n\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n ListNode **nodes = malloc(sizeof(ListNode *) * n);\n for (int i = 0; i < n; i++) {\n nodes[i] = newListNode(i);\n }\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(nodes[i]);\n }\n free(nodes);\n\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n HashTable *h = NULL;\n for (int i = 0; i < n; i++) {\n HashTable *tmp = malloc(sizeof(HashTable));\n tmp->key = i;\n tmp->val = i;\n HASH_ADD_INT(h, key, tmp);\n }\n\n // \u5185\u5b58\u91ca\u653e\n HashTable *curr, *tmp;\n HASH_ITER(hh, h, curr, tmp) {\n HASH_DEL(h, curr);\n free(curr);\n }\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\nfn linear(comptime n: i32) !void {\n // \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n var nums = [_]i32{0}**n;\n // \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var nodes = std.ArrayList(i32).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n try nodes.append(i);\n }\n // \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\n var map = std.AutoArrayHashMap(i32, []const u8).init(std.heap.page_allocator);\n defer map.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n const string = try std.fmt.allocPrint(std.heap.page_allocator, \"{d}\", .{j});\n defer std.heap.page_allocator.free(string);\n try map.put(i, string);\n }\n _ = nums;\n}\n
\u5982\u56fe 2-17 \u6240\u793a\uff0c\u6b64\u51fd\u6570\u7684\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u5373\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 linear_recur() \u51fd\u6570\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef linear_recur(n: int):\n \"\"\"\u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n print(\"\u9012\u5f52 n =\", n)\n if n == 1:\n return\n linear_recur(n - 1)\n
space_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n cout << \"\u9012\u5f52 n = \" << n << endl;\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.java/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n System.out.println(\"\u9012\u5f52 n = \" + n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.cs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid LinearRecur(int n) {\n Console.WriteLine(\"\u9012\u5f52 n = \" + n);\n if (n == 1) return;\n LinearRecur(n - 1);\n}\n
space_complexity.go/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceLinearRecur(n int) {\n fmt.Println(\"\u9012\u5f52 n =\", n)\n if n == 1 {\n return\n }\n spaceLinearRecur(n - 1)\n}\n
space_complexity.swift/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc linearRecur(n: Int) {\n print(\"\u9012\u5f52 n = \\(n)\")\n if n == 1 {\n return\n }\n linearRecur(n: n - 1)\n}\n
space_complexity.js/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n) {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.ts/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n: number): void {\n console.log(`\u9012\u5f52 n = ${n}`);\n if (n === 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.dart/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n print('\u9012\u5f52 n = $n');\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
space_complexity.rs/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn linear_recur(n: i32) {\n println!(\"\u9012\u5f52 n = {}\", n);\n if n == 1 {return};\n linear_recur(n - 1);\n}\n
space_complexity.c/* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\n printf(\"\u9012\u5f52 n = %d\\r\\n\", n);\n if (n == 1)\n return;\n linearRecur(n - 1);\n}\n
space_complexity.zig// \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn linearRecur(comptime n: i32) void {\n std.debug.print(\"\u9012\u5f52 n = {}\\n\", .{n});\n if (n == 1) return;\n linearRecur(n - 1);\n}\n
\u56fe 2-17 \u00a0 \u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u7ebf\u6027\u9636\u7a7a\u95f4\u590d\u6742\u5ea6
"},{"location":"chapter_computational_complexity/space_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"\u5e73\u65b9\u9636\u5e38\u89c1\u4e8e\u77e9\u9635\u548c\u56fe\uff0c\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u5e73\u65b9\u5173\u7cfb\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic(n: int):\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n # \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n num_matrix = [[0] * n for _ in range(n)]\n
space_complexity.cpp/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n vector<vector<int>> numMatrix;\n for (int i = 0; i < n; i++) {\n vector<int> tmp;\n for (int j = 0; j < n; j++) {\n tmp.push_back(0);\n }\n numMatrix.push_back(tmp);\n }\n}\n
space_complexity.java/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[][] numMatrix = new int[n][n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<Integer>> numList = new ArrayList<>();\n for (int i = 0; i < n; i++) {\n List<Integer> tmp = new ArrayList<>();\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636 */\nvoid Quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n int[,] numMatrix = new int[n, n];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (int i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.Add(0);\n }\n numList.Add(tmp);\n }\n}\n
space_complexity.go/* \u5e73\u65b9\u9636 */\nfunc spaceQuadratic(n int) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n numMatrix := make([][]int, n)\n for i := 0; i < n; i++ {\n numMatrix[i] = make([]int, n)\n }\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let numList = Array(repeating: Array(repeating: 0, count: n), count: n)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): void {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numMatrix = Array(n)\n .fill(null)\n .map(() => Array(n).fill(null));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n const numList = [];\n for (let i = 0; i < n; i++) {\n const tmp = [];\n for (let j = 0; j < n; j++) {\n tmp.push(0);\n }\n numList.push(tmp);\n }\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numMatrix = List.generate(n, (_) => List.filled(n, 0));\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n List<List<int>> numList = [];\n for (var i = 0; i < n; i++) {\n List<int> tmp = [];\n for (int j = 0; j < n; j++) {\n tmp.add(0);\n }\n numList.add(tmp);\n }\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636 */\n#[allow(unused)]\nfn quadratic(n: i32) {\n // \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\n let num_matrix = vec![vec![0; n as usize]; n as usize];\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n let mut num_list = Vec::new();\n for i in 0..n {\n let mut tmp = Vec::new();\n for j in 0..n {\n tmp.push(0);\n }\n num_list.push(tmp);\n }\n}\n
space_complexity.c/* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n int **numMatrix = malloc(sizeof(int *) * n);\n for (int i = 0; i < n; i++) {\n int *tmp = malloc(sizeof(int) * n);\n for (int j = 0; j < n; j++) {\n tmp[j] = 0;\n }\n numMatrix[i] = tmp;\n }\n\n // \u5185\u5b58\u91ca\u653e\n for (int i = 0; i < n; i++) {\n free(numMatrix[i]);\n }\n free(numMatrix);\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) !void {\n // \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\n var nodes = std.ArrayList(std.ArrayList(i32)).init(std.heap.page_allocator);\n defer nodes.deinit();\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n var tmp = std.ArrayList(i32).init(std.heap.page_allocator);\n defer tmp.deinit();\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n try tmp.append(0);\n }\n try nodes.append(tmp);\n }\n}\n
\u5982\u56fe 2-18 \u6240\u793a\uff0c\u8be5\u51fd\u6570\u7684\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u5728\u6bcf\u4e2a\u9012\u5f52\u51fd\u6570\u4e2d\u90fd\u521d\u59cb\u5316\u4e86\u4e00\u4e2a\u6570\u7ec4\uff0c\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\)\u3001\\(n-1\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \uff0c\u5e73\u5747\u957f\u5ea6\u4e3a \\(n / 2\\) \uff0c\u56e0\u6b64\u603b\u4f53\u5360\u7528 \\(O(n^2)\\) \u7a7a\u95f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef quadratic_recur(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 0:\n return 0\n # \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n nums = [0] * n\n return quadratic_recur(n - 1)\n
space_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n vector<int> nums(n);\n cout << \"\u9012\u5f52 n = \" << n << \" \u4e2d\u7684 nums \u957f\u5ea6 = \" << nums.size() << endl;\n return quadraticRecur(n - 1);\n}\n
space_complexity.java/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n int[] nums = new int[n];\n System.out.println(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.length);\n return quadraticRecur(n - 1);\n}\n
space_complexity.cs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint QuadraticRecur(int n) {\n if (n <= 0) return 0;\n int[] nums = new int[n];\n Console.WriteLine(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.Length);\n return QuadraticRecur(n - 1);\n}\n
space_complexity.go/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceQuadraticRecur(n int) int {\n if n <= 0 {\n return 0\n }\n nums := make([]int, n)\n fmt.Printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d \\n\", n, len(nums))\n return spaceQuadraticRecur(n - 1)\n}\n
space_complexity.swift/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\n@discardableResult\nfunc quadraticRecur(n: Int) -> Int {\n if n <= 0 {\n return 0\n }\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = Array(repeating: 0, count: n)\n print(\"\u9012\u5f52 n = \\(n) \u4e2d\u7684 nums \u957f\u5ea6 = \\(nums.count)\")\n return quadraticRecur(n: n - 1)\n}\n
space_complexity.js/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n) {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.ts/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n: number): number {\n if (n <= 0) return 0;\n const nums = new Array(n);\n console.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\n return quadraticRecur(n - 1);\n}\n
space_complexity.dart/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0) return 0;\n List<int> nums = List.filled(n, 0);\n print('\u9012\u5f52 n = $n \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}');\n return quadraticRecur(n - 1);\n}\n
space_complexity.rs/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn quadratic_recur(n: i32) -> i32 {\n if n <= 0 {return 0};\n // \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\n let nums = vec![0; n as usize];\n println!(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\", n, nums.len());\n return quadratic_recur(n - 1);\n}\n
space_complexity.c/* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\n if (n <= 0)\n return 0;\n int *nums = malloc(sizeof(int) * n);\n printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d\\r\\n\", n, n);\n int res = quadraticRecur(n - 1);\n free(nums);\n return res;\n}\n
space_complexity.zig// \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn quadraticRecur(comptime n: i32) i32 {\n if (n <= 0) return 0;\n var nums = [_]i32{0}**n;\n std.debug.print(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\\n\", .{n, nums.len});\n return quadraticRecur(n - 1);\n}\n
\u56fe 2-18 \u00a0 \u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u5e73\u65b9\u9636\u7a7a\u95f4\u590d\u6742\u5ea6
"},{"location":"chapter_computational_complexity/space_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"\u6307\u6570\u9636\u5e38\u89c1\u4e8e\u4e8c\u53c9\u6811\u3002\u89c2\u5bdf\u56fe 2-19 \uff0c\u5c42\u6570\u4e3a \\(n\\) \u7684\u201c\u6ee1\u4e8c\u53c9\u6811\u201d\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(2^n - 1\\) \uff0c\u5360\u7528 \\(O(2^n)\\) \u7a7a\u95f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig space_complexity.pydef build_tree(n: int) -> TreeNode | None:\n \"\"\"\u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\"\"\"\n if n == 0:\n return None\n root = TreeNode(0)\n root.left = build_tree(n - 1)\n root.right = build_tree(n - 1)\n return root\n
space_complexity.cpp/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return nullptr;\n TreeNode *root = new TreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.java/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode buildTree(int n) {\n if (n == 0)\n return null;\n TreeNode root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.cs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? BuildTree(int n) {\n if (n == 0) return null;\n TreeNode root = new(0) {\n left = BuildTree(n - 1),\n right = BuildTree(n - 1)\n };\n return root;\n}\n
space_complexity.go/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n int) *treeNode {\n if n == 0 {\n return nil\n }\n root := newTreeNode(0)\n root.left = buildTree(n - 1)\n root.right = buildTree(n - 1)\n return root\n}\n
space_complexity.swift/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n: Int) -> TreeNode? {\n if n == 0 {\n return nil\n }\n let root = TreeNode(x: 0)\n root.left = buildTree(n: n - 1)\n root.right = buildTree(n: n - 1)\n return root\n}\n
space_complexity.js/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n) {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.ts/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n: number): TreeNode | null {\n if (n === 0) return null;\n const root = new TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.dart/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\n if (n == 0) return null;\n TreeNode root = TreeNode(0);\n root.left = buildTree(n - 1);\n root.right = buildTree(n - 1);\n return root;\n}\n
space_complexity.rs/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {\n if n == 0 {return None};\n let root = TreeNode::new(0);\n root.borrow_mut().left = build_tree(n - 1);\n root.borrow_mut().right = build_tree(n - 1);\n return Some(root);\n}\n
space_complexity.c/* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\n if (n == 0)\n return NULL;\n TreeNode *root = newTreeNode(0);\n root->left = buildTree(n - 1);\n root->right = buildTree(n - 1);\n return root;\n}\n
space_complexity.zig// \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\nfn buildTree(mem_allocator: std.mem.Allocator, n: i32) !?*inc.TreeNode(i32) {\n if (n == 0) return null;\n const root = try mem_allocator.create(inc.TreeNode(i32));\n root.init(0);\n root.left = try buildTree(mem_allocator, n - 1);\n root.right = try buildTree(mem_allocator, n - 1);\n return root;\n}\n
\u56fe 2-19 \u00a0 \u6ee1\u4e8c\u53c9\u6811\u4ea7\u751f\u7684\u6307\u6570\u9636\u7a7a\u95f4\u590d\u6742\u5ea6
"},{"location":"chapter_computational_complexity/space_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"\u5bf9\u6570\u9636\u5e38\u89c1\u4e8e\u5206\u6cbb\u7b97\u6cd5\u3002\u4f8b\u5982\u5f52\u5e76\u6392\u5e8f\uff0c\u8f93\u5165\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u6bcf\u8f6e\u9012\u5f52\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5212\u5206\u4e3a\u4e24\u534a\uff0c\u5f62\u6210\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u6808\u5e27\u7a7a\u95f4\u3002
\u518d\u4f8b\u5982\u5c06\u6570\u5b57\u8f6c\u5316\u4e3a\u5b57\u7b26\u4e32\uff0c\u8f93\u5165\u4e00\u4e2a\u6b63\u6574\u6570 \\(n\\) \uff0c\u5b83\u7684\u4f4d\u6570\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u5373\u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u5ea6\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log_{10} n + 1) = O(\\log n)\\) \u3002
"},{"location":"chapter_computational_complexity/space_complexity/#244","title":"2.4.4 \u00a0 \u6743\u8861\u65f6\u95f4\u4e0e\u7a7a\u95f4","text":"\u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u80fd\u8fbe\u5230\u6700\u4f18\u3002\u7136\u800c\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u540c\u65f6\u4f18\u5316\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u975e\u5e38\u56f0\u96be\u3002
\u964d\u4f4e\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u9700\u8981\u4ee5\u63d0\u5347\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a\u4ee3\u4ef7\uff0c\u53cd\u4e4b\u4ea6\u7136\u3002\u6211\u4eec\u5c06\u727a\u7272\u5185\u5b58\u7a7a\u95f4\u6765\u63d0\u5347\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u601d\u8def\u79f0\u4e3a\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff1b\u53cd\u4e4b\uff0c\u5219\u79f0\u4e3a\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002
\u9009\u62e9\u54ea\u79cd\u601d\u8def\u53d6\u51b3\u4e8e\u6211\u4eec\u66f4\u770b\u91cd\u54ea\u4e2a\u65b9\u9762\u3002\u5728\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u65f6\u95f4\u6bd4\u7a7a\u95f4\u66f4\u5b9d\u8d35\uff0c\u56e0\u6b64\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u901a\u5e38\u662f\u66f4\u5e38\u7528\u7684\u7b56\u7565\u3002\u5f53\u7136\uff0c\u5728\u6570\u636e\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\uff0c\u63a7\u5236\u7a7a\u95f4\u590d\u6742\u5ea6\u4e5f\u975e\u5e38\u91cd\u8981\u3002
"},{"location":"chapter_computational_complexity/summary/","title":"2.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_computational_complexity/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":"\u7b97\u6cd5\u6548\u7387\u8bc4\u4f30
- \u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e24\u4e2a\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\u3002
- \u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9e\u9645\u6d4b\u8bd5\u6765\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u96be\u4ee5\u6d88\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5f71\u54cd\uff0c\u4e14\u4f1a\u8017\u8d39\u5927\u91cf\u8ba1\u7b97\u8d44\u6e90\u3002
- \u590d\u6742\u5ea6\u5206\u6790\u53ef\u4ee5\u6d88\u9664\u5b9e\u9645\u6d4b\u8bd5\u7684\u5f0a\u7aef\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\uff0c\u5e76\u4e14\u80fd\u591f\u63ed\u793a\u7b97\u6cd5\u5728\u4e0d\u540c\u6570\u636e\u89c4\u6a21\u4e0b\u7684\u6548\u7387\u3002
\u65f6\u95f4\u590d\u6742\u5ea6
- \u65f6\u95f4\u590d\u6742\u5ea6\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\uff0c\u53ef\u4ee5\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\u53ef\u80fd\u5931\u6548\uff0c\u5982\u5728\u8f93\u5165\u7684\u6570\u636e\u91cf\u8f83\u5c0f\u6216\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\u65f6\uff0c\u65e0\u6cd5\u7cbe\u786e\u5bf9\u6bd4\u7b97\u6cd5\u6548\u7387\u7684\u4f18\u52a3\u3002
- \u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f7f\u7528\u5927 \\(O\\) \u7b26\u53f7\u8868\u793a\uff0c\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u53cd\u6620\u5f53 \\(n\\) \u8d8b\u5411\u6b63\u65e0\u7a77\u65f6\uff0c\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u7684\u589e\u957f\u7ea7\u522b\u3002
- \u63a8\u7b97\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u4e24\u6b65\uff0c\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002
- \u5e38\u89c1\u65f6\u95f4\u590d\u6742\u5ea6\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\u6709 \\(O(1)\\)\u3001\\(O(\\log n)\\)\u3001\\(O(n)\\)\u3001\\(O(n \\log n)\\)\u3001\\(O(n^2)\\)\u3001\\(O(2^n)\\) \u548c \\(O(n!)\\) \u7b49\u3002
- \u67d0\u4e9b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u56fa\u5b9a\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u51e0\u4e4e\u4e0d\u7528\uff0c\u56e0\u4e3a\u8f93\u5165\u6570\u636e\u4e00\u822c\u9700\u8981\u6ee1\u8db3\u4e25\u683c\u6761\u4ef6\u624d\u80fd\u8fbe\u5230\u6700\u4f73\u60c5\u51b5\u3002
- \u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u53cd\u6620\u7b97\u6cd5\u5728\u968f\u673a\u6570\u636e\u8f93\u5165\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u6700\u63a5\u8fd1\u5b9e\u9645\u5e94\u7528\u4e2d\u7684\u7b97\u6cd5\u6027\u80fd\u3002\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u9700\u8981\u7edf\u8ba1\u8f93\u5165\u6570\u636e\u5206\u5e03\u4ee5\u53ca\u7efc\u5408\u540e\u7684\u6570\u5b66\u671f\u671b\u3002
\u7a7a\u95f4\u590d\u6742\u5ea6
- \u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u4f5c\u7528\u7c7b\u4f3c\u4e8e\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\u3002
- \u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u76f8\u5173\u5185\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u8f93\u5165\u7a7a\u95f4\u3001\u6682\u5b58\u7a7a\u95f4\u3001\u8f93\u51fa\u7a7a\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u8f93\u5165\u7a7a\u95f4\u4e0d\u7eb3\u5165\u7a7a\u95f4\u590d\u6742\u5ea6\u8ba1\u7b97\u3002\u6682\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u6682\u5b58\u6570\u636e\u3001\u6808\u5e27\u7a7a\u95f4\u548c\u6307\u4ee4\u7a7a\u95f4\uff0c\u5176\u4e2d\u6808\u5e27\u7a7a\u95f4\u901a\u5e38\u4ec5\u5728\u9012\u5f52\u51fd\u6570\u4e2d\u5f71\u54cd\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
- \u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5373\u7edf\u8ba1\u7b97\u6cd5\u5728\u6700\u5dee\u8f93\u5165\u6570\u636e\u548c\u6700\u5dee\u8fd0\u884c\u65f6\u523b\u4e0b\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
- \u5e38\u89c1\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\u6709 \\(O(1)\\)\u3001\\(O(\\log n)\\)\u3001\\(O(n)\\)\u3001\\(O(n^2)\\) \u548c \\(O(2^n)\\) \u7b49\u3002
"},{"location":"chapter_computational_complexity/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u5c3e\u9012\u5f52\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u5417\uff1f
\u7406\u8bba\u4e0a\uff0c\u5c3e\u9012\u5f52\u51fd\u6570\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \u3002\u4e0d\u8fc7\u7edd\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java\u3001Python\u3001C++\u3001Go\u3001C# \u7b49\uff09\u4e0d\u652f\u6301\u81ea\u52a8\u4f18\u5316\u5c3e\u9012\u5f52\uff0c\u56e0\u6b64\u901a\u5e38\u8ba4\u4e3a\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(n)\\) \u3002
\u51fd\u6570\u548c\u65b9\u6cd5\u8fd9\u4e24\u4e2a\u672f\u8bed\u7684\u533a\u522b\u662f\u4ec0\u4e48\uff1f
\u300c\u51fd\u6570 function\u300d\u53ef\u4ee5\u88ab\u72ec\u7acb\u6267\u884c\uff0c\u6240\u6709\u53c2\u6570\u90fd\u4ee5\u663e\u5f0f\u4f20\u9012\u3002\u300c\u65b9\u6cd5 method\u300d\u4e0e\u4e00\u4e2a\u5bf9\u8c61\u5173\u8054\uff0c\u88ab\u9690\u5f0f\u4f20\u9012\u7ed9\u8c03\u7528\u5b83\u7684\u5bf9\u8c61\uff0c\u80fd\u591f\u5bf9\u7c7b\u7684\u5b9e\u4f8b\u4e2d\u5305\u542b\u7684\u6570\u636e\u8fdb\u884c\u64cd\u4f5c\u3002
\u4e0b\u9762\u4ee5\u51e0\u79cd\u5e38\u89c1\u7684\u7f16\u7a0b\u8bed\u8a00\u4e3a\u4f8b\u6765\u8bf4\u660e\u3002
- C \u8bed\u8a00\u662f\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\u8bed\u8a00\uff0c\u6ca1\u6709\u9762\u5411\u5bf9\u8c61\u7684\u6982\u5ff5\uff0c\u6240\u4ee5\u53ea\u6709\u51fd\u6570\u3002\u4f46\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u7ed3\u6784\u4f53\uff08struct\uff09\u6765\u6a21\u62df\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff0c\u4e0e\u7ed3\u6784\u4f53\u76f8\u5173\u8054\u7684\u51fd\u6570\u5c31\u76f8\u5f53\u4e8e\u5176\u4ed6\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u65b9\u6cd5\u3002
- Java \u548c C# \u662f\u9762\u5411\u5bf9\u8c61\u7684\u7f16\u7a0b\u8bed\u8a00\uff0c\u4ee3\u7801\u5757\uff08\u65b9\u6cd5\uff09\u901a\u5e38\u4f5c\u4e3a\u67d0\u4e2a\u7c7b\u7684\u4e00\u90e8\u5206\u3002\u9759\u6001\u65b9\u6cd5\u7684\u884c\u4e3a\u7c7b\u4f3c\u4e8e\u51fd\u6570\uff0c\u56e0\u4e3a\u5b83\u88ab\u7ed1\u5b9a\u5728\u7c7b\u4e0a\uff0c\u4e0d\u80fd\u8bbf\u95ee\u7279\u5b9a\u7684\u5b9e\u4f8b\u53d8\u91cf\u3002
- C++ \u548c Python \u65e2\u652f\u6301\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\uff08\u51fd\u6570\uff09\uff0c\u4e5f\u652f\u6301\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff08\u65b9\u6cd5\uff09\u3002
\u56fe\u89e3\u201c\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\u201d\u53cd\u6620\u7684\u662f\u5426\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\uff1f
\u4e0d\u662f\uff0c\u8be5\u56fe\u5c55\u793a\u7684\u662f\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5176\u53cd\u6620\u7684\u662f\u589e\u957f\u8d8b\u52bf\uff0c\u800c\u4e0d\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\u3002
\u5047\u8bbe\u53d6 \\(n = 8\\) \uff0c\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u6bcf\u6761\u66f2\u7ebf\u7684\u503c\u4e0e\u51fd\u6570\u5bf9\u5e94\u4e0d\u4e0a\u3002\u8fd9\u662f\u56e0\u4e3a\u6bcf\u6761\u66f2\u7ebf\u90fd\u5305\u542b\u4e00\u4e2a\u5e38\u6570\u9879\uff0c\u7528\u4e8e\u5c06\u53d6\u503c\u8303\u56f4\u538b\u7f29\u5230\u4e00\u4e2a\u89c6\u89c9\u8212\u9002\u7684\u8303\u56f4\u5185\u3002
\u5728\u5b9e\u9645\u4e2d\uff0c\u56e0\u4e3a\u6211\u4eec\u901a\u5e38\u4e0d\u77e5\u9053\u6bcf\u4e2a\u65b9\u6cd5\u7684\u201c\u5e38\u6570\u9879\u201d\u590d\u6742\u5ea6\u662f\u591a\u5c11\uff0c\u6240\u4ee5\u4e00\u822c\u65e0\u6cd5\u4ec5\u51ed\u590d\u6742\u5ea6\u6765\u9009\u62e9 \\(n = 8\\) \u4e4b\u4e0b\u7684\u6700\u4f18\u89e3\u6cd5\u3002\u4f46\u5bf9\u4e8e \\(n = 8^5\\) \u5c31\u5f88\u597d\u9009\u4e86\uff0c\u8fd9\u65f6\u589e\u957f\u8d8b\u52bf\u5df2\u7ecf\u5360\u4e3b\u5bfc\u4e86\u3002
"},{"location":"chapter_computational_complexity/time_complexity/","title":"2.3 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6","text":"\u8fd0\u884c\u65f6\u95f4\u53ef\u4ee5\u76f4\u89c2\u4e14\u51c6\u786e\u5730\u53cd\u6620\u7b97\u6cd5\u7684\u6548\u7387\u3002\u5982\u679c\u6211\u4eec\u60f3\u51c6\u786e\u9884\u4f30\u4e00\u6bb5\u4ee3\u7801\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u5e94\u8be5\u5982\u4f55\u64cd\u4f5c\u5462\uff1f
- \u786e\u5b9a\u8fd0\u884c\u5e73\u53f0\uff0c\u5305\u62ec\u786c\u4ef6\u914d\u7f6e\u3001\u7f16\u7a0b\u8bed\u8a00\u3001\u7cfb\u7edf\u73af\u5883\u7b49\uff0c\u8fd9\u4e9b\u56e0\u7d20\u90fd\u4f1a\u5f71\u54cd\u4ee3\u7801\u7684\u8fd0\u884c\u6548\u7387\u3002
- \u8bc4\u4f30\u5404\u79cd\u8ba1\u7b97\u64cd\u4f5c\u6240\u9700\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u4f8b\u5982\u52a0\u6cd5\u64cd\u4f5c
+ \u9700\u8981 1 ns \uff0c\u4e58\u6cd5\u64cd\u4f5c * \u9700\u8981 10 ns \uff0c\u6253\u5370\u64cd\u4f5c print() \u9700\u8981 5 ns \u7b49\u3002 - \u7edf\u8ba1\u4ee3\u7801\u4e2d\u6240\u6709\u7684\u8ba1\u7b97\u64cd\u4f5c\uff0c\u5e76\u5c06\u6240\u6709\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u6c42\u548c\uff0c\u4ece\u800c\u5f97\u5230\u8fd0\u884c\u65f6\u95f4\u3002
\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\ndef algorithm(n: int):\n a = 2 # 1 ns\n a = a + 1 # 1 ns\n a = a * 2 # 10 ns\n # \u5faa\u73af n \u6b21\n for _ in range(n): # 1 ns\n print(0) # 5 ns\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n cout << 0 << endl; // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n System.out.println(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid Algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n Console.WriteLine(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n int) {\n a := 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // \u5faa\u73af n \u6b21\n for i := 0; i < n; i++ { // 1 ns\n fmt.Println(a) // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n: Int) {\n var a = 2 // 1 ns\n a = a + 1 // 1 ns\n a = a * 2 // 10 ns\n // \u5faa\u73af n \u6b21\n for _ in 0 ..< n { // 1 ns\n print(0) // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n) {\n var a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n console.log(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n: number): void {\n var a: number = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n console.log(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n print(0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfn algorithm(n: i32) {\n let mut a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for _ in 0..n { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n println!(\"{}\", 0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\n int a = 2; // 1 ns\n a = a + 1; // 1 ns\n a = a * 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\n printf(\"%d\", 0); // 5 ns\n }\n}\n
// \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfn algorithm(n: usize) void {\n var a: i32 = 2; // 1 ns\n a += 1; // 1 ns\n a *= 2; // 10 ns\n // \u5faa\u73af n \u6b21\n for (0..n) |_| { // 1 ns\n std.debug.print(\"{}\\n\", .{0}); // 5 ns\n }\n}\n
\u6839\u636e\u4ee5\u4e0a\u65b9\u6cd5\uff0c\u53ef\u4ee5\u5f97\u5230\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\u4e3a \\((6n + 12)\\) ns \uff1a
\\[ 1 + 1 + 10 + (1 + 5) \\times n = 6n + 12 \\] \u4f46\u5b9e\u9645\u4e0a\uff0c\u7edf\u8ba1\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\u65e2\u4e0d\u5408\u7406\u4e5f\u4e0d\u73b0\u5b9e\u3002\u9996\u5148\uff0c\u6211\u4eec\u4e0d\u5e0c\u671b\u5c06\u9884\u4f30\u65f6\u95f4\u548c\u8fd0\u884c\u5e73\u53f0\u7ed1\u5b9a\uff0c\u56e0\u4e3a\u7b97\u6cd5\u9700\u8981\u5728\u5404\u79cd\u4e0d\u540c\u7684\u5e73\u53f0\u4e0a\u8fd0\u884c\u3002\u5176\u6b21\uff0c\u6211\u4eec\u5f88\u96be\u83b7\u77e5\u6bcf\u79cd\u64cd\u4f5c\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u8fd9\u7ed9\u9884\u4f30\u8fc7\u7a0b\u5e26\u6765\u4e86\u6781\u5927\u7684\u96be\u5ea6\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#231","title":"2.3.1 \u00a0 \u7edf\u8ba1\u65f6\u95f4\u589e\u957f\u8d8b\u52bf","text":"\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u7edf\u8ba1\u7684\u4e0d\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\uff0c\u800c\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002
\u201c\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u201d\u8fd9\u4e2a\u6982\u5ff5\u6bd4\u8f83\u62bd\u8c61\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e2a\u4f8b\u5b50\u6765\u52a0\u4ee5\u7406\u89e3\u3002\u5047\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7ed9\u5b9a\u4e09\u4e2a\u7b97\u6cd5 A\u3001B \u548c C \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_A(n: int):\n print(0)\n# \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\ndef algorithm_B(n: int):\n for _ in range(n):\n print(0)\n# \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_C(n: int):\n for _ in range(1000000):\n print(0)\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\n cout << 0 << endl;\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n cout << 0 << endl;\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n cout << 0 << endl;\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\n System.out.println(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n System.out.println(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n System.out.println(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid AlgorithmA(int n) {\n Console.WriteLine(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid AlgorithmB(int n) {\n for (int i = 0; i < n; i++) {\n Console.WriteLine(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid AlgorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n Console.WriteLine(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_A(n int) {\n fmt.Println(0)\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithm_B(n int) {\n for i := 0; i < n; i++ {\n fmt.Println(0)\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_C(n int) {\n for i := 0; i < 1000000; i++ {\n fmt.Println(0)\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmA(n: Int) {\n print(0)\n}\n\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithmB(n: Int) {\n for _ in 0 ..< n {\n print(0)\n }\n}\n\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmC(n: Int) {\n for _ in 0 ..< 1000000 {\n print(0)\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n) {\n console.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n) {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n) {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n: number): void {\n console.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n: number): void {\n for (let i = 0; i < n; i++) {\n console.log(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n: number): void {\n for (let i = 0; i < 1000000; i++) {\n console.log(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmA(int n) {\n print(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithmB(int n) {\n for (int i = 0; i < n; i++) {\n print(0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmC(int n) {\n for (int i = 0; i < 1000000; i++) {\n print(0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_A(n: i32) {\n println!(\"{}\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfn algorithm_B(n: i32) {\n for _ in 0..n {\n println!(\"{}\", 0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_C(n: i32) {\n for _ in 0..1000000 {\n println!(\"{}\", 0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\n printf(\"%d\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\n for (int i = 0; i < n; i++) {\n printf(\"%d\", 0);\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\n for (int i = 0; i < 1000000; i++) {\n printf(\"%d\", 0);\n }\n}\n
// \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_A(n: usize) void {\n _ = n;\n std.debug.print(\"{}\\n\", .{0});\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfn algorithm_B(n: i32) void {\n for (0..n) |_| {\n std.debug.print(\"{}\\n\", .{0});\n }\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_C(n: i32) void {\n _ = n;\n for (0..1000000) |_| { \n std.debug.print(\"{}\\n\", .{0});\n }\n}\n
\u56fe 2-7 \u5c55\u793a\u4e86\u4ee5\u4e0a\u4e09\u4e2a\u7b97\u6cd5\u51fd\u6570\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002
- \u7b97\u6cd5
A \u53ea\u6709 \\(1\\) \u4e2a\u6253\u5370\u64cd\u4f5c\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u4e0d\u968f\u7740 \\(n\\) \u589e\u5927\u800c\u589e\u957f\u3002\u6211\u4eec\u79f0\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u201c\u5e38\u6570\u9636\u201d\u3002 - \u7b97\u6cd5
B \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(n\\) \u6b21\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740 \\(n\\) \u589e\u5927\u5448\u7ebf\u6027\u589e\u957f\u3002\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u88ab\u79f0\u4e3a\u201c\u7ebf\u6027\u9636\u201d\u3002 - \u7b97\u6cd5
C \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(1000000\\) \u6b21\uff0c\u867d\u7136\u8fd0\u884c\u65f6\u95f4\u5f88\u957f\uff0c\u4f46\u5b83\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u3002\u56e0\u6b64 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c A \u76f8\u540c\uff0c\u4ecd\u4e3a\u201c\u5e38\u6570\u9636\u201d\u3002
\u56fe 2-7 \u00a0 \u7b97\u6cd5 A\u3001B \u548c C \u7684\u65f6\u95f4\u589e\u957f\u8d8b\u52bf
\u76f8\u8f83\u4e8e\u76f4\u63a5\u7edf\u8ba1\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u6709\u54ea\u4e9b\u7279\u70b9\u5462\uff1f
- \u65f6\u95f4\u590d\u6742\u5ea6\u80fd\u591f\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u3002\u4f8b\u5982\uff0c\u7b97\u6cd5
B \u7684\u8fd0\u884c\u65f6\u95f4\u5448\u7ebf\u6027\u589e\u957f\uff0c\u5728 \\(n > 1\\) \u65f6\u6bd4\u7b97\u6cd5 A \u66f4\u6162\uff0c\u5728 \\(n > 1000000\\) \u65f6\u6bd4\u7b97\u6cd5 C \u66f4\u6162\u3002\u4e8b\u5b9e\u4e0a\uff0c\u53ea\u8981\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8db3\u591f\u5927\uff0c\u590d\u6742\u5ea6\u4e3a\u201c\u5e38\u6570\u9636\u201d\u7684\u7b97\u6cd5\u4e00\u5b9a\u4f18\u4e8e\u201c\u7ebf\u6027\u9636\u201d\u7684\u7b97\u6cd5\uff0c\u8fd9\u6b63\u662f\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u7684\u542b\u4e49\u3002 - \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u66f4\u7b80\u4fbf\u3002\u663e\u7136\uff0c\u8fd0\u884c\u5e73\u53f0\u548c\u8ba1\u7b97\u64cd\u4f5c\u7c7b\u578b\u90fd\u4e0e\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u65e0\u5173\u3002\u56e0\u6b64\u5728\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u5c06\u6240\u6709\u8ba1\u7b97\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u89c6\u4e3a\u76f8\u540c\u7684\u201c\u5355\u4f4d\u65f6\u95f4\u201d\uff0c\u4ece\u800c\u5c06\u201c\u8ba1\u7b97\u64cd\u4f5c\u8fd0\u884c\u65f6\u95f4\u7edf\u8ba1\u201d\u7b80\u5316\u4e3a\u201c\u8ba1\u7b97\u64cd\u4f5c\u6570\u91cf\u7edf\u8ba1\u201d\uff0c\u8fd9\u6837\u4e00\u6765\u4f30\u7b97\u96be\u5ea6\u5c31\u5927\u5927\u964d\u4f4e\u4e86\u3002
- \u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u5b58\u5728\u4e00\u5b9a\u7684\u5c40\u9650\u6027\u3002\u4f8b\u5982\uff0c\u5c3d\u7ba1\u7b97\u6cd5
A \u548c C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\uff0c\u4f46\u5b9e\u9645\u8fd0\u884c\u65f6\u95f4\u5dee\u522b\u5f88\u5927\u3002\u540c\u6837\uff0c\u5c3d\u7ba1\u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u6bd4 C \u9ad8\uff0c\u4f46\u5728\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 B \u660e\u663e\u4f18\u4e8e\u7b97\u6cd5 C \u3002\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5f88\u96be\u4ec5\u51ed\u65f6\u95f4\u590d\u6742\u5ea6\u5224\u65ad\u7b97\u6cd5\u6548\u7387\u7684\u9ad8\u4f4e\u3002\u5f53\u7136\uff0c\u5c3d\u7ba1\u5b58\u5728\u4e0a\u8ff0\u95ee\u9898\uff0c\u590d\u6742\u5ea6\u5206\u6790\u4ecd\u7136\u662f\u8bc4\u5224\u7b97\u6cd5\u6548\u7387\u6700\u6709\u6548\u4e14\u5e38\u7528\u7684\u65b9\u6cd5\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#232","title":"2.3.2 \u00a0 \u51fd\u6570\u6e10\u8fd1\u4e0a\u754c","text":"\u7ed9\u5b9a\u4e00\u4e2a\u8f93\u5165\u5927\u5c0f\u4e3a \\(n\\) \u7684\u51fd\u6570\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +1\n a = a + 1 # +1\n a = a * 2 # +1\n # \u5faa\u73af n \u6b21\n for i in range(n): # +1\n print(0) # +1\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n cout << 0 << endl; // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n System.out.println(0); // +1\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n Console.WriteLine(0); // +1\n }\n}\n
func algorithm(n int) {\n a := 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // \u5faa\u73af n \u6b21\n for i := 0; i < n; i++ { // +1\n fmt.Println(a) // +1\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +1\n a = a + 1 // +1\n a = a * 2 // +1\n // \u5faa\u73af n \u6b21\n for _ in 0 ..< n { // +1\n print(0) // +1\n }\n}\n
function algorithm(n) {\n var a = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n console.log(0); // +1\n }\n}\n
function algorithm(n: number): void{\n var a: number = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // \u5faa\u73af n \u6b21\n for(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n console.log(0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n print(0); // +1\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n\n // \u5faa\u73af n \u6b21\n for _ in 0..n { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n println!(\"{}\", 0); // +1\n }\n}\n
void algorithm(int n) {\n int a = 1; // +1\n a = a + 1; // +1\n a = a * 2; // +1\n // \u5faa\u73af n \u6b21\n for (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n printf(\"%d\", 0); // +1\n }\n} \n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +1\n a += 1; // +1\n a *= 2; // +1\n // \u5faa\u73af n \u6b21\n for (0..n) |_| { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\n std.debug.print(\"{}\\n\", .{0}); // +1\n }\n}\n
\u8bbe\u7b97\u6cd5\u7684\u64cd\u4f5c\u6570\u91cf\u662f\u4e00\u4e2a\u5173\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u7684\u51fd\u6570\uff0c\u8bb0\u4e3a \\(T(n)\\) \uff0c\u5219\u4ee5\u4e0a\u51fd\u6570\u7684\u64cd\u4f5c\u6570\u91cf\u4e3a\uff1a
\\[ T(n) = 3 + 2n \\] \\(T(n)\\) \u662f\u4e00\u6b21\u51fd\u6570\uff0c\u8bf4\u660e\u5176\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u662f\u7ebf\u6027\u7684\uff0c\u56e0\u6b64\u5b83\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u7ebf\u6027\u9636\u3002
\u6211\u4eec\u5c06\u7ebf\u6027\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u8bb0\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e2a\u6570\u5b66\u7b26\u53f7\u79f0\u4e3a\u300c\u5927 \\(O\\) \u8bb0\u53f7 big-\\(O\\) notation\u300d\uff0c\u8868\u793a\u51fd\u6570 \\(T(n)\\) \u7684\u300c\u6e10\u8fd1\u4e0a\u754c asymptotic upper bound\u300d\u3002
\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u672c\u8d28\u4e0a\u662f\u8ba1\u7b97\u201c\u64cd\u4f5c\u6570\u91cf \\(T(n)\\)\u201d\u7684\u6e10\u8fd1\u4e0a\u754c\uff0c\u5b83\u5177\u6709\u660e\u786e\u7684\u6570\u5b66\u5b9a\u4e49\u3002
\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c
\u82e5\u5b58\u5728\u6b63\u5b9e\u6570 \\(c\\) \u548c\u5b9e\u6570 \\(n_0\\) \uff0c\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u7684 \\(n > n_0\\) \uff0c\u5747\u6709 \\(T(n) \\leq c \\cdot f(n)\\) \uff0c\u5219\u53ef\u8ba4\u4e3a \\(f(n)\\) \u7ed9\u51fa\u4e86 \\(T(n)\\) \u7684\u4e00\u4e2a\u6e10\u8fd1\u4e0a\u754c\uff0c\u8bb0\u4e3a \\(T(n) = O(f(n))\\) \u3002
\u5982\u56fe 2-8 \u6240\u793a\uff0c\u8ba1\u7b97\u6e10\u8fd1\u4e0a\u754c\u5c31\u662f\u5bfb\u627e\u4e00\u4e2a\u51fd\u6570 \\(f(n)\\) \uff0c\u4f7f\u5f97\u5f53 \\(n\\) \u8d8b\u5411\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\\(T(n)\\) \u548c \\(f(n)\\) \u5904\u4e8e\u76f8\u540c\u7684\u589e\u957f\u7ea7\u522b\uff0c\u4ec5\u76f8\u5dee\u4e00\u4e2a\u5e38\u6570\u9879 \\(c\\) \u7684\u500d\u6570\u3002
\u56fe 2-8 \u00a0 \u51fd\u6570\u7684\u6e10\u8fd1\u4e0a\u754c
"},{"location":"chapter_computational_complexity/time_complexity/#233","title":"2.3.3 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"\u6e10\u8fd1\u4e0a\u754c\u7684\u6570\u5b66\u5473\u513f\u6709\u70b9\u91cd\uff0c\u5982\u679c\u4f60\u611f\u89c9\u6ca1\u6709\u5b8c\u5168\u7406\u89e3\uff0c\u4e5f\u65e0\u987b\u62c5\u5fc3\u3002\u6211\u4eec\u53ef\u4ee5\u5148\u638c\u63e1\u63a8\u7b97\u65b9\u6cd5\uff0c\u5728\u4e0d\u65ad\u7684\u5b9e\u8df5\u4e2d\uff0c\u5c31\u53ef\u4ee5\u9010\u6e10\u9886\u609f\u5176\u6570\u5b66\u610f\u4e49\u3002
\u6839\u636e\u5b9a\u4e49\uff0c\u786e\u5b9a \\(f(n)\\) \u4e4b\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \u3002\u90a3\u4e48\u5982\u4f55\u786e\u5b9a\u6e10\u8fd1\u4e0a\u754c \\(f(n)\\) \u5462\uff1f\u603b\u4f53\u5206\u4e3a\u4e24\u6b65\uff1a\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#1","title":"1. \u00a0 \u7b2c\u4e00\u6b65\uff1a\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf","text":"\u9488\u5bf9\u4ee3\u7801\uff0c\u9010\u884c\u4ece\u4e0a\u5230\u4e0b\u8ba1\u7b97\u5373\u53ef\u3002\u7136\u800c\uff0c\u7531\u4e8e\u4e0a\u8ff0 \\(c \\cdot f(n)\\) \u4e2d\u7684\u5e38\u6570\u9879 \\(c\\) \u53ef\u4ee5\u53d6\u4efb\u610f\u5927\u5c0f\uff0c\u56e0\u6b64\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u4e2d\u7684\u5404\u79cd\u7cfb\u6570\u3001\u5e38\u6570\u9879\u90fd\u53ef\u4ee5\u5ffd\u7565\u3002\u6839\u636e\u6b64\u539f\u5219\uff0c\u53ef\u4ee5\u603b\u7ed3\u51fa\u4ee5\u4e0b\u8ba1\u6570\u7b80\u5316\u6280\u5de7\u3002
- \u5ffd\u7565 \\(T(n)\\) \u4e2d\u7684\u5e38\u6570\u9879\u3002\u56e0\u4e3a\u5b83\u4eec\u90fd\u4e0e \\(n\\) \u65e0\u5173\uff0c\u6240\u4ee5\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4ea7\u751f\u5f71\u54cd\u3002
- \u7701\u7565\u6240\u6709\u7cfb\u6570\u3002\u4f8b\u5982\uff0c\u5faa\u73af \\(2n\\) \u6b21\u3001\\(5n + 1\\) \u6b21\u7b49\uff0c\u90fd\u53ef\u4ee5\u7b80\u5316\u8bb0\u4e3a \\(n\\) \u6b21\uff0c\u56e0\u4e3a \\(n\\) \u524d\u9762\u7684\u7cfb\u6570\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u6ca1\u6709\u5f71\u54cd\u3002
- \u5faa\u73af\u5d4c\u5957\u65f6\u4f7f\u7528\u4e58\u6cd5\u3002\u603b\u64cd\u4f5c\u6570\u91cf\u7b49\u4e8e\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u64cd\u4f5c\u6570\u91cf\u4e4b\u79ef\uff0c\u6bcf\u4e00\u5c42\u5faa\u73af\u4f9d\u7136\u53ef\u4ee5\u5206\u522b\u5957\u7528\u7b2c
1. \u70b9\u548c\u7b2c 2. \u70b9\u7684\u6280\u5de7\u3002
\u7ed9\u5b9a\u4e00\u4e2a\u51fd\u6570\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u4e0a\u8ff0\u6280\u5de7\u6765\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig def algorithm(n: int):\n a = 1 # +0\uff08\u6280\u5de7 1\uff09\n a = a + n # +0\uff08\u6280\u5de7 1\uff09\n # +n\uff08\u6280\u5de7 2\uff09\n for i in range(5 * n + 1):\n print(0)\n # +n*n\uff08\u6280\u5de7 3\uff09\n for i in range(2 * n):\n for j in range(n + 1):\n print(0)\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n cout << 0 << endl;\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n cout << 0 << endl;\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n System.out.println(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n System.out.println(0);\n }\n }\n}\n
void Algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n Console.WriteLine(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n Console.WriteLine(0);\n }\n }\n}\n
func algorithm(n int) {\n a := 1 // +0\uff08\u6280\u5de7 1\uff09\n a = a + n // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for i := 0; i < 5 * n + 1; i++ {\n fmt.Println(0)\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for i := 0; i < 2 * n; i++ {\n for j := 0; j < n + 1; j++ {\n fmt.Println(0)\n }\n }\n}\n
func algorithm(n: Int) {\n var a = 1 // +0\uff08\u6280\u5de7 1\uff09\n a = a + n // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for _ in 0 ..< (5 * n + 1) {\n print(0)\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for _ in 0 ..< (2 * n) {\n for _ in 0 ..< (n + 1) {\n print(0)\n }\n }\n}\n
function algorithm(n) {\n let a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
function algorithm(n: number): void {\n let a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (let i = 0; i < 5 * n + 1; i++) {\n console.log(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (let i = 0; i < 2 * n; i++) {\n for (let j = 0; j < n + 1; j++) {\n console.log(0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n print(0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n print(0);\n }\n }\n}\n
fn algorithm(n: i32) {\n let mut a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n\n // +n\uff08\u6280\u5de7 2\uff09\n for i in 0..(5 * n + 1) {\n println!(\"{}\", 0);\n }\n\n // +n*n\uff08\u6280\u5de7 3\uff09\n for i in 0..(2 * n) {\n for j in 0..(n + 1) {\n println!(\"{}\", 0);\n }\n }\n}\n
void algorithm(int n) {\n int a = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + n; // +0\uff08\u6280\u5de7 1\uff09\n // +n\uff08\u6280\u5de7 2\uff09\n for (int i = 0; i < 5 * n + 1; i++) {\n printf(\"%d\", 0);\n }\n // +n*n\uff08\u6280\u5de7 3\uff09\n for (int i = 0; i < 2 * n; i++) {\n for (int j = 0; j < n + 1; j++) {\n printf(\"%d\", 0);\n }\n }\n}\n
fn algorithm(n: usize) void {\n var a: i32 = 1; // +0\uff08\u6280\u5de7 1\uff09\n a = a + @as(i32, @intCast(n)); // +0\uff08\u6280\u5de7 1\uff09\n\n // +n\uff08\u6280\u5de7 2\uff09\n for(0..(5 * n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0}); \n }\n\n // +n*n\uff08\u6280\u5de7 3\uff09\n for(0..(2 * n)) |_| {\n for(0..(n + 1)) |_| {\n std.debug.print(\"{}\\n\", .{0}); \n }\n }\n}\n
\u4ee5\u4e0b\u516c\u5f0f\u5c55\u793a\u4e86\u4f7f\u7528\u4e0a\u8ff0\u6280\u5de7\u524d\u540e\u7684\u7edf\u8ba1\u7ed3\u679c\uff0c\u4e24\u8005\u63a8\u7b97\u51fa\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \u3002
\\[ \\begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \\text{\u5b8c\u6574\u7edf\u8ba1 (-.-|||)} \\newline & = 2n^2 + 7n + 3 \\newline T(n) & = n^2 + n & \\text{\u5077\u61d2\u7edf\u8ba1 (o.O)} \\end{aligned} \\]"},{"location":"chapter_computational_complexity/time_complexity/#2","title":"2. \u00a0 \u7b2c\u4e8c\u6b65\uff1a\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c","text":"\u65f6\u95f4\u590d\u6742\u5ea6\u7531 \\(T(n)\\) \u4e2d\u6700\u9ad8\u9636\u7684\u9879\u6765\u51b3\u5b9a\u3002\u8fd9\u662f\u56e0\u4e3a\u5728 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u6700\u9ad8\u9636\u7684\u9879\u5c06\u53d1\u6325\u4e3b\u5bfc\u4f5c\u7528\uff0c\u5176\u4ed6\u9879\u7684\u5f71\u54cd\u90fd\u53ef\u4ee5\u5ffd\u7565\u3002
\u8868 2-2 \u5c55\u793a\u4e86\u4e00\u4e9b\u4f8b\u5b50\uff0c\u5176\u4e2d\u4e00\u4e9b\u5938\u5f20\u7684\u503c\u662f\u4e3a\u4e86\u5f3a\u8c03\u201c\u7cfb\u6570\u65e0\u6cd5\u64bc\u52a8\u9636\u6570\u201d\u8fd9\u4e00\u7ed3\u8bba\u3002\u5f53 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u8fd9\u4e9b\u5e38\u6570\u53d8\u5f97\u65e0\u8db3\u8f7b\u91cd\u3002
\u8868 2-2 \u00a0 \u4e0d\u540c\u64cd\u4f5c\u6570\u91cf\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \\(100000\\) \\(O(1)\\) \\(3n + 2\\) \\(O(n)\\) \\(2n^2 + 3n + 2\\) \\(O(n^2)\\) \\(n^3 + 10000n^2\\) \\(O(n^3)\\) \\(2^n + 10000n^{10000}\\) \\(O(2^n)\\)"},{"location":"chapter_computational_complexity/time_complexity/#234","title":"2.3.4 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\u5982\u56fe 2-9 \u6240\u793a\uff08\u6309\u7167\u4ece\u4f4e\u5230\u9ad8\u7684\u987a\u5e8f\u6392\u5217\uff09\u3002
\\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n \\log n) < O(n^2) < O(2^n) < O(n!) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u7ebf\u6027\u5bf9\u6570\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} < \\text{\u9636\u4e58\u9636} \\end{aligned} \\] \u56fe 2-9 \u00a0 \u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b
"},{"location":"chapter_computational_complexity/time_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"\u5e38\u6570\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u5373\u4e0d\u968f\u7740 \\(n\\) \u7684\u53d8\u5316\u800c\u53d8\u5316\u3002
\u5728\u4ee5\u4e0b\u51fd\u6570\u4e2d\uff0c\u5c3d\u7ba1\u64cd\u4f5c\u6570\u91cf size \u53ef\u80fd\u5f88\u5927\uff0c\u4f46\u7531\u4e8e\u5176\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef constant(n: int) -> int:\n \"\"\"\u5e38\u6570\u9636\"\"\"\n count = 0\n size = 100000\n for _ in range(size):\n count += 1\n return count\n
time_complexity.cpp/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u5e38\u6570\u9636 */\nint Constant(int n) {\n int count = 0;\n int size = 100000;\n for (int i = 0; i < size; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u5e38\u6570\u9636 */\nfunc constant(n int) int {\n count := 0\n size := 100000\n for i := 0; i < size; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) -> Int {\n var count = 0\n let size = 100_000\n for _ in 0 ..< size {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u5e38\u6570\u9636 */\nfunction constant(n: number): number {\n let count = 0;\n const size = 100000;\n for (let i = 0; i < size; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n for (var i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5e38\u6570\u9636 */\nfn constant(n: i32) -> i32 {\n _ = n;\n let mut count = 0;\n let size = 100_000;\n for _ in 0..size {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5e38\u6570\u9636 */\nint constant(int n) {\n int count = 0;\n int size = 100000;\n int i = 0;\n for (int i = 0; i < size; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5e38\u6570\u9636\nfn constant(n: i32) i32 {\n _ = n;\n var count: i32 = 0;\n const size: i32 = 100_000;\n var i: i32 = 0;\n while(i<size) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"\u7ebf\u6027\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u4ee5\u7ebf\u6027\u7ea7\u522b\u589e\u957f\u3002\u7ebf\u6027\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5355\u5c42\u5faa\u73af\u4e2d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear(n: int) -> int:\n \"\"\"\u7ebf\u6027\u9636\"\"\"\n count = 0\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636 */\nint Linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++)\n count++;\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636 */\nfunc linear(n int) int {\n count := 0\n for i := 0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) -> Int {\n var count = 0\n for _ in 0 ..< n {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636 */\nfunction linear(n: number): number {\n let count = 0;\n for (let i = 0; i < n; i++) count++;\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636 */\nfn linear(n: i32) -> i32 {\n let mut count = 0;\n for _ in 0..n {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636 */\nint linear(int n) {\n int count = 0;\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\nfn linear(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
\u904d\u5386\u6570\u7ec4\u548c\u904d\u5386\u94fe\u8868\u7b49\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u6216\u94fe\u8868\u7684\u957f\u5ea6\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef array_traversal(nums: list[int]) -> int:\n \"\"\"\u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for num in nums:\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(vector<int> &nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int num : nums) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint ArrayTraversal(int[] nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n foreach (int num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums []int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for range nums {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums: [Int]) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums: number[]): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (let i = 0; i < nums.length; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(List<int> nums) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (var _num in nums) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfn array_traversal(nums: &[i32]) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for _ in nums {\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int *nums, int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\nfn arrayTraversal(nums: []i32) i32 {\n var count: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\n for (nums) |_| {\n count += 1;\n }\n return count;\n}\n
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u9700\u6839\u636e\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b\u6765\u5177\u4f53\u786e\u5b9a\u3002\u6bd4\u5982\u5728\u7b2c\u4e00\u4e2a\u793a\u4f8b\u4e2d\uff0c\u53d8\u91cf \\(n\\) \u4e3a\u8f93\u5165\u6570\u636e\u5927\u5c0f\uff1b\u5728\u7b2c\u4e8c\u4e2a\u793a\u4f8b\u4e2d\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u4e3a\u6570\u636e\u5927\u5c0f\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"\u5e73\u65b9\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u4ee5\u5e73\u65b9\u7ea7\u522b\u589e\u957f\u3002\u5e73\u65b9\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n)\\) \uff0c\u56e0\u6b64\u603b\u4f53\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef quadratic(n: int) -> int:\n \"\"\"\u5e73\u65b9\u9636\"\"\"\n count = 0\n # \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i in range(n):\n for j in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636 */\nint Quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636 */\nfunc quadratic(n int) int {\n count := 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for i := 0; i < n; i++ {\n for j := 0; j < n; j++ {\n count++\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) -> Int {\n var count = 0\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0 ..< n {\n for _ in 0 ..< n {\n count += 1\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): number {\n let count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636 */\nfn quadratic(n: i32) -> i32 {\n let mut count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for _ in 0..n {\n for _ in 0..n {\n count += 1;\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\n int count = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < n; j++) {\n count++;\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\nfn quadratic(n: i32) i32 {\n var count: i32 = 0;\n var i: i32 = 0;\n // \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < n) : (j += 1) {\n count += 1;\n }\n }\n return count;\n}\n
\u56fe 2-10 \u5bf9\u6bd4\u4e86\u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u4e09\u79cd\u65f6\u95f4\u590d\u6742\u5ea6\u3002
\u56fe 2-10 \u00a0 \u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u4ee5\u5192\u6ce1\u6392\u5e8f\u4e3a\u4f8b\uff0c\u5916\u5c42\u5faa\u73af\u6267\u884c \\(n - 1\\) \u6b21\uff0c\u5185\u5c42\u5faa\u73af\u6267\u884c \\(n-1\\)\u3001\\(n-2\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \u6b21\uff0c\u5e73\u5747\u4e3a \\(n / 2\\) \u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O((n - 1) n / 2) = O(n^2)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef bubble_sort(nums: list[int]) -> int:\n \"\"\"\u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\"\"\"\n count = 0 # \u8ba1\u6570\u5668\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(len(nums) - 1, 0, -1):\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp: int = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 # \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n return count\n
time_complexity.cpp/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(vector<int> &nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.java/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.cs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint BubbleSort(int[] nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.go/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums []int) int {\n count := 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n tmp := nums[j]\n nums[j] = nums[j+1]\n nums[j+1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.swift/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums: inout [Int]) -> Int {\n var count = 0 // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0 ..< i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n count += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count\n}\n
time_complexity.js/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums) {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.ts/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums: number[]): number {\n let count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.dart/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(List<int> nums) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (var i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (var j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.rs/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfn bubble_sort(nums: &mut [i32]) -> i32 {\n let mut count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n count\n}\n
time_complexity.c/* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int *nums, int n) {\n int count = 0; // \u8ba1\u6570\u5668\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = n - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
time_complexity.zig// \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\nfn bubbleSort(nums: []i32) i32 {\n var count: i32 = 0; // \u8ba1\u6570\u5668 \n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: i32 = @as(i32, @intCast(nums.len)) - 1;\n while (i > 0) : (i -= 1) {\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n count += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n }\n }\n }\n return count;\n}\n
"},{"location":"chapter_computational_complexity/time_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"\u751f\u7269\u5b66\u7684\u201c\u7ec6\u80de\u5206\u88c2\u201d\u662f\u6307\u6570\u9636\u589e\u957f\u7684\u5178\u578b\u4f8b\u5b50\uff1a\u521d\u59cb\u72b6\u6001\u4e3a \\(1\\) \u4e2a\u7ec6\u80de\uff0c\u5206\u88c2\u4e00\u8f6e\u540e\u53d8\u4e3a \\(2\\) \u4e2a\uff0c\u5206\u88c2\u4e24\u8f6e\u540e\u53d8\u4e3a \\(4\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u5206\u88c2 \\(n\\) \u8f6e\u540e\u6709 \\(2^n\\) \u4e2a\u7ec6\u80de\u3002
\u56fe 2-11 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6a21\u62df\u4e86\u7ec6\u80de\u5206\u88c2\u7684\u8fc7\u7a0b\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exponential(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n base = 1\n # \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in range(n):\n for _ in range(base):\n count += 1\n base *= 2\n # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Exponential(int n) {\n int count = 0, bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc exponential(n int) int {\n count, base := 0, 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for i := 0; i < n; i++ {\n for j := 0; j < base; j++ {\n count++\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc exponential(n: Int) -> Int {\n var count = 0\n var base = 1\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0 ..< n {\n for _ in 0 ..< base {\n count += 1\n }\n base *= 2\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n) {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n: number): number {\n let count = 0,\n base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (let i = 0; i < n; i++) {\n for (let j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0, base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (var i = 0; i < n; i++) {\n for (var j = 0; j < base; j++) {\n count++;\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn exponential(n: i32) -> i32 {\n let mut count = 0;\n let mut base = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for _ in 0..n {\n for _ in 0..base {\n count += 1\n }\n base *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n count\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\n int count = 0;\n int bas = 1;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n for (int i = 0; i < n; i++) {\n for (int j = 0; j < bas; j++) {\n count++;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn exponential(n: i32) i32 {\n var count: i32 = 0;\n var bas: i32 = 1;\n var i: i32 = 0;\n // \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\n while (i < n) : (i += 1) {\n var j: i32 = 0;\n while (j < bas) : (j += 1) {\n count += 1;\n }\n bas *= 2;\n }\n // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\n return count;\n}\n
\u56fe 2-11 \u00a0 \u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u5728\u5b9e\u9645\u7b97\u6cd5\u4e2d\uff0c\u6307\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u5176\u9012\u5f52\u5730\u4e00\u5206\u4e3a\u4e8c\uff0c\u7ecf\u8fc7 \\(n\\) \u6b21\u5206\u88c2\u540e\u505c\u6b62\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef exp_recur(n: int) -> int:\n \"\"\"\u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 1:\n return 1\n return exp_recur(n - 1) + exp_recur(n - 1) + 1\n
time_complexity.cpp/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.java/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.cs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint ExpRecur(int n) {\n if (n == 1) return 1;\n return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;\n}\n
time_complexity.go/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc expRecur(n int) int {\n if n == 1 {\n return 1\n }\n return expRecur(n-1) + expRecur(n-1) + 1\n}\n
time_complexity.swift/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc expRecur(n: Int) -> Int {\n if n == 1 {\n return 1\n }\n return expRecur(n: n - 1) + expRecur(n: n - 1) + 1\n}\n
time_complexity.js/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n) {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.ts/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n: number): number {\n if (n === 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.dart/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.rs/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn exp_recur(n: i32) -> i32 {\n if n == 1 {\n return 1;\n }\n exp_recur(n - 1) + exp_recur(n - 1) + 1\n}\n
time_complexity.c/* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\n if (n == 1)\n return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
time_complexity.zig// \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn expRecur(n: i32) i32 {\n if (n == 1) return 1;\n return expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
\u6307\u6570\u9636\u589e\u957f\u975e\u5e38\u8fc5\u901f\uff0c\u5728\u7a77\u4e3e\u6cd5\uff08\u66b4\u529b\u641c\u7d22\u3001\u56de\u6eaf\u7b49\uff09\u4e2d\u6bd4\u8f83\u5e38\u89c1\u3002\u5bf9\u4e8e\u6570\u636e\u89c4\u6a21\u8f83\u5927\u7684\u95ee\u9898\uff0c\u6307\u6570\u9636\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\uff0c\u901a\u5e38\u9700\u8981\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u6216\u8d2a\u5fc3\u7b97\u6cd5\u7b49\u6765\u89e3\u51b3\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"\u4e0e\u6307\u6570\u9636\u76f8\u53cd\uff0c\u5bf9\u6570\u9636\u53cd\u6620\u4e86\u201c\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\u201d\u7684\u60c5\u51b5\u3002\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7531\u4e8e\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\uff0c\u56e0\u6b64\u5faa\u73af\u6b21\u6570\u662f \\(\\log_2 n\\) \uff0c\u5373 \\(2^n\\) \u7684\u53cd\u51fd\u6570\u3002
\u56fe 2-12 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6a21\u62df\u4e86\u201c\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\u201d\u7684\u8fc7\u7a0b\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log_2 n)\\) \uff0c\u7b80\u8bb0\u4e3a \\(O(\\log n)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef logarithmic(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\n count = 0\n while n > 1:\n n = n / 2\n count += 1\n return count\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint Logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n /= 2;\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc logarithmic(n float64) int {\n count := 0\n for n > 1 {\n n = n / 2\n count++\n }\n return count\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc logarithmic(n: Double) -> Int {\n var count = 0\n var n = n\n while n > 1 {\n n = n / 2\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n) {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n: number): number {\n let count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(num n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn logarithmic(mut n: f32) -> i32 {\n let mut count = 0;\n while n > 1.0 {\n n = n / 2.0;\n count += 1;\n }\n count\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\n int count = 0;\n while (n > 1) {\n n = n / 2;\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn logarithmic(n: f32) i32 {\n var count: i32 = 0;\n var n_var = n;\n while (n_var > 1)\n {\n n_var = n_var / 2;\n count +=1;\n }\n return count;\n}\n
\u56fe 2-12 \u00a0 \u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u4e0e\u6307\u6570\u9636\u7c7b\u4f3c\uff0c\u5bf9\u6570\u9636\u4e5f\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4ee5\u4e0b\u4ee3\u7801\u5f62\u6210\u4e86\u4e00\u68f5\u9ad8\u5ea6\u4e3a \\(\\log_2 n\\) \u7684\u9012\u5f52\u6811\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef log_recur(n: float) -> int:\n \"\"\"\u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n <= 1:\n return 0\n return log_recur(n / 2) + 1\n
time_complexity.cpp/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.java/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.cs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint LogRecur(float n) {\n if (n <= 1) return 0;\n return LogRecur(n / 2) + 1;\n}\n
time_complexity.go/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc logRecur(n float64) int {\n if n <= 1 {\n return 0\n }\n return logRecur(n/2) + 1\n}\n
time_complexity.swift/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc logRecur(n: Double) -> Int {\n if n <= 1 {\n return 0\n }\n return logRecur(n: n / 2) + 1\n}\n
time_complexity.js/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.ts/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n: number): number {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.dart/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(num n) {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.rs/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 0;\n }\n log_recur(n / 2.0) + 1\n}\n
time_complexity.c/* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\n if (n <= 1)\n return 0;\n return logRecur(n / 2) + 1;\n}\n
time_complexity.zig// \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn logRecur(n: f32) i32 {\n if (n <= 1) return 0;\n return logRecur(n / 2) + 1;\n}\n
\u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u7b97\u6cd5\u4e2d\uff0c\u4f53\u73b0\u4e86\u201c\u4e00\u5206\u4e3a\u591a\u201d\u548c\u201c\u5316\u7e41\u4e3a\u7b80\u201d\u7684\u7b97\u6cd5\u601d\u60f3\u3002\u5b83\u589e\u957f\u7f13\u6162\uff0c\u662f\u4ec5\u6b21\u4e8e\u5e38\u6570\u9636\u7684\u7406\u60f3\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002
\\(O(\\log n)\\) \u7684\u5e95\u6570\u662f\u591a\u5c11\uff1f
\u51c6\u786e\u6765\u8bf4\uff0c\u201c\u4e00\u5206\u4e3a \\(m\\)\u201d\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(\\log_m n)\\) \u3002\u800c\u901a\u8fc7\u5bf9\u6570\u6362\u5e95\u516c\u5f0f\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u5177\u6709\u4e0d\u540c\u5e95\u6570\u3001\u76f8\u7b49\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a
\\[ O(\\log_m n) = O(\\log_k n / \\log_k m) = O(\\log_k n) \\] \u4e5f\u5c31\u662f\u8bf4\uff0c\u5e95\u6570 \\(m\\) \u53ef\u4ee5\u5728\u4e0d\u5f71\u54cd\u590d\u6742\u5ea6\u7684\u524d\u63d0\u4e0b\u8f6c\u6362\u3002\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f1a\u7701\u7565\u5e95\u6570 \\(m\\) \uff0c\u5c06\u5bf9\u6570\u9636\u76f4\u63a5\u8bb0\u4e3a \\(O(\\log n)\\) \u3002
"},{"location":"chapter_computational_complexity/time_complexity/#6-on-log-n","title":"6. \u00a0 \u7ebf\u6027\u5bf9\u6570\u9636 \\(O(n \\log n)\\)","text":"\u7ebf\u6027\u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u4e24\u5c42\u5faa\u73af\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u522b\u4e3a \\(O(\\log n)\\) \u548c \\(O(n)\\) \u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef linear_log_recur(n: float) -> int:\n \"\"\"\u7ebf\u6027\u5bf9\u6570\u9636\"\"\"\n if n <= 1:\n return 1\n count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)\n for _ in range(n):\n count += 1\n return count\n
time_complexity.cpp/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.java/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.cs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint LinearLogRecur(float n) {\n if (n <= 1) return 1;\n int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.go/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n float64) int {\n if n <= 1 {\n return 1\n }\n count := linearLogRecur(n/2) + linearLogRecur(n/2)\n for i := 0.0; i < n; i++ {\n count++\n }\n return count\n}\n
time_complexity.swift/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n: Double) -> Int {\n if n <= 1 {\n return 1\n }\n var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)\n for _ in stride(from: 0, to: n, by: 1) {\n count += 1\n }\n return count\n}\n
time_complexity.js/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n) {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.ts/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n: number): number {\n if (n <= 1) return 1;\n let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (let i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.dart/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(num n) {\n if (n <= 1) return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (var i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.rs/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfn linear_log_recur(n: f32) -> i32 {\n if n <= 1.0 {\n return 1;\n }\n let mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);\n for _ in 0 ..n as i32 {\n count += 1;\n }\n return count\n}\n
time_complexity.c/* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\n if (n <= 1)\n return 1;\n int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n for (int i = 0; i < n; i++) {\n count++;\n }\n return count;\n}\n
time_complexity.zig// \u7ebf\u6027\u5bf9\u6570\u9636\nfn linearLogRecur(n: f32) i32 {\n if (n <= 1) return 1;\n var count: i32 = linearLogRecur(n / 2) + linearLogRecur(n / 2);\n var i: f32 = 0;\n while (i < n) : (i += 1) {\n count += 1;\n }\n return count;\n}\n
\u56fe 2-13 \u5c55\u793a\u4e86\u7ebf\u6027\u5bf9\u6570\u9636\u7684\u751f\u6210\u65b9\u5f0f\u3002\u4e8c\u53c9\u6811\u7684\u6bcf\u4e00\u5c42\u7684\u64cd\u4f5c\u603b\u6570\u90fd\u4e3a \\(n\\) \uff0c\u6811\u5171\u6709 \\(\\log_2 n + 1\\) \u5c42\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
\u56fe 2-13 \u00a0 \u7ebf\u6027\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u4e3b\u6d41\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u7b49\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#7-on","title":"7. \u00a0 \u9636\u4e58\u9636 \\(O(n!)\\)","text":"\u9636\u4e58\u9636\u5bf9\u5e94\u6570\u5b66\u4e0a\u7684\u201c\u5168\u6392\u5217\u201d\u95ee\u9898\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u4e92\u4e0d\u91cd\u590d\u7684\u5143\u7d20\uff0c\u6c42\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u65b9\u6848\uff0c\u65b9\u6848\u6570\u91cf\u4e3a\uff1a
\\[ n! = n \\times (n - 1) \\times (n - 2) \\times \\dots \\times 2 \\times 1 \\] \u9636\u4e58\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u5b9e\u73b0\u3002\u5982\u56fe 2-14 \u548c\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff0c\u7b2c\u4e00\u5c42\u5206\u88c2\u51fa \\(n\\) \u4e2a\uff0c\u7b2c\u4e8c\u5c42\u5206\u88c2\u51fa \\(n - 1\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u7b2c \\(n\\) \u5c42\u65f6\u505c\u6b62\u5206\u88c2\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig time_complexity.pydef factorial_recur(n: int) -> int:\n \"\"\"\u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\n if n == 0:\n return 1\n count = 0\n # \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in range(n):\n count += factorial_recur(n - 1)\n return count\n
time_complexity.cpp/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.java/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.cs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint FactorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (int i = 0; i < n; i++) {\n count += FactorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.go/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n int) int {\n if n == 0 {\n return 1\n }\n count := 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for i := 0; i < n; i++ {\n count += factorialRecur(n - 1)\n }\n return count\n}\n
time_complexity.swift/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n: Int) -> Int {\n if n == 0 {\n return 1\n }\n var count = 0\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0 ..< n {\n count += factorialRecur(n: n - 1)\n }\n return count\n}\n
time_complexity.js/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n) {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.ts/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n: number): number {\n if (n === 0) return 1;\n let count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (let i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.dart/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0) return 1;\n int count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for (var i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.rs/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn factorial_recur(n: i32) -> i32 {\n if n == 0 {\n return 1;\n }\n let mut count = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n for _ in 0..n {\n count += factorial_recur(n - 1);\n }\n count\n}\n
time_complexity.c/* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\n if (n == 0)\n return 1;\n int count = 0;\n for (int i = 0; i < n; i++) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
time_complexity.zig// \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn factorialRecur(n: i32) i32 {\n if (n == 0) return 1;\n var count: i32 = 0;\n var i: i32 = 0;\n // \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\n while (i < n) : (i += 1) {\n count += factorialRecur(n - 1);\n }\n return count;\n}\n
\u56fe 2-14 \u00a0 \u9636\u4e58\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6
\u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u5f53 \\(n \\geq 4\\) \u65f6\u6052\u6709 \\(n! > 2^n\\) \uff0c\u6240\u4ee5\u9636\u4e58\u9636\u6bd4\u6307\u6570\u9636\u589e\u957f\u5f97\u66f4\u5feb\uff0c\u5728 \\(n\\) \u8f83\u5927\u65f6\u4e5f\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\u3002
"},{"location":"chapter_computational_complexity/time_complexity/#235","title":"2.3.5 \u00a0 \u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6","text":"\u7b97\u6cd5\u7684\u65f6\u95f4\u6548\u7387\u5f80\u5f80\u4e0d\u662f\u56fa\u5b9a\u7684\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u5047\u8bbe\u8f93\u5165\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d nums \u7531\u4ece \\(1\\) \u81f3 \\(n\\) \u7684\u6570\u5b57\u7ec4\u6210\uff0c\u6bcf\u4e2a\u6570\u5b57\u53ea\u51fa\u73b0\u4e00\u6b21\uff1b\u4f46\u5143\u7d20\u987a\u5e8f\u662f\u968f\u673a\u6253\u4e71\u7684\uff0c\u4efb\u52a1\u76ee\u6807\u662f\u8fd4\u56de\u5143\u7d20 \\(1\\) \u7684\u7d22\u5f15\u3002\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\u3002
- \u5f53
nums = [?, ?, ..., 1] \uff0c\u5373\u5f53\u672b\u5c3e\u5143\u7d20\u662f \\(1\\) \u65f6\uff0c\u9700\u8981\u5b8c\u6574\u904d\u5386\u6570\u7ec4\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002 - \u5f53
nums = [1, ?, ?, ...] \uff0c\u5373\u5f53\u9996\u4e2a\u5143\u7d20\u4e3a \\(1\\) \u65f6\uff0c\u65e0\u8bba\u6570\u7ec4\u591a\u957f\u90fd\u4e0d\u9700\u8981\u7ee7\u7eed\u904d\u5386\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(\\Omega(1)\\) \u3002
\u201c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u201d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u4f7f\u7528\u5927 \\(O\\) \u8bb0\u53f7\u8868\u793a\u3002\u76f8\u5e94\u5730\uff0c\u201c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u201d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0b\u754c\uff0c\u7528 \\(\\Omega\\) \u8bb0\u53f7\u8868\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig worst_best_time_complexity.pydef random_numbers(n: int) -> list[int]:\n \"\"\"\u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a: 1, 2, ..., n \uff0c\u987a\u5e8f\u88ab\u6253\u4e71\"\"\"\n # \u751f\u6210\u6570\u7ec4 nums =: 1, 2, 3, ..., n\n nums = [i for i in range(1, n + 1)]\n # \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n random.shuffle(nums)\n return nums\n\ndef find_one(nums: list[int]) -> int:\n \"\"\"\u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\"\"\"\n for i in range(len(nums)):\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n # \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1:\n return i\n return -1\n
worst_best_time_complexity.cpp/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nvector<int> randomNumbers(int n) {\n vector<int> nums(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u4f7f\u7528\u7cfb\u7edf\u65f6\u95f4\u751f\u6210\u968f\u673a\u79cd\u5b50\n unsigned seed = chrono::system_clock::now().time_since_epoch().count();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n shuffle(nums.begin(), nums.end(), default_random_engine(seed));\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(vector<int> &nums) {\n for (int i = 0; i < nums.size(); i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.java/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\n Integer[] nums = new Integer[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n Collections.shuffle(Arrays.asList(nums));\n // Integer[] -> int[]\n int[] res = new int[n];\n for (int i = 0; i < n; i++) {\n res[i] = nums[i];\n }\n return res;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\n for (int i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.cs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] RandomNumbers(int n) {\n int[] nums = new int[n];\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = 0; i < nums.Length; i++) {\n int index = new Random().Next(i, nums.Length);\n (nums[i], nums[index]) = (nums[index], nums[i]);\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint FindOne(int[] nums) {\n for (int i = 0; i < nums.Length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.go/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n int) []int {\n nums := make([]int, n)\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for i := 0; i < n; i++ {\n nums[i] = i + 1\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n rand.Shuffle(len(nums), func(i, j int) {\n nums[i], nums[j] = nums[j], nums[i]\n })\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums []int) int {\n for i := 0; i < len(nums); i++ {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.swift/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n: Int) -> [Int] {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n var nums = Array(1 ... n)\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle()\n return nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums: [Int]) -> Int {\n for i in nums.indices {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return i\n }\n }\n return -1\n}\n
worst_best_time_complexity.js/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n) {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums) {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.ts/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n: number): number[] {\n const nums = Array(n);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (let i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (let i = 0; i < n; i++) {\n const r = Math.floor(Math.random() * (i + 1));\n const temp = nums[i];\n nums[i] = nums[r];\n nums[r] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums: number[]): number {\n for (let i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] === 1) {\n return i;\n }\n }\n return -1;\n}\n
worst_best_time_complexity.dart/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nList<int> randomNumbers(int n) {\n final nums = List.filled(n, 0);\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (var i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle();\n\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(List<int> nums) {\n for (var i = 0; i < nums.length; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1) return i;\n }\n\n return -1;\n}\n
worst_best_time_complexity.rs/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfn random_numbers(n: i32) -> Vec<i32> {\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n let mut nums = (1..=n).collect::<Vec<i32>>();\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n nums.shuffle(&mut thread_rng());\n nums\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfn find_one(nums: &[i32]) -> Option<usize> {\n for i in 0..nums.len() {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if nums[i] == 1 {\n return Some(i);\n }\n }\n None\n}\n
worst_best_time_complexity.c/* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint *randomNumbers(int n) {\n // \u5206\u914d\u5806\u533a\u5185\u5b58\uff08\u521b\u5efa\u4e00\u7ef4\u53ef\u53d8\u957f\u6570\u7ec4\uff1a\u6570\u7ec4\u4e2d\u5143\u7d20\u6570\u91cf\u4e3a n \uff0c\u5143\u7d20\u7c7b\u578b\u4e3a int \uff09\n int *nums = (int *)malloc(n * sizeof(int));\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (int i = 0; i < n; i++) {\n nums[i] = i + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n for (int i = n - 1; i > 0; i--) {\n int j = rand() % (i + 1);\n int temp = nums[i];\n nums[i] = nums[j];\n nums[j] = temp;\n }\n return nums;\n}\n\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int *nums, int n) {\n for (int i = 0; i < n; i++) {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (nums[i] == 1)\n return i;\n }\n return -1;\n}\n
worst_best_time_complexity.zig// \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71\nfn randomNumbers(comptime n: usize) [n]i32 {\n var nums: [n]i32 = undefined;\n // \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\n for (&nums, 0..) |*num, i| {\n num.* = @as(i32, @intCast(i)) + 1;\n }\n // \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\n const rand = std.crypto.random;\n rand.shuffle(i32, &nums);\n return nums;\n}\n\n// \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\nfn findOne(nums: []i32) i32 {\n for (nums, 0..) |num, i| {\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n // \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\n if (num == 1) return @intCast(i);\n }\n return -1;\n}\n
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6211\u4eec\u5728\u5b9e\u9645\u4e2d\u5f88\u5c11\u4f7f\u7528\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u56e0\u4e3a\u901a\u5e38\u53ea\u6709\u5728\u5f88\u5c0f\u6982\u7387\u4e0b\u624d\u80fd\u8fbe\u5230\uff0c\u53ef\u80fd\u4f1a\u5e26\u6765\u4e00\u5b9a\u7684\u8bef\u5bfc\u6027\u3002\u800c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u66f4\u4e3a\u5b9e\u7528\uff0c\u56e0\u4e3a\u5b83\u7ed9\u51fa\u4e86\u4e00\u4e2a\u6548\u7387\u5b89\u5168\u503c\uff0c\u8ba9\u6211\u4eec\u53ef\u4ee5\u653e\u5fc3\u5730\u4f7f\u7528\u7b97\u6cd5\u3002
\u4ece\u4e0a\u8ff0\u793a\u4f8b\u53ef\u4ee5\u770b\u51fa\uff0c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ea\u51fa\u73b0\u4e8e\u201c\u7279\u6b8a\u7684\u6570\u636e\u5206\u5e03\u201d\uff0c\u8fd9\u4e9b\u60c5\u51b5\u7684\u51fa\u73b0\u6982\u7387\u53ef\u80fd\u5f88\u5c0f\uff0c\u5e76\u4e0d\u80fd\u771f\u5b9e\u5730\u53cd\u6620\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f53\u73b0\u7b97\u6cd5\u5728\u968f\u673a\u8f93\u5165\u6570\u636e\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u7528 \\(\\Theta\\) \u8bb0\u53f7\u6765\u8868\u793a\u3002
\u5bf9\u4e8e\u90e8\u5206\u7b97\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u63a8\u7b97\u51fa\u968f\u673a\u6570\u636e\u5206\u5e03\u4e0b\u7684\u5e73\u5747\u60c5\u51b5\u3002\u6bd4\u5982\u4e0a\u8ff0\u793a\u4f8b\uff0c\u7531\u4e8e\u8f93\u5165\u6570\u7ec4\u662f\u88ab\u6253\u4e71\u7684\uff0c\u56e0\u6b64\u5143\u7d20 \\(1\\) \u51fa\u73b0\u5728\u4efb\u610f\u7d22\u5f15\u7684\u6982\u7387\u90fd\u662f\u76f8\u7b49\u7684\uff0c\u90a3\u4e48\u7b97\u6cd5\u7684\u5e73\u5747\u5faa\u73af\u6b21\u6570\u5c31\u662f\u6570\u7ec4\u957f\u5ea6\u7684\u4e00\u534a \\(n / 2\\) \uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(\\Theta(n / 2) = \\Theta(n)\\) \u3002
\u4f46\u5bf9\u4e8e\u8f83\u4e3a\u590d\u6742\u7684\u7b97\u6cd5\uff0c\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5f80\u5f80\u6bd4\u8f83\u56f0\u96be\uff0c\u56e0\u4e3a\u5f88\u96be\u5206\u6790\u51fa\u5728\u6570\u636e\u5206\u5e03\u4e0b\u7684\u6574\u4f53\u6570\u5b66\u671f\u671b\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f5c\u4e3a\u7b97\u6cd5\u6548\u7387\u7684\u8bc4\u5224\u6807\u51c6\u3002
\u4e3a\u4ec0\u4e48\u5f88\u5c11\u770b\u5230 \\(\\Theta\\) \u7b26\u53f7\uff1f
\u53ef\u80fd\u7531\u4e8e \\(O\\) \u7b26\u53f7\u8fc7\u4e8e\u6717\u6717\u4e0a\u53e3\uff0c\u56e0\u6b64\u6211\u4eec\u5e38\u5e38\u4f7f\u7528\u5b83\u6765\u8868\u793a\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u4f46\u4ece\u4e25\u683c\u610f\u4e49\u4e0a\u8bb2\uff0c\u8fd9\u79cd\u505a\u6cd5\u5e76\u4e0d\u89c4\u8303\u3002\u5728\u672c\u4e66\u548c\u5176\u4ed6\u8d44\u6599\u4e2d\uff0c\u82e5\u9047\u5230\u7c7b\u4f3c\u201c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\)\u201d\u7684\u8868\u8ff0\uff0c\u8bf7\u5c06\u5176\u76f4\u63a5\u7406\u89e3\u4e3a \\(\\Theta(n)\\) \u3002
"},{"location":"chapter_data_structure/","title":"\u7b2c 3 \u7ae0 \u00a0 \u6570\u636e\u7ed3\u6784","text":"Abstract
\u6570\u636e\u7ed3\u6784\u5982\u540c\u4e00\u526f\u7a33\u56fa\u800c\u591a\u6837\u7684\u6846\u67b6\u3002
\u5b83\u4e3a\u6570\u636e\u7684\u6709\u5e8f\u7ec4\u7ec7\u63d0\u4f9b\u4e86\u84dd\u56fe\uff0c\u7b97\u6cd5\u5f97\u4ee5\u5728\u6b64\u57fa\u7840\u4e0a\u751f\u52a8\u8d77\u6765\u3002
"},{"location":"chapter_data_structure/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b
- 3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b
- 3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *
- 3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *
- 3.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_data_structure/basic_data_types/","title":"3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b","text":"\u5f53\u8c08\u53ca\u8ba1\u7b97\u673a\u4e2d\u7684\u6570\u636e\u65f6\uff0c\u6211\u4eec\u4f1a\u60f3\u5230\u6587\u672c\u3001\u56fe\u7247\u3001\u89c6\u9891\u3001\u8bed\u97f3\u30013D \u6a21\u578b\u7b49\u5404\u79cd\u5f62\u5f0f\u3002\u5c3d\u7ba1\u8fd9\u4e9b\u6570\u636e\u7684\u7ec4\u7ec7\u5f62\u5f0f\u5404\u5f02\uff0c\u4f46\u5b83\u4eec\u90fd\u7531\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6784\u6210\u3002
\u57fa\u672c\u6570\u636e\u7c7b\u578b\u662f CPU \u53ef\u4ee5\u76f4\u63a5\u8fdb\u884c\u8fd0\u7b97\u7684\u7c7b\u578b\uff0c\u5728\u7b97\u6cd5\u4e2d\u76f4\u63a5\u88ab\u4f7f\u7528\uff0c\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u3002
- \u6574\u6570\u7c7b\u578b
byte\u3001short\u3001int\u3001long \u3002 - \u6d6e\u70b9\u6570\u7c7b\u578b
float\u3001double \uff0c\u7528\u4e8e\u8868\u793a\u5c0f\u6570\u3002 - \u5b57\u7b26\u7c7b\u578b
char \uff0c\u7528\u4e8e\u8868\u793a\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u6bcd\u3001\u6807\u70b9\u7b26\u53f7\u751a\u81f3\u8868\u60c5\u7b26\u53f7\u7b49\u3002 - \u5e03\u5c14\u7c7b\u578b
bool \uff0c\u7528\u4e8e\u8868\u793a\u201c\u662f\u201d\u4e0e\u201c\u5426\u201d\u5224\u65ad\u3002
\u57fa\u672c\u6570\u636e\u7c7b\u578b\u4ee5\u4e8c\u8fdb\u5236\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u3002\u4e00\u4e2a\u4e8c\u8fdb\u5236\u4f4d\u5373\u4e3a \\(1\\) \u6bd4\u7279\u3002\u5728\u7edd\u5927\u591a\u6570\u73b0\u4ee3\u64cd\u4f5c\u7cfb\u7edf\u4e2d\uff0c\\(1\\) \u5b57\u8282\uff08byte\uff09\u7531 \\(8\\) \u6bd4\u7279\uff08bit\uff09\u7ec4\u6210\u3002
\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5176\u5360\u7528\u7684\u7a7a\u95f4\u5927\u5c0f\u3002\u4e0b\u9762\u4ee5 Java \u4e3a\u4f8b\u3002
- \u6574\u6570\u7c7b\u578b
byte \u5360\u7528 \\(1\\) \u5b57\u8282 = \\(8\\) \u6bd4\u7279 \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{8}\\) \u4e2a\u6570\u5b57\u3002 - \u6574\u6570\u7c7b\u578b
int \u5360\u7528 \\(4\\) \u5b57\u8282 = \\(32\\) \u6bd4\u7279 \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{32}\\) \u4e2a\u6570\u5b57\u3002
\u8868 3-1 \u5217\u4e3e\u4e86 Java \u4e2d\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u3001\u53d6\u503c\u8303\u56f4\u548c\u9ed8\u8ba4\u503c\u3002\u6b64\u8868\u683c\u65e0\u987b\u6b7b\u8bb0\u786c\u80cc\uff0c\u5927\u81f4\u7406\u89e3\u5373\u53ef\uff0c\u9700\u8981\u65f6\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u6765\u56de\u5fc6\u3002
\u8868 3-1 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u548c\u53d6\u503c\u8303\u56f4
\u7c7b\u578b \u7b26\u53f7 \u5360\u7528\u7a7a\u95f4 \u6700\u5c0f\u503c \u6700\u5927\u503c \u9ed8\u8ba4\u503c \u6574\u6570 byte 1 \u5b57\u8282 \\(-2^7\\) (\\(-128\\)) \\(2^7 - 1\\) (\\(127\\)) \\(0\\) short 2 \u5b57\u8282 \\(-2^{15}\\) \\(2^{15} - 1\\) \\(0\\) int 4 \u5b57\u8282 \\(-2^{31}\\) \\(2^{31} - 1\\) \\(0\\) long 8 \u5b57\u8282 \\(-2^{63}\\) \\(2^{63} - 1\\) \\(0\\) \u6d6e\u70b9\u6570 float 4 \u5b57\u8282 \\(1.175 \\times 10^{-38}\\) \\(3.403 \\times 10^{38}\\) \\(0.0\\text{f}\\) double 8 \u5b57\u8282 \\(2.225 \\times 10^{-308}\\) \\(1.798 \\times 10^{308}\\) \\(0.0\\) \u5b57\u7b26 char 2 \u5b57\u8282 \\(0\\) \\(2^{16} - 1\\) \\(0\\) \u5e03\u5c14 bool 1 \u5b57\u8282 \\(\\text{false}\\) \\(\\text{true}\\) \\(\\text{false}\\) \u8bf7\u6ce8\u610f\uff0c\u8868 3-1 \u9488\u5bf9\u7684\u662f Java \u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u60c5\u51b5\u3002\u6bcf\u79cd\u7f16\u7a0b\u8bed\u8a00\u90fd\u6709\u5404\u81ea\u7684\u6570\u636e\u7c7b\u578b\u5b9a\u4e49\uff0c\u5b83\u4eec\u7684\u5360\u7528\u7a7a\u95f4\u3001\u53d6\u503c\u8303\u56f4\u548c\u9ed8\u8ba4\u503c\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c\u3002
- \u5728 Python \u4e2d\uff0c\u6574\u6570\u7c7b\u578b
int \u53ef\u4ee5\u662f\u4efb\u610f\u5927\u5c0f\uff0c\u53ea\u53d7\u9650\u4e8e\u53ef\u7528\u5185\u5b58\uff1b\u6d6e\u70b9\u6570 float \u662f\u53cc\u7cbe\u5ea6 64 \u4f4d\uff1b\u6ca1\u6709 char \u7c7b\u578b\uff0c\u5355\u4e2a\u5b57\u7b26\u5b9e\u9645\u4e0a\u662f\u957f\u5ea6\u4e3a 1 \u7684\u5b57\u7b26\u4e32 str \u3002 - C \u548c C++ \u672a\u660e\u786e\u89c4\u5b9a\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5927\u5c0f\uff0c\u800c\u56e0\u5b9e\u73b0\u548c\u5e73\u53f0\u5404\u5f02\u3002\u8868 3-1 \u9075\u5faa LP64 \u6570\u636e\u6a21\u578b\uff0c\u5176\u7528\u4e8e\u5305\u62ec Linux \u548c macOS \u5728\u5185\u7684 Unix 64 \u4f4d\u64cd\u4f5c\u7cfb\u7edf\u3002
- \u5b57\u7b26
char \u7684\u5927\u5c0f\u5728 C \u548c C++ \u4e2d\u4e3a 1 \u5b57\u8282\uff0c\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\u53d6\u51b3\u4e8e\u7279\u5b9a\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\uff0c\u8be6\u89c1\u201c\u5b57\u7b26\u7f16\u7801\u201d\u7ae0\u8282\u3002 - \u5373\u4f7f\u8868\u793a\u5e03\u5c14\u91cf\u4ec5\u9700 1 \u4f4d\uff08\\(0\\) \u6216 \\(1\\)\uff09\uff0c\u5b83\u5728\u5185\u5b58\u4e2d\u901a\u5e38\u4e5f\u5b58\u50a8\u4e3a 1 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a\u73b0\u4ee3\u8ba1\u7b97\u673a CPU \u901a\u5e38\u5c06 1 \u5b57\u8282\u4f5c\u4e3a\u6700\u5c0f\u5bfb\u5740\u5185\u5b58\u5355\u5143\u3002
\u90a3\u4e48\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u95f4\u6709\u4ec0\u4e48\u8054\u7cfb\u5462\uff1f\u6211\u4eec\u77e5\u9053\uff0c\u6570\u636e\u7ed3\u6784\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u4e0e\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002\u8fd9\u53e5\u8bdd\u7684\u4e3b\u8bed\u662f\u201c\u7ed3\u6784\u201d\u800c\u975e\u201c\u6570\u636e\u201d\u3002
\u5982\u679c\u60f3\u8868\u793a\u201c\u4e00\u6392\u6570\u5b57\u201d\uff0c\u6211\u4eec\u81ea\u7136\u4f1a\u60f3\u5230\u4f7f\u7528\u6570\u7ec4\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u7684\u7ebf\u6027\u7ed3\u6784\u53ef\u4ee5\u8868\u793a\u6570\u5b57\u7684\u76f8\u90bb\u5173\u7cfb\u548c\u987a\u5e8f\u5173\u7cfb\uff0c\u4f46\u81f3\u4e8e\u5b58\u50a8\u7684\u5185\u5bb9\u662f\u6574\u6570 int\u3001\u5c0f\u6570 float \u8fd8\u662f\u5b57\u7b26 char \uff0c\u5219\u4e0e\u201c\u6570\u636e\u7ed3\u6784\u201d\u65e0\u5173\u3002
\u6362\u53e5\u8bdd\u8bf4\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u5185\u5bb9\u7c7b\u578b\u201d\uff0c\u800c\u6570\u636e\u7ed3\u6784\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u7ec4\u7ec7\u65b9\u5f0f\u201d\u3002\u4f8b\u5982\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6211\u4eec\u7528\u76f8\u540c\u7684\u6570\u636e\u7ed3\u6784\uff08\u6570\u7ec4\uff09\u6765\u5b58\u50a8\u4e0e\u8868\u793a\u4e0d\u540c\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c\u5305\u62ec int\u3001float\u3001char\u3001bool \u7b49\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nnumbers: list[int] = [0] * 5\ndecimals: list[float] = [0.0] * 5\n# Python \u7684\u5b57\u7b26\u5b9e\u9645\u4e0a\u662f\u957f\u5ea6\u4e3a 1 \u7684\u5b57\u7b26\u4e32\ncharacters: list[str] = ['0'] * 5\nbools: list[bool] = [False] * 5\n# Python \u7684\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\u5f15\u7528\ndata = [0, 0.0, 'a', False, ListNode(0)]\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[5];\nfloat decimals[5];\nchar characters[5];\nbool bools[5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nboolean[] bools = new boolean[5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nbool[] bools = new bool[5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nvar numbers = [5]int{}\nvar decimals = [5]float64{}\nvar characters = [5]byte{}\nvar bools = [5]bool{}\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nlet numbers = Array(repeating: Int(), count: 5)\nlet decimals = Array(repeating: Double(), count: 5)\nlet characters = Array(repeating: Character(\"a\"), count: 5)\nlet bools = Array(repeating: Bool(), count: 5)\n
// JavaScript \u7684\u6570\u7ec4\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\nconst array = [0, 0.0, 'a', false];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nconst numbers: number[] = [];\nconst characters: string[] = [];\nconst bools: boolean[] = [];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nList<int> numbers = List.filled(5, 0);\nList<double> decimals = List.filled(5, 0.0);\nList<String> characters = List.filled(5, 'a');\nList<bool> bools = List.filled(5, false);\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nlet numbers: Vec<i32> = vec![0; 5];\nlet decimals: Vec<f32> = vec![0.0, 5];\nlet characters: Vec<char> = vec!['0'; 5];\nlet bools: Vec<bool> = vec![false; 5];\n
// \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[10];\nfloat decimals[10];\nchar characters[10];\nbool bools[10];\n
\n
"},{"location":"chapter_data_structure/character_encoding/","title":"3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *","text":"\u5728\u8ba1\u7b97\u673a\u4e2d\uff0c\u6240\u6709\u6570\u636e\u90fd\u662f\u4ee5\u4e8c\u8fdb\u5236\u6570\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\uff0c\u5b57\u7b26 char \u4e5f\u4e0d\u4f8b\u5916\u3002\u4e3a\u4e86\u8868\u793a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u5efa\u7acb\u4e00\u5957\u201c\u5b57\u7b26\u96c6\u201d\uff0c\u89c4\u5b9a\u6bcf\u4e2a\u5b57\u7b26\u548c\u4e8c\u8fdb\u5236\u6570\u4e4b\u95f4\u7684\u4e00\u4e00\u5bf9\u5e94\u5173\u7cfb\u3002\u6709\u4e86\u5b57\u7b26\u96c6\u4e4b\u540e\uff0c\u8ba1\u7b97\u673a\u5c31\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u5b8c\u6210\u4e8c\u8fdb\u5236\u6570\u5230\u5b57\u7b26\u7684\u8f6c\u6362\u3002
"},{"location":"chapter_data_structure/character_encoding/#341-ascii","title":"3.4.1 \u00a0 ASCII \u5b57\u7b26\u96c6","text":"\u300cASCII \u7801\u300d\u662f\u6700\u65e9\u51fa\u73b0\u7684\u5b57\u7b26\u96c6\uff0c\u5176\u5168\u79f0\u4e3a American Standard Code for Information Interchange\uff08\u7f8e\u56fd\u6807\u51c6\u4fe1\u606f\u4ea4\u6362\u4ee3\u7801\uff09\u3002\u5b83\u4f7f\u7528 7 \u4f4d\u4e8c\u8fdb\u5236\u6570\uff08\u4e00\u4e2a\u5b57\u8282\u7684\u4f4e 7 \u4f4d\uff09\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6700\u591a\u80fd\u591f\u8868\u793a 128 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002\u5982\u56fe 3-6 \u6240\u793a\uff0cASCII \u7801\u5305\u62ec\u82f1\u6587\u5b57\u6bcd\u7684\u5927\u5c0f\u5199\u3001\u6570\u5b57 0 ~ 9\u3001\u4e00\u4e9b\u6807\u70b9\u7b26\u53f7\uff0c\u4ee5\u53ca\u4e00\u4e9b\u63a7\u5236\u5b57\u7b26\uff08\u5982\u6362\u884c\u7b26\u548c\u5236\u8868\u7b26\uff09\u3002
\u56fe 3-6 \u00a0 ASCII \u7801
\u7136\u800c\uff0cASCII \u7801\u4ec5\u80fd\u591f\u8868\u793a\u82f1\u6587\u3002\u968f\u7740\u8ba1\u7b97\u673a\u7684\u5168\u7403\u5316\uff0c\u8bde\u751f\u4e86\u4e00\u79cd\u80fd\u591f\u8868\u793a\u66f4\u591a\u8bed\u8a00\u7684\u300cEASCII\u300d\u5b57\u7b26\u96c6\u3002\u5b83\u5728 ASCII \u7684 7 \u4f4d\u57fa\u7840\u4e0a\u6269\u5c55\u5230 8 \u4f4d\uff0c\u80fd\u591f\u8868\u793a 256 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002
\u5728\u4e16\u754c\u8303\u56f4\u5185\uff0c\u9646\u7eed\u51fa\u73b0\u4e86\u4e00\u6279\u9002\u7528\u4e8e\u4e0d\u540c\u5730\u533a\u7684 EASCII \u5b57\u7b26\u96c6\u3002\u8fd9\u4e9b\u5b57\u7b26\u96c6\u7684\u524d 128 \u4e2a\u5b57\u7b26\u7edf\u4e00\u4e3a ASCII \u7801\uff0c\u540e 128 \u4e2a\u5b57\u7b26\u5b9a\u4e49\u4e0d\u540c\uff0c\u4ee5\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u9700\u6c42\u3002
"},{"location":"chapter_data_structure/character_encoding/#342-gbk","title":"3.4.2 \u00a0 GBK \u5b57\u7b26\u96c6","text":"\u540e\u6765\u4eba\u4eec\u53d1\u73b0\uff0cEASCII \u7801\u4ecd\u7136\u65e0\u6cd5\u6ee1\u8db3\u8bb8\u591a\u8bed\u8a00\u7684\u5b57\u7b26\u6570\u91cf\u8981\u6c42\u3002\u6bd4\u5982\u6c49\u5b57\u6709\u8fd1\u5341\u4e07\u4e2a\uff0c\u5149\u65e5\u5e38\u4f7f\u7528\u7684\u5c31\u6709\u51e0\u5343\u4e2a\u3002\u4e2d\u56fd\u56fd\u5bb6\u6807\u51c6\u603b\u5c40\u4e8e 1980 \u5e74\u53d1\u5e03\u4e86\u300cGB2312\u300d\u5b57\u7b26\u96c6\uff0c\u5176\u6536\u5f55\u4e86 6763 \u4e2a\u6c49\u5b57\uff0c\u57fa\u672c\u6ee1\u8db3\u4e86\u6c49\u5b57\u7684\u8ba1\u7b97\u673a\u5904\u7406\u9700\u8981\u3002
\u7136\u800c\uff0cGB2312 \u65e0\u6cd5\u5904\u7406\u90e8\u5206\u7f55\u89c1\u5b57\u548c\u7e41\u4f53\u5b57\u3002\u300cGBK\u300d\u5b57\u7b26\u96c6\u662f\u5728 GB2312 \u7684\u57fa\u7840\u4e0a\u6269\u5c55\u5f97\u5230\u7684\uff0c\u5b83\u5171\u6536\u5f55\u4e86 21886 \u4e2a\u6c49\u5b57\u3002\u5728 GBK \u7684\u7f16\u7801\u65b9\u6848\u4e2d\uff0cASCII \u5b57\u7b26\u4f7f\u7528\u4e00\u4e2a\u5b57\u8282\u8868\u793a\uff0c\u6c49\u5b57\u4f7f\u7528\u4e24\u4e2a\u5b57\u8282\u8868\u793a\u3002
"},{"location":"chapter_data_structure/character_encoding/#343-unicode","title":"3.4.3 \u00a0 Unicode \u5b57\u7b26\u96c6","text":"\u968f\u7740\u8ba1\u7b97\u673a\u6280\u672f\u7684\u84ec\u52c3\u53d1\u5c55\uff0c\u5b57\u7b26\u96c6\u4e0e\u7f16\u7801\u6807\u51c6\u767e\u82b1\u9f50\u653e\uff0c\u800c\u8fd9\u5e26\u6765\u4e86\u8bb8\u591a\u95ee\u9898\u3002\u4e00\u65b9\u9762\uff0c\u8fd9\u4e9b\u5b57\u7b26\u96c6\u4e00\u822c\u53ea\u5b9a\u4e49\u4e86\u7279\u5b9a\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u65e0\u6cd5\u5728\u591a\u8bed\u8a00\u73af\u5883\u4e0b\u6b63\u5e38\u5de5\u4f5c\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u540c\u4e00\u79cd\u8bed\u8a00\u5b58\u5728\u591a\u79cd\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u5982\u679c\u4e24\u53f0\u8ba1\u7b97\u673a\u4f7f\u7528\u7684\u662f\u4e0d\u540c\u7684\u7f16\u7801\u6807\u51c6\uff0c\u5219\u5728\u4fe1\u606f\u4f20\u9012\u65f6\u5c31\u4f1a\u51fa\u73b0\u4e71\u7801\u3002
\u90a3\u4e2a\u65f6\u4ee3\u7684\u7814\u7a76\u4eba\u5458\u5c31\u5728\u60f3\uff1a\u5982\u679c\u63a8\u51fa\u4e00\u4e2a\u8db3\u591f\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\uff0c\u5c06\u4e16\u754c\u8303\u56f4\u5185\u7684\u6240\u6709\u8bed\u8a00\u548c\u7b26\u53f7\u90fd\u6536\u5f55\u5176\u4e2d\uff0c\u4e0d\u5c31\u53ef\u4ee5\u89e3\u51b3\u8de8\u8bed\u8a00\u73af\u5883\u548c\u4e71\u7801\u95ee\u9898\u4e86\u5417\uff1f\u5728\u8fd9\u79cd\u60f3\u6cd5\u7684\u9a71\u52a8\u4e0b\uff0c\u4e00\u4e2a\u5927\u800c\u5168\u7684\u5b57\u7b26\u96c6 Unicode \u5e94\u8fd0\u800c\u751f\u3002
\u300cUnicode\u300d\u7684\u4e2d\u6587\u540d\u79f0\u4e3a\u201c\u7edf\u4e00\u7801\u201d\uff0c\u7406\u8bba\u4e0a\u80fd\u5bb9\u7eb3 100 \u591a\u4e07\u4e2a\u5b57\u7b26\u3002\u5b83\u81f4\u529b\u4e8e\u5c06\u5168\u7403\u8303\u56f4\u5185\u7684\u5b57\u7b26\u7eb3\u5165\u7edf\u4e00\u7684\u5b57\u7b26\u96c6\u4e4b\u4e2d\uff0c\u63d0\u4f9b\u4e00\u79cd\u901a\u7528\u7684\u5b57\u7b26\u96c6\u6765\u5904\u7406\u548c\u663e\u793a\u5404\u79cd\u8bed\u8a00\u6587\u5b57\uff0c\u51cf\u5c11\u56e0\u4e3a\u7f16\u7801\u6807\u51c6\u4e0d\u540c\u800c\u4ea7\u751f\u7684\u4e71\u7801\u95ee\u9898\u3002
\u81ea 1991 \u5e74\u53d1\u5e03\u4ee5\u6765\uff0cUnicode \u4e0d\u65ad\u6269\u5145\u65b0\u7684\u8bed\u8a00\u4e0e\u5b57\u7b26\u3002\u622a\u81f3 2022 \u5e74 9 \u6708\uff0cUnicode \u5df2\u7ecf\u5305\u542b 149186 \u4e2a\u5b57\u7b26\uff0c\u5305\u62ec\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\u3001\u7b26\u53f7\u751a\u81f3\u8868\u60c5\u7b26\u53f7\u7b49\u3002\u5728\u5e9e\u5927\u7684 Unicode \u5b57\u7b26\u96c6\u4e2d\uff0c\u5e38\u7528\u7684\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\uff0c\u6709\u4e9b\u751f\u50fb\u7684\u5b57\u7b26\u5360\u7528 3 \u5b57\u8282\u751a\u81f3 4 \u5b57\u8282\u3002
Unicode \u662f\u4e00\u79cd\u901a\u7528\u5b57\u7b26\u96c6\uff0c\u672c\u8d28\u4e0a\u662f\u7ed9\u6bcf\u4e2a\u5b57\u7b26\u5206\u914d\u4e00\u4e2a\u7f16\u53f7\uff08\u79f0\u4e3a\u201c\u7801\u70b9\u201d\uff09\uff0c\u4f46\u5b83\u5e76\u6ca1\u6709\u89c4\u5b9a\u5728\u8ba1\u7b97\u673a\u4e2d\u5982\u4f55\u5b58\u50a8\u8fd9\u4e9b\u5b57\u7b26\u7801\u70b9\u3002\u6211\u4eec\u4e0d\u7981\u4f1a\u95ee\uff1a\u5f53\u591a\u79cd\u957f\u5ea6\u7684 Unicode \u7801\u70b9\u540c\u65f6\u51fa\u73b0\u5728\u4e00\u4e2a\u6587\u672c\u4e2d\u65f6\uff0c\u7cfb\u7edf\u5982\u4f55\u89e3\u6790\u5b57\u7b26\uff1f\u4f8b\u5982\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a 2 \u5b57\u8282\u7684\u7f16\u7801\uff0c\u7cfb\u7edf\u5982\u4f55\u786e\u8ba4\u5b83\u662f\u4e00\u4e2a 2 \u5b57\u8282\u7684\u5b57\u7b26\u8fd8\u662f\u4e24\u4e2a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff1f
\u5bf9\u4e8e\u4ee5\u4e0a\u95ee\u9898\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5c06\u6240\u6709\u5b57\u7b26\u5b58\u50a8\u4e3a\u7b49\u957f\u7684\u7f16\u7801\u3002\u5982\u56fe 3-7 \u6240\u793a\uff0c\u201cHello\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u5b57\u8282\uff0c\u201c\u7b97\u6cd5\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9ad8\u4f4d\u586b 0 \u5c06\u201cHello \u7b97\u6cd5\u201d\u4e2d\u7684\u6240\u6709\u5b57\u7b26\u90fd\u7f16\u7801\u4e3a 2 \u5b57\u8282\u957f\u5ea6\u3002\u8fd9\u6837\u7cfb\u7edf\u5c31\u53ef\u4ee5\u6bcf\u9694 2 \u5b57\u8282\u89e3\u6790\u4e00\u4e2a\u5b57\u7b26\uff0c\u6062\u590d\u8fd9\u4e2a\u77ed\u8bed\u7684\u5185\u5bb9\u4e86\u3002
\u56fe 3-7 \u00a0 Unicode \u7f16\u7801\u793a\u4f8b
\u7136\u800c ASCII \u7801\u5df2\u7ecf\u5411\u6211\u4eec\u8bc1\u660e\uff0c\u7f16\u7801\u82f1\u6587\u53ea\u9700 1 \u5b57\u8282\u3002\u82e5\u91c7\u7528\u4e0a\u8ff0\u65b9\u6848\uff0c\u82f1\u6587\u6587\u672c\u5360\u7528\u7a7a\u95f4\u7684\u5927\u5c0f\u5c06\u4f1a\u662f ASCII \u7f16\u7801\u4e0b\u7684\u4e24\u500d\uff0c\u975e\u5e38\u6d6a\u8d39\u5185\u5b58\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u66f4\u52a0\u9ad8\u6548\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002
"},{"location":"chapter_data_structure/character_encoding/#344-utf-8","title":"3.4.4 \u00a0 UTF-8 \u7f16\u7801","text":"\u76ee\u524d\uff0cUTF-8 \u5df2\u6210\u4e3a\u56fd\u9645\u4e0a\u4f7f\u7528\u6700\u5e7f\u6cdb\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002\u5b83\u662f\u4e00\u79cd\u53ef\u53d8\u957f\u5ea6\u7684\u7f16\u7801\uff0c\u4f7f\u7528 1 \u5230 4 \u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6839\u636e\u5b57\u7b26\u7684\u590d\u6742\u6027\u800c\u53d8\u3002ASCII \u5b57\u7b26\u53ea\u9700 1 \u5b57\u8282\uff0c\u62c9\u4e01\u5b57\u6bcd\u548c\u5e0c\u814a\u5b57\u6bcd\u9700\u8981 2 \u5b57\u8282\uff0c\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u9700\u8981 3 \u5b57\u8282\uff0c\u5176\u4ed6\u7684\u4e00\u4e9b\u751f\u50fb\u5b57\u7b26\u9700\u8981 4 \u5b57\u8282\u3002
UTF-8 \u7684\u7f16\u7801\u89c4\u5219\u5e76\u4e0d\u590d\u6742\uff0c\u5206\u4e3a\u4ee5\u4e0b\u4e24\u79cd\u60c5\u51b5\u3002
- \u5bf9\u4e8e\u957f\u5ea6\u4e3a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff0c\u5c06\u6700\u9ad8\u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \uff0c\u5176\u4f59 7 \u4f4d\u8bbe\u7f6e\u4e3a Unicode \u7801\u70b9\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0cASCII \u5b57\u7b26\u5728 Unicode \u5b57\u7b26\u96c6\u4e2d\u5360\u636e\u4e86\u524d 128 \u4e2a\u7801\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0cUTF-8 \u7f16\u7801\u53ef\u4ee5\u5411\u4e0b\u517c\u5bb9 ASCII \u7801\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528 UTF-8 \u6765\u89e3\u6790\u5e74\u4ee3\u4e45\u8fdc\u7684 ASCII \u7801\u6587\u672c\u3002
- \u5bf9\u4e8e\u957f\u5ea6\u4e3a \\(n\\) \u5b57\u8282\u7684\u5b57\u7b26\uff08\u5176\u4e2d \\(n > 1\\)\uff09\uff0c\u5c06\u9996\u4e2a\u5b57\u8282\u7684\u9ad8 \\(n\\) \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(1\\) \uff0c\u7b2c \\(n + 1\\) \u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \uff1b\u4ece\u7b2c\u4e8c\u4e2a\u5b57\u8282\u5f00\u59cb\uff0c\u5c06\u6bcf\u4e2a\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \uff1b\u5176\u4f59\u6240\u6709\u4f4d\u7528\u4e8e\u586b\u5145\u5b57\u7b26\u7684 Unicode \u7801\u70b9\u3002
\u56fe 3-8 \u5c55\u793a\u4e86\u201cHello\u7b97\u6cd5\u201d\u5bf9\u5e94\u7684 UTF-8 \u7f16\u7801\u3002\u89c2\u5bdf\u53d1\u73b0\uff0c\u7531\u4e8e\u6700\u9ad8 \\(n\\) \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(1\\) \uff0c\u56e0\u6b64\u7cfb\u7edf\u53ef\u4ee5\u901a\u8fc7\u8bfb\u53d6\u6700\u9ad8\u4f4d \\(1\\) \u7684\u4e2a\u6570\u6765\u89e3\u6790\u51fa\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(n\\) \u3002
\u4f46\u4e3a\u4ec0\u4e48\u8981\u5c06\u5176\u4f59\u6240\u6709\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \u5462\uff1f\u5b9e\u9645\u4e0a\uff0c\u8fd9\u4e2a \\(10\\) \u80fd\u591f\u8d77\u5230\u6821\u9a8c\u7b26\u7684\u4f5c\u7528\u3002\u5047\u8bbe\u7cfb\u7edf\u4ece\u4e00\u4e2a\u9519\u8bef\u7684\u5b57\u8282\u5f00\u59cb\u89e3\u6790\u6587\u672c\uff0c\u5b57\u8282\u5934\u90e8\u7684 \\(10\\) \u80fd\u591f\u5e2e\u52a9\u7cfb\u7edf\u5feb\u901f\u5224\u65ad\u51fa\u5f02\u5e38\u3002
\u4e4b\u6240\u4ee5\u5c06 \\(10\\) \u5f53\u4f5c\u6821\u9a8c\u7b26\uff0c\u662f\u56e0\u4e3a\u5728 UTF-8 \u7f16\u7801\u89c4\u5219\u4e0b\uff0c\u4e0d\u53ef\u80fd\u6709\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \u3002\u8fd9\u4e2a\u7ed3\u8bba\u53ef\u4ee5\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\uff1a\u5047\u8bbe\u4e00\u4e2a\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \uff0c\u8bf4\u660e\u8be5\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(1\\) \uff0c\u5bf9\u5e94 ASCII \u7801\u3002\u800c ASCII \u7801\u7684\u6700\u9ad8\u4f4d\u5e94\u8be5\u662f \\(0\\) \uff0c\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
\u56fe 3-8 \u00a0 UTF-8 \u7f16\u7801\u793a\u4f8b
\u9664\u4e86 UTF-8 \u4e4b\u5916\uff0c\u5e38\u89c1\u7684\u7f16\u7801\u65b9\u5f0f\u8fd8\u5305\u62ec\u4ee5\u4e0b\u4e24\u79cd\u3002
- UTF-16 \u7f16\u7801\uff1a\u4f7f\u7528 2 \u6216 4 \u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\u3002\u6240\u6709\u7684 ASCII \u5b57\u7b26\u548c\u5e38\u7528\u7684\u975e\u82f1\u6587\u5b57\u7b26\uff0c\u90fd\u7528 2 \u5b57\u8282\u8868\u793a\uff1b\u5c11\u6570\u5b57\u7b26\u9700\u8981\u7528\u5230 4 \u5b57\u8282\u8868\u793a\u3002\u5bf9\u4e8e 2 \u5b57\u8282\u7684\u5b57\u7b26\uff0cUTF-16 \u7f16\u7801\u4e0e Unicode \u7801\u70b9\u76f8\u7b49\u3002
- UTF-32 \u7f16\u7801\uff1a\u6bcf\u4e2a\u5b57\u7b26\u90fd\u4f7f\u7528 4 \u5b57\u8282\u3002\u8fd9\u610f\u5473\u7740 UTF-32 \u6bd4 UTF-8 \u548c UTF-16 \u66f4\u5360\u7528\u7a7a\u95f4\uff0c\u7279\u522b\u662f\u5bf9\u4e8e ASCII \u5b57\u7b26\u5360\u6bd4\u8f83\u9ad8\u7684\u6587\u672c\u3002
\u4ece\u5b58\u50a8\u7a7a\u95f4\u5360\u7528\u7684\u89d2\u5ea6\u770b\uff0c\u4f7f\u7528 UTF-8 \u8868\u793a\u82f1\u6587\u5b57\u7b26\u975e\u5e38\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u4ec5\u9700 1 \u5b57\u8282\uff1b\u4f7f\u7528 UTF-16 \u7f16\u7801\u67d0\u4e9b\u975e\u82f1\u6587\u5b57\u7b26\uff08\u4f8b\u5982\u4e2d\u6587\uff09\u4f1a\u66f4\u52a0\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u4ec5\u9700 2 \u5b57\u8282\uff0c\u800c UTF-8 \u53ef\u80fd\u9700\u8981 3 \u5b57\u8282\u3002
\u4ece\u517c\u5bb9\u6027\u7684\u89d2\u5ea6\u770b\uff0cUTF-8 \u7684\u901a\u7528\u6027\u6700\u4f73\uff0c\u8bb8\u591a\u5de5\u5177\u548c\u5e93\u4f18\u5148\u652f\u6301 UTF-8 \u3002
"},{"location":"chapter_data_structure/character_encoding/#345","title":"3.4.5 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801","text":"\u5bf9\u4e8e\u4ee5\u5f80\u7684\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff0c\u7a0b\u5e8f\u8fd0\u884c\u4e2d\u7684\u5b57\u7b26\u4e32\u90fd\u91c7\u7528 UTF-16 \u6216 UTF-32 \u8fd9\u7c7b\u7b49\u957f\u7f16\u7801\u3002\u5728\u7b49\u957f\u7f16\u7801\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b57\u7b26\u4e32\u770b\u4f5c\u6570\u7ec4\u6765\u5904\u7406\uff0c\u8fd9\u79cd\u505a\u6cd5\u5177\u6709\u4ee5\u4e0b\u4f18\u70b9\u3002
- \u968f\u673a\u8bbf\u95ee\uff1aUTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u8fdb\u884c\u968f\u673a\u8bbf\u95ee\u3002UTF-8 \u662f\u4e00\u79cd\u53d8\u957f\u7f16\u7801\uff0c\u8981\u60f3\u627e\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u4ece\u5b57\u7b26\u4e32\u7684\u5f00\u59cb\u5904\u904d\u5386\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u8fd9\u9700\u8981 \\(O(n)\\) \u7684\u65f6\u95f4\u3002
- \u5b57\u7b26\u8ba1\u6570\uff1a\u4e0e\u968f\u673a\u8bbf\u95ee\u7c7b\u4f3c\uff0c\u8ba1\u7b97 UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u4e5f\u662f \\(O(1)\\) \u7684\u64cd\u4f5c\u3002\u4f46\u662f\uff0c\u8ba1\u7b97 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u9700\u8981\u904d\u5386\u6574\u4e2a\u5b57\u7b26\u4e32\u3002
- \u5b57\u7b26\u4e32\u64cd\u4f5c\uff1a\u5728 UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e0a\uff0c\u5f88\u591a\u5b57\u7b26\u4e32\u64cd\u4f5c\uff08\u5982\u5206\u5272\u3001\u8fde\u63a5\u3001\u63d2\u5165\u3001\u5220\u9664\u7b49\uff09\u66f4\u5bb9\u6613\u8fdb\u884c\u3002\u5728 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e0a\uff0c\u8fdb\u884c\u8fd9\u4e9b\u64cd\u4f5c\u901a\u5e38\u9700\u8981\u989d\u5916\u7684\u8ba1\u7b97\uff0c\u4ee5\u786e\u4fdd\u4e0d\u4f1a\u4ea7\u751f\u65e0\u6548\u7684 UTF-8 \u7f16\u7801\u3002
\u5b9e\u9645\u4e0a\uff0c\u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6848\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5f88\u6709\u8da3\u7684\u8bdd\u9898\uff0c\u6d89\u53ca\u8bb8\u591a\u56e0\u7d20\u3002
- Java \u7684
String \u7c7b\u578b\u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a Java \u8bed\u8a00\u8bbe\u8ba1\u4e4b\u521d\uff0c\u4eba\u4eec\u8ba4\u4e3a 16 \u4f4d\u8db3\u4ee5\u8868\u793a\u6240\u6709\u53ef\u80fd\u7684\u5b57\u7b26\u3002\u7136\u800c\uff0c\u8fd9\u662f\u4e00\u4e2a\u4e0d\u6b63\u786e\u7684\u5224\u65ad\u3002\u540e\u6765 Unicode \u89c4\u8303\u6269\u5c55\u5230\u4e86\u8d85\u8fc7 16 \u4f4d\uff0c\u6240\u4ee5 Java \u4e2d\u7684\u5b57\u7b26\u73b0\u5728\u53ef\u80fd\u7531\u4e00\u5bf9 16 \u4f4d\u7684\u503c\uff08\u79f0\u4e3a\u201c\u4ee3\u7406\u5bf9\u201d\uff09\u8868\u793a\u3002 - JavaScript \u548c TypeScript \u7684\u5b57\u7b26\u4e32\u4f7f\u7528 UTF-16 \u7f16\u7801\u7684\u539f\u56e0\u4e0e Java \u7c7b\u4f3c\u3002\u5f53 1995 \u5e74 Netscape \u516c\u53f8\u9996\u6b21\u63a8\u51fa JavaScript \u8bed\u8a00\u65f6\uff0cUnicode \u8fd8\u5904\u4e8e\u53d1\u5c55\u65e9\u671f\uff0c\u90a3\u65f6\u5019\u4f7f\u7528 16 \u4f4d\u7684\u7f16\u7801\u5c31\u8db3\u4ee5\u8868\u793a\u6240\u6709\u7684 Unicode \u5b57\u7b26\u4e86\u3002
- C# \u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u4e3b\u8981\u662f\u56e0\u4e3a .NET \u5e73\u53f0\u662f\u7531 Microsoft \u8bbe\u8ba1\u7684\uff0c\u800c Microsoft \u7684\u5f88\u591a\u6280\u672f\uff08\u5305\u62ec Windows \u64cd\u4f5c\u7cfb\u7edf\uff09\u90fd\u5e7f\u6cdb\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002
\u7531\u4e8e\u4ee5\u4e0a\u7f16\u7a0b\u8bed\u8a00\u5bf9\u5b57\u7b26\u6570\u91cf\u7684\u4f4e\u4f30\uff0c\u5b83\u4eec\u4e0d\u5f97\u4e0d\u91c7\u53d6\u201c\u4ee3\u7406\u5bf9\u201d\u7684\u65b9\u5f0f\u6765\u8868\u793a\u8d85\u8fc7 16 \u4f4d\u957f\u5ea6\u7684 Unicode \u5b57\u7b26\u3002\u8fd9\u662f\u4e00\u4e2a\u4e0d\u5f97\u5df2\u4e3a\u4e4b\u7684\u65e0\u5948\u4e4b\u4e3e\u3002\u4e00\u65b9\u9762\uff0c\u5305\u542b\u4ee3\u7406\u5bf9\u7684\u5b57\u7b26\u4e32\u4e2d\uff0c\u4e00\u4e2a\u5b57\u7b26\u53ef\u80fd\u5360\u7528 2 \u5b57\u8282\u6216 4 \u5b57\u8282\uff0c\u4ece\u800c\u4e27\u5931\u4e86\u7b49\u957f\u7f16\u7801\u7684\u4f18\u52bf\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5904\u7406\u4ee3\u7406\u5bf9\u9700\u8981\u589e\u52a0\u989d\u5916\u4ee3\u7801\uff0c\u8fd9\u63d0\u9ad8\u4e86\u7f16\u7a0b\u7684\u590d\u6742\u6027\u548c\u8c03\u8bd5\u96be\u5ea6\u3002
\u51fa\u4e8e\u4ee5\u4e0a\u539f\u56e0\uff0c\u90e8\u5206\u7f16\u7a0b\u8bed\u8a00\u63d0\u51fa\u4e86\u4e00\u4e9b\u4e0d\u540c\u7684\u7f16\u7801\u65b9\u6848\u3002
- Python \u4e2d\u7684
str \u4f7f\u7528 Unicode \u7f16\u7801\uff0c\u5e76\u91c7\u7528\u4e00\u79cd\u7075\u6d3b\u7684\u5b57\u7b26\u4e32\u8868\u793a\uff0c\u5b58\u50a8\u7684\u5b57\u7b26\u957f\u5ea6\u53d6\u51b3\u4e8e\u5b57\u7b26\u4e32\u4e2d\u6700\u5927\u7684 Unicode \u7801\u70b9\u3002\u82e5\u5b57\u7b26\u4e32\u4e2d\u5168\u90e8\u662f ASCII \u5b57\u7b26\uff0c\u5219\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u5b57\u8282\uff1b\u5982\u679c\u6709\u5b57\u7b26\u8d85\u51fa\u4e86 ASCII \u8303\u56f4\uff0c\u4f46\u5168\u90e8\u5728\u57fa\u672c\u591a\u8bed\u8a00\u5e73\u9762\uff08BMP\uff09\u5185\uff0c\u5219\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\uff1b\u5982\u679c\u6709\u8d85\u51fa BMP \u7684\u5b57\u7b26\uff0c\u5219\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 4 \u5b57\u8282\u3002 - Go \u8bed\u8a00\u7684
string \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Go \u8bed\u8a00\u8fd8\u63d0\u4f9b\u4e86 rune \u7c7b\u578b\uff0c\u5b83\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002 - Rust \u8bed\u8a00\u7684
str \u548c String \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Rust \u4e5f\u63d0\u4f9b\u4e86 char \u7c7b\u578b\uff0c\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ee5\u4e0a\u8ba8\u8bba\u7684\u90fd\u662f\u5b57\u7b26\u4e32\u5728\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u8fd9\u548c\u5b57\u7b26\u4e32\u5982\u4f55\u5728\u6587\u4ef6\u4e2d\u5b58\u50a8\u6216\u5728\u7f51\u7edc\u4e2d\u4f20\u8f93\u662f\u4e0d\u540c\u7684\u95ee\u9898\u3002\u5728\u6587\u4ef6\u5b58\u50a8\u6216\u7f51\u7edc\u4f20\u8f93\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u5b57\u7b26\u4e32\u7f16\u7801\u4e3a UTF-8 \u683c\u5f0f\uff0c\u4ee5\u8fbe\u5230\u6700\u4f18\u7684\u517c\u5bb9\u6027\u548c\u7a7a\u95f4\u6548\u7387\u3002
"},{"location":"chapter_data_structure/classification_of_data_structure/","title":"3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b","text":"\u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\u5305\u62ec\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\uff0c\u5b83\u4eec\u53ef\u4ee5\u4ece\u201c\u903b\u8f91\u7ed3\u6784\u201d\u548c\u201c\u7269\u7406\u7ed3\u6784\u201d\u4e24\u4e2a\u7ef4\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002
"},{"location":"chapter_data_structure/classification_of_data_structure/#311","title":"3.1.1 \u00a0 \u903b\u8f91\u7ed3\u6784\uff1a\u7ebf\u6027\u4e0e\u975e\u7ebf\u6027","text":"\u903b\u8f91\u7ed3\u6784\u63ed\u793a\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\u3002\u5728\u6570\u7ec4\u548c\u94fe\u8868\u4e2d\uff0c\u6570\u636e\u6309\u7167\u4e00\u5b9a\u987a\u5e8f\u6392\u5217\uff0c\u4f53\u73b0\u4e86\u6570\u636e\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb\uff1b\u800c\u5728\u6811\u4e2d\uff0c\u6570\u636e\u4ece\u9876\u90e8\u5411\u4e0b\u6309\u5c42\u6b21\u6392\u5217\uff0c\u8868\u73b0\u51fa\u201c\u7956\u5148\u201d\u4e0e\u201c\u540e\u4ee3\u201d\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff1b\u56fe\u5219\u7531\u8282\u70b9\u548c\u8fb9\u6784\u6210\uff0c\u53cd\u6620\u4e86\u590d\u6742\u7684\u7f51\u7edc\u5173\u7cfb\u3002
\u5982\u56fe 3-1 \u6240\u793a\uff0c\u903b\u8f91\u7ed3\u6784\u53ef\u5206\u4e3a\u201c\u7ebf\u6027\u201d\u548c\u201c\u975e\u7ebf\u6027\u201d\u4e24\u5927\u7c7b\u3002\u7ebf\u6027\u7ed3\u6784\u6bd4\u8f83\u76f4\u89c2\uff0c\u6307\u6570\u636e\u5728\u903b\u8f91\u5173\u7cfb\u4e0a\u5448\u7ebf\u6027\u6392\u5217\uff1b\u975e\u7ebf\u6027\u7ed3\u6784\u5219\u76f8\u53cd\uff0c\u5448\u975e\u7ebf\u6027\u6392\u5217\u3002
- \u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3002
- \u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u56fe\u3001\u54c8\u5e0c\u8868\u3002
\u56fe 3-1 \u00a0 \u7ebf\u6027\u6570\u636e\u7ed3\u6784\u4e0e\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784
\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5212\u5206\u4e3a\u6811\u5f62\u7ed3\u6784\u548c\u7f51\u72b6\u7ed3\u6784\u3002
- \u7ebf\u6027\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u961f\u5217\u3001\u6808\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u4e00\u7684\u987a\u5e8f\u5173\u7cfb\u3002
- \u6811\u5f62\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u591a\u7684\u5173\u7cfb\u3002
- \u7f51\u72b6\u7ed3\u6784\uff1a\u56fe\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u591a\u5bf9\u591a\u7684\u5173\u7cfb\u3002
"},{"location":"chapter_data_structure/classification_of_data_structure/#312","title":"3.1.2 \u00a0 \u7269\u7406\u7ed3\u6784\uff1a\u8fde\u7eed\u4e0e\u5206\u6563","text":"\u5f53\u7b97\u6cd5\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6b63\u5728\u5904\u7406\u7684\u6570\u636e\u4e3b\u8981\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\u3002\u56fe 3-2 \u5c55\u793a\u4e86\u4e00\u4e2a\u8ba1\u7b97\u673a\u5185\u5b58\u6761\uff0c\u5176\u4e2d\u6bcf\u4e2a\u9ed1\u8272\u65b9\u5757\u90fd\u5305\u542b\u4e00\u5757\u5185\u5b58\u7a7a\u95f4\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u5185\u5b58\u60f3\u8c61\u6210\u4e00\u4e2a\u5de8\u5927\u7684 Excel \u8868\u683c\uff0c\u5176\u4e2d\u6bcf\u4e2a\u5355\u5143\u683c\u90fd\u53ef\u4ee5\u5b58\u50a8\u4e00\u5b9a\u5927\u5c0f\u7684\u6570\u636e\u3002
\u7cfb\u7edf\u901a\u8fc7\u5185\u5b58\u5730\u5740\u6765\u8bbf\u95ee\u76ee\u6807\u4f4d\u7f6e\u7684\u6570\u636e\u3002\u5982\u56fe 3-2 \u6240\u793a\uff0c\u8ba1\u7b97\u673a\u6839\u636e\u7279\u5b9a\u89c4\u5219\u4e3a\u8868\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5206\u914d\u7f16\u53f7\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u6709\u552f\u4e00\u7684\u5185\u5b58\u5730\u5740\u3002\u6709\u4e86\u8fd9\u4e9b\u5730\u5740\uff0c\u7a0b\u5e8f\u4fbf\u53ef\u4ee5\u8bbf\u95ee\u5185\u5b58\u4e2d\u7684\u6570\u636e\u3002
\u56fe 3-2 \u00a0 \u5185\u5b58\u6761\u3001\u5185\u5b58\u7a7a\u95f4\u3001\u5185\u5b58\u5730\u5740
Tip
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5c06\u5185\u5b58\u6bd4\u4f5c Excel \u8868\u683c\u662f\u4e00\u4e2a\u7b80\u5316\u7684\u7c7b\u6bd4\uff0c\u5b9e\u9645\u5185\u5b58\u7684\u5de5\u4f5c\u673a\u5236\u6bd4\u8f83\u590d\u6742\uff0c\u6d89\u53ca\u5730\u5740\u7a7a\u95f4\u3001\u5185\u5b58\u7ba1\u7406\u3001\u7f13\u5b58\u673a\u5236\u3001\u865a\u62df\u5185\u5b58\u548c\u7269\u7406\u5185\u5b58\u7b49\u6982\u5ff5\u3002
\u5185\u5b58\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u5171\u4eab\u8d44\u6e90\uff0c\u5f53\u67d0\u5757\u5185\u5b58\u88ab\u67d0\u4e2a\u7a0b\u5e8f\u5360\u7528\u65f6\uff0c\u5219\u65e0\u6cd5\u88ab\u5176\u4ed6\u7a0b\u5e8f\u540c\u65f6\u4f7f\u7528\u4e86\u3002\u56e0\u6b64\u5728\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8bbe\u8ba1\u4e2d\uff0c\u5185\u5b58\u8d44\u6e90\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u8003\u8651\u56e0\u7d20\u3002\u6bd4\u5982\uff0c\u7b97\u6cd5\u6240\u5360\u7528\u7684\u5185\u5b58\u5cf0\u503c\u4e0d\u5e94\u8d85\u8fc7\u7cfb\u7edf\u5269\u4f59\u7a7a\u95f2\u5185\u5b58\uff1b\u5982\u679c\u7f3a\u5c11\u8fde\u7eed\u5927\u5757\u7684\u5185\u5b58\u7a7a\u95f4\uff0c\u90a3\u4e48\u6240\u9009\u7528\u7684\u6570\u636e\u7ed3\u6784\u5fc5\u987b\u80fd\u591f\u5b58\u50a8\u5728\u5206\u6563\u7684\u5185\u5b58\u7a7a\u95f4\u5185\u3002
\u5982\u56fe 3-3 \u6240\u793a\uff0c\u7269\u7406\u7ed3\u6784\u53cd\u6620\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u53ef\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u5206\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u7269\u7406\u7ed3\u6784\u4ece\u5e95\u5c42\u51b3\u5b9a\u4e86\u6570\u636e\u7684\u8bbf\u95ee\u3001\u66f4\u65b0\u3001\u589e\u5220\u7b49\u64cd\u4f5c\u65b9\u6cd5\uff0c\u4e24\u79cd\u7269\u7406\u7ed3\u6784\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u65b9\u9762\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u70b9\u3002
\u56fe 3-3 \u00a0 \u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u4e0e\u5206\u6563\u7a7a\u95f4\u5b58\u50a8
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u57fa\u4e8e\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e8c\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002\u4f8b\u5982\uff0c\u6808\u548c\u961f\u5217\u65e2\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\uff0c\u4e5f\u53ef\u4ee5\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff1b\u800c\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u6570\u7ec4\u548c\u94fe\u8868\u3002
- \u57fa\u4e8e\u6570\u7ec4\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u3001\u77e9\u9635\u3001\u5f20\u91cf\uff08\u7ef4\u5ea6 \\(\\geq 3\\) \u7684\u6570\u7ec4\uff09\u7b49\u3002
- \u57fa\u4e8e\u94fe\u8868\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u3002
\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u4e5f\u79f0\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u610f\u5473\u7740\u6b64\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u76f8\u5bf9\u5e94\u5730\uff0c\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u4e5f\u79f0\u201c\u52a8\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\uff0c\u4ecd\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u5bf9\u5176\u957f\u5ea6\u8fdb\u884c\u8c03\u6574\u3002
Tip
\u5982\u679c\u4f60\u611f\u89c9\u7269\u7406\u7ed3\u6784\u7406\u89e3\u8d77\u6765\u6709\u56f0\u96be\uff0c\u5efa\u8bae\u5148\u9605\u8bfb\u4e0b\u4e00\u7ae0\uff0c\u7136\u540e\u518d\u56de\u987e\u672c\u8282\u5185\u5bb9\u3002
"},{"location":"chapter_data_structure/number_encoding/","title":"3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *","text":"Note
\u5728\u672c\u4e66\u4e2d\uff0c\u6807\u9898\u5e26\u6709 * \u7b26\u53f7\u7684\u662f\u9009\u8bfb\u7ae0\u8282\u3002\u5982\u679c\u4f60\u65f6\u95f4\u6709\u9650\u6216\u611f\u5230\u7406\u89e3\u56f0\u96be\uff0c\u53ef\u4ee5\u5148\u8df3\u8fc7\uff0c\u7b49\u5b66\u5b8c\u5fc5\u8bfb\u7ae0\u8282\u540e\u518d\u5355\u72ec\u653b\u514b\u3002
"},{"location":"chapter_data_structure/number_encoding/#331","title":"3.3.1 \u00a0 \u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801","text":"\u5728\u4e0a\u4e00\u8282\u7684\u8868\u683c\u4e2d\u6211\u4eec\u53d1\u73b0\uff0c\u6240\u6709\u6574\u6570\u7c7b\u578b\u80fd\u591f\u8868\u793a\u7684\u8d1f\u6570\u90fd\u6bd4\u6b63\u6570\u591a\u4e00\u4e2a\uff0c\u4f8b\u5982 byte \u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \u3002\u8fd9\u4e2a\u73b0\u8c61\u6bd4\u8f83\u53cd\u76f4\u89c9\uff0c\u5b83\u7684\u5185\u5728\u539f\u56e0\u6d89\u53ca\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u76f8\u5173\u77e5\u8bc6\u3002
\u9996\u5148\u9700\u8981\u6307\u51fa\uff0c\u6570\u5b57\u662f\u4ee5\u201c\u8865\u7801\u201d\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u7684\u3002\u5728\u5206\u6790\u8fd9\u6837\u505a\u7684\u539f\u56e0\u4e4b\u524d\uff0c\u9996\u5148\u7ed9\u51fa\u4e09\u8005\u7684\u5b9a\u4e49\u3002
- \u539f\u7801\uff1a\u6211\u4eec\u5c06\u6570\u5b57\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u7684\u6700\u9ad8\u4f4d\u89c6\u4e3a\u7b26\u53f7\u4f4d\uff0c\u5176\u4e2d \\(0\\) \u8868\u793a\u6b63\u6570\uff0c\\(1\\) \u8868\u793a\u8d1f\u6570\uff0c\u5176\u4f59\u4f4d\u8868\u793a\u6570\u5b57\u7684\u503c\u3002
- \u53cd\u7801\uff1a\u6b63\u6570\u7684\u53cd\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u53cd\u7801\u662f\u5bf9\u5176\u539f\u7801\u9664\u7b26\u53f7\u4f4d\u5916\u7684\u6240\u6709\u4f4d\u53d6\u53cd\u3002
- \u8865\u7801\uff1a\u6b63\u6570\u7684\u8865\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u8865\u7801\u662f\u5728\u5176\u53cd\u7801\u7684\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u3002
\u56fe 3-4 \u5c55\u793a\u4e86\u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\u4e4b\u95f4\u7684\u8f6c\u6362\u65b9\u6cd5\u3002
\u56fe 3-4 \u00a0 \u539f\u7801\u3001\u53cd\u7801\u4e0e\u8865\u7801\u4e4b\u95f4\u7684\u76f8\u4e92\u8f6c\u6362
\u300c\u539f\u7801 sign-magnitude\u300d\u867d\u7136\u6700\u76f4\u89c2\uff0c\u4f46\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\u3002\u4e00\u65b9\u9762\uff0c\u8d1f\u6570\u7684\u539f\u7801\u4e0d\u80fd\u76f4\u63a5\u7528\u4e8e\u8fd0\u7b97\u3002\u4f8b\u5982\u5728\u539f\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u5f97\u5230\u7684\u7ed3\u679c\u662f \\(-3\\) \uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 + 1000 \\; 0010 \\newline & = 1000 \\; 0011 \\newline & \\rightarrow -3 \\end{aligned} \\] \u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u8ba1\u7b97\u673a\u5f15\u5165\u4e86\u300c\u53cd\u7801 1's complement\u300d\u3002\u5982\u679c\u6211\u4eec\u5148\u5c06\u539f\u7801\u8f6c\u6362\u4e3a\u53cd\u7801\uff0c\u5e76\u5728\u53cd\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u6700\u540e\u5c06\u7ed3\u679c\u4ece\u53cd\u7801\u8f6c\u6362\u56de\u539f\u7801\uff0c\u5219\u53ef\u5f97\u5230\u6b63\u786e\u7ed3\u679c \\(-1\\) \u3002
\\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\; 0001 \\; \\text{(\u539f\u7801)} + 1000 \\; 0010 \\; \\text{(\u539f\u7801)} \\newline & = 0000 \\; 0001 \\; \\text{(\u53cd\u7801)} + 1111 \\; 1101 \\; \\text{(\u53cd\u7801)} \\newline & = 1111 \\; 1110 \\; \\text{(\u53cd\u7801)} \\newline & = 1000 \\; 0001 \\; \\text{(\u539f\u7801)} \\newline & \\rightarrow -1 \\end{aligned} \\] \u53e6\u4e00\u65b9\u9762\uff0c\u6570\u5b57\u96f6\u7684\u539f\u7801\u6709 \\(+0\\) \u548c \\(-0\\) \u4e24\u79cd\u8868\u793a\u65b9\u5f0f\u3002\u8fd9\u610f\u5473\u7740\u6570\u5b57\u96f6\u5bf9\u5e94\u4e24\u4e2a\u4e0d\u540c\u7684\u4e8c\u8fdb\u5236\u7f16\u7801\uff0c\u8fd9\u53ef\u80fd\u4f1a\u5e26\u6765\u6b67\u4e49\u3002\u6bd4\u5982\u5728\u6761\u4ef6\u5224\u65ad\u4e2d\uff0c\u5982\u679c\u6ca1\u6709\u533a\u5206\u6b63\u96f6\u548c\u8d1f\u96f6\uff0c\u5219\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5224\u65ad\u7ed3\u679c\u51fa\u9519\u3002\u800c\u5982\u679c\u6211\u4eec\u60f3\u5904\u7406\u6b63\u96f6\u548c\u8d1f\u96f6\u6b67\u4e49\uff0c\u5219\u9700\u8981\u5f15\u5165\u989d\u5916\u7684\u5224\u65ad\u64cd\u4f5c\uff0c\u8fd9\u53ef\u80fd\u4f1a\u964d\u4f4e\u8ba1\u7b97\u673a\u7684\u8fd0\u7b97\u6548\u7387\u3002
\\[ \\begin{aligned} +0 & \\rightarrow 0000 \\; 0000 \\newline -0 & \\rightarrow 1000 \\; 0000 \\end{aligned} \\] \u4e0e\u539f\u7801\u4e00\u6837\uff0c\u53cd\u7801\u4e5f\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u95ee\u9898\uff0c\u56e0\u6b64\u8ba1\u7b97\u673a\u8fdb\u4e00\u6b65\u5f15\u5165\u4e86\u300c\u8865\u7801 2's complement\u300d\u3002\u6211\u4eec\u5148\u6765\u89c2\u5bdf\u4e00\u4e0b\u8d1f\u96f6\u7684\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u8f6c\u6362\u8fc7\u7a0b\uff1a
\\[ \\begin{aligned} -0 \\rightarrow \\; & 1000 \\; 0000 \\; \\text{(\u539f\u7801)} \\newline = \\; & 1111 \\; 1111 \\; \\text{(\u53cd\u7801)} \\newline = 1 \\; & 0000 \\; 0000 \\; \\text{(\u8865\u7801)} \\newline \\end{aligned} \\] \u5728\u8d1f\u96f6\u7684\u53cd\u7801\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u4f1a\u4ea7\u751f\u8fdb\u4f4d\uff0c\u4f46 byte \u7c7b\u578b\u7684\u957f\u5ea6\u53ea\u6709 8 \u4f4d\uff0c\u56e0\u6b64\u6ea2\u51fa\u5230\u7b2c 9 \u4f4d\u7684 \\(1\\) \u4f1a\u88ab\u820d\u5f03\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8d1f\u96f6\u7684\u8865\u7801\u4e3a \\(0000 \\; 0000\\) \uff0c\u4e0e\u6b63\u96f6\u7684\u8865\u7801\u76f8\u540c\u3002\u8fd9\u610f\u5473\u7740\u5728\u8865\u7801\u8868\u793a\u4e2d\u53ea\u5b58\u5728\u4e00\u4e2a\u96f6\uff0c\u6b63\u8d1f\u96f6\u6b67\u4e49\u4ece\u800c\u5f97\u5230\u89e3\u51b3\u3002
\u8fd8\u5269\u6700\u540e\u4e00\u4e2a\u7591\u60d1\uff1abyte \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \uff0c\u591a\u51fa\u6765\u7684\u4e00\u4e2a\u8d1f\u6570 \\(-128\\) \u662f\u5982\u4f55\u5f97\u5230\u7684\u5462\uff1f\u6211\u4eec\u6ce8\u610f\u5230\uff0c\u533a\u95f4 \\([-127, +127]\\) \u5185\u7684\u6240\u6709\u6574\u6570\u90fd\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\uff0c\u5e76\u4e14\u539f\u7801\u548c\u8865\u7801\u4e4b\u95f4\u53ef\u4ee5\u4e92\u76f8\u8f6c\u6362\u3002
\u7136\u800c\uff0c\u8865\u7801 \\(1000 \\; 0000\\) \u662f\u4e00\u4e2a\u4f8b\u5916\uff0c\u5b83\u5e76\u6ca1\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3002\u6839\u636e\u8f6c\u6362\u65b9\u6cd5\uff0c\u6211\u4eec\u5f97\u5230\u8be5\u8865\u7801\u7684\u539f\u7801\u4e3a \\(0000 \\; 0000\\) \u3002\u8fd9\u663e\u7136\u662f\u77db\u76fe\u7684\uff0c\u56e0\u4e3a\u8be5\u539f\u7801\u8868\u793a\u6570\u5b57 \\(0\\) \uff0c\u5b83\u7684\u8865\u7801\u5e94\u8be5\u662f\u81ea\u8eab\u3002\u8ba1\u7b97\u673a\u89c4\u5b9a\u8fd9\u4e2a\u7279\u6b8a\u7684\u8865\u7801 \\(1000 \\; 0000\\) \u4ee3\u8868 \\(-128\\) \u3002\u5b9e\u9645\u4e0a\uff0c\\((-1) + (-127)\\) \u5728\u8865\u7801\u4e0b\u7684\u8ba1\u7b97\u7ed3\u679c\u5c31\u662f \\(-128\\) \u3002
\\[ \\begin{aligned} & (-127) + (-1) \\newline & \\rightarrow 1111 \\; 1111 \\; \\text{(\u539f\u7801)} + 1000 \\; 0001 \\; \\text{(\u539f\u7801)} \\newline & = 1000 \\; 0000 \\; \\text{(\u53cd\u7801)} + 1111 \\; 1110 \\; \\text{(\u53cd\u7801)} \\newline & = 1000 \\; 0001 \\; \\text{(\u8865\u7801)} + 1111 \\; 1111 \\; \\text{(\u8865\u7801)} \\newline & = 1000 \\; 0000 \\; \\text{(\u8865\u7801)} \\newline & \\rightarrow -128 \\end{aligned} \\] \u4f60\u53ef\u80fd\u5df2\u7ecf\u53d1\u73b0\u4e86\uff0c\u4e0a\u8ff0\u6240\u6709\u8ba1\u7b97\u90fd\u662f\u52a0\u6cd5\u8fd0\u7b97\u3002\u8fd9\u6697\u793a\u7740\u4e00\u4e2a\u91cd\u8981\u4e8b\u5b9e\uff1a\u8ba1\u7b97\u673a\u5185\u90e8\u7684\u786c\u4ef6\u7535\u8def\u4e3b\u8981\u662f\u57fa\u4e8e\u52a0\u6cd5\u8fd0\u7b97\u8bbe\u8ba1\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u52a0\u6cd5\u8fd0\u7b97\u76f8\u5bf9\u4e8e\u5176\u4ed6\u8fd0\u7b97\uff08\u6bd4\u5982\u4e58\u6cd5\u3001\u9664\u6cd5\u548c\u51cf\u6cd5\uff09\u6765\u8bf4\uff0c\u786c\u4ef6\u5b9e\u73b0\u8d77\u6765\u66f4\u7b80\u5355\uff0c\u66f4\u5bb9\u6613\u8fdb\u884c\u5e76\u884c\u5316\u5904\u7406\uff0c\u8fd0\u7b97\u901f\u5ea6\u66f4\u5feb\u3002
\u8bf7\u6ce8\u610f\uff0c\u8fd9\u5e76\u4e0d\u610f\u5473\u7740\u8ba1\u7b97\u673a\u53ea\u80fd\u505a\u52a0\u6cd5\u3002\u901a\u8fc7\u5c06\u52a0\u6cd5\u4e0e\u4e00\u4e9b\u57fa\u672c\u903b\u8f91\u8fd0\u7b97\u7ed3\u5408\uff0c\u8ba1\u7b97\u673a\u80fd\u591f\u5b9e\u73b0\u5404\u79cd\u5176\u4ed6\u7684\u6570\u5b66\u8fd0\u7b97\u3002\u4f8b\u5982\uff0c\u8ba1\u7b97\u51cf\u6cd5 \\(a - b\\) \u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u52a0\u6cd5 \\(a + (-b)\\) \uff1b\u8ba1\u7b97\u4e58\u6cd5\u548c\u9664\u6cd5\u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u591a\u6b21\u52a0\u6cd5\u6216\u51cf\u6cd5\u3002
\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u603b\u7ed3\u51fa\u8ba1\u7b97\u673a\u4f7f\u7528\u8865\u7801\u7684\u539f\u56e0\uff1a\u57fa\u4e8e\u8865\u7801\u8868\u793a\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u7528\u540c\u6837\u7684\u7535\u8def\u548c\u64cd\u4f5c\u6765\u5904\u7406\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\uff0c\u4e0d\u9700\u8981\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\u6765\u5904\u7406\u51cf\u6cd5\uff0c\u5e76\u4e14\u65e0\u987b\u7279\u522b\u5904\u7406\u6b63\u8d1f\u96f6\u7684\u6b67\u4e49\u95ee\u9898\u3002\u8fd9\u5927\u5927\u7b80\u5316\u4e86\u786c\u4ef6\u8bbe\u8ba1\uff0c\u63d0\u9ad8\u4e86\u8fd0\u7b97\u6548\u7387\u3002
\u8865\u7801\u7684\u8bbe\u8ba1\u975e\u5e38\u7cbe\u5999\uff0c\u56e0\u7bc7\u5e45\u5173\u7cfb\u6211\u4eec\u5c31\u5148\u4ecb\u7ecd\u5230\u8fd9\u91cc\uff0c\u5efa\u8bae\u6709\u5174\u8da3\u7684\u8bfb\u8005\u8fdb\u4e00\u6b65\u6df1\u5165\u4e86\u89e3\u3002
"},{"location":"chapter_data_structure/number_encoding/#332","title":"3.3.2 \u00a0 \u6d6e\u70b9\u6570\u7f16\u7801","text":"\u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\uff1aint \u548c float \u957f\u5ea6\u76f8\u540c\uff0c\u90fd\u662f 4 \u5b57\u8282 \uff0c\u4f46\u4e3a\u4ec0\u4e48 float \u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \uff1f\u8fd9\u975e\u5e38\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u6309\u7406\u8bf4 float \u9700\u8981\u8868\u793a\u5c0f\u6570\uff0c\u53d6\u503c\u8303\u56f4\u5e94\u8be5\u53d8\u5c0f\u624d\u5bf9\u3002
\u5b9e\u9645\u4e0a\uff0c\u8fd9\u662f\u56e0\u4e3a\u6d6e\u70b9\u6570 float \u91c7\u7528\u4e86\u4e0d\u540c\u7684\u8868\u793a\u65b9\u5f0f\u3002\u8bb0\u4e00\u4e2a 32 \u4f4d\u957f\u5ea6\u7684\u4e8c\u8fdb\u5236\u6570\u4e3a\uff1a
\\[ b_{31} b_{30} b_{29} \\ldots b_2 b_1 b_0 \\] \u6839\u636e IEEE 754 \u6807\u51c6\uff0c32-bit \u957f\u5ea6\u7684 float \u7531\u4ee5\u4e0b\u4e09\u4e2a\u90e8\u5206\u6784\u6210\u3002
- \u7b26\u53f7\u4f4d \\(\\mathrm{S}\\) \uff1a\u5360 1 \u4f4d \uff0c\u5bf9\u5e94 \\(b_{31}\\) \u3002
- \u6307\u6570\u4f4d \\(\\mathrm{E}\\) \uff1a\u5360 8 \u4f4d \uff0c\u5bf9\u5e94 \\(b_{30} b_{29} \\ldots b_{23}\\) \u3002
- \u5206\u6570\u4f4d \\(\\mathrm{N}\\) \uff1a\u5360 23 \u4f4d \uff0c\u5bf9\u5e94 \\(b_{22} b_{21} \\ldots b_0\\) \u3002
\u4e8c\u8fdb\u5236\u6570 float \u5bf9\u5e94\u503c\u7684\u8ba1\u7b97\u65b9\u6cd5\u4e3a\uff1a
\\[ \\text {val} = (-1)^{b_{31}} \\times 2^{\\left(b_{30} b_{29} \\ldots b_{23}\\right)_2-127} \\times\\left(1 . b_{22} b_{21} \\ldots b_0\\right)_2 \\] \u8f6c\u5316\u5230\u5341\u8fdb\u5236\u4e0b\u7684\u8ba1\u7b97\u516c\u5f0f\u4e3a\uff1a
\\[ \\text {val}=(-1)^{\\mathrm{S}} \\times 2^{\\mathrm{E} -127} \\times (1 + \\mathrm{N}) \\] \u5176\u4e2d\u5404\u9879\u7684\u53d6\u503c\u8303\u56f4\u4e3a\uff1a
\\[ \\begin{aligned} \\mathrm{S} \\in & \\{ 0, 1\\}, \\quad \\mathrm{E} \\in \\{ 1, 2, \\dots, 254 \\} \\newline (1 + \\mathrm{N}) = & (1 + \\sum_{i=1}^{23} b_{23-i} 2^{-i}) \\subset [1, 2 - 2^{-23}] \\end{aligned} \\] \u56fe 3-5 \u00a0 IEEE 754 \u6807\u51c6\u4e0b\u7684 float \u7684\u8ba1\u7b97\u793a\u4f8b
\u89c2\u5bdf\u56fe 3-5 \uff0c\u7ed9\u5b9a\u4e00\u4e2a\u793a\u4f8b\u6570\u636e \\(\\mathrm{S} = 0\\) \uff0c \\(\\mathrm{E} = 124\\) \uff0c\\(\\mathrm{N} = 2^{-2} + 2^{-3} = 0.375\\) \uff0c\u5219\u6709\uff1a
\\[ \\text { val } = (-1)^0 \\times 2^{124 - 127} \\times (1 + 0.375) = 0.171875 \\] \u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u56de\u7b54\u6700\u521d\u7684\u95ee\u9898\uff1afloat \u7684\u8868\u793a\u65b9\u5f0f\u5305\u542b\u6307\u6570\u4f4d\uff0c\u5bfc\u81f4\u5176\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \u3002\u6839\u636e\u4ee5\u4e0a\u8ba1\u7b97\uff0cfloat \u53ef\u8868\u793a\u7684\u6700\u5927\u6b63\u6570\u4e3a \\(2^{254 - 127} \\times (2 - 2^{-23}) \\approx 3.4 \\times 10^{38}\\) \uff0c\u5207\u6362\u7b26\u53f7\u4f4d\u4fbf\u53ef\u5f97\u5230\u6700\u5c0f\u8d1f\u6570\u3002
\u5c3d\u7ba1\u6d6e\u70b9\u6570 float \u6269\u5c55\u4e86\u53d6\u503c\u8303\u56f4\uff0c\u4f46\u5176\u526f\u4f5c\u7528\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002\u6574\u6570\u7c7b\u578b int \u5c06\u5168\u90e8 32 \u4f4d\u7528\u4e8e\u8868\u793a\u6570\u5b57\uff0c\u6570\u5b57\u662f\u5747\u5300\u5206\u5e03\u7684\uff1b\u800c\u7531\u4e8e\u6307\u6570\u4f4d\u7684\u5b58\u5728\uff0c\u6d6e\u70b9\u6570 float \u7684\u6570\u503c\u8d8a\u5927\uff0c\u76f8\u90bb\u4e24\u4e2a\u6570\u5b57\u4e4b\u95f4\u7684\u5dee\u503c\u5c31\u4f1a\u8d8b\u5411\u8d8a\u5927\u3002
\u5982\u8868 3-2 \u6240\u793a\uff0c\u6307\u6570\u4f4d \\(E = 0\\) \u548c \\(E = 255\\) \u5177\u6709\u7279\u6b8a\u542b\u4e49\uff0c\u7528\u4e8e\u8868\u793a\u96f6\u3001\u65e0\u7a77\u5927\u3001\\(\\mathrm{NaN}\\) \u7b49\u3002
\u8868 3-2 \u00a0 \u6307\u6570\u4f4d\u542b\u4e49
\u6307\u6570\u4f4d E \u5206\u6570\u4f4d \\(\\mathrm{N} = 0\\) \u5206\u6570\u4f4d \\(\\mathrm{N} \\ne 0\\) \u8ba1\u7b97\u516c\u5f0f \\(0\\) \\(\\pm 0\\) \u6b21\u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{-126} \\times (0.\\mathrm{N})\\) \\(1, 2, \\dots, 254\\) \u6b63\u89c4\u6570 \u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{(\\mathrm{E} -127)} \\times (1.\\mathrm{N})\\) \\(255\\) \\(\\pm \\infty\\) \\(\\mathrm{NaN}\\) \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6b21\u6b63\u89c4\u6570\u663e\u8457\u63d0\u5347\u4e86\u6d6e\u70b9\u6570\u7684\u7cbe\u5ea6\u3002\u6700\u5c0f\u6b63\u6b63\u89c4\u6570\u4e3a \\(2^{-126}\\) \uff0c\u6700\u5c0f\u6b63\u6b21\u6b63\u89c4\u6570\u4e3a \\(2^{-126} \\times 2^{-23}\\) \u3002
\u53cc\u7cbe\u5ea6 double \u4e5f\u91c7\u7528\u7c7b\u4f3c\u4e8e float \u7684\u8868\u793a\u65b9\u6cd5\uff0c\u5728\u6b64\u4e0d\u505a\u8d58\u8ff0\u3002
"},{"location":"chapter_data_structure/summary/","title":"3.5 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_data_structure/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u4ece\u903b\u8f91\u7ed3\u6784\u548c\u7269\u7406\u7ed3\u6784\u4e24\u4e2a\u89d2\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002\u903b\u8f91\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\uff0c\u800c\u7269\u7406\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\u3002
- \u5e38\u89c1\u7684\u903b\u8f91\u7ed3\u6784\u5305\u62ec\u7ebf\u6027\u3001\u6811\u72b6\u548c\u7f51\u72b6\u7b49\u3002\u901a\u5e38\u6211\u4eec\u6839\u636e\u903b\u8f91\u7ed3\u6784\u5c06\u6570\u636e\u7ed3\u6784\u5206\u4e3a\u7ebf\u6027\uff08\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\uff09\u548c\u975e\u7ebf\u6027\uff08\u6811\u3001\u56fe\u3001\u5806\uff09\u4e24\u79cd\u3002\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002
- \u5f53\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u88ab\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u3002\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u62e5\u6709\u5bf9\u5e94\u7684\u5185\u5b58\u5730\u5740\uff0c\u7a0b\u5e8f\u901a\u8fc7\u8fd9\u4e9b\u5185\u5b58\u5730\u5740\u8bbf\u95ee\u6570\u636e\u3002
- \u7269\u7406\u7ed3\u6784\u4e3b\u8981\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u5206\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u7531\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e24\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002
- \u8ba1\u7b97\u673a\u4e2d\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5305\u62ec\u6574\u6570
byte\u3001short\u3001int\u3001long \uff0c\u6d6e\u70b9\u6570 float\u3001double \uff0c\u5b57\u7b26 char \u548c\u5e03\u5c14 boolean \u3002\u5b83\u4eec\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5360\u7528\u7a7a\u95f4\u5927\u5c0f\u548c\u8868\u793a\u65b9\u5f0f\u3002 - \u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7f16\u7801\u6570\u5b57\u7684\u4e09\u79cd\u65b9\u6cd5\uff0c\u5b83\u4eec\u4e4b\u95f4\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\u3002\u6574\u6570\u7684\u539f\u7801\u7684\u6700\u9ad8\u4f4d\u662f\u7b26\u53f7\u4f4d\uff0c\u5176\u4f59\u4f4d\u662f\u6570\u5b57\u7684\u503c\u3002
- \u6574\u6570\u5728\u8ba1\u7b97\u673a\u4e2d\u662f\u4ee5\u8865\u7801\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\u3002\u5728\u8865\u7801\u8868\u793a\u4e0b\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u5bf9\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\u4e00\u89c6\u540c\u4ec1\uff0c\u4e0d\u9700\u8981\u4e3a\u51cf\u6cd5\u64cd\u4f5c\u5355\u72ec\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\uff0c\u5e76\u4e14\u4e0d\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u7684\u95ee\u9898\u3002
- \u6d6e\u70b9\u6570\u7684\u7f16\u7801\u7531 1 \u4f4d\u7b26\u53f7\u4f4d\u30018 \u4f4d\u6307\u6570\u4f4d\u548c 23 \u4f4d\u5206\u6570\u4f4d\u6784\u6210\u3002\u7531\u4e8e\u5b58\u5728\u6307\u6570\u4f4d\uff0c\u56e0\u6b64\u6d6e\u70b9\u6570\u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e\u6574\u6570\uff0c\u4ee3\u4ef7\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002
- ASCII \u7801\u662f\u6700\u65e9\u51fa\u73b0\u7684\u82f1\u6587\u5b57\u7b26\u96c6\uff0c\u957f\u5ea6\u4e3a 1 \u5b57\u8282\uff0c\u5171\u6536\u5f55 127 \u4e2a\u5b57\u7b26\u3002GBK \u5b57\u7b26\u96c6\u662f\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u96c6\uff0c\u5171\u6536\u5f55\u4e24\u4e07\u591a\u4e2a\u6c49\u5b57\u3002Unicode \u81f4\u529b\u4e8e\u63d0\u4f9b\u4e00\u4e2a\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u6536\u5f55\u4e16\u754c\u4e0a\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u4ece\u800c\u89e3\u51b3\u7531\u4e8e\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\u4e0d\u4e00\u81f4\u800c\u5bfc\u81f4\u7684\u4e71\u7801\u95ee\u9898\u3002
- UTF-8 \u662f\u6700\u53d7\u6b22\u8fce\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\uff0c\u901a\u7528\u6027\u975e\u5e38\u597d\u3002\u5b83\u662f\u4e00\u79cd\u53d8\u957f\u7684\u7f16\u7801\u65b9\u6cd5\uff0c\u5177\u6709\u5f88\u597d\u7684\u6269\u5c55\u6027\uff0c\u6709\u6548\u63d0\u5347\u4e86\u5b58\u50a8\u7a7a\u95f4\u7684\u4f7f\u7528\u6548\u7387\u3002UTF-16 \u548c UTF-32 \u662f\u7b49\u957f\u7684\u7f16\u7801\u65b9\u6cd5\u3002\u5728\u7f16\u7801\u4e2d\u6587\u65f6\uff0cUTF-16 \u5360\u7528\u7684\u7a7a\u95f4\u6bd4 UTF-8 \u66f4\u5c0f\u3002Java \u548c C# \u7b49\u7f16\u7a0b\u8bed\u8a00\u9ed8\u8ba4\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002
"},{"location":"chapter_data_structure/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1f
\u54c8\u5e0c\u8868\u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u800c\u4e3a\u4e86\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\uff0c\u6211\u4eec\u53ef\u80fd\u4f1a\u4f7f\u7528\u201c\u94fe\u5f0f\u5730\u5740\u201d\uff08\u540e\u7eed\u201c\u54c8\u5e0c\u51b2\u7a81\u201d\u7ae0\u8282\u4f1a\u8bb2\uff09\uff1a\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u6876\u6307\u5411\u4e00\u4e2a\u94fe\u8868\uff0c\u5f53\u94fe\u8868\u957f\u5ea6\u8d85\u8fc7\u4e00\u5b9a\u9608\u503c\u65f6\uff0c\u53c8\u53ef\u80fd\u88ab\u8f6c\u5316\u4e3a\u6811\uff08\u901a\u5e38\u4e3a\u7ea2\u9ed1\u6811\uff09\u3002 \u4ece\u5b58\u50a8\u7684\u89d2\u5ea6\u6765\u770b\uff0c\u54c8\u5e0c\u8868\u7684\u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u5176\u4e2d\u6bcf\u4e00\u4e2a\u6876\u69fd\u4f4d\u53ef\u80fd\u5305\u542b\u4e00\u4e2a\u503c\uff0c\u4e5f\u53ef\u80fd\u5305\u542b\u4e00\u4e2a\u94fe\u8868\u6216\u4e00\u68f5\u6811\u3002\u56e0\u6b64\uff0c\u54c8\u5e0c\u8868\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff08\u6570\u7ec4\u3001\u94fe\u8868\uff09\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff08\u6811\uff09\u3002
char \u7c7b\u578b\u7684\u957f\u5ea6\u662f 1 \u5b57\u8282\u5417\uff1f
char \u7c7b\u578b\u7684\u957f\u5ea6\u7531\u7f16\u7a0b\u8bed\u8a00\u91c7\u7528\u7684\u7f16\u7801\u65b9\u6cd5\u51b3\u5b9a\u3002\u4f8b\u5982\uff0cJava\u3001JavaScript\u3001TypeScript\u3001C# \u90fd\u91c7\u7528 UTF-16 \u7f16\u7801\uff08\u4fdd\u5b58 Unicode \u7801\u70b9\uff09\uff0c\u56e0\u6b64 char \u7c7b\u578b\u7684\u957f\u5ea6\u4e3a 2 \u5b57\u8282\u3002
\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u4e5f\u79f0\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d \u662f\u5426\u6709\u6b67\u4e49\uff1f\u6808\u4e5f\u53ef\u4ee5\u8fdb\u884c\u51fa\u6808\u548c\u5165\u6808\u7b49\u64cd\u4f5c\uff0c\u8fd9\u4e9b\u64cd\u4f5c\u90fd\u662f\u201c\u52a8\u6001\u201d\u7684\u3002
\u6808\u786e\u5b9e\u53ef\u4ee5\u5b9e\u73b0\u52a8\u6001\u7684\u6570\u636e\u64cd\u4f5c\uff0c\u4f46\u6570\u636e\u7ed3\u6784\u4ecd\u7136\u662f\u201c\u9759\u6001\u201d\uff08\u957f\u5ea6\u4e0d\u53ef\u53d8\uff09\u7684\u3002\u5c3d\u7ba1\u57fa\u4e8e\u6570\u7ec4\u7684\u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u52a8\u6001\u5730\u6dfb\u52a0\u6216\u5220\u9664\u5143\u7d20\uff0c\u4f46\u5b83\u4eec\u7684\u5bb9\u91cf\u662f\u56fa\u5b9a\u7684\u3002\u5982\u679c\u6570\u636e\u91cf\u8d85\u51fa\u4e86\u9884\u5206\u914d\u7684\u5927\u5c0f\uff0c\u5c31\u9700\u8981\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u65e7\u6570\u7ec4\u7684\u5185\u5bb9\u590d\u5236\u5230\u65b0\u6570\u7ec4\u4e2d\u3002
\u5728\u6784\u5efa\u6808\uff08\u961f\u5217\uff09\u7684\u65f6\u5019\uff0c\u672a\u6307\u5b9a\u5b83\u7684\u5927\u5c0f\uff0c\u4e3a\u4ec0\u4e48\u5b83\u4eec\u662f\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d\u5462\uff1f
\u5728\u9ad8\u7ea7\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u65e0\u987b\u4eba\u5de5\u6307\u5b9a\u6808\uff08\u961f\u5217\uff09\u7684\u521d\u59cb\u5bb9\u91cf\uff0c\u8fd9\u4e2a\u5de5\u4f5c\u7531\u7c7b\u5185\u90e8\u81ea\u52a8\u5b8c\u6210\u3002\u4f8b\u5982\uff0cJava \u7684 ArrayList \u7684\u521d\u59cb\u5bb9\u91cf\u901a\u5e38\u4e3a 10\u3002\u53e6\u5916\uff0c\u6269\u5bb9\u64cd\u4f5c\u4e5f\u662f\u81ea\u52a8\u5b9e\u73b0\u7684\u3002\u8be6\u89c1\u540e\u7eed\u7684\u201c\u5217\u8868\u201d\u7ae0\u8282\u3002
"},{"location":"chapter_divide_and_conquer/","title":"\u7b2c 12 \u7ae0 \u00a0 \u5206\u6cbb","text":"Abstract
\u96be\u9898\u88ab\u9010\u5c42\u62c6\u89e3\uff0c\u6bcf\u4e00\u6b21\u7684\u62c6\u89e3\u90fd\u4f7f\u5b83\u53d8\u5f97\u66f4\u4e3a\u7b80\u5355\u3002
\u5206\u800c\u6cbb\u4e4b\u63ed\u793a\u4e86\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u5b9e\uff1a\u4ece\u7b80\u5355\u505a\u8d77\uff0c\u4e00\u5207\u90fd\u4e0d\u518d\u590d\u6742\u3002
"},{"location":"chapter_divide_and_conquer/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5
- 12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565
- 12.3 \u00a0 \u6784\u5efa\u6811\u95ee\u9898
- 12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898
- 12.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_divide_and_conquer/binary_search_recur/","title":"12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565","text":"\u6211\u4eec\u5df2\u7ecf\u5b66\u8fc7\uff0c\u641c\u7d22\u7b97\u6cd5\u5206\u4e3a\u4e24\u5927\u7c7b\u3002
- \u66b4\u529b\u641c\u7d22\uff1a\u5b83\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
- \u81ea\u9002\u5e94\u641c\u7d22\uff1a\u5b83\u5229\u7528\u7279\u6709\u7684\u6570\u636e\u7ec4\u7ec7\u5f62\u5f0f\u6216\u5148\u9a8c\u4fe1\u606f\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u3002
\u5b9e\u9645\u4e0a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\uff0c\u4f8b\u5982\u4e8c\u5206\u67e5\u627e\u548c\u6811\u3002
- \u4e8c\u5206\u67e5\u627e\u7684\u6bcf\u4e00\u6b65\u90fd\u5c06\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\u5206\u89e3\u4e3a\u4e00\u4e2a\u5c0f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u4e00\u76f4\u6301\u7eed\u5230\u6570\u7ec4\u4e3a\u7a7a\u6216\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
- \u6811\u662f\u5206\u6cbb\u601d\u60f3\u7684\u4ee3\u8868\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u5806\u7b49\u6570\u636e\u7ed3\u6784\u4e2d\uff0c\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7686\u4e3a \\(O(\\log n)\\) \u3002
\u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u7b56\u7565\u5982\u4e0b\u6240\u793a\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u4e8c\u5206\u67e5\u627e\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\u5206\u89e3\u4e3a\u5b50\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\uff0c\u8fd9\u662f\u901a\u8fc7\u6bd4\u8f83\u4e2d\u95f4\u5143\u7d20\u548c\u76ee\u6807\u5143\u7d20\u6765\u5b9e\u73b0\u7684\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u5904\u7406\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u5b83\u4e0d\u53d7\u5176\u4ed6\u5b50\u95ee\u9898\u7684\u5f71\u54cd\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u65e0\u987b\u5408\u5e76\uff1a\u4e8c\u5206\u67e5\u627e\u65e8\u5728\u67e5\u627e\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u3002\u5f53\u5b50\u95ee\u9898\u5f97\u5230\u89e3\u51b3\u65f6\uff0c\u539f\u95ee\u9898\u4e5f\u4f1a\u540c\u65f6\u5f97\u5230\u89e3\u51b3\u3002
\u5206\u6cbb\u80fd\u591f\u63d0\u5347\u641c\u7d22\u6548\u7387\uff0c\u672c\u8d28\u4e0a\u662f\u56e0\u4e3a\u66b4\u529b\u641c\u7d22\u6bcf\u8f6e\u53ea\u80fd\u6392\u9664\u4e00\u4e2a\u9009\u9879\uff0c\u800c\u5206\u6cbb\u641c\u7d22\u6bcf\u8f6e\u53ef\u4ee5\u6392\u9664\u4e00\u534a\u9009\u9879\u3002
"},{"location":"chapter_divide_and_conquer/binary_search_recur/#1","title":"1. \u00a0 \u57fa\u4e8e\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206\u67e5\u627e","text":"\u5728\u4e4b\u524d\u7684\u7ae0\u8282\u4e2d\uff0c\u4e8c\u5206\u67e5\u627e\u662f\u57fa\u4e8e\u9012\u63a8\uff08\u8fed\u4ee3\uff09\u5b9e\u73b0\u7684\u3002\u73b0\u5728\u6211\u4eec\u57fa\u4e8e\u5206\u6cbb\uff08\u9012\u5f52\uff09\u6765\u5b9e\u73b0\u5b83\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u662f\u552f\u4e00\u7684\uff0c\u8bf7\u67e5\u627e\u5143\u7d20 target \u3002
\u4ece\u5206\u6cbb\u89d2\u5ea6\uff0c\u6211\u4eec\u5c06\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u8bb0\u4e3a \\(f(i, j)\\) \u3002
\u4ee5\u539f\u95ee\u9898 \\(f(0, n-1)\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u901a\u8fc7\u4ee5\u4e0b\u6b65\u9aa4\u8fdb\u884c\u4e8c\u5206\u67e5\u627e\u3002
- \u8ba1\u7b97\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u7684\u4e2d\u70b9 \\(m\\) \uff0c\u6839\u636e\u5b83\u6392\u9664\u4e00\u534a\u641c\u7d22\u533a\u95f4\u3002
- \u9012\u5f52\u6c42\u89e3\u89c4\u6a21\u51cf\u5c0f\u4e00\u534a\u7684\u5b50\u95ee\u9898\uff0c\u53ef\u80fd\u4e3a \\(f(i, m-1)\\) \u6216 \\(f(m+1, j)\\) \u3002
- \u5faa\u73af\u7b2c
1. \u6b65\u548c\u7b2c 2. \u6b65\uff0c\u76f4\u81f3\u627e\u5230 target \u6216\u533a\u95f4\u4e3a\u7a7a\u65f6\u8fd4\u56de\u3002
\u56fe 12-4 \u5c55\u793a\u4e86\u5728\u6570\u7ec4\u4e2d\u4e8c\u5206\u67e5\u627e\u5143\u7d20 \\(6\\) \u7684\u5206\u6cbb\u8fc7\u7a0b\u3002
\u56fe 12-4 \u00a0 \u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u8fc7\u7a0b
\u5728\u5b9e\u73b0\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \u6765\u6c42\u89e3\u95ee\u9898 \\(f(i, j)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_recur.pydef dfs(nums: list[int], target: int, i: int, j: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j)\"\"\"\n # \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j:\n return -1\n # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n m = (i + j) // 2\n if nums[m] < target:\n # \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j)\n elif nums[m] > target:\n # \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1)\n else:\n # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n\ndef binary_search(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\"\"\"\n n = len(nums)\n # \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1)\n
binary_search_recur.cpp/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(vector<int> &nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(vector<int> &nums, int target) {\n int n = nums.size();\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.java/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int[] nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int[] nums, int target) {\n int n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.cs/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint DFS(int[] nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return DFS(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return DFS(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint BinarySearch(int[] nums, int target) {\n int n = nums.Length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return DFS(nums, target, 0, n - 1);\n}\n
binary_search_recur.go/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunc dfs(nums []int, target, i, j int) int {\n // \u5982\u679c\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u6ca1\u6709\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j {\n return -1\n }\n // \u8ba1\u7b97\u7d22\u5f15\u4e2d\u70b9\n m := i + ((j - i) >> 1)\n //\u5224\u65ad\u4e2d\u70b9\u4e0e\u76ee\u6807\u5143\u7d20\u5927\u5c0f\n if nums[m] < target {\n // \u5c0f\u4e8e\u5219\u9012\u5f52\u53f3\u534a\u6570\u7ec4\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m+1, j)\n } else if nums[m] > target {\n // \u5c0f\u4e8e\u5219\u9012\u5f52\u5de6\u534a\u6570\u7ec4\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m-1)\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunc binarySearch(nums []int, target int) int {\n n := len(nums)\n return dfs(nums, target, 0, n-1)\n}\n
binary_search_recur.swift/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunc dfs(nums: [Int], target: Int, i: Int, j: Int) -> Int {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j {\n return -1\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n let m = (i + j) / 2\n if nums[m] < target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums: nums, target: target, i: m + 1, j: j)\n } else if nums[m] > target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums: nums, target: target, i: i, j: m - 1)\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunc binarySearch(nums: [Int], target: Int) -> Int {\n let n = nums.count\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums: nums, target: target, i: 0, j: n - 1)\n}\n
binary_search_recur.js/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums, target, i, j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = i + ((j - i) >> 1);\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums, target) {\n const n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.ts/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums: number[], target: number, i: number, j: number): number {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = i + ((j - i) >> 1);\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums: number[], target: number): number {\n const n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.dart/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(List<int> nums, int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) ~/ 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(List<int> nums, int target) {\n int n = nums.length;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.rs/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfn dfs(nums: &[i32], target: i32, i: i32, j: i32) -> i32 {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if i > j { return -1; }\n let m: i32 = (i + j) / 2;\n if nums[m as usize] < target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if nums[m as usize] > target {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\n let n = nums.len() as i32;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n dfs(nums, target, 0, n - 1)\n}\n
binary_search_recur.c/* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int nums[], int target, int i, int j) {\n // \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\n if (i > j) {\n return -1;\n }\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n int m = (i + j) / 2;\n if (nums[m] < target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\n return dfs(nums, target, m + 1, j);\n } else if (nums[m] > target) {\n // \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\n return dfs(nums, target, i, m - 1);\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n}\n\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int nums[], int target, int numsSize) {\n int n = numsSize;\n // \u6c42\u89e3\u95ee\u9898 f(0, n-1)\n return dfs(nums, target, 0, n - 1);\n}\n
binary_search_recur.zig[class]{}-[func]{dfs}\n\n[class]{}-[func]{binarySearch}\n
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/","title":"12.3 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u95ee\u9898","text":"Question
\u7ed9\u5b9a\u4e00\u68f5\u4e8c\u53c9\u6811\u7684\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \uff0c\u8bf7\u4ece\u4e2d\u6784\u5efa\u4e8c\u53c9\u6811\uff0c\u8fd4\u56de\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u3002\u5047\u8bbe\u4e8c\u53c9\u6811\u4e2d\u6ca1\u6709\u503c\u91cd\u590d\u7684\u8282\u70b9\u3002
\u56fe 12-5 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#1","title":"1. \u00a0 \u5224\u65ad\u662f\u5426\u4e3a\u5206\u6cbb\u95ee\u9898","text":"\u539f\u95ee\u9898\u5b9a\u4e49\u4e3a\u4ece preorder \u548c inorder \u6784\u5efa\u4e8c\u53c9\u6811\uff0c\u662f\u4e00\u4e2a\u5178\u578b\u7684\u5206\u6cbb\u95ee\u9898\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u4ece\u5206\u6cbb\u7684\u89d2\u5ea6\u5207\u5165\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\u3001\u6784\u5efa\u53f3\u5b50\u6811\uff0c\u52a0\u4e0a\u4e00\u6b65\u64cd\u4f5c\uff1a\u521d\u59cb\u5316\u6839\u8282\u70b9\u3002\u800c\u5bf9\u4e8e\u6bcf\u68f5\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u590d\u7528\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u5c06\u5176\u5212\u5206\u4e3a\u66f4\u5c0f\u7684\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u7a7a\u5b50\u6811\uff09\u65f6\u7ec8\u6b62\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u4ea4\u96c6\u3002\u5728\u6784\u5efa\u5de6\u5b50\u6811\u65f6\uff0c\u6211\u4eec\u53ea\u9700\u5173\u6ce8\u4e2d\u5e8f\u904d\u5386\u548c\u524d\u5e8f\u904d\u5386\u4e2d\u4e0e\u5de6\u5b50\u6811\u5bf9\u5e94\u7684\u90e8\u5206\u3002\u53f3\u5b50\u6811\u540c\u7406\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u4e00\u65e6\u5f97\u5230\u4e86\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5c06\u5b83\u4eec\u94fe\u63a5\u5230\u6839\u8282\u70b9\u4e0a\uff0c\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#2","title":"2. \u00a0 \u5982\u4f55\u5212\u5206\u5b50\u6811","text":"\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u8fd9\u9053\u9898\u53ef\u4ee5\u4f7f\u7528\u5206\u6cbb\u6765\u6c42\u89e3\uff0c\u4f46\u5982\u4f55\u901a\u8fc7\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \u6765\u5212\u5206\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u5462\uff1f
\u6839\u636e\u5b9a\u4e49\uff0cpreorder \u548c inorder \u90fd\u53ef\u4ee5\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\u3002
- \u524d\u5e8f\u904d\u5386\uff1a
[ \u6839\u8282\u70b9 | \u5de6\u5b50\u6811 | \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u56fe 12-5 \u7684\u6811\u5bf9\u5e94 [ 3 | 9 | 2 1 7 ] \u3002 - \u4e2d\u5e8f\u904d\u5386\uff1a
[ \u5de6\u5b50\u6811 | \u6839\u8282\u70b9 \uff5c \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u56fe 12-5 \u7684\u6811\u5bf9\u5e94 [ 9 | 3 | 1 2 7 ] \u3002
\u4ee5\u4e0a\u56fe\u6570\u636e\u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u56fe 12-6 \u6240\u793a\u7684\u6b65\u9aa4\u5f97\u5230\u5212\u5206\u7ed3\u679c\u3002
- \u524d\u5e8f\u904d\u5386\u7684\u9996\u5143\u7d20 3 \u662f\u6839\u8282\u70b9\u7684\u503c\u3002
- \u67e5\u627e\u6839\u8282\u70b9 3 \u5728
inorder \u4e2d\u7684\u7d22\u5f15\uff0c\u5229\u7528\u8be5\u7d22\u5f15\u53ef\u5c06 inorder \u5212\u5206\u4e3a [ 9 | 3 \uff5c 1 2 7 ] \u3002 - \u6839\u636e
inorder \u7684\u5212\u5206\u7ed3\u679c\uff0c\u6613\u5f97\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u5206\u522b\u4e3a 1 \u548c 3 \uff0c\u4ece\u800c\u53ef\u5c06 preorder \u5212\u5206\u4e3a [ 3 | 9 | 2 1 7 ] \u3002
\u56fe 12-6 \u00a0 \u5728\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u5212\u5206\u5b50\u6811
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#3","title":"3. \u00a0 \u57fa\u4e8e\u53d8\u91cf\u63cf\u8ff0\u5b50\u6811\u533a\u95f4","text":"\u6839\u636e\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u6211\u4eec\u5df2\u7ecf\u5f97\u5230\u6839\u8282\u70b9\u3001\u5de6\u5b50\u6811\u3001\u53f3\u5b50\u6811\u5728 preorder \u548c inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002\u800c\u4e3a\u4e86\u63cf\u8ff0\u8fd9\u4e9b\u7d22\u5f15\u533a\u95f4\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\u3002
- \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728
preorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(i\\) \u3002 - \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728
inorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(m\\) \u3002 - \u5c06\u5f53\u524d\u6811\u5728
inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u8bb0\u4e3a \\([l, r]\\) \u3002
\u5982\u8868 12-1 \u6240\u793a\uff0c\u901a\u8fc7\u4ee5\u4e0a\u53d8\u91cf\u5373\u53ef\u8868\u793a\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15\uff0c\u4ee5\u53ca\u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002
\u8868 12-1 \u00a0 \u6839\u8282\u70b9\u548c\u5b50\u6811\u5728\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u7684\u7d22\u5f15
\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15 \u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4 \u5f53\u524d\u6811 \\(i\\) \\([l, r]\\) \u5de6\u5b50\u6811 \\(i + 1\\) \\([l, m-1]\\) \u53f3\u5b50\u6811 \\(i + 1 + (m - l)\\) \\([m+1, r]\\) \u8bf7\u6ce8\u610f\uff0c\u53f3\u5b50\u6811\u6839\u8282\u70b9\u7d22\u5f15\u4e2d\u7684 \\((m-l)\\) \u7684\u542b\u4e49\u662f\u201c\u5de6\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u201d\uff0c\u5efa\u8bae\u7ed3\u5408\u56fe 12-7 \u7406\u89e3\u3002
\u56fe 12-7 \u00a0 \u6839\u8282\u70b9\u548c\u5de6\u53f3\u5b50\u6811\u7684\u7d22\u5f15\u533a\u95f4\u8868\u793a
"},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#4","title":"4. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u4e3a\u4e86\u63d0\u5347\u67e5\u8be2 \\(m\\) \u7684\u6548\u7387\uff0c\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 hmap \u6765\u5b58\u50a8\u6570\u7ec4 inorder \u4e2d\u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig build_tree.pydef dfs(\n preorder: list[int],\n inorder_map: dict[int, int],\n i: int,\n l: int,\n r: int,\n) -> TreeNode | None:\n \"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb\"\"\"\n # \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r - l < 0:\n return None\n # \u521d\u59cb\u5316\u6839\u8282\u70b9\n root = TreeNode(preorder[i])\n # \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n m = inorder_map[preorder[i]]\n # \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorder_map, i + 1, l, m - 1)\n # \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r)\n # \u8fd4\u56de\u6839\u8282\u70b9\n return root\n\ndef build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:\n \"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\"\"\"\n # \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n inorder_map = {val: i for i, val in enumerate(inorder)}\n root = dfs(preorder, inorder_map, 0, 0, len(inorder) - 1)\n return root\n
build_tree.cpp/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode *dfs(vector<int> &preorder, unordered_map<int, int> &inorderMap, int i, int l, int r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return NULL;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode *root = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]];\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n unordered_map<int, int> inorderMap;\n for (int i = 0; i < inorder.size(); i++) {\n inorderMap[inorder[i]] = i;\n }\n TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);\n return root;\n}\n
build_tree.java/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode dfs(int[] preorder, Map<Integer, Integer> inorderMap, int i, int l, int r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode root = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap.get(preorder[i]);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode buildTree(int[] preorder, int[] inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n Map<Integer, Integer> inorderMap = new HashMap<>();\n for (int i = 0; i < inorder.length; i++) {\n inorderMap.put(inorder[i], i);\n }\n TreeNode root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.cs/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode? DFS(int[] preorder, Dictionary<int, int> inorderMap, int i, int l, int r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode root = new(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]];\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = DFS(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = DFS(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode? BuildTree(int[] preorder, int[] inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n Dictionary<int, int> inorderMap = [];\n for (int i = 0; i < inorder.Length; i++) {\n inorderMap.TryAdd(inorder[i], i);\n }\n TreeNode? root = DFS(preorder, inorderMap, 0, 0, inorder.Length - 1);\n return root;\n}\n
build_tree.go/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunc dfsBuildTree(preorder []int, inorderMap map[int]int, i, l, r int) *TreeNode {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r-l < 0 {\n return nil\n }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n root := NewTreeNode(preorder[i])\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n m := inorderMap[preorder[i]]\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.Left = dfsBuildTree(preorder, inorderMap, i+1, l, m-1)\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.Right = dfsBuildTree(preorder, inorderMap, i+1+m-l, m+1, r)\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunc buildTree(preorder, inorder []int) *TreeNode {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n inorderMap := make(map[int]int, len(inorder))\n for i := 0; i < len(inorder); i++ {\n inorderMap[inorder[i]] = i\n }\n\n root := dfsBuildTree(preorder, inorderMap, 0, 0, len(inorder)-1)\n return root\n}\n
build_tree.swift/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunc dfs(preorder: [Int], inorderMap: [Int: Int], i: Int, l: Int, r: Int) -> TreeNode? {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r - l < 0 {\n return nil\n }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n let root = TreeNode(x: preorder[i])\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n let m = inorderMap[preorder[i]]!\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1, l: l, r: m - 1)\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1 + m - l, l: m + 1, r: r)\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunc buildTree(preorder: [Int], inorder: [Int]) -> TreeNode? {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let inorderMap = inorder.enumerated().reduce(into: [:]) { $0[$1.element] = $1.offset }\n return dfs(preorder: preorder, inorderMap: inorderMap, i: 0, l: 0, r: inorder.count - 1)\n}\n
build_tree.js/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(preorder, inorderMap, i, l, r) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0) return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n const root = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n const m = inorderMap.get(preorder[i]);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder, inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let inorderMap = new Map();\n for (let i = 0; i < inorder.length; i++) {\n inorderMap.set(inorder[i], i);\n }\n const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.ts/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(\n preorder: number[],\n inorderMap: Map<number, number>,\n i: number,\n l: number,\n r: number\n): TreeNode | null {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0) return null;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n const root: TreeNode = new TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n const m = inorderMap.get(preorder[i]);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder: number[], inorder: number[]): TreeNode | null {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let inorderMap = new Map<number, number>();\n for (let i = 0; i < inorder.length; i++) {\n inorderMap.set(inorder[i], i);\n }\n const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.dart/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode? dfs(\n List<int> preorder,\n Map<int, int> inorderMap,\n int i,\n int l,\n int r,\n) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0) {\n return null;\n }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode? root = TreeNode(preorder[i]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]]!;\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode? buildTree(List<int> preorder, List<int> inorder) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n Map<int, int> inorderMap = {};\n for (int i = 0; i < inorder.length; i++) {\n inorderMap[inorder[i]] = i;\n }\n TreeNode? root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);\n return root;\n}\n
build_tree.rs/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfn dfs(preorder: &[i32], inorder_map: &HashMap<i32, i32>, i: i32, l: i32, r: i32) -> Option<Rc<RefCell<TreeNode>>> {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if r - l < 0 { return None; }\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n let root = TreeNode::new(preorder[i as usize]);\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n let m = inorder_map.get(&preorder[i as usize]).unwrap();\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root.borrow_mut().left = dfs(preorder, inorder_map, i + 1, l, m - 1);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root.borrow_mut().right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r);\n // \u8fd4\u56de\u6839\u8282\u70b9\n Some(root)\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfn build_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n let mut inorder_map: HashMap<i32, i32> = HashMap::new();\n for i in 0..inorder.len() {\n inorder_map.insert(inorder[i], i as i32);\n }\n let root = dfs(preorder, &inorder_map, 0, 0, inorder.len() as i32 - 1);\n root\n}\n
build_tree.c/* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode *dfs(int *preorder, int *inorderMap, int i, int l, int r, int size) {\n // \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\n if (r - l < 0)\n return NULL;\n // \u521d\u59cb\u5316\u6839\u8282\u70b9\n TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));\n root->val = preorder[i];\n root->left = NULL;\n root->right = NULL;\n // \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\n int m = inorderMap[preorder[i]];\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\n root->left = dfs(preorder, inorderMap, i + 1, l, m - 1, size);\n // \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\n root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r, size);\n // \u8fd4\u56de\u6839\u8282\u70b9\n return root;\n}\n\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode *buildTree(int *preorder, int preorderSize, int *inorder, int inorderSize) {\n // \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\n int *inorderMap = (int *)malloc(sizeof(int) * MAX_SIZE);\n for (int i = 0; i < inorderSize; i++) {\n inorderMap[inorder[i]] = i;\n }\n TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorderSize - 1, inorderSize);\n free(inorderMap);\n return root;\n}\n
build_tree.zig[class]{}-[func]{dfs}\n\n[class]{}-[func]{buildTree}\n
\u56fe 12-8 \u5c55\u793a\u4e86\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5404\u4e2a\u8282\u70b9\u662f\u5728\u5411\u4e0b\u201c\u9012\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\uff0c\u800c\u5404\u6761\u8fb9\uff08\u5f15\u7528\uff09\u662f\u5728\u5411\u4e0a\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 12-8 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b
\u6bcf\u4e2a\u9012\u5f52\u51fd\u6570\u5185\u7684\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \u7684\u5212\u5206\u7ed3\u679c\u5982\u56fe 12-9 \u6240\u793a\u3002
\u56fe 12-9 \u00a0 \u6bcf\u4e2a\u9012\u5f52\u51fd\u6570\u4e2d\u7684\u5212\u5206\u7ed3\u679c
\u8bbe\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u521d\u59cb\u5316\u6bcf\u4e00\u4e2a\u8282\u70b9\uff08\u6267\u884c\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \uff09\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
\u54c8\u5e0c\u8868\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/","title":"12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5","text":"\u300c\u5206\u6cbb divide and conquer\u300d\uff0c\u5168\u79f0\u5206\u800c\u6cbb\u4e4b\uff0c\u662f\u4e00\u79cd\u975e\u5e38\u91cd\u8981\u4e14\u5e38\u89c1\u7684\u7b97\u6cd5\u7b56\u7565\u3002\u5206\u6cbb\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\uff0c\u5305\u62ec\u201c\u5206\u201d\u548c\u201c\u6cbb\u201d\u4e24\u4e2a\u6b65\u9aa4\u3002
- \u5206\uff08\u5212\u5206\u9636\u6bb5\uff09\uff1a\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u6216\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898\u65f6\u7ec8\u6b62\u3002
- \u6cbb\uff08\u5408\u5e76\u9636\u6bb5\uff09\uff1a\u4ece\u5df2\u77e5\u89e3\u7684\u6700\u5c0f\u5b50\u95ee\u9898\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002
\u5982\u56fe 12-1 \u6240\u793a\uff0c\u201c\u5f52\u5e76\u6392\u5e8f\u201d\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\u4e4b\u4e00\u3002
- \u5206\uff1a\u9012\u5f52\u5730\u5c06\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u5230\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\uff08\u6700\u5c0f\u5b50\u95ee\u9898\uff09\u3002
- \u6cbb\uff1a\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u6709\u5e8f\u7684\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u7684\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002
\u56fe 12-1 \u00a0 \u5f52\u5e76\u6392\u5e8f\u7684\u5206\u6cbb\u7b56\u7565
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1211","title":"12.1.1 \u00a0 \u5982\u4f55\u5224\u65ad\u5206\u6cbb\u95ee\u9898","text":"\u4e00\u4e2a\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u5206\u6cbb\u89e3\u51b3\uff0c\u901a\u5e38\u53ef\u4ee5\u53c2\u8003\u4ee5\u4e0b\u51e0\u4e2a\u5224\u65ad\u4f9d\u636e\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u539f\u95ee\u9898\u53ef\u4ee5\u5206\u89e3\u6210\u89c4\u6a21\u66f4\u5c0f\u3001\u7c7b\u4f3c\u7684\u5b50\u95ee\u9898\uff0c\u4ee5\u53ca\u80fd\u591f\u4ee5\u76f8\u540c\u65b9\u5f0f\u9012\u5f52\u5730\u8fdb\u884c\u5212\u5206\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5b50\u95ee\u9898\u4e4b\u95f4\u6ca1\u6709\u91cd\u53e0\uff0c\u4e92\u4e0d\u4f9d\u8d56\uff0c\u53ef\u4ee5\u72ec\u7acb\u89e3\u51b3\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u539f\u95ee\u9898\u7684\u89e3\u901a\u8fc7\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\u5f97\u6765\u3002
\u663e\u7136\uff0c\u5f52\u5e76\u6392\u5e8f\u6ee1\u8db3\u4ee5\u4e0a\u4e09\u4e2a\u5224\u65ad\u4f9d\u636e\u3002
- \u95ee\u9898\u53ef\u4ee5\u5206\u89e3\uff1a\u9012\u5f52\u5730\u5c06\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\u3002
- \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u53ef\u4ee5\u72ec\u7acb\u5730\u8fdb\u884c\u6392\u5e8f\uff08\u5b50\u95ee\u9898\u53ef\u4ee5\u72ec\u7acb\u8fdb\u884c\u6c42\u89e3\uff09\u3002
- \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u4e24\u4e2a\u6709\u5e8f\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u53ef\u4ee5\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1212","title":"12.1.2 \u00a0 \u901a\u8fc7\u5206\u6cbb\u63d0\u5347\u6548\u7387","text":"\u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u6709\u6548\u5730\u89e3\u51b3\u7b97\u6cd5\u95ee\u9898\uff0c\u5f80\u5f80\u8fd8\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002\u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u76f8\u8f83\u4e8e\u9009\u62e9\u3001\u5192\u6ce1\u3001\u63d2\u5165\u6392\u5e8f\u66f4\u5feb\uff0c\u5c31\u662f\u56e0\u4e3a\u5b83\u4eec\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\u3002
\u90a3\u4e48\uff0c\u6211\u4eec\u4e0d\u7981\u53d1\u95ee\uff1a\u4e3a\u4ec0\u4e48\u5206\u6cbb\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u5176\u5e95\u5c42\u903b\u8f91\u662f\u4ec0\u4e48\uff1f\u6362\u53e5\u8bdd\u8bf4\uff0c\u5c06\u5927\u95ee\u9898\u5206\u89e3\u4e3a\u591a\u4e2a\u5b50\u95ee\u9898\u3001\u89e3\u51b3\u5b50\u95ee\u9898\u3001\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u5408\u5e76\u4e3a\u539f\u95ee\u9898\u7684\u89e3\uff0c\u8fd9\u51e0\u6b65\u7684\u6548\u7387\u4e3a\u4ec0\u4e48\u6bd4\u76f4\u63a5\u89e3\u51b3\u539f\u95ee\u9898\u7684\u6548\u7387\u66f4\u9ad8\uff1f\u8fd9\u4e2a\u95ee\u9898\u53ef\u4ee5\u4ece\u64cd\u4f5c\u6570\u91cf\u548c\u5e76\u884c\u8ba1\u7b97\u4e24\u65b9\u9762\u6765\u8ba8\u8bba\u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1","title":"1. \u00a0 \u64cd\u4f5c\u6570\u91cf\u4f18\u5316","text":"\u4ee5\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u4e3a\u4f8b\uff0c\u5176\u5904\u7406\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u9700\u8981 \\(O(n^2)\\) \u65f6\u95f4\u3002\u5047\u8bbe\u6211\u4eec\u6309\u7167\u56fe 12-2 \u6240\u793a\u7684\u65b9\u5f0f\uff0c\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u5219\u5212\u5206\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6bcf\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O((n / 2)^2)\\) \u65f6\u95f4\uff0c\u5408\u5e76\u4e24\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\uff1a
\\[ O(n + (\\frac{n}{2})^2 \\times 2 + n) = O(\\frac{n^2}{2} + 2n) \\] \u56fe 12-2 \u00a0 \u5212\u5206\u6570\u7ec4\u524d\u540e\u7684\u5192\u6ce1\u6392\u5e8f
\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u8ba1\u7b97\u4ee5\u4e0b\u4e0d\u7b49\u5f0f\uff0c\u5176\u5de6\u8fb9\u548c\u53f3\u8fb9\u5206\u522b\u4e3a\u5212\u5206\u524d\u548c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u603b\u6570\uff1a
\\[ \\begin{aligned} n^2 & > \\frac{n^2}{2} + 2n \\newline n^2 - \\frac{n^2}{2} - 2n & > 0 \\newline n(n - 4) & > 0 \\end{aligned} \\] \u8fd9\u610f\u5473\u7740\u5f53 \\(n > 4\\) \u65f6\uff0c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u6570\u91cf\u66f4\u5c11\uff0c\u6392\u5e8f\u6548\u7387\u5e94\u8be5\u66f4\u9ad8\u3002\u8bf7\u6ce8\u610f\uff0c\u5212\u5206\u540e\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u7136\u662f\u5e73\u65b9\u9636 \\(O(n^2)\\) \uff0c\u53ea\u662f\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u53d8\u5c0f\u4e86\u3002
\u8fdb\u4e00\u6b65\u60f3\uff0c\u5982\u679c\u6211\u4eec\u628a\u5b50\u6570\u7ec4\u4e0d\u65ad\u5730\u518d\u4ece\u4e2d\u70b9\u5904\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u505c\u6b62\u5212\u5206\u5462\uff1f\u8fd9\u79cd\u601d\u8def\u5b9e\u9645\u4e0a\u5c31\u662f\u201c\u5f52\u5e76\u6392\u5e8f\u201d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
\u518d\u601d\u8003\uff0c\u5982\u679c\u6211\u4eec\u591a\u8bbe\u7f6e\u51e0\u4e2a\u5212\u5206\u70b9\uff0c\u5c06\u539f\u6570\u7ec4\u5e73\u5747\u5212\u5206\u4e3a \\(k\\) \u4e2a\u5b50\u6570\u7ec4\u5462\uff1f\u8fd9\u79cd\u60c5\u51b5\u4e0e\u201c\u6876\u6392\u5e8f\u201d\u975e\u5e38\u7c7b\u4f3c\uff0c\u5b83\u975e\u5e38\u9002\u5408\u6392\u5e8f\u6d77\u91cf\u6570\u636e\uff0c\u7406\u8bba\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230 \\(O(n + k)\\) \u3002
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#2","title":"2. \u00a0 \u5e76\u884c\u8ba1\u7b97\u4f18\u5316","text":"\u6211\u4eec\u77e5\u9053\uff0c\u5206\u6cbb\u751f\u6210\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u56e0\u6b64\u901a\u5e38\u53ef\u4ee5\u5e76\u884c\u89e3\u51b3\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8fd8\u6709\u5229\u4e8e\u64cd\u4f5c\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002
\u5e76\u884c\u4f18\u5316\u5728\u591a\u6838\u6216\u591a\u5904\u7406\u5668\u7684\u73af\u5883\u4e2d\u5c24\u5176\u6709\u6548\uff0c\u56e0\u4e3a\u7cfb\u7edf\u53ef\u4ee5\u540c\u65f6\u5904\u7406\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u66f4\u52a0\u5145\u5206\u5730\u5229\u7528\u8ba1\u7b97\u8d44\u6e90\uff0c\u4ece\u800c\u663e\u8457\u51cf\u5c11\u603b\u4f53\u7684\u8fd0\u884c\u65f6\u95f4\u3002
\u6bd4\u5982\u5728\u56fe 12-3 \u6240\u793a\u7684\u201c\u6876\u6392\u5e8f\u201d\u4e2d\uff0c\u6211\u4eec\u5c06\u6d77\u91cf\u7684\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u5219\u53ef\u6240\u6709\u6876\u7684\u6392\u5e8f\u4efb\u52a1\u5206\u6563\u5230\u5404\u4e2a\u8ba1\u7b97\u5355\u5143\uff0c\u5b8c\u6210\u540e\u518d\u5408\u5e76\u7ed3\u679c\u3002
\u56fe 12-3 \u00a0 \u6876\u6392\u5e8f\u7684\u5e76\u884c\u8ba1\u7b97
"},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1213","title":"12.1.3 \u00a0 \u5206\u6cbb\u5e38\u89c1\u5e94\u7528","text":"\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u53ef\u4ee5\u7528\u6765\u89e3\u51b3\u8bb8\u591a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\u3002
- \u5bfb\u627e\u6700\u8fd1\u70b9\u5bf9\uff1a\u8be5\u7b97\u6cd5\u9996\u5148\u5c06\u70b9\u96c6\u5206\u6210\u4e24\u90e8\u5206\uff0c\u7136\u540e\u5206\u522b\u627e\u51fa\u4e24\u90e8\u5206\u4e2d\u7684\u6700\u8fd1\u70b9\u5bf9\uff0c\u6700\u540e\u627e\u51fa\u8de8\u8d8a\u4e24\u90e8\u5206\u7684\u6700\u8fd1\u70b9\u5bf9\u3002
- \u5927\u6574\u6570\u4e58\u6cd5\uff1a\u4f8b\u5982 Karatsuba \u7b97\u6cd5\uff0c\u5b83\u5c06\u5927\u6574\u6570\u4e58\u6cd5\u5206\u89e3\u4e3a\u51e0\u4e2a\u8f83\u5c0f\u7684\u6574\u6570\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
- \u77e9\u9635\u4e58\u6cd5\uff1a\u4f8b\u5982 Strassen \u7b97\u6cd5\uff0c\u5b83\u5c06\u5927\u77e9\u9635\u4e58\u6cd5\u5206\u89e3\u4e3a\u591a\u4e2a\u5c0f\u77e9\u9635\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
- \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u53ef\u4ee5\u901a\u8fc7\u9012\u5f52\u89e3\u51b3\uff0c\u8fd9\u662f\u5178\u578b\u7684\u5206\u6cbb\u7b56\u7565\u5e94\u7528\u3002
- \u6c42\u89e3\u9006\u5e8f\u5bf9\uff1a\u5728\u4e00\u4e2a\u5e8f\u5217\u4e2d\uff0c\u5982\u679c\u524d\u9762\u7684\u6570\u5b57\u5927\u4e8e\u540e\u9762\u7684\u6570\u5b57\uff0c\u90a3\u4e48\u8fd9\u4e24\u4e2a\u6570\u5b57\u6784\u6210\u4e00\u4e2a\u9006\u5e8f\u5bf9\u3002\u6c42\u89e3\u9006\u5e8f\u5bf9\u95ee\u9898\u53ef\u4ee5\u5229\u7528\u5206\u6cbb\u7684\u601d\u60f3\uff0c\u501f\u52a9\u5f52\u5e76\u6392\u5e8f\u8fdb\u884c\u6c42\u89e3\u3002
\u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u5728\u7b97\u6cd5\u548c\u6570\u636e\u7ed3\u6784\u7684\u8bbe\u8ba1\u4e2d\u5e94\u7528\u5f97\u975e\u5e38\u5e7f\u6cdb\u3002
- \u4e8c\u5206\u67e5\u627e\uff1a\u4e8c\u5206\u67e5\u627e\u662f\u5c06\u6709\u5e8f\u6570\u7ec4\u4ece\u4e2d\u70b9\u7d22\u5f15\u5904\u5206\u4e3a\u4e24\u90e8\u5206\uff0c\u7136\u540e\u6839\u636e\u76ee\u6807\u503c\u4e0e\u4e2d\u95f4\u5143\u7d20\u503c\u6bd4\u8f83\u7ed3\u679c\uff0c\u51b3\u5b9a\u6392\u9664\u54ea\u4e00\u534a\u533a\u95f4\uff0c\u5e76\u5728\u5269\u4f59\u533a\u95f4\u6267\u884c\u76f8\u540c\u7684\u4e8c\u5206\u64cd\u4f5c\u3002
- \u5f52\u5e76\u6392\u5e8f\uff1a\u672c\u8282\u5f00\u5934\u5df2\u4ecb\u7ecd\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002
- \u5feb\u901f\u6392\u5e8f\uff1a\u5feb\u901f\u6392\u5e8f\u662f\u9009\u53d6\u4e00\u4e2a\u57fa\u51c6\u503c\uff0c\u7136\u540e\u628a\u6570\u7ec4\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u4e00\u4e2a\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5c0f\uff0c\u53e6\u4e00\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5927\uff0c\u518d\u5bf9\u8fd9\u4e24\u90e8\u5206\u8fdb\u884c\u76f8\u540c\u7684\u5212\u5206\u64cd\u4f5c\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e0b\u4e00\u4e2a\u5143\u7d20\u3002
- \u6876\u6392\u5e8f\uff1a\u6876\u6392\u5e8f\u7684\u57fa\u672c\u601d\u60f3\u662f\u5c06\u6570\u636e\u5206\u6563\u5230\u591a\u4e2a\u6876\uff0c\u7136\u540e\u5bf9\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u5404\u4e2a\u6876\u7684\u5143\u7d20\u4f9d\u6b21\u53d6\u51fa\uff0c\u4ece\u800c\u5f97\u5230\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002
- \u6811\uff1a\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u7ea2\u9ed1\u6811\u3001B \u6811\u3001B+ \u6811\u7b49\uff0c\u5b83\u4eec\u7684\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u7b49\u64cd\u4f5c\u90fd\u53ef\u4ee5\u89c6\u4e3a\u5206\u6cbb\u7b56\u7565\u7684\u5e94\u7528\u3002
- \u5806\uff1a\u5806\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u5176\u5404\u79cd\u64cd\u4f5c\uff0c\u5982\u63d2\u5165\u3001\u5220\u9664\u548c\u5806\u5316\uff0c\u5b9e\u9645\u4e0a\u90fd\u9690\u542b\u4e86\u5206\u6cbb\u7684\u601d\u60f3\u3002
- \u54c8\u5e0c\u8868\uff1a\u867d\u7136\u54c8\u5e0c\u8868\u5e76\u4e0d\u76f4\u63a5\u5e94\u7528\u5206\u6cbb\uff0c\u4f46\u67d0\u4e9b\u54c8\u5e0c\u51b2\u7a81\u89e3\u51b3\u65b9\u6848\u95f4\u63a5\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u4f8b\u5982\uff0c\u94fe\u5f0f\u5730\u5740\u4e2d\u7684\u957f\u94fe\u8868\u4f1a\u88ab\u8f6c\u5316\u4e3a\u7ea2\u9ed1\u6811\uff0c\u4ee5\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002
\u53ef\u4ee5\u770b\u51fa\uff0c\u5206\u6cbb\u662f\u4e00\u79cd\u201c\u6da6\u7269\u7ec6\u65e0\u58f0\u201d\u7684\u7b97\u6cd5\u601d\u60f3\uff0c\u9690\u542b\u5728\u5404\u79cd\u7b97\u6cd5\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u4e2d\u3002
"},{"location":"chapter_divide_and_conquer/hanota_problem/","title":"12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898","text":"\u5728\u5f52\u5e76\u6392\u5e8f\u548c\u6784\u5efa\u4e8c\u53c9\u6811\u4e2d\uff0c\u6211\u4eec\u90fd\u662f\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a\u539f\u95ee\u9898\u4e00\u534a\u7684\u5b50\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u6c49\u8bfa\u5854\u95ee\u9898\uff0c\u6211\u4eec\u91c7\u7528\u4e0d\u540c\u7684\u5206\u89e3\u7b56\u7565\u3002
Question
\u7ed9\u5b9a\u4e09\u6839\u67f1\u5b50\uff0c\u8bb0\u4e3a A\u3001B \u548c C \u3002\u8d77\u59cb\u72b6\u6001\u4e0b\uff0c\u67f1\u5b50 A \u4e0a\u5957\u7740 \\(n\\) \u4e2a\u5706\u76d8\uff0c\u5b83\u4eec\u4ece\u4e0a\u5230\u4e0b\u6309\u7167\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\u3002\u6211\u4eec\u7684\u4efb\u52a1\u662f\u8981\u628a\u8fd9 \\(n\\) \u4e2a\u5706\u76d8\u79fb\u5230\u67f1\u5b50 C \u4e0a\uff0c\u5e76\u4fdd\u6301\u5b83\u4eec\u7684\u539f\u6709\u987a\u5e8f\u4e0d\u53d8\uff08\u5982\u56fe 12-10 \u6240\u793a\uff09\u3002\u5728\u79fb\u52a8\u5706\u76d8\u7684\u8fc7\u7a0b\u4e2d\uff0c\u9700\u8981\u9075\u5b88\u4ee5\u4e0b\u89c4\u5219\u3002
- \u5706\u76d8\u53ea\u80fd\u4ece\u4e00\u6839\u67f1\u5b50\u9876\u90e8\u62ff\u51fa\uff0c\u4ece\u53e6\u4e00\u6839\u67f1\u5b50\u9876\u90e8\u653e\u5165\u3002
- \u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\u3002
- \u5c0f\u5706\u76d8\u5fc5\u987b\u65f6\u523b\u4f4d\u4e8e\u5927\u5706\u76d8\u4e4b\u4e0a\u3002
\u56fe 12-10 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898\u793a\u4f8b
\u6211\u4eec\u5c06\u89c4\u6a21\u4e3a \\(i\\) \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u8bb0\u4f5c \\(f(i)\\) \u3002\u4f8b\u5982 \\(f(3)\\) \u4ee3\u8868\u5c06 \\(3\\) \u4e2a\u5706\u76d8\u4ece A \u79fb\u52a8\u81f3 C \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u3002
"},{"location":"chapter_divide_and_conquer/hanota_problem/#1","title":"1. \u00a0 \u8003\u8651\u57fa\u672c\u60c5\u51b5","text":"\u5982\u56fe 12-11 \u6240\u793a\uff0c\u5bf9\u4e8e\u95ee\u9898 \\(f(1)\\) \uff0c\u5373\u5f53\u53ea\u6709\u4e00\u4e2a\u5706\u76d8\u65f6\uff0c\u6211\u4eec\u5c06\u5b83\u76f4\u63a5\u4ece A \u79fb\u52a8\u81f3 C \u5373\u53ef\u3002
<1><2> \u56fe 12-11 \u00a0 \u89c4\u6a21\u4e3a 1 \u7684\u95ee\u9898\u7684\u89e3
\u5982\u56fe 12-12 \u6240\u793a\uff0c\u5bf9\u4e8e\u95ee\u9898 \\(f(2)\\) \uff0c\u5373\u5f53\u6709\u4e24\u4e2a\u5706\u76d8\u65f6\uff0c\u7531\u4e8e\u8981\u65f6\u523b\u6ee1\u8db3\u5c0f\u5706\u76d8\u5728\u5927\u5706\u76d8\u4e4b\u4e0a\uff0c\u56e0\u6b64\u9700\u8981\u501f\u52a9 B \u6765\u5b8c\u6210\u79fb\u52a8\u3002
- \u5148\u5c06\u4e0a\u9762\u7684\u5c0f\u5706\u76d8\u4ece
A \u79fb\u81f3 B \u3002 - \u518d\u5c06\u5927\u5706\u76d8\u4ece
A \u79fb\u81f3 C \u3002 - \u6700\u540e\u5c06\u5c0f\u5706\u76d8\u4ece
B \u79fb\u81f3 C \u3002
<1><2><3><4> \u56fe 12-12 \u00a0 \u89c4\u6a21\u4e3a 2 \u7684\u95ee\u9898\u7684\u89e3
\u89e3\u51b3\u95ee\u9898 \\(f(2)\\) \u7684\u8fc7\u7a0b\u53ef\u603b\u7ed3\u4e3a\uff1a\u5c06\u4e24\u4e2a\u5706\u76d8\u501f\u52a9 B \u4ece A \u79fb\u81f3 C \u3002\u5176\u4e2d\uff0cC \u79f0\u4e3a\u76ee\u6807\u67f1\u3001B \u79f0\u4e3a\u7f13\u51b2\u67f1\u3002
"},{"location":"chapter_divide_and_conquer/hanota_problem/#2","title":"2. \u00a0 \u5b50\u95ee\u9898\u5206\u89e3","text":"\u5bf9\u4e8e\u95ee\u9898 \\(f(3)\\) \uff0c\u5373\u5f53\u6709\u4e09\u4e2a\u5706\u76d8\u65f6\uff0c\u60c5\u51b5\u53d8\u5f97\u7a0d\u5fae\u590d\u6742\u4e86\u4e00\u4e9b\u3002
\u56e0\u4e3a\u5df2\u77e5 \\(f(1)\\) \u548c \\(f(2)\\) \u7684\u89e3\uff0c\u6240\u4ee5\u6211\u4eec\u53ef\u4ece\u5206\u6cbb\u89d2\u5ea6\u601d\u8003\uff0c\u5c06 A \u9876\u90e8\u7684\u4e24\u4e2a\u5706\u76d8\u770b\u4f5c\u4e00\u4e2a\u6574\u4f53\uff0c\u6267\u884c\u56fe 12-13 \u6240\u793a\u7684\u6b65\u9aa4\u3002\u8fd9\u6837\u4e09\u4e2a\u5706\u76d8\u5c31\u88ab\u987a\u5229\u5730\u4ece A \u79fb\u81f3 C \u4e86\u3002
- \u4ee4
B \u4e3a\u76ee\u6807\u67f1\u3001C \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece A \u79fb\u81f3 B \u3002 - \u5c06
A \u4e2d\u5269\u4f59\u7684\u4e00\u4e2a\u5706\u76d8\u4ece A \u76f4\u63a5\u79fb\u52a8\u81f3 C \u3002 - \u4ee4
C \u4e3a\u76ee\u6807\u67f1\u3001A \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece B \u79fb\u81f3 C \u3002
<1><2><3><4> \u56fe 12-13 \u00a0 \u89c4\u6a21\u4e3a 3 \u7684\u95ee\u9898\u7684\u89e3
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u5c06\u95ee\u9898 \\(f(3)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(2)\\) \u548c\u4e00\u4e2a\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u4e4b\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002\u8fd9\u8bf4\u660e\u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff0c\u800c\u4e14\u89e3\u53ef\u4ee5\u5408\u5e76\u3002
\u81f3\u6b64\uff0c\u6211\u4eec\u53ef\u603b\u7ed3\u51fa\u56fe 12-14 \u6240\u793a\u7684\u89e3\u51b3\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565\uff1a\u5c06\u539f\u95ee\u9898 \\(f(n)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \u548c\u4e00\u4e2a\u5b50\u95ee\u9898 \\(f(1)\\) \uff0c\u5e76\u6309\u7167\u4ee5\u4e0b\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u3002
- \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9
C \u4ece A \u79fb\u81f3 B \u3002 - \u5c06\u5269\u4f59 \\(1\\) \u4e2a\u5706\u76d8\u4ece
A \u76f4\u63a5\u79fb\u81f3 C \u3002 - \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9
A \u4ece B \u79fb\u81f3 C \u3002
\u5bf9\u4e8e\u8fd9\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \uff0c\u53ef\u4ee5\u901a\u8fc7\u76f8\u540c\u7684\u65b9\u5f0f\u8fdb\u884c\u9012\u5f52\u5212\u5206\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u800c \\(f(1)\\) \u7684\u89e3\u662f\u5df2\u77e5\u7684\uff0c\u53ea\u9700\u4e00\u6b21\u79fb\u52a8\u64cd\u4f5c\u5373\u53ef\u3002
\u56fe 12-14 \u00a0 \u89e3\u51b3\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565
"},{"location":"chapter_divide_and_conquer/hanota_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs(i, src, buf, tar) \uff0c\u5b83\u7684\u4f5c\u7528\u662f\u5c06\u67f1 src \u9876\u90e8\u7684 \\(i\\) \u4e2a\u5706\u76d8\u501f\u52a9\u7f13\u51b2\u67f1 buf \u79fb\u52a8\u81f3\u76ee\u6807\u67f1 tar \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig hanota.pydef move(src: list[int], tar: list[int]):\n \"\"\"\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\"\"\"\n # \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n pan = src.pop()\n # \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.append(pan)\n\ndef dfs(i: int, src: list[int], buf: list[int], tar: list[int]):\n \"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i)\"\"\"\n # \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1:\n move(src, tar)\n return\n # \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf)\n # \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar)\n # \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar)\n\ndef solve_hanota(A: list[int], B: list[int], C: list[int]):\n \"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898\"\"\"\n n = len(A)\n # \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C)\n
hanota.cpp/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(vector<int> &src, vector<int> &tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src.back();\n src.pop_back();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push_back(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(vector<int> &A, vector<int> &B, vector<int> &C) {\n int n = A.size();\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.java/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<Integer> src, List<Integer> tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n Integer pan = src.remove(src.size() - 1);\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.add(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, List<Integer> src, List<Integer> buf, List<Integer> tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(List<Integer> A, List<Integer> B, List<Integer> C) {\n int n = A.size();\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.cs/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid Move(List<int> src, List<int> tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src[^1];\n src.RemoveAt(src.Count - 1);\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.Add(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid DFS(int i, List<int> src, List<int> buf, List<int> tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n Move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n DFS(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n Move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n DFS(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid SolveHanota(List<int> A, List<int> B, List<int> C) {\n int n = A.Count;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n DFS(n, A, B, C);\n}\n
hanota.go/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunc move(src, tar *list.List) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n pan := src.Back()\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.PushBack(pan.Value)\n // \u79fb\u9664 src \u9876\u90e8\u5706\u76d8\n src.Remove(pan)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunc dfsHanota(i int, src, buf, tar *list.List) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1 {\n move(src, tar)\n return\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfsHanota(i-1, src, tar, buf)\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar)\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfsHanota(i-1, buf, src, tar)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunc solveHanota(A, B, C *list.List) {\n n := A.Len()\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfsHanota(n, A, B, C)\n}\n
hanota.swift/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunc move(src: inout [Int], tar: inout [Int]) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n let pan = src.popLast()!\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.append(pan)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunc dfs(i: Int, src: inout [Int], buf: inout [Int], tar: inout [Int]) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1 {\n move(src: &src, tar: &tar)\n return\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i: i - 1, src: &src, buf: &tar, tar: &buf)\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src: &src, tar: &tar)\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i: i - 1, src: &buf, buf: &src, tar: &tar)\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunc solveHanota(A: inout [Int], B: inout [Int], C: inout [Int]) {\n let n = A.count\n // \u5217\u8868\u5c3e\u90e8\u662f\u67f1\u5b50\u9876\u90e8\n // \u5c06 src \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(i: n, src: &A, buf: &B, tar: &C)\n}\n
hanota.js/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src, tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n const pan = src.pop();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunction dfs(i, src, buf, tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i === 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunction solveHanota(A, B, C) {\n const n = A.length;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.ts/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src: number[], tar: number[]): void {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n const pan = src.pop();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfunction dfs(i: number, src: number[], buf: number[], tar: number[]): void {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i === 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfunction solveHanota(A: number[], B: number[], C: number[]): void {\n const n = A.length;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.dart/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<int> src, List<int> tar) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src.removeLast();\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.add(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, List<int> src, List<int> buf, List<int> tar) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(List<int> A, List<int> B, List<int> C) {\n int n = A.length;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.rs/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfn move_pan(src: &mut Vec<i32>, tar: &mut Vec<i32>) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n let pan = src.remove(src.len() - 1);\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar.push(pan);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nfn dfs(i: i32, src: &mut Vec<i32>, buf: &mut Vec<i32>, tar: &mut Vec<i32>) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if i == 1 {\n move_pan(src, tar);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, tar, buf);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move_pan(src, tar);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, src, tar);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nfn solve_hanota(A: &mut Vec<i32>, B: &mut Vec<i32>, C: &mut Vec<i32>) {\n let n = A.len() as i32;\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(n, A, B, C);\n}\n
hanota.c/* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(int *src, int *srcSize, int *tar, int *tarSize) {\n // \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\n int pan = src[*srcSize - 1];\n src[*srcSize - 1] = 0;\n (*srcSize)--;\n // \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\n tar[*tarSize] = pan;\n (*tarSize)++;\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 f(i) */\nvoid dfs(int i, int *src, int *srcSize, int *buf, int *bufSize, int *tar, int *tarSize) {\n // \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\n if (i == 1) {\n move(src, srcSize, tar, tarSize);\n return;\n }\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\n dfs(i - 1, src, srcSize, tar, tarSize, buf, bufSize);\n // \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\n move(src, srcSize, tar, tarSize);\n // \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\n dfs(i - 1, buf, bufSize, src, srcSize, tar, tarSize);\n}\n\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\u95ee\u9898 */\nvoid solveHanota(int *A, int *ASize, int *B, int *BSize, int *C, int *CSize) {\n // \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\n dfs(*ASize, A, ASize, B, BSize, C, CSize);\n}\n
hanota.zig[class]{}-[func]{move}\n\n[class]{}-[func]{dfs}\n\n[class]{}-[func]{solveHanota}\n
\u5982\u56fe 12-15 \u6240\u793a\uff0c\u6c49\u8bfa\u5854\u95ee\u9898\u5f62\u6210\u4e00\u68f5\u9ad8\u5ea6\u4e3a \\(n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u5bf9\u5e94\u4e00\u4e2a\u5f00\u542f\u7684 dfs() \u51fd\u6570\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
\u56fe 12-15 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898\u7684\u9012\u5f52\u6811
Quote
\u6c49\u8bfa\u5854\u95ee\u9898\u6e90\u81ea\u4e00\u4e2a\u53e4\u8001\u7684\u4f20\u8bf4\u3002\u5728\u53e4\u5370\u5ea6\u7684\u4e00\u4e2a\u5bfa\u5e99\u91cc\uff0c\u50e7\u4fa3\u4eec\u6709\u4e09\u6839\u9ad8\u5927\u7684\u94bb\u77f3\u67f1\u5b50\uff0c\u4ee5\u53ca \\(64\\) \u4e2a\u5927\u5c0f\u4e0d\u4e00\u7684\u91d1\u5706\u76d8\u3002\u50e7\u4fa3\u4eec\u4e0d\u65ad\u5730\u79fb\u52a8\u5706\u76d8\uff0c\u4ed6\u4eec\u76f8\u4fe1\u5728\u6700\u540e\u4e00\u4e2a\u5706\u76d8\u88ab\u6b63\u786e\u653e\u7f6e\u7684\u90a3\u4e00\u523b\uff0c\u8fd9\u4e2a\u4e16\u754c\u5c31\u4f1a\u7ed3\u675f\u3002
\u7136\u800c\uff0c\u5373\u4f7f\u50e7\u4fa3\u4eec\u6bcf\u79d2\u949f\u79fb\u52a8\u4e00\u6b21\uff0c\u603b\u5171\u9700\u8981\u5927\u7ea6 \\(2^{64} \\approx 1.84\u00d710^{19}\\) \u79d2\uff0c\u5408\u7ea6 \\(5850\\) \u4ebf\u5e74\uff0c\u8fdc\u8fdc\u8d85\u8fc7\u4e86\u73b0\u5728\u5bf9\u5b87\u5b99\u5e74\u9f84\u7684\u4f30\u8ba1\u3002\u6240\u4ee5\uff0c\u5018\u82e5\u8fd9\u4e2a\u4f20\u8bf4\u662f\u771f\u7684\uff0c\u6211\u4eec\u5e94\u8be5\u4e0d\u9700\u8981\u62c5\u5fc3\u4e16\u754c\u672b\u65e5\u7684\u5230\u6765\u3002
"},{"location":"chapter_divide_and_conquer/summary/","title":"12.5 \u00a0 \u5c0f\u7ed3","text":" - \u5206\u6cbb\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u7b97\u6cd5\u8bbe\u8ba1\u7b56\u7565\uff0c\u5305\u62ec\u5206\uff08\u5212\u5206\uff09\u548c\u6cbb\uff08\u5408\u5e76\uff09\u4e24\u4e2a\u9636\u6bb5\uff0c\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\u3002
- \u5224\u65ad\u662f\u5426\u662f\u5206\u6cbb\u7b97\u6cd5\u95ee\u9898\u7684\u4f9d\u636e\u5305\u62ec\uff1a\u95ee\u9898\u80fd\u5426\u5206\u89e3\u3001\u5b50\u95ee\u9898\u662f\u5426\u72ec\u7acb\u3001\u5b50\u95ee\u9898\u80fd\u5426\u5408\u5e76\u3002
- \u5f52\u5e76\u6392\u5e8f\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\uff0c\u5176\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u7b49\u957f\u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u5230\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u5f00\u59cb\u9010\u5c42\u5408\u5e76\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002
- \u5f15\u5165\u5206\u6cbb\u7b56\u7565\u5f80\u5f80\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u7b56\u7565\u51cf\u5c11\u4e86\u64cd\u4f5c\u6570\u91cf\uff1b\u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u540e\u6709\u5229\u4e8e\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002
- \u5206\u6cbb\u65e2\u53ef\u4ee5\u89e3\u51b3\u8bb8\u591a\u7b97\u6cd5\u95ee\u9898\uff0c\u4e5f\u5e7f\u6cdb\u5e94\u7528\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u5904\u5904\u53ef\u89c1\u5176\u8eab\u5f71\u3002
- \u76f8\u8f83\u4e8e\u66b4\u529b\u641c\u7d22\uff0c\u81ea\u9002\u5e94\u641c\u7d22\u6548\u7387\u66f4\u9ad8\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\u3002
- \u4e8c\u5206\u67e5\u627e\u662f\u5206\u6cbb\u7b56\u7565\u7684\u53e6\u4e00\u4e2a\u5178\u578b\u5e94\u7528\uff0c\u5b83\u4e0d\u5305\u542b\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u7684\u6b65\u9aa4\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9012\u5f52\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206\u67e5\u627e\u3002
- \u5728\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u95ee\u9898\u4e2d\uff0c\u6784\u5efa\u6811\uff08\u539f\u95ee\u9898\uff09\u53ef\u4ee5\u5212\u5206\u4e3a\u6784\u5efa\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u5212\u5206\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u7684\u7d22\u5f15\u533a\u95f4\u6765\u5b9e\u73b0\u3002
- \u5728\u6c49\u8bfa\u5854\u95ee\u9898\u4e2d\uff0c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(n\\) \u7684\u95ee\u9898\u53ef\u4ee5\u5212\u5206\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a \\(n-1\\) \u7684\u5b50\u95ee\u9898\u548c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(1\\) \u7684\u5b50\u95ee\u9898\u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002
"},{"location":"chapter_dynamic_programming/","title":"\u7b2c 14 \u7ae0 \u00a0 \u52a8\u6001\u89c4\u5212","text":"Abstract
\u5c0f\u6eaa\u6c47\u5165\u6cb3\u6d41\uff0c\u6c5f\u6cb3\u6c47\u5165\u5927\u6d77\u3002
\u52a8\u6001\u89c4\u5212\u5c06\u5c0f\u95ee\u9898\u7684\u89e3\u6c47\u96c6\u6210\u5927\u95ee\u9898\u7684\u7b54\u6848\uff0c\u4e00\u6b65\u6b65\u5f15\u9886\u6211\u4eec\u8d70\u5411\u89e3\u51b3\u95ee\u9898\u7684\u5f7c\u5cb8\u3002
"},{"location":"chapter_dynamic_programming/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212
- 14.2 \u00a0 DP \u95ee\u9898\u7279\u6027
- 14.3 \u00a0 DP \u89e3\u9898\u601d\u8def
- 14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898
- 14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898
- 14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
- 14.7 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_dynamic_programming/dp_problem_features/","title":"14.2 \u00a0 \u52a8\u6001\u89c4\u5212\u95ee\u9898\u7279\u6027","text":"\u5728\u4e0a\u4e00\u8282\u4e2d\uff0c\u6211\u4eec\u5b66\u4e60\u4e86\u52a8\u6001\u89c4\u5212\u662f\u5982\u4f55\u901a\u8fc7\u5b50\u95ee\u9898\u5206\u89e3\u6765\u6c42\u89e3\u539f\u95ee\u9898\u7684\u3002\u5b9e\u9645\u4e0a\uff0c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u7684\u4fa7\u91cd\u70b9\u4e0d\u540c\u3002
- \u5206\u6cbb\u7b97\u6cd5\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u591a\u4e2a\u76f8\u4e92\u72ec\u7acb\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u6700\u5c0f\u5b50\u95ee\u9898\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u6700\u7ec8\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
- \u52a8\u6001\u89c4\u5212\u4e5f\u5bf9\u95ee\u9898\u8fdb\u884c\u9012\u5f52\u5206\u89e3\uff0c\u4f46\u4e0e\u5206\u6cbb\u7b97\u6cd5\u7684\u4e3b\u8981\u533a\u522b\u662f\uff0c\u52a8\u6001\u89c4\u5212\u4e2d\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u4f9d\u8d56\u7684\uff0c\u5728\u5206\u89e3\u8fc7\u7a0b\u4e2d\u4f1a\u51fa\u73b0\u8bb8\u591a\u91cd\u53e0\u5b50\u95ee\u9898\u3002
- \u56de\u6eaf\u7b97\u6cd5\u5728\u5c1d\u8bd5\u548c\u56de\u9000\u4e2d\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u7684\u89e3\uff0c\u5e76\u901a\u8fc7\u526a\u679d\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\u3002\u539f\u95ee\u9898\u7684\u89e3\u7531\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\u6784\u6210\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6bcf\u4e2a\u51b3\u7b56\u6b65\u9aa4\u4e4b\u524d\u7684\u5b50\u5e8f\u5217\u770b\u4f5c\u4e00\u4e2a\u5b50\u95ee\u9898\u3002
\u5b9e\u9645\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u5e38\u7528\u6765\u6c42\u89e3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5b83\u4eec\u4e0d\u4ec5\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u8fd8\u5177\u6709\u53e6\u5916\u4e24\u5927\u7279\u6027\uff1a\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002
"},{"location":"chapter_dynamic_programming/dp_problem_features/#1421","title":"14.2.1 \u00a0 \u6700\u4f18\u5b50\u7ed3\u6784","text":"\u6211\u4eec\u5bf9\u722c\u697c\u68af\u95ee\u9898\u7a0d\u4f5c\u6539\u52a8\uff0c\u4f7f\u4e4b\u66f4\u52a0\u9002\u5408\u5c55\u793a\u6700\u4f18\u5b50\u7ed3\u6784\u6982\u5ff5\u3002
\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7
\u7ed9\u5b9a\u4e00\u4e2a\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u6bcf\u4e00\u9636\u697c\u68af\u4e0a\u90fd\u8d34\u6709\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u4f60\u5728\u8be5\u53f0\u9636\u6240\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\u3002\u7ed9\u5b9a\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\u6570\u7ec4 \\(cost\\) \uff0c\u5176\u4e2d \\(cost[i]\\) \u8868\u793a\u5728\u7b2c \\(i\\) \u4e2a\u53f0\u9636\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\\(cost[0]\\) \u4e3a\u5730\u9762\uff08\u8d77\u59cb\u70b9\uff09\u3002\u8bf7\u8ba1\u7b97\u6700\u5c11\u9700\u8981\u4ed8\u51fa\u591a\u5c11\u4ee3\u4ef7\u624d\u80fd\u5230\u8fbe\u9876\u90e8\uff1f
\u5982\u56fe 14-6 \u6240\u793a\uff0c\u82e5\u7b2c \\(1\\)\u3001\\(2\\)\u3001\\(3\\) \u9636\u7684\u4ee3\u4ef7\u5206\u522b\u4e3a \\(1\\)\u3001\\(10\\)\u3001\\(1\\) \uff0c\u5219\u4ece\u5730\u9762\u722c\u5230\u7b2c \\(3\\) \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7\u4e3a \\(2\\) \u3002
\u56fe 14-6 \u00a0 \u722c\u5230\u7b2c 3 \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7
\u8bbe \\(dp[i]\\) \u4e3a\u722c\u5230\u7b2c \\(i\\) \u9636\u7d2f\u8ba1\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\u7531\u4e8e\u7b2c \\(i\\) \u9636\u53ea\u53ef\u80fd\u4ece \\(i - 1\\) \u9636\u6216 \\(i - 2\\) \u9636\u8d70\u6765\uff0c\u56e0\u6b64 \\(dp[i]\\) \u53ea\u53ef\u80fd\u7b49\u4e8e \\(dp[i - 1] + cost[i]\\) \u6216 \\(dp[i - 2] + cost[i]\\) \u3002\u4e3a\u4e86\u5c3d\u53ef\u80fd\u51cf\u5c11\u4ee3\u4ef7\uff0c\u6211\u4eec\u5e94\u8be5\u9009\u62e9\u4e24\u8005\u4e2d\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\uff1a
\\[ dp[i] = \\min(dp[i-1], dp[i-2]) + cost[i] \\] \u8fd9\u4fbf\u53ef\u4ee5\u5f15\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u542b\u4e49\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u662f\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\u7684\u3002
\u672c\u9898\u663e\u7136\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6211\u4eec\u4ece\u4e24\u4e2a\u5b50\u95ee\u9898\u6700\u4f18\u89e3 \\(dp[i-1]\\) \u548c \\(dp[i-2]\\) \u4e2d\u6311\u9009\u51fa\u8f83\u4f18\u7684\u90a3\u4e00\u4e2a\uff0c\u5e76\u7528\u5b83\u6784\u5efa\u51fa\u539f\u95ee\u9898 \\(dp[i]\\) \u7684\u6700\u4f18\u89e3\u3002
\u90a3\u4e48\uff0c\u4e0a\u4e00\u8282\u7684\u722c\u697c\u68af\u9898\u76ee\u6709\u6ca1\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u5462\uff1f\u5b83\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u770b\u4f3c\u662f\u4e00\u4e2a\u8ba1\u6570\u95ee\u9898\uff0c\u4f46\u5982\u679c\u6362\u4e00\u79cd\u95ee\u6cd5\uff1a\u201c\u6c42\u89e3\u6700\u5927\u65b9\u6848\u6570\u91cf\u201d\u3002\u6211\u4eec\u610f\u5916\u5730\u53d1\u73b0\uff0c\u867d\u7136\u9898\u76ee\u4fee\u6539\u524d\u540e\u662f\u7b49\u4ef7\u7684\uff0c\u4f46\u6700\u4f18\u5b50\u7ed3\u6784\u6d6e\u73b0\u51fa\u6765\u4e86\uff1a\u7b2c \\(n\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u7b49\u4e8e\u7b2c \\(n-1\\) \u9636\u548c\u7b2c \\(n-2\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u4e4b\u548c\u3002\u6240\u4ee5\u8bf4\uff0c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u89e3\u91ca\u65b9\u5f0f\u6bd4\u8f83\u7075\u6d3b\uff0c\u5728\u4e0d\u540c\u95ee\u9898\u4e2d\u4f1a\u6709\u4e0d\u540c\u7684\u542b\u4e49\u3002
\u6839\u636e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u4ee5\u53ca\u521d\u59cb\u72b6\u6001 \\(dp[1] = cost[1]\\) \u548c \\(dp[2] = cost[2]\\) \uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\u52a8\u6001\u89c4\u5212\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_cost_climbing_stairs_dp.pydef min_cost_climbing_stairs_dp(cost: list[int]) -> int:\n \"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(cost) - 1\n if n == 1 or n == 2:\n return cost[n]\n # \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp = [0] * (n + 1)\n # \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1], dp[2] = cost[1], cost[2]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in range(3, n + 1):\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\n return dp[n]\n
min_cost_climbing_stairs_dp.cpp/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(vector<int> &cost) {\n int n = cost.size() - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n vector<int> dp(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.java/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int[] cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.cs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint MinCostClimbingStairsDP(int[] cost) {\n int n = cost.Length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = Math.Min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.go/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost []int) int {\n n := len(cost) - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n min := func(a, b int) int {\n if a < b {\n return a\n }\n return b\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp := make([]int, n+1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1]\n dp[2] = cost[2]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n dp[i] = min(dp[i-1], dp[i-2]) + cost[i]\n }\n return dp[n]\n}\n
min_cost_climbing_stairs_dp.swift/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost: [Int]) -> Int {\n let n = cost.count - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = Array(repeating: 0, count: n + 1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1]\n dp[2] = cost[2]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in stride(from: 3, through: n, by: 1) {\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\n }\n return dp[n]\n}\n
min_cost_climbing_stairs_dp.js/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDP(cost) {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.ts/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDP(cost: Array<number>): number {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.dart/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(List<int> cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2) return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n List<int> dp = List.filled(n + 1, 0);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
min_cost_climbing_stairs_dp.rs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp(cost: &[i32]) -> i32 {\n let n = cost.len() - 1;\n if n == 1 || n == 2 { return cost[n]; }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n let mut dp = vec![-1; n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in 3..=n {\n dp[i] = cmp::min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n dp[n]\n}\n
min_cost_climbing_stairs_dp.c/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int cost[], int costSize) {\n int n = costSize - 1;\n if (n == 1 || n == 2)\n return cost[n];\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int *dp = calloc(n + 1, sizeof(int));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = myMin(dp[i - 1], dp[i - 2]) + cost[i];\n }\n int res = dp[n];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
min_cost_climbing_stairs_dp.zig// \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDP(comptime cost: []i32) i32 {\n comptime var n = cost.len - 1;\n if (n == 1 or n == 2) {\n return cost[n];\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = [_]i32{-1} ** (n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = cost[1];\n dp[2] = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n dp[i] = @min(dp[i - 1], dp[i - 2]) + cost[i];\n }\n return dp[n];\n}\n
\u56fe 14-7 \u5c55\u793a\u4e86\u4ee5\u4e0a\u4ee3\u7801\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b\u3002
\u56fe 14-7 \u00a0 \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u672c\u9898\u4e5f\u53ef\u4ee5\u8fdb\u884c\u7a7a\u95f4\u4f18\u5316\uff0c\u5c06\u4e00\u7ef4\u538b\u7f29\u81f3\u96f6\u7ef4\uff0c\u4f7f\u5f97\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u81f3 \\(O(1)\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_cost_climbing_stairs_dp.pydef min_cost_climbing_stairs_dp_comp(cost: list[int]) -> int:\n \"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(cost) - 1\n if n == 1 or n == 2:\n return cost[n]\n a, b = cost[1], cost[2]\n for i in range(3, n + 1):\n a, b = b, min(a, b) + cost[i]\n return b\n
min_cost_climbing_stairs_dp.cpp/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(vector<int> &cost) {\n int n = cost.size() - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.java/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int[] cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = Math.min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.cs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint MinCostClimbingStairsDPComp(int[] cost) {\n int n = cost.Length - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = Math.Min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.go/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost []int) int {\n n := len(cost) - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n min := func(a, b int) int {\n if a < b {\n return a\n }\n return b\n }\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n a, b := cost[1], cost[2]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n tmp := b\n b = min(a, tmp) + cost[i]\n a = tmp\n }\n return b\n}\n
min_cost_climbing_stairs_dp.swift/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost: [Int]) -> Int {\n let n = cost.count - 1\n if n == 1 || n == 2 {\n return cost[n]\n }\n var (a, b) = (cost[1], cost[2])\n for i in stride(from: 3, through: n, by: 1) {\n (a, b) = (b, min(a, b) + cost[i])\n }\n return b\n}\n
min_cost_climbing_stairs_dp.js/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDPComp(cost) {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n let a = cost[1],\n b = cost[2];\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = Math.min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.ts/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minCostClimbingStairsDPComp(cost: Array<number>): number {\n const n = cost.length - 1;\n if (n === 1 || n === 2) {\n return cost[n];\n }\n let a = cost[1],\n b = cost[2];\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = Math.min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.dart/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(List<int> cost) {\n int n = cost.length - 1;\n if (n == 1 || n == 2) return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.rs/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp_comp(cost: &[i32]) -> i32 {\n let n = cost.len() - 1;\n if n == 1 || n == 2 { return cost[n] };\n let (mut a, mut b) = (cost[1], cost[2]);\n for i in 3..=n {\n let tmp = b;\n b = cmp::min(a, tmp) + cost[i];\n a = tmp;\n }\n b\n}\n
min_cost_climbing_stairs_dp.c/* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int cost[], int costSize) {\n int n = costSize - 1;\n if (n == 1 || n == 2)\n return cost[n];\n int a = cost[1], b = cost[2];\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = myMin(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
min_cost_climbing_stairs_dp.zig// \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDPComp(cost: []i32) i32 {\n var n = cost.len - 1;\n if (n == 1 or n == 2) {\n return cost[n];\n }\n var a = cost[1];\n var b = cost[2];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n var tmp = b;\n b = @min(a, tmp) + cost[i];\n a = tmp;\n }\n return b;\n}\n
"},{"location":"chapter_dynamic_programming/dp_problem_features/#1422","title":"14.2.2 \u00a0 \u65e0\u540e\u6548\u6027","text":"\u65e0\u540e\u6548\u6027\u662f\u52a8\u6001\u89c4\u5212\u80fd\u591f\u6709\u6548\u89e3\u51b3\u95ee\u9898\u7684\u91cd\u8981\u7279\u6027\u4e4b\u4e00\uff0c\u5176\u5b9a\u4e49\u4e3a\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u786e\u5b9a\u7684\u72b6\u6001\uff0c\u5b83\u7684\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u5f53\u524d\u72b6\u6001\u6709\u5173\uff0c\u800c\u4e0e\u8fc7\u53bb\u7ecf\u5386\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002
\u4ee5\u722c\u697c\u68af\u95ee\u9898\u4e3a\u4f8b\uff0c\u7ed9\u5b9a\u72b6\u6001 \\(i\\) \uff0c\u5b83\u4f1a\u53d1\u5c55\u51fa\u72b6\u6001 \\(i+1\\) \u548c\u72b6\u6001 \\(i+2\\) \uff0c\u5206\u522b\u5bf9\u5e94\u8df3 \\(1\\) \u6b65\u548c\u8df3 \\(2\\) \u6b65\u3002\u5728\u505a\u51fa\u8fd9\u4e24\u79cd\u9009\u62e9\u65f6\uff0c\u6211\u4eec\u65e0\u987b\u8003\u8651\u72b6\u6001 \\(i\\) \u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5b83\u4eec\u5bf9\u72b6\u6001 \\(i\\) \u7684\u672a\u6765\u6ca1\u6709\u5f71\u54cd\u3002
\u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u7ed9\u722c\u697c\u68af\u95ee\u9898\u6dfb\u52a0\u4e00\u4e2a\u7ea6\u675f\uff0c\u60c5\u51b5\u5c31\u4e0d\u4e00\u6837\u4e86\u3002
\u5e26\u7ea6\u675f\u722c\u697c\u68af
\u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u4f46\u4e0d\u80fd\u8fde\u7eed\u4e24\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\uff1f
\u5982\u56fe 14-8 \u6240\u793a\uff0c\u722c\u4e0a\u7b2c \\(3\\) \u9636\u4ec5\u5269 \\(2\\) \u79cd\u53ef\u884c\u65b9\u6848\uff0c\u5176\u4e2d\u8fde\u7eed\u4e09\u6b21\u8df3 \\(1\\) \u9636\u7684\u65b9\u6848\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\uff0c\u56e0\u6b64\u88ab\u820d\u5f03\u3002
\u56fe 14-8 \u00a0 \u5e26\u7ea6\u675f\u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf
\u5728\u8be5\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u4e0a\u4e00\u8f6e\u662f\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\uff0c\u90a3\u4e48\u4e0b\u4e00\u8f6e\u5c31\u5fc5\u987b\u8df3 \\(2\\) \u9636\u3002\u8fd9\u610f\u5473\u7740\uff0c\u4e0b\u4e00\u6b65\u9009\u62e9\u4e0d\u80fd\u7531\u5f53\u524d\u72b6\u6001\uff08\u5f53\u524d\u6240\u5728\u697c\u68af\u9636\u6570\uff09\u72ec\u7acb\u51b3\u5b9a\uff0c\u8fd8\u548c\u524d\u4e00\u4e2a\u72b6\u6001\uff08\u4e0a\u4e00\u8f6e\u6240\u5728\u697c\u68af\u9636\u6570\uff09\u6709\u5173\u3002
\u4e0d\u96be\u53d1\u73b0\uff0c\u6b64\u95ee\u9898\u5df2\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b \\(dp[i] = dp[i-1] + dp[i-2]\\) \u4e5f\u5931\u6548\u4e86\uff0c\u56e0\u4e3a \\(dp[i-1]\\) \u4ee3\u8868\u672c\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u4f46\u5176\u4e2d\u5305\u542b\u4e86\u8bb8\u591a\u201c\u4e0a\u4e00\u8f6e\u662f\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\u201d\u65b9\u6848\uff0c\u800c\u4e3a\u4e86\u6ee1\u8db3\u7ea6\u675f\uff0c\u6211\u4eec\u5c31\u4e0d\u80fd\u5c06 \\(dp[i-1]\\) \u76f4\u63a5\u8ba1\u5165 \\(dp[i]\\) \u4e2d\u3002
\u4e3a\u6b64\uff0c\u6211\u4eec\u9700\u8981\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff1a\u72b6\u6001 \\([i, j]\\) \u8868\u793a\u5904\u5728\u7b2c \\(i\\) \u9636\u5e76\u4e14\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(j\\) \u9636\uff0c\u5176\u4e2d \\(j \\in \\{1, 2\\}\\) \u3002\u6b64\u72b6\u6001\u5b9a\u4e49\u6709\u6548\u5730\u533a\u5206\u4e86\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u8fd8\u662f \\(2\\) \u9636\uff0c\u6211\u4eec\u53ef\u4ee5\u636e\u6b64\u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u4ece\u4f55\u800c\u6765\u7684\u3002
- \u5f53\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u65f6\uff0c\u4e0a\u4e0a\u4e00\u8f6e\u53ea\u80fd\u9009\u62e9\u8df3 \\(2\\) \u9636\uff0c\u5373 \\(dp[i, 1]\\) \u53ea\u80fd\u4ece \\(dp[i-1, 2]\\) \u8f6c\u79fb\u8fc7\u6765\u3002
- \u5f53\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(2\\) \u9636\u65f6\uff0c\u4e0a\u4e0a\u4e00\u8f6e\u53ef\u9009\u62e9\u8df3 \\(1\\) \u9636\u6216\u8df3 \\(2\\) \u9636\uff0c\u5373 \\(dp[i, 2]\\) \u53ef\u4ee5\u4ece \\(dp[i-2, 1]\\) \u6216 \\(dp[i-2, 2]\\) \u8f6c\u79fb\u8fc7\u6765\u3002
\u5982\u56fe 14-9 \u6240\u793a\uff0c\u5728\u8be5\u5b9a\u4e49\u4e0b\uff0c\\(dp[i, j]\\) \u8868\u793a\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u65b9\u6848\u6570\u3002\u6b64\u65f6\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ \\begin{cases} dp[i, 1] = dp[i-1, 2] \\\\ dp[i, 2] = dp[i-2, 1] + dp[i-2, 2] \\end{cases} \\] \u56fe 14-9 \u00a0 \u8003\u8651\u7ea6\u675f\u4e0b\u7684\u9012\u63a8\u5173\u7cfb
\u6700\u7ec8\uff0c\u8fd4\u56de \\(dp[n, 1] + dp[n, 2]\\) \u5373\u53ef\uff0c\u4e24\u8005\u4e4b\u548c\u4ee3\u8868\u722c\u5230\u7b2c \\(n\\) \u9636\u7684\u65b9\u6848\u603b\u6570\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_constraint_dp.pydef climbing_stairs_constraint_dp(n: int) -> int:\n \"\"\"\u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n if n == 1 or n == 2:\n return 1\n # \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp = [[0] * 3 for _ in range(n + 1)]\n # \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1], dp[1][2] = 1, 0\n dp[2][1], dp[2][2] = 0, 1\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in range(3, n + 1):\n dp[i][1] = dp[i - 1][2]\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2]\n return dp[n][1] + dp[n][2]\n
climbing_stairs_constraint_dp.cpp/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n vector<vector<int>> dp(n + 1, vector<int>(3, 0));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.java/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[][] dp = new int[n + 1][3];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.cs/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint ClimbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[,] dp = new int[n + 1, 3];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1, 1] = 1;\n dp[1, 2] = 0;\n dp[2, 1] = 0;\n dp[2, 2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i, 1] = dp[i - 1, 2];\n dp[i, 2] = dp[i - 2, 1] + dp[i - 2, 2];\n }\n return dp[n, 1] + dp[n, 2];\n}\n
climbing_stairs_constraint_dp.go/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n int) int {\n if n == 1 || n == 2 {\n return 1\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp := make([][3]int, n+1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1\n dp[1][2] = 0\n dp[2][1] = 0\n dp[2][2] = 1\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n dp[i][1] = dp[i-1][2]\n dp[i][2] = dp[i-2][1] + dp[i-2][2]\n }\n return dp[n][1] + dp[n][2]\n}\n
climbing_stairs_constraint_dp.swift/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n: Int) -> Int {\n if n == 1 || n == 2 {\n return 1\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = Array(repeating: Array(repeating: 0, count: 3), count: n + 1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1\n dp[1][2] = 0\n dp[2][1] = 0\n dp[2][2] = 1\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in stride(from: 3, through: n, by: 1) {\n dp[i][1] = dp[i - 1][2]\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2]\n }\n return dp[n][1] + dp[n][2]\n}\n
climbing_stairs_constraint_dp.js/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsConstraintDP(n) {\n if (n === 1 || n === 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = Array.from(new Array(n + 1), () => new Array(3));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.ts/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsConstraintDP(n: number): number {\n if (n === 1 || n === 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = Array.from({ length: n + 1 }, () => new Array(3));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.dart/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(3, 0));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
climbing_stairs_constraint_dp.rs/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_constraint_dp(n: usize) -> i32 {\n if n == 1 || n == 2 { return 1 };\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n let mut dp = vec![vec![-1; 3]; n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in 3..=n {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n dp[n][1] + dp[n][2]\n}\n
climbing_stairs_constraint_dp.c/* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\n if (n == 1 || n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(3, sizeof(int));\n }\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n int res = dp[n][1] + dp[n][2];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n free(dp);\n return res;\n}\n
climbing_stairs_constraint_dp.zig// \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsConstraintDP(comptime n: usize) i32 {\n if (n == 1 or n == 2) {\n return 1;\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = [_][3]i32{ [_]i32{ -1, -1, -1 } } ** (n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1][1] = 1;\n dp[1][2] = 0;\n dp[2][1] = 0;\n dp[2][2] = 1;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n dp[i][1] = dp[i - 1][2];\n dp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n }\n return dp[n][1] + dp[n][2];\n}\n
\u5728\u4e0a\u9762\u7684\u6848\u4f8b\u4e2d\uff0c\u7531\u4e8e\u4ec5\u9700\u591a\u8003\u8651\u524d\u9762\u4e00\u4e2a\u72b6\u6001\uff0c\u56e0\u6b64\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u901a\u8fc7\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff0c\u4f7f\u5f97\u95ee\u9898\u91cd\u65b0\u6ee1\u8db3\u65e0\u540e\u6548\u6027\u3002\u7136\u800c\uff0c\u67d0\u4e9b\u95ee\u9898\u5177\u6709\u975e\u5e38\u4e25\u91cd\u7684\u201c\u6709\u540e\u6548\u6027\u201d\u3002
\u722c\u697c\u68af\u4e0e\u969c\u788d\u751f\u6210
\u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\u3002\u89c4\u5b9a\u5f53\u722c\u5230\u7b2c \\(i\\) \u9636\u65f6\uff0c\u7cfb\u7edf\u81ea\u52a8\u4f1a\u5728\u7b2c \\(2i\\) \u9636\u4e0a\u653e\u4e0a\u969c\u788d\u7269\uff0c\u4e4b\u540e\u6240\u6709\u8f6e\u90fd\u4e0d\u5141\u8bb8\u8df3\u5230\u7b2c \\(2i\\) \u9636\u4e0a\u3002\u4f8b\u5982\uff0c\u524d\u4e24\u8f6e\u5206\u522b\u8df3\u5230\u4e86\u7b2c \\(2\\)\u3001\\(3\\) \u9636\u4e0a\uff0c\u5219\u4e4b\u540e\u5c31\u4e0d\u80fd\u8df3\u5230\u7b2c \\(4\\)\u3001\\(6\\) \u9636\u4e0a\u3002\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\uff1f
\u5728\u8fd9\u4e2a\u95ee\u9898\u4e2d\uff0c\u4e0b\u6b21\u8df3\u8dc3\u4f9d\u8d56\u8fc7\u53bb\u6240\u6709\u7684\u72b6\u6001\uff0c\u56e0\u4e3a\u6bcf\u4e00\u6b21\u8df3\u8dc3\u90fd\u4f1a\u5728\u66f4\u9ad8\u7684\u9636\u68af\u4e0a\u8bbe\u7f6e\u969c\u788d\uff0c\u5e76\u5f71\u54cd\u672a\u6765\u7684\u8df3\u8dc3\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u52a8\u6001\u89c4\u5212\u5f80\u5f80\u96be\u4ee5\u89e3\u51b3\u3002
\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u590d\u6742\u7684\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff08\u4f8b\u5982\u65c5\u884c\u5546\u95ee\u9898\uff09\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u4f7f\u7528\u5176\u4ed6\u65b9\u6cd5\uff0c\u4f8b\u5982\u542f\u53d1\u5f0f\u641c\u7d22\u3001\u9057\u4f20\u7b97\u6cd5\u3001\u5f3a\u5316\u5b66\u4e60\u7b49\uff0c\u4ece\u800c\u5728\u6709\u9650\u65f6\u95f4\u5185\u5f97\u5230\u53ef\u7528\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/","title":"14.3 \u00a0 \u52a8\u6001\u89c4\u5212\u89e3\u9898\u601d\u8def","text":"\u4e0a\u4e24\u8282\u4ecb\u7ecd\u4e86\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4e3b\u8981\u7279\u5f81\uff0c\u63a5\u4e0b\u6765\u6211\u4eec\u4e00\u8d77\u63a2\u7a76\u4e24\u4e2a\u66f4\u52a0\u5b9e\u7528\u7684\u95ee\u9898\u3002
- \u5982\u4f55\u5224\u65ad\u4e00\u4e2a\u95ee\u9898\u662f\u4e0d\u662f\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff1f
- \u6c42\u89e3\u52a8\u6001\u89c4\u5212\u95ee\u9898\u8be5\u4ece\u4f55\u5904\u5165\u624b\uff0c\u5b8c\u6574\u6b65\u9aa4\u662f\u4ec0\u4e48\uff1f
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1431","title":"14.3.1 \u00a0 \u95ee\u9898\u5224\u65ad","text":"\u603b\u7684\u6765\u8bf4\uff0c\u5982\u679c\u4e00\u4e2a\u95ee\u9898\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u90a3\u4e48\u5b83\u901a\u5e38\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u6c42\u89e3\u3002\u7136\u800c\uff0c\u6211\u4eec\u5f88\u96be\u4ece\u95ee\u9898\u63cf\u8ff0\u4e2d\u76f4\u63a5\u63d0\u53d6\u51fa\u8fd9\u4e9b\u7279\u6027\u3002\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f1a\u653e\u5bbd\u6761\u4ef6\uff0c\u5148\u89c2\u5bdf\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u56de\u6eaf\uff08\u7a77\u4e3e\uff09\u89e3\u51b3\u3002
\u9002\u5408\u7528\u56de\u6eaf\u89e3\u51b3\u7684\u95ee\u9898\u901a\u5e38\u6ee1\u8db3\u201c\u51b3\u7b56\u6811\u6a21\u578b\u201d\uff0c\u8fd9\u79cd\u95ee\u9898\u53ef\u4ee5\u4f7f\u7528\u6811\u5f62\u7ed3\u6784\u6765\u63cf\u8ff0\uff0c\u5176\u4e2d\u6bcf\u4e00\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\uff0c\u6bcf\u4e00\u6761\u8def\u5f84\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\u3002
\u6362\u53e5\u8bdd\u8bf4\uff0c\u5982\u679c\u95ee\u9898\u5305\u542b\u660e\u786e\u7684\u51b3\u7b56\u6982\u5ff5\uff0c\u5e76\u4e14\u89e3\u662f\u901a\u8fc7\u4e00\u7cfb\u5217\u51b3\u7b56\u4ea7\u751f\u7684\uff0c\u90a3\u4e48\u5b83\u5c31\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u901a\u5e38\u53ef\u4ee5\u4f7f\u7528\u56de\u6eaf\u6765\u89e3\u51b3\u3002
\u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u95ee\u9898\u8fd8\u6709\u4e00\u4e9b\u5224\u65ad\u7684\u201c\u52a0\u5206\u9879\u201d\u3002
- \u95ee\u9898\u5305\u542b\u6700\u5927\uff08\u5c0f\uff09\u6216\u6700\u591a\uff08\u5c11\uff09\u7b49\u6700\u4f18\u5316\u63cf\u8ff0\u3002
- \u95ee\u9898\u7684\u72b6\u6001\u80fd\u591f\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u3001\u591a\u7ef4\u77e9\u9635\u6216\u6811\u6765\u8868\u793a\uff0c\u5e76\u4e14\u4e00\u4e2a\u72b6\u6001\u4e0e\u5176\u5468\u56f4\u7684\u72b6\u6001\u5b58\u5728\u9012\u63a8\u5173\u7cfb\u3002
\u76f8\u5e94\u5730\uff0c\u4e5f\u5b58\u5728\u4e00\u4e9b\u201c\u51cf\u5206\u9879\u201d\u3002
- \u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e0d\u662f\u627e\u51fa\u6700\u4f18\u89e3\u3002
- \u95ee\u9898\u63cf\u8ff0\u4e2d\u6709\u660e\u663e\u7684\u6392\u5217\u7ec4\u5408\u7684\u7279\u5f81\uff0c\u9700\u8981\u8fd4\u56de\u5177\u4f53\u7684\u591a\u4e2a\u65b9\u6848\u3002
\u5982\u679c\u4e00\u4e2a\u95ee\u9898\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u5e76\u5177\u6709\u8f83\u4e3a\u660e\u663e\u7684\u201c\u52a0\u5206\u9879\u201d\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5047\u8bbe\u5b83\u662f\u4e00\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff0c\u5e76\u5728\u6c42\u89e3\u8fc7\u7a0b\u4e2d\u9a8c\u8bc1\u5b83\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1432","title":"14.3.2 \u00a0 \u95ee\u9898\u6c42\u89e3\u6b65\u9aa4","text":"\u52a8\u6001\u89c4\u5212\u7684\u89e3\u9898\u6d41\u7a0b\u4f1a\u56e0\u95ee\u9898\u7684\u6027\u8d28\u548c\u96be\u5ea6\u800c\u6709\u6240\u4e0d\u540c\uff0c\u4f46\u901a\u5e38\u9075\u5faa\u4ee5\u4e0b\u6b65\u9aa4\uff1a\u63cf\u8ff0\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u5efa\u7acb \\(dp\\) \u8868\uff0c\u63a8\u5bfc\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u7b49\u3002
\u4e3a\u4e86\u66f4\u5f62\u8c61\u5730\u5c55\u793a\u89e3\u9898\u6b65\u9aa4\uff0c\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\u201c\u6700\u5c0f\u8def\u5f84\u548c\u201d\u6765\u4e3e\u4f8b\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a \\(n \\times m\\) \u7684\u4e8c\u7ef4\u7f51\u683c grid \uff0c\u7f51\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5305\u542b\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u8be5\u5355\u5143\u683c\u7684\u4ee3\u4ef7\u3002\u673a\u5668\u4eba\u4ee5\u5de6\u4e0a\u89d2\u5355\u5143\u683c\u4e3a\u8d77\u59cb\u70b9\uff0c\u6bcf\u6b21\u53ea\u80fd\u5411\u4e0b\u6216\u8005\u5411\u53f3\u79fb\u52a8\u4e00\u6b65\uff0c\u76f4\u81f3\u5230\u8fbe\u53f3\u4e0b\u89d2\u5355\u5143\u683c\u3002\u8bf7\u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230\u53f3\u4e0b\u89d2\u7684\u6700\u5c0f\u8def\u5f84\u548c\u3002
\u56fe 14-10 \u5c55\u793a\u4e86\u4e00\u4e2a\u4f8b\u5b50\uff0c\u7ed9\u5b9a\u7f51\u683c\u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e3a \\(13\\) \u3002
\u56fe 14-10 \u00a0 \u6700\u5c0f\u8def\u5f84\u548c\u793a\u4f8b\u6570\u636e
\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u672c\u9898\u7684\u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u5c31\u662f\u4ece\u5f53\u524d\u683c\u5b50\u5411\u4e0b\u6216\u5411\u53f3\u8d70\u4e00\u6b65\u3002\u8bbe\u5f53\u524d\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\([i, j]\\) \uff0c\u5219\u5411\u4e0b\u6216\u5411\u53f3\u8d70\u4e00\u6b65\u540e\uff0c\u7d22\u5f15\u53d8\u4e3a \\([i+1, j]\\) \u6216 \\([i, j+1]\\) \u3002\u56e0\u6b64\uff0c\u72b6\u6001\u5e94\u5305\u542b\u884c\u7d22\u5f15\u548c\u5217\u7d22\u5f15\u4e24\u4e2a\u53d8\u91cf\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002
\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u4ece\u8d77\u59cb\u70b9 \\([0, 0]\\) \u8d70\u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\uff0c\u89e3\u8bb0\u4e3a \\(dp[i, j]\\) \u3002
\u81f3\u6b64\uff0c\u6211\u4eec\u5c31\u5f97\u5230\u4e86\u56fe 14-11 \u6240\u793a\u7684\u4e8c\u7ef4 \\(dp\\) \u77e9\u9635\uff0c\u5176\u5c3a\u5bf8\u4e0e\u8f93\u5165\u7f51\u683c \\(grid\\) \u76f8\u540c\u3002
\u56fe 14-11 \u00a0 \u72b6\u6001\u5b9a\u4e49\u4e0e dp \u8868
Note
\u52a8\u6001\u89c4\u5212\u548c\u56de\u6eaf\u8fc7\u7a0b\u53ef\u4ee5\u63cf\u8ff0\u4e3a\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\uff0c\u800c\u72b6\u6001\u7531\u6240\u6709\u51b3\u7b56\u53d8\u91cf\u6784\u6210\u3002\u5b83\u5e94\u5f53\u5305\u542b\u63cf\u8ff0\u89e3\u9898\u8fdb\u5ea6\u7684\u6240\u6709\u53d8\u91cf\uff0c\u5176\u5305\u542b\u4e86\u8db3\u591f\u7684\u4fe1\u606f\uff0c\u80fd\u591f\u7528\u6765\u63a8\u5bfc\u51fa\u4e0b\u4e00\u4e2a\u72b6\u6001\u3002
\u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5b9a\u4e49\u4e00\u4e2a \\(dp\\) \u8868\u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u72b6\u6001\u7684\u6bcf\u4e2a\u72ec\u7acb\u53d8\u91cf\u90fd\u662f \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\u3002\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\\(dp\\) \u8868\u662f\u72b6\u6001\u548c\u5b50\u95ee\u9898\u7684\u89e3\u4e4b\u95f4\u7684\u6620\u5c04\u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u5bf9\u4e8e\u72b6\u6001 \\([i, j]\\) \uff0c\u5b83\u53ea\u80fd\u4ece\u4e0a\u8fb9\u683c\u5b50 \\([i-1, j]\\) \u548c\u5de6\u8fb9\u683c\u5b50 \\([i, j-1]\\) \u8f6c\u79fb\u800c\u6765\u3002\u56e0\u6b64\u6700\u4f18\u5b50\u7ed3\u6784\u4e3a\uff1a\u5230\u8fbe \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u7531 \\([i, j-1]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e0e \\([i-1, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e2d\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\u51b3\u5b9a\u3002
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u63a8\u51fa\u56fe 14-12 \u6240\u793a\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a
\\[ dp[i, j] = \\min(dp[i-1, j], dp[i, j-1]) + grid[i, j] \\] \u56fe 14-12 \u00a0 \u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
Note
\u6839\u636e\u5b9a\u4e49\u597d\u7684 \\(dp\\) \u8868\uff0c\u601d\u8003\u539f\u95ee\u9898\u548c\u5b50\u95ee\u9898\u7684\u5173\u7cfb\uff0c\u627e\u51fa\u901a\u8fc7\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6765\u6784\u9020\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u7684\u65b9\u6cd5\uff0c\u5373\u6700\u4f18\u5b50\u7ed3\u6784\u3002
\u4e00\u65e6\u6211\u4eec\u627e\u5230\u4e86\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002
\u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5728\u672c\u9898\u4e2d\uff0c\u5904\u5728\u9996\u884c\u7684\u72b6\u6001\u53ea\u80fd\u4ece\u5176\u5de6\u8fb9\u7684\u72b6\u6001\u5f97\u6765\uff0c\u5904\u5728\u9996\u5217\u7684\u72b6\u6001\u53ea\u80fd\u4ece\u5176\u4e0a\u8fb9\u7684\u72b6\u6001\u5f97\u6765\uff0c\u56e0\u6b64\u9996\u884c \\(i = 0\\) \u548c\u9996\u5217 \\(j = 0\\) \u662f\u8fb9\u754c\u6761\u4ef6\u3002
\u5982\u56fe 14-13 \u6240\u793a\uff0c\u7531\u4e8e\u6bcf\u4e2a\u683c\u5b50\u662f\u7531\u5176\u5de6\u65b9\u683c\u5b50\u548c\u4e0a\u65b9\u683c\u5b50\u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u6211\u4eec\u4f7f\u7528\u5faa\u73af\u6765\u904d\u5386\u77e9\u9635\uff0c\u5916\u5faa\u73af\u904d\u5386\u5404\u884c\uff0c\u5185\u5faa\u73af\u904d\u5386\u5404\u5217\u3002
\u56fe 14-13 \u00a0 \u8fb9\u754c\u6761\u4ef6\u4e0e\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
Note
\u8fb9\u754c\u6761\u4ef6\u5728\u52a8\u6001\u89c4\u5212\u4e2d\u7528\u4e8e\u521d\u59cb\u5316 \\(dp\\) \u8868\uff0c\u5728\u641c\u7d22\u4e2d\u7528\u4e8e\u526a\u679d\u3002
\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f\u7684\u6838\u5fc3\u662f\u8981\u4fdd\u8bc1\u5728\u8ba1\u7b97\u5f53\u524d\u95ee\u9898\u7684\u89e3\u65f6\uff0c\u6240\u6709\u5b83\u4f9d\u8d56\u7684\u66f4\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u90fd\u5df2\u7ecf\u88ab\u6b63\u786e\u5730\u8ba1\u7b97\u51fa\u6765\u3002
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u5df2\u7ecf\u53ef\u4ee5\u76f4\u63a5\u5199\u51fa\u52a8\u6001\u89c4\u5212\u4ee3\u7801\u3002\u7136\u800c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u601d\u60f3\uff0c\u56e0\u6b64\u6309\u7167\u201c\u66b4\u529b\u641c\u7d22 \\(\\rightarrow\\) \u8bb0\u5fc6\u5316\u641c\u7d22 \\(\\rightarrow\\) \u52a8\u6001\u89c4\u5212\u201d\u7684\u987a\u5e8f\u5b9e\u73b0\u66f4\u52a0\u7b26\u5408\u601d\u7ef4\u4e60\u60ef\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"\u4ece\u72b6\u6001 \\([i, j]\\) \u5f00\u59cb\u641c\u7d22\uff0c\u4e0d\u65ad\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u72b6\u6001 \\([i-1, j]\\) \u548c \\([i, j-1]\\) \uff0c\u9012\u5f52\u51fd\u6570\u5305\u62ec\u4ee5\u4e0b\u8981\u7d20\u3002
- \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, j]\\) \u3002
- \u8fd4\u56de\u503c\uff1a\u4ece \\([0, 0]\\) \u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c \\(dp[i, j]\\) \u3002
- \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53 \\(i = 0\\) \u4e14 \\(j = 0\\) \u65f6\uff0c\u8fd4\u56de\u4ee3\u4ef7 \\(grid[0, 0]\\) \u3002
- \u526a\u679d\uff1a\u5f53 \\(i < 0\\) \u65f6\u6216 \\(j < 0\\) \u65f6\u7d22\u5f15\u8d8a\u754c\uff0c\u6b64\u65f6\u8fd4\u56de\u4ee3\u4ef7 \\(+\\infty\\) \uff0c\u4ee3\u8868\u4e0d\u53ef\u884c\u3002
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n # \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 and j == 0:\n return grid[0][0]\n # \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 or j < 0:\n return inf\n # \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up = min_path_sum_dfs(grid, i - 1, j)\n left = min_path_sum_dfs(grid, i, j - 1)\n # \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) + grid[i][j]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(vector<vector<int>> &grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int[][] grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Integer.MAX_VALUE;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.min(left, up) + grid[i][j];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint MinPathSumDFS(int[][] grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return int.MaxValue;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = MinPathSumDFS(grid, i - 1, j);\n int left = MinPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.Min(left, up) + grid[i][j];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid [][]int, i, j int) int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return math.MaxInt\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up := minPathSumDFS(grid, i-1, j)\n left := minPathSumDFS(grid, i, j-1)\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return int(math.Min(float64(left), float64(up))) + grid[i][j]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0, j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return .max\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = minPathSumDFS(grid: grid, i: i - 1, j: j)\n let left = minPathSumDFS(grid: grid, i: i, j: j - 1)\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) + grid[i][j]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction minPathSumDFS(grid, i, j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j === 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFS(grid, i - 1, j);\n const left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.min(left, up) + grid[i][j];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction minPathSumDFS(\n grid: Array<Array<number>>,\n i: number,\n j: number\n): number {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFS(grid, i - 1, j);\n const left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return Math.min(left, up) + grid[i][j];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(List<List<int>> grid, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n // \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\n return BigInt.from(2).pow(31).toInt();\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return min(left, up) + grid[i][j];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfn min_path_sum_dfs(grid: &Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return i32::MAX;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = min_path_sum_dfs(grid, i - 1, j);\n let left = min_path_sum_dfs(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n std::cmp::min(left, up) + grid[i as usize][j as usize]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFS(grid, i - 1, j);\n int left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\nfn minPathSumDFS(grid: anytype, i: i32, j: i32) i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 and j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 or j < 0) {\n return std.math.maxInt(i32);\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n var up = minPathSumDFS(grid, i - 1, j);\n var left = minPathSumDFS(grid, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n return @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
\u56fe 14-14 \u7ed9\u51fa\u4e86\u4ee5 \\(dp[2, 1]\\) \u4e3a\u6839\u8282\u70b9\u7684\u9012\u5f52\u6811\uff0c\u5176\u4e2d\u5305\u542b\u4e00\u4e9b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5176\u6570\u91cf\u4f1a\u968f\u7740\u7f51\u683c grid \u7684\u5c3a\u5bf8\u53d8\u5927\u800c\u6025\u5267\u589e\u591a\u3002
\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u9020\u6210\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u539f\u56e0\u4e3a\uff1a\u5b58\u5728\u591a\u6761\u8def\u5f84\u53ef\u4ee5\u4ece\u5de6\u4e0a\u89d2\u5230\u8fbe\u67d0\u4e00\u5355\u5143\u683c\u3002
\u56fe 14-14 \u00a0 \u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811
\u6bcf\u4e2a\u72b6\u6001\u90fd\u6709\u5411\u4e0b\u548c\u5411\u53f3\u4e24\u79cd\u9009\u62e9\uff0c\u4ece\u5de6\u4e0a\u89d2\u8d70\u5230\u53f3\u4e0b\u89d2\u603b\u5171\u9700\u8981 \\(m + n - 2\\) \u6b65\uff0c\u6240\u4ee5\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^{m + n})\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u8fd9\u79cd\u8ba1\u7b97\u65b9\u5f0f\u672a\u8003\u8651\u4e34\u8fd1\u7f51\u683c\u8fb9\u754c\u7684\u60c5\u51b5\uff0c\u5f53\u5230\u8fbe\u7f51\u7edc\u8fb9\u754c\u65f6\u53ea\u5269\u4e0b\u4e00\u79cd\u9009\u62e9\uff0c\u56e0\u6b64\u5b9e\u9645\u7684\u8def\u5f84\u6570\u91cf\u4f1a\u5c11\u4e00\u4e9b\u3002
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"\u6211\u4eec\u5f15\u5165\u4e00\u4e2a\u548c\u7f51\u683c grid \u76f8\u540c\u5c3a\u5bf8\u7684\u8bb0\u5fc6\u5217\u8868 mem \uff0c\u7528\u4e8e\u8bb0\u5f55\u5404\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u8fdb\u884c\u526a\u679d\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dfs_mem(\n grid: list[list[int]], mem: list[list[int]], i: int, j: int\n) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 and j == 0:\n return grid[0][0]\n # \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 or j < 0:\n return inf\n # \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][j] != -1:\n return mem[i][j]\n # \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up = min_path_sum_dfs_mem(grid, mem, i - 1, j)\n left = min_path_sum_dfs_mem(grid, mem, i, j - 1)\n # \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) + grid[i][j]\n return mem[i][j]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\n return mem[i][j];\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Integer.MAX_VALUE;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint MinPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return int.MaxValue;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = MinPathSumDFSMem(grid, mem, i - 1, j);\n int left = MinPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.Min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid, mem [][]int, i, j int) int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return math.MaxInt\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][j] != -1 {\n return mem[i][j]\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n up := minPathSumDFSMem(grid, mem, i-1, j)\n left := minPathSumDFSMem(grid, mem, i, j-1)\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]\n return mem[i][j]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0, j == 0 {\n return grid[0][0]\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return .max\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][j] != -1 {\n return mem[i][j]\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)\n let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) + grid[i][j]\n return mem[i][j]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction minPathSumDFSMem(grid, mem, i, j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j === 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] !== -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFSMem(grid, mem, i - 1, j);\n const left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction minPathSumDFSMem(\n grid: Array<Array<number>>,\n mem: Array<Array<number>>,\n i: number,\n j: number\n): number {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i === 0 && j === 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return Infinity;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n const up = minPathSumDFSMem(grid, mem, i - 1, j);\n const left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = Math.min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n // \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\n return BigInt.from(2).pow(31).toInt();\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = min(left, up) + grid[i][j];\n return mem[i][j];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn min_path_sum_dfs_mem(grid: &Vec<Vec<i32>>, mem: &mut Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if i == 0 && j == 0 {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if i < 0 || j < 0 {\n return i32::MAX;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i as usize][j as usize] != -1 {\n return mem[i as usize][j as usize];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n let up = min_path_sum_dfs_mem(grid, mem, i - 1, j);\n let left = min_path_sum_dfs_mem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i as usize][j as usize] = std::cmp::min(left, up) + grid[i as usize][j as usize];\n mem[i as usize][j as usize]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 && j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 || j < 0) {\n return INT_MAX;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][j] != -1) {\n return mem[i][j];\n }\n // \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n int up = minPathSumDFSMem(grid, mem, i - 1, j);\n int left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;\n return mem[i][j];\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn minPathSumDFSMem(grid: anytype, mem: anytype, i: i32, j: i32) i32 {\n // \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\n if (i == 0 and j == 0) {\n return grid[0][0];\n }\n // \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\n if (i < 0 or j < 0) {\n return std.math.maxInt(i32);\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] != -1) {\n return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n }\n // \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n var up = minPathSumDFSMem(grid, mem, i - 1, j);\n var left = minPathSumDFSMem(grid, mem, i, j - 1);\n // \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
\u5982\u56fe 14-15 \u6240\u793a\uff0c\u5728\u5f15\u5165\u8bb0\u5fc6\u5316\u540e\uff0c\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\u53ea\u9700\u8ba1\u7b97\u4e00\u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u72b6\u6001\u603b\u6570\uff0c\u5373\u7f51\u683c\u5c3a\u5bf8 \\(O(nm)\\) \u3002
\u56fe 14-15 \u00a0 \u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"\u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dp(grid: list[list[int]]) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(grid), len(grid[0])\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * m for _ in range(n)]\n dp[0][0] = grid[0][0]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in range(1, m):\n dp[0][j] = dp[0][j - 1] + grid[0][j]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i in range(1, n):\n dp[i][0] = dp[i - 1][0] + grid[i][0]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in range(1, n):\n for j in range(1, m):\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\n return dp[n - 1][m - 1]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(vector<vector<int>> &grid) {\n int n = grid.size(), m = grid[0].size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n, vector<int>(m));\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int[][] grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n][m];\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint MinPathSumDP(int[][] grid) {\n int n = grid.Length, m = grid[0].Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n, m];\n dp[0, 0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0, j] = dp[0, j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i, 0] = dp[i - 1, 0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];\n }\n }\n return dp[n - 1, m - 1];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid [][]int) int {\n n, m := len(grid), len(grid[0])\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n)\n for i := 0; i < n; i++ {\n dp[i] = make([]int, m)\n }\n dp[0][0] = grid[0][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j := 1; j < m; j++ {\n dp[0][j] = dp[0][j-1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i := 1; i < n; i++ {\n dp[i][0] = dp[i-1][0] + grid[i][0]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i < n; i++ {\n for j := 1; j < m; j++ {\n dp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]\n }\n }\n return dp[n-1][m-1]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid: [[Int]]) -> Int {\n let n = grid.count\n let m = grid[0].count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: m), count: n)\n dp[0][0] = grid[0][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in stride(from: 1, to: m, by: 1) {\n dp[0][j] = dp[0][j - 1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i in stride(from: 1, to: n, by: 1) {\n dp[i][0] = dp[i - 1][0] + grid[i][0]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in stride(from: 1, to: n, by: 1) {\n for j in stride(from: 1, to: m, by: 1) {\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\n }\n }\n return dp[n - 1][m - 1]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDP(grid) {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n }, () =>\n Array.from({ length: m }, () => 0)\n );\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (let i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i < n; i++) {\n for (let j = 1; j < m; j++) {\n dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDP(grid: Array<Array<number>>): number {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n }, () =>\n Array.from({ length: m }, () => 0)\n );\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (let i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i < n; i++) {\n for (let j: number = 1; j < m; j++) {\n dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(List<List<int>> grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp(grid: &Vec<Vec<i32>>) -> i32 {\n let (n, m) = (grid.len(), grid[0].len());\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; m]; n];\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in 1..m {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for i in 1..n {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in 1..n {\n for j in 1..m {\n dp[i][j] = std::cmp::min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n dp[n - 1][m - 1]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc(n * sizeof(int *));\n for (int i = 0; i < n; i++) {\n dp[i] = calloc(m, sizeof(int));\n }\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (int i = 1; i < n; i++) {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i < n; i++) {\n for (int j = 1; j < m; j++) {\n dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n int res = dp[n - 1][m - 1];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i < n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\nfn minPathSumDP(comptime grid: anytype) i32 {\n comptime var n = grid.len;\n comptime var m = grid[0].len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][m]i32{[_]i32{0} ** m} ** n;\n dp[0][0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (1..m) |j| {\n dp[0][j] = dp[0][j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n for (1..n) |i| {\n dp[i][0] = dp[i - 1][0] + grid[i][0];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (1..n) |i| {\n for (1..m) |j| {\n dp[i][j] = @min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n }\n }\n return dp[n - 1][m - 1];\n}\n
\u56fe 14-16 \u5c55\u793a\u4e86\u6700\u5c0f\u8def\u5f84\u548c\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\uff0c\u5176\u904d\u5386\u4e86\u6574\u4e2a\u7f51\u683c\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002
\u6570\u7ec4 dp \u5927\u5c0f\u4e3a \\(n \\times m\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002
<1><2><3><4><5><6><7><8><9><10><11><12> \u56fe 14-16 \u00a0 \u6700\u5c0f\u8def\u5f84\u548c\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#4","title":"4. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e\u6bcf\u4e2a\u683c\u5b50\u53ea\u4e0e\u5176\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u683c\u5b50\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u53ea\u7528\u4e00\u4e2a\u5355\u884c\u6570\u7ec4\u6765\u5b9e\u73b0 \\(dp\\) \u8868\u3002
\u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u6570\u7ec4 dp \u53ea\u80fd\u8868\u793a\u4e00\u884c\u7684\u72b6\u6001\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u6cd5\u63d0\u524d\u521d\u59cb\u5316\u9996\u5217\u72b6\u6001\uff0c\u800c\u662f\u5728\u904d\u5386\u6bcf\u884c\u65f6\u66f4\u65b0\u5b83\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig min_path_sum.pydef min_path_sum_dp_comp(grid: list[list[int]]) -> int:\n \"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(grid), len(grid[0])\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * m\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0]\n for j in range(1, m):\n dp[j] = dp[j - 1] + grid[0][j]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in range(1, n):\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in range(1, m):\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\n return dp[m - 1]\n
min_path_sum.cpp/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(vector<vector<int>> &grid) {\n int n = grid.size(), m = grid[0].size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(m);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.java/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int[][] grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[m];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.cs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint MinPathSumDPComp(int[][] grid) {\n int n = grid.Length, m = grid[0].Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[m];\n dp[0] = grid[0][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.go/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid [][]int) int {\n n, m := len(grid), len(grid[0])\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, m)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0]\n for j := 1; j < m; j++ {\n dp[j] = dp[j-1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i < n; i++ {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j := 1; j < m; j++ {\n dp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]\n }\n }\n return dp[m-1]\n}\n
min_path_sum.swift/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid: [[Int]]) -> Int {\n let n = grid.count\n let m = grid[0].count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: m)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0]\n for j in stride(from: 1, to: m, by: 1) {\n dp[j] = dp[j - 1] + grid[0][j]\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in stride(from: 1, to: n, by: 1) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0]\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in stride(from: 1, to: m, by: 1) {\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\n }\n }\n return dp[m - 1]\n}\n
min_path_sum.js/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDPComp(grid) {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = new Array(m);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (let j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j < m; j++) {\n dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.ts/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction minPathSumDPComp(grid: Array<Array<number>>): number {\n const n = grid.length,\n m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = new Array(m);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (let j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j < m; j++) {\n dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.dart/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(List<List<int>> grid) {\n int n = grid.length, m = grid[0].length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(m, 0);\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
min_path_sum.rs/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp_comp(grid: &Vec<Vec<i32>>) -> i32 {\n let (n, m) = (grid.len(), grid[0].len());\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; m];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for j in 1..m {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in 1..n {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in 1..m {\n dp[j] = std::cmp::min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n dp[m - 1]\n}\n
min_path_sum.c/* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(m, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (int j = 1; j < m; j++) {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i < n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j < m; j++) {\n dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n int res = dp[m - 1];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
min_path_sum.zig// \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minPathSumDPComp(comptime grid: anytype) i32 {\n comptime var n = grid.len;\n comptime var m = grid[0].len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** m;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n dp[0] = grid[0][0];\n for (1..m) |j| {\n dp[j] = dp[j - 1] + grid[0][j];\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (1..n) |i| {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n dp[0] = dp[0] + grid[i][0];\n for (1..m) |j| {\n dp[j] = @min(dp[j - 1], dp[j]) + grid[i][j];\n }\n }\n return dp[m - 1];\n}\n
"},{"location":"chapter_dynamic_programming/edit_distance_problem/","title":"14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898","text":"\u7f16\u8f91\u8ddd\u79bb\uff0c\u4e5f\u79f0 Levenshtein \u8ddd\u79bb\uff0c\u6307\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u4e92\u76f8\u8f6c\u6362\u7684\u6700\u5c11\u4fee\u6539\u6b21\u6570\uff0c\u901a\u5e38\u7528\u4e8e\u5728\u4fe1\u606f\u68c0\u7d22\u548c\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4e2d\u5ea6\u91cf\u4e24\u4e2a\u5e8f\u5217\u7684\u76f8\u4f3c\u5ea6\u3002
Question
\u8f93\u5165\u4e24\u4e2a\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \uff0c\u8fd4\u56de\u5c06 \\(s\\) \u8f6c\u6362\u4e3a \\(t\\) \u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002
\u4f60\u53ef\u4ee5\u5728\u4e00\u4e2a\u5b57\u7b26\u4e32\u4e2d\u8fdb\u884c\u4e09\u79cd\u7f16\u8f91\u64cd\u4f5c\uff1a\u63d2\u5165\u4e00\u4e2a\u5b57\u7b26\u3001\u5220\u9664\u4e00\u4e2a\u5b57\u7b26\u3001\u5c06\u5b57\u7b26\u66ff\u6362\u4e3a\u4efb\u610f\u4e00\u4e2a\u5b57\u7b26\u3002
\u5982\u56fe 14-27 \u6240\u793a\uff0c\u5c06 kitten \u8f6c\u6362\u4e3a sitting \u9700\u8981\u7f16\u8f91 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u4e0e 1 \u6b21\u6dfb\u52a0\u64cd\u4f5c\uff1b\u5c06 hello \u8f6c\u6362\u4e3a algo \u9700\u8981 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u548c 1 \u6b21\u5220\u9664\u64cd\u4f5c\u3002
\u56fe 14-27 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u7684\u793a\u4f8b\u6570\u636e
\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u53ef\u4ee5\u5f88\u81ea\u7136\u5730\u7528\u51b3\u7b56\u6811\u6a21\u578b\u6765\u89e3\u91ca\u3002\u5b57\u7b26\u4e32\u5bf9\u5e94\u6811\u8282\u70b9\uff0c\u4e00\u8f6e\u51b3\u7b56\uff08\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\uff09\u5bf9\u5e94\u6811\u7684\u4e00\u6761\u8fb9\u3002
\u5982\u56fe 14-28 \u6240\u793a\uff0c\u5728\u4e0d\u9650\u5236\u64cd\u4f5c\u7684\u60c5\u51b5\u4e0b\uff0c\u6bcf\u4e2a\u8282\u70b9\u90fd\u53ef\u4ee5\u6d3e\u751f\u51fa\u8bb8\u591a\u6761\u8fb9\uff0c\u6bcf\u6761\u8fb9\u5bf9\u5e94\u4e00\u79cd\u64cd\u4f5c\uff0c\u8fd9\u610f\u5473\u7740\u4ece hello \u8f6c\u6362\u5230 algo \u6709\u8bb8\u591a\u79cd\u53ef\u80fd\u7684\u8def\u5f84\u3002
\u4ece\u51b3\u7b56\u6811\u7684\u89d2\u5ea6\u770b\uff0c\u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u8282\u70b9 hello \u548c\u8282\u70b9 algo \u4e4b\u95f4\u7684\u6700\u77ed\u8def\u5f84\u3002
\u56fe 14-28 \u00a0 \u57fa\u4e8e\u51b3\u7b56\u6811\u6a21\u578b\u8868\u793a\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
"},{"location":"chapter_dynamic_programming/edit_distance_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u662f\u5bf9\u5b57\u7b26\u4e32 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\u3002
\u6211\u4eec\u5e0c\u671b\u5728\u7f16\u8f91\u64cd\u4f5c\u7684\u8fc7\u7a0b\u4e2d\uff0c\u95ee\u9898\u7684\u89c4\u6a21\u9010\u6e10\u7f29\u5c0f\uff0c\u8fd9\u6837\u624d\u80fd\u6784\u5efa\u5b50\u95ee\u9898\u3002\u8bbe\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \u7684\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \uff0c\u6211\u4eec\u5148\u8003\u8651\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u3002
- \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u76f8\u540c\uff0c\u6211\u4eec\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u76f4\u63a5\u8003\u8651 \\(s[n-2]\\) \u548c \\(t[m-2]\\) \u3002
- \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u4e0d\u540c\uff0c\u6211\u4eec\u9700\u8981\u5bf9 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\uff08\u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\uff09\uff0c\u4f7f\u5f97\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26\u76f8\u540c\uff0c\u4ece\u800c\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u8003\u8651\u89c4\u6a21\u66f4\u5c0f\u7684\u95ee\u9898\u3002
\u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u5728\u5b57\u7b26\u4e32 \\(s\\) \u4e2d\u8fdb\u884c\u7684\u6bcf\u4e00\u8f6e\u51b3\u7b56\uff08\u7f16\u8f91\u64cd\u4f5c\uff09\uff0c\u90fd\u4f1a\u4f7f\u5f97 \\(s\\) \u548c \\(t\\) \u4e2d\u5269\u4f59\u7684\u5f85\u5339\u914d\u5b57\u7b26\u53d1\u751f\u53d8\u5316\u3002\u56e0\u6b64\uff0c\u72b6\u6001\u4e3a\u5f53\u524d\u5728 \\(s\\) \u548c \\(t\\) \u4e2d\u8003\u8651\u7684\u7b2c \\(i\\) \u548c\u7b2c \\(j\\) \u4e2a\u5b57\u7b26\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002
\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\uff1a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002
\u81f3\u6b64\uff0c\u5f97\u5230\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((i+1) \\times (j+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u8003\u8651\u5b50\u95ee\u9898 \\(dp[i, j]\\) \uff0c\u5176\u5bf9\u5e94\u7684\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5c3e\u90e8\u5b57\u7b26\u4e3a \\(s[i-1]\\) \u548c \\(t[j-1]\\) \uff0c\u53ef\u6839\u636e\u4e0d\u540c\u7f16\u8f91\u64cd\u4f5c\u5206\u4e3a\u56fe 14-29 \u6240\u793a\u7684\u4e09\u79cd\u60c5\u51b5\u3002
- \u5728 \\(s[i-1]\\) \u4e4b\u540e\u6dfb\u52a0 \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i, j-1]\\) \u3002
- \u5220\u9664 \\(s[i-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j]\\) \u3002
- \u5c06 \\(s[i-1]\\) \u66ff\u6362\u4e3a \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j-1]\\) \u3002
\u56fe 14-29 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u7684\u72b6\u6001\u8f6c\u79fb
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u5f97\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\\(dp[i, j]\\) \u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(dp[i, j-1]\\)\u3001\\(dp[i-1, j]\\)\u3001\\(dp[i-1, j-1]\\) \u4e09\u8005\u4e2d\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\uff0c\u518d\u52a0\u4e0a\u672c\u6b21\u7684\u7f16\u8f91\u6b65\u6570 \\(1\\) \u3002\u5bf9\u5e94\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ dp[i, j] = \\min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1 \\] \u8bf7\u6ce8\u610f\uff0c\u5f53 \\(s[i-1]\\) \u548c \\(t[j-1]\\) \u76f8\u540c\u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\uff0c\u8fd9\u79cd\u60c5\u51b5\u4e0b\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ dp[i, j] = dp[i-1, j-1] \\] \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5f53\u4e24\u5b57\u7b26\u4e32\u90fd\u4e3a\u7a7a\u65f6\uff0c\u7f16\u8f91\u6b65\u6570\u4e3a \\(0\\) \uff0c\u5373 \\(dp[0, 0] = 0\\) \u3002\u5f53 \\(s\\) \u4e3a\u7a7a\u4f46 \\(t\\) \u4e0d\u4e3a\u7a7a\u65f6\uff0c\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(t\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u884c \\(dp[0, j] = j\\) \u3002\u5f53 \\(s\\) \u4e0d\u4e3a\u7a7a\u4f46 \\(t\\) \u4e3a\u7a7a\u65f6\uff0c\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(s\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u5217 \\(dp[i, 0] = i\\) \u3002
\u89c2\u5bdf\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u89e3 \\(dp[i, j]\\) \u4f9d\u8d56\u5de6\u65b9\u3001\u4e0a\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u89e3\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002
"},{"location":"chapter_dynamic_programming/edit_distance_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"PythonC++JavaC#GoSwiftJSTSDartRustCZig edit_distance.pydef edit_distance_dp(s: str, t: str) -> int:\n \"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(s), len(t)\n dp = [[0] * (m + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i in range(1, n + 1):\n dp[i][0] = i\n for j in range(1, m + 1):\n dp[0][j] = j\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in range(1, n + 1):\n for j in range(1, m + 1):\n if s[i - 1] == t[j - 1]:\n # \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1]\n else:\n # \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1\n return dp[n][m]\n
edit_distance.cpp/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(string s, string t) {\n int n = s.length(), m = t.length();\n vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.java/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\n int n = s.length(), m = t.length();\n int[][] dp = new int[n + 1][m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s.charAt(i - 1) == t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.cs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint EditDistanceDP(string s, string t) {\n int n = s.Length, m = t.Length;\n int[,] dp = new int[n + 1, m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i, 0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0, j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i, j] = dp[i - 1, j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i, j] = Math.Min(Math.Min(dp[i, j - 1], dp[i - 1, j]), dp[i - 1, j - 1]) + 1;\n }\n }\n }\n return dp[n, m];\n}\n
edit_distance.go/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s string, t string) int {\n n := len(s)\n m := len(t)\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, m+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i := 1; i <= n; i++ {\n dp[i][0] = i\n }\n for j := 1; j <= m; j++ {\n dp[0][j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i <= n; i++ {\n for j := 1; j <= m; j++ {\n if s[i-1] == t[j-1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i-1][j-1]\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = MinInt(MinInt(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1\n }\n }\n }\n return dp[n][m]\n}\n
edit_distance.swift/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s: String, t: String) -> Int {\n let n = s.utf8CString.count\n let m = t.utf8CString.count\n var dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i in stride(from: 1, through: n, by: 1) {\n dp[i][0] = i\n }\n for j in stride(from: 1, through: m, by: 1) {\n dp[0][j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in stride(from: 1, through: n, by: 1) {\n for j in stride(from: 1, through: m, by: 1) {\n if s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1]\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1\n }\n }\n }\n return dp[n][m]\n}\n
edit_distance.js/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDP(s, t) {\n const n = s.length,\n m = t.length;\n const dp = Array.from({ length: n + 1 }, () => new Array(m + 1).fill(0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (let j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let j = 1; j <= m; j++) {\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] =\n Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.ts/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDP(s: string, t: string): number {\n const n = s.length,\n m = t.length;\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: m + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (let j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let j = 1; j <= m; j++) {\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] =\n Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.dart/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\n int n = s.length, m = t.length;\n List<List<int>> dp = List.generate(n + 1, (_) => List.filled(m + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
edit_distance.rs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp(s: &str, t: &str) -> i32 {\n let (n, m) = (s.len(), t.len());\n let mut dp = vec![vec![0; m + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for i in 1..= n {\n dp[i][0] = i as i32;\n }\n for j in 1..m {\n dp[0][j] = j as i32;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in 1..=n {\n for j in 1..=m {\n if s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = std::cmp::min(std::cmp::min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n dp[n][m]\n}\n
edit_distance.c/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(char *s, char *t, int n, int m) {\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(m + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int i = 1; i <= n; i++) {\n dp[i][0] = i;\n }\n for (int j = 1; j <= m; j++) {\n dp[0][j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int j = 1; j <= m; j++) {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = myMin(myMin(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n int res = dp[n][m];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
edit_distance.zig// \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\nfn editDistanceDP(comptime s: []const u8, comptime t: []const u8) i32 {\n comptime var n = s.len;\n comptime var m = t.len;\n var dp = [_][m + 1]i32{[_]i32{0} ** (m + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (1..n + 1) |i| {\n dp[i][0] = @intCast(i);\n }\n for (1..m + 1) |j| {\n dp[0][j] = @intCast(j);\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (1..n + 1) |i| {\n for (1..m + 1) |j| {\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[i][j] = dp[i - 1][j - 1];\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[i][j] = @min(@min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n }\n }\n }\n return dp[n][m];\n}\n
\u5982\u56fe 14-30 \u6240\u793a\uff0c\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\u4e0e\u80cc\u5305\u95ee\u9898\u975e\u5e38\u7c7b\u4f3c\uff0c\u90fd\u53ef\u4ee5\u770b\u4f5c\u586b\u5199\u4e00\u4e2a\u4e8c\u7ef4\u7f51\u683c\u7684\u8fc7\u7a0b\u3002
<1><2><3><4><5><6><7><8><9><10><11><12><13><14><15> \u56fe 14-30 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/edit_distance_problem/#3","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e \\(dp[i,j]\\) \u662f\u7531\u4e0a\u65b9 \\(dp[i-1, j]\\)\u3001\u5de6\u65b9 \\(dp[i, j-1]\\)\u3001\u5de6\u4e0a\u65b9 \\(dp[i-1, j-1]\\) \u8f6c\u79fb\u800c\u6765\u7684\uff0c\u800c\u6b63\u5e8f\u904d\u5386\u4f1a\u4e22\u5931\u5de6\u4e0a\u65b9 \\(dp[i-1, j-1]\\) \uff0c\u5012\u5e8f\u904d\u5386\u65e0\u6cd5\u63d0\u524d\u6784\u5efa \\(dp[i, j-1]\\) \uff0c\u56e0\u6b64\u4e24\u79cd\u904d\u5386\u987a\u5e8f\u90fd\u4e0d\u53ef\u53d6\u3002
\u4e3a\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf leftup \u6765\u6682\u5b58\u5de6\u4e0a\u65b9\u7684\u89e3 \\(dp[i-1, j-1]\\) \uff0c\u4ece\u800c\u53ea\u9700\u8003\u8651\u5de6\u65b9\u548c\u4e0a\u65b9\u7684\u89e3\u3002\u6b64\u65f6\u7684\u60c5\u51b5\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u76f8\u540c\uff0c\u53ef\u4f7f\u7528\u6b63\u5e8f\u904d\u5386\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig edit_distance.pydef edit_distance_dp_comp(s: str, t: str) -> int:\n \"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n, m = len(s), len(t)\n dp = [0] * (m + 1)\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in range(1, m + 1):\n dp[j] = j\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in range(1, n + 1):\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n leftup = dp[0] # \u6682\u5b58 dp[i-1, j-1]\n dp[0] += 1\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in range(1, m + 1):\n temp = dp[j]\n if s[i - 1] == t[j - 1]:\n # \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup\n else:\n # \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(dp[j - 1], dp[j], leftup) + 1\n leftup = temp # \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n return dp[m]\n
edit_distance.cpp/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(string s, string t) {\n int n = s.length(), m = t.length();\n vector<int> dp(m + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.java/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\n int n = s.length(), m = t.length();\n int[] dp = new int[m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s.charAt(i - 1) == t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.cs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint EditDistanceDPComp(string s, string t) {\n int n = s.Length, m = t.Length;\n int[] dp = new int[m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.Min(Math.Min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.go/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s string, t string) int {\n n := len(s)\n m := len(t)\n dp := make([]int, m+1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j := 1; j <= m; j++ {\n dp[j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i := 1; i <= n; i++ {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n leftUp := dp[0] // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j := 1; j <= m; j++ {\n temp := dp[j]\n if s[i-1] == t[j-1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftUp\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = MinInt(MinInt(dp[j-1], dp[j]), leftUp) + 1\n }\n leftUp = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m]\n}\n
edit_distance.swift/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s: String, t: String) -> Int {\n let n = s.utf8CString.count\n let m = t.utf8CString.count\n var dp = Array(repeating: 0, count: m + 1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in stride(from: 1, through: m, by: 1) {\n dp[j] = j\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in stride(from: 1, through: n, by: 1) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n var leftup = dp[0] // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in stride(from: 1, through: m, by: 1) {\n let temp = dp[j]\n if s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1\n }\n leftup = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m]\n}\n
edit_distance.js/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDPComp(s, t) {\n const n = s.length,\n m = t.length;\n const dp = new Array(m + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n let leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j <= m; j++) {\n const temp = dp[j];\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.ts/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction editDistanceDPComp(s: string, t: string): number {\n const n = s.length,\n m = t.length;\n const dp = new Array(m + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (let j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (let i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n let leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (let j = 1; j <= m; j++) {\n const temp = dp[j];\n if (s.charAt(i - 1) === t.charAt(j - 1)) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.dart/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\n int n = s.length, m = t.length;\n List<int> dp = List.filled(m + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
edit_distance.rs/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp_comp(s: &str, t: &str) -> i32 {\n let (n, m) = (s.len(), t.len());\n let mut dp = vec![0; m + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for j in 1..m {\n dp[j] = j as i32;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for i in 1..=n {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n let mut leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i as i32;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for j in 1..=m {\n let temp = dp[j];\n if s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = std::cmp::min(std::cmp::min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n dp[m]\n}\n
edit_distance.c/* \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(char *s, char *t, int n, int m) {\n int *dp = calloc(m + 1, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (int j = 1; j <= m; j++) {\n dp[j] = j;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (int i = 1; i <= n; i++) {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n int leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = i;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (int j = 1; j <= m; j++) {\n int temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = myMin(myMin(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n int res = dp[m];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
edit_distance.zig// \u7f16\u8f91\u8ddd\u79bb\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn editDistanceDPComp(comptime s: []const u8, comptime t: []const u8) i32 {\n comptime var n = s.len;\n comptime var m = t.len;\n var dp = [_]i32{0} ** (m + 1);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\n for (1..m + 1) |j| {\n dp[j] = @intCast(j);\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\n for (1..n + 1) |i| {\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\n var leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\n dp[0] = @intCast(i);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\n for (1..m + 1) |j| {\n var temp = dp[j];\n if (s[i - 1] == t[j - 1]) {\n // \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\n dp[j] = leftup;\n } else {\n // \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\n dp[j] = @min(@min(dp[j - 1], dp[j]), leftup) + 1;\n }\n leftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n }\n }\n return dp[m];\n}\n
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/","title":"14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212","text":"\u300c\u52a8\u6001\u89c4\u5212 dynamic programming\u300d\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u7b97\u6cd5\u8303\u5f0f\uff0c\u5b83\u5c06\u4e00\u4e2a\u95ee\u9898\u5206\u89e3\u4e3a\u4e00\u7cfb\u5217\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u907f\u514d\u91cd\u590d\u8ba1\u7b97\uff0c\u4ece\u800c\u5927\u5e45\u63d0\u5347\u65f6\u95f4\u6548\u7387\u3002
\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u4ece\u4e00\u4e2a\u7ecf\u5178\u4f8b\u9898\u5165\u624b\uff0c\u5148\u7ed9\u51fa\u5b83\u7684\u66b4\u529b\u56de\u6eaf\u89e3\u6cd5\uff0c\u89c2\u5bdf\u5176\u4e2d\u5305\u542b\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u518d\u9010\u6b65\u5bfc\u51fa\u66f4\u9ad8\u6548\u7684\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002
\u722c\u697c\u68af
\u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\uff1f
\u5982\u56fe 14-1 \u6240\u793a\uff0c\u5bf9\u4e8e\u4e00\u4e2a \\(3\\) \u9636\u697c\u68af\uff0c\u5171\u6709 \\(3\\) \u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002
\u56fe 14-1 \u00a0 \u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf
\u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u56de\u6eaf\u6765\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u6027\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u5c06\u722c\u697c\u68af\u60f3\u8c61\u4e3a\u4e00\u4e2a\u591a\u8f6e\u9009\u62e9\u7684\u8fc7\u7a0b\uff1a\u4ece\u5730\u9762\u51fa\u53d1\uff0c\u6bcf\u8f6e\u9009\u62e9\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u6bcf\u5f53\u5230\u8fbe\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u65b9\u6848\u6570\u91cf\u52a0 \\(1\\) \uff0c\u5f53\u8d8a\u8fc7\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u5176\u526a\u679d\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_backtrack.pydef backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:\n \"\"\"\u56de\u6eaf\"\"\"\n # \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n:\n res[0] += 1\n # \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices:\n # \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state + choice > n:\n continue\n # \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res)\n # \u56de\u9000\n\ndef climbing_stairs_backtrack(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u56de\u6eaf\"\"\"\n choices = [1, 2] # \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n state = 0 # \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n res = [0] # \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res)\n return res[0]\n
climbing_stairs_backtrack.cpp/* \u56de\u6eaf */\nvoid backtrack(vector<int> &choices, int state, int n, vector<int> &res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res[0]++;\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (auto &choice : choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n vector<int> choices = {1, 2}; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n vector<int> res = {0}; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res[0];\n}\n
climbing_stairs_backtrack.java/* \u56de\u6eaf */\nvoid backtrack(List<Integer> choices, int state, int n, List<Integer> res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res.set(0, res.get(0) + 1);\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (Integer choice : choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n List<Integer> choices = Arrays.asList(1, 2); // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n List<Integer> res = new ArrayList<>();\n res.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res.get(0);\n}\n
climbing_stairs_backtrack.cs/* \u56de\u6eaf */\nvoid Backtrack(List<int> choices, int state, int n, List<int> res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res[0]++;\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n foreach (int choice in choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n Backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint ClimbingStairsBacktrack(int n) {\n List<int> choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n List<int> res = [0]; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n Backtrack(choices, state, n, res);\n return res[0];\n}\n
climbing_stairs_backtrack.go/* \u56de\u6eaf */\nfunc backtrack(choices []int, state, n int, res []int) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n {\n res[0] = res[0] + 1\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for _, choice := range choices {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state+choice > n {\n continue\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state+choice, n, res)\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n int) int {\n // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n choices := []int{1, 2}\n // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n state := 0\n res := make([]int, 1)\n // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n res[0] = 0\n backtrack(choices, state, n, res)\n return res[0]\n}\n
climbing_stairs_backtrack.swift/* \u56de\u6eaf */\nfunc backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n {\n res[0] += 1\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for choice in choices {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state + choice > n {\n continue\n }\n backtrack(choices: choices, state: state + choice, n: n, res: &res)\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n: Int) -> Int {\n let choices = [1, 2] // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n let state = 0 // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n var res: [Int] = []\n res.append(0) // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices: choices, state: state, n: n, res: &res)\n return res[0]\n}\n
climbing_stairs_backtrack.js/* \u56de\u6eaf */\nfunction backtrack(choices, state, n, res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state === n) res.set(0, res.get(0) + 1);\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n) {\n const choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n const state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n const res = new Map();\n res.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res.get(0);\n}\n
climbing_stairs_backtrack.ts/* \u56de\u6eaf */\nfunction backtrack(\n choices: number[],\n state: number,\n n: number,\n res: Map<0, any>\n): void {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state === n) res.set(0, res.get(0) + 1);\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (const choice of choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n: number): number {\n const choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n const state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n const res = new Map();\n res.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res.get(0);\n}\n
climbing_stairs_backtrack.dart/* \u56de\u6eaf */\nvoid backtrack(List<int> choices, int state, int n, List<int> res) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n) {\n res[0]++;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int choice in choices) {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n List<int> choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n List<int> res = [];\n res.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(choices, state, n, res);\n return res[0];\n}\n
climbing_stairs_backtrack.rs/* \u56de\u6eaf */\nfn backtrack(choices: &[i32], state: i32, n: i32, res: &mut [i32]) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if state == n { res[0] = res[0] + 1; }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for &choice in choices {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if state + choice > n { continue; }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfn climbing_stairs_backtrack(n: usize) -> i32 {\n let choices = vec![ 1, 2 ]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n let state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n let mut res = Vec::new();\n res.push(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(&choices, state, n as i32, &mut res);\n res[0]\n}\n
climbing_stairs_backtrack.c/* \u56de\u6eaf */\nvoid backtrack(int *choices, int state, int n, int *res, int len) {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n)\n res[0]++;\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (int i = 0; i < len; i++) {\n int choice = choices[i];\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n)\n continue;\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res, len);\n // \u56de\u9000\n }\n}\n\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\n int choices[2] = {1, 2}; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n int state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n int *res = (int *)malloc(sizeof(int));\n *res = 0; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n int len = sizeof(choices) / sizeof(int);\n backtrack(choices, state, n, res, len);\n int result = *res;\n free(res);\n return result;\n}\n
climbing_stairs_backtrack.zig// \u56de\u6eaf\nfn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {\n // \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\n if (state == n) {\n res.items[0] = res.items[0] + 1;\n }\n // \u904d\u5386\u6240\u6709\u9009\u62e9\n for (choices) |choice| {\n // \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\n if (state + choice > n) {\n continue;\n }\n // \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n backtrack(choices, state + choice, n, res);\n // \u56de\u9000\n }\n}\n\n// \u722c\u697c\u68af\uff1a\u56de\u6eaf\nfn climbingStairsBacktrack(n: usize) !i32 {\n var choices = [_]i32{ 1, 2 }; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u9636\u6216 2 \u9636\n var state: i32 = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\n var res = std.ArrayList(i32).init(std.heap.page_allocator);\n defer res.deinit();\n try res.append(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\n backtrack(&choices, state, @intCast(n), res);\n return res.items[0];\n}\n
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1411","title":"14.1.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u5e76\u4e0d\u663e\u5f0f\u5730\u5bf9\u95ee\u9898\u8fdb\u884c\u62c6\u89e3\uff0c\u800c\u662f\u5c06\u6c42\u89e3\u95ee\u9898\u770b\u4f5c\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\uff0c\u901a\u8fc7\u8bd5\u63a2\u548c\u526a\u679d\uff0c\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u3002
\u6211\u4eec\u53ef\u4ee5\u5c1d\u8bd5\u4ece\u95ee\u9898\u5206\u89e3\u7684\u89d2\u5ea6\u5206\u6790\u8fd9\u9053\u9898\u3002\u8bbe\u722c\u5230\u7b2c \\(i\\) \u9636\u5171\u6709 \\(dp[i]\\) \u79cd\u65b9\u6848\uff0c\u90a3\u4e48 \\(dp[i]\\) \u5c31\u662f\u539f\u95ee\u9898\uff0c\u5176\u5b50\u95ee\u9898\u5305\u62ec\uff1a
\\[ dp[i-1], dp[i-2], \\dots, dp[2], dp[1] \\] \u7531\u4e8e\u6bcf\u8f6e\u53ea\u80fd\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u56e0\u6b64\u5f53\u6211\u4eec\u7ad9\u5728\u7b2c \\(i\\) \u9636\u697c\u68af\u4e0a\u65f6\uff0c\u4e0a\u4e00\u8f6e\u53ea\u53ef\u80fd\u7ad9\u5728\u7b2c \\(i - 1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u4e0a\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ea\u80fd\u4ece\u7b2c \\(i -1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u8fc8\u5411\u7b2c \\(i\\) \u9636\u3002
\u7531\u6b64\u4fbf\u53ef\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u63a8\u8bba\uff1a\u722c\u5230\u7b2c \\(i - 1\\) \u9636\u7684\u65b9\u6848\u6570\u52a0\u4e0a\u722c\u5230\u7b2c \\(i - 2\\) \u9636\u7684\u65b9\u6848\u6570\u5c31\u7b49\u4e8e\u722c\u5230\u7b2c \\(i\\) \u9636\u7684\u65b9\u6848\u6570\u3002\u516c\u5f0f\u5982\u4e0b\uff1a
\\[ dp[i] = dp[i-1] + dp[i-2] \\] \u8fd9\u610f\u5473\u7740\u5728\u722c\u697c\u68af\u95ee\u9898\u4e2d\uff0c\u5404\u4e2a\u5b50\u95ee\u9898\u4e4b\u95f4\u5b58\u5728\u9012\u63a8\u5173\u7cfb\uff0c\u539f\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u7531\u5b50\u95ee\u9898\u7684\u89e3\u6784\u5efa\u5f97\u6765\u3002\u56fe 14-2 \u5c55\u793a\u4e86\u8be5\u9012\u63a8\u5173\u7cfb\u3002
\u56fe 14-2 \u00a0 \u65b9\u6848\u6570\u91cf\u9012\u63a8\u5173\u7cfb
\u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9012\u63a8\u516c\u5f0f\u5f97\u5230\u66b4\u529b\u641c\u7d22\u89e3\u6cd5\u3002\u4ee5 \\(dp[n]\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u9012\u5f52\u5730\u5c06\u4e00\u4e2a\u8f83\u5927\u95ee\u9898\u62c6\u89e3\u4e3a\u4e24\u4e2a\u8f83\u5c0f\u95ee\u9898\u7684\u548c\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898 \\(dp[1]\\) \u548c \\(dp[2]\\) \u65f6\u8fd4\u56de\u3002\u5176\u4e2d\uff0c\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u662f\u5df2\u77e5\u7684\uff0c\u5373 \\(dp[1] = 1\\)\u3001\\(dp[2] = 2\\) \uff0c\u8868\u793a\u722c\u5230\u7b2c \\(1\\)\u3001\\(2\\) \u9636\u5206\u522b\u6709 \\(1\\)\u3001\\(2\\) \u79cd\u65b9\u6848\u3002
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5b83\u548c\u6807\u51c6\u56de\u6eaf\u4ee3\u7801\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u4f46\u66f4\u52a0\u7b80\u6d01\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dfs.pydef dfs(i: int) -> int:\n \"\"\"\u641c\u7d22\"\"\"\n # \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 or i == 2:\n return i\n # dp[i] = dp[i-1] + dp[i-2]\n count = dfs(i - 1) + dfs(i - 2)\n return count\n\ndef climbing_stairs_dfs(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u641c\u7d22\"\"\"\n return dfs(n)\n
climbing_stairs_dfs.cpp/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.java/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.cs/* \u641c\u7d22 */\nint DFS(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = DFS(i - 1) + DFS(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint ClimbingStairsDFS(int n) {\n return DFS(n);\n}\n
climbing_stairs_dfs.go/* \u641c\u7d22 */\nfunc dfs(i int) int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // dp[i] = dp[i-1] + dp[i-2]\n count := dfs(i-1) + dfs(i-2)\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n int) int {\n return dfs(n)\n}\n
climbing_stairs_dfs.swift/* \u641c\u7d22 */\nfunc dfs(i: Int) -> Int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i: i - 1) + dfs(i: i - 2)\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n: Int) -> Int {\n dfs(i: n)\n}\n
climbing_stairs_dfs.js/* \u641c\u7d22 */\nfunction dfs(i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.ts/* \u641c\u7d22 */\nfunction dfs(i: number): number {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n: number): number {\n return dfs(n);\n}\n
climbing_stairs_dfs.dart/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2) return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.rs/* \u641c\u7d22 */\nfn dfs(i: usize) -> i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 { return i as i32; }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i - 1) + dfs(i - 2);\n count\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfn climbing_stairs_dfs(n: usize) -> i32 {\n dfs(n) \n}\n
climbing_stairs_dfs.c/* \u641c\u7d22 */\nint dfs(int i) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\n return dfs(n);\n}\n
climbing_stairs_dfs.zig// \u641c\u7d22\nfn dfs(i: usize) i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 or i == 2) {\n return @intCast(i);\n }\n // dp[i] = dp[i-1] + dp[i-2]\n var count = dfs(i - 1) + dfs(i - 2);\n return count;\n}\n\n// \u722c\u697c\u68af\uff1a\u641c\u7d22\nfn climbingStairsDFS(comptime n: usize) i32 {\n return dfs(n);\n}\n
\u56fe 14-3 \u5c55\u793a\u4e86\u66b4\u529b\u641c\u7d22\u5f62\u6210\u7684\u9012\u5f52\u6811\u3002\u5bf9\u4e8e\u95ee\u9898 \\(dp[n]\\) \uff0c\u5176\u9012\u5f52\u6811\u7684\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002\u6307\u6570\u9636\u5c5e\u4e8e\u7206\u70b8\u5f0f\u589e\u957f\uff0c\u5982\u679c\u6211\u4eec\u8f93\u5165\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684 \\(n\\) \uff0c\u5219\u4f1a\u9677\u5165\u6f2b\u957f\u7684\u7b49\u5f85\u4e4b\u4e2d\u3002
\u56fe 14-3 \u00a0 \u722c\u697c\u68af\u5bf9\u5e94\u9012\u5f52\u6811
\u89c2\u5bdf\u56fe 14-3 \uff0c\u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u201c\u91cd\u53e0\u5b50\u95ee\u9898\u201d\u5bfc\u81f4\u7684\u3002\u4f8b\u5982 \\(dp[9]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[8]\\) \u548c \\(dp[7]\\) \uff0c\\(dp[8]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[7]\\) \u548c \\(dp[6]\\) \uff0c\u4e24\u8005\u90fd\u5305\u542b\u5b50\u95ee\u9898 \\(dp[7]\\) \u3002
\u4ee5\u6b64\u7c7b\u63a8\uff0c\u5b50\u95ee\u9898\u4e2d\u5305\u542b\u66f4\u5c0f\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5b50\u5b50\u5b59\u5b59\u65e0\u7a77\u5c3d\u4e5f\u3002\u7edd\u5927\u90e8\u5206\u8ba1\u7b97\u8d44\u6e90\u90fd\u6d6a\u8d39\u5728\u8fd9\u4e9b\u91cd\u53e0\u7684\u5b50\u95ee\u9898\u4e0a\u3002
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1412","title":"14.1.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"\u4e3a\u4e86\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u6211\u4eec\u5e0c\u671b\u6240\u6709\u7684\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u6570\u7ec4 mem \u6765\u8bb0\u5f55\u6bcf\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u526a\u679d\u3002
- \u5f53\u9996\u6b21\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u5c06\u5176\u8bb0\u5f55\u81f3
mem[i] \uff0c\u4ee5\u4fbf\u4e4b\u540e\u4f7f\u7528\u3002 - \u5f53\u518d\u6b21\u9700\u8981\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u4fbf\u53ef\u76f4\u63a5\u4ece
mem[i] \u4e2d\u83b7\u53d6\u7ed3\u679c\uff0c\u4ece\u800c\u907f\u514d\u91cd\u590d\u8ba1\u7b97\u8be5\u5b50\u95ee\u9898\u3002
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dfs_mem.pydef dfs(i: int, mem: list[int]) -> int:\n \"\"\"\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 or i == 2:\n return i\n # \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1:\n return mem[i]\n # dp[i] = dp[i-1] + dp[i-2]\n count = dfs(i - 1, mem) + dfs(i - 2, mem)\n # \u8bb0\u5f55 dp[i]\n mem[i] = count\n return count\n\ndef climbing_stairs_dfs_mem(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n mem = [-1] * (n + 1)\n return dfs(n, mem)\n
climbing_stairs_dfs_mem.cpp/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, vector<int> &mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n vector<int> mem(n + 1, -1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.java/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int[] mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n int[] mem = new int[n + 1];\n Arrays.fill(mem, -1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.cs/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint DFS(int i, int[] mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = DFS(i - 1, mem) + DFS(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint ClimbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n int[] mem = new int[n + 1];\n Array.Fill(mem, -1);\n return DFS(n, mem);\n}\n
climbing_stairs_dfs_mem.go/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfsMem(i int, mem []int) int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1 {\n return mem[i]\n }\n // dp[i] = dp[i-1] + dp[i-2]\n count := dfsMem(i-1, mem) + dfsMem(i-2, mem)\n // \u8bb0\u5f55 dp[i]\n mem[i] = count\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n int) int {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n mem := make([]int, n+1)\n for i := range mem {\n mem[i] = -1\n }\n return dfsMem(n, mem)\n}\n
climbing_stairs_dfs_mem.swift/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfs(i: Int, mem: inout [Int]) -> Int {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 {\n return i\n }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1 {\n return mem[i]\n }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)\n // \u8bb0\u5f55 dp[i]\n mem[i] = count\n return count\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n: Int) -> Int {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n var mem = Array(repeating: -1, count: n + 1)\n return dfs(i: n, mem: &mem)\n}\n
climbing_stairs_dfs_mem.js/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i, mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n const mem = new Array(n + 1).fill(-1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.ts/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i: number, mem: number[]): number {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i === 1 || i === 2) return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n const count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n: number): number {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n const mem = new Array(n + 1).fill(-1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.dart/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, List<int> mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2) return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n List<int> mem = List.filled(n + 1, -1);\n return dfs(n, mem);\n}\n
climbing_stairs_dfs_mem.rs/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn dfs(i: usize, mem: &mut [i32]) -> i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if i == 1 || i == 2 { return i as i32; }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if mem[i] != -1 { return mem[i]; }\n // dp[i] = dp[i-1] + dp[i-2]\n let count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n count\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn climbing_stairs_dfs_mem(n: usize) -> i32 {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n let mut mem = vec![-1; n + 1];\n dfs(n, &mut mem)\n}\n
climbing_stairs_dfs_mem.c/* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int *mem) {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 || i == 2)\n return i;\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1)\n return mem[i];\n // dp[i] = dp[i-1] + dp[i-2]\n int count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n int *mem = (int *)malloc((n + 1) * sizeof(int));\n for (int i = 0; i <= n; i++) {\n mem[i] = -1;\n }\n int result = dfs(n, mem);\n free(mem);\n return result;\n}\n
climbing_stairs_dfs_mem.zig// \u8bb0\u5fc6\u5316\u641c\u7d22\nfn dfs(i: usize, mem: []i32) i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (i == 1 or i == 2) {\n return @intCast(i);\n }\n // \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\n if (mem[i] != -1) {\n return mem[i];\n }\n // dp[i] = dp[i-1] + dp[i-2]\n var count = dfs(i - 1, mem) + dfs(i - 2, mem);\n // \u8bb0\u5f55 dp[i]\n mem[i] = count;\n return count;\n}\n\n// \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn climbingStairsDFSMem(comptime n: usize) i32 {\n // mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\n var mem = [_]i32{ -1 } ** (n + 1);\n return dfs(n, &mem);\n}\n
\u89c2\u5bdf\u56fe 14-4 \uff0c\u7ecf\u8fc7\u8bb0\u5fc6\u5316\u5904\u7406\u540e\uff0c\u6240\u6709\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u9700\u8ba1\u7b97\u4e00\u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u8fd9\u662f\u4e00\u4e2a\u5de8\u5927\u7684\u98de\u8dc3\u3002
\u56fe 14-4 \u00a0 \u8bb0\u5fc6\u5316\u641c\u7d22\u5bf9\u5e94\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1413","title":"14.1.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"\u8bb0\u5fc6\u5316\u641c\u7d22\u662f\u4e00\u79cd\u201c\u4ece\u9876\u81f3\u5e95\u201d\u7684\u65b9\u6cd5\uff1a\u6211\u4eec\u4ece\u539f\u95ee\u9898\uff08\u6839\u8282\u70b9\uff09\u5f00\u59cb\uff0c\u9012\u5f52\u5730\u5c06\u8f83\u5927\u5b50\u95ee\u9898\u5206\u89e3\u4e3a\u8f83\u5c0f\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u89e3\u5df2\u77e5\u7684\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u53f6\u8282\u70b9\uff09\u3002\u4e4b\u540e\uff0c\u901a\u8fc7\u56de\u6eaf\u9010\u5c42\u6536\u96c6\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002
\u4e0e\u4e4b\u76f8\u53cd\uff0c\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u201c\u4ece\u5e95\u81f3\u9876\u201d\u7684\u65b9\u6cd5\uff1a\u4ece\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u5f00\u59cb\uff0c\u8fed\u4ee3\u5730\u6784\u5efa\u66f4\u5927\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u76f4\u81f3\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
\u7531\u4e8e\u52a8\u6001\u89c4\u5212\u4e0d\u5305\u542b\u56de\u6eaf\u8fc7\u7a0b\uff0c\u56e0\u6b64\u53ea\u9700\u4f7f\u7528\u5faa\u73af\u8fed\u4ee3\u5b9e\u73b0\uff0c\u65e0\u987b\u4f7f\u7528\u9012\u5f52\u3002\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5b83\u8d77\u5230\u4e86\u4e0e\u8bb0\u5fc6\u5316\u641c\u7d22\u4e2d\u6570\u7ec4 mem \u76f8\u540c\u7684\u8bb0\u5f55\u4f5c\u7528\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dp.pydef climbing_stairs_dp(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n if n == 1 or n == 2:\n return n\n # \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp = [0] * (n + 1)\n # \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1], dp[2] = 1, 2\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in range(3, n + 1):\n dp[i] = dp[i - 1] + dp[i - 2]\n return dp[n]\n
climbing_stairs_dp.cpp/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n vector<int> dp(n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.java/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.cs/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint ClimbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int[] dp = new int[n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.go/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n int) int {\n if n == 1 || n == 2 {\n return n\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n dp := make([]int, n+1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1\n dp[2] = 2\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n dp[i] = dp[i-1] + dp[i-2]\n }\n return dp[n]\n}\n
climbing_stairs_dp.swift/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n: Int) -> Int {\n if n == 1 || n == 2 {\n return n\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = Array(repeating: 0, count: n + 1)\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1\n dp[2] = 2\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in stride(from: 3, through: n, by: 1) {\n dp[i] = dp[i - 1] + dp[i - 2]\n }\n return dp[n]\n}\n
climbing_stairs_dp.js/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n) {\n if (n === 1 || n === 2) return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1).fill(-1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.ts/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n: number): number {\n if (n === 1 || n === 2) return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n const dp = new Array(n + 1).fill(-1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (let i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.dart/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2) return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n List<int> dp = List.filled(n + 1, 0);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
climbing_stairs_dp.rs/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp(n: usize) -> i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if n == 1 || n == 2 { return n as i32; }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n let mut dp = vec![-1; n + 1];\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i in 3..=n {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n dp[n]\n}\n
climbing_stairs_dp.c/* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\n if (n == 1 || n == 2)\n return n;\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n int *dp = (int *)malloc((n + 1) * sizeof(int));\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (int i = 3; i <= n; i++) {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n int result = dp[n];\n free(dp);\n return result;\n}\n
climbing_stairs_dp.zig// \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsDP(comptime n: usize) i32 {\n // \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\n if (n == 1 or n == 2) {\n return @intCast(n);\n }\n // \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\n var dp = [_]i32{-1} ** (n + 1);\n // \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\n dp[1] = 1;\n dp[2] = 2;\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for (3..n + 1) |i| {\n dp[i] = dp[i - 1] + dp[i - 2];\n }\n return dp[n];\n}\n
\u56fe 14-5 \u6a21\u62df\u4e86\u4ee5\u4e0a\u4ee3\u7801\u7684\u6267\u884c\u8fc7\u7a0b\u3002
\u56fe 14-5 \u00a0 \u722c\u697c\u68af\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u4e0e\u56de\u6eaf\u7b97\u6cd5\u4e00\u6837\uff0c\u52a8\u6001\u89c4\u5212\u4e5f\u4f7f\u7528\u201c\u72b6\u6001\u201d\u6982\u5ff5\u6765\u8868\u793a\u95ee\u9898\u6c42\u89e3\u7684\u7279\u5b9a\u9636\u6bb5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\u4ee5\u53ca\u76f8\u5e94\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002\u4f8b\u5982\uff0c\u722c\u697c\u68af\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5f53\u524d\u6240\u5728\u697c\u68af\u9636\u6570 \\(i\\) \u3002
\u6839\u636e\u4ee5\u4e0a\u5185\u5bb9\uff0c\u6211\u4eec\u53ef\u4ee5\u603b\u7ed3\u51fa\u52a8\u6001\u89c4\u5212\u7684\u5e38\u7528\u672f\u8bed\u3002
- \u5c06\u6570\u7ec4
dp \u79f0\u4e3a\u300c\\(dp\\) \u8868\u300d\uff0c\\(dp[i]\\) \u8868\u793a\u72b6\u6001 \\(i\\) \u5bf9\u5e94\u5b50\u95ee\u9898\u7684\u89e3\u3002 - \u5c06\u6700\u5c0f\u5b50\u95ee\u9898\u5bf9\u5e94\u7684\u72b6\u6001\uff08\u7b2c \\(1\\) \u9636\u548c\u7b2c \\(2\\) \u9636\u697c\u68af\uff09\u79f0\u4e3a\u300c\u521d\u59cb\u72b6\u6001\u300d\u3002
- \u5c06\u9012\u63a8\u516c\u5f0f \\(dp[i] = dp[i-1] + dp[i-2]\\) \u79f0\u4e3a\u300c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u300d\u3002
"},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1414","title":"14.1.4 \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7ec6\u5fc3\u7684\u8bfb\u8005\u53ef\u80fd\u53d1\u73b0\u4e86\uff0c\u7531\u4e8e \\(dp[i]\\) \u53ea\u4e0e \\(dp[i-1]\\) \u548c \\(dp[i-2]\\) \u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u987b\u4f7f\u7528\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u800c\u53ea\u9700\u4e24\u4e2a\u53d8\u91cf\u6eda\u52a8\u524d\u8fdb\u5373\u53ef\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig climbing_stairs_dp.pydef climbing_stairs_dp_comp(n: int) -> int:\n \"\"\"\u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n if n == 1 or n == 2:\n return n\n a, b = 1, 2\n for _ in range(3, n + 1):\n a, b = b, a + b\n return b\n
climbing_stairs_dp.cpp/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.java/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.cs/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint ClimbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.go/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n int) int {\n if n == 1 || n == 2 {\n return n\n }\n a, b := 1, 2\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\n for i := 3; i <= n; i++ {\n a, b = b, a+b\n }\n return b\n}\n
climbing_stairs_dp.swift/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n: Int) -> Int {\n if n == 1 || n == 2 {\n return n\n }\n var a = 1\n var b = 2\n for _ in stride(from: 3, through: n, by: 1) {\n (a, b) = (b, a + b)\n }\n return b\n}\n
climbing_stairs_dp.js/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n) {\n if (n === 1 || n === 2) return n;\n let a = 1,\n b = 2;\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.ts/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n: number): number {\n if (n === 1 || n === 2) return n;\n let a = 1,\n b = 2;\n for (let i = 3; i <= n; i++) {\n const tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.dart/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2) return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.rs/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp_comp(n: usize) -> i32 {\n if n == 1 || n == 2 { return n as i32; }\n let (mut a, mut b) = (1, 2);\n for _ in 3..=n {\n let tmp = b;\n b = a + b;\n a = tmp;\n }\n b\n}\n
climbing_stairs_dp.c/* \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\n if (n == 1 || n == 2)\n return n;\n int a = 1, b = 2;\n for (int i = 3; i <= n; i++) {\n int tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
climbing_stairs_dp.zig// \u722c\u697c\u68af\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn climbingStairsDPComp(comptime n: usize) i32 {\n if (n == 1 or n == 2) {\n return @intCast(n);\n }\n var a: i32 = 1;\n var b: i32 = 2;\n for (3..n + 1) |_| {\n var tmp = b;\n b = a + b;\n a = tmp;\n }\n return b;\n}\n
\u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u7531\u4e8e\u7701\u53bb\u4e86\u6570\u7ec4 dp \u5360\u7528\u7684\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u81f3 \\(O(1)\\) \u3002
\u5728\u52a8\u6001\u89c4\u5212\u95ee\u9898\u4e2d\uff0c\u5f53\u524d\u72b6\u6001\u5f80\u5f80\u4ec5\u4e0e\u524d\u9762\u6709\u9650\u4e2a\u72b6\u6001\u6709\u5173\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u53ea\u4fdd\u7559\u5fc5\u8981\u7684\u72b6\u6001\uff0c\u901a\u8fc7\u201c\u964d\u7ef4\u201d\u6765\u8282\u7701\u5185\u5b58\u7a7a\u95f4\u3002\u8fd9\u79cd\u7a7a\u95f4\u4f18\u5316\u6280\u5de7\u88ab\u79f0\u4e3a\u201c\u6eda\u52a8\u53d8\u91cf\u201d\u6216\u201c\u6eda\u52a8\u6570\u7ec4\u201d\u3002
"},{"location":"chapter_dynamic_programming/knapsack_problem/","title":"14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898","text":"\u80cc\u5305\u95ee\u9898\u662f\u4e00\u4e2a\u975e\u5e38\u597d\u7684\u52a8\u6001\u89c4\u5212\u5165\u95e8\u9898\u76ee\uff0c\u662f\u52a8\u6001\u89c4\u5212\u4e2d\u6700\u5e38\u89c1\u7684\u95ee\u9898\u5f62\u5f0f\u3002\u5176\u5177\u6709\u5f88\u591a\u53d8\u79cd\uff0c\u4f8b\u5982 0-1 \u80cc\u5305\u95ee\u9898\u3001\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u3001\u591a\u91cd\u80cc\u5305\u95ee\u9898\u7b49\u3002
\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6765\u6c42\u89e3\u6700\u5e38\u89c1\u7684 0-1 \u80cc\u5305\u95ee\u9898\u3002
Question
\u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\)\u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u95ee\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002
\u89c2\u5bdf\u56fe 14-17 \uff0c\u7531\u4e8e\u7269\u54c1\u7f16\u53f7 \\(i\\) \u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u6570\u7ec4\u7d22\u5f15\u4ece \\(0\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u56e0\u6b64\u7269\u54c1 \\(i\\) \u5bf9\u5e94\u91cd\u91cf \\(wgt[i-1]\\) \u548c\u4ef7\u503c \\(val[i-1]\\) \u3002
\u56fe 14-17 \u00a0 0-1 \u80cc\u5305\u7684\u793a\u4f8b\u6570\u636e
\u6211\u4eec\u53ef\u4ee5\u5c06 0-1 \u80cc\u5305\u95ee\u9898\u770b\u4f5c\u4e00\u4e2a\u7531 \\(n\\) \u8f6e\u51b3\u7b56\u7ec4\u6210\u7684\u8fc7\u7a0b\uff0c\u5bf9\u4e8e\u6bcf\u4e2a\u7269\u4f53\u90fd\u6709\u4e0d\u653e\u5165\u548c\u653e\u5165\u4e24\u79cd\u51b3\u7b56\uff0c\u56e0\u6b64\u8be5\u95ee\u9898\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\u3002
\u8be5\u95ee\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u201c\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u201d\uff0c\u56e0\u6b64\u8f83\u5927\u6982\u7387\u662f\u4e00\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\u3002
\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u5bf9\u4e8e\u6bcf\u4e2a\u7269\u54c1\u6765\u8bf4\uff0c\u4e0d\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff1b\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u51cf\u5c0f\u3002\u7531\u6b64\u53ef\u5f97\u72b6\u6001\u5b9a\u4e49\uff1a\u5f53\u524d\u7269\u54c1\u7f16\u53f7 \\(i\\) \u548c\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u8bb0\u4e3a \\([i, c]\\) \u3002
\u72b6\u6001 \\([i, c]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\uff0c\u8bb0\u4e3a \\(dp[i, c]\\) \u3002
\u5f85\u6c42\u89e3\u7684\u662f \\(dp[n, cap]\\) \uff0c\u56e0\u6b64\u9700\u8981\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((n+1) \\times (cap+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u5f53\u6211\u4eec\u505a\u51fa\u7269\u54c1 \\(i\\) \u7684\u51b3\u7b56\u540e\uff0c\u5269\u4f59\u7684\u662f\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u7684\u51b3\u7b56\uff0c\u53ef\u5206\u4e3a\u4ee5\u4e0b\u4e24\u79cd\u60c5\u51b5\u3002
- \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff0c\u72b6\u6001\u53d8\u5316\u4e3a \\([i-1, c]\\) \u3002
- \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u51cf\u5c11 \\(wgt[i-1]\\) \uff0c\u4ef7\u503c\u589e\u52a0 \\(val[i-1]\\) \uff0c\u72b6\u6001\u53d8\u5316\u4e3a \\([i-1, c-wgt[i-1]]\\) \u3002
\u4e0a\u8ff0\u5206\u6790\u5411\u6211\u4eec\u63ed\u793a\u4e86\u672c\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6700\u5927\u4ef7\u503c \\(dp[i, c]\\) \u7b49\u4e8e\u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \u548c\u653e\u5165\u7269\u54c1 \\(i\\) \u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\u3002\u7531\u6b64\u53ef\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a
\\[ dp[i, c] = \\max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1]) \\] \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf \\(wgt[i - 1]\\) \u8d85\u51fa\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\u3002
\u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5f53\u65e0\u7269\u54c1\u6216\u65e0\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u65f6\u6700\u5927\u4ef7\u503c\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217 \\(dp[i, 0]\\) \u548c\u9996\u884c \\(dp[0, c]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002
\u5f53\u524d\u72b6\u6001 \\([i, c]\\) \u4ece\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c]\\) \u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c-wgt[i-1]]\\) \u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002
\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u6309\u987a\u5e8f\u5b9e\u73b0\u66b4\u529b\u641c\u7d22\u3001\u8bb0\u5fc6\u5316\u641c\u7d22\u3001\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002
"},{"location":"chapter_dynamic_programming/knapsack_problem/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"\u641c\u7d22\u4ee3\u7801\u5305\u542b\u4ee5\u4e0b\u8981\u7d20\u3002
- \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, c]\\) \u3002
- \u8fd4\u56de\u503c\uff1a\u5b50\u95ee\u9898\u7684\u89e3 \\(dp[i, c]\\) \u3002
- \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53\u7269\u54c1\u7f16\u53f7\u8d8a\u754c \\(i = 0\\) \u6216\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\u4e3a \\(0\\) \u65f6\uff0c\u7ec8\u6b62\u9012\u5f52\u5e76\u8fd4\u56de\u4ef7\u503c \\(0\\) \u3002
- \u526a\u679d\uff1a\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf\u8d85\u51fa\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n # \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 or c == 0:\n return 0\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c:\n return knapsack_dfs(wgt, val, i - 1, c)\n # \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no = knapsack_dfs(wgt, val, i - 1, c)\n yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]\n # \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes)\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes);\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int[] wgt, int[] val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.max(no, yes);\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint KnapsackDFS(int[] weight, int[] val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (weight[i - 1] > c) {\n return KnapsackDFS(weight, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = KnapsackDFS(weight, val, i - 1, c);\n int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.Max(no, yes);\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt, val []int, i, c int) int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i-1] > c {\n return knapsackDFS(wgt, val, i-1, c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no := knapsackDFS(wgt, val, i-1, c)\n yes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return int(math.Max(float64(no), float64(yes)))\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c {\n return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\n let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes)\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction knapsackDFS(wgt, val, i, c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFS(wgt, val, i - 1, c);\n const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.max(no, yes);\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunction knapsackDFS(\n wgt: Array<number>,\n val: Array<number>,\n i: number,\n c: number\n): number {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFS(wgt, val, i - 1, c);\n const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return Math.max(no, yes);\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(List<int> wgt, List<int> val, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return max(no, yes);\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfn knapsack_dfs(wgt: &[i32], val: &[i32], i: usize, c: usize) -> i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c as i32 {\n return knapsack_dfs(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsack_dfs(wgt, val, i - 1, c);\n let yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n std::cmp::max(no, yes)\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int wgt[], int val[], int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFS(wgt, val, i - 1, c);\n int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return myMax(no, yes);\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\nfn knapsackDFS(wgt: []i32, val: []i32, i: usize, c: usize) i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 or c == 0) {\n return 0;\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFS(wgt, val, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n var no = knapsackDFS(wgt, val, i - 1, c);\n var yes = knapsackDFS(wgt, val, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n return @max(no, yes);\n}\n
\u5982\u56fe 14-18 \u6240\u793a\uff0c\u7531\u4e8e\u6bcf\u4e2a\u7269\u54c1\u90fd\u4f1a\u4ea7\u751f\u4e0d\u9009\u548c\u9009\u4e24\u6761\u641c\u7d22\u5206\u652f\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002
\u89c2\u5bdf\u9012\u5f52\u6811\uff0c\u5bb9\u6613\u53d1\u73b0\u5176\u4e2d\u5b58\u5728\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u4f8b\u5982 \\(dp[1, 10]\\) \u7b49\u3002\u800c\u5f53\u7269\u54c1\u8f83\u591a\u3001\u80cc\u5305\u5bb9\u91cf\u8f83\u5927\uff0c\u5c24\u5176\u662f\u76f8\u540c\u91cd\u91cf\u7684\u7269\u54c1\u8f83\u591a\u65f6\uff0c\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u6570\u91cf\u5c06\u4f1a\u5927\u5e45\u589e\u591a\u3002
\u56fe 14-18 \u00a0 0-1 \u80cc\u5305\u95ee\u9898\u7684\u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/knapsack_problem/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"\u4e3a\u4e86\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\uff0c\u6211\u4eec\u501f\u52a9\u8bb0\u5fc6\u5217\u8868 mem \u6765\u8bb0\u5f55\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5176\u4e2d mem[i][c] \u5bf9\u5e94 \\(dp[i, c]\\) \u3002
\u5f15\u5165\u8bb0\u5fc6\u5316\u4e4b\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5b50\u95ee\u9898\u6570\u91cf\uff0c\u4e5f\u5c31\u662f \\(O(n \\times cap)\\) \u3002\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dfs_mem(\n wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int\n) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n # \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 or c == 0:\n return 0\n # \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1:\n return mem[i][c]\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c:\n return knapsack_dfs_mem(wgt, val, mem, i - 1, c)\n # \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)\n yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]\n # \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes)\n return mem[i][c]\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes);\n return mem[i][c];\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.max(no, yes);\n return mem[i][c];\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (weight[i - 1] > c) {\n return KnapsackDFSMem(weight, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = KnapsackDFSMem(weight, val, mem, i - 1, c);\n int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.Max(no, yes);\n return mem[i][c];\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1 {\n return mem[i][c]\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i-1] > c {\n return knapsackDFSMem(wgt, val, mem, i-1, c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n no := knapsackDFSMem(wgt, val, mem, i-1, c)\n yes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]\n // \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = int(math.Max(float64(no), float64(yes)))\n return mem[i][c]\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1 {\n return mem[i][c]\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c {\n return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\n let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes)\n return mem[i][c]\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction knapsackDFSMem(wgt, val, mem, i, c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] !== -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n const yes =\n knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.max(no, yes);\n return mem[i][c];\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction knapsackDFSMem(\n wgt: Array<number>,\n val: Array<number>,\n mem: Array<Array<number>>,\n i: number,\n c: number\n): number {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i === 0 || c === 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] !== -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n const no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n const yes =\n knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = Math.max(no, yes);\n return mem[i][c];\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(\n List<int> wgt,\n List<int> val,\n List<List<int>> mem,\n int i,\n int c,\n) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = max(no, yes);\n return mem[i][c];\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn knapsack_dfs_mem(wgt: &[i32], val: &[i32], mem: &mut Vec<Vec<i32>>, i: usize, c: usize) -> i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if i == 0 || c == 0 {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if mem[i][c] != -1 {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if wgt[i - 1] > c as i32 {\n return knapsack_dfs_mem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n let no = knapsack_dfs_mem(wgt, val, mem, i - 1, c);\n let yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = std::cmp::max(no, yes);\n mem[i][c]\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int wgt[], int val[], int memCols, int **mem, int i, int c) {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 || c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n int no = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);\n int yes = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = myMax(no, yes);\n return mem[i][c];\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn knapsackDFSMem(wgt: []i32, val: []i32, mem: anytype, i: usize, c: usize) i32 {\n // \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\n if (i == 0 or c == 0) {\n return 0;\n }\n // \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (mem[i][c] != -1) {\n return mem[i][c];\n }\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\n if (wgt[i - 1] > c) {\n return knapsackDFSMem(wgt, val, mem, i - 1, c);\n }\n // \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\n var no = knapsackDFSMem(wgt, val, mem, i - 1, c);\n var yes = knapsackDFSMem(wgt, val, mem, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n // \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\n mem[i][c] = @max(no, yes);\n return mem[i][c];\n}\n
\u56fe 14-19 \u5c55\u793a\u4e86\u5728\u8bb0\u5fc6\u5316\u641c\u7d22\u4e2d\u88ab\u526a\u6389\u7684\u641c\u7d22\u5206\u652f\u3002
\u56fe 14-19 \u00a0 0-1 \u80cc\u5305\u95ee\u9898\u7684\u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811
"},{"location":"chapter_dynamic_programming/knapsack_problem/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"\u52a8\u6001\u89c4\u5212\u5b9e\u8d28\u4e0a\u5c31\u662f\u5728\u72b6\u6001\u8f6c\u79fb\u4e2d\u586b\u5145 \\(dp\\) \u8868\u7684\u8fc7\u7a0b\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (cap + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n for c in range(1, cap + 1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\n return dp[n][cap]\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint KnapsackDP(int[] weight, int[] val, int cap) {\n int n = weight.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (weight[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i, c] = dp[i - 1, c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);\n }\n }\n }\n return dp[n, cap];\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, cap+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n for c := 1; c <= cap; c++ {\n if wgt[i-1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i-1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[n][cap]\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for c in stride(from: 1, through: cap, by: 1) {\n if wgt[i - 1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[n][cap]\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDP(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array(n + 1)\n .fill(0)\n .map(() => Array(cap + 1).fill(0));\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i - 1][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDP(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: cap + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i - 1][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; cap + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for c in 1..=cap {\n if wgt[i - 1] > c as i32 {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = std::cmp::max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n dp[n][cap]\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(cap + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = myMax(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[n][cap];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn knapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\n comptime var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..cap + 1) |c| {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = @max(dp[i - 1][c], dp[i - 1][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
\u5982\u56fe 14-20 \u6240\u793a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u7531\u6570\u7ec4 dp \u5927\u5c0f\u51b3\u5b9a\uff0c\u5373 \\(O(n \\times cap)\\) \u3002
<1><2><3><4><5><6><7><8><9><10><11><12><13><14> \u56fe 14-20 \u00a0 0-1 \u80cc\u5305\u95ee\u9898\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/knapsack_problem/#4","title":"4. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u90fd\u53ea\u4e0e\u5176\u4e0a\u4e00\u884c\u7684\u72b6\u6001\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e24\u4e2a\u6570\u7ec4\u6eda\u52a8\u524d\u8fdb\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u964d\u81f3 \\(O(n)\\) \u3002
\u8fdb\u4e00\u6b65\u601d\u8003\uff0c\u6211\u4eec\u80fd\u5426\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u5b9e\u73b0\u7a7a\u95f4\u4f18\u5316\u5462\uff1f\u89c2\u5bdf\u53ef\u77e5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u662f\u7531\u6b63\u4e0a\u65b9\u6216\u5de6\u4e0a\u65b9\u7684\u683c\u5b50\u8f6c\u79fb\u8fc7\u6765\u7684\u3002\u5047\u8bbe\u53ea\u6709\u4e00\u4e2a\u6570\u7ec4\uff0c\u5f53\u5f00\u59cb\u904d\u5386\u7b2c \\(i\\) \u884c\u65f6\uff0c\u8be5\u6570\u7ec4\u5b58\u50a8\u7684\u4ecd\u7136\u662f\u7b2c \\(i-1\\) \u884c\u7684\u72b6\u6001\u3002
- \u5982\u679c\u91c7\u53d6\u6b63\u5e8f\u904d\u5386\uff0c\u90a3\u4e48\u904d\u5386\u5230 \\(dp[i, j]\\) \u65f6\uff0c\u5de6\u4e0a\u65b9 \\(dp[i-1, 1]\\) ~ \\(dp[i-1, j-1]\\) \u503c\u53ef\u80fd\u5df2\u7ecf\u88ab\u8986\u76d6\uff0c\u6b64\u65f6\u5c31\u65e0\u6cd5\u5f97\u5230\u6b63\u786e\u7684\u72b6\u6001\u8f6c\u79fb\u7ed3\u679c\u3002
- \u5982\u679c\u91c7\u53d6\u5012\u5e8f\u904d\u5386\uff0c\u5219\u4e0d\u4f1a\u53d1\u751f\u8986\u76d6\u95ee\u9898\uff0c\u72b6\u6001\u8f6c\u79fb\u53ef\u4ee5\u6b63\u786e\u8fdb\u884c\u3002
\u56fe 14-21 \u5c55\u793a\u4e86\u5728\u5355\u4e2a\u6570\u7ec4\u4e0b\u4ece\u7b2c \\(i = 1\\) \u884c\u8f6c\u6362\u81f3\u7b2c \\(i = 2\\) \u884c\u7684\u8fc7\u7a0b\u3002\u8bf7\u601d\u8003\u6b63\u5e8f\u904d\u5386\u548c\u5012\u5e8f\u904d\u5386\u7684\u533a\u522b\u3002
<1><2><3><4><5><6> \u56fe 14-21 \u00a0 0-1 \u80cc\u5305\u7684\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4 \\(i\\) \u76f4\u63a5\u5220\u9664\uff0c\u5e76\u4e14\u628a\u5185\u5faa\u73af\u66f4\u6539\u4e3a\u5012\u5e8f\u904d\u5386\u5373\u53ef\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig knapsack.pydef knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * (cap + 1)\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u5012\u5e8f\u904d\u5386\n for c in range(cap, 0, -1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n return dp[cap]\n
knapsack.cpp/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.java/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.cs/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint KnapsackDPComp(int[] weight, int[] val, int cap) {\n int n = weight.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c > 0; c--) {\n if (weight[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.go/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, cap+1)\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n // \u5012\u5e8f\u904d\u5386\n for c := cap; c >= 1; c-- {\n if wgt[i-1] <= c {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[cap]\n}\n
knapsack.swift/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: cap + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n // \u5012\u5e8f\u904d\u5386\n for c in stride(from: cap, through: 1, by: -1) {\n if wgt[i - 1] <= c {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[cap]\n}\n
knapsack.js/* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDPComp(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array(cap + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (let c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.ts/* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction knapsackDPComp(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array(cap + 1).fill(0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (let c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.dart/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
knapsack.rs/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n // \u5012\u5e8f\u904d\u5386\n for c in (1..=cap).rev() {\n if wgt[i - 1] <= c as i32 {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n dp[cap]\n}\n
knapsack.c/* 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(cap + 1, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n // \u5012\u5e8f\u904d\u5386\n for (int c = cap; c >= 1; c--) {\n if (wgt[i - 1] <= c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[cap];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
knapsack.zig// 0-1 \u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn knapsackDPComp(wgt: []i32, val: []i32, comptime cap: usize) i32 {\n var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (cap + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n // \u5012\u5e8f\u904d\u5386\n var c = cap;\n while (c > 0) : (c -= 1) {\n if (wgt[i - 1] < c) {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
"},{"location":"chapter_dynamic_programming/summary/","title":"14.7 \u00a0 \u5c0f\u7ed3","text":" - \u52a8\u6001\u89c4\u5212\u5bf9\u95ee\u9898\u8fdb\u884c\u5206\u89e3\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u89c4\u907f\u91cd\u590d\u8ba1\u7b97\uff0c\u63d0\u9ad8\u8ba1\u7b97\u6548\u7387\u3002
- \u4e0d\u8003\u8651\u65f6\u95f4\u7684\u524d\u63d0\u4e0b\uff0c\u6240\u6709\u52a8\u6001\u89c4\u5212\u95ee\u9898\u90fd\u53ef\u4ee5\u7528\u56de\u6eaf\uff08\u66b4\u529b\u641c\u7d22\uff09\u8fdb\u884c\u6c42\u89e3\uff0c\u4f46\u9012\u5f52\u6811\u4e2d\u5b58\u5728\u5927\u91cf\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u6548\u7387\u6781\u4f4e\u3002\u901a\u8fc7\u5f15\u5165\u8bb0\u5fc6\u5316\u5217\u8868\uff0c\u53ef\u4ee5\u5b58\u50a8\u6240\u6709\u8ba1\u7b97\u8fc7\u7684\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u4ece\u800c\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002
- \u8bb0\u5fc6\u5316\u641c\u7d22\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u9012\u5f52\u5f0f\u89e3\u6cd5\uff0c\u800c\u4e0e\u4e4b\u5bf9\u5e94\u7684\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u4ece\u5e95\u81f3\u9876\u7684\u9012\u63a8\u5f0f\u89e3\u6cd5\uff0c\u5176\u5982\u540c\u201c\u586b\u5199\u8868\u683c\u201d\u4e00\u6837\u3002\u7531\u4e8e\u5f53\u524d\u72b6\u6001\u4ec5\u4f9d\u8d56\u67d0\u4e9b\u5c40\u90e8\u72b6\u6001\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u6d88\u9664 \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\uff0c\u4ece\u800c\u964d\u4f4e\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
- \u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u5177\u6709\u4e0d\u540c\u7684\u6027\u8d28\u3002
- \u52a8\u6001\u89c4\u5212\u95ee\u9898\u6709\u4e09\u5927\u7279\u6027\uff1a\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002
- \u5982\u679c\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u53ef\u4ee5\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\uff0c\u5219\u5b83\u5c31\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u3002
- \u65e0\u540e\u6548\u6027\u6307\u5bf9\u4e8e\u4e00\u4e2a\u72b6\u6001\uff0c\u5176\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u8be5\u72b6\u6001\u6709\u5173\uff0c\u800c\u4e0e\u8fc7\u53bb\u7ecf\u5386\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u4e0d\u5177\u6709\u65e0\u540e\u6548\u6027\uff0c\u65e0\u6cd5\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u5feb\u901f\u6c42\u89e3\u3002
\u80cc\u5305\u95ee\u9898
- \u80cc\u5305\u95ee\u9898\u662f\u6700\u5178\u578b\u7684\u52a8\u6001\u89c4\u5212\u95ee\u9898\u4e4b\u4e00\uff0c\u5177\u6709 0-1 \u80cc\u5305\u3001\u5b8c\u5168\u80cc\u5305\u3001\u591a\u91cd\u80cc\u5305\u7b49\u53d8\u79cd\u3002
- 0-1 \u80cc\u5305\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\u3002\u6839\u636e\u4e0d\u653e\u5165\u80cc\u5305\u548c\u653e\u5165\u80cc\u5305\u4e24\u79cd\u51b3\u7b56\uff0c\u53ef\u5f97\u5230\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u5728\u7a7a\u95f4\u4f18\u5316\u4e2d\uff0c\u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u4f9d\u8d56\u6b63\u4e0a\u65b9\u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u9700\u8981\u5012\u5e8f\u904d\u5386\u5217\u8868\uff0c\u907f\u514d\u5de6\u4e0a\u65b9\u72b6\u6001\u88ab\u8986\u76d6\u3002
- \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u6bcf\u79cd\u7269\u54c1\u7684\u9009\u53d6\u6570\u91cf\u65e0\u9650\u5236\uff0c\u56e0\u6b64\u9009\u62e9\u653e\u5165\u7269\u54c1\u7684\u72b6\u6001\u8f6c\u79fb\u4e0e 0-1 \u80cc\u5305\u95ee\u9898\u4e0d\u540c\u3002\u7531\u4e8e\u72b6\u6001\u4f9d\u8d56\u6b63\u4e0a\u65b9\u548c\u6b63\u5de6\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u5728\u7a7a\u95f4\u4f18\u5316\u4e2d\u5e94\u5f53\u6b63\u5e8f\u904d\u5386\u3002
- \u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u4e00\u4e2a\u53d8\u79cd\u3002\u5b83\u4ece\u6c42\u201c\u6700\u5927\u201d\u4ef7\u503c\u53d8\u4e3a\u6c42\u201c\u6700\u5c0f\u201d\u786c\u5e01\u6570\u91cf\uff0c\u56e0\u6b64\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\max()\\) \u5e94\u6539\u4e3a \\(\\min()\\) \u3002\u4ece\u8ffd\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u5230\u8ffd\u6c42\u201c\u6070\u597d\u201d\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u4f7f\u7528 \\(amt + 1\\) \u6765\u8868\u793a\u201c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u201d\u7684\u65e0\u6548\u89e3\u3002
- \u96f6\u94b1\u5151\u6362 II \u95ee\u9898\u4ece\u6c42\u201c\u6700\u5c11\u786c\u5e01\u6570\u91cf\u201d\u6539\u4e3a\u6c42\u201c\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u201d\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u76f8\u5e94\u5730\u4ece \\(\\min()\\) \u6539\u4e3a\u6c42\u548c\u8fd0\u7b97\u7b26\u3002
\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
- \u7f16\u8f91\u8ddd\u79bb\uff08Levenshtein \u8ddd\u79bb\uff09\u7528\u4e8e\u8861\u91cf\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u7684\u76f8\u4f3c\u5ea6\uff0c\u5176\u5b9a\u4e49\u4e3a\u4ece\u4e00\u4e2a\u5b57\u7b26\u4e32\u5230\u53e6\u4e00\u4e2a\u5b57\u7b26\u4e32\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\uff0c\u7f16\u8f91\u64cd\u4f5c\u5305\u62ec\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\u3002
- \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002\u5f53 \\(s[i] \\ne t[j]\\) \u65f6\uff0c\u5177\u6709\u4e09\u79cd\u51b3\u7b56\uff1a\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\uff0c\u5b83\u4eec\u90fd\u6709\u76f8\u5e94\u7684\u5269\u4f59\u5b50\u95ee\u9898\u3002\u636e\u6b64\u4fbf\u53ef\u4ee5\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u6784\u5efa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u800c\u5f53 \\(s[i] = t[j]\\) \u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\u3002
- \u5728\u7f16\u8f91\u8ddd\u79bb\u4e2d\uff0c\u72b6\u6001\u4f9d\u8d56\u5176\u6b63\u4e0a\u65b9\u3001\u6b63\u5de6\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u7a7a\u95f4\u4f18\u5316\u540e\u6b63\u5e8f\u6216\u5012\u5e8f\u904d\u5386\u90fd\u65e0\u6cd5\u6b63\u786e\u5730\u8fdb\u884c\u72b6\u6001\u8f6c\u79fb\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u53d8\u91cf\u6682\u5b58\u5de6\u4e0a\u65b9\u72b6\u6001\uff0c\u4ece\u800c\u8f6c\u5316\u5230\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7b49\u4ef7\u7684\u60c5\u51b5\uff0c\u53ef\u4ee5\u5728\u7a7a\u95f4\u4f18\u5316\u540e\u8fdb\u884c\u6b63\u5e8f\u904d\u5386\u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/","title":"14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898","text":"\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6c42\u89e3\u53e6\u4e00\u4e2a\u5e38\u89c1\u7684\u80cc\u5305\u95ee\u9898\uff1a\u5b8c\u5168\u80cc\u5305\uff0c\u518d\u4e86\u89e3\u5b83\u7684\u4e00\u79cd\u7279\u4f8b\uff1a\u96f6\u94b1\u5151\u6362\u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1451","title":"14.5.1 \u00a0 \u5b8c\u5168\u80cc\u5305","text":"Question
\u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\)\u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002\u793a\u4f8b\u5982\u56fe 14-22 \u6240\u793a\u3002
\u56fe 14-22 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u548c 0-1 \u80cc\u5305\u95ee\u9898\u975e\u5e38\u76f8\u4f3c\uff0c\u533a\u522b\u4ec5\u5728\u4e8e\u4e0d\u9650\u5236\u7269\u54c1\u7684\u9009\u62e9\u6b21\u6570\u3002
- \u5728 0-1 \u80cc\u5305\u95ee\u9898\u4e2d\uff0c\u6bcf\u79cd\u7269\u54c1\u53ea\u6709\u4e00\u4e2a\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u53ea\u80fd\u4ece\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002
- \u5728\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u4e2d\uff0c\u6bcf\u79cd\u7269\u54c1\u7684\u6570\u91cf\u662f\u65e0\u9650\u7684\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u4ecd\u53ef\u4ee5\u4ece\u524d \\(i\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002
\u5728\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u89c4\u5b9a\u4e0b\uff0c\u72b6\u6001 \\([i, c]\\) \u7684\u53d8\u5316\u5206\u4e3a\u4e24\u79cd\u60c5\u51b5\u3002
- \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u95ee\u9898\u76f8\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i-1, c]\\) \u3002
- \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u95ee\u9898\u4e0d\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i, c-wgt[i-1]]\\) \u3002
\u4ece\u800c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u53d8\u4e3a\uff1a
\\[ dp[i, c] = \\max(dp[i-1, c], dp[i, c - wgt[i-1]] + val[i-1]) \\]"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5bf9\u6bd4\u4e24\u9053\u9898\u76ee\u7684\u4ee3\u7801\uff0c\u72b6\u6001\u8f6c\u79fb\u4e2d\u6709\u4e00\u5904\u4ece \\(i-1\\) \u53d8\u4e3a \\(i\\) \uff0c\u5176\u4f59\u5b8c\u5168\u4e00\u81f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig unbounded_knapsack.pydef unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (cap + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n for c in range(1, cap + 1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\n return dp[n][cap]\n
unbounded_knapsack.cpp/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.java/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.cs/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint UnboundedKnapsackDP(int[] wgt, int[] val, int cap) {\n int n = wgt.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i, c] = dp[i - 1, c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i, c] = Math.Max(dp[i - 1, c], dp[i, c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n, cap];\n}\n
unbounded_knapsack.go/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, cap+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n for c := 1; c <= cap; c++ {\n if wgt[i-1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i-1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i][c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[n][cap]\n}\n
unbounded_knapsack.swift/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for c in stride(from: 1, through: cap, by: 1) {\n if wgt[i - 1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[n][cap]\n}\n
unbounded_knapsack.js/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDP(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: cap + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.ts/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDP(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: cap + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = Math.max(\n dp[i - 1][c],\n dp[i][c - wgt[i - 1]] + val[i - 1]\n );\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.dart/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.rs/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; cap + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for c in 1..=cap {\n if wgt[i - 1] > c as i32 {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = std::cmp::max(dp[i - 1][c], dp[i][c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
unbounded_knapsack.c/* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(cap + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = myMax(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[n][cap];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n return res;\n}\n
unbounded_knapsack.zig// \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\n comptime var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..cap + 1) |c| {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[i][c] = dp[i - 1][c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[i][c] = @max(dp[i - 1][c], dp[i][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[n][cap];\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7531\u4e8e\u5f53\u524d\u72b6\u6001\u662f\u4ece\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u72b6\u6001\u8f6c\u79fb\u800c\u6765\u7684\uff0c\u56e0\u6b64\u7a7a\u95f4\u4f18\u5316\u540e\u5e94\u8be5\u5bf9 \\(dp\\) \u8868\u4e2d\u7684\u6bcf\u4e00\u884c\u8fdb\u884c\u6b63\u5e8f\u904d\u5386\u3002
\u8fd9\u4e2a\u904d\u5386\u987a\u5e8f\u4e0e 0-1 \u80cc\u5305\u6b63\u597d\u76f8\u53cd\u3002\u8bf7\u501f\u52a9\u56fe 14-23 \u6765\u7406\u89e3\u4e24\u8005\u7684\u533a\u522b\u3002
<1><2><3><4><5><6> \u56fe 14-23 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u5728\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
\u4ee3\u7801\u5b9e\u73b0\u6bd4\u8f83\u7b80\u5355\uff0c\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4\u5220\u9664\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig unbounded_knapsack.pydef unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(wgt)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * (cap + 1)\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u6b63\u5e8f\u904d\u5386\n for c in range(1, cap + 1):\n if wgt[i - 1] > c:\n # \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n else:\n # \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n return dp[cap]\n
unbounded_knapsack.cpp/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\n int n = wgt.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.java/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.cs/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint UnboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\n int n = wgt.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.Max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.go/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt, val []int, cap int) int {\n n := len(wgt)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, cap+1)\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n for c := 1; c <= cap; c++ {\n if wgt[i-1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n }\n }\n }\n return dp[cap]\n}\n
unbounded_knapsack.swift/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\n let n = wgt.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: cap + 1)\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for c in stride(from: 1, through: cap, by: 1) {\n if wgt[i - 1] > c {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c]\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n }\n }\n }\n return dp[cap]\n}\n
unbounded_knapsack.js/* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDPComp(wgt, val, cap) {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: cap + 1 }, () => 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.ts/* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction unboundedKnapsackDPComp(\n wgt: Array<number>,\n val: Array<number>,\n cap: number\n): number {\n const n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: cap + 1 }, () => 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.dart/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(List<int> wgt, List<int> val, int cap) {\n int n = wgt.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(cap + 1, 0);\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
unbounded_knapsack.rs/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\n let n = wgt.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; cap + 1];\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for c in 1..=cap {\n if wgt[i - 1] > c as i32 {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n }\n }\n }\n dp[cap]\n}\n
unbounded_knapsack.c/* \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {\n int n = wgtSize;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(cap + 1, sizeof(int));\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int c = 1; c <= cap; c++) {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n }\n }\n }\n int res = dp[cap];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
unbounded_knapsack.zig// \u5b8c\u5168\u80cc\u5305\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDPComp(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\n comptime var n = wgt.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (cap + 1);\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..cap + 1) |c| {\n if (wgt[i - 1] > c) {\n // \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\n dp[c] = dp[c];\n } else {\n // \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\n dp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n }\n }\n }\n return dp[cap];\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1452","title":"14.5.2 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898","text":"\u80cc\u5305\u95ee\u9898\u662f\u4e00\u5927\u7c7b\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4ee3\u8868\uff0c\u5176\u62e5\u6709\u5f88\u591a\u53d8\u79cd\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002
Question
\u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002\u793a\u4f8b\u5982\u56fe 14-24 \u6240\u793a\u3002
\u56fe 14-24 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u96f6\u94b1\u5151\u6362\u53ef\u4ee5\u770b\u4f5c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u4e00\u79cd\u7279\u6b8a\u60c5\u51b5\uff0c\u4e24\u8005\u5177\u6709\u4ee5\u4e0b\u8054\u7cfb\u4e0e\u4e0d\u540c\u70b9\u3002
- \u4e24\u9053\u9898\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\uff0c\u201c\u7269\u54c1\u201d\u5bf9\u5e94\u201c\u786c\u5e01\u201d\u3001\u201c\u7269\u54c1\u91cd\u91cf\u201d\u5bf9\u5e94\u201c\u786c\u5e01\u9762\u503c\u201d\u3001\u201c\u80cc\u5305\u5bb9\u91cf\u201d\u5bf9\u5e94\u201c\u76ee\u6807\u91d1\u989d\u201d\u3002
- \u4f18\u5316\u76ee\u6807\u76f8\u53cd\uff0c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u662f\u8981\u6700\u5927\u5316\u7269\u54c1\u4ef7\u503c\uff0c\u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u8981\u6700\u5c0f\u5316\u786c\u5e01\u6570\u91cf\u3002
- \u5b8c\u5168\u80cc\u5305\u95ee\u9898\u662f\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u89e3\uff0c\u96f6\u94b1\u5151\u6362\u662f\u6c42\u201c\u6070\u597d\u201d\u51d1\u5230\u76ee\u6807\u91d1\u989d\u7684\u89e3\u3002
\u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868
\u72b6\u6001 \\([i, a]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\uff0c\u8bb0\u4e3a \\(dp[i, a]\\) \u3002
\u4e8c\u7ef4 \\(dp\\) \u8868\u7684\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt+1)\\) \u3002
\u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b
\u672c\u9898\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u5b58\u5728\u4ee5\u4e0b\u4e24\u70b9\u5dee\u5f02\u3002
- \u672c\u9898\u8981\u6c42\u6700\u5c0f\u503c\uff0c\u56e0\u6b64\u9700\u5c06\u8fd0\u7b97\u7b26 \\(\\max()\\) \u66f4\u6539\u4e3a \\(\\min()\\) \u3002
- \u4f18\u5316\u4e3b\u4f53\u662f\u786c\u5e01\u6570\u91cf\u800c\u975e\u5546\u54c1\u4ef7\u503c\uff0c\u56e0\u6b64\u5728\u9009\u4e2d\u786c\u5e01\u65f6\u6267\u884c \\(+1\\) \u5373\u53ef\u3002
\\[ dp[i, a] = \\min(dp[i-1, a], dp[i, a - coins[i-1]] + 1) \\] \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f
\u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u51d1\u51fa\u5b83\u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002
\u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u610f \\(> 0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u5373\u662f\u65e0\u6548\u89e3\u3002\u4e3a\u4f7f\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\min()\\) \u51fd\u6570\u80fd\u591f\u8bc6\u522b\u5e76\u8fc7\u6ee4\u65e0\u6548\u89e3\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528 \\(+ \\infty\\) \u6765\u8868\u793a\u5b83\u4eec\uff0c\u5373\u4ee4\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(+ \\infty\\) \u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u5e76\u672a\u63d0\u4f9b \\(+ \\infty\\) \u53d8\u91cf\uff0c\u53ea\u80fd\u4f7f\u7528\u6574\u578b int \u7684\u6700\u5927\u503c\u6765\u4ee3\u66ff\u3002\u800c\u8fd9\u53c8\u4f1a\u5bfc\u81f4\u5927\u6570\u8d8a\u754c\uff1a\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(+ 1\\) \u64cd\u4f5c\u53ef\u80fd\u53d1\u751f\u6ea2\u51fa\u3002
\u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u6570\u5b57 \\(amt + 1\\) \u6765\u8868\u793a\u65e0\u6548\u89e3\uff0c\u56e0\u4e3a\u51d1\u51fa \\(amt\\) \u7684\u786c\u5e01\u6570\u91cf\u6700\u591a\u4e3a \\(amt\\) \u3002\u6700\u540e\u8fd4\u56de\u524d\uff0c\u5224\u65ad \\(dp[n, amt]\\) \u662f\u5426\u7b49\u4e8e \\(amt + 1\\) \uff0c\u82e5\u662f\u5219\u8fd4\u56de \\(-1\\) \uff0c\u4ee3\u8868\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change.pydef coin_change_dp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n MAX = amt + 1\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (amt + 1) for _ in range(n + 1)]\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a in range(1, amt + 1):\n dp[0][a] = MAX\n # \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in range(1, n + 1):\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\n return dp[n][amt] if dp[n][amt] != MAX else -1\n
coin_change.cpp/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(vector<int> &coins, int amt) {\n int n = coins.size();\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
coin_change.java/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int[] coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][amt + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
coin_change.cs/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint CoinChangeDP(int[] coins, int amt) {\n int n = coins.Length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, amt + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0, a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i, a] = dp[i - 1, a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i, a] = Math.Min(dp[i - 1, a], dp[i, a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n, amt] != MAX ? dp[n, amt] : -1;\n}\n
coin_change.go/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins []int, amt int) int {\n n := len(coins)\n max := amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, amt+1)\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a := 1; a <= amt; a++ {\n dp[0][a] = max\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i <= n; i++ {\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i-1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = int(math.Min(float64(dp[i-1][a]), float64(dp[i][a-coins[i-1]]+1)))\n }\n }\n }\n if dp[n][amt] != max {\n return dp[n][amt]\n }\n return -1\n}\n
coin_change.swift/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n let MAX = amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a in stride(from: 1, through: amt, by: 1) {\n dp[0][a] = MAX\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1\n}\n
coin_change.js/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDP(coins, amt) {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] !== MAX ? dp[n][amt] : -1;\n}\n
coin_change.ts/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDP(coins: Array<number>, amt: number): number {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (let a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] !== MAX ? dp[n][amt] : -1;\n}\n
coin_change.dart/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(List<int> coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
coin_change.rs/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n let max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; amt + 1]; n + 1];\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for a in 1..= amt {\n dp[0][a] = max;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = std::cmp::min(dp[i - 1][a], dp[i][a - coins[i - 1] as usize] + 1);\n }\n }\n }\n if dp[n][amt] != max { return dp[n][amt] as i32; } else { -1 }\n}\n
coin_change.c/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(amt + 1, sizeof(int));\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (int a = 1; a <= amt; a++) {\n dp[0][a] = MAX;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = myMin(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n }\n }\n }\n int res = dp[n][amt] != MAX ? dp[n][amt] : -1;\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n free(dp);\n return res;\n}\n
coin_change.zig// \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeDP(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n comptime var max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\n for (1..amt + 1) |a| {\n dp[0][a] = max;\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = @min(dp[i - 1][a], dp[i][a - @as(usize, @intCast(coins[i - 1]))] + 1);\n }\n }\n }\n if (dp[n][amt] != max) {\n return @intCast(dp[n][amt]);\n } else {\n return -1;\n }\n}\n
\u56fe 14-25 \u5c55\u793a\u4e86\u96f6\u94b1\u5151\u6362\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b\uff0c\u548c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u975e\u5e38\u76f8\u4f3c\u3002
<1><2><3><4><5><6><7><8><9><10><11><12><13><14><15> \u56fe 14-25 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_1","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u96f6\u94b1\u5151\u6362\u7684\u7a7a\u95f4\u4f18\u5316\u7684\u5904\u7406\u65b9\u5f0f\u548c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u4e00\u81f4\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change.pydef coin_change_dp_comp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n MAX = amt + 1\n # \u521d\u59cb\u5316 dp \u8868\n dp = [MAX] * (amt + 1)\n dp[0] = 0\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u6b63\u5e8f\u904d\u5386\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\n return dp[amt] if dp[amt] != MAX else -1\n
coin_change.cpp/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(vector<int> &coins, int amt) {\n int n = coins.size();\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(amt + 1, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.java/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int[] coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n Arrays.fill(dp, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.cs/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint CoinChangeDPComp(int[] coins, int amt) {\n int n = coins.Length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n Array.Fill(dp, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.Min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.go/* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins []int, amt int) int {\n n := len(coins)\n max := amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, amt+1)\n for i := 1; i <= amt; i++ {\n dp[i] = max\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n // \u5012\u5e8f\u904d\u5386\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = int(math.Min(float64(dp[a]), float64(dp[a-coins[i-1]]+1)))\n }\n }\n }\n if dp[amt] != max {\n return dp[amt]\n }\n return -1\n}\n
coin_change.swift/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n let MAX = amt + 1\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: MAX, count: amt + 1)\n dp[0] = 0\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1\n}\n
coin_change.js/* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDPComp(coins, amt) {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] !== MAX ? dp[amt] : -1;\n}\n
coin_change.ts/* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeDPComp(coins: Array<number>, amt: number): number {\n const n = coins.length;\n const MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] !== MAX ? dp[amt] : -1;\n}\n
coin_change.dart/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(List<int> coins, int amt) {\n int n = coins.length;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(amt + 1, MAX);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n return dp[amt] != MAX ? dp[amt] : -1;\n}\n
coin_change.rs/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp_comp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n let max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; amt + 1];\n dp.fill(max);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = std::cmp::min(dp[a], dp[a - coins[i - 1] as usize] + 1);\n }\n }\n }\n if dp[amt] != max { return dp[amt] as i32; } else { -1 }\n}\n
coin_change.c/* \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n int MAX = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(amt + 1, sizeof(int));\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = myMin(dp[a], dp[a - coins[i - 1]] + 1);\n }\n }\n }\n int res = dp[amt] != MAX ? dp[amt] : -1;\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
coin_change.zig// \u96f6\u94b1\u5151\u6362\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeDPComp(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n comptime var max = amt + 1;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (amt + 1);\n @memset(&dp, max);\n dp[0] = 0;\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = @min(dp[a], dp[a - @as(usize, @intCast(coins[i - 1]))] + 1);\n }\n }\n }\n if (dp[amt] != max) {\n return @intCast(dp[amt]);\n } else {\n return -1;\n }\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1453-ii","title":"14.5.3 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898 II","text":"Question
\u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u3002\u793a\u4f8b\u5982\u56fe 14-26 \u6240\u793a\u3002
\u56fe 14-26 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898 II \u7684\u793a\u4f8b\u6570\u636e
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_2","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"\u76f8\u6bd4\u4e8e\u4e0a\u4e00\u9898\uff0c\u672c\u9898\u76ee\u6807\u662f\u6c42\u7ec4\u5408\u6570\u91cf\uff0c\u56e0\u6b64\u5b50\u95ee\u9898\u53d8\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u7ec4\u5408\u6570\u91cf\u3002\u800c \\(dp\\) \u8868\u4ecd\u7136\u662f\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt + 1)\\) \u7684\u4e8c\u7ef4\u77e9\u9635\u3002
\u5f53\u524d\u72b6\u6001\u7684\u7ec4\u5408\u6570\u91cf\u7b49\u4e8e\u4e0d\u9009\u5f53\u524d\u786c\u5e01\u4e0e\u9009\u5f53\u524d\u786c\u5e01\u8fd9\u4e24\u79cd\u51b3\u7b56\u7684\u7ec4\u5408\u6570\u91cf\u4e4b\u548c\u3002\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a
\\[ dp[i, a] = dp[i-1, a] + dp[i, a - coins[i-1]] \\] \u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u65e0\u987b\u9009\u62e9\u4efb\u4f55\u786c\u5e01\u5373\u53ef\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u5e94\u5c06\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u521d\u59cb\u5316\u4e3a \\(1\\) \u3002\u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u4f55 \\(>0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change_ii.pydef coin_change_ii_dp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [[0] * (amt + 1) for _ in range(n + 1)]\n # \u521d\u59cb\u5316\u9996\u5217\n for i in range(n + 1):\n dp[i][0] = 1\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\n return dp[n][amt]\n
coin_change_ii.cpp/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(vector<int> &coins, int amt) {\n int n = coins.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.java/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int[] coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[][] dp = new int[n + 1][amt + 1];\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.cs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint CoinChangeIIDP(int[] coins, int amt) {\n int n = coins.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[,] dp = new int[n + 1, amt + 1];\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i, 0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i, a] = dp[i - 1, a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i, a] = dp[i - 1, a] + dp[i, a - coins[i - 1]];\n }\n }\n }\n return dp[n, amt];\n}\n
coin_change_ii.go/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins []int, amt int) int {\n n := len(coins)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([][]int, n+1)\n for i := 0; i <= n; i++ {\n dp[i] = make([]int, amt+1)\n }\n // \u521d\u59cb\u5316\u9996\u5217\n for i := 0; i <= n; i++ {\n dp[i][0] = 1\n }\n // \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u548c\u5217\n for i := 1; i <= n; i++ {\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i-1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i-1][a] + dp[i][a-coins[i-1]]\n }\n }\n }\n return dp[n][amt]\n}\n
coin_change_ii.swift/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n // \u521d\u59cb\u5316\u9996\u5217\n for i in stride(from: 0, through: n, by: 1) {\n dp[i][0] = 1\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\n }\n }\n }\n return dp[n][amt]\n}\n
coin_change_ii.js/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDP(coins, amt) {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u521d\u59cb\u5316\u9996\u5217\n for (let i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.ts/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDP(coins: Array<number>, amt: number): number {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: n + 1 }, () =>\n Array.from({ length: amt + 1 }, () => 0)\n );\n // \u521d\u59cb\u5316\u9996\u5217\n for (let i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.dart/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(List<int> coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n return dp[n][amt];\n}\n
coin_change_ii.rs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![vec![0; amt + 1]; n + 1];\n // \u521d\u59cb\u5316\u9996\u5217\n for i in 0..= n {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1] as usize];\n }\n }\n }\n dp[n][amt]\n}\n
coin_change_ii.c/* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n // \u521d\u59cb\u5316 dp \u8868\n int **dp = malloc((n + 1) * sizeof(int *));\n for (int i = 0; i <= n; i++) {\n dp[i] = calloc(amt + 1, sizeof(int));\n }\n // \u521d\u59cb\u5316\u9996\u5217\n for (int i = 0; i <= n; i++) {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n }\n }\n }\n int res = dp[n][amt];\n // \u91ca\u653e\u5185\u5b58\n for (int i = 0; i <= n; i++) {\n free(dp[i]);\n }\n free(dp);\n return res;\n}\n
coin_change_ii.zig// \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDP(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n // \u521d\u59cb\u5316\u9996\u5217\n for (0..n + 1) |i| {\n dp[i][0] = 1;\n }\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[i][a] = dp[i - 1][a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[i][a] = dp[i - 1][a] + dp[i][a - @as(usize, @intCast(coins[i - 1]))];\n }\n }\n }\n return dp[n][amt];\n}\n
"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_2","title":"3. \u00a0 \u7a7a\u95f4\u4f18\u5316","text":"\u7a7a\u95f4\u4f18\u5316\u5904\u7406\u65b9\u5f0f\u76f8\u540c\uff0c\u5220\u9664\u786c\u5e01\u7ef4\u5ea6\u5373\u53ef\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change_ii.pydef coin_change_ii_dp_comp(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\n n = len(coins)\n # \u521d\u59cb\u5316 dp \u8868\n dp = [0] * (amt + 1)\n dp[0] = 1\n # \u72b6\u6001\u8f6c\u79fb\n for i in range(1, n + 1):\n # \u6b63\u5e8f\u904d\u5386\n for a in range(1, amt + 1):\n if coins[i - 1] > a:\n # \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n else:\n # \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]]\n return dp[amt]\n
coin_change_ii.cpp/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(vector<int> &coins, int amt) {\n int n = coins.size();\n // \u521d\u59cb\u5316 dp \u8868\n vector<int> dp(amt + 1, 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.java/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int[] coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.cs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint CoinChangeIIDPComp(int[] coins, int amt) {\n int n = coins.Length;\n // \u521d\u59cb\u5316 dp \u8868\n int[] dp = new int[amt + 1];\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.go/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins []int, amt int) int {\n n := len(coins)\n // \u521d\u59cb\u5316 dp \u8868\n dp := make([]int, amt+1)\n dp[0] = 1\n // \u72b6\u6001\u8f6c\u79fb\n for i := 1; i <= n; i++ {\n // \u5012\u5e8f\u904d\u5386\n for a := 1; a <= amt; a++ {\n if coins[i-1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a-coins[i-1]]\n }\n }\n }\n return dp[amt]\n}\n
coin_change_ii.swift/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins: [Int], amt: Int) -> Int {\n let n = coins.count\n // \u521d\u59cb\u5316 dp \u8868\n var dp = Array(repeating: 0, count: amt + 1)\n dp[0] = 1\n // \u72b6\u6001\u8f6c\u79fb\n for i in stride(from: 1, through: n, by: 1) {\n for a in stride(from: 1, through: amt, by: 1) {\n if coins[i - 1] > a {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a]\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]]\n }\n }\n }\n return dp[amt]\n}\n
coin_change_ii.js/* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDPComp(coins, amt) {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.ts/* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction coinChangeIIDPComp(coins: Array<number>, amt: number): number {\n const n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n const dp = Array.from({ length: amt + 1 }, () => 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (let i = 1; i <= n; i++) {\n for (let a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.dart/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(List<int> coins, int amt) {\n int n = coins.length;\n // \u521d\u59cb\u5316 dp \u8868\n List<int> dp = List.filled(amt + 1, 0);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n return dp[amt];\n}\n
coin_change_ii.rs/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp_comp(coins: &[i32], amt: usize) -> i32 {\n let n = coins.len();\n // \u521d\u59cb\u5316 dp \u8868\n let mut dp = vec![0; amt + 1];\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for i in 1..=n {\n for a in 1..=amt {\n if coins[i - 1] > a as i32 {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = dp[a] + dp[a - coins[i - 1] as usize];\n }\n }\n }\n dp[amt]\n}\n
coin_change_ii.c/* \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int coins[], int amt, int coinsSize) {\n int n = coinsSize;\n // \u521d\u59cb\u5316 dp \u8868\n int *dp = calloc(amt + 1, sizeof(int));\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (int i = 1; i <= n; i++) {\n for (int a = 1; a <= amt; a++) {\n if (coins[i - 1] > a) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\n dp[a] = dp[a] + dp[a - coins[i - 1]];\n }\n }\n }\n int res = dp[amt];\n // \u91ca\u653e\u5185\u5b58\n free(dp);\n return res;\n}\n
coin_change_ii.zig// \u96f6\u94b1\u5151\u6362 II\uff1a\u7a7a\u95f4\u4f18\u5316\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDPComp(comptime coins: []i32, comptime amt: usize) i32 {\n comptime var n = coins.len;\n // \u521d\u59cb\u5316 dp \u8868\n var dp = [_]i32{0} ** (amt + 1);\n dp[0] = 1;\n // \u72b6\u6001\u8f6c\u79fb\n for (1..n + 1) |i| {\n for (1..amt + 1) |a| {\n if (coins[i - 1] > @as(i32, @intCast(a))) {\n // \u82e5\u8d85\u8fc7\u76ee\u6807\u91d1\u989d\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\n dp[a] = dp[a];\n } else {\n // \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\n dp[a] = dp[a] + dp[a - @as(usize, @intCast(coins[i - 1]))];\n }\n }\n }\n return dp[amt];\n}\n
"},{"location":"chapter_graph/","title":"\u7b2c 9 \u7ae0 \u00a0 \u56fe","text":"Abstract
\u5728\u751f\u547d\u65c5\u9014\u4e2d\uff0c\u6211\u4eec\u5c31\u50cf\u662f\u4e00\u4e2a\u4e2a\u8282\u70b9\uff0c\u88ab\u65e0\u6570\u770b\u4e0d\u89c1\u7684\u8fb9\u76f8\u8fde\u3002
\u6bcf\u4e00\u6b21\u7684\u76f8\u8bc6\u4e0e\u76f8\u79bb\uff0c\u90fd\u5728\u8fd9\u5f20\u5de8\u5927\u7684\u7f51\u7edc\u56fe\u4e2d\u7559\u4e0b\u72ec\u7279\u7684\u5370\u8bb0\u3002
"},{"location":"chapter_graph/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 9.1 \u00a0 \u56fe
- 9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c
- 9.3 \u00a0 \u56fe\u7684\u904d\u5386
- 9.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_graph/graph/","title":"9.1 \u00a0 \u56fe","text":"\u300c\u56fe graph\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u7531\u300c\u9876\u70b9 vertex\u300d\u548c\u300c\u8fb9 edge\u300d\u7ec4\u6210\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u56fe \\(G\\) \u62bd\u8c61\u5730\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9 \\(V\\) \u548c\u4e00\u7ec4\u8fb9 \\(E\\) \u7684\u96c6\u5408\u3002\u4ee5\u4e0b\u793a\u4f8b\u5c55\u793a\u4e86\u4e00\u4e2a\u5305\u542b 5 \u4e2a\u9876\u70b9\u548c 7 \u6761\u8fb9\u7684\u56fe\u3002
\\[ \\begin{aligned} V & = \\{ 1, 2, 3, 4, 5 \\} \\newline E & = \\{ (1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,5) \\} \\newline G & = \\{ V, E \\} \\newline \\end{aligned} \\] \u5982\u679c\u5c06\u9876\u70b9\u770b\u4f5c\u8282\u70b9\uff0c\u5c06\u8fb9\u770b\u4f5c\u8fde\u63a5\u5404\u4e2a\u8282\u70b9\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5c06\u56fe\u770b\u4f5c\u4e00\u79cd\u4ece\u94fe\u8868\u62d3\u5c55\u800c\u6765\u7684\u6570\u636e\u7ed3\u6784\u3002\u5982\u56fe 9-1 \u6240\u793a\uff0c\u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u7684\u81ea\u7531\u5ea6\u66f4\u9ad8\uff0c\u56e0\u800c\u66f4\u4e3a\u590d\u6742\u3002
\u56fe 9-1 \u00a0 \u94fe\u8868\u3001\u6811\u3001\u56fe\u4e4b\u95f4\u7684\u5173\u7cfb
"},{"location":"chapter_graph/graph/#911","title":"9.1.1 \u00a0 \u56fe\u5e38\u89c1\u7c7b\u578b\u4e0e\u672f\u8bed","text":"\u6839\u636e\u8fb9\u662f\u5426\u5177\u6709\u65b9\u5411\uff0c\u53ef\u5206\u4e3a\u300c\u65e0\u5411\u56fe undirected graph\u300d\u548c\u300c\u6709\u5411\u56fe directed graph\u300d\uff0c\u5982\u56fe 9-2 \u6240\u793a\u3002
- \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u8fb9\u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u7684\u201c\u53cc\u5411\u201d\u8fde\u63a5\u5173\u7cfb\uff0c\u4f8b\u5982\u5fae\u4fe1\u6216 QQ \u4e2d\u7684\u201c\u597d\u53cb\u5173\u7cfb\u201d\u3002
- \u5728\u6709\u5411\u56fe\u4e2d\uff0c\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u5373 \\(A \\rightarrow B\\) \u548c \\(A \\leftarrow B\\) \u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u4f8b\u5982\u5fae\u535a\u6216\u6296\u97f3\u4e0a\u7684\u201c\u5173\u6ce8\u201d\u4e0e\u201c\u88ab\u5173\u6ce8\u201d\u5173\u7cfb\u3002
\u56fe 9-2 \u00a0 \u6709\u5411\u56fe\u4e0e\u65e0\u5411\u56fe
\u6839\u636e\u6240\u6709\u9876\u70b9\u662f\u5426\u8fde\u901a\uff0c\u53ef\u5206\u4e3a\u300c\u8fde\u901a\u56fe connected graph\u300d\u548c\u300c\u975e\u8fde\u901a\u56fe disconnected graph\u300d\uff0c\u5982\u56fe 9-3 \u6240\u793a\u3002
- \u5bf9\u4e8e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u53ef\u4ee5\u5230\u8fbe\u5176\u4f59\u4efb\u610f\u9876\u70b9\u3002
- \u5bf9\u4e8e\u975e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002
\u56fe 9-3 \u00a0 \u8fde\u901a\u56fe\u4e0e\u975e\u8fde\u901a\u56fe
\u6211\u4eec\u8fd8\u53ef\u4ee5\u4e3a\u8fb9\u6dfb\u52a0\u201c\u6743\u91cd\u201d\u53d8\u91cf\uff0c\u4ece\u800c\u5f97\u5230\u5982\u56fe 9-4 \u6240\u793a\u7684\u300c\u6709\u6743\u56fe weighted graph\u300d\u3002\u4f8b\u5982\u5728\u300a\u738b\u8005\u8363\u8000\u300b\u7b49\u624b\u6e38\u4e2d\uff0c\u7cfb\u7edf\u4f1a\u6839\u636e\u5171\u540c\u6e38\u620f\u65f6\u95f4\u6765\u8ba1\u7b97\u73a9\u5bb6\u4e4b\u95f4\u7684\u201c\u4eb2\u5bc6\u5ea6\u201d\uff0c\u8fd9\u79cd\u4eb2\u5bc6\u5ea6\u7f51\u7edc\u5c31\u53ef\u4ee5\u7528\u6709\u6743\u56fe\u6765\u8868\u793a\u3002
\u56fe 9-4 \u00a0 \u6709\u6743\u56fe\u4e0e\u65e0\u6743\u56fe
\u56fe\u6570\u636e\u7ed3\u6784\u5305\u542b\u4ee5\u4e0b\u5e38\u7528\u672f\u8bed\u3002
- \u300c\u90bb\u63a5 adjacency\u300d\uff1a\u5f53\u4e24\u9876\u70b9\u4e4b\u95f4\u5b58\u5728\u8fb9\u76f8\u8fde\u65f6\uff0c\u79f0\u8fd9\u4e24\u9876\u70b9\u201c\u90bb\u63a5\u201d\u3002\u5728\u56fe 9-4 \u4e2d\uff0c\u9876\u70b9 1 \u7684\u90bb\u63a5\u9876\u70b9\u4e3a\u9876\u70b9 2\u30013\u30015\u3002
- \u300c\u8def\u5f84 path\u300d\uff1a\u4ece\u9876\u70b9 A \u5230\u9876\u70b9 B \u7ecf\u8fc7\u7684\u8fb9\u6784\u6210\u7684\u5e8f\u5217\u88ab\u79f0\u4e3a\u4ece A \u5230 B \u7684\u201c\u8def\u5f84\u201d\u3002\u5728\u56fe 9-4 \u4e2d\uff0c\u8fb9\u5e8f\u5217 1-5-2-4 \u662f\u9876\u70b9 1 \u5230\u9876\u70b9 4 \u7684\u4e00\u6761\u8def\u5f84\u3002
- \u300c\u5ea6 degree\u300d\uff1a\u4e00\u4e2a\u9876\u70b9\u62e5\u6709\u7684\u8fb9\u6570\u3002\u5bf9\u4e8e\u6709\u5411\u56fe\uff0c\u300c\u5165\u5ea6 in-degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u6307\u5411\u8be5\u9876\u70b9\uff0c\u300c\u51fa\u5ea6 out-degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u4ece\u8be5\u9876\u70b9\u6307\u51fa\u3002
"},{"location":"chapter_graph/graph/#912","title":"9.1.2 \u00a0 \u56fe\u7684\u8868\u793a","text":"\u56fe\u7684\u5e38\u7528\u8868\u793a\u65b9\u5f0f\u5305\u62ec\u201c\u90bb\u63a5\u77e9\u9635\u201d\u548c\u201c\u90bb\u63a5\u8868\u201d\u3002\u4ee5\u4e0b\u4f7f\u7528\u65e0\u5411\u56fe\u8fdb\u884c\u4e3e\u4f8b\u3002
"},{"location":"chapter_graph/graph/#1","title":"1. \u00a0 \u90bb\u63a5\u77e9\u9635","text":"\u8bbe\u56fe\u7684\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u300c\u90bb\u63a5\u77e9\u9635 adjacency matrix\u300d\u4f7f\u7528\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u662f\u5426\u5b58\u5728\u8fb9\u3002
\u5982\u56fe 9-5 \u6240\u793a\uff0c\u8bbe\u90bb\u63a5\u77e9\u9635\u4e3a \\(M\\)\u3001\u9876\u70b9\u5217\u8868\u4e3a \\(V\\) \uff0c\u90a3\u4e48\u77e9\u9635\u5143\u7d20 \\(M[i, j] = 1\\) \u8868\u793a\u9876\u70b9 \\(V[i]\\) \u5230\u9876\u70b9 \\(V[j]\\) \u4e4b\u95f4\u5b58\u5728\u8fb9\uff0c\u53cd\u4e4b \\(M[i, j] = 0\\) \u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u65e0\u8fb9\u3002
\u56fe 9-5 \u00a0 \u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a
\u90bb\u63a5\u77e9\u9635\u5177\u6709\u4ee5\u4e0b\u7279\u6027\u3002
- \u9876\u70b9\u4e0d\u80fd\u4e0e\u81ea\u8eab\u76f8\u8fde\uff0c\u56e0\u6b64\u90bb\u63a5\u77e9\u9635\u4e3b\u5bf9\u89d2\u7ebf\u5143\u7d20\u6ca1\u6709\u610f\u4e49\u3002
- \u5bf9\u4e8e\u65e0\u5411\u56fe\uff0c\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u7b49\u4ef7\uff0c\u6b64\u65f6\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\u3002
- \u5c06\u90bb\u63a5\u77e9\u9635\u7684\u5143\u7d20\u4ece \\(1\\) \u548c \\(0\\) \u66ff\u6362\u4e3a\u6743\u91cd\uff0c\u5219\u53ef\u8868\u793a\u6709\u6743\u56fe\u3002
\u4f7f\u7528\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u77e9\u9635\u5143\u7d20\u4ee5\u83b7\u53d6\u8fb9\uff0c\u56e0\u6b64\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002\u7136\u800c\uff0c\u77e9\u9635\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u5185\u5b58\u5360\u7528\u8f83\u591a\u3002
"},{"location":"chapter_graph/graph/#2","title":"2. \u00a0 \u90bb\u63a5\u8868","text":"\u300c\u90bb\u63a5\u8868 adjacency list\u300d\u4f7f\u7528 \\(n\\) \u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u94fe\u8868\u8282\u70b9\u8868\u793a\u9876\u70b9\u3002\u7b2c \\(i\\) \u4e2a\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff08\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u9876\u70b9\uff09\u3002\u56fe 9-6 \u5c55\u793a\u4e86\u4e00\u4e2a\u4f7f\u7528\u90bb\u63a5\u8868\u5b58\u50a8\u7684\u56fe\u7684\u793a\u4f8b\u3002
\u56fe 9-6 \u00a0 \u56fe\u7684\u90bb\u63a5\u8868\u8868\u793a
\u90bb\u63a5\u8868\u4ec5\u5b58\u50a8\u5b9e\u9645\u5b58\u5728\u7684\u8fb9\uff0c\u800c\u8fb9\u7684\u603b\u6570\u901a\u5e38\u8fdc\u5c0f\u4e8e \\(n^2\\) \uff0c\u56e0\u6b64\u5b83\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002\u7136\u800c\uff0c\u5728\u90bb\u63a5\u8868\u4e2d\u9700\u8981\u901a\u8fc7\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u56e0\u6b64\u5176\u65f6\u95f4\u6548\u7387\u4e0d\u5982\u90bb\u63a5\u77e9\u9635\u3002
\u89c2\u5bdf\u56fe 9-6 \uff0c\u90bb\u63a5\u8868\u7ed3\u6784\u4e0e\u54c8\u5e0c\u8868\u4e2d\u7684\u201c\u94fe\u5f0f\u5730\u5740\u201d\u975e\u5e38\u76f8\u4f3c\uff0c\u56e0\u6b64\u6211\u4eec\u4e5f\u53ef\u4ee5\u91c7\u7528\u7c7b\u4f3c\u7684\u65b9\u6cd5\u6765\u4f18\u5316\u6548\u7387\u3002\u6bd4\u5982\u5f53\u94fe\u8868\u8f83\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u5316\u4e3a AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u4ece\u800c\u5c06\u65f6\u95f4\u6548\u7387\u4ece \\(O(n)\\) \u4f18\u5316\u81f3 \\(O(\\log n)\\) \uff1b\u8fd8\u53ef\u4ee5\u628a\u94fe\u8868\u8f6c\u6362\u4e3a\u54c8\u5e0c\u8868\uff0c\u4ece\u800c\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u964d\u81f3 \\(O(1)\\) \u3002
"},{"location":"chapter_graph/graph/#913","title":"9.1.3 \u00a0 \u56fe\u7684\u5e38\u89c1\u5e94\u7528","text":"\u5982\u8868 9-1 \u6240\u793a\uff0c\u8bb8\u591a\u73b0\u5b9e\u7cfb\u7edf\u53ef\u4ee5\u7528\u56fe\u6765\u5efa\u6a21\uff0c\u76f8\u5e94\u7684\u95ee\u9898\u4e5f\u53ef\u4ee5\u7ea6\u5316\u4e3a\u56fe\u8ba1\u7b97\u95ee\u9898\u3002
\u8868 9-1 \u00a0 \u73b0\u5b9e\u751f\u6d3b\u4e2d\u5e38\u89c1\u7684\u56fe
\u9876\u70b9 \u8fb9 \u56fe\u8ba1\u7b97\u95ee\u9898 \u793e\u4ea4\u7f51\u7edc \u7528\u6237 \u597d\u53cb\u5173\u7cfb \u6f5c\u5728\u597d\u53cb\u63a8\u8350 \u5730\u94c1\u7ebf\u8def \u7ad9\u70b9 \u7ad9\u70b9\u95f4\u7684\u8fde\u901a\u6027 \u6700\u77ed\u8def\u7ebf\u63a8\u8350 \u592a\u9633\u7cfb \u661f\u4f53 \u661f\u4f53\u95f4\u7684\u4e07\u6709\u5f15\u529b\u4f5c\u7528 \u884c\u661f\u8f68\u9053\u8ba1\u7b97"},{"location":"chapter_graph/graph_operations/","title":"9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c","text":"\u56fe\u7684\u57fa\u7840\u64cd\u4f5c\u53ef\u5206\u4e3a\u5bf9\u201c\u8fb9\u201d\u7684\u64cd\u4f5c\u548c\u5bf9\u201c\u9876\u70b9\u201d\u7684\u64cd\u4f5c\u3002\u5728\u201c\u90bb\u63a5\u77e9\u9635\u201d\u548c\u201c\u90bb\u63a5\u8868\u201d\u4e24\u79cd\u8868\u793a\u65b9\u6cd5\u4e0b\uff0c\u5b9e\u73b0\u65b9\u5f0f\u6709\u6240\u4e0d\u540c\u3002
"},{"location":"chapter_graph/graph_operations/#921","title":"9.2.1 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u7684\u5b9e\u73b0","text":"\u7ed9\u5b9a\u4e00\u4e2a\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \u7684\u65e0\u5411\u56fe\uff0c\u5219\u5404\u79cd\u64cd\u4f5c\u7684\u5b9e\u73b0\u65b9\u5f0f\u5982\u56fe 9-7 \u6240\u793a\u3002
- \u6dfb\u52a0\u6216\u5220\u9664\u8fb9\uff1a\u76f4\u63a5\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u4fee\u6539\u6307\u5b9a\u7684\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u800c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u9700\u8981\u540c\u65f6\u66f4\u65b0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
- \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u7684\u5c3e\u90e8\u6dfb\u52a0\u4e00\u884c\u4e00\u5217\uff0c\u5e76\u5168\u90e8\u586b \\(0\\) \u5373\u53ef\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
- \u5220\u9664\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u4e00\u884c\u4e00\u5217\u3002\u5f53\u5220\u9664\u9996\u884c\u9996\u5217\u65f6\u8fbe\u5230\u6700\u5dee\u60c5\u51b5\uff0c\u9700\u8981\u5c06 \\((n-1)^2\\) \u4e2a\u5143\u7d20\u201c\u5411\u5de6\u4e0a\u79fb\u52a8\u201d\uff0c\u4ece\u800c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
- \u521d\u59cb\u5316\uff1a\u4f20\u5165 \\(n\\) \u4e2a\u9876\u70b9\uff0c\u521d\u59cb\u5316\u957f\u5ea6\u4e3a \\(n\\) \u7684\u9876\u70b9\u5217\u8868
vertices \uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff1b\u521d\u59cb\u5316 \\(n \\times n\\) \u5927\u5c0f\u7684\u90bb\u63a5\u77e9\u9635 adjMat \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
\u521d\u59cb\u5316\u90bb\u63a5\u77e9\u9635\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9 \u56fe 9-7 \u00a0 \u90bb\u63a5\u77e9\u9635\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9
\u4ee5\u4e0b\u662f\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u7684\u5b9e\u73b0\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_adjacency_matrix.pyclass GraphAdjMat:\n \"\"\"\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\n\n def __init__(self, vertices: list[int], edges: list[list[int]]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n # \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n self.vertices: list[int] = []\n # \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n self.adj_mat: list[list[int]] = []\n # \u6dfb\u52a0\u9876\u70b9\n for val in vertices:\n self.add_vertex(val)\n # \u6dfb\u52a0\u8fb9\n # \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for e in edges:\n self.add_edge(e[0], e[1])\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\n return len(self.vertices)\n\n def add_vertex(self, val: int):\n \"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\n n = self.size()\n # \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n self.vertices.append(val)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n new_row = [0] * n\n self.adj_mat.append(new_row)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for row in self.adj_mat:\n row.append(0)\n\n def remove_vertex(self, index: int):\n \"\"\"\u5220\u9664\u9876\u70b9\"\"\"\n if index >= self.size():\n raise IndexError()\n # \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n self.vertices.pop(index)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n self.adj_mat.pop(index)\n # \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for row in self.adj_mat:\n row.pop(index)\n\n def add_edge(self, i: int, j: int):\n \"\"\"\u6dfb\u52a0\u8fb9\"\"\"\n # \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n # \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\n raise IndexError()\n # \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n self.adj_mat[i][j] = 1\n self.adj_mat[j][i] = 1\n\n def remove_edge(self, i: int, j: int):\n \"\"\"\u5220\u9664\u8fb9\"\"\"\n # \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n # \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\n raise IndexError()\n self.adj_mat[i][j] = 0\n self.adj_mat[j][i] = 0\n\n def print(self):\n \"\"\"\u6253\u5370\u90bb\u63a5\u77e9\u9635\"\"\"\n print(\"\u9876\u70b9\u5217\u8868 =\", self.vertices)\n print(\"\u90bb\u63a5\u77e9\u9635 =\")\n print_matrix(self.adj_mat)\n
graph_adjacency_matrix.cpp/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n vector<int> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n vector<vector<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {\n // \u6dfb\u52a0\u9876\u70b9\n for (int val : vertices) {\n addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (const vector<int> &edge : edges) {\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() const {\n return vertices.size();\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(int val) {\n int n = size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.push_back(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n adjMat.emplace_back(vector<int>(n, 0));\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (vector<int> &row : adjMat) {\n row.push_back(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(int index) {\n if (index >= size()) {\n throw out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.erase(vertices.begin() + index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.erase(adjMat.begin() + index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (vector<int> &row : adjMat) {\n row.erase(row.begin() + index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void addEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1;\n adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void removeEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n }\n adjMat[i][j] = 0;\n adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n void print() {\n cout << \"\u9876\u70b9\u5217\u8868 = \";\n printVector(vertices);\n cout << \"\u90bb\u63a5\u77e9\u9635 =\" << endl;\n printVectorMatrix(adjMat);\n }\n};\n
graph_adjacency_matrix.java/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n List<Integer> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n List<List<Integer>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public GraphAdjMat(int[] vertices, int[][] edges) {\n this.vertices = new ArrayList<>();\n this.adjMat = new ArrayList<>();\n // \u6dfb\u52a0\u9876\u70b9\n for (int val : vertices) {\n addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (int[] e : edges) {\n addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n public int size() {\n return vertices.size();\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void addVertex(int val) {\n int n = size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.add(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n List<Integer> newRow = new ArrayList<>(n);\n for (int j = 0; j < n; j++) {\n newRow.add(0);\n }\n adjMat.add(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (List<Integer> row : adjMat) {\n row.add(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void removeVertex(int index) {\n if (index >= size())\n throw new IndexOutOfBoundsException();\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (List<Integer> row : adjMat) {\n row.remove(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void addEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\n throw new IndexOutOfBoundsException();\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat.get(i).set(j, 1);\n adjMat.get(j).set(i, 1);\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void removeEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\n throw new IndexOutOfBoundsException();\n adjMat.get(i).set(j, 0);\n adjMat.get(j).set(i, 0);\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n public void print() {\n System.out.print(\"\u9876\u70b9\u5217\u8868 = \");\n System.out.println(vertices);\n System.out.println(\"\u90bb\u63a5\u77e9\u9635 =\");\n PrintUtil.printMatrix(adjMat);\n }\n}\n
graph_adjacency_matrix.cs/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n List<int> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n List<List<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u51fd\u6570 */\n public GraphAdjMat(int[] vertices, int[][] edges) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n foreach (int val in vertices) {\n AddVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n foreach (int[] e in edges) {\n AddEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int Size() {\n return vertices.Count;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void AddVertex(int val) {\n int n = Size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.Add(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n List<int> newRow = new(n);\n for (int j = 0; j < n; j++) {\n newRow.Add(0);\n }\n adjMat.Add(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n foreach (List<int> row in adjMat) {\n row.Add(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void RemoveVertex(int index) {\n if (index >= Size())\n throw new IndexOutOfRangeException();\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.RemoveAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.RemoveAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n foreach (List<int> row in adjMat) {\n row.RemoveAt(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void AddEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)\n throw new IndexOutOfRangeException();\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1;\n adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n public void RemoveEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)\n throw new IndexOutOfRangeException();\n adjMat[i][j] = 0;\n adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n public void Print() {\n Console.Write(\"\u9876\u70b9\u5217\u8868 = \");\n PrintUtil.PrintList(vertices);\n Console.WriteLine(\"\u90bb\u63a5\u77e9\u9635 =\");\n PrintUtil.PrintMatrix(adjMat);\n }\n}\n
graph_adjacency_matrix.go/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjMat struct {\n // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n vertices []int\n // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n adjMat [][]int\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjMat(vertices []int, edges [][]int) *graphAdjMat {\n // \u6dfb\u52a0\u9876\u70b9\n n := len(vertices)\n adjMat := make([][]int, n)\n for i := range adjMat {\n adjMat[i] = make([]int, n)\n }\n // \u521d\u59cb\u5316\u56fe\n g := &graphAdjMat{\n vertices: vertices,\n adjMat: adjMat,\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for i := range edges {\n g.addEdge(edges[i][0], edges[i][1])\n }\n return g\n}\n\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjMat) size() int {\n return len(g.vertices)\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjMat) addVertex(val int) {\n n := g.size()\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n g.vertices = append(g.vertices, val)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n newRow := make([]int, n)\n g.adjMat = append(g.adjMat, newRow)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for i := range g.adjMat {\n g.adjMat[i] = append(g.adjMat[i], 0)\n }\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjMat) removeVertex(index int) {\n if index >= g.size() {\n return\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n g.vertices = append(g.vertices[:index], g.vertices[index+1:]...)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n g.adjMat = append(g.adjMat[:index], g.adjMat[index+1:]...)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for i := range g.adjMat {\n g.adjMat[i] = append(g.adjMat[i][:index], g.adjMat[i][index+1:]...)\n }\n}\n\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) addEdge(i, j int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\n fmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n g.adjMat[i][j] = 1\n g.adjMat[j][i] = 1\n}\n\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) removeEdge(i, j int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\n fmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n }\n g.adjMat[i][j] = 0\n g.adjMat[j][i] = 0\n}\n\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nfunc (g *graphAdjMat) print() {\n fmt.Printf(\"\\t\u9876\u70b9\u5217\u8868 = %v\\n\", g.vertices)\n fmt.Printf(\"\\t\u90bb\u63a5\u77e9\u9635 = \\n\")\n for i := range g.adjMat {\n fmt.Printf(\"\\t\\t\\t%v\\n\", g.adjMat[i])\n }\n}\n
graph_adjacency_matrix.swift/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n private var vertices: [Int] // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n private var adjMat: [[Int]] // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init(vertices: [Int], edges: [[Int]]) {\n self.vertices = []\n adjMat = []\n // \u6dfb\u52a0\u9876\u70b9\n for val in vertices {\n addVertex(val: val)\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for e in edges {\n addEdge(i: e[0], j: e[1])\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n func size() -> Int {\n vertices.count\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n func addVertex(val: Int) {\n let n = size()\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.append(val)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n let newRow = Array(repeating: 0, count: n)\n adjMat.append(newRow)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for i in adjMat.indices {\n adjMat[i].append(0)\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n func removeVertex(index: Int) {\n if index >= size() {\n fatalError(\"\u8d8a\u754c\")\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.remove(at: index)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.remove(at: index)\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for i in adjMat.indices {\n adjMat[i].remove(at: index)\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n func addEdge(i: Int, j: Int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= size() || j >= size() || i == j {\n fatalError(\"\u8d8a\u754c\")\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1\n adjMat[j][i] = 1\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n func removeEdge(i: Int, j: Int) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i < 0 || j < 0 || i >= size() || j >= size() || i == j {\n fatalError(\"\u8d8a\u754c\")\n }\n adjMat[i][j] = 0\n adjMat[j][i] = 0\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n func print() {\n Swift.print(\"\u9876\u70b9\u5217\u8868 = \", terminator: \"\")\n Swift.print(vertices)\n Swift.print(\"\u90bb\u63a5\u77e9\u9635 =\")\n PrintUtil.printMatrix(matrix: adjMat)\n }\n}\n
graph_adjacency_matrix.js/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u51fd\u6570 */\n constructor(vertices, edges) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n for (const val of vertices) {\n this.addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (const e of edges) {\n this.addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size() {\n return this.vertices.length;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(val) {\n const n = this.size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n this.vertices.push(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n const newRow = [];\n for (let j = 0; j < n; j++) {\n newRow.push(0);\n }\n this.adjMat.push(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (const row of this.adjMat) {\n row.push(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(index) {\n if (index >= this.size()) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n this.vertices.splice(index, 1);\n\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n this.adjMat.splice(index, 1);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (const row of this.adjMat) {\n row.splice(index, 1);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n addEdge(i, j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\n this.adjMat[i][j] = 1;\n this.adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n removeEdge(i, j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n this.adjMat[i][j] = 0;\n this.adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n print() {\n console.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\n console.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n }\n}\n
graph_adjacency_matrix.ts/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n vertices: number[]; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n adjMat: number[][]; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u51fd\u6570 */\n constructor(vertices: number[], edges: number[][]) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n for (const val of vertices) {\n this.addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (const e of edges) {\n this.addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size(): number {\n return this.vertices.length;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(val: number): void {\n const n: number = this.size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n this.vertices.push(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n const newRow: number[] = [];\n for (let j: number = 0; j < n; j++) {\n newRow.push(0);\n }\n this.adjMat.push(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (const row of this.adjMat) {\n row.push(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(index: number): void {\n if (index >= this.size()) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n this.vertices.splice(index, 1);\n\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n this.adjMat.splice(index, 1);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (const row of this.adjMat) {\n row.splice(index, 1);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n addEdge(i: number, j: number): void {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\n this.adjMat[i][j] = 1;\n this.adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n removeEdge(i: number, j: number): void {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\n throw new RangeError('Index Out Of Bounds Exception');\n }\n this.adjMat[i][j] = 0;\n this.adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n print(): void {\n console.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\n console.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n }\n}\n
graph_adjacency_matrix.dart/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\n List<int> vertices = []; // \u9876\u70b9\u5143\u7d20\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n List<List<int>> adjMat = []; //\u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjMat(List<int> vertices, List<List<int>> edges) {\n this.vertices = [];\n this.adjMat = [];\n // \u6dfb\u52a0\u9876\u70b9\n for (int val in vertices) {\n addVertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for (List<int> e in edges) {\n addEdge(e[0], e[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() {\n return vertices.length;\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(int val) {\n int n = size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n vertices.add(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n List<int> newRow = List.filled(n, 0, growable: true);\n adjMat.add(newRow);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for (List<int> row in adjMat) {\n row.add(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(int index) {\n if (index >= size()) {\n throw IndexError;\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n vertices.removeAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n adjMat.removeAt(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (List<int> row in adjMat) {\n row.removeAt(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void addEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw IndexError;\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n adjMat[i][j] = 1;\n adjMat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n void removeEdge(int i, int j) {\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\n throw IndexError;\n }\n adjMat[i][j] = 0;\n adjMat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n void printAdjMat() {\n print(\"\u9876\u70b9\u5217\u8868 = $vertices\");\n print(\"\u90bb\u63a5\u77e9\u9635 = \");\n printMatrix(adjMat);\n }\n}\n
graph_adjacency_matrix.rs/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjMat {\n // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\n pub vertices: Vec<i32>,\n // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n pub adj_mat: Vec<Vec<i32>>,\n}\n\nimpl GraphAdjMat {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(vertices: Vec<i32>, edges: Vec<[usize; 2]>) -> Self {\n let mut graph = GraphAdjMat {\n vertices: vec![],\n adj_mat: vec![],\n };\n // \u6dfb\u52a0\u9876\u70b9\n for val in vertices {\n graph.add_vertex(val);\n }\n // \u6dfb\u52a0\u8fb9\n // \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n for edge in edges {\n graph.add_edge(edge[0], edge[1])\n }\n\n graph\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n pub fn size(&self) -> usize {\n self.vertices.len()\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n pub fn add_vertex(&mut self, val: i32) {\n let n = self.size();\n // \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\n self.vertices.push(val);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\n self.adj_mat.push(vec![0; n]);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\n for row in &mut self.adj_mat {\n row.push(0);\n }\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n pub fn remove_vertex(&mut self, index: usize) {\n if index >= self.size() {\n panic!(\"index error\")\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n self.vertices.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n self.adj_mat.remove(index);\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for row in &mut self.adj_mat {\n row.remove(index);\n }\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n pub fn add_edge(&mut self, i: usize, j: usize) {\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i >= self.size() || j >= self.size() || i == j {\n panic!(\"index error\")\n }\n // \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\n self.adj_mat[i][j] = 1;\n self.adj_mat[j][i] = 1;\n }\n\n /* \u5220\u9664\u8fb9 */\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n pub fn remove_edge(&mut self, i: usize, j: usize) {\n // \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n // \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\n if i >= self.size() || j >= self.size() || i == j {\n panic!(\"index error\")\n }\n self.adj_mat[i][j] = 0;\n self.adj_mat[j][i] = 0;\n }\n\n /* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\n pub fn print(&self) {\n println!(\"\u9876\u70b9\u5217\u8868 = {:?}\", self.vertices);\n println!(\"\u90bb\u63a5\u77e9\u9635 =\");\n println!(\"[\");\n for row in &self.adj_mat {\n println!(\" {:?},\", row);\n }\n println!(\"]\")\n }\n}\n
graph_adjacency_matrix.c/* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7ed3\u6784\u4f53 */\ntypedef struct {\n int vertices[MAX_SIZE];\n int adjMat[MAX_SIZE][MAX_SIZE];\n int size;\n} GraphAdjMat;\n\n/* \u6784\u9020\u51fd\u6570 */\nGraphAdjMat *newGraphAdjMat() {\n GraphAdjMat *graph = (GraphAdjMat *)malloc(sizeof(GraphAdjMat));\n graph->size = 0;\n for (int i = 0; i < MAX_SIZE; i++) {\n for (int j = 0; j < MAX_SIZE; j++) {\n graph->adjMat[i][j] = 0;\n }\n }\n return graph;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delGraphAdjMat(GraphAdjMat *graph) {\n free(graph);\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(GraphAdjMat *graph, int val) {\n if (graph->size == MAX_SIZE) {\n fprintf(stderr, \"\u56fe\u7684\u9876\u70b9\u6570\u91cf\u5df2\u8fbe\u6700\u5927\u503c\\n\");\n return;\n }\n // \u6dfb\u52a0\u7b2c n \u4e2a\u9876\u70b9\uff0c\u5e76\u5c06\u7b2c n \u884c\u548c\u5217\u7f6e\u96f6\n int n = graph->size;\n graph->vertices[n] = val;\n for (int i = 0; i <= n; i++) {\n graph->adjMat[n][i] = graph->adjMat[i][n] = 0;\n }\n graph->size++;\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(GraphAdjMat *graph, int index) {\n if (index < 0 || index >= graph->size) {\n fprintf(stderr, \"\u9876\u70b9\u7d22\u5f15\u8d8a\u754c\\n\");\n return;\n }\n // \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\n for (int i = index; i < graph->size - 1; i++) {\n graph->vertices[i] = graph->vertices[i + 1];\n }\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\n for (int i = index; i < graph->size - 1; i++) {\n for (int j = 0; j < graph->size; j++) {\n graph->adjMat[i][j] = graph->adjMat[i + 1][j];\n }\n }\n // \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\n for (int i = 0; i < graph->size; i++) {\n for (int j = index; j < graph->size - 1; j++) {\n graph->adjMat[i][j] = graph->adjMat[i][j + 1];\n }\n }\n graph->size--;\n}\n\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(GraphAdjMat *graph, int i, int j) {\n if (i < 0 || j < 0 || i >= graph->size || j >= graph->size || i == j) {\n fprintf(stderr, \"\u8fb9\u7d22\u5f15\u8d8a\u754c\u6216\u76f8\u7b49\\n\");\n return;\n }\n graph->adjMat[i][j] = 1;\n graph->adjMat[j][i] = 1;\n}\n\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(GraphAdjMat *graph, int i, int j) {\n if (i < 0 || j < 0 || i >= graph->size || j >= graph->size || i == j) {\n fprintf(stderr, \"\u8fb9\u7d22\u5f15\u8d8a\u754c\u6216\u76f8\u7b49\\n\");\n return;\n }\n graph->adjMat[i][j] = 0;\n graph->adjMat[j][i] = 0;\n}\n\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nvoid printGraphAdjMat(GraphAdjMat *graph) {\n printf(\"\u9876\u70b9\u5217\u8868 = \");\n printArray(graph->vertices, graph->size);\n printf(\"\u90bb\u63a5\u77e9\u9635 =\\n\");\n for (int i = 0; i < graph->size; i++) {\n printArray(graph->adjMat[i], graph->size);\n }\n}\n
graph_adjacency_matrix.zig[class]{GraphAdjMat}-[func]{}\n
"},{"location":"chapter_graph/graph_operations/#922","title":"9.2.2 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u8868\u7684\u5b9e\u73b0","text":"\u8bbe\u65e0\u5411\u56fe\u7684\u9876\u70b9\u603b\u6570\u4e3a \\(n\\)\u3001\u8fb9\u603b\u6570\u4e3a \\(m\\) \uff0c\u5219\u53ef\u6839\u636e\u56fe 9-8 \u6240\u793a\u7684\u65b9\u6cd5\u5b9e\u73b0\u5404\u79cd\u64cd\u4f5c\u3002
- \u6dfb\u52a0\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u7684\u672b\u5c3e\u6dfb\u52a0\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u4e3a\u662f\u65e0\u5411\u56fe\uff0c\u6240\u4ee5\u9700\u8981\u540c\u65f6\u6dfb\u52a0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
- \u5220\u9664\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u4e2d\u67e5\u627e\u5e76\u5220\u9664\u6307\u5b9a\u8fb9\uff0c\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\u3002\u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u9700\u8981\u540c\u65f6\u5220\u9664\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
- \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u94fe\u8868\uff0c\u5e76\u5c06\u65b0\u589e\u9876\u70b9\u4f5c\u4e3a\u94fe\u8868\u5934\u8282\u70b9\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
- \u5220\u9664\u9876\u70b9\uff1a\u9700\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5220\u9664\u5305\u542b\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
- \u521d\u59cb\u5316\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u521b\u5efa \\(n\\) \u4e2a\u9876\u70b9\u548c \\(2m\\) \u6761\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
\u521d\u59cb\u5316\u90bb\u63a5\u8868\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9 \u56fe 9-8 \u00a0 \u90bb\u63a5\u8868\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9
\u4ee5\u4e0b\u662f\u90bb\u63a5\u8868\u7684\u4ee3\u7801\u5b9e\u73b0\u3002\u5bf9\u6bd4\u56fe 9-8 \uff0c\u5b9e\u9645\u4ee3\u7801\u6709\u4ee5\u4e0b\u4e0d\u540c\u3002
- \u4e3a\u4e86\u65b9\u4fbf\u6dfb\u52a0\u4e0e\u5220\u9664\u9876\u70b9\uff0c\u4ee5\u53ca\u7b80\u5316\u4ee3\u7801\uff0c\u6211\u4eec\u4f7f\u7528\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u6765\u4ee3\u66ff\u94fe\u8868\u3002
- \u4f7f\u7528\u54c8\u5e0c\u8868\u6765\u5b58\u50a8\u90bb\u63a5\u8868\uff0c
key \u4e3a\u9876\u70b9\u5b9e\u4f8b\uff0cvalue \u4e3a\u8be5\u9876\u70b9\u7684\u90bb\u63a5\u9876\u70b9\u5217\u8868\uff08\u94fe\u8868\uff09\u3002
\u53e6\u5916\uff0c\u6211\u4eec\u5728\u90bb\u63a5\u8868\u4e2d\u4f7f\u7528 Vertex \u7c7b\u6765\u8868\u793a\u9876\u70b9\uff0c\u8fd9\u6837\u505a\u7684\u539f\u56e0\u662f\uff1a\u5982\u679c\u4e0e\u90bb\u63a5\u77e9\u9635\u4e00\u6837\uff0c\u7528\u5217\u8868\u7d22\u5f15\u6765\u533a\u5206\u4e0d\u540c\u9876\u70b9\uff0c\u90a3\u4e48\u5047\u8bbe\u8981\u5220\u9664\u7d22\u5f15\u4e3a \\(i\\) \u7684\u9876\u70b9\uff0c\u5219\u9700\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5c06\u6240\u6709\u5927\u4e8e \\(i\\) \u7684\u7d22\u5f15\u5168\u90e8\u51cf \\(1\\) \uff0c\u6548\u7387\u5f88\u4f4e\u3002\u800c\u5982\u679c\u6bcf\u4e2a\u9876\u70b9\u90fd\u662f\u552f\u4e00\u7684 Vertex \u5b9e\u4f8b\uff0c\u5220\u9664\u67d0\u4e00\u9876\u70b9\u4e4b\u540e\u5c31\u65e0\u987b\u6539\u52a8\u5176\u4ed6\u9876\u70b9\u4e86\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_adjacency_list.pyclass GraphAdjList:\n \"\"\"\u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\n\n def __init__(self, edges: list[list[Vertex]]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n # \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n self.adj_list = dict[Vertex, list[Vertex]]()\n # \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for edge in edges:\n self.add_vertex(edge[0])\n self.add_vertex(edge[1])\n self.add_edge(edge[0], edge[1])\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\n return len(self.adj_list)\n\n def add_edge(self, vet1: Vertex, vet2: Vertex):\n \"\"\"\u6dfb\u52a0\u8fb9\"\"\"\n if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\n raise ValueError()\n # \u6dfb\u52a0\u8fb9 vet1 - vet2\n self.adj_list[vet1].append(vet2)\n self.adj_list[vet2].append(vet1)\n\n def remove_edge(self, vet1: Vertex, vet2: Vertex):\n \"\"\"\u5220\u9664\u8fb9\"\"\"\n if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\n raise ValueError()\n # \u5220\u9664\u8fb9 vet1 - vet2\n self.adj_list[vet1].remove(vet2)\n self.adj_list[vet2].remove(vet1)\n\n def add_vertex(self, vet: Vertex):\n \"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\n if vet in self.adj_list:\n return\n # \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n self.adj_list[vet] = []\n\n def remove_vertex(self, vet: Vertex):\n \"\"\"\u5220\u9664\u9876\u70b9\"\"\"\n if vet not in self.adj_list:\n raise ValueError()\n # \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n self.adj_list.pop(vet)\n # \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for vertex in self.adj_list:\n if vet in self.adj_list[vertex]:\n self.adj_list[vertex].remove(vet)\n\n def print(self):\n \"\"\"\u6253\u5370\u90bb\u63a5\u8868\"\"\"\n print(\"\u90bb\u63a5\u8868 =\")\n for vertex in self.adj_list:\n tmp = [v.val for v in self.adj_list[vertex]]\n print(f\"{vertex.val}: {tmp},\")\n
graph_adjacency_list.cpp/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n public:\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n unordered_map<Vertex *, vector<Vertex *>> adjList;\n\n /* \u5728 vector \u4e2d\u5220\u9664\u6307\u5b9a\u8282\u70b9 */\n void remove(vector<Vertex *> &vec, Vertex *vet) {\n for (int i = 0; i < vec.size(); i++) {\n if (vec[i] == vet) {\n vec.erase(vec.begin() + i);\n break;\n }\n }\n }\n\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjList(const vector<vector<Vertex *>> &edges) {\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (const vector<Vertex *> &edge : edges) {\n addVertex(edge[0]);\n addVertex(edge[1]);\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() {\n return adjList.size();\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n void addEdge(Vertex *vet1, Vertex *vet2) {\n if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\n throw invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1].push_back(vet2);\n adjList[vet2].push_back(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n void removeEdge(Vertex *vet1, Vertex *vet2) {\n if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\n throw invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n // \u5220\u9664\u8fb9 vet1 - vet2\n remove(adjList[vet1], vet2);\n remove(adjList[vet2], vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(Vertex *vet) {\n if (adjList.count(vet))\n return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList[vet] = vector<Vertex *>();\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(Vertex *vet) {\n if (!adjList.count(vet))\n throw invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.erase(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (auto &adj : adjList) {\n remove(adj.second, vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n void print() {\n cout << \"\u90bb\u63a5\u8868 =\" << endl;\n for (auto &adj : adjList) {\n const auto &key = adj.first;\n const auto &vec = adj.second;\n cout << key->val << \": \";\n printVector(vetsToVals(vec));\n }\n }\n};\n
graph_adjacency_list.java/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n Map<Vertex, List<Vertex>> adjList;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public GraphAdjList(Vertex[][] edges) {\n this.adjList = new HashMap<>();\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (Vertex[] edge : edges) {\n addVertex(edge[0]);\n addVertex(edge[1]);\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n public int size() {\n return adjList.size();\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n public void addEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\n throw new IllegalArgumentException();\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList.get(vet1).add(vet2);\n adjList.get(vet2).add(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n public void removeEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\n throw new IllegalArgumentException();\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList.get(vet1).remove(vet2);\n adjList.get(vet2).remove(vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void addVertex(Vertex vet) {\n if (adjList.containsKey(vet))\n return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList.put(vet, new ArrayList<>());\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void removeVertex(Vertex vet) {\n if (!adjList.containsKey(vet))\n throw new IllegalArgumentException();\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.remove(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (List<Vertex> list : adjList.values()) {\n list.remove(vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n public void print() {\n System.out.println(\"\u90bb\u63a5\u8868 =\");\n for (Map.Entry<Vertex, List<Vertex>> pair : adjList.entrySet()) {\n List<Integer> tmp = new ArrayList<>();\n for (Vertex vertex : pair.getValue())\n tmp.add(vertex.val);\n System.out.println(pair.getKey().val + \": \" + tmp + \",\");\n }\n }\n}\n
graph_adjacency_list.cs/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n public Dictionary<Vertex, List<Vertex>> adjList;\n\n /* \u6784\u9020\u51fd\u6570 */\n public GraphAdjList(Vertex[][] edges) {\n adjList = [];\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n foreach (Vertex[] edge in edges) {\n AddVertex(edge[0]);\n AddVertex(edge[1]);\n AddEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int Size() {\n return adjList.Count;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n public void AddEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\n throw new InvalidOperationException();\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1].Add(vet2);\n adjList[vet2].Add(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n public void RemoveEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\n throw new InvalidOperationException();\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList[vet1].Remove(vet2);\n adjList[vet2].Remove(vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public void AddVertex(Vertex vet) {\n if (adjList.ContainsKey(vet))\n return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList.Add(vet, []);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public void RemoveVertex(Vertex vet) {\n if (!adjList.ContainsKey(vet))\n throw new InvalidOperationException();\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.Remove(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n foreach (List<Vertex> list in adjList.Values) {\n list.Remove(vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n public void Print() {\n Console.WriteLine(\"\u90bb\u63a5\u8868 =\");\n foreach (KeyValuePair<Vertex, List<Vertex>> pair in adjList) {\n List<int> tmp = [];\n foreach (Vertex vertex in pair.Value)\n tmp.Add(vertex.val);\n Console.WriteLine(pair.Key.val + \": [\" + string.Join(\", \", tmp) + \"],\");\n }\n }\n}\n
graph_adjacency_list.go/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjList struct {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n adjList map[Vertex][]Vertex\n}\n\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjList(edges [][]Vertex) *graphAdjList {\n g := &graphAdjList{\n adjList: make(map[Vertex][]Vertex),\n }\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for _, edge := range edges {\n g.addVertex(edge[0])\n g.addVertex(edge[1])\n g.addEdge(edge[0], edge[1])\n }\n return g\n}\n\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjList) size() int {\n return len(g.adjList)\n}\n\n/* \u6dfb\u52a0\u8fb9 */\nfunc (g *graphAdjList) addEdge(vet1 Vertex, vet2 Vertex) {\n _, ok1 := g.adjList[vet1]\n _, ok2 := g.adjList[vet2]\n if !ok1 || !ok2 || vet1 == vet2 {\n panic(\"error\")\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2, \u6dfb\u52a0\u533f\u540d struct{},\n g.adjList[vet1] = append(g.adjList[vet1], vet2)\n g.adjList[vet2] = append(g.adjList[vet2], vet1)\n}\n\n/* \u5220\u9664\u8fb9 */\nfunc (g *graphAdjList) removeEdge(vet1 Vertex, vet2 Vertex) {\n _, ok1 := g.adjList[vet1]\n _, ok2 := g.adjList[vet2]\n if !ok1 || !ok2 || vet1 == vet2 {\n panic(\"error\")\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n g.adjList[vet1] = DeleteSliceElms(g.adjList[vet1], vet2)\n g.adjList[vet2] = DeleteSliceElms(g.adjList[vet2], vet1)\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjList) addVertex(vet Vertex) {\n _, ok := g.adjList[vet]\n if ok {\n return\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n g.adjList[vet] = make([]Vertex, 0)\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjList) removeVertex(vet Vertex) {\n _, ok := g.adjList[vet]\n if !ok {\n panic(\"error\")\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n delete(g.adjList, vet)\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for v, list := range g.adjList {\n g.adjList[v] = DeleteSliceElms(list, vet)\n }\n}\n\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nfunc (g *graphAdjList) print() {\n var builder strings.Builder\n fmt.Printf(\"\u90bb\u63a5\u8868 = \\n\")\n for k, v := range g.adjList {\n builder.WriteString(\"\\t\\t\" + strconv.Itoa(k.Val) + \": \")\n for _, vet := range v {\n builder.WriteString(strconv.Itoa(vet.Val) + \" \")\n }\n fmt.Println(builder.String())\n builder.Reset()\n }\n}\n
graph_adjacency_list.swift/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n public private(set) var adjList: [Vertex: [Vertex]]\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public init(edges: [[Vertex]]) {\n adjList = [:]\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for edge in edges {\n addVertex(vet: edge[0])\n addVertex(vet: edge[1])\n addEdge(vet1: edge[0], vet2: edge[1])\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n public func size() -> Int {\n adjList.count\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n public func addEdge(vet1: Vertex, vet2: Vertex) {\n if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\n fatalError(\"\u53c2\u6570\u9519\u8bef\")\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1]?.append(vet2)\n adjList[vet2]?.append(vet1)\n }\n\n /* \u5220\u9664\u8fb9 */\n public func removeEdge(vet1: Vertex, vet2: Vertex) {\n if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\n fatalError(\"\u53c2\u6570\u9519\u8bef\")\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList[vet1]?.removeAll(where: { $0 == vet2 })\n adjList[vet2]?.removeAll(where: { $0 == vet1 })\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n public func addVertex(vet: Vertex) {\n if adjList[vet] != nil {\n return\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList[vet] = []\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n public func removeVertex(vet: Vertex) {\n if adjList[vet] == nil {\n fatalError(\"\u53c2\u6570\u9519\u8bef\")\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.removeValue(forKey: vet)\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for key in adjList.keys {\n adjList[key]?.removeAll(where: { $0 == vet })\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n public func print() {\n Swift.print(\"\u90bb\u63a5\u8868 =\")\n for pair in adjList {\n var tmp: [Int] = []\n for vertex in pair.value {\n tmp.append(vertex.val)\n }\n Swift.print(\"\\(pair.key.val): \\(tmp),\")\n }\n }\n}\n
graph_adjacency_list.js/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n adjList;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(edges) {\n this.adjList = new Map();\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (const edge of edges) {\n this.addVertex(edge[0]);\n this.addVertex(edge[1]);\n this.addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size() {\n return this.adjList.size;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n addEdge(vet1, vet2) {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n this.adjList.get(vet1).push(vet2);\n this.adjList.get(vet2).push(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n removeEdge(vet1, vet2) {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n this.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\n this.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(vet) {\n if (this.adjList.has(vet)) return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n this.adjList.set(vet, []);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(vet) {\n if (!this.adjList.has(vet)) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n this.adjList.delete(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (const set of this.adjList.values()) {\n const index = set.indexOf(vet);\n if (index > -1) {\n set.splice(index, 1);\n }\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n print() {\n console.log('\u90bb\u63a5\u8868 =');\n for (const [key, value] of this.adjList) {\n const tmp = [];\n for (const vertex of value) {\n tmp.push(vertex.val);\n }\n console.log(key.val + ': ' + tmp.join());\n }\n }\n}\n
graph_adjacency_list.ts/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n adjList: Map<Vertex, Vertex[]>;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(edges: Vertex[][]) {\n this.adjList = new Map();\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for (const edge of edges) {\n this.addVertex(edge[0]);\n this.addVertex(edge[1]);\n this.addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n size(): number {\n return this.adjList.size;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n addEdge(vet1: Vertex, vet2: Vertex): void {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n this.adjList.get(vet1).push(vet2);\n this.adjList.get(vet2).push(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n removeEdge(vet1: Vertex, vet2: Vertex): void {\n if (\n !this.adjList.has(vet1) ||\n !this.adjList.has(vet2) ||\n vet1 === vet2\n ) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n this.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\n this.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n addVertex(vet: Vertex): void {\n if (this.adjList.has(vet)) return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n this.adjList.set(vet, []);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n removeVertex(vet: Vertex): void {\n if (!this.adjList.has(vet)) {\n throw new Error('Illegal Argument Exception');\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n this.adjList.delete(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (const set of this.adjList.values()) {\n const index: number = set.indexOf(vet);\n if (index > -1) {\n set.splice(index, 1);\n }\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n print(): void {\n console.log('\u90bb\u63a5\u8868 =');\n for (const [key, value] of this.adjList.entries()) {\n const tmp = [];\n for (const vertex of value) {\n tmp.push(vertex.val);\n }\n console.log(key.val + ': ' + tmp.join());\n }\n }\n}\n
graph_adjacency_list.dart/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n Map<Vertex, List<Vertex>> adjList = {};\n\n /* \u6784\u9020\u65b9\u6cd5 */\n GraphAdjList(List<List<Vertex>> edges) {\n for (List<Vertex> edge in edges) {\n addVertex(edge[0]);\n addVertex(edge[1]);\n addEdge(edge[0], edge[1]);\n }\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n int size() {\n return adjList.length;\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n void addEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) ||\n !adjList.containsKey(vet2) ||\n vet1 == vet2) {\n throw ArgumentError;\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n adjList[vet1]!.add(vet2);\n adjList[vet2]!.add(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n void removeEdge(Vertex vet1, Vertex vet2) {\n if (!adjList.containsKey(vet1) ||\n !adjList.containsKey(vet2) ||\n vet1 == vet2) {\n throw ArgumentError;\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n adjList[vet1]!.remove(vet2);\n adjList[vet2]!.remove(vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n void addVertex(Vertex vet) {\n if (adjList.containsKey(vet)) return;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n adjList[vet] = [];\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n void removeVertex(Vertex vet) {\n if (!adjList.containsKey(vet)) {\n throw ArgumentError;\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n adjList.remove(vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n adjList.forEach((key, value) {\n value.remove(vet);\n });\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n void printAdjList() {\n print(\"\u90bb\u63a5\u8868 =\");\n adjList.forEach((key, value) {\n List<int> tmp = [];\n for (Vertex vertex in value) {\n tmp.add(vertex.val);\n }\n print(\"${key.val}: $tmp,\");\n });\n }\n}\n
graph_adjacency_list.rs/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjList {\n // \u90bb\u63a5\u8868\uff0ckey\uff1a\u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n pub adj_list: HashMap<Vertex, Vec<Vertex>>,\n}\n\nimpl GraphAdjList {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(edges: Vec<[Vertex; 2]>) -> Self {\n let mut graph = GraphAdjList {\n adj_list: HashMap::new(),\n };\n // \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\n for edge in edges {\n graph.add_vertex(edge[0]);\n graph.add_vertex(edge[1]);\n graph.add_edge(edge[0], edge[1]);\n }\n\n graph\n }\n\n /* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n #[allow(unused)]\n pub fn size(&self) -> usize {\n self.adj_list.len()\n }\n\n /* \u6dfb\u52a0\u8fb9 */\n pub fn add_edge(&mut self, vet1: Vertex, vet2: Vertex) {\n if !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n {\n panic!(\"value error\");\n }\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n self.adj_list.get_mut(&vet1).unwrap().push(vet2);\n self.adj_list.get_mut(&vet2).unwrap().push(vet1);\n }\n\n /* \u5220\u9664\u8fb9 */\n #[allow(unused)]\n pub fn remove_edge(&mut self, vet1: Vertex, vet2: Vertex) {\n if !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n {\n panic!(\"value error\");\n }\n // \u5220\u9664\u8fb9 vet1 - vet2\n self.adj_list\n .get_mut(&vet1)\n .unwrap()\n .retain(|&vet| vet != vet2);\n self.adj_list\n .get_mut(&vet2)\n .unwrap()\n .retain(|&vet| vet != vet1);\n }\n\n /* \u6dfb\u52a0\u9876\u70b9 */\n pub fn add_vertex(&mut self, vet: Vertex) {\n if self.adj_list.contains_key(&vet) {\n return;\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n self.adj_list.insert(vet, vec![]);\n }\n\n /* \u5220\u9664\u9876\u70b9 */\n #[allow(unused)]\n pub fn remove_vertex(&mut self, vet: Vertex) {\n if !self.adj_list.contains_key(&vet) {\n panic!(\"value error\");\n }\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n self.adj_list.remove(&vet);\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for list in self.adj_list.values_mut() {\n list.retain(|&v| v != vet);\n }\n }\n\n /* \u6253\u5370\u90bb\u63a5\u8868 */\n pub fn print(&self) {\n println!(\"\u90bb\u63a5\u8868 =\");\n for (vertex, list) in &self.adj_list {\n let list = list.iter().map(|vertex| vertex.val).collect::<Vec<i32>>();\n println!(\"{}: {:?},\", vertex.val, list);\n }\n }\n}\n
graph_adjacency_list.c/* \u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct AdjListNode {\n Vertex *vertex; // \u9876\u70b9\n struct AdjListNode *next; // \u540e\u7ee7\u8282\u70b9\n} AdjListNode;\n\n/* \u67e5\u627e\u9876\u70b9\u5bf9\u5e94\u7684\u8282\u70b9 */\nAdjListNode *findNode(GraphAdjList *graph, Vertex *vet) {\n for (int i = 0; i < graph->size; i++) {\n if (graph->heads[i]->vertex == vet) {\n return graph->heads[i];\n }\n }\n return NULL;\n}\n\n/* \u6dfb\u52a0\u8fb9\u8f85\u52a9\u51fd\u6570 */\nvoid addEdgeHelper(AdjListNode *head, Vertex *vet) {\n AdjListNode *node = (AdjListNode *)malloc(sizeof(AdjListNode));\n node->vertex = vet;\n // \u5934\u63d2\u6cd5\n node->next = head->next;\n head->next = node;\n}\n\n/* \u5220\u9664\u8fb9\u8f85\u52a9\u51fd\u6570 */\nvoid removeEdgeHelper(AdjListNode *head, Vertex *vet) {\n AdjListNode *pre = head;\n AdjListNode *cur = head->next;\n // \u5728\u94fe\u8868\u4e2d\u641c\u7d22 vet \u5bf9\u5e94\u8282\u70b9\n while (cur != NULL && cur->vertex != vet) {\n pre = cur;\n cur = cur->next;\n }\n if (cur == NULL)\n return;\n // \u5c06 vet \u5bf9\u5e94\u8282\u70b9\u4ece\u94fe\u8868\u4e2d\u5220\u9664\n pre->next = cur->next;\n // \u91ca\u653e\u5185\u5b58\n free(cur);\n}\n\n/* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntypedef struct {\n AdjListNode *heads[MAX_SIZE]; // \u8282\u70b9\u6570\u7ec4\n int size; // \u8282\u70b9\u6570\u91cf\n} GraphAdjList;\n\n/* \u6784\u9020\u51fd\u6570 */\nGraphAdjList *newGraphAdjList() {\n GraphAdjList *graph = (GraphAdjList *)malloc(sizeof(GraphAdjList));\n if (!graph) {\n return NULL;\n }\n graph->size = 0;\n for (int i = 0; i < MAX_SIZE; i++) {\n graph->heads[i] = NULL;\n }\n return graph;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delGraphAdjList(GraphAdjList *graph) {\n for (int i = 0; i < graph->size; i++) {\n AdjListNode *cur = graph->heads[i];\n while (cur != NULL) {\n AdjListNode *next = cur->next;\n if (cur != graph->heads[i]) {\n free(cur);\n }\n cur = next;\n }\n free(graph->heads[i]->vertex);\n free(graph->heads[i]);\n }\n free(graph);\n}\n\n/* \u67e5\u627e\u9876\u70b9\u5bf9\u5e94\u7684\u8282\u70b9 */\nAdjListNode *findNode(GraphAdjList *graph, Vertex *vet) {\n for (int i = 0; i < graph->size; i++) {\n if (graph->heads[i]->vertex == vet) {\n return graph->heads[i];\n }\n }\n return NULL;\n}\n\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(GraphAdjList *graph, Vertex *vet1, Vertex *vet2) {\n AdjListNode *head1 = findNode(graph, vet1);\n AdjListNode *head2 = findNode(graph, vet2);\n assert(head1 != NULL && head2 != NULL && head1 != head2);\n // \u6dfb\u52a0\u8fb9 vet1 - vet2\n addEdgeHelper(head1, vet2);\n addEdgeHelper(head2, vet1);\n}\n\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(GraphAdjList *graph, Vertex *vet1, Vertex *vet2) {\n AdjListNode *head1 = findNode(graph, vet1);\n AdjListNode *head2 = findNode(graph, vet2);\n assert(head1 != NULL && head2 != NULL);\n // \u5220\u9664\u8fb9 vet1 - vet2\n removeEdgeHelper(head1, head2->vertex);\n removeEdgeHelper(head2, head1->vertex);\n}\n\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(GraphAdjList *graph, Vertex *vet) {\n assert(graph != NULL && graph->size < MAX_SIZE);\n AdjListNode *head = (AdjListNode *)malloc(sizeof(AdjListNode));\n head->vertex = vet;\n head->next = NULL;\n // \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\n graph->heads[graph->size++] = head;\n}\n\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(GraphAdjList *graph, Vertex *vet) {\n AdjListNode *node = findNode(graph, vet);\n assert(node != NULL);\n // \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\n AdjListNode *cur = node, *pre = NULL;\n while (cur) {\n pre = cur;\n cur = cur->next;\n free(pre);\n }\n // \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\n for (int i = 0; i < graph->size; i++) {\n cur = graph->heads[i];\n pre = NULL;\n while (cur) {\n pre = cur;\n cur = cur->next;\n if (cur && cur->vertex == vet) {\n pre->next = cur->next;\n free(cur);\n break;\n }\n }\n }\n // \u5c06\u8be5\u9876\u70b9\u4e4b\u540e\u7684\u9876\u70b9\u5411\u524d\u79fb\u52a8\uff0c\u4ee5\u586b\u8865\u7a7a\u7f3a\n int i;\n for (i = 0; i < graph->size; i++) {\n if (graph->heads[i] == node)\n break;\n }\n for (int j = i; j < graph->size - 1; j++) {\n graph->heads[j] = graph->heads[j + 1];\n }\n graph->size--;\n free(vet);\n}\n
graph_adjacency_list.zig[class]{GraphAdjList}-[func]{}\n
"},{"location":"chapter_graph/graph_operations/#923","title":"9.2.3 \u00a0 \u6548\u7387\u5bf9\u6bd4","text":"\u8bbe\u56fe\u4e2d\u5171\u6709 \\(n\\) \u4e2a\u9876\u70b9\u548c \\(m\\) \u6761\u8fb9\uff0c\u8868 9-2 \u5bf9\u6bd4\u4e86\u90bb\u63a5\u77e9\u9635\u548c\u90bb\u63a5\u8868\u7684\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u3002
\u8868 9-2 \u00a0 \u90bb\u63a5\u77e9\u9635\u4e0e\u90bb\u63a5\u8868\u5bf9\u6bd4
\u90bb\u63a5\u77e9\u9635 \u90bb\u63a5\u8868\uff08\u94fe\u8868\uff09 \u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09 \u5224\u65ad\u662f\u5426\u90bb\u63a5 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u8fb9 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u8fb9 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u9876\u70b9 \\(O(n)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u9876\u70b9 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n)\\) \u5185\u5b58\u7a7a\u95f4\u5360\u7528 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n + m)\\) \u89c2\u5bdf\u8868 9-2 \uff0c\u4f3c\u4e4e\u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09\u7684\u65f6\u95f4\u6548\u7387\u4e0e\u7a7a\u95f4\u6548\u7387\u6700\u4f18\u3002\u4f46\u5b9e\u9645\u4e0a\uff0c\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u64cd\u4f5c\u8fb9\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u53ea\u9700\u4e00\u6b21\u6570\u7ec4\u8bbf\u95ee\u6216\u8d4b\u503c\u64cd\u4f5c\u5373\u53ef\u3002\u7efc\u5408\u6765\u770b\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u4e86\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u7684\u539f\u5219\uff0c\u800c\u90bb\u63a5\u8868\u4f53\u73b0\u4e86\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u7684\u539f\u5219\u3002
"},{"location":"chapter_graph/graph_traversal/","title":"9.3 \u00a0 \u56fe\u7684\u904d\u5386","text":"\u6811\u4ee3\u8868\u7684\u662f\u201c\u4e00\u5bf9\u591a\u201d\u7684\u5173\u7cfb\uff0c\u800c\u56fe\u5219\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u53ef\u4ee5\u8868\u793a\u4efb\u610f\u7684\u201c\u591a\u5bf9\u591a\u201d\u5173\u7cfb\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u6811\u770b\u4f5c\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\u3002\u663e\u7136\uff0c\u6811\u7684\u904d\u5386\u64cd\u4f5c\u4e5f\u662f\u56fe\u7684\u904d\u5386\u64cd\u4f5c\u7684\u4e00\u79cd\u7279\u4f8b\u3002
\u56fe\u548c\u6811\u90fd\u9700\u8981\u5e94\u7528\u641c\u7d22\u7b97\u6cd5\u6765\u5b9e\u73b0\u904d\u5386\u64cd\u4f5c\u3002\u56fe\u7684\u904d\u5386\u65b9\u5f0f\u4e5f\u53ef\u5206\u4e3a\u4e24\u79cd\uff1a\u300c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u300d\u3002
"},{"location":"chapter_graph/graph_traversal/#931","title":"9.3.1 \u00a0 \u5e7f\u5ea6\u4f18\u5148\u904d\u5386","text":"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u7684\u904d\u5386\u65b9\u5f0f\uff0c\u4ece\u67d0\u4e2a\u8282\u70b9\u51fa\u53d1\uff0c\u59cb\u7ec8\u4f18\u5148\u8bbf\u95ee\u8ddd\u79bb\u6700\u8fd1\u7684\u9876\u70b9\uff0c\u5e76\u4e00\u5c42\u5c42\u5411\u5916\u6269\u5f20\u3002\u5982\u56fe 9-9 \u6240\u793a\uff0c\u4ece\u5de6\u4e0a\u89d2\u9876\u70b9\u51fa\u53d1\uff0c\u9996\u5148\u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u7136\u540e\u904d\u5386\u4e0b\u4e00\u4e2a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u8bbf\u95ee\u5b8c\u6bd5\u3002
\u56fe 9-9 \u00a0 \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386
"},{"location":"chapter_graph/graph_traversal/#1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"BFS \u901a\u5e38\u501f\u52a9\u961f\u5217\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002\u961f\u5217\u5177\u6709\u201c\u5148\u5165\u5148\u51fa\u201d\u7684\u6027\u8d28\uff0c\u8fd9\u4e0e BFS \u7684\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u601d\u60f3\u5f02\u66f2\u540c\u5de5\u3002
- \u5c06\u904d\u5386\u8d77\u59cb\u9876\u70b9
startVet \u52a0\u5165\u961f\u5217\uff0c\u5e76\u5f00\u542f\u5faa\u73af\u3002 - \u5728\u5faa\u73af\u7684\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\uff0c\u5f39\u51fa\u961f\u9996\u9876\u70b9\u5e76\u8bb0\u5f55\u8bbf\u95ee\uff0c\u7136\u540e\u5c06\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u52a0\u5165\u5230\u961f\u5217\u5c3e\u90e8\u3002
- \u5faa\u73af\u6b65\u9aa4
2. \uff0c\u76f4\u5230\u6240\u6709\u9876\u70b9\u88ab\u8bbf\u95ee\u5b8c\u6bd5\u540e\u7ed3\u675f\u3002
\u4e3a\u4e86\u9632\u6b62\u91cd\u590d\u904d\u5386\u9876\u70b9\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u54ea\u4e9b\u8282\u70b9\u5df2\u88ab\u8bbf\u95ee\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_bfs.pydef graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n \"\"\"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\"\"\"\n # \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n # \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res = []\n # \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited = set[Vertex]([start_vet])\n # \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n que = deque[Vertex]([start_vet])\n # \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while len(que) > 0:\n vet = que.popleft() # \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.append(vet) # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n # \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adj_vet in graph.adj_list[vet]:\n if adj_vet in visited:\n continue # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n que.append(adj_vet) # \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adj_vet) # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n # \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n
graph_bfs.cpp/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n vector<Vertex *> res;\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n unordered_set<Vertex *> visited = {startVet};\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n queue<Vertex *> que;\n que.push(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (!que.empty()) {\n Vertex *vet = que.front();\n que.pop(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push_back(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (auto adjVet : graph.adjList[vet]) {\n if (visited.count(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n que.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.emplace(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.java/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = new ArrayList<>();\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = new HashSet<>();\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue<Vertex> que = new LinkedList<>();\n que.offer(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (!que.isEmpty()) {\n Vertex vet = que.poll(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet : graph.adjList.get(vet)) {\n if (visited.contains(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n que.offer(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.cs/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> GraphBFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n HashSet<Vertex> visited = [startVet];\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue<Vertex> que = new();\n que.Enqueue(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.Count > 0) {\n Vertex vet = que.Dequeue(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.Add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n foreach (Vertex adjVet in graph.adjList[vet]) {\n if (visited.Contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.Enqueue(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.Add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.go/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(g *graphAdjList, startVet Vertex) []Vertex {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res := make([]Vertex, 0)\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited := make(map[Vertex]struct{})\n visited[startVet] = struct{}{}\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS, \u4f7f\u7528\u5207\u7247\u6a21\u62df\u961f\u5217\n queue := make([]Vertex, 0)\n queue = append(queue, startVet)\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n for len(queue) > 0 {\n // \u961f\u9996\u9876\u70b9\u51fa\u961f\n vet := queue[0]\n queue = queue[1:]\n // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n res = append(res, vet)\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for _, adjVet := range g.adjList[vet] {\n _, isExist := visited[adjVet]\n // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n if !isExist {\n queue = append(queue, adjVet)\n visited[adjVet] = struct{}{}\n }\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n}\n
graph_bfs.swift/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n var res: [Vertex] = []\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n var visited: Set<Vertex> = [startVet]\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n var que: [Vertex] = [startVet]\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while !que.isEmpty {\n let vet = que.removeFirst() // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adjVet in graph.adjList[vet] ?? [] {\n if visited.contains(adjVet) {\n continue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.append(adjVet) // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.insert(adjVet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n}\n
graph_bfs.js/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph, startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited = new Set();\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n const que = [startVet];\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.length) {\n const vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet) ?? []) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.ts/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res: Vertex[] = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited: Set<Vertex> = new Set();\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n const que = [startVet];\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.length) {\n const vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet) ?? []) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.dart/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n // \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = {};\n visited.add(startVet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue<Vertex> que = Queue();\n que.add(startVet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (que.isNotEmpty) {\n Vertex vet = que.removeFirst(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet in graph.adjList[vet]!) {\n if (visited.contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.add(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res;\n}\n
graph_bfs.rs/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n let mut res = vec![];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n let mut visited = HashSet::new();\n visited.insert(start_vet);\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n let mut que = VecDeque::new();\n que.push_back(start_vet);\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while !que.is_empty() {\n let vet = que.pop_front().unwrap(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n if let Some(adj_vets) = graph.adj_list.get(&vet) {\n for &adj_vet in adj_vets {\n if visited.contains(&adj_vet) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n que.push_back(adj_vet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited.insert(adj_vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n }\n }\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n res\n}\n
graph_bfs.c/* \u8282\u70b9\u961f\u5217\u7ed3\u6784\u4f53 */\ntypedef struct {\n Vertex *vertices[MAX_SIZE];\n int front, rear, size;\n} Queue;\n\n/* \u6784\u9020\u51fd\u6570 */\nQueue *newQueue() {\n Queue *q = (Queue *)malloc(sizeof(Queue));\n q->front = q->rear = q->size = 0;\n return q;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nint isEmpty(Queue *q) {\n return q->size == 0;\n}\n\n/* \u5165\u961f\u64cd\u4f5c */\nvoid enqueue(Queue *q, Vertex *vet) {\n q->vertices[q->rear] = vet;\n q->rear = (q->rear + 1) % MAX_SIZE;\n q->size++;\n}\n\n/* \u51fa\u961f\u64cd\u4f5c */\nVertex *dequeue(Queue *q) {\n Vertex *vet = q->vertices[q->front];\n q->front = (q->front + 1) % MAX_SIZE;\n q->size--;\n return vet;\n}\n\n/* \u68c0\u67e5\u9876\u70b9\u662f\u5426\u5df2\u88ab\u8bbf\u95ee */\nint isVisited(Vertex **visited, int size, Vertex *vet) {\n // \u904d\u5386\u67e5\u627e\u8282\u70b9\uff0c\u4f7f\u7528 O(n) \u65f6\u95f4\n for (int i = 0; i < size; i++) {\n if (visited[i] == vet)\n return 1;\n }\n return 0;\n}\n\n/* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvoid graphBFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize, Vertex **visited, int *visitedSize) {\n // \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\n Queue *queue = newQueue();\n enqueue(queue, startVet);\n visited[(*visitedSize)++] = startVet;\n // \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\n while (!isEmpty(queue)) {\n Vertex *vet = dequeue(queue); // \u961f\u9996\u9876\u70b9\u51fa\u961f\n res[(*resSize)++] = vet; // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n AdjListNode *node = findNode(graph, vet);\n while (node != NULL) {\n // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n if (!isVisited(visited, *visitedSize, node->vertex)) {\n enqueue(queue, node->vertex); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\n visited[(*visitedSize)++] = node->vertex; // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n }\n node = node->next;\n }\n }\n // \u91ca\u653e\u5185\u5b58\n free(queue);\n}\n
graph_bfs.zig[class]{}-[func]{graphBFS}\n
\u4ee3\u7801\u76f8\u5bf9\u62bd\u8c61\uff0c\u5efa\u8bae\u5bf9\u7167\u56fe 9-10 \u6765\u52a0\u6df1\u7406\u89e3\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 9-10 \u00a0 \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4
\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f
\u4e0d\u552f\u4e00\u3002\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u53ea\u8981\u6c42\u6309\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u987a\u5e8f\u904d\u5386\uff0c\u800c\u591a\u4e2a\u76f8\u540c\u8ddd\u79bb\u7684\u9876\u70b9\u7684\u904d\u5386\u987a\u5e8f\u5141\u8bb8\u88ab\u4efb\u610f\u6253\u4e71\u3002\u4ee5\u56fe 9-10 \u4e3a\u4f8b\uff0c\u9876\u70b9 \\(1\\)\u3001\\(3\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\uff0c\u9876\u70b9 \\(2\\)\u3001\\(4\\)\u3001\\(6\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u4e5f\u53ef\u4ee5\u4efb\u610f\u4ea4\u6362\u3002
"},{"location":"chapter_graph/graph_traversal/#2","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u9876\u70b9\u90fd\u4f1a\u5165\u961f\u5e76\u51fa\u961f\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u5728\u904d\u5386\u90bb\u63a5\u9876\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002
\u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \uff0c\u961f\u5217 que \u4e2d\u7684\u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002
"},{"location":"chapter_graph/graph_traversal/#932","title":"9.3.2 \u00a0 \u6df1\u5ea6\u4f18\u5148\u904d\u5386","text":"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u518d\u56de\u5934\u7684\u904d\u5386\u65b9\u5f0f\u3002\u5982\u56fe 9-11 \u6240\u793a\uff0c\u4ece\u5de6\u4e0a\u89d2\u9876\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u5f53\u524d\u9876\u70b9\u7684\u67d0\u4e2a\u90bb\u63a5\u9876\u70b9\uff0c\u76f4\u5230\u8d70\u5230\u5c3d\u5934\u65f6\u8fd4\u56de\uff0c\u518d\u7ee7\u7eed\u8d70\u5230\u5c3d\u5934\u5e76\u8fd4\u56de\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u904d\u5386\u5b8c\u6210\u3002
\u56fe 9-11 \u00a0 \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386
"},{"location":"chapter_graph/graph_traversal/#1_1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"\u8fd9\u79cd\u201c\u8d70\u5230\u5c3d\u5934\u518d\u8fd4\u56de\u201d\u7684\u7b97\u6cd5\u8303\u5f0f\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002\u4e0e\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7c7b\u4f3c\uff0c\u5728\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u4e2d\uff0c\u6211\u4eec\u4e5f\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\uff0c\u4ee5\u907f\u514d\u91cd\u590d\u8bbf\u95ee\u9876\u70b9\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig graph_dfs.pydef dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):\n \"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570\"\"\"\n res.append(vet) # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet) # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n # \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adjVet in graph.adj_list[vet]:\n if adjVet in visited:\n continue # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n # \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet)\n\ndef graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n \"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\"\"\"\n # \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n # \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res = []\n # \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited = set[Vertex]()\n dfs(graph, visited, res, start_vet)\n return res\n
graph_dfs.cpp/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {\n res.push_back(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.emplace(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex *adjVet : graph.adjList[vet]) {\n if (visited.count(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n vector<Vertex *> res;\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n unordered_set<Vertex *> visited;\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.java/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet : graph.adjList.get(vet)) {\n if (visited.contains(adjVet))\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = new ArrayList<>();\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = new HashSet<>();\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.cs/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nvoid DFS(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {\n res.Add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.Add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n foreach (Vertex adjVet in graph.adjList[vet]) {\n if (visited.Contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9 \n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n DFS(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> GraphDFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n HashSet<Vertex> visited = [];\n DFS(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.go/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nfunc dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {\n // append \u64cd\u4f5c\u4f1a\u8fd4\u56de\u65b0\u7684\u7684\u5f15\u7528\uff0c\u5fc5\u987b\u8ba9\u539f\u5f15\u7528\u91cd\u65b0\u8d4b\u503c\u4e3a\u65b0slice\u7684\u5f15\u7528\n *res = append(*res, vet)\n visited[vet] = struct{}{}\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for _, adjVet := range g.adjList[vet] {\n _, isExist := visited[adjVet]\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n if !isExist {\n dfs(g, visited, res, adjVet)\n }\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(g *graphAdjList, startVet Vertex) []Vertex {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n res := make([]Vertex, 0)\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n visited := make(map[Vertex]struct{})\n dfs(g, visited, &res, startVet)\n // \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\n return res\n}\n
graph_dfs.swift/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nfunc dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {\n res.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.insert(vet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for adjVet in graph.adjList[vet] ?? [] {\n if visited.contains(adjVet) {\n continue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph: graph, visited: &visited, res: &res, vet: adjVet)\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n var res: [Vertex] = []\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n var visited: Set<Vertex> = []\n dfs(graph: graph, visited: &visited, res: &res, vet: startVet)\n return res\n}\n
graph_dfs.js/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction dfs(graph, visited, res, vet) {\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet)) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph, startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited = new Set();\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.ts/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nfunction dfs(\n graph: GraphAdjList,\n visited: Set<Vertex>,\n res: Vertex[],\n vet: Vertex\n): void {\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (const adjVet of graph.adjList.get(vet)) {\n if (visited.has(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n const res: Vertex[] = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n const visited: Set<Vertex> = new Set();\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.dart/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nvoid dfs(\n GraphAdjList graph,\n Set<Vertex> visited,\n List<Vertex> res,\n Vertex vet,\n) {\n res.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n for (Vertex adjVet in graph.adjList[vet]!) {\n if (visited.contains(adjVet)) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adjVet);\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n List<Vertex> res = [];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n Set<Vertex> visited = {};\n dfs(graph, visited, res, startVet);\n return res;\n}\n
graph_dfs.rs/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nfn dfs(graph: &GraphAdjList, visited: &mut HashSet<Vertex>, res: &mut Vec<Vertex>, vet: Vertex) {\n res.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n visited.insert(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n if let Some(adj_vets) = graph.adj_list.get(&vet) {\n for &adj_vet in adj_vets {\n if visited.contains(&adj_vet) {\n continue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n }\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, visited, res, adj_vet);\n }\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n // \u9876\u70b9\u904d\u5386\u5e8f\u5217\n let mut res = vec![];\n // \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n let mut visited = HashSet::new();\n dfs(&graph, &mut visited, &mut res, start_vet);\n\n res\n}\n
graph_dfs.c/* \u68c0\u67e5\u9876\u70b9\u662f\u5426\u5df2\u88ab\u8bbf\u95ee */\nint isVisited(Vertex **res, int size, Vertex *vet) {\n // \u904d\u5386\u67e5\u627e\u8282\u70b9\uff0c\u4f7f\u7528 O(n) \u65f6\u95f4\n for (int i = 0; i < size; i++) {\n if (res[i] == vet) {\n return 1;\n }\n }\n return 0;\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList *graph, Vertex **res, int *resSize, Vertex *vet) {\n // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n res[(*resSize)++] = vet;\n // \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n AdjListNode *node = findNode(graph, vet);\n while (node != NULL) {\n // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\n if (!isVisited(res, *resSize, node->vertex)) {\n // \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\n dfs(graph, res, resSize, node->vertex);\n }\n node = node->next;\n }\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvoid graphDFS(GraphAdjList *graph, Vertex *startVet, Vertex **res, int *resSize) {\n dfs(graph, res, resSize, startVet);\n}\n
graph_dfs.zig[class]{}-[func]{dfs}\n\n[class]{}-[func]{graphDFS}\n
\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u56fe 9-12 \u6240\u793a\u3002
- \u76f4\u865a\u7ebf\u4ee3\u8868\u5411\u4e0b\u9012\u63a8\uff0c\u8868\u793a\u5f00\u542f\u4e86\u4e00\u4e2a\u65b0\u7684\u9012\u5f52\u65b9\u6cd5\u6765\u8bbf\u95ee\u65b0\u9876\u70b9\u3002
- \u66f2\u865a\u7ebf\u4ee3\u8868\u5411\u4e0a\u56de\u6eaf\uff0c\u8868\u793a\u6b64\u9012\u5f52\u65b9\u6cd5\u5df2\u7ecf\u8fd4\u56de\uff0c\u56de\u6eaf\u5230\u4e86\u5f00\u542f\u6b64\u65b9\u6cd5\u7684\u4f4d\u7f6e\u3002
\u4e3a\u4e86\u52a0\u6df1\u7406\u89e3\uff0c\u5efa\u8bae\u5c06\u56fe 9-12 \u4e0e\u4ee3\u7801\u7ed3\u5408\u8d77\u6765\uff0c\u5728\u8111\u4e2d\u6a21\u62df\uff08\u6216\u8005\u7528\u7b14\u753b\u4e0b\u6765\uff09\u6574\u4e2a DFS \u8fc7\u7a0b\uff0c\u5305\u62ec\u6bcf\u4e2a\u9012\u5f52\u65b9\u6cd5\u4f55\u65f6\u5f00\u542f\u3001\u4f55\u65f6\u8fd4\u56de\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 9-12 \u00a0 \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4
\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f
\u4e0e\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7c7b\u4f3c\uff0c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5e8f\u5217\u7684\u987a\u5e8f\u4e5f\u4e0d\u662f\u552f\u4e00\u7684\u3002\u7ed9\u5b9a\u67d0\u9876\u70b9\uff0c\u5148\u5f80\u54ea\u4e2a\u65b9\u5411\u63a2\u7d22\u90fd\u53ef\u4ee5\uff0c\u5373\u90bb\u63a5\u9876\u70b9\u7684\u987a\u5e8f\u53ef\u4ee5\u4efb\u610f\u6253\u4e71\uff0c\u90fd\u662f\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002
\u4ee5\u6811\u7684\u904d\u5386\u4e3a\u4f8b\uff0c\u201c\u6839 \\(\\rightarrow\\) \u5de6 \\(\\rightarrow\\) \u53f3\u201d\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u201c\u5de6 \\(\\rightarrow\\) \u53f3 \\(\\rightarrow\\) \u6839\u201d\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\uff0c\u5b83\u4eec\u5c55\u793a\u4e86\u4e09\u79cd\u904d\u5386\u4f18\u5148\u7ea7\uff0c\u7136\u800c\u8fd9\u4e09\u8005\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002
"},{"location":"chapter_graph/graph_traversal/#2_1","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u9876\u70b9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(1\\) \u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002
\u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u9012\u5f52\u6df1\u5ea6\u6700\u5927\u4e3a \\(|V|\\) \uff0c\u56e0\u6b64\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002
"},{"location":"chapter_graph/summary/","title":"9.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_graph/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u56fe\u7531\u9876\u70b9\u548c\u8fb9\u7ec4\u6210\uff0c\u53ef\u4ee5\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9\u548c\u4e00\u7ec4\u8fb9\u6784\u6210\u7684\u96c6\u5408\u3002
- \u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u56e0\u800c\u66f4\u4e3a\u590d\u6742\u3002
- \u6709\u5411\u56fe\u7684\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u8fde\u901a\u56fe\u4e2d\u7684\u4efb\u610f\u9876\u70b9\u5747\u53ef\u8fbe\uff0c\u6709\u6743\u56fe\u7684\u6bcf\u6761\u8fb9\u90fd\u5305\u542b\u6743\u91cd\u53d8\u91cf\u3002
- \u90bb\u63a5\u77e9\u9635\u5229\u7528\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u6709\u8fb9\u6216\u65e0\u8fb9\u3002\u90bb\u63a5\u77e9\u9635\u5728\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u4e0a\u6548\u7387\u5f88\u9ad8\uff0c\u4f46\u7a7a\u95f4\u5360\u7528\u8f83\u591a\u3002
- \u90bb\u63a5\u8868\u4f7f\u7528\u591a\u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u7b2c \\(i\\) \u4e2a\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u3002\u90bb\u63a5\u8868\u76f8\u5bf9\u4e8e\u90bb\u63a5\u77e9\u9635\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\uff0c\u4f46\u7531\u4e8e\u9700\u8981\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u56e0\u6b64\u65f6\u95f4\u6548\u7387\u8f83\u4f4e\u3002
- \u5f53\u90bb\u63a5\u8868\u4e2d\u7684\u94fe\u8868\u8fc7\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u5176\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6216\u54c8\u5e0c\u8868\uff0c\u4ece\u800c\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002
- \u4ece\u7b97\u6cd5\u601d\u60f3\u7684\u89d2\u5ea6\u5206\u6790\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u4e86\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff0c\u90bb\u63a5\u8868\u4f53\u73b0\u4e86\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002
- \u56fe\u53ef\u7528\u4e8e\u5efa\u6a21\u5404\u7c7b\u73b0\u5b9e\u7cfb\u7edf\uff0c\u5982\u793e\u4ea4\u7f51\u7edc\u3001\u5730\u94c1\u7ebf\u8def\u7b49\u3002
- \u6811\u662f\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\uff0c\u6811\u7684\u904d\u5386\u4e5f\u662f\u56fe\u7684\u904d\u5386\u7684\u4e00\u79cd\u7279\u4f8b\u3002
- \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u3001\u5c42\u5c42\u6269\u5f20\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u901a\u5e38\u501f\u52a9\u961f\u5217\u5b9e\u73b0\u3002
- \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u65f6\u518d\u56de\u6eaf\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002
"},{"location":"chapter_graph/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u8def\u5f84\u7684\u5b9a\u4e49\u662f\u9876\u70b9\u5e8f\u5217\u8fd8\u662f\u8fb9\u5e8f\u5217\uff1f
\u7ef4\u57fa\u767e\u79d1\u4e0a\u4e0d\u540c\u8bed\u8a00\u7248\u672c\u7684\u5b9a\u4e49\u4e0d\u4e00\u81f4\uff1a\u82f1\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u8fb9\u5e8f\u5217\u201d\uff0c\u800c\u4e2d\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u201d\u3002\u4ee5\u4e0b\u662f\u82f1\u6587\u7248\u539f\u6587\uff1aIn graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices. \u5728\u672c\u6587\u4e2d\uff0c\u8def\u5f84\u88ab\u89c6\u4e3a\u4e00\u4e2a\u8fb9\u5e8f\u5217\uff0c\u800c\u4e0d\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u3002\u8fd9\u662f\u56e0\u4e3a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u53ef\u80fd\u5b58\u5728\u591a\u6761\u8fb9\u8fde\u63a5\uff0c\u6b64\u65f6\u6bcf\u6761\u8fb9\u90fd\u5bf9\u5e94\u4e00\u6761\u8def\u5f84\u3002
\u975e\u8fde\u901a\u56fe\u4e2d\u662f\u5426\u4f1a\u6709\u65e0\u6cd5\u904d\u5386\u5230\u7684\u70b9\uff1f
\u5728\u975e\u8fde\u901a\u56fe\u4e2d\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002\u904d\u5386\u975e\u8fde\u901a\u56fe\u9700\u8981\u8bbe\u7f6e\u591a\u4e2a\u8d77\u70b9\uff0c\u4ee5\u904d\u5386\u5230\u56fe\u7684\u6240\u6709\u8fde\u901a\u5206\u91cf\u3002
\u5728\u90bb\u63a5\u8868\u4e2d\uff0c\u201c\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u6240\u6709\u9876\u70b9\u201d\u7684\u9876\u70b9\u987a\u5e8f\u662f\u5426\u6709\u8981\u6c42\uff1f
\u53ef\u4ee5\u662f\u4efb\u610f\u987a\u5e8f\u3002\u4f46\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u53ef\u80fd\u9700\u8981\u6309\u7167\u6307\u5b9a\u89c4\u5219\u6765\u6392\u5e8f\uff0c\u6bd4\u5982\u6309\u7167\u9876\u70b9\u6dfb\u52a0\u7684\u6b21\u5e8f\uff0c\u6216\u8005\u6309\u7167\u9876\u70b9\u503c\u5927\u5c0f\u7684\u987a\u5e8f\u7b49\uff0c\u8fd9\u6837\u6709\u52a9\u4e8e\u5feb\u901f\u67e5\u627e\u201c\u5e26\u6709\u67d0\u79cd\u6781\u503c\u201d\u7684\u9876\u70b9\u3002
"},{"location":"chapter_greedy/","title":"\u7b2c 15 \u7ae0 \u00a0 \u8d2a\u5fc3","text":"Abstract
\u5411\u65e5\u8475\u671d\u7740\u592a\u9633\u8f6c\u52a8\uff0c\u65f6\u523b\u8ffd\u6c42\u81ea\u8eab\u6210\u957f\u7684\u6700\u5927\u53ef\u80fd\u3002
\u8d2a\u5fc3\u7b56\u7565\u5728\u4e00\u8f6e\u8f6e\u7684\u7b80\u5355\u9009\u62e9\u4e2d\uff0c\u9010\u6b65\u5bfc\u5411\u6700\u4f73\u7b54\u6848\u3002
"},{"location":"chapter_greedy/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5
- 15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898
- 15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898
- 15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898
- 15.5 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_greedy/fractional_knapsack_problem/","title":"15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898","text":"Question
\u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\)\u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u4f46\u53ef\u4ee5\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u4ef7\u503c\u6839\u636e\u9009\u62e9\u7684\u91cd\u91cf\u6bd4\u4f8b\u8ba1\u7b97\uff0c\u95ee\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u80cc\u5305\u4e2d\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002\u793a\u4f8b\u5982\u56fe 15-3 \u6240\u793a\u3002
\u56fe 15-3 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
\u5206\u6570\u80cc\u5305\u95ee\u9898\u548c 0-1 \u80cc\u5305\u95ee\u9898\u6574\u4f53\u4e0a\u975e\u5e38\u76f8\u4f3c\uff0c\u72b6\u6001\u5305\u542b\u5f53\u524d\u7269\u54c1 \\(i\\) \u548c\u5bb9\u91cf \\(c\\) \uff0c\u76ee\u6807\u662f\u6c42\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u6700\u5927\u4ef7\u503c\u3002
\u4e0d\u540c\u70b9\u5728\u4e8e\uff0c\u672c\u9898\u5141\u8bb8\u53ea\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\u3002\u5982\u56fe 15-4 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5bf9\u7269\u54c1\u4efb\u610f\u5730\u8fdb\u884c\u5207\u5206\uff0c\u5e76\u6309\u7167\u91cd\u91cf\u6bd4\u4f8b\u6765\u8ba1\u7b97\u76f8\u5e94\u4ef7\u503c\u3002
- \u5bf9\u4e8e\u7269\u54c1 \\(i\\) \uff0c\u5b83\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c\u4e3a \\(val[i-1] / wgt[i-1]\\) \uff0c\u7b80\u79f0\u5355\u4f4d\u4ef7\u503c\u3002
- \u5047\u8bbe\u653e\u5165\u4e00\u90e8\u5206\u7269\u54c1 \\(i\\) \uff0c\u91cd\u91cf\u4e3a \\(w\\) \uff0c\u5219\u80cc\u5305\u589e\u52a0\u7684\u4ef7\u503c\u4e3a \\(w \\times val[i-1] / wgt[i-1]\\) \u3002
\u56fe 15-4 \u00a0 \u7269\u54c1\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c
"},{"location":"chapter_greedy/fractional_knapsack_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"\u6700\u5927\u5316\u80cc\u5305\u5185\u7269\u54c1\u603b\u4ef7\u503c\uff0c\u672c\u8d28\u4e0a\u662f\u6700\u5927\u5316\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u7269\u54c1\u4ef7\u503c\u3002\u7531\u6b64\u4fbf\u53ef\u63a8\u7406\u51fa\u56fe 15-5 \u6240\u793a\u7684\u8d2a\u5fc3\u7b56\u7565\u3002
- \u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\u3002
- \u904d\u5386\u6240\u6709\u7269\u54c1\uff0c\u6bcf\u8f6e\u8d2a\u5fc3\u5730\u9009\u62e9\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\u3002
- \u82e5\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u4f7f\u7528\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u586b\u6ee1\u80cc\u5305\u3002
\u56fe 15-5 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u8d2a\u5fc3\u7b56\u7565
"},{"location":"chapter_greedy/fractional_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u6211\u4eec\u5efa\u7acb\u4e86\u4e00\u4e2a\u7269\u54c1\u7c7b Item \uff0c\u4ee5\u4fbf\u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u8fdb\u884c\u6392\u5e8f\u3002\u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u5f53\u80cc\u5305\u5df2\u6ee1\u65f6\u8df3\u51fa\u5e76\u8fd4\u56de\u89e3\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig fractional_knapsack.pyclass Item:\n \"\"\"\u7269\u54c1\"\"\"\n\n def __init__(self, w: int, v: int):\n self.w = w # \u7269\u54c1\u91cd\u91cf\n self.v = v # \u7269\u54c1\u4ef7\u503c\n\ndef fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:\n \"\"\"\u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3\"\"\"\n # \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n items = [Item(w, v) for w, v in zip(wgt, val)]\n # \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort(key=lambda item: item.v / item.w, reverse=True)\n # \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n res = 0\n for item in items:\n if item.w <= cap:\n # \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v\n cap -= item.w\n else:\n # \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (item.v / item.w) * cap\n # \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break\n return res\n
fractional_knapsack.cpp/* \u7269\u54c1 */\nclass Item {\n public:\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n\n Item(int w, int v) : w(w), v(v) {\n }\n};\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n vector<Item> items;\n for (int i = 0; i < wgt.size(); i++) {\n items.push_back(Item(wgt[i], val[i]));\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n for (auto &item : items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (double)item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.java/* \u7269\u54c1 */\nclass Item {\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n\n public Item(int w, int v) {\n this.w = w;\n this.v = v;\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(int[] wgt, int[] val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n Item[] items = new Item[wgt.length];\n for (int i = 0; i < wgt.length; i++) {\n items[i] = new Item(wgt[i], val[i]);\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n Arrays.sort(items, Comparator.comparingDouble(item -> -((double) item.v / item.w)));\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n for (Item item : items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (double) item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.cs/* \u7269\u54c1 */\nclass Item(int w, int v) {\n public int w = w; // \u7269\u54c1\u91cd\u91cf\n public int v = v; // \u7269\u54c1\u4ef7\u503c\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble FractionalKnapsack(int[] wgt, int[] val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n Item[] items = new Item[wgt.Length];\n for (int i = 0; i < wgt.Length; i++) {\n items[i] = new Item(wgt[i], val[i]);\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n Array.Sort(items, (x, y) => (y.v / y.w).CompareTo(x.v / x.w));\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n foreach (Item item in items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (double)item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.go/* \u7269\u54c1 */\ntype Item struct {\n w int // \u7269\u54c1\u91cd\u91cf\n v int // \u7269\u54c1\u4ef7\u503c\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunc fractionalKnapsack(wgt []int, val []int, cap int) float64 {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n items := make([]Item, len(wgt))\n for i := 0; i < len(wgt); i++ {\n items[i] = Item{wgt[i], val[i]}\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n sort.Slice(items, func(i, j int) bool {\n return float64(items[i].v)/float64(items[i].w) > float64(items[j].v)/float64(items[j].w)\n })\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n res := 0.0\n for _, item := range items {\n if item.w <= cap {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += float64(item.v)\n cap -= item.w\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += float64(item.v) / float64(item.w) * float64(cap)\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break\n }\n }\n return res\n}\n
fractional_knapsack.swift/* \u7269\u54c1 */\nclass Item {\n var w: Int // \u7269\u54c1\u91cd\u91cf\n var v: Int // \u7269\u54c1\u4ef7\u503c\n\n init(w: Int, v: Int) {\n self.w = w\n self.v = v\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunc fractionalKnapsack(wgt: [Int], val: [Int], cap: Int) -> Double {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n var items = zip(wgt, val).map { Item(w: $0, v: $1) }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort(by: { -(Double($0.v) / Double($0.w)) < -(Double($1.v) / Double($1.w)) })\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n var res = 0.0\n var cap = cap\n for item in items {\n if item.w <= cap {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += Double(item.v)\n cap -= item.w\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += Double(item.v) / Double(item.w) * Double(cap)\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break\n }\n }\n return res\n}\n
fractional_knapsack.js/* \u7269\u54c1 */\nclass Item {\n constructor(w, v) {\n this.w = w; // \u7269\u54c1\u91cd\u91cf\n this.v = v; // \u7269\u54c1\u4ef7\u503c\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunction fractionalKnapsack(wgt, val, cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n const items = wgt.map((w, i) => new Item(w, val[i]));\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort((a, b) => b.v / b.w - a.v / a.w);\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n let res = 0;\n for (const item of items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (item.v / item.w) * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.ts/* \u7269\u54c1 */\nclass Item {\n w: number; // \u7269\u54c1\u91cd\u91cf\n v: number; // \u7269\u54c1\u4ef7\u503c\n\n constructor(w: number, v: number) {\n this.w = w;\n this.v = v;\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunction fractionalKnapsack(wgt: number[], val: number[], cap: number): number {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n const items: Item[] = wgt.map((w, i) => new Item(w, val[i]));\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort((a, b) => b.v / b.w - a.v / a.w);\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n let res = 0;\n for (const item of items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (item.v / item.w) * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.dart/* \u7269\u54c1 */\nclass Item {\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n\n Item(this.w, this.v);\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(List<int> wgt, List<int> val, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n List<Item> items = List.generate(wgt.length, (i) => Item(wgt[i], val[i]));\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort((a, b) => (b.v / b.w).compareTo(a.v / a.w));\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n double res = 0;\n for (Item item in items) {\n if (item.w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += item.v / item.w * cap;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n return res;\n}\n
fractional_knapsack.rs/* \u7269\u54c1 */\nstruct Item {\n w: i32, // \u7269\u54c1\u91cd\u91cf\n v: i32, // \u7269\u54c1\u4ef7\u503c\n}\n\nimpl Item {\n fn new(w: i32, v: i32) -> Self {\n Self { w, v }\n }\n}\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfn fractional_knapsack(wgt: &[i32], val: &[i32], mut cap: i32) -> f64 {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n let mut items = wgt\n .iter()\n .zip(val.iter())\n .map(|(&w, &v)| Item::new(w, v))\n .collect::<Vec<Item>>();\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n items.sort_by(|a, b| {\n (b.v as f64 / b.w as f64)\n .partial_cmp(&(a.v as f64 / a.w as f64))\n .unwrap()\n });\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n let mut res = 0.0;\n for item in &items {\n if item.w <= cap {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += item.v as f64;\n cap -= item.w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += item.v as f64 / item.w as f64 * cap as f64;\n // \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n res\n}\n
fractional_knapsack.c/* \u7269\u54c1 */\ntypedef struct {\n int w; // \u7269\u54c1\u91cd\u91cf\n int v; // \u7269\u54c1\u4ef7\u503c\n} Item;\n\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfloat fractionalKnapsack(int wgt[], int val[], int itemCount, int cap) {\n // \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\n Item *items = malloc(sizeof(Item) * itemCount);\n for (int i = 0; i < itemCount; i++) {\n items[i] = (Item){.w = wgt[i], .v = val[i]};\n }\n // \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\n qsort(items, (size_t)itemCount, sizeof(Item), sortByValueDensity);\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\n float res = 0.0;\n for (int i = 0; i < itemCount; i++) {\n if (items[i].w <= cap) {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\n res += items[i].v;\n cap -= items[i].w;\n } else {\n // \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\n res += (float)cap / items[i].w * items[i].v;\n cap = 0;\n break;\n }\n }\n free(items);\n return res;\n}\n
fractional_knapsack.zig[class]{Item}-[func]{}\n\n[class]{}-[func]{fractionalKnapsack}\n
\u9664\u6392\u5e8f\u4e4b\u5916\uff0c\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u9700\u8981\u904d\u5386\u6574\u4e2a\u7269\u54c1\u5217\u8868\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u7269\u54c1\u6570\u91cf\u3002
\u7531\u4e8e\u521d\u59cb\u5316\u4e86\u4e00\u4e2a Item \u5bf9\u8c61\u5217\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
"},{"location":"chapter_greedy/fractional_knapsack_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"\u91c7\u7528\u53cd\u8bc1\u6cd5\u3002\u5047\u8bbe\u7269\u54c1 \\(x\\) \u662f\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\uff0c\u4f7f\u7528\u67d0\u7b97\u6cd5\u6c42\u5f97\u6700\u5927\u4ef7\u503c\u4e3a res \uff0c\u4f46\u8be5\u89e3\u4e2d\u4e0d\u5305\u542b\u7269\u54c1 \\(x\\) \u3002
\u73b0\u5728\u4ece\u80cc\u5305\u4e2d\u62ff\u51fa\u5355\u4f4d\u91cd\u91cf\u7684\u4efb\u610f\u7269\u54c1\uff0c\u5e76\u66ff\u6362\u4e3a\u5355\u4f4d\u91cd\u91cf\u7684\u7269\u54c1 \\(x\\) \u3002\u7531\u4e8e\u7269\u54c1 \\(x\\) \u7684\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\uff0c\u56e0\u6b64\u66ff\u6362\u540e\u7684\u603b\u4ef7\u503c\u4e00\u5b9a\u5927\u4e8e res \u3002\u8fd9\u4e0e res \u662f\u6700\u4f18\u89e3\u77db\u76fe\uff0c\u8bf4\u660e\u6700\u4f18\u89e3\u4e2d\u5fc5\u987b\u5305\u542b\u7269\u54c1 \\(x\\) \u3002
\u5bf9\u4e8e\u8be5\u89e3\u4e2d\u7684\u5176\u4ed6\u7269\u54c1\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u6784\u5efa\u51fa\u4e0a\u8ff0\u77db\u76fe\u3002\u603b\u800c\u8a00\u4e4b\uff0c\u5355\u4f4d\u4ef7\u503c\u66f4\u5927\u7684\u7269\u54c1\u603b\u662f\u66f4\u4f18\u9009\u62e9\uff0c\u8fd9\u8bf4\u660e\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002
\u5982\u56fe 15-6 \u6240\u793a\uff0c\u5982\u679c\u5c06\u7269\u54c1\u91cd\u91cf\u548c\u7269\u54c1\u5355\u4f4d\u4ef7\u503c\u5206\u522b\u770b\u4f5c\u4e00\u5f20\u4e8c\u7ef4\u56fe\u8868\u7684\u6a2a\u8f74\u548c\u7eb5\u8f74\uff0c\u5219\u5206\u6570\u80cc\u5305\u95ee\u9898\u53ef\u8f6c\u5316\u4e3a\u201c\u6c42\u5728\u6709\u9650\u6a2a\u8f74\u533a\u95f4\u4e0b\u56f4\u6210\u7684\u6700\u5927\u9762\u79ef\u201d\u3002\u8fd9\u4e2a\u7c7b\u6bd4\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u4ece\u51e0\u4f55\u89d2\u5ea6\u7406\u89e3\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002
\u56fe 15-6 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u51e0\u4f55\u8868\u793a
"},{"location":"chapter_greedy/greedy_algorithm/","title":"15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5","text":"\u300c\u8d2a\u5fc3\u7b97\u6cd5 greedy algorithm\u300d\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u7684\u7b97\u6cd5\uff0c\u5176\u57fa\u672c\u601d\u60f3\u662f\u5728\u95ee\u9898\u7684\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\uff0c\u90fd\u9009\u62e9\u5f53\u524d\u770b\u8d77\u6765\u6700\u4f18\u7684\u9009\u62e9\uff0c\u5373\u8d2a\u5fc3\u5730\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002\u8d2a\u5fc3\u7b97\u6cd5\u7b80\u6d01\u4e14\u9ad8\u6548\uff0c\u5728\u8bb8\u591a\u5b9e\u9645\u95ee\u9898\u4e2d\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\u3002
\u8d2a\u5fc3\u7b97\u6cd5\u548c\u52a8\u6001\u89c4\u5212\u90fd\u5e38\u7528\u4e8e\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u3002\u5b83\u4eec\u4e4b\u95f4\u5b58\u5728\u4e00\u4e9b\u76f8\u4f3c\u4e4b\u5904\uff0c\u6bd4\u5982\u90fd\u4f9d\u8d56\u6700\u4f18\u5b50\u7ed3\u6784\u6027\u8d28\uff0c\u4f46\u5de5\u4f5c\u539f\u7406\u4e0d\u540c\u3002
- \u52a8\u6001\u89c4\u5212\u4f1a\u6839\u636e\u4e4b\u524d\u9636\u6bb5\u7684\u6240\u6709\u51b3\u7b56\u6765\u8003\u8651\u5f53\u524d\u51b3\u7b56\uff0c\u5e76\u4f7f\u7528\u8fc7\u53bb\u5b50\u95ee\u9898\u7684\u89e3\u6765\u6784\u5efa\u5f53\u524d\u5b50\u95ee\u9898\u7684\u89e3\u3002
- \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4f1a\u8003\u8651\u8fc7\u53bb\u7684\u51b3\u7b56\uff0c\u800c\u662f\u4e00\u8def\u5411\u524d\u5730\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u4e0d\u65ad\u7f29\u5c0f\u95ee\u9898\u8303\u56f4\uff0c\u76f4\u81f3\u95ee\u9898\u88ab\u89e3\u51b3\u3002
\u6211\u4eec\u5148\u901a\u8fc7\u4f8b\u9898\u201c\u96f6\u94b1\u5151\u6362\u201d\u4e86\u89e3\u8d2a\u5fc3\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002\u8fd9\u9053\u9898\u5df2\u7ecf\u5728\u201c\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u201d\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u76f8\u4fe1\u4f60\u5bf9\u5b83\u5e76\u4e0d\u964c\u751f\u3002
Question
\u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u6570\u91cf\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002
\u672c\u9898\u91c7\u53d6\u7684\u8d2a\u5fc3\u7b56\u7565\u5982\u56fe 15-1 \u6240\u793a\u3002\u7ed9\u5b9a\u76ee\u6807\u91d1\u989d\uff0c\u6211\u4eec\u8d2a\u5fc3\u5730\u9009\u62e9\u4e0d\u5927\u4e8e\u4e14\u6700\u63a5\u8fd1\u5b83\u7684\u786c\u5e01\uff0c\u4e0d\u65ad\u5faa\u73af\u8be5\u6b65\u9aa4\uff0c\u76f4\u81f3\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u4e3a\u6b62\u3002
\u56fe 15-1 \u00a0 \u96f6\u94b1\u5151\u6362\u7684\u8d2a\u5fc3\u7b56\u7565
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig coin_change_greedy.pydef coin_change_greedy(coins: list[int], amt: int) -> int:\n \"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3\"\"\"\n # \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n i = len(coins) - 1\n count = 0\n # \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while amt > 0:\n # \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while i > 0 and coins[i] > amt:\n i -= 1\n # \u9009\u62e9 coins[i]\n amt -= coins[i]\n count += 1\n # \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return count if amt == 0 else -1\n
coin_change_greedy.cpp/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(vector<int> &coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.size() - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.java/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int[] coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.length - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.cs/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint CoinChangeGreedy(int[] coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.Length - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.go/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunc coinChangeGreedy(coins []int, amt int) int {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n i := len(coins) - 1\n count := 0\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n for amt > 0 {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n for i > 0 && coins[i] > amt {\n i--\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i]\n count++\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n if amt != 0 {\n return -1\n }\n return count\n}\n
coin_change_greedy.swift/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunc coinChangeGreedy(coins: [Int], amt: Int) -> Int {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n var i = coins.count - 1\n var count = 0\n var amt = amt\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while amt > 0 {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while i > 0 && coins[i] > amt {\n i -= 1\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i]\n count += 1\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1\n}\n
coin_change_greedy.js/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunction coinChangeGreedy(coins, amt) {\n // \u5047\u8bbe coins \u6570\u7ec4\u6709\u5e8f\n let i = coins.length - 1;\n let count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt === 0 ? count : -1;\n}\n
coin_change_greedy.ts/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunction coinChangeGreedy(coins: number[], amt: number): number {\n // \u5047\u8bbe coins \u6570\u7ec4\u6709\u5e8f\n let i = coins.length - 1;\n let count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt === 0 ? count : -1;\n}\n
coin_change_greedy.dart/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(List<int> coins, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = coins.length - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.rs/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfn coin_change_greedy(coins: &[i32], mut amt: i32) -> i32 {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n let mut i = coins.len() - 1;\n let mut count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while amt > 0 {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while i > 0 && coins[i] > amt {\n i -= 1;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count += 1;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n if amt == 0 {\n count\n } else {\n -1\n }\n}\n
coin_change_greedy.c/* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int *coins, int size, int amt) {\n // \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\n int i = size - 1;\n int count = 0;\n // \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\n while (amt > 0) {\n // \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\n while (i > 0 && coins[i] > amt) {\n i--;\n }\n // \u9009\u62e9 coins[i]\n amt -= coins[i];\n count++;\n }\n // \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\n return amt == 0 ? count : -1;\n}\n
coin_change_greedy.zig[class]{}-[func]{coinChangeGreedy}\n
\u4f60\u53ef\u80fd\u4f1a\u4e0d\u7531\u5730\u53d1\u51fa\u611f\u53f9\uff1aSo clean \uff01\u8d2a\u5fc3\u7b97\u6cd5\u4ec5\u7528\u7ea6\u5341\u884c\u4ee3\u7801\u5c31\u89e3\u51b3\u4e86\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002
"},{"location":"chapter_greedy/greedy_algorithm/#1511","title":"15.1.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u7684\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u64cd\u4f5c\u76f4\u63a5\u3001\u5b9e\u73b0\u7b80\u5355\uff0c\u800c\u4e14\u901a\u5e38\u6548\u7387\u4e5f\u5f88\u9ad8\u3002\u5728\u4ee5\u4e0a\u4ee3\u7801\u4e2d\uff0c\u8bb0\u786c\u5e01\u6700\u5c0f\u9762\u503c\u4e3a \\(\\min(coins)\\) \uff0c\u5219\u8d2a\u5fc3\u9009\u62e9\u6700\u591a\u5faa\u73af \\(amt / \\min(coins)\\) \u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(amt / \\min(coins))\\) \u3002\u8fd9\u6bd4\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\times amt)\\) \u63d0\u5347\u4e86\u4e00\u4e2a\u6570\u91cf\u7ea7\u3002
\u7136\u800c\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u9762\u503c\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5e76\u4e0d\u80fd\u627e\u5230\u6700\u4f18\u89e3\u3002\u56fe 15-2 \u7ed9\u51fa\u4e86\u4e24\u4e2a\u793a\u4f8b\u3002
- \u6b63\u4f8b \\(coins = [1, 5, 10, 20, 50, 100]\\)\uff1a\u5728\u8be5\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u7ed9\u5b9a\u4efb\u610f \\(amt\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u90fd\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3\u3002
- \u53cd\u4f8b \\(coins = [1, 20, 50]\\)\uff1a\u5047\u8bbe \\(amt = 60\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 10\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(11\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(20 + 20 + 20\\) \uff0c\u4ec5\u9700 \\(3\\) \u679a\u786c\u5e01\u3002
- \u53cd\u4f8b \\(coins = [1, 49, 50]\\)\uff1a\u5047\u8bbe \\(amt = 98\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 48\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(49\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(49 + 49\\) \uff0c\u4ec5\u9700 \\(2\\) \u679a\u786c\u5e01\u3002
\u56fe 15-2 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u65e0\u6cd5\u627e\u51fa\u6700\u4f18\u89e3\u7684\u793a\u4f8b
\u4e5f\u5c31\u662f\u8bf4\uff0c\u5bf9\u4e8e\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u65e0\u6cd5\u4fdd\u8bc1\u627e\u5230\u5168\u5c40\u6700\u4f18\u89e3\uff0c\u5e76\u4e14\u6709\u53ef\u80fd\u627e\u5230\u975e\u5e38\u5dee\u7684\u89e3\u3002\u5b83\u66f4\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\u3002
\u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u9002\u7528\u60c5\u51b5\u5206\u4ee5\u4e0b\u4e24\u79cd\u3002
- \u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u5f80\u5f80\u662f\u6700\u4f18\u9009\u62e9\uff0c\u56e0\u4e3a\u5b83\u5f80\u5f80\u6bd4\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u66f4\u9ad8\u6548\u3002
- \u53ef\u4ee5\u627e\u5230\u8fd1\u4f3c\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e5f\u662f\u53ef\u7528\u7684\u3002\u5bf9\u4e8e\u5f88\u591a\u590d\u6742\u95ee\u9898\u6765\u8bf4\uff0c\u5bfb\u627e\u5168\u5c40\u6700\u4f18\u89e3\u975e\u5e38\u56f0\u96be\uff0c\u80fd\u4ee5\u8f83\u9ad8\u6548\u7387\u627e\u5230\u6b21\u4f18\u89e3\u4e5f\u662f\u975e\u5e38\u4e0d\u9519\u7684\u3002
"},{"location":"chapter_greedy/greedy_algorithm/#1512","title":"15.1.2 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u7279\u6027","text":"\u90a3\u4e48\u95ee\u9898\u6765\u4e86\uff0c\u4ec0\u4e48\u6837\u7684\u95ee\u9898\u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u5462\uff1f\u6216\u8005\u8bf4\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1f
\u76f8\u8f83\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u4f7f\u7528\u6761\u4ef6\u66f4\u52a0\u82db\u523b\uff0c\u5176\u4e3b\u8981\u5173\u6ce8\u95ee\u9898\u7684\u4e24\u4e2a\u6027\u8d28\u3002
- \u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\uff1a\u53ea\u6709\u5f53\u5c40\u90e8\u6700\u4f18\u9009\u62e9\u59cb\u7ec8\u53ef\u4ee5\u5bfc\u81f4\u5168\u5c40\u6700\u4f18\u89e3\u65f6\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u624d\u80fd\u4fdd\u8bc1\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u5305\u542b\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u3002
\u6700\u4f18\u5b50\u7ed3\u6784\u5df2\u7ecf\u5728\u201c\u52a8\u6001\u89c4\u5212\u201d\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u4e00\u4e9b\u95ee\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\u5e76\u4e0d\u660e\u663e\uff0c\u4f46\u4ecd\u7136\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u89e3\u51b3\u3002
\u6211\u4eec\u4e3b\u8981\u63a2\u7a76\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u5224\u65ad\u65b9\u6cd5\u3002\u867d\u7136\u5b83\u7684\u63cf\u8ff0\u770b\u4e0a\u53bb\u6bd4\u8f83\u7b80\u5355\uff0c\u4f46\u5b9e\u9645\u4e0a\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\uff0c\u8bc1\u660e\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u5e76\u975e\u6613\u4e8b\u3002
\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u6211\u4eec\u867d\u7136\u80fd\u591f\u5bb9\u6613\u5730\u4e3e\u51fa\u53cd\u4f8b\uff0c\u5bf9\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u8fdb\u884c\u8bc1\u4f2a\uff0c\u4f46\u8bc1\u5b9e\u7684\u96be\u5ea6\u8f83\u5927\u3002\u5982\u679c\u95ee\uff1a\u6ee1\u8db3\u4ec0\u4e48\u6761\u4ef6\u7684\u786c\u5e01\u7ec4\u5408\u53ef\u4ee5\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\uff1f\u6211\u4eec\u5f80\u5f80\u53ea\u80fd\u51ed\u501f\u76f4\u89c9\u6216\u4e3e\u4f8b\u5b50\u6765\u7ed9\u51fa\u4e00\u4e2a\u6a21\u68f1\u4e24\u53ef\u7684\u7b54\u6848\uff0c\u800c\u96be\u4ee5\u7ed9\u51fa\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\u3002
Quote
\u6709\u4e00\u7bc7\u8bba\u6587\u7ed9\u51fa\u4e86\u4e00\u4e2a \\(O(n^3)\\) \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u7b97\u6cd5\uff0c\u7528\u4e8e\u5224\u65ad\u4e00\u4e2a\u786c\u5e01\u7ec4\u5408\u80fd\u5426\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u627e\u51fa\u4efb\u610f\u91d1\u989d\u7684\u6700\u4f18\u89e3\u3002
Pearson, D. A polynomial-time algorithm for the change-making problem[J]. Operations Research Letters, 2005, 33(3): 231-234.
"},{"location":"chapter_greedy/greedy_algorithm/#1513","title":"15.1.3 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u89e3\u9898\u6b65\u9aa4","text":"\u8d2a\u5fc3\u95ee\u9898\u7684\u89e3\u51b3\u6d41\u7a0b\u5927\u4f53\u53ef\u5206\u4e3a\u4ee5\u4e0b\u4e09\u6b65\u3002
- \u95ee\u9898\u5206\u6790\uff1a\u68b3\u7406\u4e0e\u7406\u89e3\u95ee\u9898\u7279\u6027\uff0c\u5305\u62ec\u72b6\u6001\u5b9a\u4e49\u3001\u4f18\u5316\u76ee\u6807\u548c\u7ea6\u675f\u6761\u4ef6\u7b49\u3002\u8fd9\u4e00\u6b65\u5728\u56de\u6eaf\u548c\u52a8\u6001\u89c4\u5212\u4e2d\u90fd\u6709\u6d89\u53ca\u3002
- \u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\uff1a\u786e\u5b9a\u5982\u4f55\u5728\u6bcf\u4e00\u6b65\u4e2d\u505a\u51fa\u8d2a\u5fc3\u9009\u62e9\u3002\u8fd9\u4e2a\u7b56\u7565\u80fd\u591f\u5728\u6bcf\u4e00\u6b65\u51cf\u5c0f\u95ee\u9898\u7684\u89c4\u6a21\uff0c\u5e76\u6700\u7ec8\u89e3\u51b3\u6574\u4e2a\u95ee\u9898\u3002
- \u6b63\u786e\u6027\u8bc1\u660e\uff1a\u901a\u5e38\u9700\u8981\u8bc1\u660e\u95ee\u9898\u5177\u6709\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8fd9\u4e2a\u6b65\u9aa4\u53ef\u80fd\u9700\u8981\u7528\u5230\u6570\u5b66\u8bc1\u660e\uff0c\u4f8b\u5982\u5f52\u7eb3\u6cd5\u6216\u53cd\u8bc1\u6cd5\u7b49\u3002
\u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u662f\u6c42\u89e3\u95ee\u9898\u7684\u6838\u5fc3\u6b65\u9aa4\uff0c\u4f46\u5b9e\u65bd\u8d77\u6765\u53ef\u80fd\u5e76\u4e0d\u5bb9\u6613\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u4e0d\u540c\u95ee\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\u7684\u5dee\u5f02\u8f83\u5927\u3002\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\u6765\u8bf4\uff0c\u8d2a\u5fc3\u7b56\u7565\u6bd4\u8f83\u6d45\u663e\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u5927\u6982\u7684\u601d\u8003\u4e0e\u5c1d\u8bd5\u5c31\u80fd\u5f97\u51fa\u3002\u800c\u5bf9\u4e8e\u4e00\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b56\u7565\u53ef\u80fd\u975e\u5e38\u9690\u853d\uff0c\u8fd9\u79cd\u60c5\u51b5\u5c31\u975e\u5e38\u8003\u9a8c\u4e2a\u4eba\u7684\u89e3\u9898\u7ecf\u9a8c\u4e0e\u7b97\u6cd5\u80fd\u529b\u4e86\u3002
- \u67d0\u4e9b\u8d2a\u5fc3\u7b56\u7565\u5177\u6709\u8f83\u5f3a\u7684\u8ff7\u60d1\u6027\u3002\u5f53\u6211\u4eec\u6ee1\u6000\u4fe1\u5fc3\u8bbe\u8ba1\u597d\u8d2a\u5fc3\u7b56\u7565\uff0c\u5199\u51fa\u89e3\u9898\u4ee3\u7801\u5e76\u63d0\u4ea4\u8fd0\u884c\uff0c\u5f88\u53ef\u80fd\u53d1\u73b0\u90e8\u5206\u6d4b\u8bd5\u6837\u4f8b\u65e0\u6cd5\u901a\u8fc7\u3002\u8fd9\u662f\u56e0\u4e3a\u8bbe\u8ba1\u7684\u8d2a\u5fc3\u7b56\u7565\u53ea\u662f\u201c\u90e8\u5206\u6b63\u786e\u201d\u7684\uff0c\u4e0a\u6587\u4ecb\u7ecd\u7684\u96f6\u94b1\u5151\u6362\u5c31\u662f\u4e00\u4e2a\u5178\u578b\u6848\u4f8b\u3002
\u4e3a\u4e86\u4fdd\u8bc1\u6b63\u786e\u6027\uff0c\u6211\u4eec\u5e94\u8be5\u5bf9\u8d2a\u5fc3\u7b56\u7565\u8fdb\u884c\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\uff0c\u901a\u5e38\u9700\u8981\u7528\u5230\u53cd\u8bc1\u6cd5\u6216\u6570\u5b66\u5f52\u7eb3\u6cd5\u3002
\u7136\u800c\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u4e5f\u5f88\u53ef\u80fd\u4e0d\u662f\u4e00\u4ef6\u6613\u4e8b\u3002\u5982\u82e5\u6ca1\u6709\u5934\u7eea\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u9762\u5411\u6d4b\u8bd5\u7528\u4f8b\u8fdb\u884c\u4ee3\u7801\u8c03\u8bd5\uff0c\u4e00\u6b65\u6b65\u4fee\u6539\u4e0e\u9a8c\u8bc1\u8d2a\u5fc3\u7b56\u7565\u3002
"},{"location":"chapter_greedy/greedy_algorithm/#1514","title":"15.1.4 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u5178\u578b\u4f8b\u9898","text":"\u8d2a\u5fc3\u7b97\u6cd5\u5e38\u5e38\u5e94\u7528\u5728\u6ee1\u8db3\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u4f18\u5316\u95ee\u9898\u4e2d\uff0c\u4ee5\u4e0b\u5217\u4e3e\u4e86\u4e00\u4e9b\u5178\u578b\u7684\u8d2a\u5fc3\u7b97\u6cd5\u95ee\u9898\u3002
- \u786c\u5e01\u627e\u96f6\u95ee\u9898\uff1a\u5728\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u603b\u662f\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u533a\u95f4\u8c03\u5ea6\u95ee\u9898\uff1a\u5047\u8bbe\u4f60\u6709\u4e00\u4e9b\u4efb\u52a1\uff0c\u6bcf\u4e2a\u4efb\u52a1\u5728\u4e00\u6bb5\u65f6\u95f4\u5185\u8fdb\u884c\uff0c\u4f60\u7684\u76ee\u6807\u662f\u5b8c\u6210\u5c3d\u53ef\u80fd\u591a\u7684\u4efb\u52a1\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u7ed3\u675f\u65f6\u95f4\u6700\u65e9\u7684\u4efb\u52a1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5c31\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u5206\u6570\u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u8f7d\u91cd\u91cf\uff0c\u4f60\u7684\u76ee\u6807\u662f\u9009\u62e9\u4e00\u7ec4\u7269\u54c1\uff0c\u4f7f\u5f97\u603b\u91cd\u91cf\u4e0d\u8d85\u8fc7\u8f7d\u91cd\u91cf\uff0c\u4e14\u603b\u4ef7\u503c\u6700\u5927\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u6027\u4ef7\u6bd4\u6700\u9ad8\uff08\u4ef7\u503c / \u91cd\u91cf\uff09\u7684\u7269\u54c1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4e00\u4e9b\u60c5\u51b5\u4e0b\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
- \u80a1\u7968\u4e70\u5356\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u80a1\u7968\u7684\u5386\u53f2\u4ef7\u683c\uff0c\u4f60\u53ef\u4ee5\u8fdb\u884c\u591a\u6b21\u4e70\u5356\uff0c\u4f46\u5982\u679c\u4f60\u5df2\u7ecf\u6301\u6709\u80a1\u7968\uff0c\u90a3\u4e48\u5728\u5356\u51fa\u4e4b\u524d\u4e0d\u80fd\u518d\u4e70\uff0c\u76ee\u6807\u662f\u83b7\u53d6\u6700\u5927\u5229\u6da6\u3002
- \u970d\u592b\u66fc\u7f16\u7801\uff1a\u970d\u592b\u66fc\u7f16\u7801\u662f\u4e00\u79cd\u7528\u4e8e\u65e0\u635f\u6570\u636e\u538b\u7f29\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002\u901a\u8fc7\u6784\u5efa\u970d\u592b\u66fc\u6811\uff0c\u6bcf\u6b21\u9009\u62e9\u51fa\u73b0\u9891\u7387\u6700\u4f4e\u7684\u4e24\u4e2a\u8282\u70b9\u5408\u5e76\uff0c\u6700\u540e\u5f97\u5230\u7684\u970d\u592b\u66fc\u6811\u7684\u5e26\u6743\u8def\u5f84\u957f\u5ea6\uff08\u7f16\u7801\u957f\u5ea6\uff09\u6700\u5c0f\u3002
- Dijkstra \u7b97\u6cd5\uff1a\u5b83\u662f\u4e00\u79cd\u89e3\u51b3\u7ed9\u5b9a\u6e90\u9876\u70b9\u5230\u5176\u4f59\u5404\u9876\u70b9\u7684\u6700\u77ed\u8def\u5f84\u95ee\u9898\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002
"},{"location":"chapter_greedy/max_capacity_problem/","title":"15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898","text":"Question
\u8f93\u5165\u4e00\u4e2a\u6570\u7ec4 \\(ht\\) \uff0c\u5176\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u4ee3\u8868\u4e00\u4e2a\u5782\u76f4\u9694\u677f\u7684\u9ad8\u5ea6\u3002\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9694\u677f\uff0c\u4ee5\u53ca\u5b83\u4eec\u4e4b\u95f4\u7684\u7a7a\u95f4\u53ef\u4ee5\u7ec4\u6210\u4e00\u4e2a\u5bb9\u5668\u3002
\u5bb9\u5668\u7684\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u548c\u5bbd\u5ea6\u7684\u4e58\u79ef\uff08\u9762\u79ef\uff09\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u8f83\u77ed\u7684\u9694\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u4e2a\u9694\u677f\u7684\u6570\u7ec4\u7d22\u5f15\u4e4b\u5dee\u3002
\u8bf7\u5728\u6570\u7ec4\u4e2d\u9009\u62e9\u4e24\u4e2a\u9694\u677f\uff0c\u4f7f\u5f97\u7ec4\u6210\u7684\u5bb9\u5668\u7684\u5bb9\u91cf\u6700\u5927\uff0c\u8fd4\u56de\u6700\u5927\u5bb9\u91cf\u3002\u793a\u4f8b\u5982\u56fe 15-7 \u6240\u793a\u3002
\u56fe 15-7 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e
\u5bb9\u5668\u7531\u4efb\u610f\u4e24\u4e2a\u9694\u677f\u56f4\u6210\uff0c\u56e0\u6b64\u672c\u9898\u7684\u72b6\u6001\u4e3a\u4e24\u4e2a\u9694\u677f\u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002
\u6839\u636e\u9898\u610f\uff0c\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u4e58\u4ee5\u5bbd\u5ea6\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u9694\u677f\u7684\u6570\u7ec4\u7d22\u5f15\u4e4b\u5dee\u3002\u8bbe\u5bb9\u91cf\u4e3a \\(cap[i, j]\\) \uff0c\u5219\u53ef\u5f97\u8ba1\u7b97\u516c\u5f0f\uff1a
\\[ cap[i, j] = \\min(ht[i], ht[j]) \\times (j - i) \\] \u8bbe\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u4e24\u4e2a\u9694\u677f\u7684\u7ec4\u5408\u6570\u91cf\uff08\u72b6\u6001\u603b\u6570\uff09\u4e3a \\(C_n^2 = \\frac{n(n - 1)}{2}\\) \u4e2a\u3002\u6700\u76f4\u63a5\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u7a77\u4e3e\u6240\u6709\u72b6\u6001\uff0c\u4ece\u800c\u6c42\u5f97\u6700\u5927\u5bb9\u91cf\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_greedy/max_capacity_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"\u8fd9\u9053\u9898\u8fd8\u6709\u66f4\u9ad8\u6548\u7387\u7684\u89e3\u6cd5\u3002\u5982\u56fe 15-8 \u6240\u793a\uff0c\u73b0\u9009\u53d6\u4e00\u4e2a\u72b6\u6001 \\([i, j]\\) \uff0c\u5176\u6ee1\u8db3\u7d22\u5f15 \\(i < j\\) \u4e14\u9ad8\u5ea6 \\(ht[i] < ht[j]\\) \uff0c\u5373 \\(i\\) \u4e3a\u77ed\u677f\u3001\\(j\\) \u4e3a\u957f\u677f\u3002
\u56fe 15-8 \u00a0 \u521d\u59cb\u72b6\u6001
\u5982\u56fe 15-9 \u6240\u793a\uff0c\u82e5\u6b64\u65f6\u5c06\u957f\u677f \\(j\\) \u5411\u77ed\u677f \\(i\\) \u9760\u8fd1\uff0c\u5219\u5bb9\u91cf\u4e00\u5b9a\u53d8\u5c0f\u3002
\u8fd9\u662f\u56e0\u4e3a\u5728\u79fb\u52a8\u957f\u677f \\(j\\) \u540e\uff0c\u5bbd\u5ea6 \\(j-i\\) \u80af\u5b9a\u53d8\u5c0f\uff1b\u800c\u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u56e0\u6b64\u9ad8\u5ea6\u53ea\u53ef\u80fd\u4e0d\u53d8\uff08 \\(i\\) \u4ecd\u4e3a\u77ed\u677f\uff09\u6216\u53d8\u5c0f\uff08\u79fb\u52a8\u540e\u7684 \\(j\\) \u6210\u4e3a\u77ed\u677f\uff09\u3002
\u56fe 15-9 \u00a0 \u5411\u5185\u79fb\u52a8\u957f\u677f\u540e\u7684\u72b6\u6001
\u53cd\u5411\u601d\u8003\uff0c\u6211\u4eec\u53ea\u6709\u5411\u5185\u6536\u7f29\u77ed\u677f \\(i\\) \uff0c\u624d\u6709\u53ef\u80fd\u4f7f\u5bb9\u91cf\u53d8\u5927\u3002\u56e0\u4e3a\u867d\u7136\u5bbd\u5ea6\u4e00\u5b9a\u53d8\u5c0f\uff0c\u4f46\u9ad8\u5ea6\u53ef\u80fd\u4f1a\u53d8\u5927\uff08\u79fb\u52a8\u540e\u7684\u77ed\u677f \\(i\\) \u53ef\u80fd\u4f1a\u53d8\u957f\uff09\u3002\u4f8b\u5982\u5728\u56fe 15-10 \u4e2d\uff0c\u79fb\u52a8\u77ed\u677f\u540e\u9762\u79ef\u53d8\u5927\u3002
\u56fe 15-10 \u00a0 \u5411\u5185\u79fb\u52a8\u77ed\u677f\u540e\u7684\u72b6\u6001
\u7531\u6b64\u4fbf\u53ef\u63a8\u51fa\u672c\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\uff1a\u521d\u59cb\u5316\u4e24\u6307\u9488\uff0c\u4f7f\u5176\u5206\u5217\u5bb9\u5668\u4e24\u7aef\uff0c\u6bcf\u8f6e\u5411\u5185\u6536\u7f29\u77ed\u677f\u5bf9\u5e94\u7684\u6307\u9488\uff0c\u76f4\u81f3\u4e24\u6307\u9488\u76f8\u9047\u3002
\u56fe 15-11 \u5c55\u793a\u4e86\u8d2a\u5fc3\u7b56\u7565\u7684\u6267\u884c\u8fc7\u7a0b\u3002
- \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5206\u5217\u6570\u7ec4\u4e24\u7aef\u3002
- \u8ba1\u7b97\u5f53\u524d\u72b6\u6001\u7684\u5bb9\u91cf \\(cap[i, j]\\) \uff0c\u5e76\u66f4\u65b0\u6700\u5927\u5bb9\u91cf\u3002
- \u6bd4\u8f83\u677f \\(i\\) \u548c \u677f \\(j\\) \u7684\u9ad8\u5ea6\uff0c\u5e76\u5c06\u77ed\u677f\u5411\u5185\u79fb\u52a8\u4e00\u683c\u3002
- \u5faa\u73af\u6267\u884c\u7b2c
2. \u6b65\u548c\u7b2c 3. \u6b65\uff0c\u76f4\u81f3 \\(i\\) \u548c \\(j\\) \u76f8\u9047\u65f6\u7ed3\u675f\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 15-11 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u8d2a\u5fc3\u8fc7\u7a0b
"},{"location":"chapter_greedy/max_capacity_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u4ee3\u7801\u5faa\u73af\u6700\u591a \\(n\\) \u8f6e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
\u53d8\u91cf \\(i\\)\u3001\\(j\\)\u3001\\(res\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig max_capacity.pydef max_capacity(ht: list[int]) -> int:\n \"\"\"\u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3\"\"\"\n # \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n i, j = 0, len(ht) - 1\n # \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n res = 0\n # \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while i < j:\n # \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n cap = min(ht[i], ht[j]) * (j - i)\n res = max(res, cap)\n # \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j]:\n i += 1\n else:\n j -= 1\n return res\n
max_capacity.cpp/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(vector<int> &ht) {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.size() - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = min(ht[i], ht[j]) * (j - i);\n res = max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.java/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int[] ht) {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = Math.min(ht[i], ht[j]) * (j - i);\n res = Math.max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.cs/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint MaxCapacity(int[] ht) {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.Length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = Math.Min(ht[i], ht[j]) * (j - i);\n res = Math.Max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.go/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunc maxCapacity(ht []int) int {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n i, j := 0, len(ht)-1\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n res := 0\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n for i < j {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n capacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)\n res = int(math.Max(float64(res), float64(capacity)))\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j] {\n i++\n } else {\n j--\n }\n }\n return res\n}\n
max_capacity.swift/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunc maxCapacity(ht: [Int]) -> Int {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n var i = 0, j = ht.count - 1\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n var res = 0\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while i < j {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n let cap = min(ht[i], ht[j]) * (j - i)\n res = max(res, cap)\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j] {\n i += 1\n } else {\n j -= 1\n }\n }\n return res\n}\n
max_capacity.js/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunction maxCapacity(ht) {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n let i = 0,\n j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n let res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n const cap = Math.min(ht[i], ht[j]) * (j - i);\n res = Math.max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i += 1;\n } else {\n j -= 1;\n }\n }\n return res;\n}\n
max_capacity.ts/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunction maxCapacity(ht: number[]): number {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n let i = 0,\n j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n let res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n const cap: number = Math.min(ht[i], ht[j]) * (j - i);\n res = Math.max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i += 1;\n } else {\n j -= 1;\n }\n }\n return res;\n}\n
max_capacity.dart/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(List<int> ht) {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0, j = ht.length - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int cap = min(ht[i], ht[j]) * (j - i);\n res = max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.rs/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfn max_capacity(ht: &[i32]) -> i32 {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n let mut i = 0;\n let mut j = ht.len() - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n let mut res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while i < j {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n let cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;\n res = std::cmp::max(res, cap);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if ht[i] < ht[j] {\n i += 1;\n } else {\n j -= 1;\n }\n }\n res\n}\n
max_capacity.c/* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int ht[], int htLength) {\n // \u521d\u59cb\u5316 i, j\uff0c\u4f7f\u5176\u5206\u5217\u6570\u7ec4\u4e24\u7aef\n int i = 0;\n int j = htLength - 1;\n // \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\n int res = 0;\n // \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\n while (i < j) {\n // \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\n int capacity = myMin(ht[i], ht[j]) * (j - i);\n res = myMax(res, capacity);\n // \u5411\u5185\u79fb\u52a8\u77ed\u677f\n if (ht[i] < ht[j]) {\n i++;\n } else {\n j--;\n }\n }\n return res;\n}\n
max_capacity.zig[class]{}-[func]{maxCapacity}\n
"},{"location":"chapter_greedy/max_capacity_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"\u4e4b\u6240\u4ee5\u8d2a\u5fc3\u6bd4\u7a77\u4e3e\u66f4\u5feb\uff0c\u662f\u56e0\u4e3a\u6bcf\u8f6e\u7684\u8d2a\u5fc3\u9009\u62e9\u90fd\u4f1a\u201c\u8df3\u8fc7\u201d\u4e00\u4e9b\u72b6\u6001\u3002
\u6bd4\u5982\u5728\u72b6\u6001 \\(cap[i, j]\\) \u4e0b\uff0c\\(i\\) \u4e3a\u77ed\u677f\u3001\\(j\\) \u4e3a\u957f\u677f\u3002\u82e5\u8d2a\u5fc3\u5730\u5c06\u77ed\u677f \\(i\\) \u5411\u5185\u79fb\u52a8\u4e00\u683c\uff0c\u4f1a\u5bfc\u81f4\u56fe 15-12 \u6240\u793a\u7684\u72b6\u6001\u88ab\u201c\u8df3\u8fc7\u201d\u3002\u8fd9\u610f\u5473\u7740\u4e4b\u540e\u65e0\u6cd5\u9a8c\u8bc1\u8fd9\u4e9b\u72b6\u6001\u7684\u5bb9\u91cf\u5927\u5c0f\u3002
\\[ cap[i, i+1], cap[i, i+2], \\dots, cap[i, j-2], cap[i, j-1] \\] \u56fe 15-12 \u00a0 \u79fb\u52a8\u77ed\u677f\u5bfc\u81f4\u88ab\u8df3\u8fc7\u7684\u72b6\u6001
\u89c2\u5bdf\u53d1\u73b0\uff0c\u8fd9\u4e9b\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u5b9e\u9645\u4e0a\u5c31\u662f\u5c06\u957f\u677f \\(j\\) \u5411\u5185\u79fb\u52a8\u7684\u6240\u6709\u72b6\u6001\u3002\u524d\u9762\u6211\u4eec\u5df2\u7ecf\u8bc1\u660e\u5185\u79fb\u957f\u677f\u4e00\u5b9a\u4f1a\u5bfc\u81f4\u5bb9\u91cf\u53d8\u5c0f\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u90fd\u4e0d\u53ef\u80fd\u662f\u6700\u4f18\u89e3\uff0c\u8df3\u8fc7\u5b83\u4eec\u4e0d\u4f1a\u5bfc\u81f4\u9519\u8fc7\u6700\u4f18\u89e3\u3002
\u4ee5\u4e0a\u5206\u6790\u8bf4\u660e\uff0c\u79fb\u52a8\u77ed\u677f\u7684\u64cd\u4f5c\u662f\u201c\u5b89\u5168\u201d\u7684\uff0c\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002
"},{"location":"chapter_greedy/max_product_cutting_problem/","title":"15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570 \\(n\\) \uff0c\u5c06\u5176\u5207\u5206\u4e3a\u81f3\u5c11\u4e24\u4e2a\u6b63\u6574\u6570\u7684\u548c\uff0c\u6c42\u5207\u5206\u540e\u6240\u6709\u6574\u6570\u7684\u4e58\u79ef\u6700\u5927\u662f\u591a\u5c11\uff0c\u5982\u56fe 15-13 \u6240\u793a\u3002
\u56fe 15-13 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u95ee\u9898\u5b9a\u4e49
\u5047\u8bbe\u6211\u4eec\u5c06 \\(n\\) \u5207\u5206\u4e3a \\(m\\) \u4e2a\u6574\u6570\u56e0\u5b50\uff0c\u5176\u4e2d\u7b2c \\(i\\) \u4e2a\u56e0\u5b50\u8bb0\u4e3a \\(n_i\\) \uff0c\u5373
\\[ n = \\sum_{i=1}^{m}n_i \\] \u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u5f97\u6240\u6709\u6574\u6570\u56e0\u5b50\u7684\u6700\u5927\u4e58\u79ef\uff0c\u5373
\\[ \\max(\\prod_{i=1}^{m}n_i) \\] \u6211\u4eec\u9700\u8981\u601d\u8003\u7684\u662f\uff1a\u5207\u5206\u6570\u91cf \\(m\\) \u5e94\u8be5\u591a\u5927\uff0c\u6bcf\u4e2a \\(n_i\\) \u5e94\u8be5\u662f\u591a\u5c11\uff1f
"},{"location":"chapter_greedy/max_product_cutting_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"\u6839\u636e\u7ecf\u9a8c\uff0c\u4e24\u4e2a\u6574\u6570\u7684\u4e58\u79ef\u5f80\u5f80\u6bd4\u5b83\u4eec\u7684\u52a0\u548c\u66f4\u5927\u3002\u5047\u8bbe\u4ece \\(n\\) \u4e2d\u5206\u51fa\u4e00\u4e2a\u56e0\u5b50 \\(2\\) \uff0c\u5219\u5b83\u4eec\u7684\u4e58\u79ef\u4e3a \\(2(n-2)\\) \u3002\u6211\u4eec\u5c06\u8be5\u4e58\u79ef\u4e0e \\(n\\) \u4f5c\u6bd4\u8f83\uff1a
\\[ \\begin{aligned} 2(n-2) & \\geq n \\newline 2n - n - 4 & \\geq 0 \\newline n & \\geq 4 \\end{aligned} \\] \u5982\u56fe 15-14 \u6240\u793a\uff0c\u5f53 \\(n \\geq 4\\) \u65f6\uff0c\u5207\u5206\u51fa\u4e00\u4e2a \\(2\\) \u540e\u4e58\u79ef\u4f1a\u53d8\u5927\uff0c\u8fd9\u8bf4\u660e\u5927\u4e8e\u7b49\u4e8e \\(4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u88ab\u5207\u5206\u3002
\u8d2a\u5fc3\u7b56\u7565\u4e00\uff1a\u5982\u679c\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b \\(\\geq 4\\) \u7684\u56e0\u5b50\uff0c\u90a3\u4e48\u5b83\u5c31\u5e94\u8be5\u88ab\u7ee7\u7eed\u5207\u5206\u3002\u6700\u7ec8\u7684\u5207\u5206\u65b9\u6848\u53ea\u5e94\u51fa\u73b0 \\(1\\)\u3001\\(2\\)\u3001\\(3\\) \u8fd9\u4e09\u79cd\u56e0\u5b50\u3002
\u56fe 15-14 \u00a0 \u5207\u5206\u5bfc\u81f4\u4e58\u79ef\u53d8\u5927
\u63a5\u4e0b\u6765\u601d\u8003\u54ea\u4e2a\u56e0\u5b50\u662f\u6700\u4f18\u7684\u3002\u5728 \\(1\\)\u3001\\(2\\)\u3001\\(3\\) \u8fd9\u4e09\u4e2a\u56e0\u5b50\u4e2d\uff0c\u663e\u7136 \\(1\\) \u662f\u6700\u5dee\u7684\uff0c\u56e0\u4e3a \\(1 \\times (n-1) < n\\) \u6052\u6210\u7acb\uff0c\u5373\u5207\u5206\u51fa \\(1\\) \u53cd\u800c\u4f1a\u5bfc\u81f4\u4e58\u79ef\u51cf\u5c0f\u3002
\u5982\u56fe 15-15 \u6240\u793a\uff0c\u5f53 \\(n = 6\\) \u65f6\uff0c\u6709 \\(3 \\times 3 > 2 \\times 2 \\times 2\\) \u3002\u8fd9\u610f\u5473\u7740\u5207\u5206\u51fa \\(3\\) \u6bd4\u5207\u5206\u51fa \\(2\\) \u66f4\u4f18\u3002
\u8d2a\u5fc3\u7b56\u7565\u4e8c\uff1a\u5728\u5207\u5206\u65b9\u6848\u4e2d\uff0c\u6700\u591a\u53ea\u5e94\u5b58\u5728\u4e24\u4e2a \\(2\\) \u3002\u56e0\u4e3a\u4e09\u4e2a \\(2\\) \u603b\u662f\u53ef\u4ee5\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002
\u56fe 15-15 \u00a0 \u6700\u4f18\u5207\u5206\u56e0\u5b50
\u7efc\u4e0a\u6240\u8ff0\uff0c\u53ef\u63a8\u7406\u51fa\u4ee5\u4e0b\u8d2a\u5fc3\u7b56\u7565\u3002
- \u8f93\u5165\u6574\u6570 \\(n\\) \uff0c\u4ece\u5176\u4e0d\u65ad\u5730\u5207\u5206\u51fa\u56e0\u5b50 \\(3\\) \uff0c\u76f4\u81f3\u4f59\u6570\u4e3a \\(0\\)\u3001\\(1\\)\u3001\\(2\\) \u3002
- \u5f53\u4f59\u6570\u4e3a \\(0\\) \u65f6\uff0c\u4ee3\u8868 \\(n\\) \u662f \\(3\\) \u7684\u500d\u6570\uff0c\u56e0\u6b64\u4e0d\u505a\u4efb\u4f55\u5904\u7406\u3002
- \u5f53\u4f59\u6570\u4e3a \\(2\\) \u65f6\uff0c\u4e0d\u7ee7\u7eed\u5212\u5206\uff0c\u4fdd\u7559\u3002
- \u5f53\u4f59\u6570\u4e3a \\(1\\) \u65f6\uff0c\u7531\u4e8e \\(2 \\times 2 > 1 \\times 3\\) \uff0c\u56e0\u6b64\u5e94\u5c06\u6700\u540e\u4e00\u4e2a \\(3\\) \u66ff\u6362\u4e3a \\(2\\) \u3002
"},{"location":"chapter_greedy/max_product_cutting_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5982\u56fe 15-16 \u6240\u793a\uff0c\u6211\u4eec\u65e0\u987b\u901a\u8fc7\u5faa\u73af\u6765\u5207\u5206\u6574\u6570\uff0c\u800c\u53ef\u4ee5\u5229\u7528\u5411\u4e0b\u6574\u9664\u8fd0\u7b97\u5f97\u5230 \\(3\\) \u7684\u4e2a\u6570 \\(a\\) \uff0c\u7528\u53d6\u6a21\u8fd0\u7b97\u5f97\u5230\u4f59\u6570 \\(b\\) \uff0c\u6b64\u65f6\u6709\uff1a
\\[ n = 3 a + b \\] \u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e \\(n \\leq 3\\) \u7684\u8fb9\u754c\u60c5\u51b5\uff0c\u5fc5\u987b\u62c6\u5206\u51fa\u4e00\u4e2a \\(1\\) \uff0c\u4e58\u79ef\u4e3a \\(1 \\times (n - 1)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig max_product_cutting.pydef max_product_cutting(n: int) -> int:\n \"\"\"\u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3\"\"\"\n # \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3:\n return 1 * (n - 1)\n # \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n a, b = n // 3, n % 3\n if b == 1:\n # \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return int(math.pow(3, a - 1)) * 2 * 2\n if b == 2:\n # \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.pow(3, a)) * 2\n # \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.pow(3, a))\n
max_product_cutting.cpp/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (int)pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)pow(3, a);\n}\n
max_product_cutting.java/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (int) Math.pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int) Math.pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int) Math.pow(3, a);\n}\n
max_product_cutting.cs/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint MaxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (int)Math.Pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)Math.Pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (int)Math.Pow(3, a);\n}\n
max_product_cutting.go/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunc maxProductCutting(n int) int {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3 {\n return 1 * (n - 1)\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n a := n / 3\n b := n % 3\n if b == 1 {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return int(math.Pow(3, float64(a-1))) * 2 * 2\n }\n if b == 2 {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.Pow(3, float64(a))) * 2\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return int(math.Pow(3, float64(a)))\n}\n
max_product_cutting.swift/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunc maxProductCutting(n: Int) -> Int {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3 {\n return 1 * (n - 1)\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a = n / 3\n let b = n % 3\n if b == 1 {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return pow(3, a - 1) * 2 * 2\n }\n if b == 2 {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a) * 2\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a)\n}\n
max_product_cutting.js/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunction maxProductCutting(n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a = Math.floor(n / 3);\n let b = n % 3;\n if (b === 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return Math.pow(3, a - 1) * 2 * 2;\n }\n if (b === 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a);\n}\n
max_product_cutting.ts/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunction maxProductCutting(n: number): number {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a: number = Math.floor(n / 3);\n let b: number = n % 3;\n if (b === 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return Math.pow(3, a - 1) * 2 * 2;\n }\n if (b === 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return Math.pow(3, a);\n}\n
max_product_cutting.dart/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n ~/ 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return (pow(3, a - 1) * 2 * 2).toInt();\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return (pow(3, a) * 2).toInt();\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a).toInt();\n}\n
max_product_cutting.rs/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfn max_product_cutting(n: i32) -> i32 {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if n <= 3 {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n let a = n / 3;\n let b = n % 3;\n if b == 1 {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n 3_i32.pow(a as u32 - 1) * 2 * 2\n } else if b == 2 {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n 3_i32.pow(a as u32) * 2\n } else {\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n 3_i32.pow(a as u32)\n }\n}\n
max_product_cutting.c/* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n // \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\n if (n <= 3) {\n return 1 * (n - 1);\n }\n // \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\n int a = n / 3;\n int b = n % 3;\n if (b == 1) {\n // \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n return pow(3, a - 1) * 2 * 2;\n }\n if (b == 2) {\n // \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a) * 2;\n }\n // \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n return pow(3, a);\n}\n
max_product_cutting.zig[class]{}-[func]{maxProductCutting}\n
\u56fe 15-16 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u8ba1\u7b97\u65b9\u6cd5
\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u5e42\u8fd0\u7b97\u7684\u5b9e\u73b0\u65b9\u6cd5\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u5e38\u7528\u7684\u5e42\u8ba1\u7b97\u51fd\u6570\u6709\u4e09\u79cd\u3002
- \u8fd0\u7b97\u7b26
** \u548c\u51fd\u6570 pow() \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log\u2061 a)\\) \u3002 - \u51fd\u6570
math.pow() \u5185\u90e8\u8c03\u7528 C \u8bed\u8a00\u5e93\u7684 pow() \u51fd\u6570\uff0c\u5176\u6267\u884c\u6d6e\u70b9\u53d6\u5e42\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
\u53d8\u91cf \\(a\\) \u548c \\(b\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
"},{"location":"chapter_greedy/max_product_cutting_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"\u4f7f\u7528\u53cd\u8bc1\u6cd5\uff0c\u53ea\u5206\u6790 \\(n \\geq 3\\) \u7684\u60c5\u51b5\u3002
- \u6240\u6709\u56e0\u5b50 \\(\\leq 3\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728 \\(\\geq 4\\) \u7684\u56e0\u5b50 \\(x\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u5c06\u5176\u7ee7\u7eed\u5212\u5206\u4e3a \\(2(x-2)\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
- \u5207\u5206\u65b9\u6848\u4e0d\u5305\u542b \\(1\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728\u4e00\u4e2a\u56e0\u5b50 \\(1\\) \uff0c\u90a3\u4e48\u5b83\u4e00\u5b9a\u53ef\u4ee5\u5408\u5e76\u5165\u53e6\u5916\u4e00\u4e2a\u56e0\u5b50\u4e2d\uff0c\u4ee5\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
- \u5207\u5206\u65b9\u6848\u6700\u591a\u5305\u542b\u4e24\u4e2a \\(2\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b\u4e09\u4e2a \\(2\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4e58\u79ef\u66f4\u5927\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
"},{"location":"chapter_greedy/summary/","title":"15.5 \u00a0 \u5c0f\u7ed3","text":" - \u8d2a\u5fc3\u7b97\u6cd5\u901a\u5e38\u7528\u4e8e\u89e3\u51b3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5176\u539f\u7406\u662f\u5728\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\u90fd\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002
- \u8d2a\u5fc3\u7b97\u6cd5\u4f1a\u8fed\u4ee3\u5730\u505a\u51fa\u4e00\u4e2a\u53c8\u4e00\u4e2a\u7684\u8d2a\u5fc3\u9009\u62e9\uff0c\u6bcf\u8f6e\u90fd\u5c06\u95ee\u9898\u8f6c\u5316\u6210\u4e00\u4e2a\u89c4\u6a21\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u5230\u95ee\u9898\u88ab\u89e3\u51b3\u3002
- \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u5b9e\u73b0\u7b80\u5355\uff0c\u8fd8\u5177\u6709\u5f88\u9ad8\u7684\u89e3\u9898\u6548\u7387\u3002\u76f8\u6bd4\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u66f4\u4f4e\u3002
- \u5728\u96f6\u94b1\u5151\u6362\u95ee\u9898\u4e2d\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1b\u5bf9\u4e8e\u53e6\u5916\u4e00\u4e9b\u786c\u5e01\u7ec4\u5408\u5219\u4e0d\u7136\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u80fd\u627e\u5230\u5f88\u5dee\u7684\u89e3\u3002
- \u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u7684\u95ee\u9898\u5177\u6709\u4e24\u5927\u6027\u8d28\uff1a\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u4ee3\u8868\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002
- \u5bf9\u4e8e\u67d0\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u8bc1\u660e\u5e76\u4e0d\u7b80\u5355\u3002\u76f8\u5bf9\u6765\u8bf4\uff0c\u8bc1\u4f2a\u66f4\u52a0\u5bb9\u6613\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002
- \u6c42\u89e3\u8d2a\u5fc3\u95ee\u9898\u4e3b\u8981\u5206\u4e3a\u4e09\u6b65\uff1a\u95ee\u9898\u5206\u6790\u3001\u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u3001\u6b63\u786e\u6027\u8bc1\u660e\u3002\u5176\u4e2d\uff0c\u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u662f\u6838\u5fc3\u6b65\u9aa4\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u5f80\u5f80\u662f\u96be\u70b9\u3002
- \u5206\u6570\u80cc\u5305\u95ee\u9898\u5728 0-1 \u80cc\u5305\u7684\u57fa\u7840\u4e0a\uff0c\u5141\u8bb8\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u56e0\u6b64\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u3002\u8d2a\u5fc3\u7b56\u7565\u7684\u6b63\u786e\u6027\u53ef\u4ee5\u4f7f\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\u3002
- \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u53ef\u4f7f\u7528\u7a77\u4e3e\u6cd5\u6c42\u89e3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u901a\u8fc7\u8bbe\u8ba1\u8d2a\u5fc3\u7b56\u7565\uff0c\u6bcf\u8f6e\u5411\u5185\u79fb\u52a8\u77ed\u677f\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(n)\\) \u3002
- \u5728\u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u63a8\u7406\u51fa\u4e24\u4e2a\u8d2a\u5fc3\u7b56\u7565\uff1a\\(\\geq 4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u7ee7\u7eed\u5207\u5206\uff0c\u6700\u4f18\u5207\u5206\u56e0\u5b50\u4e3a \\(3\\) \u3002\u4ee3\u7801\u4e2d\u5305\u542b\u5e42\u8fd0\u7b97\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5e42\u8fd0\u7b97\u5b9e\u73b0\u65b9\u6cd5\uff0c\u901a\u5e38\u4e3a \\(O(1)\\) \u6216 \\(O(\\log n)\\) \u3002
"},{"location":"chapter_hashing/","title":"\u7b2c 6 \u7ae0 \u00a0 \u54c8\u5e0c\u8868","text":"Abstract
\u5728\u8ba1\u7b97\u673a\u4e16\u754c\u4e2d\uff0c\u54c8\u5e0c\u8868\u5982\u540c\u4e00\u4f4d\u806a\u6167\u7684\u56fe\u4e66\u7ba1\u7406\u5458\u3002
\u4ed6\u77e5\u9053\u5982\u4f55\u8ba1\u7b97\u7d22\u4e66\u53f7\uff0c\u4ece\u800c\u53ef\u4ee5\u5feb\u901f\u627e\u5230\u76ee\u6807\u56fe\u4e66\u3002
"},{"location":"chapter_hashing/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 6.1 \u00a0 \u54c8\u5e0c\u8868
- 6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81
- 6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5
- 6.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_hashing/hash_algorithm/","title":"6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5","text":"\u524d\u4e24\u8282\u4ecb\u7ecd\u4e86\u54c8\u5e0c\u8868\u7684\u5de5\u4f5c\u539f\u7406\u548c\u54c8\u5e0c\u51b2\u7a81\u7684\u5904\u7406\u65b9\u6cd5\u3002\u7136\u800c\u65e0\u8bba\u662f\u5f00\u653e\u5bfb\u5740\u8fd8\u662f\u94fe\u5f0f\u5730\u5740\uff0c\u5b83\u4eec\u53ea\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u53d1\u751f\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\uff0c\u800c\u65e0\u6cd5\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u3002
\u5982\u679c\u54c8\u5e0c\u51b2\u7a81\u8fc7\u4e8e\u9891\u7e41\uff0c\u54c8\u5e0c\u8868\u7684\u6027\u80fd\u5219\u4f1a\u6025\u5267\u52a3\u5316\u3002\u5982\u56fe 6-8 \u6240\u793a\uff0c\u5bf9\u4e8e\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\uff0c\u7406\u60f3\u60c5\u51b5\u4e0b\u952e\u503c\u5bf9\u5747\u5300\u5206\u5e03\u5728\u5404\u4e2a\u6876\u4e2d\uff0c\u8fbe\u5230\u6700\u4f73\u67e5\u8be2\u6548\u7387\uff1b\u6700\u5dee\u60c5\u51b5\u4e0b\u6240\u6709\u952e\u503c\u5bf9\u90fd\u5b58\u50a8\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002
\u56fe 6-8 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u7684\u6700\u4f73\u60c5\u51b5\u4e0e\u6700\u5dee\u60c5\u51b5
\u952e\u503c\u5bf9\u7684\u5206\u5e03\u60c5\u51b5\u7531\u54c8\u5e0c\u51fd\u6570\u51b3\u5b9a\u3002\u56de\u5fc6\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u6b65\u9aa4\uff0c\u5148\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u518d\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\uff1a
index = hash(key) % capacity\n
\u89c2\u5bdf\u4ee5\u4e0a\u516c\u5f0f\uff0c\u5f53\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u56fa\u5b9a\u65f6\uff0c\u54c8\u5e0c\u7b97\u6cd5 hash() \u51b3\u5b9a\u4e86\u8f93\u51fa\u503c\uff0c\u8fdb\u800c\u51b3\u5b9a\u4e86\u952e\u503c\u5bf9\u5728\u54c8\u5e0c\u8868\u4e2d\u7684\u5206\u5e03\u60c5\u51b5\u3002
\u8fd9\u610f\u5473\u7740\uff0c\u4e3a\u4e86\u964d\u4f4e\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u6982\u7387\uff0c\u6211\u4eec\u5e94\u5f53\u5c06\u6ce8\u610f\u529b\u96c6\u4e2d\u5728\u54c8\u5e0c\u7b97\u6cd5 hash() \u7684\u8bbe\u8ba1\u4e0a\u3002
"},{"location":"chapter_hashing/hash_algorithm/#631","title":"6.3.1 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u76ee\u6807","text":"\u4e3a\u4e86\u5b9e\u73b0\u201c\u65e2\u5feb\u53c8\u7a33\u201d\u7684\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u5177\u5907\u4ee5\u4e0b\u7279\u70b9\u3002
- \u786e\u5b9a\u6027\uff1a\u5bf9\u4e8e\u76f8\u540c\u7684\u8f93\u5165\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u59cb\u7ec8\u4ea7\u751f\u76f8\u540c\u7684\u8f93\u51fa\u3002\u8fd9\u6837\u624d\u80fd\u786e\u4fdd\u54c8\u5e0c\u8868\u662f\u53ef\u9760\u7684\u3002
- \u6548\u7387\u9ad8\uff1a\u8ba1\u7b97\u54c8\u5e0c\u503c\u7684\u8fc7\u7a0b\u5e94\u8be5\u8db3\u591f\u5feb\u3002\u8ba1\u7b97\u5f00\u9500\u8d8a\u5c0f\uff0c\u54c8\u5e0c\u8868\u7684\u5b9e\u7528\u6027\u8d8a\u9ad8\u3002
- \u5747\u5300\u5206\u5e03\uff1a\u54c8\u5e0c\u7b97\u6cd5\u5e94\u4f7f\u5f97\u952e\u503c\u5bf9\u5747\u5300\u5206\u5e03\u5728\u54c8\u5e0c\u8868\u4e2d\u3002\u5206\u5e03\u8d8a\u5747\u5300\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002
\u5b9e\u9645\u4e0a\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9664\u4e86\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u54c8\u5e0c\u8868\uff0c\u8fd8\u5e7f\u6cdb\u5e94\u7528\u4e8e\u5176\u4ed6\u9886\u57df\u4e2d\u3002
- \u5bc6\u7801\u5b58\u50a8\uff1a\u4e3a\u4e86\u4fdd\u62a4\u7528\u6237\u5bc6\u7801\u7684\u5b89\u5168\uff0c\u7cfb\u7edf\u901a\u5e38\u4e0d\u4f1a\u76f4\u63a5\u5b58\u50a8\u7528\u6237\u7684\u660e\u6587\u5bc6\u7801\uff0c\u800c\u662f\u5b58\u50a8\u5bc6\u7801\u7684\u54c8\u5e0c\u503c\u3002\u5f53\u7528\u6237\u8f93\u5165\u5bc6\u7801\u65f6\uff0c\u7cfb\u7edf\u4f1a\u5bf9\u8f93\u5165\u7684\u5bc6\u7801\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u7136\u540e\u4e0e\u5b58\u50a8\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u5bc6\u7801\u5c31\u88ab\u89c6\u4e3a\u6b63\u786e\u3002
- \u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5\uff1a\u6570\u636e\u53d1\u9001\u65b9\u53ef\u4ee5\u8ba1\u7b97\u6570\u636e\u7684\u54c8\u5e0c\u503c\u5e76\u5c06\u5176\u4e00\u540c\u53d1\u9001\uff1b\u63a5\u6536\u65b9\u53ef\u4ee5\u91cd\u65b0\u8ba1\u7b97\u63a5\u6536\u5230\u7684\u6570\u636e\u7684\u54c8\u5e0c\u503c\uff0c\u5e76\u4e0e\u63a5\u6536\u5230\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u6570\u636e\u5c31\u88ab\u89c6\u4e3a\u5b8c\u6574\u3002
\u5bf9\u4e8e\u5bc6\u7801\u5b66\u7684\u76f8\u5173\u5e94\u7528\uff0c\u4e3a\u4e86\u9632\u6b62\u4ece\u54c8\u5e0c\u503c\u63a8\u5bfc\u51fa\u539f\u59cb\u5bc6\u7801\u7b49\u9006\u5411\u5de5\u7a0b\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9700\u8981\u5177\u5907\u66f4\u9ad8\u7b49\u7ea7\u7684\u5b89\u5168\u7279\u6027\u3002
- \u5355\u5411\u6027\uff1a\u65e0\u6cd5\u901a\u8fc7\u54c8\u5e0c\u503c\u53cd\u63a8\u51fa\u5173\u4e8e\u8f93\u5165\u6570\u636e\u7684\u4efb\u4f55\u4fe1\u606f\u3002
- \u6297\u78b0\u649e\u6027\uff1a\u5e94\u5f53\u6781\u96be\u627e\u5230\u4e24\u4e2a\u4e0d\u540c\u7684\u8f93\u5165\uff0c\u4f7f\u5f97\u5b83\u4eec\u7684\u54c8\u5e0c\u503c\u76f8\u540c\u3002
- \u96ea\u5d29\u6548\u5e94\uff1a\u8f93\u5165\u7684\u5fae\u5c0f\u53d8\u5316\u5e94\u5f53\u5bfc\u81f4\u8f93\u51fa\u7684\u663e\u8457\u4e14\u4e0d\u53ef\u9884\u6d4b\u7684\u53d8\u5316\u3002
\u8bf7\u6ce8\u610f\uff0c\u201c\u5747\u5300\u5206\u5e03\u201d\u4e0e\u201c\u6297\u78b0\u649e\u6027\u201d\u662f\u4e24\u4e2a\u72ec\u7acb\u7684\u6982\u5ff5\uff0c\u6ee1\u8db3\u5747\u5300\u5206\u5e03\u4e0d\u4e00\u5b9a\u6ee1\u8db3\u6297\u78b0\u649e\u6027\u3002\u4f8b\u5982\uff0c\u5728\u968f\u673a\u8f93\u5165 key \u4e0b\uff0c\u54c8\u5e0c\u51fd\u6570 key % 100 \u53ef\u4ee5\u4ea7\u751f\u5747\u5300\u5206\u5e03\u7684\u8f93\u51fa\u3002\u7136\u800c\u8be5\u54c8\u5e0c\u7b97\u6cd5\u8fc7\u4e8e\u7b80\u5355\uff0c\u6240\u6709\u540e\u4e24\u4f4d\u76f8\u7b49\u7684 key \u7684\u8f93\u51fa\u90fd\u76f8\u540c\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4ece\u54c8\u5e0c\u503c\u53cd\u63a8\u51fa\u53ef\u7528\u7684 key \uff0c\u4ece\u800c\u7834\u89e3\u5bc6\u7801\u3002
"},{"location":"chapter_hashing/hash_algorithm/#632","title":"6.3.2 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1","text":"\u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u662f\u4e00\u4e2a\u9700\u8981\u8003\u8651\u8bb8\u591a\u56e0\u7d20\u7684\u590d\u6742\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u67d0\u4e9b\u8981\u6c42\u4e0d\u9ad8\u7684\u573a\u666f\uff0c\u6211\u4eec\u4e5f\u80fd\u8bbe\u8ba1\u4e00\u4e9b\u7b80\u5355\u7684\u54c8\u5e0c\u7b97\u6cd5\u3002
- \u52a0\u6cd5\u54c8\u5e0c\uff1a\u5bf9\u8f93\u5165\u7684\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u8fdb\u884c\u76f8\u52a0\uff0c\u5c06\u5f97\u5230\u7684\u603b\u548c\u4f5c\u4e3a\u54c8\u5e0c\u503c\u3002
- \u4e58\u6cd5\u54c8\u5e0c\uff1a\u5229\u7528\u4e58\u6cd5\u7684\u4e0d\u76f8\u5173\u6027\uff0c\u6bcf\u8f6e\u4e58\u4ee5\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5404\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u54c8\u5e0c\u503c\u4e2d\u3002
- \u5f02\u6216\u54c8\u5e0c\uff1a\u5c06\u8f93\u5165\u6570\u636e\u7684\u6bcf\u4e2a\u5143\u7d20\u901a\u8fc7\u5f02\u6216\u64cd\u4f5c\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\u3002
- \u65cb\u8f6c\u54c8\u5e0c\uff1a\u5c06\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\uff0c\u6bcf\u6b21\u7d2f\u79ef\u4e4b\u524d\u90fd\u4f1a\u5bf9\u54c8\u5e0c\u503c\u8fdb\u884c\u65cb\u8f6c\u64cd\u4f5c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig simple_hash.pydef add_hash(key: str) -> int:\n \"\"\"\u52a0\u6cd5\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash += ord(c)\n return hash % modulus\n\ndef mul_hash(key: str) -> int:\n \"\"\"\u4e58\u6cd5\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash = 31 * hash + ord(c)\n return hash % modulus\n\ndef xor_hash(key: str) -> int:\n \"\"\"\u5f02\u6216\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash ^= ord(c)\n return hash % modulus\n\ndef rot_hash(key: str) -> int:\n \"\"\"\u65cb\u8f6c\u54c8\u5e0c\"\"\"\n hash = 0\n modulus = 1000000007\n for c in key:\n hash = (hash << 4) ^ (hash >> 28) ^ ord(c)\n return hash % modulus\n
simple_hash.cpp/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(string key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash = (hash + (int)c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(string key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash = (31 * hash + (int)c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(string key) {\n int hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash ^= (int)c;\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(string key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (unsigned char c : key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ (int)c) % MODULUS;\n }\n return (int)hash;\n}\n
simple_hash.java/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\n long hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash = (hash + (int) c) % MODULUS;\n }\n return (int) hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\n long hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash = (31 * hash + (int) c) % MODULUS;\n }\n return (int) hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash ^= (int) c;\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\n long hash = 0;\n final int MODULUS = 1000000007;\n for (char c : key.toCharArray()) {\n hash = ((hash << 4) ^ (hash >> 28) ^ (int) c) % MODULUS;\n }\n return (int) hash;\n}\n
simple_hash.cs/* \u52a0\u6cd5\u54c8\u5e0c */\nint AddHash(string key) {\n long hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash = (hash + c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint MulHash(string key) {\n long hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash = (31 * hash + c) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint XorHash(string key) {\n int hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash ^= c;\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint RotHash(string key) {\n long hash = 0;\n const int MODULUS = 1000000007;\n foreach (char c in key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ c) % MODULUS;\n }\n return (int)hash;\n}\n
simple_hash.go/* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key string) int {\n var hash int64\n var modulus int64\n\n modulus = 1000000007\n for _, b := range []byte(key) {\n hash = (hash + int64(b)) % modulus\n }\n return int(hash)\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key string) int {\n var hash int64\n var modulus int64\n\n modulus = 1000000007\n for _, b := range []byte(key) {\n hash = (31*hash + int64(b)) % modulus\n }\n return int(hash)\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key string) int {\n hash := 0\n modulus := 1000000007\n for _, b := range []byte(key) {\n fmt.Println(int(b))\n hash ^= int(b)\n hash = (31*hash + int(b)) % modulus\n }\n return hash & modulus\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key string) int {\n var hash int64\n var modulus int64\n\n modulus = 1000000007\n for _, b := range []byte(key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ int64(b)) % modulus\n }\n return int(hash)\n}\n
simple_hash.swift/* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash = (hash + Int(scalar.value)) % MODULUS\n }\n }\n return hash\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash = (31 * hash + Int(scalar.value)) % MODULUS\n }\n }\n return hash\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash ^= Int(scalar.value)\n }\n }\n return hash & MODULUS\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key: String) -> Int {\n var hash = 0\n let MODULUS = 1_000_000_007\n for c in key {\n for scalar in c.unicodeScalars {\n hash = ((hash << 4) ^ (hash >> 28) ^ Int(scalar.value)) % MODULUS\n }\n }\n return hash\n}\n
simple_hash.js/* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash ^= c.charCodeAt(0);\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key) {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n
simple_hash.ts/* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash ^= c.charCodeAt(0);\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key: string): number {\n let hash = 0;\n const MODULUS = 1000000007;\n for (const c of key) {\n hash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n }\n return hash;\n}\n
simple_hash.dart/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash = (hash + key.codeUnitAt(i)) % MODULUS;\n }\n return hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash = (31 * hash + key.codeUnitAt(i)) % MODULUS;\n }\n return hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash ^= key.codeUnitAt(i);\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\n int hash = 0;\n final int MODULUS = 1000000007;\n for (int i = 0; i < key.length; i++) {\n hash = ((hash << 4) ^ (hash >> 28) ^ key.codeUnitAt(i)) % MODULUS;\n }\n return hash;\n}\n
simple_hash.rs/* \u52a0\u6cd5\u54c8\u5e0c */\nfn add_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash = (hash + c as i64) % MODULUS;\n }\n\n hash as i32\n} \n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfn mul_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash = (31 * hash + c as i64) % MODULUS;\n }\n\n hash as i32\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nfn xor_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash ^= c as i64;\n }\n\n (hash & MODULUS) as i32\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfn rot_hash(key: &str) -> i32 {\n let mut hash = 0_i64;\n const MODULUS: i64 = 1000000007;\n\n for c in key.chars() {\n hash = ((hash << 4) ^ (hash >> 28) ^ c as i64) % MODULUS;\n }\n\n hash as i32\n}\n
simple_hash.c/* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(char *key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (int i = 0; i < strlen(key); i++) {\n hash = (hash + (unsigned char)key[i]) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(char *key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (int i = 0; i < strlen(key); i++) {\n hash = (31 * hash + (unsigned char)key[i]) % MODULUS;\n }\n return (int)hash;\n}\n\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(char *key) {\n int hash = 0;\n const int MODULUS = 1000000007;\n\n for (int i = 0; i < strlen(key); i++) {\n hash ^= (unsigned char)key[i];\n }\n return hash & MODULUS;\n}\n\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(char *key) {\n long long hash = 0;\n const int MODULUS = 1000000007;\n for (int i = 0; i < strlen(key); i++) {\n hash = ((hash << 4) ^ (hash >> 28) ^ (unsigned char)key[i]) % MODULUS;\n }\n\n return (int)hash;\n}\n
simple_hash.zig[class]{}-[func]{addHash}\n\n[class]{}-[func]{mulHash}\n\n[class]{}-[func]{xorHash}\n\n[class]{}-[func]{rotHash}\n
\u89c2\u5bdf\u53d1\u73b0\uff0c\u6bcf\u79cd\u54c8\u5e0c\u7b97\u6cd5\u7684\u6700\u540e\u4e00\u6b65\u90fd\u662f\u5bf9\u5927\u8d28\u6570 \\(1000000007\\) \u53d6\u6a21\uff0c\u4ee5\u786e\u4fdd\u54c8\u5e0c\u503c\u5728\u5408\u9002\u7684\u8303\u56f4\u5185\u3002\u503c\u5f97\u601d\u8003\u7684\u662f\uff0c\u4e3a\u4ec0\u4e48\u8981\u5f3a\u8c03\u5bf9\u8d28\u6570\u53d6\u6a21\uff0c\u6216\u8005\u8bf4\u5bf9\u5408\u6570\u53d6\u6a21\u7684\u5f0a\u7aef\u662f\u4ec0\u4e48\uff1f\u8fd9\u662f\u4e00\u4e2a\u6709\u8da3\u7684\u95ee\u9898\u3002
\u5148\u629b\u51fa\u7ed3\u8bba\uff1a\u4f7f\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u53ef\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u7684\u5747\u5300\u5206\u5e03\u3002\u56e0\u4e3a\u8d28\u6570\u4e0d\u4e0e\u5176\u4ed6\u6570\u5b57\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u53ef\u4ee5\u51cf\u5c11\u56e0\u53d6\u6a21\u64cd\u4f5c\u800c\u4ea7\u751f\u7684\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u4ece\u800c\u907f\u514d\u54c8\u5e0c\u51b2\u7a81\u3002
\u4e3e\u4e2a\u4f8b\u5b50\uff0c\u5047\u8bbe\u6211\u4eec\u9009\u62e9\u5408\u6570 \\(9\\) \u4f5c\u4e3a\u6a21\u6570\uff0c\u5b83\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\uff0c\u90a3\u4e48\u6240\u6709\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\u7684 key \u90fd\u4f1a\u88ab\u6620\u5c04\u5230 \\(0\\)\u3001\\(3\\)\u3001\\(6\\) \u8fd9\u4e09\u4e2a\u54c8\u5e0c\u503c\u3002
\\[ \\begin{aligned} \\text{modulus} & = 9 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\dots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\\dots \\} \\end{aligned} \\] \u5982\u679c\u8f93\u5165 key \u6070\u597d\u6ee1\u8db3\u8fd9\u79cd\u7b49\u5dee\u6570\u5217\u7684\u6570\u636e\u5206\u5e03\uff0c\u90a3\u4e48\u54c8\u5e0c\u503c\u5c31\u4f1a\u51fa\u73b0\u805a\u5806\uff0c\u4ece\u800c\u52a0\u91cd\u54c8\u5e0c\u51b2\u7a81\u3002\u73b0\u5728\uff0c\u5047\u8bbe\u5c06 modulus \u66ff\u6362\u4e3a\u8d28\u6570 \\(13\\) \uff0c\u7531\u4e8e key \u548c modulus \u4e4b\u95f4\u4e0d\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u56e0\u6b64\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u7684\u5747\u5300\u6027\u4f1a\u660e\u663e\u63d0\u5347\u3002
\\[ \\begin{aligned} \\text{modulus} & = 13 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\dots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \\dots \\} \\end{aligned} \\] \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5982\u679c\u80fd\u591f\u4fdd\u8bc1 key \u662f\u968f\u673a\u5747\u5300\u5206\u5e03\u7684\uff0c\u90a3\u4e48\u9009\u62e9\u8d28\u6570\u6216\u8005\u5408\u6570\u4f5c\u4e3a\u6a21\u6570\u90fd\u53ef\u4ee5\uff0c\u5b83\u4eec\u90fd\u80fd\u8f93\u51fa\u5747\u5300\u5206\u5e03\u7684\u54c8\u5e0c\u503c\u3002\u800c\u5f53 key \u7684\u5206\u5e03\u5b58\u5728\u67d0\u79cd\u5468\u671f\u6027\u65f6\uff0c\u5bf9\u5408\u6570\u53d6\u6a21\u66f4\u5bb9\u6613\u51fa\u73b0\u805a\u96c6\u73b0\u8c61\u3002
\u603b\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u901a\u5e38\u9009\u53d6\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u5e76\u4e14\u8fd9\u4e2a\u8d28\u6570\u6700\u597d\u8db3\u591f\u5927\uff0c\u4ee5\u5c3d\u53ef\u80fd\u6d88\u9664\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002
"},{"location":"chapter_hashing/hash_algorithm/#633","title":"6.3.3 \u00a0 \u5e38\u89c1\u54c8\u5e0c\u7b97\u6cd5","text":"\u4e0d\u96be\u53d1\u73b0\uff0c\u4ee5\u4e0a\u4ecb\u7ecd\u7684\u7b80\u5355\u54c8\u5e0c\u7b97\u6cd5\u90fd\u6bd4\u8f83\u201c\u8106\u5f31\u201d\uff0c\u8fdc\u8fdc\u6ca1\u6709\u8fbe\u5230\u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u76ee\u6807\u3002\u4f8b\u5982\uff0c\u7531\u4e8e\u52a0\u6cd5\u548c\u5f02\u6216\u6ee1\u8db3\u4ea4\u6362\u5f8b\uff0c\u56e0\u6b64\u52a0\u6cd5\u54c8\u5e0c\u548c\u5f02\u6216\u54c8\u5e0c\u65e0\u6cd5\u533a\u5206\u5185\u5bb9\u76f8\u540c\u4f46\u987a\u5e8f\u4e0d\u540c\u7684\u5b57\u7b26\u4e32\uff0c\u8fd9\u53ef\u80fd\u4f1a\u52a0\u5267\u54c8\u5e0c\u51b2\u7a81\uff0c\u5e76\u5f15\u8d77\u4e00\u4e9b\u5b89\u5168\u95ee\u9898\u3002
\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u7528\u4e00\u4e9b\u6807\u51c6\u54c8\u5e0c\u7b97\u6cd5\uff0c\u4f8b\u5982 MD5\u3001SHA-1\u3001SHA-2 \u548c SHA-3 \u7b49\u3002\u5b83\u4eec\u53ef\u4ee5\u5c06\u4efb\u610f\u957f\u5ea6\u7684\u8f93\u5165\u6570\u636e\u6620\u5c04\u5230\u6052\u5b9a\u957f\u5ea6\u7684\u54c8\u5e0c\u503c\u3002
\u8fd1\u4e00\u4e2a\u4e16\u7eaa\u4ee5\u6765\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5904\u5728\u4e0d\u65ad\u5347\u7ea7\u4e0e\u4f18\u5316\u7684\u8fc7\u7a0b\u4e2d\u3002\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u52aa\u529b\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u6027\u80fd\uff0c\u53e6\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u548c\u9ed1\u5ba2\u5219\u81f4\u529b\u4e8e\u5bfb\u627e\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u95ee\u9898\u3002\u8868 6-2 \u5c55\u793a\u4e86\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5\u3002
- MD5 \u548c SHA-1 \u5df2\u591a\u6b21\u88ab\u6210\u529f\u653b\u51fb\uff0c\u56e0\u6b64\u5b83\u4eec\u88ab\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u5f03\u7528\u3002
- SHA-2 \u7cfb\u5217\u4e2d\u7684 SHA-256 \u662f\u6700\u5b89\u5168\u7684\u54c8\u5e0c\u7b97\u6cd5\u4e4b\u4e00\uff0c\u4ecd\u672a\u51fa\u73b0\u6210\u529f\u7684\u653b\u51fb\u6848\u4f8b\uff0c\u56e0\u6b64\u5e38\u7528\u5728\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u4e2d\u3002
- SHA-3 \u76f8\u8f83 SHA-2 \u7684\u5b9e\u73b0\u5f00\u9500\u66f4\u4f4e\u3001\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8\uff0c\u4f46\u76ee\u524d\u4f7f\u7528\u8986\u76d6\u5ea6\u4e0d\u5982 SHA-2 \u7cfb\u5217\u3002
\u8868 6-2 \u00a0 \u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5
MD5 SHA-1 SHA-2 SHA-3 \u63a8\u51fa\u65f6\u95f4 1992 1995 2002 2008 \u8f93\u51fa\u957f\u5ea6 128 bit 160 bit 256/512 bit 224/256/384/512 bit \u54c8\u5e0c\u51b2\u7a81 \u8f83\u591a \u8f83\u591a \u5f88\u5c11 \u5f88\u5c11 \u5b89\u5168\u7b49\u7ea7 \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u9ad8 \u9ad8 \u5e94\u7528 \u5df2\u88ab\u5f03\u7528\uff0c\u4ecd\u7528\u4e8e\u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5 \u5df2\u88ab\u5f03\u7528 \u52a0\u5bc6\u8d27\u5e01\u4ea4\u6613\u9a8c\u8bc1\u3001\u6570\u5b57\u7b7e\u540d\u7b49 \u53ef\u7528\u4e8e\u66ff\u4ee3 SHA-2"},{"location":"chapter_hashing/hash_algorithm/#634","title":"6.3.4 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u54c8\u5e0c\u503c","text":"\u6211\u4eec\u77e5\u9053\uff0c\u54c8\u5e0c\u8868\u7684 key \u53ef\u4ee5\u662f\u6574\u6570\u3001\u5c0f\u6570\u6216\u5b57\u7b26\u4e32\u7b49\u6570\u636e\u7c7b\u578b\u3002\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u8fd9\u4e9b\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u7684\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u8c03\u7528 hash() \u51fd\u6570\u6765\u8ba1\u7b97\u5404\u79cd\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\u3002
- \u6574\u6570\u548c\u5e03\u5c14\u91cf\u7684\u54c8\u5e0c\u503c\u5c31\u662f\u5176\u672c\u8eab\u3002
- \u6d6e\u70b9\u6570\u548c\u5b57\u7b26\u4e32\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u8f83\u4e3a\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u8bf7\u81ea\u884c\u5b66\u4e60\u3002
- \u5143\u7ec4\u7684\u54c8\u5e0c\u503c\u662f\u5bf9\u5176\u4e2d\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fdb\u884c\u54c8\u5e0c\uff0c\u7136\u540e\u5c06\u8fd9\u4e9b\u54c8\u5e0c\u503c\u7ec4\u5408\u8d77\u6765\uff0c\u5f97\u5230\u5355\u4e00\u7684\u54c8\u5e0c\u503c\u3002
- \u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u57fa\u4e8e\u5176\u5185\u5b58\u5730\u5740\u751f\u6210\u3002\u901a\u8fc7\u91cd\u5199\u5bf9\u8c61\u7684\u54c8\u5e0c\u65b9\u6cd5\uff0c\u53ef\u5b9e\u73b0\u57fa\u4e8e\u5185\u5bb9\u751f\u6210\u54c8\u5e0c\u503c\u3002
Tip
\u8bf7\u6ce8\u610f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u54c8\u5e0c\u503c\u8ba1\u7b97\u51fd\u6570\u7684\u5b9a\u4e49\u548c\u65b9\u6cd5\u4e0d\u540c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig built_in_hash.pynum = 3\nhash_num = hash(num)\n# \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\n\nbol = True\nhash_bol = hash(bol)\n# \u5e03\u5c14\u91cf True \u7684\u54c8\u5e0c\u503c\u4e3a 1\n\ndec = 3.14159\nhash_dec = hash(dec)\n# \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 326484311674566659\n\nstr = \"Hello \u7b97\u6cd5\"\nhash_str = hash(str)\n# \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 4617003410720528961\n\ntup = (12836, \"\u5c0f\u54c8\")\nhash_tup = hash(tup)\n# \u5143\u7ec4 (12836, '\u5c0f\u54c8') \u7684\u54c8\u5e0c\u503c\u4e3a 1029005403108185979\n\nobj = ListNode(0)\nhash_obj = hash(obj)\n# \u8282\u70b9\u5bf9\u8c61 <ListNode object at 0x1058fd810> \u7684\u54c8\u5e0c\u503c\u4e3a 274267521\n
built_in_hash.cppint num = 3;\nsize_t hashNum = hash<int>()(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\n\nbool bol = true;\nsize_t hashBol = hash<bool>()(bol);\n// \u5e03\u5c14\u91cf 1 \u7684\u54c8\u5e0c\u503c\u4e3a 1\n\ndouble dec = 3.14159;\nsize_t hashDec = hash<double>()(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 4614256650576692846\n\nstring str = \"Hello \u7b97\u6cd5\";\nsize_t hashStr = hash<string>()(str);\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 15466937326284535026\n\n// \u5728 C++ \u4e2d\uff0c\u5185\u7f6e std:hash() \u4ec5\u63d0\u4f9b\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\n// \u6570\u7ec4\u3001\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u9700\u8981\u81ea\u884c\u5b9e\u73b0\n
built_in_hash.javaint num = 3;\nint hashNum = Integer.hashCode(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\n\nboolean bol = true;\nint hashBol = Boolean.hashCode(bol);\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\n\ndouble dec = 3.14159;\nint hashDec = Double.hashCode(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729\n\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode();\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a -727081396\n\nObject[] arr = { 12836, \"\u5c0f\u54c8\" };\nint hashTup = Arrays.hashCode(arr);\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 1151158\n\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode();\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode@7dc5e7b4 \u7684\u54c8\u5e0c\u503c\u4e3a 2110121908\n
built_in_hash.csint num = 3;\nint hashNum = num.GetHashCode();\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3;\n\nbool bol = true;\nint hashBol = bol.GetHashCode();\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1;\n\ndouble dec = 3.14159;\nint hashDec = dec.GetHashCode();\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729;\n\nstring str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.GetHashCode();\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a -586107568;\n\nobject[] arr = [12836, \"\u5c0f\u54c8\"];\nint hashTup = arr.GetHashCode();\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 42931033;\n\nListNode obj = new(0);\nint hashObj = obj.GetHashCode();\n// \u8282\u70b9\u5bf9\u8c61 0 \u7684\u54c8\u5e0c\u503c\u4e3a 39053774;\n
built_in_hash.go// Go \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.swiftlet num = 3\nlet hashNum = num.hashValue\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 9047044699613009734\n\nlet bol = true\nlet hashBol = bol.hashValue\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a -4431640247352757451\n\nlet dec = 3.14159\nlet hashDec = dec.hashValue\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -2465384235396674631\n\nlet str = \"Hello \u7b97\u6cd5\"\nlet hashStr = str.hashValue\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a -7850626797806988787\n\nlet arr = [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")]\nlet hashTup = arr.hashValue\n// \u6570\u7ec4 [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")] \u7684\u54c8\u5e0c\u503c\u4e3a -2308633508154532996\n\nlet obj = ListNode(x: 0)\nlet hashObj = obj.hashValue\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode \u7684\u54c8\u5e0c\u503c\u4e3a -2434780518035996159\n
built_in_hash.js// JavaScript \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.ts// TypeScript \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.dartint num = 3;\nint hashNum = num.hashCode;\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 34803\n\nbool bol = true;\nint hashBol = bol.hashCode;\n// \u5e03\u5c14\u503c true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\n\ndouble dec = 3.14159;\nint hashDec = dec.hashCode;\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 2570631074981783\n\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode;\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 468167534\n\nList arr = [12836, \"\u5c0f\u54c8\"];\nint hashArr = arr.hashCode;\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 976512528\n\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode;\n// \u8282\u70b9\u5bf9\u8c61 Instance of 'ListNode' \u7684\u54c8\u5e0c\u503c\u4e3a 1033450432\n
built_in_hash.rsuse std::collections::hash_map::DefaultHasher;\nuse std::hash::{Hash, Hasher};\n\nlet num = 3;\nlet mut num_hasher = DefaultHasher::new();\nnum.hash(&mut num_hasher);\nlet hash_num = num_hasher.finish();\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 568126464209439262\n\nlet bol = true;\nlet mut bol_hasher = DefaultHasher::new();\nbol.hash(&mut bol_hasher);\nlet hash_bol = bol_hasher.finish();\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 4952851536318644461\n\nlet dec: f32 = 3.14159;\nlet mut dec_hasher = DefaultHasher::new();\ndec.to_bits().hash(&mut dec_hasher);\nlet hash_dec = dec_hasher.finish();\nprintln!(\"\u5c0f\u6570 {} \u7684\u54c8\u5e0c\u503c\u4e3a {}\", dec, hash_dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 2566941990314602357\n\nlet str = \"Hello \u7b97\u6cd5\";\nlet mut str_hasher = DefaultHasher::new();\nstr.hash(&mut str_hasher);\nlet hash_str = str_hasher.finish();\n// \u5b57\u7b26\u4e32\u201cHello \u7b97\u6cd5\u201d\u7684\u54c8\u5e0c\u503c\u4e3a 16092673739211250988\n\nlet arr = (&12836, &\"\u5c0f\u54c8\");\nlet mut tup_hasher = DefaultHasher::new();\narr.hash(&mut tup_hasher);\nlet hash_tup = tup_hasher.finish();\n// \u5143\u7ec4 (12836, \"\u5c0f\u54c8\") \u7684\u54c8\u5e0c\u503c\u4e3a 1885128010422702749\n\nlet node = ListNode::new(42);\nlet mut hasher = DefaultHasher::new();\nnode.borrow().val.hash(&mut hasher);\nlet hash = hasher.finish();\n// \u8282\u70b9\u5bf9\u8c61 RefCell { value: ListNode { val: 42, next: None } } \u7684\u54c8\u5e0c\u503c\u4e3a15387811073369036852\n
built_in_hash.c// C \u672a\u63d0\u4f9b\u5185\u7f6e hash code \u51fd\u6570\n
built_in_hash.zig\n
\u5728\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u624d\u53ef\u4f5c\u4e3a\u54c8\u5e0c\u8868\u7684 key \u3002\u5047\u5982\u6211\u4eec\u5c06\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4f5c\u4e3a key \uff0c\u5f53\u5217\u8868\u7684\u5185\u5bb9\u53d1\u751f\u53d8\u5316\u65f6\uff0c\u5b83\u7684\u54c8\u5e0c\u503c\u4e5f\u968f\u4e4b\u6539\u53d8\uff0c\u6211\u4eec\u5c31\u65e0\u6cd5\u5728\u54c8\u5e0c\u8868\u4e2d\u67e5\u8be2\u5230\u539f\u5148\u7684 value \u4e86\u3002
\u867d\u7136\u81ea\u5b9a\u4e49\u5bf9\u8c61\uff08\u6bd4\u5982\u94fe\u8868\u8282\u70b9\uff09\u7684\u6210\u5458\u53d8\u91cf\u662f\u53ef\u53d8\u7684\uff0c\u4f46\u5b83\u662f\u53ef\u54c8\u5e0c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u901a\u5e38\u662f\u57fa\u4e8e\u5185\u5b58\u5730\u5740\u751f\u6210\u7684\uff0c\u5373\u4f7f\u5bf9\u8c61\u7684\u5185\u5bb9\u53d1\u751f\u4e86\u53d8\u5316\uff0c\u4f46\u5b83\u7684\u5185\u5b58\u5730\u5740\u4e0d\u53d8\uff0c\u54c8\u5e0c\u503c\u4ecd\u7136\u662f\u4e0d\u53d8\u7684\u3002
\u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u53d1\u73b0\u5728\u4e0d\u540c\u63a7\u5236\u53f0\u4e2d\u8fd0\u884c\u7a0b\u5e8f\u65f6\uff0c\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u662f\u4e0d\u540c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a Python \u89e3\u91ca\u5668\u5728\u6bcf\u6b21\u542f\u52a8\u65f6\uff0c\u90fd\u4f1a\u4e3a\u5b57\u7b26\u4e32\u54c8\u5e0c\u51fd\u6570\u52a0\u5165\u4e00\u4e2a\u968f\u673a\u7684\u76d0\uff08salt\uff09\u503c\u3002\u8fd9\u79cd\u505a\u6cd5\u53ef\u4ee5\u6709\u6548\u9632\u6b62 HashDoS \u653b\u51fb\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u3002
"},{"location":"chapter_hashing/hash_collision/","title":"6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81","text":"\u4e0a\u4e00\u8282\u63d0\u5230\uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u5165\u7a7a\u95f4\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff0c\u56e0\u6b64\u7406\u8bba\u4e0a\u54c8\u5e0c\u51b2\u7a81\u662f\u4e0d\u53ef\u907f\u514d\u7684\u3002\u6bd4\u5982\uff0c\u8f93\u5165\u7a7a\u95f4\u4e3a\u5168\u4f53\u6574\u6570\uff0c\u8f93\u51fa\u7a7a\u95f4\u4e3a\u6570\u7ec4\u5bb9\u91cf\u5927\u5c0f\uff0c\u5219\u5fc5\u7136\u6709\u591a\u4e2a\u6574\u6570\u6620\u5c04\u81f3\u540c\u4e00\u6876\u7d22\u5f15\u3002
\u54c8\u5e0c\u51b2\u7a81\u4f1a\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u9519\u8bef\uff0c\u4e25\u91cd\u5f71\u54cd\u54c8\u5e0c\u8868\u7684\u53ef\u7528\u6027\u3002\u4e3a\u4e86\u89e3\u51b3\u8be5\u95ee\u9898\uff0c\u6bcf\u5f53\u9047\u5230\u54c8\u5e0c\u51b2\u7a81\u65f6\uff0c\u6211\u4eec\u5c31\u8fdb\u884c\u54c8\u5e0c\u8868\u6269\u5bb9\uff0c\u76f4\u81f3\u51b2\u7a81\u6d88\u5931\u4e3a\u6b62\u3002\u6b64\u65b9\u6cd5\u7b80\u5355\u7c97\u66b4\u4e14\u6709\u6548\uff0c\u4f46\u6548\u7387\u592a\u4f4e\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u8981\u8fdb\u884c\u5927\u91cf\u7684\u6570\u636e\u642c\u8fd0\u4e0e\u54c8\u5e0c\u503c\u8ba1\u7b97\u3002\u4e3a\u4e86\u63d0\u5347\u6548\u7387\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u4ee5\u4e0b\u7b56\u7565\u3002
- \u6539\u826f\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u4f7f\u5f97\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u51fa\u73b0\u54c8\u5e0c\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\u3002
- \u4ec5\u5728\u5fc5\u8981\u65f6\uff0c\u5373\u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u624d\u6267\u884c\u6269\u5bb9\u64cd\u4f5c\u3002
\u54c8\u5e0c\u8868\u7684\u7ed3\u6784\u6539\u826f\u65b9\u6cd5\u4e3b\u8981\u5305\u62ec\u201c\u94fe\u5f0f\u5730\u5740\u201d\u548c\u201c\u5f00\u653e\u5bfb\u5740\u201d\u3002
"},{"location":"chapter_hashing/hash_collision/#621","title":"6.2.1 \u00a0 \u94fe\u5f0f\u5730\u5740","text":"\u5728\u539f\u59cb\u54c8\u5e0c\u8868\u4e2d\uff0c\u6bcf\u4e2a\u6876\u4ec5\u80fd\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u300c\u94fe\u5f0f\u5730\u5740 separate chaining\u300d\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u6362\u4e3a\u94fe\u8868\uff0c\u5c06\u952e\u503c\u5bf9\u4f5c\u4e3a\u94fe\u8868\u8282\u70b9\uff0c\u5c06\u6240\u6709\u53d1\u751f\u51b2\u7a81\u7684\u952e\u503c\u5bf9\u90fd\u5b58\u50a8\u5728\u540c\u4e00\u94fe\u8868\u4e2d\u3002\u56fe 6-5 \u5c55\u793a\u4e86\u4e00\u4e2a\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\u7684\u4f8b\u5b50\u3002
\u56fe 6-5 \u00a0 \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868
\u57fa\u4e8e\u94fe\u5f0f\u5730\u5740\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\u7684\u64cd\u4f5c\u65b9\u6cd5\u53d1\u751f\u4e86\u4ee5\u4e0b\u53d8\u5316\u3002
- \u67e5\u8be2\u5143\u7d20\uff1a\u8f93\u5165
key \uff0c\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u6876\u7d22\u5f15\uff0c\u5373\u53ef\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u904d\u5386\u94fe\u8868\u5e76\u5bf9\u6bd4 key \u4ee5\u67e5\u627e\u76ee\u6807\u952e\u503c\u5bf9\u3002 - \u6dfb\u52a0\u5143\u7d20\uff1a\u9996\u5148\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u5c06\u8282\u70b9\uff08\u952e\u503c\u5bf9\uff09\u6dfb\u52a0\u5230\u94fe\u8868\u4e2d\u3002
- \u5220\u9664\u5143\u7d20\uff1a\u6839\u636e\u54c8\u5e0c\u51fd\u6570\u7684\u7ed3\u679c\u8bbf\u95ee\u94fe\u8868\u5934\u90e8\uff0c\u63a5\u7740\u904d\u5386\u94fe\u8868\u4ee5\u67e5\u627e\u76ee\u6807\u8282\u70b9\u5e76\u5c06\u5176\u5220\u9664\u3002
\u94fe\u5f0f\u5730\u5740\u5b58\u5728\u4ee5\u4e0b\u5c40\u9650\u6027\u3002
- \u5360\u7528\u7a7a\u95f4\u589e\u5927\uff1a\u94fe\u8868\u5305\u542b\u8282\u70b9\u6307\u9488\uff0c\u5b83\u76f8\u6bd4\u6570\u7ec4\u66f4\u52a0\u8017\u8d39\u5185\u5b58\u7a7a\u95f4\u3002
- \u67e5\u8be2\u6548\u7387\u964d\u4f4e\uff1a\u56e0\u4e3a\u9700\u8981\u7ebf\u6027\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u5bf9\u5e94\u5143\u7d20\u3002
\u4ee5\u4e0b\u4ee3\u7801\u7ed9\u51fa\u4e86\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\u7684\u7b80\u5355\u5b9e\u73b0\uff0c\u9700\u8981\u6ce8\u610f\u4e24\u70b9\u3002
- \u4f7f\u7528\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4ee3\u66ff\u94fe\u8868\uff0c\u4ece\u800c\u7b80\u5316\u4ee3\u7801\u3002\u5728\u8fd9\u79cd\u8bbe\u5b9a\u4e0b\uff0c\u54c8\u5e0c\u8868\uff08\u6570\u7ec4\uff09\u5305\u542b\u591a\u4e2a\u6876\uff0c\u6bcf\u4e2a\u6876\u90fd\u662f\u4e00\u4e2a\u5217\u8868\u3002
- \u4ee5\u4e0b\u5b9e\u73b0\u5305\u542b\u54c8\u5e0c\u8868\u6269\u5bb9\u65b9\u6cd5\u3002\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(\\frac{2}{3}\\) \u65f6\uff0c\u6211\u4eec\u5c06\u54c8\u5e0c\u8868\u6269\u5bb9\u81f3\u539f\u5148\u7684 \\(2\\) \u500d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map_chaining.pyclass HashMapChaining:\n \"\"\"\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self.size = 0 # \u952e\u503c\u5bf9\u6570\u91cf\n self.capacity = 4 # \u54c8\u5e0c\u8868\u5bb9\u91cf\n self.load_thres = 2.0 / 3.0 # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n self.extend_ratio = 2 # \u6269\u5bb9\u500d\u6570\n self.buckets = [[] for _ in range(self.capacity)] # \u6876\u6570\u7ec4\n\n def hash_func(self, key: int) -> int:\n \"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\n return key % self.capacity\n\n def load_factor(self) -> float:\n \"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\n return self.size / self.capacity\n\n def get(self, key: int) -> str | None:\n \"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\n index = self.hash_func(key)\n bucket = self.buckets[index]\n # \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for pair in bucket:\n if pair.key == key:\n return pair.val\n # \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de None\n return None\n\n def put(self, key: int, val: str):\n \"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n # \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres:\n self.extend()\n index = self.hash_func(key)\n bucket = self.buckets[index]\n # \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for pair in bucket:\n if pair.key == key:\n pair.val = val\n return\n # \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n pair = Pair(key, val)\n bucket.append(pair)\n self.size += 1\n\n def remove(self, key: int):\n \"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\n index = self.hash_func(key)\n bucket = self.buckets[index]\n # \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for pair in bucket:\n if pair.key == key:\n bucket.remove(pair)\n self.size -= 1\n break\n\n def extend(self):\n \"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n # \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n buckets = self.buckets\n # \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio\n self.buckets = [[] for _ in range(self.capacity)]\n self.size = 0\n # \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for bucket in buckets:\n for pair in bucket:\n self.put(pair.key, pair.val)\n\n def print(self):\n \"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\n for bucket in self.buckets:\n res = []\n for pair in bucket:\n res.append(str(pair.key) + \" -> \" + pair.val)\n print(res)\n
hash_map_chaining.cpp/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n private:\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n vector<vector<Pair *>> buckets; // \u6876\u6570\u7ec4\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3.0), extendRatio(2) {\n buckets.resize(capacity);\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~HashMapChaining() {\n for (auto &bucket : buckets) {\n for (Pair *pair : bucket) {\n // \u91ca\u653e\u5185\u5b58\n delete pair;\n }\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return (double)size / (double)capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n string get(int key) {\n int index = hashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (Pair *pair : buckets[index]) {\n if (pair->key == key) {\n return pair->val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\";\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n int index = hashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (Pair *pair : buckets[index]) {\n if (pair->key == key) {\n pair->val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n buckets[index].push_back(new Pair(key, val));\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n auto &bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (int i = 0; i < bucket.size(); i++) {\n if (bucket[i]->key == key) {\n Pair *tmp = bucket[i];\n bucket.erase(bucket.begin() + i); // \u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n delete tmp; // \u91ca\u653e\u5185\u5b58\n size--;\n return;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n vector<vector<Pair *>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets.clear();\n buckets.resize(capacity);\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (auto &bucket : bucketsTmp) {\n for (Pair *pair : bucket) {\n put(pair->key, pair->val);\n // \u91ca\u653e\u5185\u5b58\n delete pair;\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (auto &bucket : buckets) {\n cout << \"[\";\n for (Pair *pair : bucket) {\n cout << pair->key << \" -> \" << pair->val << \", \";\n }\n cout << \"]\\n\";\n }\n }\n};\n
hash_map_chaining.java/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapChaining() {\n size = 0;\n capacity = 4;\n loadThres = 2.0 / 3.0;\n extendRatio = 2;\n buckets = new ArrayList<>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.add(new ArrayList<>());\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return (double) size / capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String get(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets.get(index);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (Pair pair : bucket) {\n if (pair.key == key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n int index = hashFunc(key);\n List<Pair> bucket = buckets.get(index);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (Pair pair : bucket) {\n if (pair.key == key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n Pair pair = new Pair(key, val);\n bucket.add(pair);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets.get(index);\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (Pair pair : bucket) {\n if (pair.key == key) {\n bucket.remove(pair);\n size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<List<Pair>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new ArrayList<>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.add(new ArrayList<>());\n }\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (List<Pair> bucket : bucketsTmp) {\n for (Pair pair : bucket) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (List<Pair> bucket : buckets) {\n List<String> res = new ArrayList<>();\n for (Pair pair : bucket) {\n res.add(pair.key + \" -> \" + pair.val);\n }\n System.out.println(res);\n }\n }\n}\n
hash_map_chaining.cs/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapChaining() {\n size = 0;\n capacity = 4;\n loadThres = 2.0 / 3.0;\n extendRatio = 2;\n buckets = new List<List<Pair>>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.Add([]);\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int HashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double LoadFactor() {\n return (double)size / capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public string? Get(int key) {\n int index = HashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n foreach (Pair pair in buckets[index]) {\n if (pair.key == key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void Put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (LoadFactor() > loadThres) {\n Extend();\n }\n int index = HashFunc(key);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n foreach (Pair pair in buckets[index]) {\n if (pair.key == key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n buckets[index].Add(new Pair(key, val));\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void Remove(int key) {\n int index = HashFunc(key);\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n foreach (Pair pair in buckets[index].ToList()) {\n if (pair.key == key) {\n buckets[index].Remove(pair);\n size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void Extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<List<Pair>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new List<List<Pair>>(capacity);\n for (int i = 0; i < capacity; i++) {\n buckets.Add([]);\n }\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n foreach (List<Pair> bucket in bucketsTmp) {\n foreach (Pair pair in bucket) {\n Put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void Print() {\n foreach (List<Pair> bucket in buckets) {\n List<string> res = [];\n foreach (Pair pair in bucket) {\n res.Add(pair.key + \" -> \" + pair.val);\n }\n foreach (string kv in res) {\n Console.WriteLine(kv);\n }\n }\n }\n}\n
hash_map_chaining.go/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntype hashMapChaining struct {\n size int // \u952e\u503c\u5bf9\u6570\u91cf\n capacity int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n loadThres float64 // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n extendRatio int // \u6269\u5bb9\u500d\u6570\n buckets [][]pair // \u6876\u6570\u7ec4\n}\n\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapChaining() *hashMapChaining {\n buckets := make([][]pair, 4)\n for i := 0; i < 4; i++ {\n buckets[i] = make([]pair, 0)\n }\n return &hashMapChaining{\n size: 0,\n capacity: 4,\n loadThres: 2.0 / 3.0,\n extendRatio: 2,\n buckets: buckets,\n }\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapChaining) hashFunc(key int) int {\n return key % m.capacity\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapChaining) loadFactor() float64 {\n return float64(m.size) / float64(m.capacity)\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapChaining) get(key int) string {\n idx := m.hashFunc(key)\n bucket := m.buckets[idx]\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for _, p := range bucket {\n if p.key == key {\n return p.val\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\"\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapChaining) put(key int, val string) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if m.loadFactor() > m.loadThres {\n m.extend()\n }\n idx := m.hashFunc(key)\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for i := range m.buckets[idx] {\n if m.buckets[idx][i].key == key {\n m.buckets[idx][i].val = val\n return\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n p := pair{\n key: key,\n val: val,\n }\n m.buckets[idx] = append(m.buckets[idx], p)\n m.size += 1\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapChaining) remove(key int) {\n idx := m.hashFunc(key)\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for i, p := range m.buckets[idx] {\n if p.key == key {\n // \u5207\u7247\u5220\u9664\n m.buckets[idx] = append(m.buckets[idx][:i], m.buckets[idx][i+1:]...)\n m.size -= 1\n break\n }\n }\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n tmpBuckets := make([][]pair, len(m.buckets))\n for i := 0; i < len(m.buckets); i++ {\n tmpBuckets[i] = make([]pair, len(m.buckets[i]))\n copy(tmpBuckets[i], m.buckets[i])\n }\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n m.capacity *= m.extendRatio\n m.buckets = make([][]pair, m.capacity)\n for i := 0; i < m.capacity; i++ {\n m.buckets[i] = make([]pair, 0)\n }\n m.size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for _, bucket := range tmpBuckets {\n for _, p := range bucket {\n m.put(p.key, p.val)\n }\n }\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) print() {\n var builder strings.Builder\n\n for _, bucket := range m.buckets {\n builder.WriteString(\"[\")\n for _, p := range bucket {\n builder.WriteString(strconv.Itoa(p.key) + \" -> \" + p.val + \" \")\n }\n builder.WriteString(\"]\")\n fmt.Println(builder.String())\n builder.Reset()\n }\n}\n
hash_map_chaining.swift/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n var size: Int // \u952e\u503c\u5bf9\u6570\u91cf\n var capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n var loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n var extendRatio: Int // \u6269\u5bb9\u500d\u6570\n var buckets: [[Pair]] // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n size = 0\n capacity = 4\n loadThres = 2.0 / 3.0\n extendRatio = 2\n buckets = Array(repeating: [], count: capacity)\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n func hashFunc(key: Int) -> Int {\n key % capacity\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n func loadFactor() -> Double {\n Double(size / capacity)\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n func get(key: Int) -> String? {\n let index = hashFunc(key: key)\n let bucket = buckets[index]\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for pair in bucket {\n if pair.key == key {\n return pair.val\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de nil\n return nil\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n func put(key: Int, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if loadFactor() > loadThres {\n extend()\n }\n let index = hashFunc(key: key)\n let bucket = buckets[index]\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for pair in bucket {\n if pair.key == key {\n pair.val = val\n return\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n let pair = Pair(key: key, val: val)\n buckets[index].append(pair)\n size += 1\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n func remove(key: Int) {\n let index = hashFunc(key: key)\n let bucket = buckets[index]\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (pairIndex, pair) in bucket.enumerated() {\n if pair.key == key {\n buckets[index].remove(at: pairIndex)\n }\n }\n size -= 1\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n func extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let bucketsTmp = buckets\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio\n buckets = Array(repeating: [], count: capacity)\n size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for bucket in bucketsTmp {\n for pair in bucket {\n put(key: pair.key, val: pair.val)\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n func print() {\n for bucket in buckets {\n let res = bucket.map { \"\\($0.key) -> \\($0.val)\" }\n Swift.print(res)\n }\n }\n}\n
hash_map_chaining.js/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n #size; // \u952e\u503c\u5bf9\u6570\u91cf\n #capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n #loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n #extendRatio; // \u6269\u5bb9\u500d\u6570\n #buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#size = 0;\n this.#capacity = 4;\n this.#loadThres = 2.0 / 3.0;\n this.#extendRatio = 2;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key) {\n return key % this.#capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n #loadFactor() {\n return this.#size / this.#capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key) {\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (const pair of bucket) {\n if (pair.key === key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key, val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.#loadFactor() > this.#loadThres) {\n this.#extend();\n }\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (const pair of bucket) {\n if (pair.key === key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n const pair = new Pair(key, val);\n bucket.push(pair);\n this.#size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key) {\n const index = this.#hashFunc(key);\n let bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (let i = 0; i < bucket.length; i++) {\n if (bucket[i].key === key) {\n bucket.splice(i, 1);\n this.#size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n #extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.#buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.#capacity *= this.#extendRatio;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n this.#size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const bucket of bucketsTmp) {\n for (const pair of bucket) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print() {\n for (const bucket of this.#buckets) {\n let res = [];\n for (const pair of bucket) {\n res.push(pair.key + ' -> ' + pair.val);\n }\n console.log(res);\n }\n }\n}\n
hash_map_chaining.ts/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n #size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n #capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n #loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n #extendRatio: number; // \u6269\u5bb9\u500d\u6570\n #buckets: Pair[][]; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#size = 0;\n this.#capacity = 4;\n this.#loadThres = 2.0 / 3.0;\n this.#extendRatio = 2;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key: number): number {\n return key % this.#capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n #loadFactor(): number {\n return this.#size / this.#capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key: number): string | null {\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (const pair of bucket) {\n if (pair.key === key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key: number, val: string): void {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.#loadFactor() > this.#loadThres) {\n this.#extend();\n }\n const index = this.#hashFunc(key);\n const bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (const pair of bucket) {\n if (pair.key === key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n const pair = new Pair(key, val);\n bucket.push(pair);\n this.#size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key: number): void {\n const index = this.#hashFunc(key);\n let bucket = this.#buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (let i = 0; i < bucket.length; i++) {\n if (bucket[i].key === key) {\n bucket.splice(i, 1);\n this.#size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n #extend(): void {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.#buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.#capacity *= this.#extendRatio;\n this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n this.#size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const bucket of bucketsTmp) {\n for (const pair of bucket) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print(): void {\n for (const bucket of this.#buckets) {\n let res = [];\n for (const pair of bucket) {\n res.push(pair.key + ' -> ' + pair.val);\n }\n console.log(res);\n }\n }\n}\n
hash_map_chaining.dart/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n late int size; // \u952e\u503c\u5bf9\u6570\u91cf\n late int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n late double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n late int extendRatio; // \u6269\u5bb9\u500d\u6570\n late List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapChaining() {\n size = 0;\n capacity = 4;\n loadThres = 2.0 / 3.0;\n extendRatio = 2;\n buckets = List.generate(capacity, (_) => []);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return size / capacity;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String? get(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for (Pair pair in bucket) {\n if (pair.key == key) {\n return pair.val;\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n int index = hashFunc(key);\n List<Pair> bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for (Pair pair in bucket) {\n if (pair.key == key) {\n pair.val = val;\n return;\n }\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n Pair pair = Pair(key, val);\n bucket.add(pair);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n List<Pair> bucket = buckets[index];\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for (Pair pair in bucket) {\n if (pair.key == key) {\n bucket.remove(pair);\n size--;\n break;\n }\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<List<Pair>> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = List.generate(capacity, (_) => []);\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (List<Pair> bucket in bucketsTmp) {\n for (Pair pair in bucket) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void printHashMap() {\n for (List<Pair> bucket in buckets) {\n List<String> res = [];\n for (Pair pair in bucket) {\n res.add(\"${pair.key} -> ${pair.val}\");\n }\n print(res);\n }\n }\n}\n
hash_map_chaining.rs/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapChaining {\n size: i32,\n capacity: i32,\n load_thres: f32,\n extend_ratio: i32,\n buckets: Vec<Vec<Pair>>,\n}\n\nimpl HashMapChaining {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new() -> Self {\n Self {\n size: 0,\n capacity: 4,\n load_thres: 2.0 / 3.0,\n extend_ratio: 2,\n buckets: vec![vec![]; 4],\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n fn hash_func(&self, key: i32) -> usize {\n key as usize % self.capacity as usize\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n fn load_factor(&self) -> f32 {\n self.size as f32 / self.capacity as f32\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n fn remove(&mut self, key: i32) -> Option<String> {\n let index = self.hash_func(key);\n let bucket = &mut self.buckets[index];\n\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n for i in 0..bucket.len() {\n if bucket[i].key == key {\n let pair = bucket.remove(i);\n self.size -= 1;\n return Some(pair.val);\n }\n }\n\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de None\n None\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n fn extend(&mut self) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let buckets_tmp = std::mem::replace(&mut self.buckets, vec![]);\n\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio;\n self.buckets = vec![Vec::new(); self.capacity as usize];\n self.size = 0;\n\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for bucket in buckets_tmp {\n for pair in bucket {\n self.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n fn print(&self) {\n for bucket in &self.buckets {\n let mut res = Vec::new();\n for pair in bucket {\n res.push(format!(\"{} -> {}\", pair.key, pair.val));\n }\n println!(\"{:?}\", res);\n }\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n fn put(&mut self, key: i32, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres {\n self.extend();\n }\n\n let index = self.hash_func(key);\n let bucket = &mut self.buckets[index];\n\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n for pair in bucket {\n if pair.key == key {\n pair.val = val.clone();\n return;\n }\n }\n let bucket = &mut self.buckets[index];\n\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\n let pair = Pair {\n key,\n val: val.clone(),\n };\n bucket.push(pair);\n self.size += 1;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n fn get(&self, key: i32) -> Option<&str> {\n let index = self.hash_func(key);\n let bucket = &self.buckets[index];\n\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n for pair in bucket {\n if pair.key == key {\n return Some(&pair.val);\n }\n }\n\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de None\n None\n }\n}\n
hash_map_chaining.c/* \u94fe\u8868\u8282\u70b9 */\ntypedef struct Node {\n Pair *pair;\n struct Node *next;\n} Node;\n\n/* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntypedef struct {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n Node **buckets; // \u6876\u6570\u7ec4\n} HashMapChaining;\n\n/* \u6784\u9020\u51fd\u6570 */\nHashMapChaining *newHashMapChaining() {\n HashMapChaining *hashMap = (HashMapChaining *)malloc(sizeof(HashMapChaining));\n hashMap->size = 0;\n hashMap->capacity = 4;\n hashMap->loadThres = 2.0 / 3.0;\n hashMap->extendRatio = 2;\n hashMap->buckets = (Node **)malloc(hashMap->capacity * sizeof(Node *));\n for (int i = 0; i < hashMap->capacity; i++) {\n hashMap->buckets[i] = NULL;\n }\n return hashMap;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delHashMapChaining(HashMapChaining *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Node *cur = hashMap->buckets[i];\n while (cur) {\n Node *tmp = cur;\n cur = cur->next;\n free(tmp->pair);\n free(tmp);\n }\n }\n free(hashMap->buckets);\n free(hashMap);\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(HashMapChaining *hashMap, int key) {\n return key % hashMap->capacity;\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor(HashMapChaining *hashMap) {\n return (double)hashMap->size / (double)hashMap->capacity;\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nchar *get(HashMapChaining *hashMap, int key) {\n int index = hashFunc(hashMap, key);\n // \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n Node *cur = hashMap->buckets[index];\n while (cur) {\n if (cur->pair->key == key) {\n return cur->pair->val;\n }\n cur = cur->next;\n }\n return \"\"; // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(HashMapChaining *hashMap, int key, const char *val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor(hashMap) > hashMap->loadThres) {\n extend(hashMap);\n }\n int index = hashFunc(hashMap, key);\n // \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n Node *cur = hashMap->buckets[index];\n while (cur) {\n if (cur->pair->key == key) {\n strcpy(cur->pair->val, val); // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\n return;\n }\n cur = cur->next;\n }\n // \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n Pair *newPair = (Pair *)malloc(sizeof(Pair));\n newPair->key = key;\n strcpy(newPair->val, val);\n Node *newNode = (Node *)malloc(sizeof(Node));\n newNode->pair = newPair;\n newNode->next = hashMap->buckets[index];\n hashMap->buckets[index] = newNode;\n hashMap->size++;\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend(HashMapChaining *hashMap) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n int oldCapacity = hashMap->capacity;\n Node **oldBuckets = hashMap->buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n hashMap->capacity *= hashMap->extendRatio;\n hashMap->buckets = (Node **)malloc(hashMap->capacity * sizeof(Node *));\n for (int i = 0; i < hashMap->capacity; i++) {\n hashMap->buckets[i] = NULL;\n }\n hashMap->size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (int i = 0; i < oldCapacity; i++) {\n Node *cur = oldBuckets[i];\n while (cur) {\n put(hashMap, cur->pair->key, cur->pair->val);\n Node *temp = cur;\n cur = cur->next;\n // \u91ca\u653e\u5185\u5b58\n free(temp->pair);\n free(temp);\n }\n }\n\n free(oldBuckets);\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nvoid removeItem(HashMapChaining *hashMap, int key) {\n int index = hashFunc(hashMap, key);\n Node *cur = hashMap->buckets[index];\n Node *pre = NULL;\n while (cur) {\n if (cur->pair->key == key) {\n // \u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n if (pre) {\n pre->next = cur->next;\n } else {\n hashMap->buckets[index] = cur->next;\n }\n // \u91ca\u653e\u5185\u5b58\n free(cur->pair);\n free(cur);\n hashMap->size--;\n return;\n }\n pre = cur;\n cur = cur->next;\n }\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print(HashMapChaining *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Node *cur = hashMap->buckets[i];\n printf(\"[\");\n while (cur) {\n printf(\"%d -> %s, \", cur->pair->key, cur->pair->val);\n cur = cur->next;\n }\n printf(\"]\\n\");\n }\n}\n
hash_map_chaining.zig[class]{HashMapChaining}-[func]{}\n
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u5f53\u94fe\u8868\u5f88\u957f\u65f6\uff0c\u67e5\u8be2\u6548\u7387 \\(O(n)\\) \u5f88\u5dee\u3002\u6b64\u65f6\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u201cAVL \u6811\u201d\u6216\u201c\u7ea2\u9ed1\u6811\u201d\uff0c\u4ece\u800c\u5c06\u67e5\u8be2\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002
"},{"location":"chapter_hashing/hash_collision/#622","title":"6.2.2 \u00a0 \u5f00\u653e\u5bfb\u5740","text":"\u300c\u5f00\u653e\u5bfb\u5740 open addressing\u300d\u4e0d\u5f15\u5165\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u800c\u662f\u901a\u8fc7\u201c\u591a\u6b21\u63a2\u6d4b\u201d\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\uff0c\u63a2\u6d4b\u65b9\u5f0f\u4e3b\u8981\u5305\u62ec\u7ebf\u6027\u63a2\u6d4b\u3001\u5e73\u65b9\u63a2\u6d4b\u548c\u591a\u6b21\u54c8\u5e0c\u7b49\u3002
\u4e0b\u9762\u4ee5\u7ebf\u6027\u63a2\u6d4b\u4e3a\u4f8b\uff0c\u4ecb\u7ecd\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\u7684\u5de5\u4f5c\u673a\u5236\u3002
"},{"location":"chapter_hashing/hash_collision/#1","title":"1. \u00a0 \u7ebf\u6027\u63a2\u6d4b","text":"\u7ebf\u6027\u63a2\u6d4b\u91c7\u7528\u56fa\u5b9a\u6b65\u957f\u7684\u7ebf\u6027\u641c\u7d22\u6765\u8fdb\u884c\u63a2\u6d4b\uff0c\u5176\u64cd\u4f5c\u65b9\u6cd5\u4e0e\u666e\u901a\u54c8\u5e0c\u8868\u6709\u6240\u4e0d\u540c\u3002
- \u63d2\u5165\u5143\u7d20\uff1a\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u82e5\u53d1\u73b0\u6876\u5185\u5df2\u6709\u5143\u7d20\uff0c\u5219\u4ece\u51b2\u7a81\u4f4d\u7f6e\u5411\u540e\u7ebf\u6027\u904d\u5386\uff08\u6b65\u957f\u901a\u5e38\u4e3a \\(1\\) \uff09\uff0c\u76f4\u81f3\u627e\u5230\u7a7a\u6876\uff0c\u5c06\u5143\u7d20\u63d2\u5165\u5176\u4e2d\u3002
- \u67e5\u627e\u5143\u7d20\uff1a\u82e5\u53d1\u73b0\u54c8\u5e0c\u51b2\u7a81\uff0c\u5219\u4f7f\u7528\u76f8\u540c\u6b65\u957f\u5411\u540e\u8fdb\u884c\u7ebf\u6027\u904d\u5386\uff0c\u76f4\u5230\u627e\u5230\u5bf9\u5e94\u5143\u7d20\uff0c\u8fd4\u56de
value \u5373\u53ef\uff1b\u5982\u679c\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u76ee\u6807\u5143\u7d20\u4e0d\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8fd4\u56de None \u3002
\u56fe 6-6 \u5c55\u793a\u4e86\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\uff09\u54c8\u5e0c\u8868\u7684\u952e\u503c\u5bf9\u5206\u5e03\u3002\u6839\u636e\u6b64\u54c8\u5e0c\u51fd\u6570\uff0c\u6700\u540e\u4e24\u4f4d\u76f8\u540c\u7684 key \u90fd\u4f1a\u88ab\u6620\u5c04\u5230\u76f8\u540c\u7684\u6876\u3002\u800c\u901a\u8fc7\u7ebf\u6027\u63a2\u6d4b\uff0c\u5b83\u4eec\u88ab\u4f9d\u6b21\u5b58\u50a8\u5728\u8be5\u6876\u4ee5\u53ca\u4e4b\u4e0b\u7684\u6876\u4e2d\u3002
\u56fe 6-6 \u00a0 \u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\uff09\u54c8\u5e0c\u8868\u7684\u952e\u503c\u5bf9\u5206\u5e03
\u7136\u800c\uff0c\u7ebf\u6027\u63a2\u6d4b\u5bb9\u6613\u4ea7\u751f\u201c\u805a\u96c6\u73b0\u8c61\u201d\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u6570\u7ec4\u4e2d\u8fde\u7eed\u88ab\u5360\u7528\u7684\u4f4d\u7f6e\u8d8a\u957f\uff0c\u8fd9\u4e9b\u8fde\u7eed\u4f4d\u7f6e\u53d1\u751f\u54c8\u5e0c\u51b2\u7a81\u7684\u53ef\u80fd\u6027\u8d8a\u5927\uff0c\u4ece\u800c\u8fdb\u4e00\u6b65\u4fc3\u4f7f\u8be5\u4f4d\u7f6e\u7684\u805a\u5806\u751f\u957f\uff0c\u5f62\u6210\u6076\u6027\u5faa\u73af\uff0c\u6700\u7ec8\u5bfc\u81f4\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u6548\u7387\u52a3\u5316\u3002
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u6211\u4eec\u4e0d\u80fd\u5728\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\u4e2d\u76f4\u63a5\u5220\u9664\u5143\u7d20\u3002\u8fd9\u662f\u56e0\u4e3a\u5220\u9664\u5143\u7d20\u4f1a\u5728\u6570\u7ec4\u5185\u4ea7\u751f\u4e00\u4e2a\u7a7a\u6876 None \uff0c\u800c\u5f53\u67e5\u8be2\u5143\u7d20\u65f6\uff0c\u7ebf\u6027\u63a2\u6d4b\u5230\u8be5\u7a7a\u6876\u5c31\u4f1a\u8fd4\u56de\uff0c\u56e0\u6b64\u5728\u8be5\u7a7a\u6876\u4e4b\u4e0b\u7684\u5143\u7d20\u90fd\u65e0\u6cd5\u518d\u88ab\u8bbf\u95ee\u5230\uff0c\u7a0b\u5e8f\u53ef\u80fd\u8bef\u5224\u8fd9\u4e9b\u5143\u7d20\u4e0d\u5b58\u5728\u3002
\u56fe 6-7 \u00a0 \u5728\u5f00\u653e\u5bfb\u5740\u4e2d\u5220\u9664\u5143\u7d20\u5bfc\u81f4\u7684\u67e5\u8be2\u95ee\u9898
\u4e3a\u4e86\u89e3\u51b3\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u300c\u61d2\u5220\u9664 lazy deletion\u300d\u673a\u5236\uff1a\u5b83\u4e0d\u76f4\u63a5\u4ece\u54c8\u5e0c\u8868\u4e2d\u79fb\u9664\u5143\u7d20\uff0c\u800c\u662f\u5229\u7528\u4e00\u4e2a\u5e38\u91cf TOMBSTONE \u6765\u6807\u8bb0\u8fd9\u4e2a\u6876\u3002\u5728\u8be5\u673a\u5236\u4e0b\uff0cNone \u548c TOMBSTONE \u90fd\u4ee3\u8868\u7a7a\u6876\uff0c\u90fd\u53ef\u4ee5\u653e\u7f6e\u952e\u503c\u5bf9\u3002\u4f46\u4e0d\u540c\u7684\u662f\uff0c\u7ebf\u6027\u63a2\u6d4b\u5230 TOMBSTONE \u65f6\u5e94\u8be5\u7ee7\u7eed\u904d\u5386\uff0c\u56e0\u4e3a\u5176\u4e4b\u4e0b\u53ef\u80fd\u8fd8\u5b58\u5728\u952e\u503c\u5bf9\u3002
\u7136\u800c\uff0c\u61d2\u5220\u9664\u53ef\u80fd\u4f1a\u52a0\u901f\u54c8\u5e0c\u8868\u7684\u6027\u80fd\u9000\u5316\u3002\u8fd9\u662f\u56e0\u4e3a\u6bcf\u6b21\u5220\u9664\u64cd\u4f5c\u90fd\u4f1a\u4ea7\u751f\u4e00\u4e2a\u5220\u9664\u6807\u8bb0\uff0c\u968f\u7740 TOMBSTONE \u7684\u589e\u52a0\uff0c\u641c\u7d22\u65f6\u95f4\u4e5f\u4f1a\u589e\u52a0\uff0c\u56e0\u4e3a\u7ebf\u6027\u63a2\u6d4b\u53ef\u80fd\u9700\u8981\u8df3\u8fc7\u591a\u4e2a TOMBSTONE \u624d\u80fd\u627e\u5230\u76ee\u6807\u5143\u7d20\u3002
\u4e3a\u6b64\uff0c\u8003\u8651\u5728\u7ebf\u6027\u63a2\u6d4b\u4e2d\u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a TOMBSTONE \u7684\u7d22\u5f15\uff0c\u5e76\u5c06\u641c\u7d22\u5230\u7684\u76ee\u6807\u5143\u7d20\u4e0e\u8be5 TOMBSTONE \u4ea4\u6362\u4f4d\u7f6e\u3002\u8fd9\u6837\u505a\u7684\u597d\u5904\u662f\u5f53\u6bcf\u6b21\u67e5\u8be2\u6216\u6dfb\u52a0\u5143\u7d20\u65f6\uff0c\u5143\u7d20\u4f1a\u88ab\u79fb\u52a8\u81f3\u8ddd\u79bb\u7406\u60f3\u4f4d\u7f6e\uff08\u63a2\u6d4b\u8d77\u59cb\u70b9\uff09\u66f4\u8fd1\u7684\u6876\uff0c\u4ece\u800c\u4f18\u5316\u67e5\u8be2\u6548\u7387\u3002
\u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u5305\u542b\u61d2\u5220\u9664\u7684\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\uff09\u54c8\u5e0c\u8868\u3002\u4e3a\u4e86\u66f4\u52a0\u5145\u5206\u5730\u4f7f\u7528\u54c8\u5e0c\u8868\u7684\u7a7a\u95f4\uff0c\u6211\u4eec\u5c06\u54c8\u5e0c\u8868\u770b\u4f5c\u4e00\u4e2a\u201c\u73af\u5f62\u6570\u7ec4\u201d\uff0c\u5f53\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u56de\u5230\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map_open_addressing.pyclass HashMapOpenAddressing:\n \"\"\"\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self.size = 0 # \u952e\u503c\u5bf9\u6570\u91cf\n self.capacity = 4 # \u54c8\u5e0c\u8868\u5bb9\u91cf\n self.load_thres = 2.0 / 3.0 # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n self.extend_ratio = 2 # \u6269\u5bb9\u500d\u6570\n self.buckets: list[Pair | None] = [None] * self.capacity # \u6876\u6570\u7ec4\n self.TOMBSTONE = Pair(-1, \"-1\") # \u5220\u9664\u6807\u8bb0\n\n def hash_func(self, key: int) -> int:\n \"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\n return key % self.capacity\n\n def load_factor(self) -> float:\n \"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\n return self.size / self.capacity\n\n def find_bucket(self, key: int) -> int:\n \"\"\"\u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\"\"\"\n index = self.hash_func(key)\n first_tombstone = -1\n # \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while self.buckets[index] is not None:\n # \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if self.buckets[index].key == key:\n # \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if first_tombstone != -1:\n self.buckets[first_tombstone] = self.buckets[index]\n self.buckets[index] = self.TOMBSTONE\n return first_tombstone # \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n return index # \u8fd4\u56de\u6876\u7d22\u5f15\n # \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if first_tombstone == -1 and self.buckets[index] is self.TOMBSTONE:\n first_tombstone = index\n # \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % self.capacity\n # \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return index if first_tombstone == -1 else first_tombstone\n\n def get(self, key: int) -> str:\n \"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\n # \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n index = self.find_bucket(key)\n # \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if self.buckets[index] not in [None, self.TOMBSTONE]:\n return self.buckets[index].val\n # \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de None\n return None\n\n def put(self, key: int, val: str):\n \"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n # \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres:\n self.extend()\n # \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n index = self.find_bucket(key)\n # \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if self.buckets[index] not in [None, self.TOMBSTONE]:\n self.buckets[index].val = val\n return\n # \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n self.buckets[index] = Pair(key, val)\n self.size += 1\n\n def remove(self, key: int):\n \"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\n # \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n index = self.find_bucket(key)\n # \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if self.buckets[index] not in [None, self.TOMBSTONE]:\n self.buckets[index] = self.TOMBSTONE\n self.size -= 1\n\n def extend(self):\n \"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n # \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n buckets_tmp = self.buckets\n # \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio\n self.buckets = [None] * self.capacity\n self.size = 0\n # \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for pair in buckets_tmp:\n if pair not in [None, self.TOMBSTONE]:\n self.put(pair.key, pair.val)\n\n def print(self):\n \"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\n for pair in self.buckets:\n if pair is None:\n print(\"None\")\n elif pair is self.TOMBSTONE:\n print(\"TOMBSTONE\")\n else:\n print(pair.key, \"->\", pair.val)\n
hash_map_open_addressing.cpp/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n private:\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n const double loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n const int extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n vector<Pair *> buckets; // \u6876\u6570\u7ec4\n Pair *TOMBSTONE = new Pair(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapOpenAddressing() : size(0), buckets(capacity, nullptr) {\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~HashMapOpenAddressing() {\n for (Pair *pair : buckets) {\n if (pair != nullptr && pair != TOMBSTONE) {\n delete pair;\n }\n }\n delete TOMBSTONE;\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return (double)size / capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n int findBucket(int key) {\n int index = hashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (buckets[index] != nullptr) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if (buckets[index]->key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if (firstTombstone != -1) {\n buckets[firstTombstone] = buckets[index];\n buckets[index] = TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n string get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {\n return buckets[index]->val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\";\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {\n buckets[index]->val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = new Pair(key, val);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {\n delete buckets[index];\n buckets[index] = TOMBSTONE;\n size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n vector<Pair *> bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = vector<Pair *>(capacity, nullptr);\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (Pair *pair : bucketsTmp) {\n if (pair != nullptr && pair != TOMBSTONE) {\n put(pair->key, pair->val);\n delete pair;\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (Pair *pair : buckets) {\n if (pair == nullptr) {\n cout << \"nullptr\" << endl;\n } else if (pair == TOMBSTONE) {\n cout << \"TOMBSTONE\" << endl;\n } else {\n cout << pair->key << \" -> \" << pair->val << endl;\n }\n }\n }\n};\n
hash_map_open_addressing.java/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n private int size; // \u952e\u503c\u5bf9\u6570\u91cf\n private int capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n private final double loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n private final int extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n private Pair[] buckets; // \u6876\u6570\u7ec4\n private final Pair TOMBSTONE = new Pair(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapOpenAddressing() {\n size = 0;\n buckets = new Pair[capacity];\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private int hashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n private double loadFactor() {\n return (double) size / capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n private int findBucket(int key) {\n int index = hashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (buckets[index] != null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if (buckets[index].key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if (firstTombstone != -1) {\n buckets[firstTombstone] = buckets[index];\n buckets[index] = TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public String get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n return buckets[index].val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > loadThres) {\n extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index].val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = new Pair(key, val);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index] = TOMBSTONE;\n size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n private void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n Pair[] bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new Pair[capacity];\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (Pair pair : bucketsTmp) {\n if (pair != null && pair != TOMBSTONE) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void print() {\n for (Pair pair : buckets) {\n if (pair == null) {\n System.out.println(\"null\");\n } else if (pair == TOMBSTONE) {\n System.out.println(\"TOMBSTONE\");\n } else {\n System.out.println(pair.key + \" -> \" + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.cs/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n Pair[] buckets; // \u6876\u6570\u7ec4\n Pair TOMBSTONE = new(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public HashMapOpenAddressing() {\n size = 0;\n buckets = new Pair[capacity];\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int HashFunc(int key) {\n return key % capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double LoadFactor() {\n return (double)size / capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n int FindBucket(int key) {\n int index = HashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (buckets[index] != null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if (buckets[index].key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if (firstTombstone != -1) {\n buckets[firstTombstone] = buckets[index];\n buckets[index] = TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public string? Get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = FindBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n return buckets[index].val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void Put(int key, string val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (LoadFactor() > loadThres) {\n Extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = FindBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index].val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = new Pair(key, val);\n size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void Remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = FindBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (buckets[index] != null && buckets[index] != TOMBSTONE) {\n buckets[index] = TOMBSTONE;\n size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void Extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n Pair[] bucketsTmp = buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio;\n buckets = new Pair[capacity];\n size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n foreach (Pair pair in bucketsTmp) {\n if (pair != null && pair != TOMBSTONE) {\n Put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void Print() {\n foreach (Pair pair in buckets) {\n if (pair == null) {\n Console.WriteLine(\"null\");\n } else if (pair == TOMBSTONE) {\n Console.WriteLine(\"TOMBSTONE\");\n } else {\n Console.WriteLine(pair.key + \" -> \" + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.go/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\ntype hashMapOpenAddressing struct {\n size int // \u952e\u503c\u5bf9\u6570\u91cf\n capacity int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n loadThres float64 // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n extendRatio int // \u6269\u5bb9\u500d\u6570\n buckets []pair // \u6876\u6570\u7ec4\n removed pair // \u5220\u9664\u6807\u8bb0\n}\n\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapOpenAddressing() *hashMapOpenAddressing {\n buckets := make([]pair, 4)\n return &hashMapOpenAddressing{\n size: 0,\n capacity: 4,\n loadThres: 2.0 / 3.0,\n extendRatio: 2,\n buckets: buckets,\n removed: pair{\n key: -1,\n val: \"-1\",\n },\n }\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapOpenAddressing) hashFunc(key int) int {\n return key % m.capacity\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapOpenAddressing) loadFactor() float64 {\n return float64(m.size) / float64(m.capacity)\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) get(key int) string {\n idx := m.hashFunc(key)\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\n for i := 0; i < m.capacity; i++ {\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n j := (idx + i) % m.capacity\n // \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\n if m.buckets[j] == (pair{}) {\n return \"\"\n }\n // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if m.buckets[j].key == key && m.buckets[j] != m.removed {\n return m.buckets[j].val\n }\n }\n // \u82e5\u672a\u627e\u5230 key \uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\"\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) put(key int, val string) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if m.loadFactor() > m.loadThres {\n m.extend()\n }\n idx := m.hashFunc(key)\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\n for i := 0; i < m.capacity; i++ {\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n j := (idx + i) % m.capacity\n // \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\n if m.buckets[j] == (pair{}) || m.buckets[j] == m.removed {\n m.buckets[j] = pair{\n key: key,\n val: val,\n }\n m.size += 1\n return\n }\n // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\n if m.buckets[j].key == key {\n m.buckets[j].val = val\n return\n }\n }\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) remove(key int) {\n idx := m.hashFunc(key)\n // \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\n for i := 0; i < m.capacity; i++ {\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n j := (idx + i) % m.capacity\n // \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if m.buckets[j] == (pair{}) {\n return\n }\n // \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\n if m.buckets[j].key == key {\n m.buckets[j] = m.removed\n m.size -= 1\n }\n }\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n tmpBuckets := make([]pair, len(m.buckets))\n copy(tmpBuckets, m.buckets)\n\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n m.capacity *= m.extendRatio\n m.buckets = make([]pair, m.capacity)\n m.size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for _, p := range tmpBuckets {\n if p != (pair{}) && p != m.removed {\n m.put(p.key, p.val)\n }\n }\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) print() {\n for _, p := range m.buckets {\n if p != (pair{}) {\n fmt.Println(strconv.Itoa(p.key) + \" -> \" + p.val)\n } else {\n fmt.Println(\"nil\")\n }\n }\n}\n
hash_map_open_addressing.swift/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n var size: Int // \u952e\u503c\u5bf9\u6570\u91cf\n var capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\n var loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n var extendRatio: Int // \u6269\u5bb9\u500d\u6570\n var buckets: [Pair?] // \u6876\u6570\u7ec4\n var TOMBSTONE: Pair // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init() {\n size = 0\n capacity = 4\n loadThres = 2.0 / 3.0\n extendRatio = 2\n buckets = Array(repeating: nil, count: capacity)\n TOMBSTONE = Pair(key: -1, val: \"-1\")\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n func hashFunc(key: Int) -> Int {\n key % capacity\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n func loadFactor() -> Double {\n Double(size / capacity)\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n func findBucket(key: Int) -> Int {\n var index = hashFunc(key: key)\n var firstTombstone = -1\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while buckets[index] != nil {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if buckets[index]!.key == key {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if firstTombstone != -1 {\n buckets[firstTombstone] = buckets[index]\n buckets[index] = TOMBSTONE\n return firstTombstone // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if firstTombstone == -1 && buckets[index] == TOMBSTONE {\n firstTombstone = index\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % capacity\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n func get(key: Int) -> String? {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = findBucket(key: key)\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if buckets[index] != nil, buckets[index] != TOMBSTONE {\n return buckets[index]!.val\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return nil\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n func put(key: Int, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if loadFactor() > loadThres {\n extend()\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = findBucket(key: key)\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if buckets[index] != nil, buckets[index] != TOMBSTONE {\n buckets[index]!.val = val\n return\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n buckets[index] = Pair(key: key, val: val)\n size += 1\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n func remove(key: Int) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = findBucket(key: key)\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if buckets[index] != nil, buckets[index] != TOMBSTONE {\n buckets[index] = TOMBSTONE\n size -= 1\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n func extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let bucketsTmp = buckets\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n capacity *= extendRatio\n buckets = Array(repeating: nil, count: capacity)\n size = 0\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for pair in bucketsTmp {\n if let pair, pair != TOMBSTONE {\n put(key: pair.key, val: pair.val)\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n func print() {\n for pair in buckets {\n if pair == nil {\n Swift.print(\"null\")\n } else if pair == TOMBSTONE {\n Swift.print(\"TOMBSTONE\")\n } else {\n Swift.print(\"\\(pair!.key) -> \\(pair!.val)\")\n }\n }\n }\n}\n
hash_map_open_addressing.js/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n #size; // \u952e\u503c\u5bf9\u6570\u91cf\n #capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n #loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n #extendRatio; // \u6269\u5bb9\u500d\u6570\n #buckets; // \u6876\u6570\u7ec4\n #TOMBSTONE; // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.#size = 0; // \u952e\u503c\u5bf9\u6570\u91cf\n this.#capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n this.#loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n this.#extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n this.#buckets = Array(this.#capacity).fill(null); // \u6876\u6570\u7ec4\n this.#TOMBSTONE = new Pair(-1, '-1'); // \u5220\u9664\u6807\u8bb0\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key) {\n return key % this.#capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n #loadFactor() {\n return this.#size / this.#capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n #findBucket(key) {\n let index = this.#hashFunc(key);\n let firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (this.#buckets[index] !== null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if (this.#buckets[index].key === key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if (firstTombstone !== -1) {\n this.#buckets[firstTombstone] = this.#buckets[index];\n this.#buckets[index] = this.#TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (\n firstTombstone === -1 &&\n this.#buckets[index] === this.#TOMBSTONE\n ) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % this.#capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone === -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.#findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (\n this.#buckets[index] !== null &&\n this.#buckets[index] !== this.#TOMBSTONE\n ) {\n return this.#buckets[index].val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key, val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.#loadFactor() > this.#loadThres) {\n this.#extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.#findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (\n this.#buckets[index] !== null &&\n this.#buckets[index] !== this.#TOMBSTONE\n ) {\n this.#buckets[index].val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n this.#buckets[index] = new Pair(key, val);\n this.#size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.#findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (\n this.#buckets[index] !== null &&\n this.#buckets[index] !== this.#TOMBSTONE\n ) {\n this.#buckets[index] = this.#TOMBSTONE;\n this.#size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n #extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.#buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.#capacity *= this.#extendRatio;\n this.#buckets = Array(this.#capacity).fill(null);\n this.#size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const pair of bucketsTmp) {\n if (pair !== null && pair !== this.#TOMBSTONE) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print() {\n for (const pair of this.#buckets) {\n if (pair === null) {\n console.log('null');\n } else if (pair === this.#TOMBSTONE) {\n console.log('TOMBSTONE');\n } else {\n console.log(pair.key + ' -> ' + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.ts/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n private size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n private capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n private loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n private extendRatio: number; // \u6269\u5bb9\u500d\u6570\n private buckets: Array<Pair | null>; // \u6876\u6570\u7ec4\n private TOMBSTONE: Pair; // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor() {\n this.size = 0; // \u952e\u503c\u5bf9\u6570\u91cf\n this.capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n this.loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n this.extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n this.buckets = Array(this.capacity).fill(null); // \u6876\u6570\u7ec4\n this.TOMBSTONE = new Pair(-1, '-1'); // \u5220\u9664\u6807\u8bb0\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private hashFunc(key: number): number {\n return key % this.capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n private loadFactor(): number {\n return this.size / this.capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n private findBucket(key: number): number {\n let index = this.hashFunc(key);\n let firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (this.buckets[index] !== null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if (this.buckets[index]!.key === key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if (firstTombstone !== -1) {\n this.buckets[firstTombstone] = this.buckets[index];\n this.buckets[index] = this.TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (\n firstTombstone === -1 &&\n this.buckets[index] === this.TOMBSTONE\n ) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % this.capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone === -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key: number): string | null {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (\n this.buckets[index] !== null &&\n this.buckets[index] !== this.TOMBSTONE\n ) {\n return this.buckets[index]!.val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n put(key: number, val: string): void {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (this.loadFactor() > this.loadThres) {\n this.extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (\n this.buckets[index] !== null &&\n this.buckets[index] !== this.TOMBSTONE\n ) {\n this.buckets[index]!.val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n this.buckets[index] = new Pair(key, val);\n this.size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n remove(key: number): void {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n const index = this.findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (\n this.buckets[index] !== null &&\n this.buckets[index] !== this.TOMBSTONE\n ) {\n this.buckets[index] = this.TOMBSTONE;\n this.size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n private extend(): void {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n const bucketsTmp = this.buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n this.capacity *= this.extendRatio;\n this.buckets = Array(this.capacity).fill(null);\n this.size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (const pair of bucketsTmp) {\n if (pair !== null && pair !== this.TOMBSTONE) {\n this.put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print(): void {\n for (const pair of this.buckets) {\n if (pair === null) {\n console.log('null');\n } else if (pair === this.TOMBSTONE) {\n console.log('TOMBSTONE');\n } else {\n console.log(pair.key + ' -> ' + pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.dart/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n late int _size; // \u952e\u503c\u5bf9\u6570\u91cf\n int _capacity = 4; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double _loadThres = 2.0 / 3.0; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int _extendRatio = 2; // \u6269\u5bb9\u500d\u6570\n late List<Pair?> _buckets; // \u6876\u6570\u7ec4\n Pair _TOMBSTONE = Pair(-1, \"-1\"); // \u5220\u9664\u6807\u8bb0\n\n /* \u6784\u9020\u65b9\u6cd5 */\n HashMapOpenAddressing() {\n _size = 0;\n _buckets = List.generate(_capacity, (index) => null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n return key % _capacity;\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n double loadFactor() {\n return _size / _capacity;\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n int findBucket(int key) {\n int index = hashFunc(key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (_buckets[index] != null) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if (_buckets[index]!.key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if (firstTombstone != -1) {\n _buckets[firstTombstone] = _buckets[index];\n _buckets[index] = _TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && _buckets[index] == _TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % _capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String? get(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {\n return _buckets[index]!.val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n return null;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor() > _loadThres) {\n extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {\n _buckets[index]!.val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n _buckets[index] = new Pair(key, val);\n _size++;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (_buckets[index] != null && _buckets[index] != _TOMBSTONE) {\n _buckets[index] = _TOMBSTONE;\n _size--;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n void extend() {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n List<Pair?> bucketsTmp = _buckets;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n _capacity *= _extendRatio;\n _buckets = List.generate(_capacity, (index) => null);\n _size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (Pair? pair in bucketsTmp) {\n if (pair != null && pair != _TOMBSTONE) {\n put(pair.key, pair.val);\n }\n }\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void printHashMap() {\n for (Pair? pair in _buckets) {\n if (pair == null) {\n print(\"null\");\n } else if (pair == _TOMBSTONE) {\n print(\"TOMBSTONE\");\n } else {\n print(\"${pair.key} -> ${pair.val}\");\n }\n }\n }\n}\n
hash_map_open_addressing.rs/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapOpenAddressing {\n size: usize, // \u952e\u503c\u5bf9\u6570\u91cf\n capacity: usize, // \u54c8\u5e0c\u8868\u5bb9\u91cf\n load_thres: f64, // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n extend_ratio: usize, // \u6269\u5bb9\u500d\u6570\n buckets: Vec<Option<Pair>>, // \u6876\u6570\u7ec4\n TOMBSTONE: Option<Pair>, // \u5220\u9664\u6807\u8bb0\n}\n\n\nimpl HashMapOpenAddressing {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new() -> Self {\n Self {\n size: 0,\n capacity: 4,\n load_thres: 2.0 / 3.0,\n extend_ratio: 2,\n buckets: vec![None; 4],\n TOMBSTONE: Some(Pair {key: -1, val: \"-1\".to_string()}),\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n fn hash_func(&self, key: i32) -> usize {\n (key % self.capacity as i32) as usize\n }\n\n /* \u8d1f\u8f7d\u56e0\u5b50 */\n fn load_factor(&self) -> f64 {\n self.size as f64 / self.capacity as f64\n }\n\n /* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\n fn find_bucket(&mut self, key: i32) -> usize {\n let mut index = self.hash_func(key);\n let mut first_tombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while self.buckets[index].is_some() {\n // \u82e5\u9047\u5230 key\uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if self.buckets[index].as_ref().unwrap().key == key {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u5efa\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\n if first_tombstone != -1 {\n self.buckets[first_tombstone as usize] = self.buckets[index].take();\n self.buckets[index] = self.TOMBSTONE.clone();\n return first_tombstone as usize; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if first_tombstone == -1 && self.buckets[index] == self.TOMBSTONE {\n first_tombstone = index as i32;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % self.capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n if first_tombstone == -1 { index } else { first_tombstone as usize }\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n fn get(&mut self, key: i32) -> Option<&str> {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = self.find_bucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {\n return self.buckets[index].as_ref().map(|pair| &pair.val as &str);\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de null\n None\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n fn put(&mut self, key: i32, val: String) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if self.load_factor() > self.load_thres {\n self.extend();\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = self.find_bucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {\n self.buckets[index].as_mut().unwrap().val = val;\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n self.buckets[index] = Some(Pair { key, val });\n self.size += 1;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n fn remove(&mut self, key: i32) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n let index = self.find_bucket(key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if self.buckets[index].is_some() && self.buckets[index] != self.TOMBSTONE {\n self.buckets[index] = self.TOMBSTONE.clone();\n self.size -= 1;\n }\n }\n\n /* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n fn extend(&mut self) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n let buckets_tmp = self.buckets.clone();\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n self.capacity *= self.extend_ratio;\n self.buckets = vec![None; self.capacity];\n self.size = 0;\n\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for pair in buckets_tmp {\n if pair.is_none() || pair == self.TOMBSTONE {\n continue;\n }\n let pair = pair.unwrap();\n\n self.put(pair.key, pair.val);\n }\n }\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n fn print(&self) {\n for pair in &self.buckets {\n if pair.is_none() {\n println!(\"null\");\n } else if pair == &self.TOMBSTONE {\n println!(\"TOMBSTONE\");\n } else {\n let pair = pair.as_ref().unwrap();\n println!(\"{} -> {}\", pair.key, pair.val);\n }\n }\n }\n}\n
hash_map_open_addressing.c/* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\ntypedef struct {\n int size; // \u952e\u503c\u5bf9\u6570\u91cf\n int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n int extendRatio; // \u6269\u5bb9\u500d\u6570\n Pair **buckets; // \u6876\u6570\u7ec4\n Pair *TOMBSTONE; // \u5220\u9664\u6807\u8bb0\n} HashMapOpenAddressing;\n\n/* \u6784\u9020\u51fd\u6570 */\nHashMapOpenAddressing *newHashMapOpenAddressing() {\n HashMapOpenAddressing *hashMap = (HashMapOpenAddressing *)malloc(sizeof(HashMapOpenAddressing));\n hashMap->size = 0;\n hashMap->capacity = 4;\n hashMap->loadThres = 2.0 / 3.0;\n hashMap->extendRatio = 2;\n hashMap->buckets = (Pair **)malloc(sizeof(Pair *) * hashMap->capacity);\n hashMap->TOMBSTONE = (Pair *)malloc(sizeof(Pair));\n hashMap->TOMBSTONE->key = -1;\n hashMap->TOMBSTONE->val = \"-1\";\n\n return hashMap;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delHashMapOpenAddressing(HashMapOpenAddressing *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Pair *pair = hashMap->buckets[i];\n if (pair != NULL && pair != hashMap->TOMBSTONE) {\n free(pair->val);\n free(pair);\n }\n }\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(HashMapOpenAddressing *hashMap, int key) {\n return key % hashMap->capacity;\n}\n\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor(HashMapOpenAddressing *hashMap) {\n return (double)hashMap->size / (double)hashMap->capacity;\n}\n\n/* \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15 */\nint findBucket(HashMapOpenAddressing *hashMap, int key) {\n int index = hashFunc(hashMap, key);\n int firstTombstone = -1;\n // \u7ebf\u6027\u63a2\u6d4b\uff0c\u5f53\u9047\u5230\u7a7a\u6876\u65f6\u8df3\u51fa\n while (hashMap->buckets[index] != NULL) {\n // \u82e5\u9047\u5230 key \uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n if (hashMap->buckets[index]->key == key) {\n // \u82e5\u4e4b\u524d\u9047\u5230\u4e86\u5220\u9664\u6807\u8bb0\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u79fb\u52a8\u81f3\u8be5\u7d22\u5f15\u5904\n if (firstTombstone != -1) {\n hashMap->buckets[firstTombstone] = hashMap->buckets[index];\n hashMap->buckets[index] = hashMap->TOMBSTONE;\n return firstTombstone; // \u8fd4\u56de\u79fb\u52a8\u540e\u7684\u6876\u7d22\u5f15\n }\n return index; // \u8fd4\u56de\u6876\u7d22\u5f15\n }\n // \u8bb0\u5f55\u9047\u5230\u7684\u9996\u4e2a\u5220\u9664\u6807\u8bb0\n if (firstTombstone == -1 && hashMap->buckets[index] == hashMap->TOMBSTONE) {\n firstTombstone = index;\n }\n // \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5934\u90e8\n index = (index + 1) % hashMap->capacity;\n }\n // \u82e5 key \u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u6dfb\u52a0\u70b9\u7684\u7d22\u5f15\n return firstTombstone == -1 ? index : firstTombstone;\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nchar *get(HashMapOpenAddressing *hashMap, int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(hashMap, key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\n if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {\n return hashMap->buckets[index]->val;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\n return \"\";\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(HashMapOpenAddressing *hashMap, int key, char *val) {\n // \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\n if (loadFactor(hashMap) > hashMap->loadThres) {\n extend(hashMap);\n }\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(hashMap, key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u8986\u76d6 val \u5e76\u8fd4\u56de\n if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {\n free(hashMap->buckets[index]->val);\n hashMap->buckets[index]->val = (char *)malloc(sizeof(strlen(val + 1)));\n strcpy(hashMap->buckets[index]->val, val);\n hashMap->buckets[index]->val[strlen(val)] = '\\0';\n return;\n }\n // \u82e5\u952e\u503c\u5bf9\u4e0d\u5b58\u5728\uff0c\u5219\u6dfb\u52a0\u8be5\u952e\u503c\u5bf9\n Pair *pair = (Pair *)malloc(sizeof(Pair));\n pair->key = key;\n pair->val = (char *)malloc(sizeof(strlen(val + 1)));\n strcpy(pair->val, val);\n pair->val[strlen(val)] = '\\0';\n\n hashMap->buckets[index] = pair;\n hashMap->size++;\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nvoid removeItem(HashMapOpenAddressing *hashMap, int key) {\n // \u641c\u7d22 key \u5bf9\u5e94\u7684\u6876\u7d22\u5f15\n int index = findBucket(hashMap, key);\n // \u82e5\u627e\u5230\u952e\u503c\u5bf9\uff0c\u5219\u7528\u5220\u9664\u6807\u8bb0\u8986\u76d6\u5b83\n if (hashMap->buckets[index] != NULL && hashMap->buckets[index] != hashMap->TOMBSTONE) {\n Pair *pair = hashMap->buckets[index];\n free(pair->val);\n free(pair);\n hashMap->buckets[index] = hashMap->TOMBSTONE;\n hashMap->size--;\n }\n}\n\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend(HashMapOpenAddressing *hashMap) {\n // \u6682\u5b58\u539f\u54c8\u5e0c\u8868\n Pair **bucketsTmp = hashMap->buckets;\n int oldCapacity = hashMap->capacity;\n // \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n hashMap->capacity *= hashMap->extendRatio;\n hashMap->buckets = (Pair **)malloc(sizeof(Pair *) * hashMap->capacity);\n hashMap->size = 0;\n // \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\n for (int i = 0; i < oldCapacity; i++) {\n Pair *pair = bucketsTmp[i];\n if (pair != NULL && pair != hashMap->TOMBSTONE) {\n put(hashMap, pair->key, pair->val);\n free(pair->val);\n free(pair);\n }\n }\n free(bucketsTmp);\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print(HashMapOpenAddressing *hashMap) {\n for (int i = 0; i < hashMap->capacity; i++) {\n Pair *pair = hashMap->buckets[i];\n if (pair == NULL) {\n printf(\"NULL\\n\");\n } else if (pair == hashMap->TOMBSTONE) {\n printf(\"TOMBSTONE\\n\");\n } else {\n printf(\"%d -> %s\\n\", pair->key, pair->val);\n }\n }\n}\n
hash_map_open_addressing.zig[class]{HashMapOpenAddressing}-[func]{}\n
"},{"location":"chapter_hashing/hash_collision/#2","title":"2. \u00a0 \u5e73\u65b9\u63a2\u6d4b","text":"\u5e73\u65b9\u63a2\u6d4b\u4e0e\u7ebf\u6027\u63a2\u6d4b\u7c7b\u4f3c\uff0c\u90fd\u662f\u5f00\u653e\u5bfb\u5740\u7684\u5e38\u89c1\u7b56\u7565\u4e4b\u4e00\u3002\u5f53\u53d1\u751f\u51b2\u7a81\u65f6\uff0c\u5e73\u65b9\u63a2\u6d4b\u4e0d\u662f\u7b80\u5355\u5730\u8df3\u8fc7\u4e00\u4e2a\u56fa\u5b9a\u7684\u6b65\u6570\uff0c\u800c\u662f\u8df3\u8fc7\u201c\u63a2\u6d4b\u6b21\u6570\u7684\u5e73\u65b9\u201d\u7684\u6b65\u6570\uff0c\u5373 \\(1, 4, 9, \\dots\\) \u6b65\u3002
\u5e73\u65b9\u63a2\u6d4b\u4e3b\u8981\u5177\u6709\u4ee5\u4e0b\u4f18\u52bf\u3002
- \u5e73\u65b9\u63a2\u6d4b\u901a\u8fc7\u8df3\u8fc7\u63a2\u6d4b\u6b21\u6570\u5e73\u65b9\u7684\u8ddd\u79bb\uff0c\u8bd5\u56fe\u7f13\u89e3\u7ebf\u6027\u63a2\u6d4b\u7684\u805a\u96c6\u6548\u5e94\u3002
- \u5e73\u65b9\u63a2\u6d4b\u4f1a\u8df3\u8fc7\u66f4\u5927\u7684\u8ddd\u79bb\u6765\u5bfb\u627e\u7a7a\u4f4d\u7f6e\uff0c\u6709\u52a9\u4e8e\u6570\u636e\u5206\u5e03\u5f97\u66f4\u52a0\u5747\u5300\u3002
\u7136\u800c\uff0c\u5e73\u65b9\u63a2\u6d4b\u5e76\u4e0d\u662f\u5b8c\u7f8e\u7684\u3002
- \u4ecd\u7136\u5b58\u5728\u805a\u96c6\u73b0\u8c61\uff0c\u5373\u67d0\u4e9b\u4f4d\u7f6e\u6bd4\u5176\u4ed6\u4f4d\u7f6e\u66f4\u5bb9\u6613\u88ab\u5360\u7528\u3002
- \u7531\u4e8e\u5e73\u65b9\u7684\u589e\u957f\uff0c\u5e73\u65b9\u63a2\u6d4b\u53ef\u80fd\u4e0d\u4f1a\u63a2\u6d4b\u6574\u4e2a\u54c8\u5e0c\u8868\uff0c\u8fd9\u610f\u5473\u7740\u5373\u4f7f\u54c8\u5e0c\u8868\u4e2d\u6709\u7a7a\u6876\uff0c\u5e73\u65b9\u63a2\u6d4b\u4e5f\u53ef\u80fd\u65e0\u6cd5\u8bbf\u95ee\u5230\u5b83\u3002
"},{"location":"chapter_hashing/hash_collision/#3","title":"3. \u00a0 \u591a\u6b21\u54c8\u5e0c","text":"\u987e\u540d\u601d\u4e49\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\)\u3001\\(f_2(x)\\)\u3001\\(f_3(x)\\)\u3001\\(\\dots\\) \u8fdb\u884c\u63a2\u6d4b\u3002
- \u63d2\u5165\u5143\u7d20\uff1a\u82e5\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\) \u51fa\u73b0\u51b2\u7a81\uff0c\u5219\u5c1d\u8bd5 \\(f_2(x)\\) \uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u5230\u627e\u5230\u7a7a\u4f4d\u540e\u63d2\u5165\u5143\u7d20\u3002
- \u67e5\u627e\u5143\u7d20\uff1a\u5728\u76f8\u540c\u7684\u54c8\u5e0c\u51fd\u6570\u987a\u5e8f\u4e0b\u8fdb\u884c\u67e5\u627e\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u65f6\u8fd4\u56de\uff1b\u82e5\u9047\u5230\u7a7a\u4f4d\u6216\u5df2\u5c1d\u8bd5\u6240\u6709\u54c8\u5e0c\u51fd\u6570\uff0c\u8bf4\u660e\u54c8\u5e0c\u8868\u4e2d\u4e0d\u5b58\u5728\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de
None \u3002
\u4e0e\u7ebf\u6027\u63a2\u6d4b\u76f8\u6bd4\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u4f1a\u5e26\u6765\u989d\u5916\u7684\u8ba1\u7b97\u91cf\u3002
Tip
\u8bf7\u6ce8\u610f\uff0c\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\u3001\u5e73\u65b9\u63a2\u6d4b\u548c\u591a\u6b21\u54c8\u5e0c\uff09\u54c8\u5e0c\u8868\u90fd\u5b58\u5728\u201c\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u201d\u7684\u95ee\u9898\u3002
"},{"location":"chapter_hashing/hash_collision/#623","title":"6.2.3 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u9009\u62e9","text":"\u5404\u79cd\u7f16\u7a0b\u8bed\u8a00\u91c7\u53d6\u4e86\u4e0d\u540c\u7684\u54c8\u5e0c\u8868\u5b9e\u73b0\u7b56\u7565\uff0c\u4e0b\u9762\u4e3e\u51e0\u4e2a\u4f8b\u5b50\u3002
- Python \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002\u5b57\u5178
dict \u4f7f\u7528\u4f2a\u968f\u673a\u6570\u8fdb\u884c\u63a2\u6d4b\u3002 - Java \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002\u81ea JDK 1.8 \u4ee5\u6765\uff0c\u5f53
HashMap \u5185\u6570\u7ec4\u957f\u5ea6\u8fbe\u5230 64 \u4e14\u94fe\u8868\u957f\u5ea6\u8fbe\u5230 8 \u65f6\uff0c\u94fe\u8868\u4f1a\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u4ee5\u63d0\u5347\u67e5\u627e\u6027\u80fd\u3002 - Go \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002Go \u89c4\u5b9a\u6bcf\u4e2a\u6876\u6700\u591a\u5b58\u50a8 8 \u4e2a\u952e\u503c\u5bf9\uff0c\u8d85\u51fa\u5bb9\u91cf\u5219\u8fde\u63a5\u4e00\u4e2a\u6ea2\u51fa\u6876\uff1b\u5f53\u6ea2\u51fa\u6876\u8fc7\u591a\u65f6\uff0c\u4f1a\u6267\u884c\u4e00\u6b21\u7279\u6b8a\u7684\u7b49\u91cf\u6269\u5bb9\u64cd\u4f5c\uff0c\u4ee5\u786e\u4fdd\u6027\u80fd\u3002
"},{"location":"chapter_hashing/hash_map/","title":"6.1 \u00a0 \u54c8\u5e0c\u8868","text":"\u300c\u54c8\u5e0c\u8868 hash table\u300d\uff0c\u53c8\u79f0\u300c\u6563\u5217\u8868\u300d\uff0c\u5b83\u901a\u8fc7\u5efa\u7acb\u952e key \u4e0e\u503c value \u4e4b\u95f4\u7684\u6620\u5c04\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u8be2\u3002\u5177\u4f53\u800c\u8a00\uff0c\u6211\u4eec\u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u4e00\u4e2a\u952e key \uff0c\u5219\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u5bf9\u5e94\u7684\u503c value \u3002
\u5982\u56fe 6-1 \u6240\u793a\uff0c\u7ed9\u5b9a \\(n\\) \u4e2a\u5b66\u751f\uff0c\u6bcf\u4e2a\u5b66\u751f\u90fd\u6709\u201c\u59d3\u540d\u201d\u548c\u201c\u5b66\u53f7\u201d\u4e24\u9879\u6570\u636e\u3002\u5047\u5982\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u201c\u8f93\u5165\u4e00\u4e2a\u5b66\u53f7\uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u59d3\u540d\u201d\u7684\u67e5\u8be2\u529f\u80fd\uff0c\u5219\u53ef\u4ee5\u91c7\u7528\u56fe 6-1 \u6240\u793a\u7684\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002
\u56fe 6-1 \u00a0 \u54c8\u5e0c\u8868\u7684\u62bd\u8c61\u8868\u793a
\u9664\u54c8\u5e0c\u8868\u5916\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u4e5f\u53ef\u4ee5\u5b9e\u73b0\u67e5\u8be2\u529f\u80fd\uff0c\u5b83\u4eec\u7684\u6548\u7387\u5bf9\u6bd4\u5982\u8868 6-1 \u6240\u793a\u3002
- \u6dfb\u52a0\u5143\u7d20\uff1a\u4ec5\u9700\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u6570\u7ec4\uff08\u94fe\u8868\uff09\u7684\u5c3e\u90e8\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
- \u67e5\u8be2\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\uff08\u94fe\u8868\uff09\u662f\u4e71\u5e8f\u7684\uff0c\u56e0\u6b64\u9700\u8981\u904d\u5386\u5176\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
- \u5220\u9664\u5143\u7d20\uff1a\u9700\u8981\u5148\u67e5\u8be2\u5230\u5143\u7d20\uff0c\u518d\u4ece\u6570\u7ec4\uff08\u94fe\u8868\uff09\u4e2d\u5220\u9664\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
\u8868 6-1 \u00a0 \u5143\u7d20\u67e5\u8be2\u6548\u7387\u5bf9\u6bd4
\u6570\u7ec4 \u94fe\u8868 \u54c8\u5e0c\u8868 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\) \u89c2\u5bdf\u53d1\u73b0\uff0c\u5728\u54c8\u5e0c\u8868\u4e2d\u8fdb\u884c\u589e\u5220\u67e5\u6539\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f \\(O(1)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
"},{"location":"chapter_hashing/hash_map/#611","title":"6.1.1 \u00a0 \u54c8\u5e0c\u8868\u5e38\u7528\u64cd\u4f5c","text":"\u54c8\u5e0c\u8868\u7684\u5e38\u89c1\u64cd\u4f5c\u5305\u62ec\uff1a\u521d\u59cb\u5316\u3001\u67e5\u8be2\u64cd\u4f5c\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u548c\u5220\u9664\u952e\u503c\u5bf9\u7b49\uff0c\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map.py# \u521d\u59cb\u5316\u54c8\u5e0c\u8868\nhmap: dict = {}\n\n# \u6dfb\u52a0\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n\n# \u67e5\u8be2\u64cd\u4f5c\n# \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname: str = hmap[15937]\n\n# \u5220\u9664\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nhmap.pop(10583)\n
hash_map.cpp/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nunordered_map<int, string> map;\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nstring name = map[15937];\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.erase(10583);\n
hash_map.java/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<Integer, String> map = new HashMap<>();\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.put(12836, \"\u5c0f\u54c8\"); \nmap.put(15937, \"\u5c0f\u5570\"); \nmap.put(16750, \"\u5c0f\u7b97\"); \nmap.put(13276, \"\u5c0f\u6cd5\");\nmap.put(10583, \"\u5c0f\u9e2d\");\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map.get(15937);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
hash_map.cs/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nDictionary<int, string> map = new() {\n /* \u6dfb\u52a0\u64cd\u4f5c */\n // \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\n { 12836, \"\u5c0f\u54c8\" },\n { 15937, \"\u5c0f\u5570\" },\n { 16750, \"\u5c0f\u7b97\" },\n { 13276, \"\u5c0f\u6cd5\" },\n { 10583, \"\u5c0f\u9e2d\" }\n};\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nstring name = map[15937];\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.Remove(10583);\n
hash_map_test.go/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nhmap := make(map[int]string)\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname := hmap[15937]\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\ndelete(hmap, 10583)\n
hash_map.swift/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nvar map: [Int: String] = [:]\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\"\nmap[15937] = \"\u5c0f\u5570\"\nmap[16750] = \"\u5c0f\u7b97\"\nmap[13276] = \"\u5c0f\u6cd5\"\nmap[10583] = \"\u5c0f\u9e2d\"\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map[15937]!\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.removeValue(forKey: 10583)\n
hash_map.js/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new Map();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\n
hash_map.ts/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new Map<number, string>();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\nconsole.info('\\n\u6dfb\u52a0\u5b8c\u6210\u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\nconsole.info('\\n\u8f93\u5165\u5b66\u53f7 15937 \uff0c\u67e5\u8be2\u5230\u59d3\u540d ' + name);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\nconsole.info('\\n\u5220\u9664 10583 \u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n
hash_map.dart/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<int, String> map = {};\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map[15937];\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
hash_map.rsuse std::collections::HashMap;\n\n/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nlet mut map: HashMap<i32, String> = HashMap::new();\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.insert(12836, \"\u5c0f\u54c8\".to_string());\nmap.insert(15937, \"\u5c0f\u5570\".to_string());\nmap.insert(16750, \"\u5c0f\u7b97\".to_string());\nmap.insert(13279, \"\u5c0f\u6cd5\".to_string());\nmap.insert(10583, \"\u5c0f\u9e2d\".to_string());\n\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u4e2d\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet _name: Option<&String> = map.get(&15937);\n\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nlet _removed_value: Option<String> = map.remove(&10583);\n
hash_map.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
hash_map.zig\n
\u54c8\u5e0c\u8868\u6709\u4e09\u79cd\u5e38\u7528\u7684\u904d\u5386\u65b9\u5f0f\uff1a\u904d\u5386\u952e\u503c\u5bf9\u3001\u904d\u5386\u952e\u548c\u904d\u5386\u503c\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig hash_map.py# \u904d\u5386\u54c8\u5e0c\u8868\n# \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value in hmap.items():\n print(key, \"->\", value)\n# \u5355\u72ec\u904d\u5386\u952e key\nfor key in hmap.keys():\n print(key)\n# \u5355\u72ec\u904d\u5386\u503c value\nfor value in hmap.values():\n print(value)\n
hash_map.cpp/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (auto kv: map) {\n cout << kv.first << \" -> \" << kv.second << endl;\n}\n// \u4f7f\u7528\u8fed\u4ee3\u5668\u904d\u5386 key->value\nfor (auto iter = map.begin(); iter != map.end(); iter++) {\n cout << iter->first << \"->\" << iter->second << endl;\n}\n
hash_map.java/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (Map.Entry <Integer, String> kv: map.entrySet()) {\n System.out.println(kv.getKey() + \" -> \" + kv.getValue());\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor (int key: map.keySet()) {\n System.out.println(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor (String val: map.values()) {\n System.out.println(val);\n}\n
hash_map.cs/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nforeach (var kv in map) {\n Console.WriteLine(kv.Key + \" -> \" + kv.Value);\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nforeach (int key in map.Keys) {\n Console.WriteLine(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nforeach (string val in map.Values) {\n Console.WriteLine(val);\n}\n
hash_map_test.go/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value := range hmap {\n fmt.Println(key, \"->\", value)\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor key := range hmap {\n fmt.Println(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor _, value := range hmap {\n fmt.Println(value)\n}\n
hash_map.swift/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nfor (key, value) in map {\n print(\"\\(key) -> \\(value)\")\n}\n// \u5355\u72ec\u904d\u5386\u952e Key\nfor key in map.keys {\n print(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c Value\nfor value in map.values {\n print(value)\n}\n
hash_map.js/* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\n console.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\n console.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\n console.info(v);\n}\n
hash_map.ts/* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\n console.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\n console.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\n console.info(v);\n}\n
hash_map.dart/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nmap.forEach((key, value) {\n print('$key -> $value');\n});\n\n// \u5355\u72ec\u904d\u5386\u952e Key\nmap.keys.forEach((key) {\n print(key);\n});\n\n// \u5355\u72ec\u904d\u5386\u503c Value\nmap.values.forEach((value) {\n print(value);\n});\n
hash_map.rs/* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nfor (key, value) in &map {\n println!(\"{key} -> {value}\");\n}\n\n// \u5355\u72ec\u904d\u5386\u952e Key\nfor key in map.keys() {\n println!(\"{key}\"); \n}\n\n// \u5355\u72ec\u904d\u5386\u503c Value\nfor value in map.values() {\n println!(\"{value}\");\n}\n
hash_map.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
hash_map.zig\n
"},{"location":"chapter_hashing/hash_map/#612","title":"6.1.2 \u00a0 \u54c8\u5e0c\u8868\u7b80\u5355\u5b9e\u73b0","text":"\u6211\u4eec\u5148\u8003\u8651\u6700\u7b80\u5355\u7684\u60c5\u51b5\uff0c\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u5b9e\u73b0\u54c8\u5e0c\u8868\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5c06\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u7a7a\u4f4d\u79f0\u4e3a\u300c\u6876 bucket\u300d\uff0c\u6bcf\u4e2a\u6876\u53ef\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u56e0\u6b64\uff0c\u67e5\u8be2\u64cd\u4f5c\u5c31\u662f\u627e\u5230 key \u5bf9\u5e94\u7684\u6876\uff0c\u5e76\u5728\u6876\u4e2d\u83b7\u53d6 value \u3002
\u90a3\u4e48\uff0c\u5982\u4f55\u57fa\u4e8e key \u5b9a\u4f4d\u5bf9\u5e94\u7684\u6876\u5462\uff1f\u8fd9\u662f\u901a\u8fc7\u300c\u54c8\u5e0c\u51fd\u6570 hash function\u300d\u5b9e\u73b0\u7684\u3002\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u8f93\u51fa\u7a7a\u95f4\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8f93\u5165\u7a7a\u95f4\u662f\u6240\u6709 key \uff0c\u8f93\u51fa\u7a7a\u95f4\u662f\u6240\u6709\u6876\uff08\u6570\u7ec4\u7d22\u5f15\uff09\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u8f93\u5165\u4e00\u4e2a key \uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u8be5 key \u5bf9\u5e94\u7684\u952e\u503c\u5bf9\u5728\u6570\u7ec4\u4e2d\u7684\u5b58\u50a8\u4f4d\u7f6e\u3002
\u8f93\u5165\u4e00\u4e2a key \uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u8fc7\u7a0b\u5206\u4e3a\u4ee5\u4e0b\u4e24\u6b65\u3002
- \u901a\u8fc7\u67d0\u79cd\u54c8\u5e0c\u7b97\u6cd5
hash() \u8ba1\u7b97\u5f97\u5230\u54c8\u5e0c\u503c\u3002 - \u5c06\u54c8\u5e0c\u503c\u5bf9\u6876\u6570\u91cf\uff08\u6570\u7ec4\u957f\u5ea6\uff09
capacity \u53d6\u6a21\uff0c\u4ece\u800c\u83b7\u53d6\u8be5 key \u5bf9\u5e94\u7684\u6570\u7ec4\u7d22\u5f15 index \u3002
index = hash(key) % capacity\n
\u968f\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5229\u7528 index \u5728\u54c8\u5e0c\u8868\u4e2d\u8bbf\u95ee\u5bf9\u5e94\u7684\u6876\uff0c\u4ece\u800c\u83b7\u53d6 value \u3002
\u8bbe\u6570\u7ec4\u957f\u5ea6 capacity = 100\u3001\u54c8\u5e0c\u7b97\u6cd5 hash(key) = key \uff0c\u6613\u5f97\u54c8\u5e0c\u51fd\u6570\u4e3a key % 100 \u3002\u56fe 6-2 \u4ee5 key \u5b66\u53f7\u548c value \u59d3\u540d\u4e3a\u4f8b\uff0c\u5c55\u793a\u4e86\u54c8\u5e0c\u51fd\u6570\u7684\u5de5\u4f5c\u539f\u7406\u3002
\u56fe 6-2 \u00a0 \u54c8\u5e0c\u51fd\u6570\u5de5\u4f5c\u539f\u7406
\u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u7b80\u5355\u54c8\u5e0c\u8868\u3002\u5176\u4e2d\uff0c\u6211\u4eec\u5c06 key \u548c value \u5c01\u88c5\u6210\u4e00\u4e2a\u7c7b Pair \uff0c\u4ee5\u8868\u793a\u952e\u503c\u5bf9\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_hash_map.pyclass Pair:\n \"\"\"\u952e\u503c\u5bf9\"\"\"\n\n def __init__(self, key: int, val: str):\n self.key = key\n self.val = val\n\nclass ArrayHashMap:\n \"\"\"\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n # \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n self.buckets: list[Pair | None] = [None] * 100\n\n def hash_func(self, key: int) -> int:\n \"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\n index = key % 100\n return index\n\n def get(self, key: int) -> str:\n \"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\n index: int = self.hash_func(key)\n pair: Pair = self.buckets[index]\n if pair is None:\n return None\n return pair.val\n\n def put(self, key: int, val: str):\n \"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n pair = Pair(key, val)\n index: int = self.hash_func(key)\n self.buckets[index] = pair\n\n def remove(self, key: int):\n \"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\n index: int = self.hash_func(key)\n # \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\n self.buckets[index] = None\n\n def entry_set(self) -> list[Pair]:\n \"\"\"\u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\"\"\"\n result: list[Pair] = []\n for pair in self.buckets:\n if pair is not None:\n result.append(pair)\n return result\n\n def key_set(self) -> list[int]:\n \"\"\"\u83b7\u53d6\u6240\u6709\u952e\"\"\"\n result = []\n for pair in self.buckets:\n if pair is not None:\n result.append(pair.key)\n return result\n\n def value_set(self) -> list[str]:\n \"\"\"\u83b7\u53d6\u6240\u6709\u503c\"\"\"\n result = []\n for pair in self.buckets:\n if pair is not None:\n result.append(pair.val)\n return result\n\n def print(self):\n \"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\n for pair in self.buckets:\n if pair is not None:\n print(pair.key, \"->\", pair.val)\n
array_hash_map.cpp/* \u952e\u503c\u5bf9 */\nstruct Pair {\n public:\n int key;\n string val;\n Pair(int key, string val) {\n this->key = key;\n this->val = val;\n }\n};\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private:\n vector<Pair *> buckets;\n\n public:\n ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets = vector<Pair *>(100);\n }\n\n ~ArrayHashMap() {\n // \u91ca\u653e\u5185\u5b58\n for (const auto &bucket : buckets) {\n delete bucket;\n }\n buckets.clear();\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int hashFunc(int key) {\n int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n string get(int key) {\n int index = hashFunc(key);\n Pair *pair = buckets[index];\n if (pair == nullptr)\n return \"\";\n return pair->val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, string val) {\n Pair *pair = new Pair(key, val);\n int index = hashFunc(key);\n buckets[index] = pair;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n int index = hashFunc(key);\n // \u91ca\u653e\u5185\u5b58\u5e76\u7f6e\u4e3a nullptr\n delete buckets[index];\n buckets[index] = nullptr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n vector<Pair *> pairSet() {\n vector<Pair *> pairSet;\n for (Pair *pair : buckets) {\n if (pair != nullptr) {\n pairSet.push_back(pair);\n }\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n vector<int> keySet() {\n vector<int> keySet;\n for (Pair *pair : buckets) {\n if (pair != nullptr) {\n keySet.push_back(pair->key);\n }\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n vector<string> valueSet() {\n vector<string> valueSet;\n for (Pair *pair : buckets) {\n if (pair != nullptr) {\n valueSet.push_back(pair->val);\n }\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void print() {\n for (Pair *kv : pairSet()) {\n cout << kv->key << \" -> \" << kv->val << endl;\n }\n }\n};\n
array_hash_map.java/* \u952e\u503c\u5bf9 */\nclass Pair {\n public int key;\n public String val;\n\n public Pair(int key, String val) {\n this.key = key;\n this.val = val;\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private List<Pair> buckets;\n\n public ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets = new ArrayList<>();\n for (int i = 0; i < 100; i++) {\n buckets.add(null);\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private int hashFunc(int key) {\n int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public String get(int key) {\n int index = hashFunc(key);\n Pair pair = buckets.get(index);\n if (pair == null)\n return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void put(int key, String val) {\n Pair pair = new Pair(key, val);\n int index = hashFunc(key);\n buckets.set(index, pair);\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void remove(int key) {\n int index = hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n buckets.set(index, null);\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n public List<Pair> pairSet() {\n List<Pair> pairSet = new ArrayList<>();\n for (Pair pair : buckets) {\n if (pair != null)\n pairSet.add(pair);\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n public List<Integer> keySet() {\n List<Integer> keySet = new ArrayList<>();\n for (Pair pair : buckets) {\n if (pair != null)\n keySet.add(pair.key);\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n public List<String> valueSet() {\n List<String> valueSet = new ArrayList<>();\n for (Pair pair : buckets) {\n if (pair != null)\n valueSet.add(pair.val);\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void print() {\n for (Pair kv : pairSet()) {\n System.out.println(kv.key + \" -> \" + kv.val);\n }\n }\n}\n
array_hash_map.cs/* \u952e\u503c\u5bf9 int->string */\nclass Pair(int key, string val) {\n public int key = key;\n public string val = val;\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n List<Pair?> buckets;\n public ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets = [];\n for (int i = 0; i < 100; i++) {\n buckets.Add(null);\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int HashFunc(int key) {\n int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public string? Get(int key) {\n int index = HashFunc(key);\n Pair? pair = buckets[index];\n if (pair == null) return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public void Put(int key, string val) {\n Pair pair = new(key, val);\n int index = HashFunc(key);\n buckets[index] = pair;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public void Remove(int key) {\n int index = HashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n public List<Pair> PairSet() {\n List<Pair> pairSet = [];\n foreach (Pair? pair in buckets) {\n if (pair != null)\n pairSet.Add(pair);\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n public List<int> KeySet() {\n List<int> keySet = [];\n foreach (Pair? pair in buckets) {\n if (pair != null)\n keySet.Add(pair.key);\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n public List<string> ValueSet() {\n List<string> valueSet = [];\n foreach (Pair? pair in buckets) {\n if (pair != null)\n valueSet.Add(pair.val);\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public void Print() {\n foreach (Pair kv in PairSet()) {\n Console.WriteLine(kv.key + \" -> \" + kv.val);\n }\n }\n}\n
array_hash_map.go/* \u952e\u503c\u5bf9 */\ntype pair struct {\n key int\n val string\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\ntype arrayHashMap struct {\n buckets []*pair\n}\n\n/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nfunc newArrayHashMap() *arrayHashMap {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n buckets := make([]*pair, 100)\n return &arrayHashMap{buckets: buckets}\n}\n\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (a *arrayHashMap) hashFunc(key int) int {\n index := key % 100\n return index\n}\n\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (a *arrayHashMap) get(key int) string {\n index := a.hashFunc(key)\n pair := a.buckets[index]\n if pair == nil {\n return \"Not Found\"\n }\n return pair.val\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (a *arrayHashMap) put(key int, val string) {\n pair := &pair{key: key, val: val}\n index := a.hashFunc(key)\n a.buckets[index] = pair\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (a *arrayHashMap) remove(key int) {\n index := a.hashFunc(key)\n // \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\n a.buckets[index] = nil\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e\u5bf9 */\nfunc (a *arrayHashMap) pairSet() []*pair {\n var pairs []*pair\n for _, pair := range a.buckets {\n if pair != nil {\n pairs = append(pairs, pair)\n }\n }\n return pairs\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e */\nfunc (a *arrayHashMap) keySet() []int {\n var keys []int\n for _, pair := range a.buckets {\n if pair != nil {\n keys = append(keys, pair.key)\n }\n }\n return keys\n}\n\n/* \u83b7\u53d6\u6240\u6709\u503c */\nfunc (a *arrayHashMap) valueSet() []string {\n var values []string\n for _, pair := range a.buckets {\n if pair != nil {\n values = append(values, pair.val)\n }\n }\n return values\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (a *arrayHashMap) print() {\n for _, pair := range a.buckets {\n if pair != nil {\n fmt.Println(pair.key, \"->\", pair.val)\n }\n }\n}\n
array_hash_map.swift/* \u952e\u503c\u5bf9 */\nclass Pair: Equatable {\n public var key: Int\n public var val: String\n\n public init(key: Int, val: String) {\n self.key = key\n self.val = val\n }\n\n public static func == (lhs: Pair, rhs: Pair) -> Bool {\n lhs.key == rhs.key && lhs.val == rhs.val\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private var buckets: [Pair?] = []\n\n init() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n for _ in 0 ..< 100 {\n buckets.append(nil)\n }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private func hashFunc(key: Int) -> Int {\n let index = key % 100\n return index\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n func get(key: Int) -> String? {\n let index = hashFunc(key: key)\n let pair = buckets[index]\n return pair?.val\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n func put(key: Int, val: String) {\n let pair = Pair(key: key, val: val)\n let index = hashFunc(key: key)\n buckets[index] = pair\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n func remove(key: Int) {\n let index = hashFunc(key: key)\n // \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\n buckets[index] = nil\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n func pairSet() -> [Pair] {\n var pairSet: [Pair] = []\n for pair in buckets {\n if let pair = pair {\n pairSet.append(pair)\n }\n }\n return pairSet\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n func keySet() -> [Int] {\n var keySet: [Int] = []\n for pair in buckets {\n if let pair = pair {\n keySet.append(pair.key)\n }\n }\n return keySet\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n func valueSet() -> [String] {\n var valueSet: [String] = []\n for pair in buckets {\n if let pair = pair {\n valueSet.append(pair.val)\n }\n }\n return valueSet\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n func print() {\n for pair in pairSet() {\n Swift.print(\"\\(pair.key) -> \\(pair.val)\")\n }\n }\n}\n
array_hash_map.js/* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\n constructor(key, val) {\n this.key = key;\n this.val = val;\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n #buckets;\n constructor() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n this.#buckets = new Array(100).fill(null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n #hashFunc(key) {\n return key % 100;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n get(key) {\n let index = this.#hashFunc(key);\n let pair = this.#buckets[index];\n if (pair === null) return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n set(key, val) {\n let index = this.#hashFunc(key);\n this.#buckets[index] = new Pair(key, val);\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n delete(key) {\n let index = this.#hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n this.#buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n entries() {\n let arr = [];\n for (let i = 0; i < this.#buckets.length; i++) {\n if (this.#buckets[i]) {\n arr.push(this.#buckets[i]);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n keys() {\n let arr = [];\n for (let i = 0; i < this.#buckets.length; i++) {\n if (this.#buckets[i]) {\n arr.push(this.#buckets[i].key);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n values() {\n let arr = [];\n for (let i = 0; i < this.#buckets.length; i++) {\n if (this.#buckets[i]) {\n arr.push(this.#buckets[i].val);\n }\n }\n return arr;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n print() {\n let pairSet = this.entries();\n for (const pair of pairSet) {\n console.info(`${pair.key} -> ${pair.val}`);\n }\n }\n}\n
array_hash_map.ts/* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\n public key: number;\n public val: string;\n\n constructor(key: number, val: string) {\n this.key = key;\n this.val = val;\n }\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n private readonly buckets: (Pair | null)[];\n\n constructor() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n this.buckets = new Array(100).fill(null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n private hashFunc(key: number): number {\n return key % 100;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n public get(key: number): string | null {\n let index = this.hashFunc(key);\n let pair = this.buckets[index];\n if (pair === null) return null;\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n public set(key: number, val: string) {\n let index = this.hashFunc(key);\n this.buckets[index] = new Pair(key, val);\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n public delete(key: number) {\n let index = this.hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n this.buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n public entries(): (Pair | null)[] {\n let arr: (Pair | null)[] = [];\n for (let i = 0; i < this.buckets.length; i++) {\n if (this.buckets[i]) {\n arr.push(this.buckets[i]);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n public keys(): (number | undefined)[] {\n let arr: (number | undefined)[] = [];\n for (let i = 0; i < this.buckets.length; i++) {\n if (this.buckets[i]) {\n arr.push(this.buckets[i].key);\n }\n }\n return arr;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n public values(): (string | undefined)[] {\n let arr: (string | undefined)[] = [];\n for (let i = 0; i < this.buckets.length; i++) {\n if (this.buckets[i]) {\n arr.push(this.buckets[i].val);\n }\n }\n return arr;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n public print() {\n let pairSet = this.entries();\n for (const pair of pairSet) {\n console.info(`${pair.key} -> ${pair.val}`);\n }\n }\n}\n
array_hash_map.dart/* \u952e\u503c\u5bf9 */\nclass Pair {\n int key;\n String val;\n Pair(this.key, this.val);\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n late List<Pair?> _buckets;\n\n ArrayHashMap() {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n _buckets = List.filled(100, null);\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n int _hashFunc(int key) {\n final int index = key % 100;\n return index;\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n String? get(int key) {\n final int index = _hashFunc(key);\n final Pair? pair = _buckets[index];\n if (pair == null) {\n return null;\n }\n return pair.val;\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n void put(int key, String val) {\n final Pair pair = Pair(key, val);\n final int index = _hashFunc(key);\n _buckets[index] = pair;\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n void remove(int key) {\n final int index = _hashFunc(key);\n _buckets[index] = null;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n List<Pair> pairSet() {\n List<Pair> pairSet = [];\n for (final Pair? pair in _buckets) {\n if (pair != null) {\n pairSet.add(pair);\n }\n }\n return pairSet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n List<int> keySet() {\n List<int> keySet = [];\n for (final Pair? pair in _buckets) {\n if (pair != null) {\n keySet.add(pair.key);\n }\n }\n return keySet;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n List<String> values() {\n List<String> valueSet = [];\n for (final Pair? pair in _buckets) {\n if (pair != null) {\n valueSet.add(pair.val);\n }\n }\n return valueSet;\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n void printHashMap() {\n for (final Pair kv in pairSet()) {\n print(\"${kv.key} -> ${kv.val}\");\n }\n }\n}\n
array_hash_map.rs/* \u952e\u503c\u5bf9 */\n#[derive(Debug, Clone, PartialEq)]\npub struct Pair {\n pub key: i32,\n pub val: String,\n}\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\npub struct ArrayHashMap {\n buckets: Vec<Option<Pair>>\n}\n\nimpl ArrayHashMap {\n pub fn new() -> ArrayHashMap {\n // \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n Self { buckets: vec![None; 100] }\n }\n\n /* \u54c8\u5e0c\u51fd\u6570 */\n fn hash_func(&self, key: i32) -> usize {\n key as usize % 100\n }\n\n /* \u67e5\u8be2\u64cd\u4f5c */\n pub fn get(&self, key: i32) -> Option<&String> {\n let index = self.hash_func(key);\n self.buckets[index].as_ref().map(|pair| &pair.val)\n }\n\n /* \u6dfb\u52a0\u64cd\u4f5c */\n pub fn put(&mut self, key: i32, val: &str) {\n let index = self.hash_func(key);\n self.buckets[index] = Some(Pair {\n key,\n val: val.to_string(),\n });\n }\n\n /* \u5220\u9664\u64cd\u4f5c */\n pub fn remove(&mut self, key: i32) {\n let index = self.hash_func(key);\n // \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\n self.buckets[index] = None;\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\n pub fn entry_set(&self) -> Vec<&Pair> {\n self.buckets.iter().filter_map(|pair| pair.as_ref()).collect()\n }\n\n /* \u83b7\u53d6\u6240\u6709\u952e */\n pub fn key_set(&self) -> Vec<&i32> {\n self.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.key)).collect()\n }\n\n /* \u83b7\u53d6\u6240\u6709\u503c */\n pub fn value_set(&self) -> Vec<&String> {\n self.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.val)).collect()\n }\n\n /* \u6253\u5370\u54c8\u5e0c\u8868 */\n pub fn print(&self) {\n for pair in self.entry_set() {\n println!(\"{} -> {}\", pair.key, pair.val);\n }\n }\n}\n
array_hash_map.c/* \u952e\u503c\u5bf9 int->string */\ntypedef struct {\n int key;\n char *val;\n} Pair;\n\n/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\ntypedef struct {\n Pair *buckets[HASHTABLE_CAPACITY];\n} ArrayHashMap;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayHashMap *newArrayHashMap() {\n ArrayHashMap *hmap = malloc(sizeof(ArrayHashMap));\n return hmap;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayHashMap(ArrayHashMap *hmap) {\n for (int i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n free(hmap->buckets[i]->val);\n free(hmap->buckets[i]);\n }\n }\n free(hmap);\n}\n\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(ArrayHashMap *hmap, const int key, const char *val) {\n Pair *Pair = malloc(sizeof(Pair));\n Pair->key = key;\n Pair->val = malloc(strlen(val) + 1);\n strcpy(Pair->val, val);\n\n int index = hashFunc(key);\n hmap->buckets[index] = Pair;\n}\n\n/* \u5220\u9664\u64cd\u4f5c */\nvoid removeItem(ArrayHashMap *hmap, const int key) {\n int index = hashFunc(key);\n free(hmap->buckets[index]->val);\n free(hmap->buckets[index]);\n hmap->buckets[index] = NULL;\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nvoid pairSet(ArrayHashMap *hmap, MapSet *set) {\n Pair *entries;\n int i = 0, index = 0;\n int total = 0;\n /* \u7edf\u8ba1\u6709\u6548\u952e\u503c\u5bf9\u6570\u91cf */\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n total++;\n }\n }\n entries = malloc(sizeof(Pair) * total);\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n entries[index].key = hmap->buckets[i]->key;\n entries[index].val = malloc(strlen(hmap->buckets[i]->val) + 1);\n strcpy(entries[index].val, hmap->buckets[i]->val);\n index++;\n }\n }\n set->set = entries;\n set->len = total;\n}\n\n/* \u83b7\u53d6\u6240\u6709\u952e */\nvoid keySet(ArrayHashMap *hmap, MapSet *set) {\n int *keys;\n int i = 0, index = 0;\n int total = 0;\n /* \u7edf\u8ba1\u6709\u6548\u952e\u503c\u5bf9\u6570\u91cf */\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n total++;\n }\n }\n keys = malloc(total * sizeof(int));\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n keys[index] = hmap->buckets[i]->key;\n index++;\n }\n }\n set->set = keys;\n set->len = total;\n}\n\n/* \u83b7\u53d6\u6240\u6709\u503c */\nvoid valueSet(ArrayHashMap *hmap, MapSet *set) {\n char **vals;\n int i = 0, index = 0;\n int total = 0;\n /* \u7edf\u8ba1\u6709\u6548\u952e\u503c\u5bf9\u6570\u91cf */\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n total++;\n }\n }\n vals = malloc(total * sizeof(char *));\n for (i = 0; i < HASHTABLE_CAPACITY; i++) {\n if (hmap->buckets[i] != NULL) {\n vals[index] = hmap->buckets[i]->val;\n index++;\n }\n }\n set->set = vals;\n set->len = total;\n}\n\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print(ArrayHashMap *hmap) {\n int i;\n MapSet set;\n pairSet(hmap, &set);\n Pair *entries = (Pair *)set.set;\n for (i = 0; i < set.len; i++) {\n printf(\"%d -> %s\\n\", entries[i].key, entries[i].val);\n }\n free(set.set);\n}\n
array_hash_map.zig// \u952e\u503c\u5bf9\nconst Pair = struct {\n key: usize = undefined,\n val: []const u8 = undefined,\n\n pub fn init(key: usize, val: []const u8) Pair {\n return Pair {\n .key = key,\n .val = val,\n };\n }\n};\n\n// \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\nfn ArrayHashMap(comptime T: type) type {\n return struct {\n bucket: ?std.ArrayList(?T) = null,\n mem_allocator: std.mem.Allocator = undefined,\n\n const Self = @This();\n\n // \u6784\u9020\u51fd\u6570\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n self.mem_allocator = allocator;\n // \u521d\u59cb\u5316\u4e00\u4e2a\u957f\u5ea6\u4e3a 100 \u7684\u6876\uff08\u6570\u7ec4\uff09\n self.bucket = std.ArrayList(?T).init(self.mem_allocator);\n var i: i32 = 0;\n while (i < 100) : (i += 1) {\n try self.bucket.?.append(null);\n }\n }\n\n // \u6790\u6784\u51fd\u6570\n pub fn deinit(self: *Self) void {\n if (self.bucket != null) self.bucket.?.deinit();\n }\n\n // \u54c8\u5e0c\u51fd\u6570\n fn hashFunc(key: usize) usize {\n var index = key % 100;\n return index;\n }\n\n // \u67e5\u8be2\u64cd\u4f5c\n pub fn get(self: *Self, key: usize) []const u8 {\n var index = hashFunc(key);\n var pair = self.bucket.?.items[index];\n return pair.?.val;\n }\n\n // \u6dfb\u52a0\u64cd\u4f5c\n pub fn put(self: *Self, key: usize, val: []const u8) !void {\n var pair = Pair.init(key, val);\n var index = hashFunc(key);\n self.bucket.?.items[index] = pair;\n }\n\n // \u5220\u9664\u64cd\u4f5c\n pub fn remove(self: *Self, key: usize) !void {\n var index = hashFunc(key);\n // \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\n self.bucket.?.items[index] = null;\n } \n\n // \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\n pub fn pairSet(self: *Self) !std.ArrayList(T) {\n var entry_set = std.ArrayList(T).init(self.mem_allocator);\n for (self.bucket.?.items) |item| {\n if (item == null) continue;\n try entry_set.append(item.?);\n }\n return entry_set;\n } \n\n // \u83b7\u53d6\u6240\u6709\u952e\n pub fn keySet(self: *Self) !std.ArrayList(usize) {\n var key_set = std.ArrayList(usize).init(self.mem_allocator);\n for (self.bucket.?.items) |item| {\n if (item == null) continue;\n try key_set.append(item.?.key);\n }\n return key_set;\n } \n\n // \u83b7\u53d6\u6240\u6709\u503c\n pub fn valueSet(self: *Self) !std.ArrayList([]const u8) {\n var value_set = std.ArrayList([]const u8).init(self.mem_allocator);\n for (self.bucket.?.items) |item| {\n if (item == null) continue;\n try value_set.append(item.?.val);\n }\n return value_set;\n }\n\n // \u6253\u5370\u54c8\u5e0c\u8868\n pub fn print(self: *Self) !void {\n var entry_set = try self.pairSet();\n defer entry_set.deinit();\n for (entry_set.items) |item| {\n std.debug.print(\"{} -> {s}\\n\", .{item.key, item.val});\n }\n }\n };\n}\n
"},{"location":"chapter_hashing/hash_map/#613","title":"6.1.3 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u4e0e\u6269\u5bb9","text":"\u4ece\u672c\u8d28\u4e0a\u770b\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u6240\u6709 key \u6784\u6210\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u6570\u7ec4\u6240\u6709\u7d22\u5f15\u6784\u6210\u7684\u8f93\u51fa\u7a7a\u95f4\uff0c\u800c\u8f93\u5165\u7a7a\u95f4\u5f80\u5f80\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7406\u8bba\u4e0a\u4e00\u5b9a\u5b58\u5728\u201c\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u76f8\u540c\u8f93\u51fa\u201d\u7684\u60c5\u51b5\u3002
\u5bf9\u4e8e\u4e0a\u8ff0\u793a\u4f8b\u4e2d\u7684\u54c8\u5e0c\u51fd\u6570\uff0c\u5f53\u8f93\u5165\u7684 key \u540e\u4e24\u4f4d\u76f8\u540c\u65f6\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u51fa\u7ed3\u679c\u4e5f\u76f8\u540c\u3002\u4f8b\u5982\uff0c\u67e5\u8be2\u5b66\u53f7\u4e3a 12836 \u548c 20336 \u7684\u4e24\u4e2a\u5b66\u751f\u65f6\uff0c\u6211\u4eec\u5f97\u5230\uff1a
12836 % 100 = 36\n20336 % 100 = 36\n
\u5982\u56fe 6-3 \u6240\u793a\uff0c\u4e24\u4e2a\u5b66\u53f7\u6307\u5411\u4e86\u540c\u4e00\u4e2a\u59d3\u540d\uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002\u6211\u4eec\u5c06\u8fd9\u79cd\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u540c\u4e00\u8f93\u51fa\u7684\u60c5\u51b5\u79f0\u4e3a\u300c\u54c8\u5e0c\u51b2\u7a81 hash collision\u300d\u3002
\u56fe 6-3 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u793a\u4f8b
\u5bb9\u6613\u60f3\u5230\uff0c\u54c8\u5e0c\u8868\u5bb9\u91cf \\(n\\) \u8d8a\u5927\uff0c\u591a\u4e2a key \u88ab\u5206\u914d\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\uff0c\u51b2\u7a81\u5c31\u8d8a\u5c11\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002
\u5982\u56fe 6-4 \u6240\u793a\uff0c\u6269\u5bb9\u524d\u952e\u503c\u5bf9 (136, A) \u548c (236, D) \u53d1\u751f\u51b2\u7a81\uff0c\u6269\u5bb9\u540e\u51b2\u7a81\u6d88\u5931\u3002
\u56fe 6-4 \u00a0 \u54c8\u5e0c\u8868\u6269\u5bb9
\u7c7b\u4f3c\u4e8e\u6570\u7ec4\u6269\u5bb9\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u5c06\u6240\u6709\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u8fc1\u79fb\u81f3\u65b0\u54c8\u5e0c\u8868\uff0c\u975e\u5e38\u8017\u65f6\uff1b\u5e76\u4e14\u7531\u4e8e\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u6539\u53d8\uff0c\u6211\u4eec\u9700\u8981\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u6765\u91cd\u65b0\u8ba1\u7b97\u6240\u6709\u952e\u503c\u5bf9\u7684\u5b58\u50a8\u4f4d\u7f6e\uff0c\u8fd9\u8fdb\u4e00\u6b65\u589e\u52a0\u4e86\u6269\u5bb9\u8fc7\u7a0b\u7684\u8ba1\u7b97\u5f00\u9500\u3002\u4e3a\u6b64\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u9884\u7559\u8db3\u591f\u5927\u7684\u54c8\u5e0c\u8868\u5bb9\u91cf\uff0c\u9632\u6b62\u9891\u7e41\u6269\u5bb9\u3002
\u300c\u8d1f\u8f7d\u56e0\u5b50 load factor\u300d\u662f\u54c8\u5e0c\u8868\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5\uff0c\u5176\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u7684\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u7528\u4e8e\u8861\u91cf\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u4e5f\u5e38\u4f5c\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u89e6\u53d1\u6761\u4ef6\u3002\u4f8b\u5982\u5728 Java \u4e2d\uff0c\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(0.75\\) \u65f6\uff0c\u7cfb\u7edf\u4f1a\u5c06\u54c8\u5e0c\u8868\u6269\u5bb9\u81f3\u539f\u5148\u7684 \\(2\\) \u500d\u3002
"},{"location":"chapter_hashing/summary/","title":"6.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_hashing/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u8f93\u5165
key \uff0c\u54c8\u5e0c\u8868\u80fd\u591f\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u67e5\u8be2\u5230 value \uff0c\u6548\u7387\u975e\u5e38\u9ad8\u3002 - \u5e38\u89c1\u7684\u54c8\u5e0c\u8868\u64cd\u4f5c\u5305\u62ec\u67e5\u8be2\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u3001\u5220\u9664\u952e\u503c\u5bf9\u548c\u904d\u5386\u54c8\u5e0c\u8868\u7b49\u3002
- \u54c8\u5e0c\u51fd\u6570\u5c06
key \u6620\u5c04\u4e3a\u6570\u7ec4\u7d22\u5f15\uff0c\u4ece\u800c\u8bbf\u95ee\u5bf9\u5e94\u6876\u5e76\u83b7\u53d6 value \u3002 - \u4e24\u4e2a\u4e0d\u540c\u7684
key \u53ef\u80fd\u5728\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u540e\u5f97\u5230\u76f8\u540c\u7684\u6570\u7ec4\u7d22\u5f15\uff0c\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u51fa\u9519\uff0c\u8fd9\u79cd\u73b0\u8c61\u88ab\u79f0\u4e3a\u54c8\u5e0c\u51b2\u7a81\u3002 - \u54c8\u5e0c\u8868\u5bb9\u91cf\u8d8a\u5927\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002\u56e0\u6b64\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\u3002\u4e0e\u6570\u7ec4\u6269\u5bb9\u7c7b\u4f3c\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u64cd\u4f5c\u7684\u5f00\u9500\u5f88\u5927\u3002
- \u8d1f\u8f7d\u56e0\u5b50\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u4e2d\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u53cd\u6620\u4e86\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u5e38\u7528\u4f5c\u89e6\u53d1\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u6761\u4ef6\u3002
- \u94fe\u5f0f\u5730\u5740\u901a\u8fc7\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u5316\u4e3a\u94fe\u8868\uff0c\u5c06\u6240\u6709\u51b2\u7a81\u5143\u7d20\u5b58\u50a8\u5728\u540c\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002\u7136\u800c\uff0c\u94fe\u8868\u8fc7\u957f\u4f1a\u964d\u4f4e\u67e5\u8be2\u6548\u7387\uff0c\u53ef\u4ee5\u901a\u8fc7\u8fdb\u4e00\u6b65\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6765\u63d0\u9ad8\u6548\u7387\u3002
- \u5f00\u653e\u5bfb\u5740\u901a\u8fc7\u591a\u6b21\u63a2\u6d4b\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\u3002\u7ebf\u6027\u63a2\u6d4b\u4f7f\u7528\u56fa\u5b9a\u6b65\u957f\uff0c\u7f3a\u70b9\u662f\u4e0d\u80fd\u5220\u9664\u5143\u7d20\uff0c\u4e14\u5bb9\u6613\u4ea7\u751f\u805a\u96c6\u3002\u591a\u6b21\u54c8\u5e0c\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u8fdb\u884c\u63a2\u6d4b\uff0c\u76f8\u8f83\u7ebf\u6027\u63a2\u6d4b\u66f4\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u589e\u52a0\u4e86\u8ba1\u7b97\u91cf\u3002
- \u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u91c7\u53d6\u4e86\u4e0d\u540c\u7684\u54c8\u5e0c\u8868\u5b9e\u73b0\u3002\u4f8b\u5982\uff0cJava \u7684
HashMap \u4f7f\u7528\u94fe\u5f0f\u5730\u5740\uff0c\u800c Python \u7684 Dict \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002 - \u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5e0c\u671b\u54c8\u5e0c\u7b97\u6cd5\u5177\u6709\u786e\u5b9a\u6027\u3001\u9ad8\u6548\u7387\u548c\u5747\u5300\u5206\u5e03\u7684\u7279\u70b9\u3002\u5728\u5bc6\u7801\u5b66\u4e2d\uff0c\u54c8\u5e0c\u7b97\u6cd5\u8fd8\u5e94\u8be5\u5177\u5907\u6297\u78b0\u649e\u6027\u548c\u96ea\u5d29\u6548\u5e94\u3002
- \u54c8\u5e0c\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u5747\u5300\u5206\u5e03\uff0c\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002
- \u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5\u5305\u62ec MD5\u3001SHA-1\u3001SHA-2 \u548c SHA-3 \u7b49\u3002MD5 \u5e38\u7528\u4e8e\u6821\u9a8c\u6587\u4ef6\u5b8c\u6574\u6027\uff0cSHA-2 \u5e38\u7528\u4e8e\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u3002
- \u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u662f\u53ef\u54c8\u5e0c\u7684\u3002
"},{"location":"chapter_hashing/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u662f \\(O(n)\\) \uff1f
\u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u9000\u5316\u81f3 \\(O(n)\\) \u3002\u5f53\u54c8\u5e0c\u51fd\u6570\u8bbe\u8ba1\u5f97\u6bd4\u8f83\u597d\u3001\u5bb9\u91cf\u8bbe\u7f6e\u6bd4\u8f83\u5408\u7406\u3001\u51b2\u7a81\u6bd4\u8f83\u5e73\u5747\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u6211\u4eec\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u54c8\u5e0c\u8868\u65f6\uff0c\u901a\u5e38\u8ba4\u4e3a\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002
\u4e3a\u4ec0\u4e48\u4e0d\u4f7f\u7528\u54c8\u5e0c\u51fd\u6570 \\(f(x) = x\\) \u5462\uff1f\u8fd9\u6837\u5c31\u4e0d\u4f1a\u6709\u51b2\u7a81\u4e86
\u5728 \\(f(x) = x\\) \u54c8\u5e0c\u51fd\u6570\u4e0b\uff0c\u6bcf\u4e2a\u5143\u7d20\u5bf9\u5e94\u552f\u4e00\u7684\u6876\u7d22\u5f15\uff0c\u8fd9\u4e0e\u6570\u7ec4\u7b49\u4ef7\u3002\u7136\u800c\uff0c\u8f93\u5165\u7a7a\u95f4\u901a\u5e38\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff08\u6570\u7ec4\u957f\u5ea6\uff09\uff0c\u56e0\u6b64\u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u54c8\u5e0c\u8868\u7684\u76ee\u6807\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u7a7a\u95f4\uff0c\u5e76\u63d0\u4f9b \\(O(1)\\) \u7684\u67e5\u8be2\u6548\u7387\u3002
\u54c8\u5e0c\u8868\u5e95\u5c42\u5b9e\u73b0\u662f\u6570\u7ec4\u3001\u94fe\u8868\u3001\u4e8c\u53c9\u6811\uff0c\u4f46\u4e3a\u4ec0\u4e48\u6548\u7387\u53ef\u4ee5\u6bd4\u5b83\u4eec\u66f4\u9ad8\u5462\uff1f
\u9996\u5148\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\uff0c\u4f46\u7a7a\u95f4\u6548\u7387\u53d8\u4f4e\u4e86\u3002\u54c8\u5e0c\u8868\u6709\u76f8\u5f53\u4e00\u90e8\u5206\u5185\u5b58\u672a\u4f7f\u7528\u3002
\u5176\u6b21\uff0c\u53ea\u662f\u5728\u7279\u5b9a\u4f7f\u7528\u573a\u666f\u4e0b\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\u4e86\u3002\u5982\u679c\u4e00\u4e2a\u529f\u80fd\u80fd\u591f\u5728\u76f8\u540c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u4f7f\u7528\u6570\u7ec4\u6216\u94fe\u8868\u5b9e\u73b0\uff0c\u90a3\u4e48\u901a\u5e38\u6bd4\u54c8\u5e0c\u8868\u66f4\u5feb\u3002\u8fd9\u662f\u56e0\u4e3a\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u9700\u8981\u5f00\u9500\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u7684\u5e38\u6570\u9879\u66f4\u5927\u3002
\u6700\u540e\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u80fd\u53d1\u751f\u52a3\u5316\u3002\u4f8b\u5982\u5728\u94fe\u5f0f\u5730\u5740\u4e2d\uff0c\u6211\u4eec\u91c7\u53d6\u5728\u94fe\u8868\u6216\u7ea2\u9ed1\u6811\u4e2d\u6267\u884c\u67e5\u627e\u64cd\u4f5c\uff0c\u4ecd\u7136\u6709\u9000\u5316\u81f3 \\(O(n)\\) \u65f6\u95f4\u7684\u98ce\u9669\u3002
\u591a\u6b21\u54c8\u5e0c\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\u5417\uff1f\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u7a7a\u95f4\u8fd8\u80fd\u518d\u6b21\u4f7f\u7528\u5417\uff1f
\u591a\u6b21\u54c8\u5e0c\u662f\u5f00\u653e\u5bfb\u5740\u7684\u4e00\u79cd\uff0c\u5f00\u653e\u5bfb\u5740\u6cd5\u90fd\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\uff0c\u9700\u8981\u901a\u8fc7\u6807\u8bb0\u5220\u9664\u3002\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u7a7a\u95f4\u53ef\u4ee5\u518d\u6b21\u4f7f\u7528\u3002\u5f53\u5c06\u65b0\u5143\u7d20\u63d2\u5165\u54c8\u5e0c\u8868\uff0c\u5e76\u4e14\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u4f4d\u7f6e\u65f6\uff0c\u8be5\u4f4d\u7f6e\u53ef\u4ee5\u88ab\u65b0\u5143\u7d20\u4f7f\u7528\u3002\u8fd9\u6837\u505a\u65e2\u80fd\u4fdd\u6301\u54c8\u5e0c\u8868\u7684\u63a2\u6d4b\u5e8f\u5217\u4e0d\u53d8\uff0c\u53c8\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u7684\u7a7a\u95f4\u4f7f\u7528\u7387\u3002
\u4e3a\u4ec0\u4e48\u5728\u7ebf\u6027\u63a2\u6d4b\u4e2d\uff0c\u67e5\u627e\u5143\u7d20\u7684\u65f6\u5019\u4f1a\u51fa\u73b0\u54c8\u5e0c\u51b2\u7a81\u5462\uff1f
\u67e5\u627e\u7684\u65f6\u5019\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u5bf9\u5e94\u7684\u6876\u548c\u952e\u503c\u5bf9\uff0c\u53d1\u73b0 key \u4e0d\u5339\u914d\uff0c\u8fd9\u5c31\u4ee3\u8868\u6709\u54c8\u5e0c\u51b2\u7a81\u3002\u56e0\u6b64\uff0c\u7ebf\u6027\u63a2\u6d4b\u6cd5\u4f1a\u6839\u636e\u9884\u5148\u8bbe\u5b9a\u7684\u6b65\u957f\u4f9d\u6b21\u5411\u4e0b\u67e5\u627e\uff0c\u76f4\u81f3\u627e\u5230\u6b63\u786e\u7684\u952e\u503c\u5bf9\u6216\u65e0\u6cd5\u627e\u5230\u8df3\u51fa\u4e3a\u6b62\u3002
\u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u6269\u5bb9\u80fd\u591f\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\uff1f
\u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d6\u6a21\uff08\u53d6\u4f59\uff09\uff0c\u8ba9\u8f93\u51fa\u503c\u843d\u5728\u6570\u7ec4\u7d22\u5f15\u8303\u56f4\u5185\uff1b\u5728\u6269\u5bb9\u540e\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d1\u751f\u53d8\u5316\uff0c\u800c key \u5bf9\u5e94\u7684\u7d22\u5f15\u4e5f\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002\u539f\u5148\u843d\u5728\u540c\u4e00\u4e2a\u6876\u7684\u591a\u4e2a key \uff0c\u5728\u6269\u5bb9\u540e\u53ef\u80fd\u4f1a\u88ab\u5206\u914d\u5230\u591a\u4e2a\u6876\u4e2d\uff0c\u4ece\u800c\u5b9e\u73b0\u54c8\u5e0c\u51b2\u7a81\u7684\u7f13\u89e3\u3002
"},{"location":"chapter_heap/","title":"\u7b2c 8 \u7ae0 \u00a0 \u5806","text":"Abstract
\u5806\u5c31\u50cf\u662f\u5c71\u5cb3\u5cf0\u5ce6\uff0c\u5c42\u53e0\u8d77\u4f0f\u3001\u5f62\u6001\u5404\u5f02\u3002
\u5ea7\u5ea7\u5c71\u5cf0\u9ad8\u4f4e\u9519\u843d\uff0c\u800c\u6700\u9ad8\u7684\u5c71\u5cf0\u603b\u662f\u6700\u5148\u6620\u5165\u773c\u5e18\u3002
"},{"location":"chapter_heap/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 8.1 \u00a0 \u5806
- 8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c
- 8.3 \u00a0 Top-k \u95ee\u9898
- 8.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_heap/build_heap/","title":"8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c","text":"\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u6765\u6784\u5efa\u4e00\u4e2a\u5806\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u88ab\u79f0\u4e3a\u201c\u5efa\u5806\u64cd\u4f5c\u201d\u3002
"},{"location":"chapter_heap/build_heap/#821","title":"8.2.1 \u00a0 \u501f\u52a9\u5165\u5806\u64cd\u4f5c\u5b9e\u73b0","text":"\u6211\u4eec\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u7a7a\u5806\uff0c\u7136\u540e\u904d\u5386\u5217\u8868\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e2a\u5143\u7d20\u6267\u884c\u201c\u5165\u5806\u64cd\u4f5c\u201d\uff0c\u5373\u5148\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u5806\u7684\u5c3e\u90e8\uff0c\u518d\u5bf9\u8be5\u5143\u7d20\u6267\u884c\u201c\u4ece\u5e95\u81f3\u9876\u201d\u5806\u5316\u3002
\u6bcf\u5f53\u4e00\u4e2a\u5143\u7d20\u5165\u5806\uff0c\u5806\u7684\u957f\u5ea6\u5c31\u52a0\u4e00\u3002\u7531\u4e8e\u8282\u70b9\u662f\u4ece\u9876\u5230\u5e95\u4f9d\u6b21\u88ab\u6dfb\u52a0\u8fdb\u4e8c\u53c9\u6811\u7684\uff0c\u56e0\u6b64\u5806\u662f\u201c\u81ea\u4e0a\u800c\u4e0b\u201d\u6784\u5efa\u7684\u3002
\u8bbe\u5143\u7d20\u6570\u91cf\u4e3a \\(n\\) \uff0c\u6bcf\u4e2a\u5143\u7d20\u7684\u5165\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(\\log{n})\\) \u65f6\u95f4\uff0c\u56e0\u6b64\u8be5\u5efa\u5806\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
"},{"location":"chapter_heap/build_heap/#822","title":"8.2.2 \u00a0 \u901a\u8fc7\u904d\u5386\u5806\u5316\u5b9e\u73b0","text":"\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u53ef\u4ee5\u5b9e\u73b0\u4e00\u79cd\u66f4\u4e3a\u9ad8\u6548\u7684\u5efa\u5806\u65b9\u6cd5\uff0c\u5171\u5206\u4e3a\u4e24\u6b65\u3002
- \u5c06\u5217\u8868\u6240\u6709\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u5730\u6dfb\u52a0\u5230\u5806\u4e2d\uff0c\u6b64\u65f6\u5806\u7684\u6027\u8d28\u5c1a\u672a\u5f97\u5230\u6ee1\u8db3\u3002
- \u5012\u5e8f\u904d\u5386\u5806\uff08\u5c42\u5e8f\u904d\u5386\u7684\u5012\u5e8f\uff09\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e2a\u975e\u53f6\u8282\u70b9\u6267\u884c\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u3002
\u6bcf\u5f53\u5806\u5316\u4e00\u4e2a\u8282\u70b9\u540e\uff0c\u4ee5\u8be5\u8282\u70b9\u4e3a\u6839\u8282\u70b9\u7684\u5b50\u6811\u5c31\u5f62\u6210\u4e00\u4e2a\u5408\u6cd5\u7684\u5b50\u5806\u3002\u800c\u7531\u4e8e\u662f\u5012\u5e8f\u904d\u5386\uff0c\u56e0\u6b64\u5806\u662f\u201c\u81ea\u4e0b\u800c\u4e0a\u201d\u6784\u5efa\u7684\u3002
\u4e4b\u6240\u4ee5\u9009\u62e9\u5012\u5e8f\u904d\u5386\uff0c\u662f\u56e0\u4e3a\u8fd9\u6837\u80fd\u591f\u4fdd\u8bc1\u5f53\u524d\u8282\u70b9\u4e4b\u4e0b\u7684\u5b50\u6811\u5df2\u7ecf\u662f\u5408\u6cd5\u7684\u5b50\u5806\uff0c\u8fd9\u6837\u5806\u5316\u5f53\u524d\u8282\u70b9\u624d\u662f\u6709\u6548\u7684\u3002
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u7531\u4e8e\u53f6\u8282\u70b9\u6ca1\u6709\u5b50\u8282\u70b9\uff0c\u56e0\u6b64\u5b83\u4eec\u5929\u7136\u5c31\u662f\u5408\u6cd5\u7684\u5b50\u5806\uff0c\u65e0\u987b\u5806\u5316\u3002\u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff0c\u6700\u540e\u4e00\u4e2a\u975e\u53f6\u8282\u70b9\u662f\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u7684\u7236\u8282\u70b9\uff0c\u6211\u4eec\u4ece\u5b83\u5f00\u59cb\u5012\u5e8f\u904d\u5386\u5e76\u6267\u884c\u5806\u5316\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef __init__(self, nums: list[int]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\"\"\"\n # \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n self.max_heap = nums\n # \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in range(self.parent(self.size() - 1), -1, -1):\n self.sift_down(i)\n
my_heap.cpp/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(vector<int> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = nums;\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = parent(size() - 1); i >= 0; i--) {\n siftDown(i);\n }\n}\n
my_heap.java/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<Integer> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = new ArrayList<>(nums);\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = parent(size() - 1); i >= 0; i--) {\n siftDown(i);\n }\n}\n
my_heap.cs/* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(IEnumerable<int> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = new List<int>(nums);\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n var size = Parent(this.Size() - 1);\n for (int i = size; i >= 0; i--) {\n SiftDown(i);\n }\n}\n
my_heap.go/* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nfunc newMaxHeap(nums []any) *maxHeap {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n h := &maxHeap{data: nums}\n for i := h.parent(len(h.data) - 1); i >= 0; i-- {\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n h.siftDown(i)\n }\n return h\n}\n
my_heap.swift/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\ninit(nums: [Int]) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n maxHeap = nums\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in stride(from: parent(i: size() - 1), through: 0, by: -1) {\n siftDown(i: i)\n }\n}\n
my_heap.js/* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n this.#maxHeap = nums === undefined ? [] : [...nums];\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = this.#parent(this.size() - 1); i >= 0; i--) {\n this.#siftDown(i);\n }\n}\n
my_heap.ts/* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums?: number[]) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n this.maxHeap = nums === undefined ? [] : [...nums];\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = this.parent(this.size() - 1); i >= 0; i--) {\n this.siftDown(i);\n }\n}\n
my_heap.dart/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<int> nums) {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n _maxHeap = nums;\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = _parent(size() - 1); i >= 0; i--) {\n siftDown(i);\n }\n}\n
my_heap.rs/* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nfn new(nums: Vec<i32>) -> Self {\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n let mut heap = MaxHeap { max_heap: nums };\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in (0..=Self::parent(heap.size() - 1)).rev() {\n heap.sift_down(i);\n }\n heap\n}\n
my_heap.c/* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nMaxHeap *newMaxHeap(int nums[], int size) {\n // \u6240\u6709\u5143\u7d20\u5165\u5806\n MaxHeap *maxHeap = (MaxHeap *)malloc(sizeof(MaxHeap));\n maxHeap->size = size;\n memcpy(maxHeap->data, nums, size * sizeof(int));\n for (int i = parent(maxHeap, size - 1); i >= 0; i--) {\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n siftDown(maxHeap, i);\n }\n return maxHeap;\n}\n
my_heap.zig// \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\nfn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void {\n if (self.max_heap != null) return;\n self.max_heap = std.ArrayList(T).init(allocator);\n // \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n try self.max_heap.?.appendSlice(nums);\n // \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n var i: usize = parent(self.size() - 1) + 1;\n while (i > 0) : (i -= 1) {\n try self.siftDown(i - 1);\n }\n}\n
"},{"location":"chapter_heap/build_heap/#823","title":"8.2.3 \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"\u4e0b\u9762\uff0c\u6211\u4eec\u6765\u5c1d\u8bd5\u63a8\u7b97\u7b2c\u4e8c\u79cd\u5efa\u5806\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002
- \u5047\u8bbe\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u5219\u53f6\u8282\u70b9\u6570\u91cf\u4e3a \\((n + 1) / 2\\) \uff0c\u5176\u4e2d \\(/\\) \u4e3a\u5411\u4e0b\u6574\u9664\u3002\u56e0\u6b64\u9700\u8981\u5806\u5316\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\((n - 1) / 2\\) \u3002
- \u5728\u4ece\u9876\u81f3\u5e95\u5806\u5316\u7684\u8fc7\u7a0b\u4e2d\uff0c\u6bcf\u4e2a\u8282\u70b9\u6700\u591a\u5806\u5316\u5230\u53f6\u8282\u70b9\uff0c\u56e0\u6b64\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u4e3a\u4e8c\u53c9\u6811\u9ad8\u5ea6 \\(\\log n\\) \u3002
\u5c06\u4e0a\u8ff0\u4e24\u8005\u76f8\u4e58\uff0c\u53ef\u5f97\u5230\u5efa\u5806\u8fc7\u7a0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u4f46\u8fd9\u4e2a\u4f30\u7b97\u7ed3\u679c\u5e76\u4e0d\u51c6\u786e\uff0c\u56e0\u4e3a\u6211\u4eec\u6ca1\u6709\u8003\u8651\u5230\u4e8c\u53c9\u6811\u5e95\u5c42\u8282\u70b9\u6570\u91cf\u8fdc\u591a\u4e8e\u9876\u5c42\u8282\u70b9\u7684\u6027\u8d28\u3002
\u63a5\u4e0b\u6765\u6211\u4eec\u6765\u8fdb\u884c\u66f4\u4e3a\u51c6\u786e\u7684\u8ba1\u7b97\u3002\u4e3a\u4e86\u964d\u4f4e\u8ba1\u7b97\u96be\u5ea6\uff0c\u5047\u8bbe\u7ed9\u5b9a\u4e00\u4e2a\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \u3001\u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u201c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u201d\uff0c\u8be5\u5047\u8bbe\u4e0d\u4f1a\u5f71\u54cd\u8ba1\u7b97\u7ed3\u679c\u7684\u6b63\u786e\u6027\u3002
\u56fe 8-5 \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u5404\u5c42\u8282\u70b9\u6570\u91cf
\u5982\u56fe 8-5 \u6240\u793a\uff0c\u8282\u70b9\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u7684\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u7b49\u4e8e\u8be5\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u800c\u8be5\u8ddd\u79bb\u6b63\u662f\u201c\u8282\u70b9\u9ad8\u5ea6\u201d\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u5bf9\u5404\u5c42\u7684\u201c\u8282\u70b9\u6570\u91cf \\(\\times\\) \u8282\u70b9\u9ad8\u5ea6\u201d\u6c42\u548c\uff0c\u5f97\u5230\u6240\u6709\u8282\u70b9\u7684\u5806\u5316\u8fed\u4ee3\u6b21\u6570\u7684\u603b\u548c\u3002
\\[ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \\dots + 2^{(h-1)}\\times1 \\] \u5316\u7b80\u4e0a\u5f0f\u9700\u8981\u501f\u52a9\u4e2d\u5b66\u7684\u6570\u5217\u77e5\u8bc6\uff0c\u5c06\u5bf9 \\(T(h)\\) \u4e58\u4ee5 \\(2\\) \uff0c\u5f97\u5230\uff1a
\\[ \\begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \\dots + 2^{h-1}\\times1 \\newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \\dots + 2^{h}\\times1 \\newline \\end{aligned} \\] \u4f7f\u7528\u9519\u4f4d\u76f8\u51cf\u6cd5\uff0c\u7528\u4e0b\u5f0f \\(2 T(h)\\) \u51cf\u53bb\u4e0a\u5f0f \\(T(h)\\) \uff0c\u53ef\u5f97\uff1a
\\[ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \\dots + 2^{h-1} + 2^h \\] \u89c2\u5bdf\u4e0a\u5f0f\uff0c\u53d1\u73b0 \\(T(h)\\) \u662f\u4e00\u4e2a\u7b49\u6bd4\u6570\u5217\uff0c\u53ef\u76f4\u63a5\u4f7f\u7528\u6c42\u548c\u516c\u5f0f\uff0c\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\uff1a
\\[ \\begin{aligned} T(h) & = 2 \\frac{1 - 2^h}{1 - 2} - h \\newline & = 2^{h+1} - h - 2 \\newline & = O(2^h) \\end{aligned} \\] \u8fdb\u4e00\u6b65\uff0c\u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n = 2^{h+1} - 1\\) \uff0c\u6613\u5f97\u590d\u6742\u5ea6\u4e3a \\(O(2^h) = O(n)\\) \u3002\u4ee5\u4e0a\u63a8\u7b97\u8868\u660e\uff0c\u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
"},{"location":"chapter_heap/heap/","title":"8.1 \u00a0 \u5806","text":"\u300c\u5806 heap\u300d\u662f\u4e00\u79cd\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u4e3b\u8981\u53ef\u5206\u4e3a\u4e24\u79cd\u7c7b\u578b\uff0c\u5982\u56fe 8-1 \u6240\u793a\u3002
- \u300c\u5c0f\u9876\u5806 min heap\u300d\uff1a\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\leq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002
- \u300c\u5927\u9876\u5806 max heap\u300d\uff1a\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\geq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002
\u56fe 8-1 \u00a0 \u5c0f\u9876\u5806\u4e0e\u5927\u9876\u5806
\u5806\u4f5c\u4e3a\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5177\u6709\u4ee5\u4e0b\u7279\u6027\u3002
- \u6700\u5e95\u5c42\u8282\u70b9\u9760\u5de6\u586b\u5145\uff0c\u5176\u4ed6\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u3002
- \u6211\u4eec\u5c06\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u79f0\u4e3a\u201c\u5806\u9876\u201d\uff0c\u5c06\u5e95\u5c42\u6700\u9760\u53f3\u7684\u8282\u70b9\u79f0\u4e3a\u201c\u5806\u5e95\u201d\u3002
- \u5bf9\u4e8e\u5927\u9876\u5806\uff08\u5c0f\u9876\u5806\uff09\uff0c\u5806\u9876\u5143\u7d20\uff08\u6839\u8282\u70b9\uff09\u7684\u503c\u662f\u6700\u5927\uff08\u6700\u5c0f\uff09\u7684\u3002
"},{"location":"chapter_heap/heap/#811","title":"8.1.1 \u00a0 \u5806\u7684\u5e38\u7528\u64cd\u4f5c","text":"\u9700\u8981\u6307\u51fa\u7684\u662f\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u662f\u300c\u4f18\u5148\u961f\u5217 priority queue\u300d\uff0c\u8fd9\u662f\u4e00\u79cd\u62bd\u8c61\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5b9a\u4e49\u4e3a\u5177\u6709\u4f18\u5148\u7ea7\u6392\u5e8f\u7684\u961f\u5217\u3002
\u5b9e\u9645\u4e0a\uff0c\u5806\u901a\u5e38\u7528\u4e8e\u5b9e\u73b0\u4f18\u5148\u961f\u5217\uff0c\u5927\u9876\u5806\u76f8\u5f53\u4e8e\u5143\u7d20\u6309\u4ece\u5927\u5230\u5c0f\u7684\u987a\u5e8f\u51fa\u961f\u7684\u4f18\u5148\u961f\u5217\u3002\u4ece\u4f7f\u7528\u89d2\u5ea6\u6765\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u201c\u4f18\u5148\u961f\u5217\u201d\u548c\u201c\u5806\u201d\u770b\u4f5c\u7b49\u4ef7\u7684\u6570\u636e\u7ed3\u6784\u3002\u56e0\u6b64\uff0c\u672c\u4e66\u5bf9\u4e24\u8005\u4e0d\u505a\u7279\u522b\u533a\u5206\uff0c\u7edf\u4e00\u79f0\u4f5c\u201c\u5806\u201d\u3002
\u5806\u7684\u5e38\u7528\u64cd\u4f5c\u89c1\u8868 8-1 \uff0c\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002
\u8868 8-1 \u00a0 \u5806\u7684\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u5806 \\(O(\\log n)\\) pop() \u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) peek() \u8bbf\u95ee\u5806\u9876\u5143\u7d20\uff08\u5bf9\u4e8e\u5927 / \u5c0f\u9876\u5806\u5206\u522b\u4e3a\u6700\u5927 / \u5c0f\u503c\uff09 \\(O(1)\\) size() \u83b7\u53d6\u5806\u7684\u5143\u7d20\u6570\u91cf \\(O(1)\\) isEmpty() \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a \\(O(1)\\) \u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u5806\u7c7b\uff08\u6216\u4f18\u5148\u961f\u5217\u7c7b\uff09\u3002
\u7c7b\u4f3c\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e2d\u7684\u201c\u4ece\u5c0f\u5230\u5927\u6392\u5217\u201d\u548c\u201c\u4ece\u5927\u5230\u5c0f\u6392\u5217\u201d\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u8bbe\u7f6e\u4e00\u4e2a flag \u6216\u4fee\u6539 Comparator \u5b9e\u73b0\u201c\u5c0f\u9876\u5806\u201d\u4e0e\u201c\u5927\u9876\u5806\u201d\u4e4b\u95f4\u7684\u8f6c\u6362\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig heap.py# \u521d\u59cb\u5316\u5c0f\u9876\u5806\nmin_heap, flag = [], 1\n# \u521d\u59cb\u5316\u5927\u9876\u5806\nmax_heap, flag = [], -1\n\n# Python \u7684 heapq \u6a21\u5757\u9ed8\u8ba4\u5b9e\u73b0\u5c0f\u9876\u5806\n# \u8003\u8651\u5c06\u201c\u5143\u7d20\u53d6\u8d1f\u201d\u540e\u518d\u5165\u5806\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5c06\u5927\u5c0f\u5173\u7cfb\u98a0\u5012\uff0c\u4ece\u800c\u5b9e\u73b0\u5927\u9876\u5806\n# \u5728\u672c\u793a\u4f8b\u4e2d\uff0cflag = 1 \u65f6\u5bf9\u5e94\u5c0f\u9876\u5806\uff0cflag = -1 \u65f6\u5bf9\u5e94\u5927\u9876\u5806\n\n# \u5143\u7d20\u5165\u5806\nheapq.heappush(max_heap, flag * 1)\nheapq.heappush(max_heap, flag * 3)\nheapq.heappush(max_heap, flag * 2)\nheapq.heappush(max_heap, flag * 5)\nheapq.heappush(max_heap, flag * 4)\n\n# \u83b7\u53d6\u5806\u9876\u5143\u7d20\npeek: int = flag * max_heap[0] # 5\n\n# \u5806\u9876\u5143\u7d20\u51fa\u5806\n# \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nval = flag * heapq.heappop(max_heap) # 5\nval = flag * heapq.heappop(max_heap) # 4\nval = flag * heapq.heappop(max_heap) # 3\nval = flag * heapq.heappop(max_heap) # 2\nval = flag * heapq.heappop(max_heap) # 1\n\n# \u83b7\u53d6\u5806\u5927\u5c0f\nsize: int = len(max_heap)\n\n# \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = not max_heap\n\n# \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\nmin_heap: list[int] = [1, 3, 2, 5, 4]\nheapq.heapify(min_heap)\n
heap.cpp/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\npriority_queue<int, vector<int>, greater<int>> minHeap;\n// \u521d\u59cb\u5316\u5927\u9876\u5806\npriority_queue<int, vector<int>, less<int>> maxHeap;\n\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.push(1);\nmaxHeap.push(3);\nmaxHeap.push(2);\nmaxHeap.push(5);\nmaxHeap.push(4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.top(); // 5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nmaxHeap.pop(); // 5\nmaxHeap.pop(); // 4\nmaxHeap.pop(); // 3\nmaxHeap.pop(); // 2\nmaxHeap.pop(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.empty();\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nvector<int> input{1, 3, 2, 5, 4};\npriority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());\n
heap.java/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nQueue<Integer> minHeap = new PriorityQueue<>();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);\n\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.offer(1);\nmaxHeap.offer(3);\nmaxHeap.offer(2);\nmaxHeap.offer(5);\nmaxHeap.offer(4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.peek(); // 5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = maxHeap.poll(); // 5\npeek = maxHeap.poll(); // 4\npeek = maxHeap.poll(); // 3\npeek = maxHeap.poll(); // 2\npeek = maxHeap.poll(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = maxHeap.isEmpty();\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));\n
heap.cs/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nPriorityQueue<int, int> minHeap = new();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nPriorityQueue<int, int> maxHeap = new(Comparer<int>.Create((x, y) => y - x));\n\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.Enqueue(1, 1);\nmaxHeap.Enqueue(3, 3);\nmaxHeap.Enqueue(2, 2);\nmaxHeap.Enqueue(5, 5);\nmaxHeap.Enqueue(4, 4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.Peek();//5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = maxHeap.Dequeue(); // 5\npeek = maxHeap.Dequeue(); // 4\npeek = maxHeap.Dequeue(); // 3\npeek = maxHeap.Dequeue(); // 2\npeek = maxHeap.Dequeue(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.Count;\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.Count == 0;\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<int, int>([(1, 1), (3, 3), (2, 2), (5, 5), (4, 4)]);\n
heap.go// Go \u8bed\u8a00\u4e2d\u53ef\u4ee5\u901a\u8fc7\u5b9e\u73b0 heap.Interface \u6765\u6784\u5efa\u6574\u6570\u5927\u9876\u5806\n// \u5b9e\u73b0 heap.Interface \u9700\u8981\u540c\u65f6\u5b9e\u73b0 sort.Interface\ntype intHeap []any\n\n// Push heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u63a8\u5165\u5143\u7d20\u5230\u5806\nfunc (h *intHeap) Push(x any) {\n // Push \u548c Pop \u4f7f\u7528 pointer receiver \u4f5c\u4e3a\u53c2\u6570\n // \u56e0\u4e3a\u5b83\u4eec\u4e0d\u4ec5\u4f1a\u5bf9\u5207\u7247\u7684\u5185\u5bb9\u8fdb\u884c\u8c03\u6574\uff0c\u8fd8\u4f1a\u4fee\u6539\u5207\u7247\u7684\u957f\u5ea6\u3002\n *h = append(*h, x.(int))\n}\n\n// Pop heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u5f39\u51fa\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Pop() any {\n // \u5f85\u51fa\u5806\u5143\u7d20\u5b58\u653e\u5728\u6700\u540e\n last := (*h)[len(*h)-1]\n *h = (*h)[:len(*h)-1]\n return last\n}\n\n// Len sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Len() int {\n return len(*h)\n}\n\n// Less sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Less(i, j int) bool {\n // \u5982\u679c\u5b9e\u73b0\u5c0f\u9876\u5806\uff0c\u5219\u9700\u8981\u8c03\u6574\u4e3a\u5c0f\u4e8e\u53f7\n return (*h)[i].(int) > (*h)[j].(int)\n}\n\n// Swap sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Swap(i, j int) {\n (*h)[i], (*h)[j] = (*h)[j], (*h)[i]\n}\n\n// Top \u83b7\u53d6\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Top() any {\n return (*h)[0]\n}\n\n/* Driver Code */\nfunc TestHeap(t *testing.T) {\n /* \u521d\u59cb\u5316\u5806 */\n // \u521d\u59cb\u5316\u5927\u9876\u5806\n maxHeap := &intHeap{}\n heap.Init(maxHeap)\n /* \u5143\u7d20\u5165\u5806 */\n // \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u6dfb\u52a0\u5143\u7d20\n heap.Push(maxHeap, 1)\n heap.Push(maxHeap, 3)\n heap.Push(maxHeap, 2)\n heap.Push(maxHeap, 4)\n heap.Push(maxHeap, 5)\n\n /* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\n top := maxHeap.Top()\n fmt.Printf(\"\u5806\u9876\u5143\u7d20\u4e3a %d\\n\", top)\n\n /* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n // \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u79fb\u9664\u5143\u7d20\n heap.Pop(maxHeap) // 5\n heap.Pop(maxHeap) // 4\n heap.Pop(maxHeap) // 3\n heap.Pop(maxHeap) // 2\n heap.Pop(maxHeap) // 1\n\n /* \u83b7\u53d6\u5806\u5927\u5c0f */\n size := len(*maxHeap)\n fmt.Printf(\"\u5806\u5143\u7d20\u6570\u91cf\u4e3a %d\\n\", size)\n\n /* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\n isEmpty := len(*maxHeap) == 0\n fmt.Printf(\"\u5806\u662f\u5426\u4e3a\u7a7a %t\\n\", isEmpty)\n}\n
heap.swift// Swift \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.js// JavaScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.ts// TypeScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.dart// Dart \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.rsuse std::collections::BinaryHeap;\nuse std::cmp::Reverse;\n\n/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nlet mut min_heap = BinaryHeap::<Reverse<i32>>::new();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\nlet mut max_heap = BinaryHeap::new();\n\n/* \u5143\u7d20\u5165\u5806 */\nmax_heap.push(1);\nmax_heap.push(3);\nmax_heap.push(2);\nmax_heap.push(5);\nmax_heap.push(4);\n\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nlet peek = max_heap.peek().unwrap(); // 5\n\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nlet peek = max_heap.pop().unwrap(); // 5\nlet peek = max_heap.pop().unwrap(); // 4\nlet peek = max_heap.pop().unwrap(); // 3\nlet peek = max_heap.pop().unwrap(); // 2\nlet peek = max_heap.pop().unwrap(); // 1\n\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nlet size = max_heap.len();\n\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = max_heap.is_empty();\n\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nlet min_heap = BinaryHeap::from(vec![Reverse(1), Reverse(3), Reverse(2), Reverse(5), Reverse(4)]);\n
heap.c// C \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
heap.zig\n
"},{"location":"chapter_heap/heap/#812","title":"8.1.2 \u00a0 \u5806\u7684\u5b9e\u73b0","text":"\u4e0b\u6587\u5b9e\u73b0\u7684\u662f\u5927\u9876\u5806\u3002\u82e5\u8981\u5c06\u5176\u8f6c\u6362\u4e3a\u5c0f\u9876\u5806\uff0c\u53ea\u9700\u5c06\u6240\u6709\u5927\u5c0f\u903b\u8f91\u5224\u65ad\u53d6\u9006\uff08\u4f8b\u5982\uff0c\u5c06 \\(\\geq\\) \u66ff\u6362\u4e3a \\(\\leq\\) \uff09\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002
"},{"location":"chapter_heap/heap/#1","title":"1. \u00a0 \u5806\u7684\u5b58\u50a8\u4e0e\u8868\u793a","text":"\u201c\u4e8c\u53c9\u6811\u201d\u7ae0\u8282\u8bb2\u8fc7\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u7531\u4e8e\u5806\u6b63\u662f\u4e00\u79cd\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u56e0\u6b64\u6211\u4eec\u5c06\u91c7\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002
\u5f53\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u4e8c\u53c9\u6811\u65f6\uff0c\u5143\u7d20\u4ee3\u8868\u8282\u70b9\u503c\uff0c\u7d22\u5f15\u4ee3\u8868\u8282\u70b9\u5728\u4e8c\u53c9\u6811\u4e2d\u7684\u4f4d\u7f6e\u3002\u8282\u70b9\u6307\u9488\u901a\u8fc7\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u6765\u5b9e\u73b0\u3002
\u5982\u56fe 8-2 \u6240\u793a\uff0c\u7ed9\u5b9a\u7d22\u5f15 \\(i\\) \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15\u4e3a \\(2i + 2\\) \uff0c\u7236\u8282\u70b9\u7684\u7d22\u5f15\u4e3a \\((i - 1) / 2\\)\uff08\u5411\u4e0b\u6574\u9664\uff09\u3002\u5f53\u7d22\u5f15\u8d8a\u754c\u65f6\uff0c\u8868\u793a\u7a7a\u8282\u70b9\u6216\u8282\u70b9\u4e0d\u5b58\u5728\u3002
\u56fe 8-2 \u00a0 \u5806\u7684\u8868\u793a\u4e0e\u5b58\u50a8
\u6211\u4eec\u53ef\u4ee5\u5c06\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef left(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return 2 * i + 1\n\ndef right(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return 2 * i + 2\n\ndef parent(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return (i - 1) // 2 # \u5411\u4e0b\u6574\u9664\n
my_heap.cpp/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint parent(int i) {\n return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.java/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint parent(int i) {\n return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.cs/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint Left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint Right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint Parent(int i) {\n return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.go/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (h *maxHeap) left(i int) int {\n return 2*i + 1\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (h *maxHeap) right(i int) int {\n return 2*i + 2\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (h *maxHeap) parent(i int) int {\n // \u5411\u4e0b\u6574\u9664\n return (i - 1) / 2\n}\n
my_heap.swift/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc left(i: Int) -> Int {\n 2 * i + 1\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc right(i: Int) -> Int {\n 2 * i + 2\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc parent(i: Int) -> Int {\n (i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.js/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n#left(i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n#right(i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n#parent(i) {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.ts/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nleft(i: number): number {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nright(i: number): number {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nparent(i: number): number {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.dart/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint _left(int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint _right(int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint _parent(int i) {\n return (i - 1) ~/ 2; // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.rs/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfn left(i: usize) -> usize {\n 2 * i + 1\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfn right(i: usize) -> usize {\n 2 * i + 2\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfn parent(i: usize) -> usize {\n (i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
my_heap.c/* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint left(MaxHeap *maxHeap, int i) {\n return 2 * i + 1;\n}\n\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint right(MaxHeap *maxHeap, int i) {\n return 2 * i + 2;\n}\n\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint parent(MaxHeap *maxHeap, int i) {\n return (i - 1) / 2;\n}\n
my_heap.zig// \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15\nfn left(i: usize) usize {\n return 2 * i + 1;\n}\n\n// \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15\nfn right(i: usize) usize {\n return 2 * i + 2;\n}\n\n// \u83b7\u53d6\u7236\u8282\u70b9\u7684\u7d22\u5f15\nfn parent(i: usize) usize {\n // return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n return @divFloor(i - 1, 2);\n}\n
"},{"location":"chapter_heap/heap/#2","title":"2. \u00a0 \u8bbf\u95ee\u5806\u9876\u5143\u7d20","text":"\u5806\u9876\u5143\u7d20\u5373\u4e3a\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u4e5f\u5c31\u662f\u5217\u8868\u7684\u9996\u4e2a\u5143\u7d20\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u5806\u9876\u5143\u7d20\"\"\"\n return self.max_heap[0]\n
my_heap.cpp/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\n return maxHeap[0];\n}\n
my_heap.java/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\n return maxHeap.get(0);\n}\n
my_heap.cs/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint Peek() {\n return maxHeap[0];\n}\n
my_heap.go/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc (h *maxHeap) peek() any {\n return h.data[0]\n}\n
my_heap.swift/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc peek() -> Int {\n maxHeap[0]\n}\n
my_heap.js/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek() {\n return this.#maxHeap[0];\n}\n
my_heap.ts/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek(): number {\n return this.maxHeap[0];\n}\n
my_heap.dart/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\n return _maxHeap[0];\n}\n
my_heap.rs/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfn peek(&self) -> Option<i32> {\n self.max_heap.first().copied()\n}\n
my_heap.c/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek(MaxHeap *maxHeap) {\n return maxHeap->data[0];\n}\n
my_heap.zig// \u8bbf\u95ee\u5806\u9876\u5143\u7d20\nfn peek(self: *Self) T {\n return self.max_heap.?.items[0];\n} \n
"},{"location":"chapter_heap/heap/#3","title":"3. \u00a0 \u5143\u7d20\u5165\u5806","text":"\u7ed9\u5b9a\u5143\u7d20 val \uff0c\u6211\u4eec\u9996\u5148\u5c06\u5176\u6dfb\u52a0\u5230\u5806\u5e95\u3002\u6dfb\u52a0\u4e4b\u540e\uff0c\u7531\u4e8e val \u53ef\u80fd\u5927\u4e8e\u5806\u4e2d\u5176\u4ed6\u5143\u7d20\uff0c\u5806\u7684\u6210\u7acb\u6761\u4ef6\u53ef\u80fd\u5df2\u88ab\u7834\u574f\uff0c\u56e0\u6b64\u9700\u8981\u4fee\u590d\u4ece\u63d2\u5165\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u8fd9\u4e2a\u64cd\u4f5c\u88ab\u79f0\u4e3a\u300c\u5806\u5316 heapify\u300d\u3002
\u8003\u8651\u4ece\u5165\u5806\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u6267\u884c\u5806\u5316\u3002\u5982\u56fe 8-3 \u6240\u793a\uff0c\u6211\u4eec\u6bd4\u8f83\u63d2\u5165\u8282\u70b9\u4e0e\u5176\u7236\u8282\u70b9\u7684\u503c\uff0c\u5982\u679c\u63d2\u5165\u8282\u70b9\u66f4\u5927\uff0c\u5219\u5c06\u5b83\u4eec\u4ea4\u6362\u3002\u7136\u540e\u7ee7\u7eed\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u4ece\u5e95\u81f3\u9876\u4fee\u590d\u5806\u4e2d\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u76f4\u81f3\u8d8a\u8fc7\u6839\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 8-3 \u00a0 \u5143\u7d20\u5165\u5806\u6b65\u9aa4
\u8bbe\u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \uff0c\u5219\u6811\u7684\u9ad8\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u7531\u6b64\u53ef\u77e5\uff0c\u5806\u5316\u64cd\u4f5c\u7684\u5faa\u73af\u8f6e\u6570\u6700\u591a\u4e3a \\(O(\\log n)\\) \uff0c\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef push(self, val: int):\n \"\"\"\u5143\u7d20\u5165\u5806\"\"\"\n # \u6dfb\u52a0\u8282\u70b9\n self.max_heap.append(val)\n # \u4ece\u5e95\u81f3\u9876\u5806\u5316\n self.sift_up(self.size() - 1)\n\ndef sift_up(self, i: int):\n \"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\"\"\"\n while True:\n # \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n p = self.parent(i)\n # \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if p < 0 or self.max_heap[i] <= self.max_heap[p]:\n break\n # \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, p)\n # \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p\n
my_heap.cpp/* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.push_back(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap[i] <= maxHeap[p])\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(maxHeap[i], maxHeap[p]);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.java/* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.add(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.cs/* \u5143\u7d20\u5165\u5806 */\nvoid Push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.Add(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n SiftUp(Size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid SiftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = Parent(i);\n // \u82e5\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap[i] <= maxHeap[p])\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n Swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.go/* \u5143\u7d20\u5165\u5806 */\nfunc (h *maxHeap) push(val any) {\n // \u6dfb\u52a0\u8282\u70b9\n h.data = append(h.data, val)\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n h.siftUp(len(h.data) - 1)\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc (h *maxHeap) siftUp(i int) {\n for true {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n p := h.parent(i)\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if p < 0 || h.data[i].(int) <= h.data[p].(int) {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n h.swap(i, p)\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p\n }\n}\n
my_heap.swift/* \u5143\u7d20\u5165\u5806 */\nfunc push(val: Int) {\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap.append(val)\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(i: size() - 1)\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc siftUp(i: Int) {\n var i = i\n while true {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n let p = parent(i: i)\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if p < 0 || maxHeap[i] <= maxHeap[p] {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i: i, j: p)\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p\n }\n}\n
my_heap.js/* \u5143\u7d20\u5165\u5806 */\npush(val) {\n // \u6dfb\u52a0\u8282\u70b9\n this.#maxHeap.push(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n this.#siftUp(this.size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\n#siftUp(i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n const p = this.#parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.#swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.ts/* \u5143\u7d20\u5165\u5806 */\npush(val: number): void {\n // \u6dfb\u52a0\u8282\u70b9\n this.maxHeap.push(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n this.siftUp(this.size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nsiftUp(i: number): void {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n const p = this.parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || this.maxHeap[i] <= this.maxHeap[p]) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.dart/* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n // \u6dfb\u52a0\u8282\u70b9\n _maxHeap.add(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = _parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || _maxHeap[i] <= _maxHeap[p]) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n _swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.rs/* \u5143\u7d20\u5165\u5806 */\nfn push(&mut self, val: i32) {\n // \u6dfb\u52a0\u8282\u70b9\n self.max_heap.push(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n self.sift_up(self.size() - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfn sift_up(&mut self, mut i: usize) {\n loop {\n // \u8282\u70b9 i \u5df2\u7ecf\u662f\u5806\u9876\u8282\u70b9\u4e86\uff0c\u7ed3\u675f\u5806\u5316\n if i == 0 {\n break;\n }\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n let p = Self::parent(i);\n // \u5f53\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if self.max_heap[i] <= self.max_heap[p] {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.c/* \u5143\u7d20\u5165\u5806 */\nvoid push(MaxHeap *maxHeap, int val) {\n // \u9ed8\u8ba4\u60c5\u51b5\u4e0b\uff0c\u4e0d\u5e94\u8be5\u6dfb\u52a0\u8fd9\u4e48\u591a\u8282\u70b9\n if (maxHeap->size == MAX_SIZE) {\n printf(\"heap is full!\");\n return;\n }\n // \u6dfb\u52a0\u8282\u70b9\n maxHeap->data[maxHeap->size] = val;\n maxHeap->size++;\n\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n siftUp(maxHeap, maxHeap->size - 1);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(MaxHeap *maxHeap, int i) {\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n int p = parent(maxHeap, i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 || maxHeap->data[i] <= maxHeap->data[p]) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(maxHeap, i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
my_heap.zig// \u5143\u7d20\u5165\u5806\nfn push(self: *Self, val: T) !void {\n // \u6dfb\u52a0\u8282\u70b9\n try self.max_heap.?.append(val);\n // \u4ece\u5e95\u81f3\u9876\u5806\u5316\n try self.siftUp(self.size() - 1);\n} \n\n// \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\nfn siftUp(self: *Self, i_: usize) !void {\n var i = i_;\n while (true) {\n // \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\n var p = parent(i);\n // \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\n if (p < 0 or self.max_heap.?.items[i] <= self.max_heap.?.items[p]) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n try self.swap(i, p);\n // \u5faa\u73af\u5411\u4e0a\u5806\u5316\n i = p;\n }\n}\n
"},{"location":"chapter_heap/heap/#4","title":"4. \u00a0 \u5806\u9876\u5143\u7d20\u51fa\u5806","text":"\u5806\u9876\u5143\u7d20\u662f\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u5373\u5217\u8868\u9996\u5143\u7d20\u3002\u5982\u679c\u6211\u4eec\u76f4\u63a5\u4ece\u5217\u8868\u4e2d\u5220\u9664\u9996\u5143\u7d20\uff0c\u90a3\u4e48\u4e8c\u53c9\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u7d22\u5f15\u90fd\u4f1a\u53d1\u751f\u53d8\u5316\uff0c\u8fd9\u5c06\u4f7f\u5f97\u540e\u7eed\u4f7f\u7528\u5806\u5316\u8fdb\u884c\u4fee\u590d\u53d8\u5f97\u56f0\u96be\u3002\u4e3a\u4e86\u5c3d\u91cf\u51cf\u5c11\u5143\u7d20\u7d22\u5f15\u7684\u53d8\u52a8\uff0c\u6211\u4eec\u91c7\u7528\u4ee5\u4e0b\u64cd\u4f5c\u6b65\u9aa4\u3002
- \u4ea4\u6362\u5806\u9876\u5143\u7d20\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff09\u3002
- \u4ea4\u6362\u5b8c\u6210\u540e\uff0c\u5c06\u5806\u5e95\u4ece\u5217\u8868\u4e2d\u5220\u9664\uff08\u6ce8\u610f\uff0c\u7531\u4e8e\u5df2\u7ecf\u4ea4\u6362\uff0c\u56e0\u6b64\u5b9e\u9645\u4e0a\u5220\u9664\u7684\u662f\u539f\u6765\u7684\u5806\u9876\u5143\u7d20\uff09\u3002
- \u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u6267\u884c\u5806\u5316\u3002
\u5982\u56fe 8-4 \u6240\u793a\uff0c\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u7684\u64cd\u4f5c\u65b9\u5411\u4e0e\u201c\u4ece\u5e95\u81f3\u9876\u5806\u5316\u201d\u76f8\u53cd\uff0c\u6211\u4eec\u5c06\u6839\u8282\u70b9\u7684\u503c\u4e0e\u5176\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u503c\u8fdb\u884c\u6bd4\u8f83\uff0c\u5c06\u6700\u5927\u7684\u5b50\u8282\u70b9\u4e0e\u6839\u8282\u70b9\u4ea4\u6362\u3002\u7136\u540e\u5faa\u73af\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002
<1><2><3><4><5><6><7><8><9><10> \u56fe 8-4 \u00a0 \u5806\u9876\u5143\u7d20\u51fa\u5806\u6b65\u9aa4
\u4e0e\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u76f8\u4f3c\uff0c\u5806\u9876\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4e3a \\(O(\\log n)\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig my_heap.pydef pop(self) -> int:\n \"\"\"\u5143\u7d20\u51fa\u5806\"\"\"\n # \u5224\u7a7a\u5904\u7406\n if self.is_empty():\n raise IndexError(\"\u5806\u4e3a\u7a7a\")\n # \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n self.swap(0, self.size() - 1)\n # \u5220\u9664\u8282\u70b9\n val = self.max_heap.pop()\n # \u4ece\u9876\u81f3\u5e95\u5806\u5316\n self.sift_down(0)\n # \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val\n\ndef sift_down(self, i: int):\n \"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\n while True:\n # \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n l, r, ma = self.left(i), self.right(i), i\n if l < self.size() and self.max_heap[l] > self.max_heap[ma]:\n ma = l\n if r < self.size() and self.max_heap[r] > self.max_heap[ma]:\n ma = r\n # \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i:\n break\n # \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, ma)\n # \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n
my_heap.cpp/* \u5143\u7d20\u51fa\u5806 */\nvoid pop() {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty()) {\n throw out_of_range(\"\u5806\u4e3a\u7a7a\");\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(maxHeap[0], maxHeap[size() - 1]);\n // \u5220\u9664\u8282\u70b9\n maxHeap.pop_back();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(0);\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = left(i), r = right(i), ma = i;\n if (l < size() && maxHeap[l] > maxHeap[ma])\n ma = l;\n if (r < size() && maxHeap[r] > maxHeap[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n swap(maxHeap[i], maxHeap[ma]);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.java/* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(0, size() - 1);\n // \u5220\u9664\u8282\u70b9\n int val = maxHeap.remove(size() - 1);\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = left(i), r = right(i), ma = i;\n if (l < size() && maxHeap.get(l) > maxHeap.get(ma))\n ma = l;\n if (r < size() && maxHeap.get(r) > maxHeap.get(ma))\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.cs/* \u5143\u7d20\u51fa\u5806 */\nint Pop() {\n // \u5224\u7a7a\u5904\u7406\n if (IsEmpty())\n throw new IndexOutOfRangeException();\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n Swap(0, Size() - 1);\n // \u5220\u9664\u8282\u70b9\n int val = maxHeap.Last();\n maxHeap.RemoveAt(Size() - 1);\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n SiftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid SiftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = Left(i), r = Right(i), ma = i;\n if (l < Size() && maxHeap[l] > maxHeap[ma])\n ma = l;\n if (r < Size() && maxHeap[r] > maxHeap[ma])\n ma = r;\n // \u82e5\u201c\u8282\u70b9 i \u6700\u5927\u201d\u6216\u201c\u8d8a\u8fc7\u53f6\u8282\u70b9\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n Swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.go/* \u5143\u7d20\u51fa\u5806 */\nfunc (h *maxHeap) pop() any {\n // \u5224\u7a7a\u5904\u7406\n if h.isEmpty() {\n fmt.Println(\"error\")\n return nil\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n h.swap(0, h.size()-1)\n // \u5220\u9664\u8282\u70b9\n val := h.data[len(h.data)-1]\n h.data = h.data[:len(h.data)-1]\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n h.siftDown(0)\n\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc (h *maxHeap) siftDown(i int) {\n for true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\n l, r, max := h.left(i), h.right(i), i\n if l < h.size() && h.data[l].(int) > h.data[max].(int) {\n max = l\n }\n if r < h.size() && h.data[r].(int) > h.data[max].(int) {\n max = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if max == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n h.swap(i, max)\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = max\n }\n}\n
my_heap.swift/* \u5143\u7d20\u51fa\u5806 */\nfunc pop() -> Int {\n // \u5224\u7a7a\u5904\u7406\n if isEmpty() {\n fatalError(\"\u5806\u4e3a\u7a7a\")\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(i: 0, j: size() - 1)\n // \u5220\u9664\u8282\u70b9\n let val = maxHeap.remove(at: size() - 1)\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(i: 0)\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(i: Int) {\n var i = i\n while true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = left(i: i)\n let r = right(i: i)\n var ma = i\n if l < size(), maxHeap[l] > maxHeap[ma] {\n ma = l\n }\n if r < size(), maxHeap[r] > maxHeap[ma] {\n ma = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(i: i, j: ma)\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n }\n}\n
my_heap.js/* \u5143\u7d20\u51fa\u5806 */\npop() {\n // \u5224\u7a7a\u5904\u7406\n if (this.isEmpty()) throw new Error('\u5806\u4e3a\u7a7a');\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n this.#swap(0, this.size() - 1);\n // \u5220\u9664\u8282\u70b9\n const val = this.#maxHeap.pop();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n this.#siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\n#siftDown(i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n const l = this.#left(i),\n r = this.#right(i);\n let ma = i;\n if (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l;\n if (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.#swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.ts/* \u5143\u7d20\u51fa\u5806 */\npop(): number {\n // \u5224\u7a7a\u5904\u7406\n if (this.isEmpty()) throw new RangeError('Heap is empty.');\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n this.swap(0, this.size() - 1);\n // \u5220\u9664\u8282\u70b9\n const val = this.maxHeap.pop();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n this.siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nsiftDown(i: number): void {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n const l = this.left(i),\n r = this.right(i);\n let ma = i;\n if (l < this.size() && this.maxHeap[l] > this.maxHeap[ma]) ma = l;\n if (r < this.size() && this.maxHeap[r] > this.maxHeap[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n this.swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.dart/* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty()) throw Exception('\u5806\u4e3a\u7a7a');\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n _swap(0, size() - 1);\n // \u5220\u9664\u8282\u70b9\n int val = _maxHeap.removeLast();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = _left(i);\n int r = _right(i);\n int ma = i;\n if (l < size() && _maxHeap[l] > _maxHeap[ma]) ma = l;\n if (r < size() && _maxHeap[r] > _maxHeap[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n _swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.rs/* \u5143\u7d20\u51fa\u5806 */\nfn pop(&mut self) -> i32 {\n // \u5224\u7a7a\u5904\u7406\n if self.is_empty() {\n panic!(\"index out of bounds\");\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n self.swap(0, self.size() - 1);\n // \u5220\u9664\u8282\u70b9\n let val = self.max_heap.remove(self.size() - 1);\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n self.sift_down(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n val\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(&mut self, mut i: usize) {\n loop {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let (l, r, mut ma) = (Self::left(i), Self::right(i), i);\n if l < self.size() && self.max_heap[l] > self.max_heap[ma] {\n ma = l;\n }\n if r < self.size() && self.max_heap[r] > self.max_heap[ma] {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n self.swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
my_heap.c/* \u5143\u7d20\u51fa\u5806 */\nint pop(MaxHeap *maxHeap) {\n // \u5224\u7a7a\u5904\u7406\n if (isEmpty(maxHeap)) {\n printf(\"heap is empty!\");\n return INT_MAX;\n }\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(maxHeap, 0, size(maxHeap) - 1);\n // \u5220\u9664\u8282\u70b9\n int val = maxHeap->data[maxHeap->size - 1];\n maxHeap->size--;\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n siftDown(maxHeap, 0);\n\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n}\n\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(MaxHeap *maxHeap, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\n int l = left(maxHeap, i);\n int r = right(maxHeap, i);\n int max = i;\n if (l < size(maxHeap) && maxHeap->data[l] > maxHeap->data[max]) {\n max = l;\n }\n if (r < size(maxHeap) && maxHeap->data[r] > maxHeap->data[max]) {\n max = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (max == i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(maxHeap, i, max);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = max;\n }\n}\n
my_heap.zig// \u5143\u7d20\u51fa\u5806\nfn pop(self: *Self) !T {\n // \u5224\u65ad\u5904\u7406\n if (self.isEmpty()) unreachable;\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n try self.swap(0, self.size() - 1);\n // \u5220\u9664\u8282\u70b9\n var val = self.max_heap.?.pop();\n // \u4ece\u9876\u81f3\u5e95\u5806\u5316\n try self.siftDown(0);\n // \u8fd4\u56de\u5806\u9876\u5143\u7d20\n return val;\n} \n\n// \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\nfn siftDown(self: *Self, i_: usize) !void {\n var i = i_;\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n var l = left(i);\n var r = right(i);\n var ma = i;\n if (l < self.size() and self.max_heap.?.items[l] > self.max_heap.?.items[ma]) ma = l;\n if (r < self.size() and self.max_heap.?.items[r] > self.max_heap.?.items[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n try self.swap(i, ma);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n
"},{"location":"chapter_heap/heap/#813","title":"8.1.3 \u00a0 \u5806\u7684\u5e38\u89c1\u5e94\u7528","text":" - \u4f18\u5148\u961f\u5217\uff1a\u5806\u901a\u5e38\u4f5c\u4e3a\u5b9e\u73b0\u4f18\u5148\u961f\u5217\u7684\u9996\u9009\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \uff0c\u800c\u5efa\u961f\u64cd\u4f5c\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e9b\u64cd\u4f5c\u90fd\u975e\u5e38\u9ad8\u6548\u3002
- \u5806\u6392\u5e8f\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u5b83\u4eec\u5efa\u7acb\u4e00\u4e2a\u5806\uff0c\u7136\u540e\u4e0d\u65ad\u5730\u6267\u884c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u6570\u636e\u3002\u7136\u800c\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u4f7f\u7528\u4e00\u79cd\u66f4\u4f18\u96c5\u7684\u65b9\u5f0f\u5b9e\u73b0\u5806\u6392\u5e8f\uff0c\u8be6\u89c1\u201c\u5806\u6392\u5e8f\u201d\u7ae0\u8282\u3002
- \u83b7\u53d6\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff1a\u8fd9\u662f\u4e00\u4e2a\u7ecf\u5178\u7684\u7b97\u6cd5\u95ee\u9898\uff0c\u540c\u65f6\u4e5f\u662f\u4e00\u79cd\u5178\u578b\u5e94\u7528\uff0c\u4f8b\u5982\u9009\u62e9\u70ed\u5ea6\u524d 10 \u7684\u65b0\u95fb\u4f5c\u4e3a\u5fae\u535a\u70ed\u641c\uff0c\u9009\u53d6\u9500\u91cf\u524d 10 \u7684\u5546\u54c1\u7b49\u3002
"},{"location":"chapter_heap/summary/","title":"8.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_heap/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u5806\u662f\u4e00\u68f5\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u6839\u636e\u6210\u7acb\u6761\u4ef6\u53ef\u5206\u4e3a\u5927\u9876\u5806\u548c\u5c0f\u9876\u5806\u3002\u5927\uff08\u5c0f\uff09\u9876\u5806\u7684\u5806\u9876\u5143\u7d20\u662f\u6700\u5927\uff08\u5c0f\uff09\u7684\u3002
- \u4f18\u5148\u961f\u5217\u7684\u5b9a\u4e49\u662f\u5177\u6709\u51fa\u961f\u4f18\u5148\u7ea7\u7684\u961f\u5217\uff0c\u901a\u5e38\u4f7f\u7528\u5806\u6765\u5b9e\u73b0\u3002
- \u5806\u7684\u5e38\u7528\u64cd\u4f5c\u53ca\u5176\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5305\u62ec\uff1a\u5143\u7d20\u5165\u5806 \\(O(\\log n)\\)\u3001\u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) \u548c\u8bbf\u95ee\u5806\u9876\u5143\u7d20 \\(O(1)\\) \u7b49\u3002
- \u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u8868\u793a\uff0c\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002
- \u5806\u5316\u64cd\u4f5c\u7528\u4e8e\u7ef4\u62a4\u5806\u7684\u6027\u8d28\uff0c\u5728\u5165\u5806\u548c\u51fa\u5806\u64cd\u4f5c\u4e2d\u90fd\u4f1a\u7528\u5230\u3002
- \u8f93\u5165 \\(n\\) \u4e2a\u5143\u7d20\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
- Top-k \u662f\u4e00\u4e2a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\uff0c\u53ef\u4ee5\u4f7f\u7528\u5806\u6570\u636e\u7ed3\u6784\u9ad8\u6548\u89e3\u51b3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002
"},{"location":"chapter_heap/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6570\u636e\u7ed3\u6784\u7684\u201c\u5806\u201d\u4e0e\u5185\u5b58\u7ba1\u7406\u7684\u201c\u5806\u201d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\u5417\uff1f
\u4e24\u8005\u4e0d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\uff0c\u53ea\u662f\u78b0\u5de7\u90fd\u53eb\u201c\u5806\u201d\u3002\u8ba1\u7b97\u673a\u7cfb\u7edf\u5185\u5b58\u4e2d\u7684\u5806\u662f\u52a8\u6001\u5185\u5b58\u5206\u914d\u7684\u4e00\u90e8\u5206\uff0c\u7a0b\u5e8f\u5728\u8fd0\u884c\u65f6\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u5b58\u50a8\u6570\u636e\u3002\u7a0b\u5e8f\u53ef\u4ee5\u8bf7\u6c42\u4e00\u5b9a\u91cf\u7684\u5806\u5185\u5b58\uff0c\u7528\u4e8e\u5b58\u50a8\u5982\u5bf9\u8c61\u548c\u6570\u7ec4\u7b49\u590d\u6742\u7ed3\u6784\u3002\u5f53\u8fd9\u4e9b\u6570\u636e\u4e0d\u518d\u9700\u8981\u65f6\uff0c\u7a0b\u5e8f\u9700\u8981\u91ca\u653e\u8fd9\u4e9b\u5185\u5b58\uff0c\u4ee5\u9632\u6b62\u5185\u5b58\u6cc4\u6f0f\u3002\u76f8\u8f83\u4e8e\u6808\u5185\u5b58\uff0c\u5806\u5185\u5b58\u7684\u7ba1\u7406\u548c\u4f7f\u7528\u9700\u8981\u66f4\u8c28\u614e\uff0c\u4f7f\u7528\u4e0d\u5f53\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5185\u5b58\u6cc4\u6f0f\u548c\u91ce\u6307\u9488\u7b49\u95ee\u9898\u3002
"},{"location":"chapter_heap/top_k/","title":"8.3 \u00a0 Top-k \u95ee\u9898","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u65e0\u5e8f\u6570\u7ec4 nums \uff0c\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u3002
\u5bf9\u4e8e\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u5148\u4ecb\u7ecd\u4e24\u79cd\u601d\u8def\u6bd4\u8f83\u76f4\u63a5\u7684\u89e3\u6cd5\uff0c\u518d\u4ecb\u7ecd\u6548\u7387\u66f4\u9ad8\u7684\u5806\u89e3\u6cd5\u3002
"},{"location":"chapter_heap/top_k/#831","title":"8.3.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u904d\u5386\u9009\u62e9","text":"\u6211\u4eec\u53ef\u4ee5\u8fdb\u884c\u56fe 8-6 \u6240\u793a\u7684 \\(k\\) \u8f6e\u904d\u5386\uff0c\u5206\u522b\u5728\u6bcf\u8f6e\u4e2d\u63d0\u53d6\u7b2c \\(1\\)\u3001\\(2\\)\u3001\\(\\dots\\)\u3001\\(k\\) \u5927\u7684\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nk)\\) \u3002
\u6b64\u65b9\u6cd5\u53ea\u9002\u7528\u4e8e \\(k \\ll n\\) \u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u5f53 \\(k\\) \u4e0e \\(n\\) \u6bd4\u8f83\u63a5\u8fd1\u65f6\uff0c\u5176\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411\u4e8e \\(O(n^2)\\) \uff0c\u975e\u5e38\u8017\u65f6\u3002
\u56fe 8-6 \u00a0 \u904d\u5386\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20
Tip
\u5f53 \\(k = n\\) \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u5b8c\u6574\u7684\u6709\u5e8f\u5e8f\u5217\uff0c\u6b64\u65f6\u7b49\u4ef7\u4e8e\u201c\u9009\u62e9\u6392\u5e8f\u201d\u7b97\u6cd5\u3002
"},{"location":"chapter_heap/top_k/#832","title":"8.3.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u6392\u5e8f","text":"\u5982\u56fe 8-7 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5148\u5bf9\u6570\u7ec4 nums \u8fdb\u884c\u6392\u5e8f\uff0c\u518d\u8fd4\u56de\u6700\u53f3\u8fb9\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
\u663e\u7136\uff0c\u8be5\u65b9\u6cd5\u201c\u8d85\u989d\u201d\u5b8c\u6210\u4efb\u52a1\u4e86\uff0c\u56e0\u4e3a\u6211\u4eec\u53ea\u9700\u627e\u51fa\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u5373\u53ef\uff0c\u800c\u4e0d\u9700\u8981\u6392\u5e8f\u5176\u4ed6\u5143\u7d20\u3002
\u56fe 8-7 \u00a0 \u6392\u5e8f\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20
"},{"location":"chapter_heap/top_k/#833","title":"8.3.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u5806","text":"\u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u5806\u66f4\u52a0\u9ad8\u6548\u5730\u89e3\u51b3 Top-k \u95ee\u9898\uff0c\u6d41\u7a0b\u5982\u56fe 8-8 \u6240\u793a\u3002
- \u521d\u59cb\u5316\u4e00\u4e2a\u5c0f\u9876\u5806\uff0c\u5176\u5806\u9876\u5143\u7d20\u6700\u5c0f\u3002
- \u5148\u5c06\u6570\u7ec4\u7684\u524d \\(k\\) \u4e2a\u5143\u7d20\u4f9d\u6b21\u5165\u5806\u3002
- \u4ece\u7b2c \\(k + 1\\) \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\uff0c\u5e76\u5c06\u5f53\u524d\u5143\u7d20\u5165\u5806\u3002
- \u904d\u5386\u5b8c\u6210\u540e\uff0c\u5806\u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 8-8 \u00a0 \u57fa\u4e8e\u5806\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig top_k.pydef top_k_heap(nums: list[int], k: int) -> list[int]:\n \"\"\"\u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20\"\"\"\n # \u521d\u59cb\u5316\u5c0f\u9876\u5806\n heap = []\n # \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for i in range(k):\n heapq.heappush(heap, nums[i])\n # \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for i in range(k, len(nums)):\n # \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if nums[i] > heap[0]:\n heapq.heappop(heap)\n heapq.heappush(heap, nums[i])\n return heap\n
top_k.cpp/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\npriority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n priority_queue<int, vector<int>, greater<int>> heap;\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n heap.push(nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.size(); i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.top()) {\n heap.pop();\n heap.push(nums[i]);\n }\n }\n return heap;\n}\n
top_k.java/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nQueue<Integer> topKHeap(int[] nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n Queue<Integer> heap = new PriorityQueue<Integer>();\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n heap.offer(nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.peek()) {\n heap.poll();\n heap.offer(nums[i]);\n }\n }\n return heap;\n}\n
top_k.cs/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nPriorityQueue<int, int> TopKHeap(int[] nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n PriorityQueue<int, int> heap = new();\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n heap.Enqueue(nums[i], nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.Length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.Peek()) {\n heap.Dequeue();\n heap.Enqueue(nums[i], nums[i]);\n }\n }\n return heap;\n}\n
top_k.go/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums []int, k int) *minHeap {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n h := &minHeap{}\n heap.Init(h)\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for i := 0; i < k; i++ {\n heap.Push(h, nums[i])\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for i := k; i < len(nums); i++ {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if nums[i] > h.Top().(int) {\n heap.Pop(h)\n heap.Push(h, nums[i])\n }\n }\n return h\n}\n
top_k.swift/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums: [Int], k: Int) -> [Int] {\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5c0f\u9876\u5806\uff0c\u5e76\u5c06\u524d k \u4e2a\u5143\u7d20\u5efa\u5806\n var heap = Heap(nums.prefix(k))\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for i in stride(from: k, to: nums.count, by: 1) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if nums[i] > heap.min()! {\n _ = heap.removeMin()\n heap.insert(nums[i])\n }\n }\n return heap.unordered\n}\n
top_k.js/* \u5143\u7d20\u5165\u5806 */\nfunction pushMinHeap(maxHeap, val) {\n // \u5143\u7d20\u53d6\u53cd\n maxHeap.push(-val);\n}\n\n/* \u5143\u7d20\u51fa\u5806 */\nfunction popMinHeap(maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.pop();\n}\n\n/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunction peekMinHeap(maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.peek();\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nfunction getMinHeap(maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return maxHeap.getMaxHeap().map((num) => -num);\n}\n\n/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunction topKHeap(nums, k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n // \u8bf7\u6ce8\u610f\uff1a\u6211\u4eec\u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u7528\u5927\u9876\u5806\u6765\u6a21\u62df\u5c0f\u9876\u5806\n const maxHeap = new MaxHeap([]);\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (let i = 0; i < k; i++) {\n pushMinHeap(maxHeap, nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (let i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > peekMinHeap(maxHeap)) {\n popMinHeap(maxHeap);\n pushMinHeap(maxHeap, nums[i]);\n }\n }\n // \u8fd4\u56de\u5806\u4e2d\u5143\u7d20\n return getMinHeap(maxHeap);\n}\n
top_k.ts/* \u5143\u7d20\u5165\u5806 */\nfunction pushMinHeap(maxHeap: MaxHeap, val: number): void {\n // \u5143\u7d20\u53d6\u53cd\n maxHeap.push(-val);\n}\n\n/* \u5143\u7d20\u51fa\u5806 */\nfunction popMinHeap(maxHeap: MaxHeap): number {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.pop();\n}\n\n/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunction peekMinHeap(maxHeap: MaxHeap): number {\n // \u5143\u7d20\u53d6\u53cd\n return -maxHeap.peek();\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nfunction getMinHeap(maxHeap: MaxHeap): number[] {\n // \u5143\u7d20\u53d6\u53cd\n return maxHeap.getMaxHeap().map((num: number) => -num);\n}\n\n/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunction topKHeap(nums: number[], k: number): number[] {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n // \u8bf7\u6ce8\u610f\uff1a\u6211\u4eec\u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u7528\u5927\u9876\u5806\u6765\u6a21\u62df\u5c0f\u9876\u5806\n const maxHeap = new MaxHeap([]);\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (let i = 0; i < k; i++) {\n pushMinHeap(maxHeap, nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (let i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > peekMinHeap(maxHeap)) {\n popMinHeap(maxHeap);\n pushMinHeap(maxHeap, nums[i]);\n }\n }\n // \u8fd4\u56de\u5806\u4e2d\u5143\u7d20\n return getMinHeap(maxHeap);\n}\n
top_k.dart/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nMinHeap topKHeap(List<int> nums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\uff0c\u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n MinHeap heap = MinHeap(nums.sublist(0, k));\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < nums.length; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > heap.peek()) {\n heap.pop();\n heap.push(nums[i]);\n }\n }\n return heap;\n}\n
top_k.rs/* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {\n // BinaryHeap \u662f\u5927\u9876\u5806\uff0c\u4f7f\u7528 Reverse \u5c06\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u5b9e\u73b0\u5c0f\u9876\u5806\n let mut heap = BinaryHeap::<Reverse<i32>>::new();\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for &num in nums.iter().take(k) {\n heap.push(Reverse(num));\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for &num in nums.iter().skip(k) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if num > heap.peek().unwrap().0 {\n heap.pop();\n heap.push(Reverse(num));\n }\n }\n heap\n}\n
top_k.c/* \u5143\u7d20\u5165\u5806 */\nvoid pushMinHeap(MaxHeap *maxHeap, int val) {\n // \u5143\u7d20\u53d6\u53cd\n push(maxHeap, -val);\n}\n\n/* \u5143\u7d20\u51fa\u5806 */\nint popMinHeap(MaxHeap *maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -pop(maxHeap);\n}\n\n/* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peekMinHeap(MaxHeap *maxHeap) {\n // \u5143\u7d20\u53d6\u53cd\n return -peek(maxHeap);\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nint *getMinHeap(MaxHeap *maxHeap) {\n // \u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\u5e76\u5b58\u5165 res \u6570\u7ec4\n int *res = (int *)malloc(maxHeap->size * sizeof(int));\n for (int i = 0; i < maxHeap->size; i++) {\n res[i] = -maxHeap->data[i];\n }\n return res;\n}\n\n/* \u53d6\u51fa\u5806\u4e2d\u5143\u7d20 */\nint *getMinHeap(MaxHeap *maxHeap) {\n // \u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\u5e76\u5b58\u5165 res \u6570\u7ec4\n int *res = (int *)malloc(maxHeap->size * sizeof(int));\n for (int i = 0; i < maxHeap->size; i++) {\n res[i] = -maxHeap->data[i];\n }\n return res;\n}\n\n// \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20\u7684\u51fd\u6570\nint *topKHeap(int *nums, int sizeNums, int k) {\n // \u521d\u59cb\u5316\u5c0f\u9876\u5806\n // \u8bf7\u6ce8\u610f\uff1a\u6211\u4eec\u5c06\u5806\u4e2d\u6240\u6709\u5143\u7d20\u53d6\u53cd\uff0c\u4ece\u800c\u7528\u5927\u9876\u5806\u6765\u6a21\u62df\u5c0f\u9876\u5806\n int *empty = (int *)malloc(0);\n MaxHeap *maxHeap = newMaxHeap(empty, 0);\n // \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\n for (int i = 0; i < k; i++) {\n pushMinHeap(maxHeap, nums[i]);\n }\n // \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\n for (int i = k; i < sizeNums; i++) {\n // \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\n if (nums[i] > peekMinHeap(maxHeap)) {\n popMinHeap(maxHeap);\n pushMinHeap(maxHeap, nums[i]);\n }\n }\n int *res = getMinHeap(maxHeap);\n // \u91ca\u653e\u5185\u5b58\n delMaxHeap(maxHeap);\n return res;\n}\n
top_k.zig[class]{}-[func]{topKHeap}\n
\u603b\u5171\u6267\u884c\u4e86 \\(n\\) \u8f6e\u5165\u5806\u548c\u51fa\u5806\uff0c\u5806\u7684\u6700\u5927\u957f\u5ea6\u4e3a \\(k\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002\u8be5\u65b9\u6cd5\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u5f53 \\(k\\) \u8f83\u5c0f\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \uff1b\u5f53 \\(k\\) \u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(O(n \\log n)\\) \u3002
\u53e6\u5916\uff0c\u8be5\u65b9\u6cd5\u9002\u7528\u4e8e\u52a8\u6001\u6570\u636e\u6d41\u7684\u4f7f\u7528\u573a\u666f\u3002\u5728\u4e0d\u65ad\u52a0\u5165\u6570\u636e\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u6301\u7eed\u7ef4\u62a4\u5806\u5185\u7684\u5143\u7d20\uff0c\u4ece\u800c\u5b9e\u73b0\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u7684\u52a8\u6001\u66f4\u65b0\u3002
"},{"location":"chapter_introduction/","title":"\u7b2c 1 \u7ae0 \u00a0 \u521d\u8bc6\u7b97\u6cd5","text":"Abstract
\u4e00\u4f4d\u5c11\u5973\u7fe9\u7fe9\u8d77\u821e\uff0c\u4e0e\u6570\u636e\u4ea4\u7ec7\u5728\u4e00\u8d77\uff0c\u88d9\u6446\u4e0a\u98d8\u626c\u7740\u7b97\u6cd5\u7684\u65cb\u5f8b\u3002
\u5979\u9080\u8bf7\u4f60\u5171\u821e\uff0c\u8bf7\u7d27\u8ddf\u5979\u7684\u6b65\u4f10\uff0c\u8e0f\u5165\u5145\u6ee1\u903b\u8f91\u4e0e\u7f8e\u611f\u7684\u7b97\u6cd5\u4e16\u754c\u3002
"},{"location":"chapter_introduction/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728
- 1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48
- 1.3 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_introduction/algorithms_are_everywhere/","title":"1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728","text":"\u5f53\u6211\u4eec\u542c\u5230\u201c\u7b97\u6cd5\u201d\u8fd9\u4e2a\u8bcd\u65f6\uff0c\u5f88\u81ea\u7136\u5730\u4f1a\u60f3\u5230\u6570\u5b66\u3002\u7136\u800c\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7b97\u6cd5\u5e76\u4e0d\u6d89\u53ca\u590d\u6742\u6570\u5b66\uff0c\u800c\u662f\u66f4\u591a\u5730\u4f9d\u8d56\u57fa\u672c\u903b\u8f91\uff0c\u8fd9\u4e9b\u903b\u8f91\u5728\u6211\u4eec\u7684\u65e5\u5e38\u751f\u6d3b\u4e2d\u5904\u5904\u53ef\u89c1\u3002
\u5728\u6b63\u5f0f\u63a2\u8ba8\u7b97\u6cd5\u4e4b\u524d\uff0c\u6709\u4e00\u4e2a\u6709\u8da3\u7684\u4e8b\u5b9e\u503c\u5f97\u5206\u4eab\uff1a\u4f60\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u5e76\u4e60\u60ef\u5c06\u5b83\u4eec\u5e94\u7528\u5230\u65e5\u5e38\u751f\u6d3b\u4e2d\u4e86\u3002\u4e0b\u9762\u6211\u5c06\u4e3e\u51e0\u4e2a\u5177\u4f53\u7684\u4f8b\u5b50\u6765\u8bc1\u5b9e\u8fd9\u4e00\u70b9\u3002
\u4f8b\u4e00\uff1a\u67e5\u5b57\u5178\u3002\u5728\u5b57\u5178\u91cc\uff0c\u6bcf\u4e2a\u6c49\u5b57\u90fd\u5bf9\u5e94\u4e00\u4e2a\u62fc\u97f3\uff0c\u800c\u5b57\u5178\u662f\u6309\u7167\u62fc\u97f3\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\u7684\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u67e5\u627e\u4e00\u4e2a\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u5b57\uff0c\u901a\u5e38\u4f1a\u6309\u7167\u56fe 1-1 \u6240\u793a\u7684\u65b9\u5f0f\u5b9e\u73b0\u3002
- \u7ffb\u5f00\u5b57\u5178\u7ea6\u4e00\u534a\u7684\u9875\u6570\uff0c\u67e5\u770b\u8be5\u9875\u7684\u9996\u5b57\u6bcd\u662f\u4ec0\u4e48\uff0c\u5047\u8bbe\u9996\u5b57\u6bcd\u4e3a \\(m\\) \u3002
- \u7531\u4e8e\u5728\u62fc\u97f3\u5b57\u6bcd\u8868\u4e2d \\(r\\) \u4f4d\u4e8e \\(m\\) \u4e4b\u540e\uff0c\u6240\u4ee5\u6392\u9664\u5b57\u5178\u524d\u534a\u90e8\u5206\uff0c\u67e5\u627e\u8303\u56f4\u7f29\u5c0f\u5230\u540e\u534a\u90e8\u5206\u3002
- \u4e0d\u65ad\u91cd\u590d\u6b65\u9aa4
1. \u548c \u6b65\u9aa4 2. \uff0c\u76f4\u81f3\u627e\u5230\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u9875\u7801\u4e3a\u6b62\u3002
<1><2><3><4><5> \u56fe 1-1 \u00a0 \u67e5\u5b57\u5178\u6b65\u9aa4
\u67e5\u5b57\u5178\u8fd9\u4e2a\u5c0f\u5b66\u751f\u5fc5\u5907\u6280\u80fd\uff0c\u5b9e\u9645\u4e0a\u5c31\u662f\u8457\u540d\u7684\u201c\u4e8c\u5206\u67e5\u627e\u201d\u7b97\u6cd5\u3002\u4ece\u6570\u636e\u7ed3\u6784\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b57\u5178\u89c6\u4e3a\u4e00\u4e2a\u5df2\u6392\u5e8f\u7684\u201c\u6570\u7ec4\u201d\uff1b\u4ece\u7b97\u6cd5\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u4e0a\u8ff0\u67e5\u5b57\u5178\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u770b\u4f5c\u201c\u4e8c\u5206\u67e5\u627e\u201d\u3002
\u4f8b\u4e8c\uff1a\u6574\u7406\u6251\u514b\u3002\u6211\u4eec\u5728\u6253\u724c\u65f6\uff0c\u6bcf\u5c40\u90fd\u9700\u8981\u6574\u7406\u624b\u4e2d\u7684\u6251\u514b\u724c\uff0c\u4f7f\u5176\u4ece\u5c0f\u5230\u5927\u6392\u5217\uff0c\u5b9e\u73b0\u6d41\u7a0b\u5982\u56fe 1-2 \u6240\u793a\u3002
- \u5c06\u6251\u514b\u724c\u5212\u5206\u4e3a\u201c\u6709\u5e8f\u201d\u548c\u201c\u65e0\u5e8f\u201d\u4e24\u90e8\u5206\uff0c\u5e76\u5047\u8bbe\u521d\u59cb\u72b6\u6001\u4e0b\u6700\u5de6 1 \u5f20\u6251\u514b\u724c\u5df2\u7ecf\u6709\u5e8f\u3002
- \u5728\u65e0\u5e8f\u90e8\u5206\u62bd\u51fa\u4e00\u5f20\u6251\u514b\u724c\uff0c\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\uff1b\u5b8c\u6210\u540e\u6700\u5de6 2 \u5f20\u6251\u514b\u5df2\u7ecf\u6709\u5e8f\u3002
- \u4e0d\u65ad\u5faa\u73af\u6b65\u9aa4
2. \uff0c\u6bcf\u4e00\u8f6e\u5c06\u4e00\u5f20\u6251\u514b\u724c\u4ece\u65e0\u5e8f\u90e8\u5206\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\uff0c\u76f4\u81f3\u6240\u6709\u6251\u514b\u724c\u90fd\u6709\u5e8f\u3002
\u56fe 1-2 \u00a0 \u6251\u514b\u6392\u5e8f\u6b65\u9aa4
\u4e0a\u8ff0\u6574\u7406\u6251\u514b\u724c\u7684\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u201c\u63d2\u5165\u6392\u5e8f\u201d\u7b97\u6cd5\uff0c\u5b83\u5728\u5904\u7406\u5c0f\u578b\u6570\u636e\u96c6\u65f6\u975e\u5e38\u9ad8\u6548\u3002\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u7684\u6392\u5e8f\u5e93\u51fd\u6570\u4e2d\u90fd\u6709\u63d2\u5165\u6392\u5e8f\u7684\u8eab\u5f71\u3002
\u4f8b\u4e09\uff1a\u8d27\u5e01\u627e\u96f6\u3002\u5047\u8bbe\u6211\u4eec\u5728\u8d85\u5e02\u8d2d\u4e70\u4e86 \\(69\\) \u5143\u7684\u5546\u54c1\uff0c\u7ed9\u4e86\u6536\u94f6\u5458 \\(100\\) \u5143\uff0c\u5219\u6536\u94f6\u5458\u9700\u8981\u627e\u6211\u4eec \\(31\\) \u5143\u3002\u4ed6\u4f1a\u5f88\u81ea\u7136\u5730\u5b8c\u6210\u5982\u56fe 1-3 \u6240\u793a\u7684\u601d\u8003\u3002
- \u53ef\u9009\u9879\u662f\u6bd4 \\(31\\) \u5143\u9762\u503c\u66f4\u5c0f\u7684\u8d27\u5e01\uff0c\u5305\u62ec \\(1\\) \u5143\u3001\\(5\\) \u5143\u3001\\(10\\) \u5143\u3001\\(20\\) \u5143\u3002
- \u4ece\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(20\\) \u5143\uff0c\u5269\u4f59 \\(31 - 20 = 11\\) \u5143\u3002
- \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(10\\) \u5143\uff0c\u5269\u4f59 \\(11 - 10 = 1\\) \u5143\u3002
- \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(1\\) \u5143\uff0c\u5269\u4f59 \\(1 - 1 = 0\\) \u5143\u3002
- \u5b8c\u6210\u627e\u96f6\uff0c\u65b9\u6848\u4e3a \\(20 + 10 + 1 = 31\\) \u5143\u3002
\u56fe 1-3 \u00a0 \u8d27\u5e01\u627e\u96f6\u8fc7\u7a0b
\u5728\u4ee5\u4e0a\u6b65\u9aa4\u4e2d\uff0c\u6211\u4eec\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u6700\u597d\u7684\u9009\u62e9\uff08\u5c3d\u53ef\u80fd\u7528\u5927\u9762\u989d\u7684\u8d27\u5e01\uff09\uff0c\u6700\u7ec8\u5f97\u5230\u4e86\u53ef\u884c\u7684\u627e\u96f6\u65b9\u6848\u3002\u4ece\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u201c\u8d2a\u5fc3\u201d\u7b97\u6cd5\u3002
\u5c0f\u5230\u70f9\u996a\u4e00\u9053\u83dc\uff0c\u5927\u5230\u661f\u9645\u822a\u884c\uff0c\u51e0\u4e4e\u6240\u6709\u95ee\u9898\u7684\u89e3\u51b3\u90fd\u79bb\u4e0d\u5f00\u7b97\u6cd5\u3002\u8ba1\u7b97\u673a\u7684\u51fa\u73b0\u4f7f\u5f97\u6211\u4eec\u80fd\u591f\u901a\u8fc7\u7f16\u7a0b\u5c06\u6570\u636e\u7ed3\u6784\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\uff0c\u540c\u65f6\u7f16\u5199\u4ee3\u7801\u8c03\u7528 CPU \u548c GPU \u6267\u884c\u7b97\u6cd5\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u6211\u4eec\u5c31\u80fd\u628a\u751f\u6d3b\u4e2d\u7684\u95ee\u9898\u8f6c\u79fb\u5230\u8ba1\u7b97\u673a\u4e0a\uff0c\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u89e3\u51b3\u5404\u79cd\u590d\u6742\u95ee\u9898\u3002
Tip
\u5982\u679c\u4f60\u5bf9\u6570\u636e\u7ed3\u6784\u3001\u7b97\u6cd5\u3001\u6570\u7ec4\u548c\u4e8c\u5206\u67e5\u627e\u7b49\u6982\u5ff5\u4ecd\u611f\u5230\u4e00\u77e5\u534a\u89e3\uff0c\u8bf7\u7ee7\u7eed\u5f80\u4e0b\u9605\u8bfb\uff0c\u672c\u4e66\u5c06\u5f15\u5bfc\u4f60\u8fc8\u5165\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u77e5\u8bc6\u6bbf\u5802\u3002
"},{"location":"chapter_introduction/summary/","title":"1.3 \u00a0 \u5c0f\u7ed3","text":" - \u7b97\u6cd5\u5728\u65e5\u5e38\u751f\u6d3b\u4e2d\u65e0\u5904\u4e0d\u5728\uff0c\u5e76\u4e0d\u662f\u9065\u4e0d\u53ef\u53ca\u7684\u9ad8\u6df1\u77e5\u8bc6\u3002\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u7528\u4ee5\u89e3\u51b3\u751f\u6d3b\u4e2d\u7684\u5927\u5c0f\u95ee\u9898\u3002
- \u67e5\u5b57\u5178\u7684\u539f\u7406\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u76f8\u4e00\u81f4\u3002\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u4f53\u73b0\u4e86\u5206\u800c\u6cbb\u4e4b\u7684\u91cd\u8981\u7b97\u6cd5\u601d\u60f3\u3002
- \u6574\u7406\u6251\u514b\u7684\u8fc7\u7a0b\u4e0e\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u975e\u5e38\u7c7b\u4f3c\u3002\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u9002\u5408\u6392\u5e8f\u5c0f\u578b\u6570\u636e\u96c6\u3002
- \u8d27\u5e01\u627e\u96f6\u7684\u6b65\u9aa4\u672c\u8d28\u4e0a\u662f\u8d2a\u5fc3\u7b97\u6cd5\uff0c\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u6700\u597d\u7684\u9009\u62e9\u3002
- \u7b97\u6cd5\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u800c\u6570\u636e\u7ed3\u6784\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002
- \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7d27\u5bc6\u76f8\u8fde\u3002\u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\uff0c\u800c\u7b97\u6cd5\u662f\u6570\u636e\u7ed3\u6784\u53d1\u6325\u4f5c\u7528\u7684\u821e\u53f0\u3002
- \u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u62fc\u88c5\u79ef\u6728\uff0c\u79ef\u6728\u4ee3\u8868\u6570\u636e\uff0c\u79ef\u6728\u7684\u5f62\u72b6\u548c\u8fde\u63a5\u65b9\u5f0f\u7b49\u4ee3\u8868\u6570\u636e\u7ed3\u6784\uff0c\u62fc\u88c5\u79ef\u6728\u7684\u6b65\u9aa4\u5219\u5bf9\u5e94\u7b97\u6cd5\u3002
"},{"location":"chapter_introduction/what_is_dsa/","title":"1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48","text":""},{"location":"chapter_introduction/what_is_dsa/#121","title":"1.2.1 \u00a0 \u7b97\u6cd5\u5b9a\u4e49","text":"\u300c\u7b97\u6cd5 algorithm\u300d\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u5b83\u5177\u6709\u4ee5\u4e0b\u7279\u6027\u3002
- \u95ee\u9898\u662f\u660e\u786e\u7684\uff0c\u5305\u542b\u6e05\u6670\u7684\u8f93\u5165\u548c\u8f93\u51fa\u5b9a\u4e49\u3002
- \u5177\u6709\u53ef\u884c\u6027\uff0c\u80fd\u591f\u5728\u6709\u9650\u6b65\u9aa4\u3001\u65f6\u95f4\u548c\u5185\u5b58\u7a7a\u95f4\u4e0b\u5b8c\u6210\u3002
- \u5404\u6b65\u9aa4\u90fd\u6709\u786e\u5b9a\u7684\u542b\u4e49\uff0c\u5728\u76f8\u540c\u7684\u8f93\u5165\u548c\u8fd0\u884c\u6761\u4ef6\u4e0b\uff0c\u8f93\u51fa\u59cb\u7ec8\u76f8\u540c\u3002
"},{"location":"chapter_introduction/what_is_dsa/#122","title":"1.2.2 \u00a0 \u6570\u636e\u7ed3\u6784\u5b9a\u4e49","text":"\u300c\u6570\u636e\u7ed3\u6784 data structure\u300d\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\uff0c\u5177\u6709\u4ee5\u4e0b\u8bbe\u8ba1\u76ee\u6807\u3002
- \u7a7a\u95f4\u5360\u7528\u5c3d\u91cf\u5c11\uff0c\u4ee5\u8282\u7701\u8ba1\u7b97\u673a\u5185\u5b58\u3002
- \u6570\u636e\u64cd\u4f5c\u5c3d\u53ef\u80fd\u5feb\u901f\uff0c\u6db5\u76d6\u6570\u636e\u8bbf\u95ee\u3001\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66f4\u65b0\u7b49\u3002
- \u63d0\u4f9b\u7b80\u6d01\u7684\u6570\u636e\u8868\u793a\u548c\u903b\u8f91\u4fe1\u606f\uff0c\u4ee5\u4fbf\u7b97\u6cd5\u9ad8\u6548\u8fd0\u884c\u3002
\u6570\u636e\u7ed3\u6784\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5145\u6ee1\u6743\u8861\u7684\u8fc7\u7a0b\u3002\u5982\u679c\u60f3\u5728\u67d0\u65b9\u9762\u53d6\u5f97\u63d0\u5347\uff0c\u5f80\u5f80\u9700\u8981\u5728\u53e6\u4e00\u65b9\u9762\u4f5c\u51fa\u59a5\u534f\u3002\u4e0b\u9762\u4e3e\u4e24\u4e2a\u4f8b\u5b50\u3002
- \u94fe\u8868\u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5728\u6570\u636e\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u4e0a\u66f4\u52a0\u4fbf\u6377\uff0c\u4f46\u727a\u7272\u4e86\u6570\u636e\u8bbf\u95ee\u901f\u5ea6\u3002
- \u56fe\u76f8\u8f83\u4e8e\u94fe\u8868\uff0c\u63d0\u4f9b\u4e86\u66f4\u4e30\u5bcc\u7684\u903b\u8f91\u4fe1\u606f\uff0c\u4f46\u9700\u8981\u5360\u7528\u66f4\u5927\u7684\u5185\u5b58\u7a7a\u95f4\u3002
"},{"location":"chapter_introduction/what_is_dsa/#123","title":"1.2.3 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb","text":"\u5982\u56fe 1-4 \u6240\u793a\uff0c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u9ad8\u5ea6\u76f8\u5173\u3001\u7d27\u5bc6\u7ed3\u5408\uff0c\u5177\u4f53\u8868\u73b0\u5728\u4ee5\u4e0b\u4e09\u4e2a\u65b9\u9762\u3002
- \u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\u3002\u6570\u636e\u7ed3\u6784\u4e3a\u7b97\u6cd5\u63d0\u4f9b\u4e86\u7ed3\u6784\u5316\u5b58\u50a8\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u64cd\u4f5c\u6570\u636e\u7684\u65b9\u6cd5\u3002
- \u7b97\u6cd5\u662f\u6570\u636e\u7ed3\u6784\u53d1\u6325\u4f5c\u7528\u7684\u821e\u53f0\u3002\u6570\u636e\u7ed3\u6784\u672c\u8eab\u4ec5\u5b58\u50a8\u6570\u636e\u4fe1\u606f\uff0c\u7ed3\u5408\u7b97\u6cd5\u624d\u80fd\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u3002
- \u7b97\u6cd5\u901a\u5e38\u53ef\u4ee5\u57fa\u4e8e\u4e0d\u540c\u7684\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff0c\u4f46\u6267\u884c\u6548\u7387\u53ef\u80fd\u76f8\u5dee\u5f88\u5927\uff0c\u9009\u62e9\u5408\u9002\u7684\u6570\u636e\u7ed3\u6784\u662f\u5173\u952e\u3002
\u56fe 1-4 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb
\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u72b9\u5982\u56fe 1-5 \u6240\u793a\u7684\u62fc\u88c5\u79ef\u6728\u3002\u4e00\u5957\u79ef\u6728\uff0c\u9664\u4e86\u5305\u542b\u8bb8\u591a\u96f6\u4ef6\u4e4b\u5916\uff0c\u8fd8\u9644\u6709\u8be6\u7ec6\u7684\u7ec4\u88c5\u8bf4\u660e\u4e66\u3002\u6211\u4eec\u6309\u7167\u8bf4\u660e\u4e66\u4e00\u6b65\u6b65\u64cd\u4f5c\uff0c\u5c31\u80fd\u7ec4\u88c5\u51fa\u7cbe\u7f8e\u7684\u79ef\u6728\u6a21\u578b\u3002
\u56fe 1-5 \u00a0 \u62fc\u88c5\u79ef\u6728
\u4e24\u8005\u7684\u8be6\u7ec6\u5bf9\u5e94\u5173\u7cfb\u5982\u8868 1-1 \u6240\u793a\u3002
\u8868 1-1 \u00a0 \u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u62fc\u88c5\u79ef\u6728
\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5 \u62fc\u88c5\u79ef\u6728 \u8f93\u5165\u6570\u636e \u672a\u62fc\u88c5\u7684\u79ef\u6728 \u6570\u636e\u7ed3\u6784 \u79ef\u6728\u7ec4\u7ec7\u5f62\u5f0f\uff0c\u5305\u62ec\u5f62\u72b6\u3001\u5927\u5c0f\u3001\u8fde\u63a5\u65b9\u5f0f\u7b49 \u7b97\u6cd5 \u628a\u79ef\u6728\u62fc\u6210\u76ee\u6807\u5f62\u6001\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u6b65\u9aa4 \u8f93\u51fa\u6570\u636e \u79ef\u6728\u6a21\u578b \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u662f\u72ec\u7acb\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u3002\u6b63\u56e0\u5982\u6b64\uff0c\u672c\u4e66\u5f97\u4ee5\u63d0\u4f9b\u57fa\u4e8e\u591a\u79cd\u7f16\u7a0b\u8bed\u8a00\u7684\u5b9e\u73b0\u3002
\u7ea6\u5b9a\u4fd7\u6210\u7684\u7b80\u79f0
\u5728\u5b9e\u9645\u8ba8\u8bba\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u201c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u201d\u7b80\u79f0\u4e3a\u201c\u7b97\u6cd5\u201d\u3002\u6bd4\u5982\u4f17\u6240\u5468\u77e5\u7684 LeetCode \u7b97\u6cd5\u9898\u76ee\uff0c\u5b9e\u9645\u4e0a\u540c\u65f6\u8003\u67e5\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e24\u65b9\u9762\u7684\u77e5\u8bc6\u3002
"},{"location":"chapter_preface/","title":"\u7b2c 0 \u7ae0 \u00a0 \u524d\u8a00","text":"Abstract
\u7b97\u6cd5\u72b9\u5982\u7f8e\u5999\u7684\u4ea4\u54cd\u4e50\uff0c\u6bcf\u4e00\u884c\u4ee3\u7801\u90fd\u50cf\u97f5\u5f8b\u822c\u6d41\u6dcc\u3002
\u613f\u8fd9\u672c\u4e66\u5728\u4f60\u7684\u8111\u6d77\u4e2d\u8f7b\u8f7b\u54cd\u8d77\uff0c\u7559\u4e0b\u72ec\u7279\u800c\u6df1\u523b\u7684\u65cb\u5f8b\u3002
"},{"location":"chapter_preface/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 0.1 \u00a0 \u5173\u4e8e\u672c\u4e66
- 0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66
- 0.3 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_preface/about_the_book/","title":"0.1 \u00a0 \u5173\u4e8e\u672c\u4e66","text":"\u672c\u9879\u76ee\u65e8\u5728\u521b\u5efa\u4e00\u672c\u5f00\u6e90\u3001\u514d\u8d39\u3001\u5bf9\u65b0\u624b\u53cb\u597d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u6559\u7a0b\u3002
- \u5168\u4e66\u91c7\u7528\u52a8\u753b\u56fe\u89e3\uff0c\u7ed3\u6784\u5316\u5730\u8bb2\u89e3\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u5185\u5bb9\u6e05\u6670\u6613\u61c2\uff0c\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1\u3002
- \u7b97\u6cd5\u6e90\u4ee3\u7801\u7686\u53ef\u4e00\u952e\u8fd0\u884c\uff0c\u652f\u6301 Python\u3001C++\u3001Java\u3001C#\u3001Go\u3001Swift\u3001JavaScript\u3001TypeScript\u3001Dart\u3001Rust\u3001C \u548c Zig \u7b49\u8bed\u8a00\u3002
- \u9f13\u52b1\u8bfb\u8005\u5728\u7ebf\u4e0a\u7ae0\u8282\u8bc4\u8bba\u533a\u4e92\u5e2e\u4e92\u52a9\u3001\u5171\u540c\u8fdb\u6b65\uff0c\u63d0\u95ee\u4e0e\u8bc4\u8bba\u901a\u5e38\u53ef\u5728\u4e24\u65e5\u5185\u5f97\u5230\u56de\u590d\u3002
"},{"location":"chapter_preface/about_the_book/#011","title":"0.1.1 \u00a0 \u8bfb\u8005\u5bf9\u8c61","text":"\u82e5\u4f60\u662f\u7b97\u6cd5\u521d\u5b66\u8005\uff0c\u4ece\u672a\u63a5\u89e6\u8fc7\u7b97\u6cd5\uff0c\u6216\u8005\u5df2\u7ecf\u6709\u4e00\u4e9b\u5237\u9898\u7ecf\u9a8c\uff0c\u5bf9\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6709\u6a21\u7cca\u7684\u8ba4\u8bc6\uff0c\u5728\u4f1a\u4e0e\u4e0d\u4f1a\u4e4b\u95f4\u53cd\u590d\u6a2a\u8df3\uff0c\u90a3\u4e48\u672c\u4e66\u6b63\u662f\u4e3a\u4f60\u91cf\u8eab\u5b9a\u5236\u7684\uff01
\u5982\u679c\u4f60\u5df2\u7ecf\u79ef\u7d2f\u4e00\u5b9a\u7684\u5237\u9898\u91cf\uff0c\u719f\u6089\u5927\u90e8\u5206\u9898\u578b\uff0c\u90a3\u4e48\u672c\u4e66\u53ef\u52a9\u4f60\u56de\u987e\u4e0e\u68b3\u7406\u7b97\u6cd5\u77e5\u8bc6\u4f53\u7cfb\uff0c\u4ed3\u5e93\u6e90\u4ee3\u7801\u53ef\u4ee5\u5f53\u4f5c\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u6216\u201c\u7b97\u6cd5\u5b57\u5178\u201d\u6765\u4f7f\u7528\u3002
\u82e5\u4f60\u662f\u7b97\u6cd5\u201c\u5927\u795e\u201d\uff0c\u6211\u4eec\u671f\u5f85\u6536\u5230\u4f60\u7684\u5b9d\u8d35\u5efa\u8bae\uff0c\u6216\u8005\u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c\u3002
\u524d\u7f6e\u6761\u4ef6
\u4f60\u9700\u8981\u81f3\u5c11\u5177\u5907\u4efb\u4e00\u8bed\u8a00\u7684\u7f16\u7a0b\u57fa\u7840\uff0c\u80fd\u591f\u9605\u8bfb\u548c\u7f16\u5199\u7b80\u5355\u4ee3\u7801\u3002
"},{"location":"chapter_preface/about_the_book/#012","title":"0.1.2 \u00a0 \u5185\u5bb9\u7ed3\u6784","text":"\u672c\u4e66\u7684\u4e3b\u8981\u5185\u5bb9\u5982\u56fe 0-1 \u6240\u793a\u3002
- \u590d\u6742\u5ea6\u5206\u6790\uff1a\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u7684\u8bc4\u4ef7\u7ef4\u5ea6\u4e0e\u65b9\u6cd5\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u793a\u4f8b\u7b49\u3002
- \u6570\u636e\u7ed3\u6784\uff1a\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u6570\u636e\u7ed3\u6784\u7684\u5206\u7c7b\u65b9\u6cd5\u3002\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u5e38\u7528\u64cd\u4f5c\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u5178\u578b\u5e94\u7528\u3001\u5b9e\u73b0\u65b9\u6cd5\u7b49\u3002
- \u7b97\u6cd5\uff1a\u641c\u7d22\u3001\u6392\u5e8f\u3001\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u6548\u7387\u3001\u5e94\u7528\u573a\u666f\u3001\u89e3\u9898\u6b65\u9aa4\u548c\u793a\u4f8b\u95ee\u9898\u7b49\u3002
\u56fe 0-1 \u00a0 \u672c\u4e66\u4e3b\u8981\u5185\u5bb9
"},{"location":"chapter_preface/about_the_book/#013","title":"0.1.3 \u00a0 \u81f4\u8c22","text":"\u5728\u672c\u4e66\u7684\u521b\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u5f97\u5230\u4e86\u8bb8\u591a\u4eba\u7684\u5e2e\u52a9\u3002
- \u611f\u8c22\u6211\u5728\u516c\u53f8\u7684\u5bfc\u5e08\u674e\u6c50\u535a\u58eb\uff0c\u5728\u4e00\u6b21\u7545\u8c08\u4e2d\u4f60\u9f13\u52b1\u6211\u201c\u5feb\u884c\u52a8\u8d77\u6765\u201d\uff0c\u575a\u5b9a\u4e86\u6211\u5199\u8fd9\u672c\u4e66\u7684\u51b3\u5fc3\uff1b
- \u611f\u8c22\u6211\u7684\u5973\u670b\u53cb\u6ce1\u6ce1\u4f5c\u4e3a\u672c\u4e66\u7684\u9996\u4f4d\u8bfb\u8005\uff0c\u4ece\u7b97\u6cd5\u5c0f\u767d\u7684\u89d2\u5ea6\u63d0\u51fa\u8bb8\u591a\u5b9d\u8d35\u5efa\u8bae\uff0c\u4f7f\u5f97\u672c\u4e66\u66f4\u9002\u5408\u65b0\u624b\u9605\u8bfb\uff1b
- \u611f\u8c22\u817e\u5b9d\u3001\u7426\u5b9d\u3001\u98de\u5b9d\u4e3a\u672c\u4e66\u8d77\u4e86\u4e00\u4e2a\u5bcc\u6709\u521b\u610f\u7684\u540d\u5b57\uff0c\u5524\u8d77\u5927\u5bb6\u5199\u4e0b\u7b2c\u4e00\u884c\u4ee3\u7801 \"Hello World!\" \u7684\u7f8e\u597d\u56de\u5fc6\uff1b
- \u611f\u8c22\u6821\u94e8\u5728\u77e5\u8bc6\u4ea7\u6743\u65b9\u9762\u63d0\u4f9b\u7684\u4e13\u4e1a\u5e2e\u52a9\uff0c\u8fd9\u5bf9\u672c\u5f00\u6e90\u4e66\u7684\u5b8c\u5584\u8d77\u5230\u4e86\u91cd\u8981\u4f5c\u7528\uff1b
- \u611f\u8c22\u82cf\u6f7c\u4e3a\u672c\u4e66\u8bbe\u8ba1\u4e86\u7cbe\u7f8e\u7684\u5c01\u9762\u548c logo \uff0c\u5e76\u5728\u6211\u7684\u5f3a\u8feb\u75c7\u7684\u9a71\u4f7f\u4e0b\u591a\u6b21\u8010\u5fc3\u4fee\u6539\uff1b
- \u611f\u8c22 @squidfunk \u63d0\u4f9b\u7684\u6392\u7248\u5efa\u8bae\uff0c\u4ee5\u53ca\u4ed6\u5f00\u53d1\u7684\u5f00\u6e90\u6587\u6863\u4e3b\u9898 Material-for-MkDocs \u3002
\u5728\u5199\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u9605\u8bfb\u4e86\u8bb8\u591a\u5173\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u6559\u6750\u548c\u6587\u7ae0\u3002\u8fd9\u4e9b\u4f5c\u54c1\u4e3a\u672c\u4e66\u63d0\u4f9b\u4e86\u4f18\u79c0\u7684\u8303\u672c\uff0c\u786e\u4fdd\u4e86\u672c\u4e66\u5185\u5bb9\u7684\u51c6\u786e\u6027\u4e0e\u54c1\u8d28\u3002\u5728\u6b64\u611f\u8c22\u6240\u6709\u8001\u5e08\u548c\u524d\u8f88\u4eec\u7684\u6770\u51fa\u8d21\u732e\uff01
\u672c\u4e66\u5021\u5bfc\u624b\u8111\u5e76\u7528\u7684\u5b66\u4e60\u65b9\u5f0f\uff0c\u5728\u8fd9\u4e00\u70b9\u4e0a\u6211\u6df1\u53d7\u300a\u52a8\u624b\u5b66\u6df1\u5ea6\u5b66\u4e60\u300b\u7684\u542f\u53d1\u3002\u5728\u6b64\u5411\u5404\u4f4d\u8bfb\u8005\u5f3a\u70c8\u63a8\u8350\u8fd9\u672c\u4f18\u79c0\u7684\u8457\u4f5c\u3002
\u8877\u5fc3\u611f\u8c22\u6211\u7684\u7236\u6bcd\uff0c\u6b63\u662f\u4f60\u4eec\u4e00\u76f4\u4ee5\u6765\u7684\u652f\u6301\u4e0e\u9f13\u52b1\uff0c\u8ba9\u6211\u6709\u673a\u4f1a\u505a\u8fd9\u4ef6\u5bcc\u6709\u8da3\u5473\u7684\u4e8b\u3002
"},{"location":"chapter_preface/suggestions/","title":"0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66","text":"Tip
\u4e3a\u4e86\u83b7\u5f97\u6700\u4f73\u7684\u9605\u8bfb\u4f53\u9a8c\uff0c\u5efa\u8bae\u4f60\u901a\u8bfb\u672c\u8282\u5185\u5bb9\u3002
"},{"location":"chapter_preface/suggestions/#021","title":"0.2.1 \u00a0 \u884c\u6587\u98ce\u683c\u7ea6\u5b9a","text":" - \u6807\u9898\u540e\u6807\u6ce8
* \u7684\u662f\u9009\u8bfb\u7ae0\u8282\uff0c\u5185\u5bb9\u76f8\u5bf9\u56f0\u96be\u3002\u5982\u679c\u4f60\u7684\u65f6\u95f4\u6709\u9650\uff0c\u53ef\u4ee5\u5148\u8df3\u8fc7\u3002 - \u91cd\u8981\u4e13\u6709\u540d\u8bcd\u53ca\u5176\u82f1\u6587\u7ffb\u8bd1\u4f1a\u7528
\u300c \u300d \u62ec\u53f7\u6807\u6ce8\uff0c\u4f8b\u5982 \u300c\u6570\u7ec4 array\u300d \u3002\u5efa\u8bae\u8bb0\u4f4f\u5b83\u4eec\uff0c\u4ee5\u4fbf\u9605\u8bfb\u6587\u732e\u3002 - \u4e13\u6709\u540d\u8bcd\u548c\u6709\u7279\u6307\u542b\u4e49\u7684\u8bcd\u53e5\u4f1a\u4f7f\u7528
\u201c\u5f15\u53f7\u201d \u6807\u6ce8\uff0c\u4ee5\u907f\u514d\u6b67\u4e49\u3002 - \u91cd\u8981\u540d\u8bcd\u3001\u91cd\u70b9\u5185\u5bb9\u548c\u603b\u7ed3\u6027\u8bed\u53e5\u4f1a \u52a0\u7c97 \uff0c\u8fd9\u7c7b\u6587\u5b57\u503c\u5f97\u7279\u522b\u5173\u6ce8\u3002
- \u5f53\u6d89\u53ca\u7f16\u7a0b\u8bed\u8a00\u4e4b\u95f4\u4e0d\u4e00\u81f4\u7684\u540d\u8bcd\u65f6\uff0c\u672c\u4e66\u5747\u4ee5 Python \u4e3a\u51c6\uff0c\u4f8b\u5982\u4f7f\u7528
None \u6765\u8868\u793a\u201c\u7a7a\u201d\u3002 - \u672c\u4e66\u90e8\u5206\u653e\u5f03\u4e86\u7f16\u7a0b\u8bed\u8a00\u7684\u6ce8\u91ca\u89c4\u8303\uff0c\u4ee5\u6362\u53d6\u66f4\u52a0\u7d27\u51d1\u7684\u5185\u5bb9\u6392\u7248\u3002\u6ce8\u91ca\u4e3b\u8981\u5206\u4e3a\u4e09\u79cd\u7c7b\u578b\uff1a\u6807\u9898\u6ce8\u91ca\u3001\u5185\u5bb9\u6ce8\u91ca\u3001\u591a\u884c\u6ce8\u91ca\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig \"\"\"\u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\"\"\"\n\n# \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n\"\"\"\n\u591a\u884c\n\u6ce8\u91ca\n\"\"\"\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
/* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
// \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\n\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\n// \u591a\u884c\n// \u6ce8\u91ca\n
"},{"location":"chapter_preface/suggestions/#022","title":"0.2.2 \u00a0 \u5728\u52a8\u753b\u56fe\u89e3\u4e2d\u9ad8\u6548\u5b66\u4e60","text":"\u76f8\u8f83\u4e8e\u6587\u5b57\uff0c\u89c6\u9891\u548c\u56fe\u7247\u5177\u6709\u66f4\u9ad8\u7684\u4fe1\u606f\u5bc6\u5ea6\u548c\u7ed3\u6784\u5316\u7a0b\u5ea6\uff0c\u66f4\u6613\u4e8e\u7406\u89e3\u3002\u5728\u672c\u4e66\u4e2d\uff0c\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u5c06\u4e3b\u8981\u901a\u8fc7\u52a8\u753b\u4ee5\u56fe\u89e3\u5f62\u5f0f\u5c55\u793a\uff0c\u800c\u6587\u5b57\u5219\u4f5c\u4e3a\u89e3\u91ca\u4e0e\u8865\u5145\u3002
\u5982\u679c\u4f60\u5728\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u53d1\u73b0\u67d0\u6bb5\u5185\u5bb9\u63d0\u4f9b\u4e86\u5982\u56fe 0-2 \u6240\u793a\u7684\u52a8\u753b\u6216\u56fe\u89e3\uff0c\u8bf7\u4ee5\u56fe\u4e3a\u4e3b\u3001\u4ee5\u6587\u5b57\u4e3a\u8f85\uff0c\u7efc\u5408\u4e24\u8005\u6765\u7406\u89e3\u5185\u5bb9\u3002
\u56fe 0-2 \u00a0 \u52a8\u753b\u56fe\u89e3\u793a\u4f8b
"},{"location":"chapter_preface/suggestions/#023","title":"0.2.3 \u00a0 \u5728\u4ee3\u7801\u5b9e\u8df5\u4e2d\u52a0\u6df1\u7406\u89e3","text":"\u672c\u4e66\u7684\u914d\u5957\u4ee3\u7801\u6258\u7ba1\u5728 GitHub \u4ed3\u5e93\u3002\u5982\u56fe 0-3 \u6240\u793a\uff0c\u6e90\u4ee3\u7801\u9644\u6709\u6d4b\u8bd5\u6837\u4f8b\uff0c\u53ef\u4e00\u952e\u8fd0\u884c\u3002
\u5982\u679c\u65f6\u95f4\u5141\u8bb8\uff0c\u5efa\u8bae\u4f60\u53c2\u7167\u4ee3\u7801\u81ea\u884c\u6572\u4e00\u904d\u3002\u5982\u679c\u5b66\u4e60\u65f6\u95f4\u6709\u9650\uff0c\u8bf7\u81f3\u5c11\u901a\u8bfb\u5e76\u8fd0\u884c\u6240\u6709\u4ee3\u7801\u3002
\u4e0e\u9605\u8bfb\u4ee3\u7801\u76f8\u6bd4\uff0c\u7f16\u5199\u4ee3\u7801\u7684\u8fc7\u7a0b\u5f80\u5f80\u80fd\u5e26\u6765\u66f4\u591a\u6536\u83b7\u3002\u52a8\u624b\u5b66\uff0c\u624d\u662f\u771f\u7684\u5b66\u3002
\u56fe 0-3 \u00a0 \u8fd0\u884c\u4ee3\u7801\u793a\u4f8b
\u8fd0\u884c\u4ee3\u7801\u7684\u524d\u7f6e\u5de5\u4f5c\u4e3b\u8981\u5206\u4e3a\u4e09\u6b65\u3002
\u7b2c\u4e00\u6b65\uff1a\u5b89\u88c5\u672c\u5730\u7f16\u7a0b\u73af\u5883\u3002\u8bf7\u53c2\u7167\u9644\u5f55\u6240\u793a\u7684\u6559\u7a0b\u8fdb\u884c\u5b89\u88c5\uff0c\u5982\u679c\u5df2\u5b89\u88c5\uff0c\u5219\u53ef\u8df3\u8fc7\u6b64\u6b65\u9aa4\u3002
\u7b2c\u4e8c\u6b65\uff1a\u514b\u9686\u6216\u4e0b\u8f7d\u4ee3\u7801\u4ed3\u5e93\u3002\u524d\u5f80 GitHub \u4ed3\u5e93\u3002
\u5982\u679c\u5df2\u7ecf\u5b89\u88c5 Git \uff0c\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u514b\u9686\u672c\u4ed3\u5e93\uff1a
git clone https://github.com/krahets/hello-algo.git\n
\u5f53\u7136\uff0c\u4f60\u4e5f\u53ef\u4ee5\u5728\u56fe 0-4 \u6240\u793a\u7684\u4f4d\u7f6e\uff0c\u70b9\u51fb\u201cDownload ZIP\u201d\u6309\u94ae\u76f4\u63a5\u4e0b\u8f7d\u4ee3\u7801\u538b\u7f29\u5305\uff0c\u7136\u540e\u5728\u672c\u5730\u89e3\u538b\u5373\u53ef\u3002
\u56fe 0-4 \u00a0 \u514b\u9686\u4ed3\u5e93\u4e0e\u4e0b\u8f7d\u4ee3\u7801
\u7b2c\u4e09\u6b65\uff1a\u8fd0\u884c\u6e90\u4ee3\u7801\u3002\u5982\u56fe 0-5 \u6240\u793a\uff0c\u5bf9\u4e8e\u9876\u90e8\u6807\u6709\u6587\u4ef6\u540d\u79f0\u7684\u4ee3\u7801\u5757\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u4ed3\u5e93\u7684 codes \u6587\u4ef6\u5939\u5185\u627e\u5230\u5bf9\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6\u3002\u6e90\u4ee3\u7801\u6587\u4ef6\u53ef\u4e00\u952e\u8fd0\u884c\uff0c\u5c06\u5e2e\u52a9\u4f60\u8282\u7701\u4e0d\u5fc5\u8981\u7684\u8c03\u8bd5\u65f6\u95f4\uff0c\u8ba9\u4f60\u80fd\u591f\u4e13\u6ce8\u4e8e\u5b66\u4e60\u5185\u5bb9\u3002
\u56fe 0-5 \u00a0 \u4ee3\u7801\u5757\u4e0e\u5bf9\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6
"},{"location":"chapter_preface/suggestions/#024","title":"0.2.4 \u00a0 \u5728\u63d0\u95ee\u8ba8\u8bba\u4e2d\u5171\u540c\u6210\u957f","text":"\u5728\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u8bf7\u4e0d\u8981\u8f7b\u6613\u8df3\u8fc7\u90a3\u4e9b\u6ca1\u5b66\u660e\u767d\u7684\u77e5\u8bc6\u70b9\u3002\u6b22\u8fce\u5728\u8bc4\u8bba\u533a\u63d0\u51fa\u4f60\u7684\u95ee\u9898\uff0c\u6211\u548c\u5c0f\u4f19\u4f34\u4eec\u5c06\u7aed\u8bda\u4e3a\u4f60\u89e3\u7b54\uff0c\u4e00\u822c\u60c5\u51b5\u4e0b\u53ef\u5728\u4e24\u5929\u5185\u56de\u590d\u3002
\u5982\u56fe 0-6 \u6240\u793a\uff0c\u7f51\u9875\u7248\u6bcf\u4e2a\u7ae0\u8282\u7684\u5e95\u90e8\u90fd\u914d\u6709\u8bc4\u8bba\u533a\u3002\u5e0c\u671b\u4f60\u80fd\u591a\u5173\u6ce8\u8bc4\u8bba\u533a\u7684\u5185\u5bb9\u3002\u4e00\u65b9\u9762\uff0c\u4f60\u53ef\u4ee5\u4e86\u89e3\u5927\u5bb6\u9047\u5230\u7684\u95ee\u9898\uff0c\u4ece\u800c\u67e5\u6f0f\u8865\u7f3a\uff0c\u6fc0\u53d1\u66f4\u6df1\u5165\u7684\u601d\u8003\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u671f\u5f85\u4f60\u80fd\u6177\u6168\u5730\u56de\u7b54\u5176\u4ed6\u5c0f\u4f19\u4f34\u7684\u95ee\u9898\uff0c\u5206\u4eab\u4f60\u7684\u89c1\u89e3\uff0c\u5e2e\u52a9\u4ed6\u4eba\u8fdb\u6b65\u3002
\u56fe 0-6 \u00a0 \u8bc4\u8bba\u533a\u793a\u4f8b
"},{"location":"chapter_preface/suggestions/#025","title":"0.2.5 \u00a0 \u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf","text":"\u4ece\u603b\u4f53\u4e0a\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8fc7\u7a0b\u5212\u5206\u4e3a\u4e09\u4e2a\u9636\u6bb5\u3002
- \u9636\u6bb5\u4e00\uff1a\u7b97\u6cd5\u5165\u95e8\u3002\u6211\u4eec\u9700\u8981\u719f\u6089\u5404\u79cd\u6570\u636e\u7ed3\u6784\u7684\u7279\u70b9\u548c\u7528\u6cd5\uff0c\u5b66\u4e60\u4e0d\u540c\u7b97\u6cd5\u7684\u539f\u7406\u3001\u6d41\u7a0b\u3001\u7528\u9014\u548c\u6548\u7387\u7b49\u65b9\u9762\u7684\u5185\u5bb9\u3002
- \u9636\u6bb5\u4e8c\uff1a\u5237\u7b97\u6cd5\u9898\u3002\u5efa\u8bae\u4ece\u70ed\u95e8\u9898\u76ee\u5f00\u5237\uff0c\u5982\u201c\u5251\u6307 Offer\u201d\u548c\u201cLeetCode Hot 100\u201d\uff0c\u5148\u79ef\u7d2f\u81f3\u5c11 100 \u9053\u9898\u76ee\uff0c\u719f\u6089\u4e3b\u6d41\u7684\u7b97\u6cd5\u95ee\u9898\u3002\u521d\u6b21\u5237\u9898\u65f6\uff0c\u201c\u77e5\u8bc6\u9057\u5fd8\u201d\u53ef\u80fd\u662f\u4e00\u4e2a\u6311\u6218\uff0c\u4f46\u8bf7\u653e\u5fc3\uff0c\u8fd9\u662f\u5f88\u6b63\u5e38\u7684\u3002\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u201c\u827e\u5bbe\u6d69\u65af\u9057\u5fd8\u66f2\u7ebf\u201d\u6765\u590d\u4e60\u9898\u76ee\uff0c\u901a\u5e38\u5728\u8fdb\u884c 3\uff5e5 \u8f6e\u7684\u91cd\u590d\u540e\uff0c\u5c31\u80fd\u5c06\u5176\u7262\u8bb0\u5728\u5fc3\u3002
- \u9636\u6bb5\u4e09\uff1a\u642d\u5efa\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5b66\u4e60\u65b9\u9762\uff0c\u6211\u4eec\u53ef\u4ee5\u9605\u8bfb\u7b97\u6cd5\u4e13\u680f\u6587\u7ae0\u3001\u89e3\u9898\u6846\u67b6\u548c\u7b97\u6cd5\u6559\u6750\uff0c\u4ee5\u4e0d\u65ad\u4e30\u5bcc\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5237\u9898\u65b9\u9762\uff0c\u53ef\u4ee5\u5c1d\u8bd5\u91c7\u7528\u8fdb\u9636\u5237\u9898\u7b56\u7565\uff0c\u5982\u6309\u4e13\u9898\u5206\u7c7b\u3001\u4e00\u9898\u591a\u89e3\u3001\u4e00\u89e3\u591a\u9898\u7b49\uff0c\u76f8\u5173\u7684\u5237\u9898\u5fc3\u5f97\u53ef\u4ee5\u5728\u5404\u4e2a\u793e\u533a\u627e\u5230\u3002
\u5982\u56fe 0-7 \u6240\u793a\uff0c\u672c\u4e66\u5185\u5bb9\u4e3b\u8981\u6db5\u76d6\u201c\u9636\u6bb5\u4e00\u201d\uff0c\u65e8\u5728\u5e2e\u52a9\u4f60\u66f4\u9ad8\u6548\u5730\u5c55\u5f00\u9636\u6bb5\u4e8c\u548c\u9636\u6bb5\u4e09\u7684\u5b66\u4e60\u3002
\u56fe 0-7 \u00a0 \u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf
"},{"location":"chapter_preface/summary/","title":"0.3 \u00a0 \u5c0f\u7ed3","text":" - \u672c\u4e66\u7684\u4e3b\u8981\u53d7\u4f17\u662f\u7b97\u6cd5\u521d\u5b66\u8005\u3002\u5982\u679c\u4f60\u5df2\u6709\u4e00\u5b9a\u57fa\u7840\uff0c\u672c\u4e66\u80fd\u5e2e\u52a9\u4f60\u7cfb\u7edf\u56de\u987e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u4e66\u4e2d\u6e90\u4ee3\u7801\u4e5f\u53ef\u4f5c\u4e3a\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u4f7f\u7528\u3002
- \u4e66\u4e2d\u5185\u5bb9\u4e3b\u8981\u5305\u62ec\u590d\u6742\u5ea6\u5206\u6790\u3001\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e09\u90e8\u5206\uff0c\u6db5\u76d6\u4e86\u8be5\u9886\u57df\u7684\u5927\u90e8\u5206\u4e3b\u9898\u3002
- \u5bf9\u4e8e\u7b97\u6cd5\u65b0\u624b\uff0c\u5728\u521d\u5b66\u9636\u6bb5\u9605\u8bfb\u4e00\u672c\u5165\u95e8\u4e66\u81f3\u5173\u91cd\u8981\uff0c\u53ef\u4ee5\u5c11\u8d70\u8bb8\u591a\u5f2f\u8def\u3002
- \u4e66\u4e2d\u7684\u52a8\u753b\u56fe\u89e3\u901a\u5e38\u7528\u4e8e\u4ecb\u7ecd\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u3002\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u5e94\u7ed9\u4e88\u8fd9\u4e9b\u5185\u5bb9\u66f4\u591a\u5173\u6ce8\u3002
- \u5b9e\u8df5\u4e43\u5b66\u4e60\u7f16\u7a0b\u4e4b\u6700\u4f73\u9014\u5f84\u3002\u5f3a\u70c8\u5efa\u8bae\u8fd0\u884c\u6e90\u4ee3\u7801\u5e76\u4eb2\u81ea\u6572\u4ee3\u7801\u3002
- \u672c\u4e66\u7f51\u9875\u7248\u7684\u6bcf\u4e2a\u7ae0\u8282\u90fd\u8bbe\u6709\u8bc4\u8bba\u533a\uff0c\u6b22\u8fce\u968f\u65f6\u5206\u4eab\u4f60\u7684\u7591\u60d1\u4e0e\u89c1\u89e3\u3002
"},{"location":"chapter_reference/","title":"\u53c2\u8003\u6587\u732e","text":"[1] Thomas H. Cormen, et al. Introduction to Algorithms (3rd Edition).
[2] Aditya Bhargava. Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People (1st Edition).
[3] \u4e25\u851a\u654f. \u6570\u636e\u7ed3\u6784\uff08C \u8bed\u8a00\u7248\uff09.
[4] \u9093\u4fca\u8f89. \u6570\u636e\u7ed3\u6784\uff08C++ \u8bed\u8a00\u7248\uff0c\u7b2c\u4e09\u7248\uff09.
[5] \u9a6c\u514b \u827e\u4f26 \u7ef4\u65af\u8457\uff0c\u9648\u8d8a\u8bd1. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5206\u6790\uff1aJava\u8bed\u8a00\u63cf\u8ff0\uff08\u7b2c\u4e09\u7248\uff09.
[6] \u7a0b\u6770. \u5927\u8bdd\u6570\u636e\u7ed3\u6784.
[7] \u738b\u4e89. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u7f8e.
[8] Gayle Laakmann McDowell. Cracking the Coding Interview: 189 Programming Questions and Solutions (6th Edition).
[9] Aston Zhang, et al. Dive into Deep Learning.
"},{"location":"chapter_searching/","title":"\u7b2c 10 \u7ae0 \u00a0 \u641c\u7d22","text":"Abstract
\u641c\u7d22\u662f\u4e00\u573a\u672a\u77e5\u7684\u5192\u9669\uff0c\u6211\u4eec\u6216\u8bb8\u9700\u8981\u8d70\u904d\u795e\u79d8\u7a7a\u95f4\u7684\u6bcf\u4e2a\u89d2\u843d\uff0c\u53c8\u6216\u8bb8\u53ef\u4ee5\u5feb\u901f\u9501\u5b9a\u76ee\u6807\u3002
\u5728\u8fd9\u573a\u5bfb\u89c5\u4e4b\u65c5\u4e2d\uff0c\u6bcf\u4e00\u6b21\u63a2\u7d22\u90fd\u53ef\u80fd\u5f97\u5230\u4e00\u4e2a\u672a\u66fe\u6599\u60f3\u7684\u7b54\u6848\u3002
"},{"location":"chapter_searching/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 10.1 \u00a0 \u4e8c\u5206\u67e5\u627e
- 10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9
- 10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c
- 10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565
- 10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5
- 10.6 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_searching/binary_search/","title":"10.1 \u00a0 \u4e8c\u5206\u67e5\u627e","text":"\u300c\u4e8c\u5206\u67e5\u627e binary search\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u9ad8\u6548\u641c\u7d22\u7b97\u6cd5\u3002\u5b83\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u6bcf\u8f6e\u7f29\u5c0f\u4e00\u534a\u641c\u7d22\u8303\u56f4\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u4e3a\u6b62\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5143\u7d20\u6309\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\u4e14\u4e0d\u91cd\u590d\u3002\u8bf7\u67e5\u627e\u5e76\u8fd4\u56de\u5143\u7d20 target \u5728\u8be5\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002\u793a\u4f8b\u5982\u56fe 10-1 \u6240\u793a\u3002
\u56fe 10-1 \u00a0 \u4e8c\u5206\u67e5\u627e\u793a\u4f8b\u6570\u636e
\u5982\u56fe 10-2 \u6240\u793a\uff0c\u6211\u4eec\u5148\u521d\u59cb\u5316\u6307\u9488 \\(i = 0\\) \u548c \\(j = n - 1\\) \uff0c\u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u548c\u5c3e\u5143\u7d20\uff0c\u4ee3\u8868\u641c\u7d22\u533a\u95f4 \\([0, n - 1]\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u4e2d\u62ec\u53f7\u8868\u793a\u95ed\u533a\u95f4\uff0c\u5176\u5305\u542b\u8fb9\u754c\u503c\u672c\u8eab\u3002
\u63a5\u4e0b\u6765\uff0c\u5faa\u73af\u6267\u884c\u4ee5\u4e0b\u4e24\u6b65\u3002
- \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m = \\lfloor {(i + j) / 2} \\rfloor\\) \uff0c\u5176\u4e2d \\(\\lfloor \\: \\rfloor\\) \u8868\u793a\u5411\u4e0b\u53d6\u6574\u64cd\u4f5c\u3002
- \u5224\u65ad
nums[m] \u548c target \u7684\u5927\u5c0f\u5173\u7cfb\uff0c\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u60c5\u51b5\u3002 - \u5f53
nums[m] < target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([m + 1, j]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(i = m + 1\\) \u3002 - \u5f53
nums[m] > target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(j = m - 1\\) \u3002 - \u5f53
nums[m] = target \u65f6\uff0c\u8bf4\u660e\u627e\u5230 target \uff0c\u56e0\u6b64\u8fd4\u56de\u7d22\u5f15 \\(m\\) \u3002
\u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u76ee\u6807\u5143\u7d20\uff0c\u641c\u7d22\u533a\u95f4\u6700\u7ec8\u4f1a\u7f29\u5c0f\u4e3a\u7a7a\u3002\u6b64\u65f6\u8fd4\u56de \\(-1\\) \u3002
<1><2><3><4><5><6><7> \u56fe 10-2 \u00a0 \u4e8c\u5206\u67e5\u627e\u6d41\u7a0b
\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e \\(i\\) \u548c \\(j\\) \u90fd\u662f int \u7c7b\u578b\uff0c\u56e0\u6b64 \\(i + j\\) \u53ef\u80fd\u4f1a\u8d85\u51fa int \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u3002\u4e3a\u4e86\u907f\u514d\u5927\u6570\u8d8a\u754c\uff0c\u6211\u4eec\u901a\u5e38\u91c7\u7528\u516c\u5f0f \\(m = \\lfloor {i + (j - i) / 2} \\rfloor\\) \u6765\u8ba1\u7b97\u4e2d\u70b9\u3002
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search.pydef binary_search(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\"\"\"\n # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n i, j = 0, len(nums) - 1\n # \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while i <= j:\n # \u7406\u8bba\u4e0a Python \u7684\u6570\u5b57\u53ef\u4ee5\u65e0\u9650\u5927\uff08\u53d6\u51b3\u4e8e\u5185\u5b58\u5927\u5c0f\uff09\uff0c\u65e0\u987b\u8003\u8651\u5927\u6570\u8d8a\u754c\u95ee\u9898\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n elif nums[m] > target:\n j = m - 1 # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n else:\n return m # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return -1 # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
binary_search.cpp/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(vector<int> &nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.size() - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.java/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int[] nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.cs/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint BinarySearch(int[] nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.Length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.go/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums []int, target int) int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n i, j := 0, len(nums)-1\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n for i <= j {\n m := i + (j-i)/2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.swift/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums: [Int], target: Int) -> Int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n var i = 0\n var j = nums.count - 1\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while i <= j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.js/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums, target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n let i = 0,\n j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\n const m = parseInt(i + (j - i) / 2);\n if (nums[m] < target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else return m; // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.ts/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums: number[], target: number): number {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n let i = 0,\n j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = Math.floor(i + (j - i) / 2);\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n return -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
binary_search.dart/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(List<int> nums, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = nums.length - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.rs/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n let mut i = 0;\n let mut j = nums.len() as i32 - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while i <= j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if nums[m as usize] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n } \n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.c/* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int *nums, int len, int target) {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n int i = 0, j = len - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.zig// \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\nfn binarySearch(comptime T: type, nums: std.ArrayList(T), target: T) T {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\n var i: usize = 0;\n var j: usize = nums.items.len - 1;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n var m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums.items[m] < target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1;\n } else if (nums.items[m] > target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return @intCast(m);\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \uff1a\u5728\u4e8c\u5206\u5faa\u73af\u4e2d\uff0c\u533a\u95f4\u6bcf\u8f6e\u7f29\u5c0f\u4e00\u534a\uff0c\u5faa\u73af\u6b21\u6570\u4e3a \\(\\log_2 n\\) \u3002
\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7a7a\u95f4\u3002
"},{"location":"chapter_searching/binary_search/#1011","title":"10.1.1 \u00a0 \u533a\u95f4\u8868\u793a\u65b9\u6cd5","text":"\u9664\u4e86\u4e0a\u8ff0\u53cc\u95ed\u533a\u95f4\u5916\uff0c\u5e38\u89c1\u7684\u533a\u95f4\u8868\u793a\u8fd8\u6709\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u533a\u95f4\uff0c\u5b9a\u4e49\u4e3a \\([0, n)\\) \uff0c\u5373\u5de6\u8fb9\u754c\u5305\u542b\u81ea\u8eab\uff0c\u53f3\u8fb9\u754c\u4e0d\u5305\u542b\u81ea\u8eab\u3002\u5728\u8be5\u8868\u793a\u4e0b\uff0c\u533a\u95f4 \\([i, j)\\) \u5728 \\(i = j\\) \u65f6\u4e3a\u7a7a\u3002
\u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u8be5\u8868\u793a\u5b9e\u73b0\u5177\u6709\u76f8\u540c\u529f\u80fd\u7684\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search.pydef binary_search_lcro(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09\"\"\"\n # \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n i, j = 0, len(nums)\n # \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while i < j:\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n elif nums[m] > target:\n j = m # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n else:\n return m # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return -1 # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
binary_search.cpp/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(vector<int> &nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.size();\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.java/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(int[] nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.cs/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint BinarySearchLCRO(int[] nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.Length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.go/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunc binarySearchLCRO(nums []int, target int) int {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n i, j := 0, len(nums)\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n for i < j {\n m := i + (j-i)/2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.swift/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunc binarySearchLCRO(nums: [Int], target: Int) -> Int {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n var i = 0\n var j = nums.count\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while i < j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1\n } else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1\n}\n
binary_search.js/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunction binarySearchLCRO(nums, target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n let i = 0,\n j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\n const m = parseInt(i + (j - i) / 2);\n if (nums[m] < target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target)\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n else return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.ts/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfunction binarySearchLCRO(nums: number[], target: number): number {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n let i = 0,\n j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n const m = Math.floor(i + (j - i) / 2);\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n return -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
binary_search.dart/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(List<int> nums, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = nums.length;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if (nums[m] > target) {\n // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else {\n // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.rs/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nfn binary_search_lcro(nums: &[i32], target: i32) -> i32 {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n let mut i = 0;\n let mut j = nums.len() as i32;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while i < j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if nums[m as usize] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n } \n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.c/* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(int *nums, int len, int target) {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n int i = 0, j = len;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i < j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n else if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n else // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return m;\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
binary_search.zig// \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09\nfn binarySearchLCRO(comptime T: type, nums: std.ArrayList(T), target: T) T {\n // \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00\u533a\u95f4 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\n var i: usize = 0;\n var j: usize = nums.items.len;\n // \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\n while (i <= j) {\n var m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums.items[m] < target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\n i = m + 1;\n } else if (nums.items[m] > target) { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\n j = m;\n } else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n return @intCast(m);\n }\n }\n // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n return -1;\n}\n
\u5982\u56fe 10-3 \u6240\u793a\uff0c\u5728\u4e24\u79cd\u533a\u95f4\u8868\u793a\u4e0b\uff0c\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u521d\u59cb\u5316\u3001\u5faa\u73af\u6761\u4ef6\u548c\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\u7686\u6709\u6240\u4e0d\u540c\u3002
\u7531\u4e8e\u201c\u53cc\u95ed\u533a\u95f4\u201d\u8868\u793a\u4e2d\u7684\u5de6\u53f3\u8fb9\u754c\u90fd\u88ab\u5b9a\u4e49\u4e3a\u95ed\u533a\u95f4\uff0c\u56e0\u6b64\u901a\u8fc7\u6307\u9488 \\(i\\) \u548c\u6307\u9488 \\(j\\) \u7f29\u5c0f\u533a\u95f4\u7684\u64cd\u4f5c\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u8fd9\u6837\u66f4\u4e0d\u5bb9\u6613\u51fa\u9519\uff0c\u56e0\u6b64\u4e00\u822c\u5efa\u8bae\u91c7\u7528\u201c\u53cc\u95ed\u533a\u95f4\u201d\u7684\u5199\u6cd5\u3002
\u56fe 10-3 \u00a0 \u4e24\u79cd\u533a\u95f4\u5b9a\u4e49
"},{"location":"chapter_searching/binary_search/#1012","title":"10.1.2 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u4e8c\u5206\u67e5\u627e\u5728\u65f6\u95f4\u548c\u7a7a\u95f4\u65b9\u9762\u90fd\u6709\u8f83\u597d\u7684\u6027\u80fd\u3002
- \u4e8c\u5206\u67e5\u627e\u7684\u65f6\u95f4\u6548\u7387\u9ad8\u3002\u5728\u5927\u6570\u636e\u91cf\u4e0b\uff0c\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5177\u6709\u663e\u8457\u4f18\u52bf\u3002\u4f8b\u5982\uff0c\u5f53\u6570\u636e\u5927\u5c0f \\(n = 2^{20}\\) \u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u9700\u8981 \\(2^{20} = 1048576\\) \u8f6e\u5faa\u73af\uff0c\u800c\u4e8c\u5206\u67e5\u627e\u4ec5\u9700 \\(\\log_2 2^{20} = 20\\) \u8f6e\u5faa\u73af\u3002
- \u4e8c\u5206\u67e5\u627e\u65e0\u987b\u989d\u5916\u7a7a\u95f4\u3002\u76f8\u8f83\u4e8e\u9700\u8981\u501f\u52a9\u989d\u5916\u7a7a\u95f4\u7684\u641c\u7d22\u7b97\u6cd5\uff08\u4f8b\u5982\u54c8\u5e0c\u67e5\u627e\uff09\uff0c\u4e8c\u5206\u67e5\u627e\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002
\u7136\u800c\uff0c\u4e8c\u5206\u67e5\u627e\u5e76\u975e\u9002\u7528\u4e8e\u6240\u6709\u60c5\u51b5\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6709\u5e8f\u6570\u636e\u3002\u82e5\u8f93\u5165\u6570\u636e\u65e0\u5e8f\uff0c\u4e3a\u4e86\u4f7f\u7528\u4e8c\u5206\u67e5\u627e\u800c\u4e13\u95e8\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u4e0d\u507f\u5931\u3002\u56e0\u4e3a\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u6bd4\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u90fd\u66f4\u9ad8\u3002\u5bf9\u4e8e\u9891\u7e41\u63d2\u5165\u5143\u7d20\u7684\u573a\u666f\uff0c\u4e3a\u4fdd\u6301\u6570\u7ec4\u6709\u5e8f\u6027\uff0c\u9700\u8981\u5c06\u5143\u7d20\u63d2\u5165\u5230\u7279\u5b9a\u4f4d\u7f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u4e5f\u662f\u975e\u5e38\u6602\u8d35\u7684\u3002
- \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002\u4e8c\u5206\u67e5\u627e\u9700\u8981\u8df3\u8dc3\u5f0f\uff08\u975e\u8fde\u7eed\u5730\uff09\u8bbf\u95ee\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u6267\u884c\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u7684\u6548\u7387\u8f83\u4f4e\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5e94\u7528\u5728\u94fe\u8868\u6216\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
- \u5c0f\u6570\u636e\u91cf\u4e0b\uff0c\u7ebf\u6027\u67e5\u627e\u6027\u80fd\u66f4\u4f73\u3002\u5728\u7ebf\u6027\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u9700 1 \u6b21\u5224\u65ad\u64cd\u4f5c\uff1b\u800c\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u9700\u8981 1 \u6b21\u52a0\u6cd5\u30011 \u6b21\u9664\u6cd5\u30011 ~ 3 \u6b21\u5224\u65ad\u64cd\u4f5c\u30011 \u6b21\u52a0\u6cd5\uff08\u51cf\u6cd5\uff09\uff0c\u5171 4 ~ 6 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u56e0\u6b64\uff0c\u5f53\u6570\u636e\u91cf \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u53cd\u800c\u6bd4\u4e8c\u5206\u67e5\u627e\u66f4\u5feb\u3002
"},{"location":"chapter_searching/binary_search_edge/","title":"10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c","text":""},{"location":"chapter_searching/binary_search_edge/#1031","title":"10.3.1 \u00a0 \u67e5\u627e\u5de6\u8fb9\u754c","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\u3002\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a\u5143\u7d20 target \u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e2d\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002
\u56de\u5fc6\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u7684\u65b9\u6cd5\uff0c\u641c\u7d22\u5b8c\u6210\u540e \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target \uff0c\u56e0\u6b64\u67e5\u627e\u63d2\u5165\u70b9\u672c\u8d28\u4e0a\u662f\u5728\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002
\u8003\u8651\u901a\u8fc7\u67e5\u627e\u63d2\u5165\u70b9\u7684\u51fd\u6570\u5b9e\u73b0\u67e5\u627e\u5de6\u8fb9\u754c\u3002\u8bf7\u6ce8\u610f\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u4e0d\u5305\u542b target \uff0c\u8fd9\u79cd\u60c5\u51b5\u53ef\u80fd\u5bfc\u81f4\u4ee5\u4e0b\u4e24\u79cd\u7ed3\u679c\u3002
- \u63d2\u5165\u70b9\u7684\u7d22\u5f15 \\(i\\) \u8d8a\u754c\u3002
- \u5143\u7d20
nums[i] \u4e0e target \u4e0d\u76f8\u7b49\u3002
\u5f53\u9047\u5230\u4ee5\u4e0a\u4e24\u79cd\u60c5\u51b5\u65f6\uff0c\u76f4\u63a5\u8fd4\u56de \\(-1\\) \u5373\u53ef\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_edge.pydef binary_search_left_edge(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target\"\"\"\n # \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n i = binary_search_insertion(nums, target)\n # \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == len(nums) or nums[i] != target:\n return -1\n # \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i\n
binary_search_edge.cpp/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(vector<int> &nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.size() || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.java/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int[] nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binary_search_insertion.binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.length || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.cs/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint BinarySearchLeftEdge(int[] nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binary_search_insertion.BinarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.Length || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.go/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunc binarySearchLeftEdge(nums []int, target int) int {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n i := binarySearchInsertion(nums, target)\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == len(nums) || nums[i] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i\n}\n
binary_search_edge.swift/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunc binarySearchLeftEdge(nums: [Int], target: Int) -> Int {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n let i = binarySearchInsertion(nums: nums, target: target)\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == nums.count || nums[i] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i\n}\n
binary_search_edge.js/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunction binarySearchLeftEdge(nums, target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n const i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i === nums.length || nums[i] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.ts/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunction binarySearchLeftEdge(nums: Array<number>, target: number): number {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n const i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i === nums.length || nums[i] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.dart/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(List<int> nums, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binarySearchInsertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == nums.length || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.rs/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfn binary_search_left_edge(nums: &[i32], target: i32) -> i32 {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n let i = binary_search_insertion(nums, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if i == nums.len() as i32 || nums[i as usize] != target {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n i\n}\n
binary_search_edge.c/* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int *nums, int numSize, int target) {\n // \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\n int i = binarySearchInsertion(nums, numSize, target);\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (i == numSize || nums[i] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\n return i;\n}\n
binary_search_edge.zig[class]{}-[func]{binarySearchLeftEdge}\n
"},{"location":"chapter_searching/binary_search_edge/#1032","title":"10.3.2 \u00a0 \u67e5\u627e\u53f3\u8fb9\u754c","text":"\u90a3\u4e48\u5982\u4f55\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u5462\uff1f\u6700\u76f4\u63a5\u7684\u65b9\u5f0f\u662f\u4fee\u6539\u4ee3\u7801\uff0c\u66ff\u6362\u5728 nums[m] == target \u60c5\u51b5\u4e0b\u7684\u6307\u9488\u6536\u7f29\u64cd\u4f5c\u3002\u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002
\u4e0b\u9762\u6211\u4eec\u4ecb\u7ecd\u4e24\u79cd\u66f4\u52a0\u53d6\u5de7\u7684\u65b9\u6cd5\u3002
"},{"location":"chapter_searching/binary_search_edge/#1","title":"1. \u00a0 \u590d\u7528\u67e5\u627e\u5de6\u8fb9\u754c","text":"\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u67e5\u627e\u6700\u5de6\u5143\u7d20\u7684\u51fd\u6570\u6765\u67e5\u627e\u6700\u53f3\u5143\u7d20\uff0c\u5177\u4f53\u65b9\u6cd5\u4e3a\uff1a\u5c06\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\u3002
\u5982\u56fe 10-7 \u6240\u793a\uff0c\u67e5\u627e\u5b8c\u6210\u540e\uff0c\u6307\u9488 \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target + 1\uff08\u5982\u679c\u5b58\u5728\uff09\uff0c\u800c \\(j\\) \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0c\u56e0\u6b64\u8fd4\u56de \\(j\\) \u5373\u53ef\u3002
\u56fe 10-7 \u00a0 \u5c06\u67e5\u627e\u53f3\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5de6\u8fb9\u754c
\u8bf7\u6ce8\u610f\uff0c\u8fd4\u56de\u7684\u63d2\u5165\u70b9\u662f \\(i\\) \uff0c\u56e0\u6b64\u9700\u8981\u5c06\u5176\u51cf \\(1\\) \uff0c\u4ece\u800c\u83b7\u5f97 \\(j\\) \uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_edge.pydef binary_search_right_edge(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target\"\"\"\n # \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n i = binary_search_insertion(nums, target + 1)\n # j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n j = i - 1\n # \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 or nums[j] != target:\n return -1\n # \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j\n
binary_search_edge.cpp/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(vector<int> &nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.java/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int[] nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binary_search_insertion.binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.cs/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint BinarySearchRightEdge(int[] nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binary_search_insertion.BinarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.go/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunc binarySearchRightEdge(nums []int, target int) int {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n i := binarySearchInsertion(nums, target+1)\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n j := i - 1\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 || nums[j] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j\n}\n
binary_search_edge.swift/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunc binarySearchRightEdge(nums: [Int], target: Int) -> Int {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n let i = binarySearchInsertion(nums: nums, target: target + 1)\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n let j = i - 1\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 || nums[j] != target {\n return -1\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j\n}\n
binary_search_edge.js/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunction binarySearchRightEdge(nums, target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n const i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n const j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j === -1 || nums[j] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.ts/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunction binarySearchRightEdge(nums: Array<number>, target: number): number {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n const i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n const j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j === -1 || nums[j] !== target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.dart/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(List<int> nums, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binarySearchInsertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.rs/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfn binary_search_right_edge(nums: &[i32], target: i32) -> i32 {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n let i = binary_search_insertion(nums, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n let j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if j == -1 || nums[j as usize] != target {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n j\n}\n
binary_search_edge.c/* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int *nums, int numSize, int target) {\n // \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\n int i = binarySearchInsertion(nums, numSize, target + 1);\n // j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\n int j = i - 1;\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\n if (j == -1 || nums[j] != target) {\n return -1;\n }\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\n return j;\n}\n
binary_search_edge.zig[class]{}-[func]{binarySearchRightEdge}\n
"},{"location":"chapter_searching/binary_search_edge/#2","title":"2. \u00a0 \u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20","text":"\u6211\u4eec\u77e5\u9053\uff0c\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u6700\u7ec8 \\(i\\) \u548c \\(j\\) \u4f1a\u5206\u522b\u6307\u5411\u9996\u4e2a\u5927\u4e8e\u3001\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002
\u56e0\u6b64\uff0c\u5982\u56fe 10-8 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u6784\u9020\u4e00\u4e2a\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728\u7684\u5143\u7d20\uff0c\u7528\u4e8e\u67e5\u627e\u5de6\u53f3\u8fb9\u754c\u3002
- \u67e5\u627e\u6700\u5de6\u4e00\u4e2a
target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target - 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(i\\) \u3002 - \u67e5\u627e\u6700\u53f3\u4e00\u4e2a
target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target + 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(j\\) \u3002
\u56fe 10-8 \u00a0 \u5c06\u67e5\u627e\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20
\u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u4ee5\u4e0b\u4e24\u70b9\u503c\u5f97\u6ce8\u610f\u3002
- \u7ed9\u5b9a\u6570\u7ec4\u4e0d\u5305\u542b\u5c0f\u6570\uff0c\u8fd9\u610f\u5473\u7740\u6211\u4eec\u65e0\u987b\u5173\u5fc3\u5982\u4f55\u5904\u7406\u76f8\u7b49\u7684\u60c5\u51b5\u3002
- \u56e0\u4e3a\u8be5\u65b9\u6cd5\u5f15\u5165\u4e86\u5c0f\u6570\uff0c\u6240\u4ee5\u9700\u8981\u5c06\u51fd\u6570\u4e2d\u7684\u53d8\u91cf
target \u6539\u4e3a\u6d6e\u70b9\u6570\u7c7b\u578b\uff08Python \u65e0\u987b\u6539\u52a8\uff09\u3002
"},{"location":"chapter_searching/binary_search_insertion/","title":"10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9","text":"\u4e8c\u5206\u67e5\u627e\u4e0d\u4ec5\u53ef\u7528\u4e8e\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff0c\u8fd8\u53ef\u7528\u4e8e\u89e3\u51b3\u8bb8\u591a\u53d8\u79cd\u95ee\u9898\uff0c\u6bd4\u5982\u641c\u7d22\u76ee\u6807\u5143\u7d20\u7684\u63d2\u5165\u4f4d\u7f6e\u3002
"},{"location":"chapter_searching/binary_search_insertion/#1021","title":"10.2.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u5143\u7d20 target \uff0c\u6570\u7ec4\u4e0d\u5b58\u5728\u91cd\u590d\u5143\u7d20\u3002\u73b0\u5c06 target \u63d2\u5165\u6570\u7ec4 nums \u4e2d\uff0c\u5e76\u4fdd\u6301\u5176\u6709\u5e8f\u6027\u3002\u82e5\u6570\u7ec4\u4e2d\u5df2\u5b58\u5728\u5143\u7d20 target \uff0c\u5219\u63d2\u5165\u5230\u5176\u5de6\u65b9\u3002\u8bf7\u8fd4\u56de\u63d2\u5165\u540e target \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002\u793a\u4f8b\u5982\u56fe 10-4 \u6240\u793a\u3002
\u56fe 10-4 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u793a\u4f8b\u6570\u636e
\u5982\u679c\u60f3\u590d\u7528\u4e0a\u4e00\u8282\u7684\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\uff0c\u5219\u9700\u8981\u56de\u7b54\u4ee5\u4e0b\u4e24\u4e2a\u95ee\u9898\u3002
\u95ee\u9898\u4e00\uff1a\u5f53\u6570\u7ec4\u4e2d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u662f\u5426\u662f\u8be5\u5143\u7d20\u7684\u7d22\u5f15\uff1f
\u9898\u76ee\u8981\u6c42\u5c06 target \u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u5de6\u8fb9\uff0c\u8fd9\u610f\u5473\u7740\u65b0\u63d2\u5165\u7684 target \u66ff\u6362\u4e86\u539f\u6765 target \u7684\u4f4d\u7f6e\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5f53\u6570\u7ec4\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u5c31\u662f\u8be5 target \u7684\u7d22\u5f15\u3002
\u95ee\u9898\u4e8c\uff1a\u5f53\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728 target \u65f6\uff0c\u63d2\u5165\u70b9\u662f\u54ea\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff1f
\u8fdb\u4e00\u6b65\u601d\u8003\u4e8c\u5206\u67e5\u627e\u8fc7\u7a0b\uff1a\u5f53 nums[m] < target \u65f6 \\(i\\) \u79fb\u52a8\uff0c\u8fd9\u610f\u5473\u7740\u6307\u9488 \\(i\\) \u5728\u5411\u5927\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002\u540c\u7406\uff0c\u6307\u9488 \\(j\\) \u59cb\u7ec8\u5728\u5411\u5c0f\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002
\u56e0\u6b64\u4e8c\u5206\u7ed3\u675f\u65f6\u4e00\u5b9a\u6709\uff1a\\(i\\) \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002\u6613\u5f97\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u7d22\u5f15\u4e3a \\(i\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_insertion.pydef binary_search_insertion_simple(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09\"\"\"\n i, j = 0, len(nums) - 1 # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j:\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n elif nums[m] > target:\n j = m - 1 # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n else:\n return m # \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n # \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n
binary_search_insertion.cpp/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(vector<int> &nums, int target) {\n int i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.java/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int[] nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.cs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint BinarySearchInsertionSimple(int[] nums, int target) {\n int i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.go/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertionSimple(nums []int, target int) int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n i, j := 0, len(nums)-1\n for i <= j {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n m := i + (j-i)/2\n if nums[m] < target {\n // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target {\n // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else {\n // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n return m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.swift/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertionSimple(nums: [Int], target: Int) -> Int {\n var i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target {\n i = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m] > target {\n j = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.js/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertionSimple(nums, target) {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.ts/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertionSimple(\n nums: Array<number>,\n target: number\n): number {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.dart/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(List<int> nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.rs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\npub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {\n let (mut i, mut j) = (0, nums.len() as i32 - 1); // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m as usize] > target {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n i\n}\n
binary_search_insertion.c/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int *nums, int numSize, int target) {\n int i = 0, j = numSize - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n return m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n }\n }\n // \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.zig[class]{}-[func]{binarySearchInsertionSimple}\n
"},{"location":"chapter_searching/binary_search_insertion/#1022","title":"10.2.2 \u00a0 \u5b58\u5728\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"Question
\u5728\u4e0a\u4e00\u9898\u7684\u57fa\u7840\u4e0a\uff0c\u89c4\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u5176\u4f59\u4e0d\u53d8\u3002
\u5047\u8bbe\u6570\u7ec4\u4e2d\u5b58\u5728\u591a\u4e2a target \uff0c\u5219\u666e\u901a\u4e8c\u5206\u67e5\u627e\u53ea\u80fd\u8fd4\u56de\u5176\u4e2d\u4e00\u4e2a target \u7684\u7d22\u5f15\uff0c\u800c\u65e0\u6cd5\u786e\u5b9a\u8be5\u5143\u7d20\u7684\u5de6\u8fb9\u548c\u53f3\u8fb9\u8fd8\u6709\u591a\u5c11 target\u3002
\u9898\u76ee\u8981\u6c42\u5c06\u76ee\u6807\u5143\u7d20\u63d2\u5165\u5230\u6700\u5de6\u8fb9\uff0c\u6240\u4ee5\u6211\u4eec\u9700\u8981\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002\u521d\u6b65\u8003\u8651\u901a\u8fc7\u56fe 10-5 \u6240\u793a\u7684\u6b65\u9aa4\u5b9e\u73b0\u3002
- \u6267\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u5f97\u5230\u4efb\u610f\u4e00\u4e2a
target \u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\(k\\) \u3002 - \u4ece\u7d22\u5f15 \\(k\\) \u5f00\u59cb\uff0c\u5411\u5de6\u8fdb\u884c\u7ebf\u6027\u904d\u5386\uff0c\u5f53\u627e\u5230\u6700\u5de6\u8fb9\u7684
target \u65f6\u8fd4\u56de\u3002
\u56fe 10-5 \u00a0 \u7ebf\u6027\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9
\u6b64\u65b9\u6cd5\u867d\u7136\u53ef\u7528\uff0c\u4f46\u5176\u5305\u542b\u7ebf\u6027\u67e5\u627e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5f53\u6570\u7ec4\u4e2d\u5b58\u5728\u5f88\u591a\u91cd\u590d\u7684 target \u65f6\uff0c\u8be5\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\u3002
\u73b0\u8003\u8651\u62d3\u5c55\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\u3002\u5982\u56fe 10-6 \u6240\u793a\uff0c\u6574\u4f53\u6d41\u7a0b\u4fdd\u6301\u4e0d\u53d8\uff0c\u6bcf\u8f6e\u5148\u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m\\) \uff0c\u518d\u5224\u65ad target \u548c nums[m] \u7684\u5927\u5c0f\u5173\u7cfb\uff0c\u5206\u4e3a\u4ee5\u4e0b\u51e0\u79cd\u60c5\u51b5\u3002
- \u5f53
nums[m] < target \u6216 nums[m] > target \u65f6\uff0c\u8bf4\u660e\u8fd8\u6ca1\u6709\u627e\u5230 target \uff0c\u56e0\u6b64\u91c7\u7528\u666e\u901a\u4e8c\u5206\u67e5\u627e\u7684\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5411 target \u9760\u8fd1\u3002 - \u5f53
nums[m] == target \u65f6\uff0c\u8bf4\u660e\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u91c7\u7528 \\(j = m - 1\\) \u6765\u7f29\u5c0f\u533a\u95f4\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(j\\) \u5411\u5c0f\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002
\u5faa\u73af\u5b8c\u6210\u540e\uff0c\\(i\\) \u6307\u5411\u6700\u5de6\u8fb9\u7684 target \uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\uff0c\u56e0\u6b64\u7d22\u5f15 \\(i\\) \u5c31\u662f\u63d2\u5165\u70b9\u3002
<1><2><3><4><5><6><7><8> \u56fe 10-6 \u00a0 \u4e8c\u5206\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9\u7684\u6b65\u9aa4
\u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5224\u65ad\u5206\u652f nums[m] > target \u548c nums[m] == target \u7684\u64cd\u4f5c\u76f8\u540c\uff0c\u56e0\u6b64\u4e24\u8005\u53ef\u4ee5\u5408\u5e76\u3002
\u5373\u4fbf\u5982\u6b64\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5c06\u5224\u65ad\u6761\u4ef6\u4fdd\u6301\u5c55\u5f00\uff0c\u56e0\u4e3a\u5176\u903b\u8f91\u66f4\u52a0\u6e05\u6670\u3001\u53ef\u8bfb\u6027\u66f4\u597d\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_insertion.pydef binary_search_insertion(nums: list[int], target: int) -> int:\n \"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09\"\"\"\n i, j = 0, len(nums) - 1 # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j:\n m = (i + j) // 2 # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target:\n i = m + 1 # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n elif nums[m] > target:\n j = m - 1 # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n else:\n j = m - 1 # \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n # \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n
binary_search_insertion.cpp/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(vector<int> &nums, int target) {\n int i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.java/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int[] nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.cs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint BinarySearchInsertion(int[] nums, int target) {\n int i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.go/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertion(nums []int, target int) int {\n // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n i, j := 0, len(nums)-1\n for i <= j {\n // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n m := i + (j-i)/2\n if nums[m] < target {\n // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n i = m + 1\n } else if nums[m] > target {\n // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n } else {\n // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n j = m - 1\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.swift/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertion(nums: [Int], target: Int) -> Int {\n var i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m] < target {\n i = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m] > target {\n j = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1 // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i\n}\n
binary_search_insertion.js/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertion(nums, target) {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.ts/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunction binarySearchInsertion(nums: Array<number>, target: number): number {\n let i = 0,\n j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n const m = Math.floor(i + (j - i) / 2); // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m, \u4f7f\u7528 Math.floor() \u5411\u4e0b\u53d6\u6574\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.dart/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(List<int> nums, int target) {\n int i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.rs/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\npub fn binary_search_insertion(nums: &[i32], target: i32) -> i32 {\n let (mut i, mut j) = (0, nums.len() as i32 - 1); // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while i <= j {\n let m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if nums[m as usize] < target {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if nums[m as usize] > target {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n i\n}\n
binary_search_insertion.c/* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int *nums, int numSize, int target) {\n int i = 0, j = numSize - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\n while (i <= j) {\n int m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\n if (nums[m] < target) {\n i = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n } else if (nums[m] > target) {\n j = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n } else {\n j = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n }\n }\n // \u8fd4\u56de\u63d2\u5165\u70b9 i\n return i;\n}\n
binary_search_insertion.zig[class]{}-[func]{binarySearchInsertion}\n
Tip
\u672c\u8282\u7684\u4ee3\u7801\u90fd\u662f\u201c\u53cc\u95ed\u533a\u95f4\u201d\u5199\u6cd5\u3002\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u5199\u6cd5\u3002
\u603b\u7684\u6765\u770b\uff0c\u4e8c\u5206\u67e5\u627e\u65e0\u975e\u5c31\u662f\u7ed9\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5206\u522b\u8bbe\u5b9a\u641c\u7d22\u76ee\u6807\uff0c\u76ee\u6807\u53ef\u80fd\u662f\u4e00\u4e2a\u5177\u4f53\u7684\u5143\u7d20\uff08\u4f8b\u5982 target \uff09\uff0c\u4e5f\u53ef\u80fd\u662f\u4e00\u4e2a\u5143\u7d20\u8303\u56f4\uff08\u4f8b\u5982\u5c0f\u4e8e target \u7684\u5143\u7d20\uff09\u3002
\u5728\u4e0d\u65ad\u7684\u5faa\u73af\u4e8c\u5206\u4e2d\uff0c\u6307\u9488 \\(i\\) \u548c \\(j\\) \u90fd\u9010\u6e10\u903c\u8fd1\u9884\u5148\u8bbe\u5b9a\u7684\u76ee\u6807\u3002\u6700\u7ec8\uff0c\u5b83\u4eec\u6216\u662f\u6210\u529f\u627e\u5230\u7b54\u6848\uff0c\u6216\u662f\u8d8a\u8fc7\u8fb9\u754c\u540e\u505c\u6b62\u3002
"},{"location":"chapter_searching/replace_linear_by_hashing/","title":"10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565","text":"\u5728\u7b97\u6cd5\u9898\u4e2d\uff0c\u6211\u4eec\u5e38\u901a\u8fc7\u5c06\u7ebf\u6027\u67e5\u627e\u66ff\u6362\u4e3a\u54c8\u5e0c\u67e5\u627e\u6765\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u7b97\u6cd5\u9898\u6765\u52a0\u6df1\u7406\u89e3\u3002
Question
\u7ed9\u5b9a\u4e00\u4e2a\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u5143\u7d20 target \uff0c\u8bf7\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u201c\u548c\u201d\u4e3a target \u7684\u4e24\u4e2a\u5143\u7d20\uff0c\u5e76\u8fd4\u56de\u5b83\u4eec\u7684\u6570\u7ec4\u7d22\u5f15\u3002\u8fd4\u56de\u4efb\u610f\u4e00\u4e2a\u89e3\u5373\u53ef\u3002
"},{"location":"chapter_searching/replace_linear_by_hashing/#1041","title":"10.4.1 \u00a0 \u7ebf\u6027\u67e5\u627e\uff1a\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4","text":"\u8003\u8651\u76f4\u63a5\u904d\u5386\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\u3002\u5982\u56fe 10-9 \u6240\u793a\uff0c\u6211\u4eec\u5f00\u542f\u4e00\u4e2a\u4e24\u5c42\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u5224\u65ad\u4e24\u4e2a\u6574\u6570\u7684\u548c\u662f\u5426\u4e3a target \uff0c\u82e5\u662f\uff0c\u5219\u8fd4\u56de\u5b83\u4eec\u7684\u7d22\u5f15\u3002
\u56fe 10-9 \u00a0 \u7ebf\u6027\u67e5\u627e\u6c42\u89e3\u4e24\u6570\u4e4b\u548c
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig two_sum.pydef two_sum_brute_force(nums: list[int], target: int) -> list[int]:\n \"\"\"\u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\"\"\"\n # \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i in range(len(nums) - 1):\n for j in range(i + 1, len(nums)):\n if nums[i] + nums[j] == target:\n return [i, j]\n return []\n
two_sum.cpp/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nvector<int> twoSumBruteForce(vector<int> &nums, int target) {\n int size = nums.size();\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (int i = 0; i < size - 1; i++) {\n for (int j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target)\n return {i, j};\n }\n }\n return {};\n}\n
two_sum.java/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] twoSumBruteForce(int[] nums, int target) {\n int size = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (int i = 0; i < size - 1; i++) {\n for (int j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target)\n return new int[] { i, j };\n }\n }\n return new int[0];\n}\n
two_sum.cs/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] TwoSumBruteForce(int[] nums, int target) {\n int size = nums.Length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (int i = 0; i < size - 1; i++) {\n for (int j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target)\n return [i, j];\n }\n }\n return [];\n}\n
two_sum.go/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums []int, target int) []int {\n size := len(nums)\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i := 0; i < size-1; i++ {\n for j := i + 1; i < size; j++ {\n if nums[i]+nums[j] == target {\n return []int{i, j}\n }\n }\n }\n return nil\n}\n
two_sum.swift/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums: [Int], target: Int) -> [Int] {\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i in nums.indices.dropLast() {\n for j in nums.indices.dropFirst(i + 1) {\n if nums[i] + nums[j] == target {\n return [i, j]\n }\n }\n }\n return [0]\n}\n
two_sum.js/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums, target) {\n const n = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (let i = 0; i < n; i++) {\n for (let j = i + 1; j < n; j++) {\n if (nums[i] + nums[j] === target) {\n return [i, j];\n }\n }\n }\n return [];\n}\n
two_sum.ts/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums: number[], target: number): number[] {\n const n = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (let i = 0; i < n; i++) {\n for (let j = i + 1; j < n; j++) {\n if (nums[i] + nums[j] === target) {\n return [i, j];\n }\n }\n }\n return [];\n}\n
two_sum.dart/* \u65b9\u6cd5\u4e00\uff1a \u66b4\u529b\u679a\u4e3e */\nList<int> twoSumBruteForce(List<int> nums, int target) {\n int size = nums.length;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for (var i = 0; i < size - 1; i++) {\n for (var j = i + 1; j < size; j++) {\n if (nums[i] + nums[j] == target) return [i, j];\n }\n }\n return [0];\n}\n
two_sum.rs/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\npub fn two_sum_brute_force(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\n let size = nums.len();\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n for i in 0..size - 1 {\n for j in i + 1..size {\n if nums[i] + nums[j] == target {\n return Some(vec![i as i32, j as i32]);\n }\n }\n }\n None\n}\n
two_sum.c/* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) {\n for (int i = 0; i < numsSize; ++i) {\n for (int j = i + 1; j < numsSize; ++j) {\n if (nums[i] + nums[j] == target) {\n int *res = malloc(sizeof(int) * 2);\n res[0] = i, res[1] = j;\n *returnSize = 2;\n return res;\n }\n }\n }\n *returnSize = 0;\n return NULL;\n}\n
two_sum.zig// \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\nfn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {\n var size: usize = nums.len;\n var i: usize = 0;\n // \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n^2)\n while (i < size - 1) : (i += 1) {\n var j = i + 1;\n while (j < size) : (j += 1) {\n if (nums[i] + nums[j] == target) {\n return [_]i32{@intCast(i), @intCast(j)};\n }\n }\n }\n return null;\n}\n
\u6b64\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u975e\u5e38\u8017\u65f6\u3002
"},{"location":"chapter_searching/replace_linear_by_hashing/#1042","title":"10.4.2 \u00a0 \u54c8\u5e0c\u67e5\u627e\uff1a\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4","text":"\u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u952e\u503c\u5bf9\u5206\u522b\u4e3a\u6570\u7ec4\u5143\u7d20\u548c\u5143\u7d20\u7d22\u5f15\u3002\u5faa\u73af\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u6267\u884c\u56fe 10-10 \u6240\u793a\u7684\u6b65\u9aa4\u3002
- \u5224\u65ad\u6570\u5b57
target - nums[i] \u662f\u5426\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u82e5\u662f\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u3002 - \u5c06\u952e\u503c\u5bf9
nums[i] \u548c\u7d22\u5f15 i \u6dfb\u52a0\u8fdb\u54c8\u5e0c\u8868\u3002
<1><2><3> \u56fe 10-10 \u00a0 \u8f85\u52a9\u54c8\u5e0c\u8868\u6c42\u89e3\u4e24\u6570\u4e4b\u548c
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff0c\u4ec5\u9700\u5355\u5c42\u5faa\u73af\u5373\u53ef\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig two_sum.pydef two_sum_hash_table(nums: list[int], target: int) -> list[int]:\n \"\"\"\u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\"\"\"\n # \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n dic = {}\n # \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for i in range(len(nums)):\n if target - nums[i] in dic:\n return [dic[target - nums[i]], i]\n dic[nums[i]] = i\n return []\n
two_sum.cpp/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nvector<int> twoSumHashTable(vector<int> &nums, int target) {\n int size = nums.size();\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n unordered_map<int, int> dic;\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (int i = 0; i < size; i++) {\n if (dic.find(target - nums[i]) != dic.end()) {\n return {dic[target - nums[i]], i};\n }\n dic.emplace(nums[i], i);\n }\n return {};\n}\n
two_sum.java/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] twoSumHashTable(int[] nums, int target) {\n int size = nums.length;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n Map<Integer, Integer> dic = new HashMap<>();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (int i = 0; i < size; i++) {\n if (dic.containsKey(target - nums[i])) {\n return new int[] { dic.get(target - nums[i]), i };\n }\n dic.put(nums[i], i);\n }\n return new int[0];\n}\n
two_sum.cs/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] TwoSumHashTable(int[] nums, int target) {\n int size = nums.Length;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n Dictionary<int, int> dic = [];\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (int i = 0; i < size; i++) {\n if (dic.ContainsKey(target - nums[i])) {\n return [dic[target - nums[i]], i];\n }\n dic.Add(nums[i], i);\n }\n return [];\n}\n
two_sum.go/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums []int, target int) []int {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n hashTable := map[int]int{}\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for idx, val := range nums {\n if preIdx, ok := hashTable[target-val]; ok {\n return []int{preIdx, idx}\n }\n hashTable[val] = idx\n }\n return nil\n}\n
two_sum.swift/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums: [Int], target: Int) -> [Int] {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n var dic: [Int: Int] = [:]\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for i in nums.indices {\n if let j = dic[target - nums[i]] {\n return [j, i]\n }\n dic[nums[i]] = i\n }\n return [0]\n}\n
two_sum.js/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums, target) {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n let m = {};\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (let i = 0; i < nums.length; i++) {\n if (m[target - nums[i]] !== undefined) {\n return [m[target - nums[i]], i];\n } else {\n m[nums[i]] = i;\n }\n }\n return [];\n}\n
two_sum.ts/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums: number[], target: number): number[] {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n let m: Map<number, number> = new Map();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (let i = 0; i < nums.length; i++) {\n let index = m.get(target - nums[i]);\n if (index !== undefined) {\n return [index, i];\n } else {\n m.set(nums[i], i);\n }\n }\n return [];\n}\n
two_sum.dart/* \u65b9\u6cd5\u4e8c\uff1a \u8f85\u52a9\u54c8\u5e0c\u8868 */\nList<int> twoSumHashTable(List<int> nums, int target) {\n int size = nums.length;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n Map<int, int> dic = HashMap();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (var i = 0; i < size; i++) {\n if (dic.containsKey(target - nums[i])) {\n return [dic[target - nums[i]]!, i];\n }\n dic.putIfAbsent(nums[i], () => i);\n }\n return [0];\n}\n
two_sum.rs/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\npub fn two_sum_hash_table(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n let mut dic = HashMap::new();\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n for (i, num) in nums.iter().enumerate() {\n match dic.get(&(target - num)) {\n Some(v) => return Some(vec![*v as i32, i as i32]),\n None => dic.insert(num, i as i32)\n };\n }\n None\n}\n
two_sum.c/* \u54c8\u5e0c\u8868 */\ntypedef struct {\n int key;\n int val;\n UT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n} HashTable;\n\n/* \u54c8\u5e0c\u8868\u67e5\u8be2 */\nHashTable *find(HashTable *h, int key) {\n HashTable *tmp;\n HASH_FIND_INT(h, &key, tmp);\n return tmp;\n}\n\n/* \u54c8\u5e0c\u8868\u5143\u7d20\u63d2\u5165 */\nvoid insert(HashTable *h, int key, int val) {\n HashTable *t = find(h, key);\n if (t == NULL) {\n HashTable *tmp = malloc(sizeof(HashTable));\n tmp->key = key, tmp->val = val;\n HASH_ADD_INT(h, key, tmp);\n } else {\n t->val = val;\n }\n}\n\n/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) {\n HashTable *hashtable = NULL;\n for (int i = 0; i < numsSize; i++) {\n HashTable *t = find(hashtable, target - nums[i]);\n if (t != NULL) {\n int *res = malloc(sizeof(int) * 2);\n res[0] = t->val, res[1] = i;\n *returnSize = 2;\n return res;\n }\n insert(hashtable, nums[i], i);\n }\n *returnSize = 0;\n return NULL;\n}\n
two_sum.zig// \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\nfn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {\n var size: usize = nums.len;\n // \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);\n defer dic.deinit();\n var i: usize = 0;\n // \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\n while (i < size) : (i += 1) {\n if (dic.contains(target - nums[i])) {\n return [_]i32{dic.get(target - nums[i]).?, @intCast(i)};\n }\n try dic.put(nums[i], @intCast(i));\n }\n return null;\n}\n
\u6b64\u65b9\u6cd5\u901a\u8fc7\u54c8\u5e0c\u67e5\u627e\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u964d\u81f3 \\(O(n)\\) \uff0c\u5927\u5e45\u63d0\u5347\u8fd0\u884c\u6548\u7387\u3002
\u7531\u4e8e\u9700\u8981\u7ef4\u62a4\u4e00\u4e2a\u989d\u5916\u7684\u54c8\u5e0c\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5c3d\u7ba1\u5982\u6b64\uff0c\u8be5\u65b9\u6cd5\u7684\u6574\u4f53\u65f6\u7a7a\u6548\u7387\u66f4\u4e3a\u5747\u8861\uff0c\u56e0\u6b64\u5b83\u662f\u672c\u9898\u7684\u6700\u4f18\u89e3\u6cd5\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/","title":"10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5","text":"\u300c\u641c\u7d22\u7b97\u6cd5 searching algorithm\u300d\u7528\u4e8e\u5728\u6570\u636e\u7ed3\u6784\uff08\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u6216\u56fe\uff09\u4e2d\u641c\u7d22\u4e00\u4e2a\u6216\u4e00\u7ec4\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5143\u7d20\u3002
\u641c\u7d22\u7b97\u6cd5\u53ef\u6839\u636e\u5b9e\u73b0\u601d\u8def\u5206\u4e3a\u4ee5\u4e0b\u4e24\u7c7b\u3002
- \u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\uff0c\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u548c\u56fe\u7684\u904d\u5386\u7b49\u3002
- \u5229\u7528\u6570\u636e\u7ec4\u7ec7\u7ed3\u6784\u6216\u6570\u636e\u5305\u542b\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u5b9e\u73b0\u9ad8\u6548\u5143\u7d20\u67e5\u627e\uff0c\u4f8b\u5982\u4e8c\u5206\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u548c\u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u7b49\u3002
\u4e0d\u96be\u53d1\u73b0\uff0c\u8fd9\u4e9b\u77e5\u8bc6\u70b9\u90fd\u5df2\u5728\u524d\u9762\u7684\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u56e0\u6b64\u641c\u7d22\u7b97\u6cd5\u5bf9\u4e8e\u6211\u4eec\u6765\u8bf4\u5e76\u4e0d\u964c\u751f\u3002\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5c06\u4ece\u66f4\u52a0\u7cfb\u7edf\u7684\u89c6\u89d2\u5207\u5165\uff0c\u91cd\u65b0\u5ba1\u89c6\u641c\u7d22\u7b97\u6cd5\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/#1051","title":"10.5.1 \u00a0 \u66b4\u529b\u641c\u7d22","text":"\u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u7684\u6bcf\u4e2a\u5143\u7d20\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002
- \u201c\u7ebf\u6027\u641c\u7d22\u201d\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\u7b49\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u5b83\u4ece\u6570\u636e\u7ed3\u6784\u7684\u4e00\u7aef\u5f00\u59cb\uff0c\u9010\u4e2a\u8bbf\u95ee\u5143\u7d20\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u5230\u8fbe\u53e6\u4e00\u7aef\u4ecd\u6ca1\u6709\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
- \u201c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u548c\u201c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u662f\u56fe\u548c\u6811\u7684\u4e24\u79cd\u904d\u5386\u7b56\u7565\u3002\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\u9010\u5c42\u641c\u7d22\uff0c\u7531\u8fd1\u53ca\u8fdc\u5730\u8bbf\u95ee\u5404\u4e2a\u8282\u70b9\u3002\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\uff0c\u6cbf\u7740\u4e00\u6761\u8def\u5f84\u8d70\u5230\u5934\uff0c\u518d\u56de\u6eaf\u5e76\u5c1d\u8bd5\u5176\u4ed6\u8def\u5f84\uff0c\u76f4\u5230\u904d\u5386\u5b8c\u6574\u4e2a\u6570\u636e\u7ed3\u6784\u3002
\u66b4\u529b\u641c\u7d22\u7684\u4f18\u70b9\u662f\u7b80\u5355\u4e14\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u505a\u9884\u5904\u7406\u548c\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\u3002
\u7136\u800c\uff0c\u6b64\u7c7b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u5143\u7d20\u6570\u91cf\uff0c\u56e0\u6b64\u5728\u6570\u636e\u91cf\u8f83\u5927\u7684\u60c5\u51b5\u4e0b\u6027\u80fd\u8f83\u5dee\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/#1052","title":"10.5.2 \u00a0 \u81ea\u9002\u5e94\u641c\u7d22","text":"\u81ea\u9002\u5e94\u641c\u7d22\u5229\u7528\u6570\u636e\u7684\u7279\u6709\u5c5e\u6027\uff08\u4f8b\u5982\u6709\u5e8f\u6027\uff09\u6765\u4f18\u5316\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ece\u800c\u66f4\u9ad8\u6548\u5730\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002
- \u201c\u4e8c\u5206\u67e5\u627e\u201d\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\u5b9e\u73b0\u9ad8\u6548\u67e5\u627e\uff0c\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002
- \u201c\u54c8\u5e0c\u67e5\u627e\u201d\u5229\u7528\u54c8\u5e0c\u8868\u5c06\u641c\u7d22\u6570\u636e\u548c\u76ee\u6807\u6570\u636e\u5efa\u7acb\u4e3a\u952e\u503c\u5bf9\u6620\u5c04\uff0c\u4ece\u800c\u5b9e\u73b0\u67e5\u8be2\u64cd\u4f5c\u3002
- \u201c\u6811\u67e5\u627e\u201d\u5728\u7279\u5b9a\u7684\u6811\u7ed3\u6784\uff08\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\uff09\u4e2d\uff0c\u57fa\u4e8e\u6bd4\u8f83\u8282\u70b9\u503c\u6765\u5feb\u901f\u6392\u9664\u8282\u70b9\uff0c\u4ece\u800c\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002
\u6b64\u7c7b\u7b97\u6cd5\u7684\u4f18\u70b9\u662f\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u3002
\u7136\u800c\uff0c\u4f7f\u7528\u8fd9\u4e9b\u7b97\u6cd5\u5f80\u5f80\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u5904\u7406\u3002\u4f8b\u5982\uff0c\u4e8c\u5206\u67e5\u627e\u9700\u8981\u9884\u5148\u5bf9\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\uff0c\u54c8\u5e0c\u67e5\u627e\u548c\u6811\u67e5\u627e\u90fd\u9700\u8981\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u7ef4\u62a4\u8fd9\u4e9b\u6570\u636e\u7ed3\u6784\u4e5f\u9700\u8981\u989d\u5916\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u5f00\u9500\u3002
Tip
\u81ea\u9002\u5e94\u641c\u7d22\u7b97\u6cd5\u5e38\u88ab\u79f0\u4e3a\u67e5\u627e\u7b97\u6cd5\uff0c\u4e3b\u8981\u7528\u4e8e\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u68c0\u7d22\u76ee\u6807\u5143\u7d20\u3002
"},{"location":"chapter_searching/searching_algorithm_revisited/#1053","title":"10.5.3 \u00a0 \u641c\u7d22\u65b9\u6cd5\u9009\u53d6","text":"\u7ed9\u5b9a\u5927\u5c0f\u4e3a \\(n\\) \u7684\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u7ebf\u6027\u641c\u7d22\u3001\u4e8c\u5206\u67e5\u627e\u3001\u6811\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u7b49\u591a\u79cd\u65b9\u6cd5\u4ece\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\u3002\u5404\u4e2a\u65b9\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u5982\u56fe 10-11 \u6240\u793a\u3002
\u56fe 10-11 \u00a0 \u591a\u79cd\u641c\u7d22\u7b56\u7565
\u4e0a\u8ff0\u51e0\u79cd\u65b9\u6cd5\u7684\u64cd\u4f5c\u6548\u7387\u4e0e\u7279\u6027\u5982\u8868 10-1 \u6240\u793a\u3002
\u8868 10-1 \u00a0 \u67e5\u627e\u7b97\u6cd5\u6548\u7387\u5bf9\u6bd4
\u7ebf\u6027\u641c\u7d22 \u4e8c\u5206\u67e5\u627e \u6811\u67e5\u627e \u54c8\u5e0c\u67e5\u627e \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u989d\u5916\u7a7a\u95f4 \\(O(1)\\) \\(O(1)\\) \\(O(n)\\) \\(O(n)\\) \u6570\u636e\u9884\u5904\u7406 / \u6392\u5e8f \\(O(n \\log n)\\) \u5efa\u6811 \\(O(n \\log n)\\) \u5efa\u54c8\u5e0c\u8868 \\(O(n)\\) \u6570\u636e\u662f\u5426\u6709\u5e8f \u65e0\u5e8f \u6709\u5e8f \u6709\u5e8f \u65e0\u5e8f \u641c\u7d22\u7b97\u6cd5\u7684\u9009\u62e9\u8fd8\u53d6\u51b3\u4e8e\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u4e0e\u66f4\u65b0\u9891\u7387\u7b49\u3002
\u7ebf\u6027\u641c\u7d22
- \u901a\u7528\u6027\u8f83\u597d\uff0c\u65e0\u987b\u4efb\u4f55\u6570\u636e\u9884\u5904\u7406\u64cd\u4f5c\u3002\u5047\u5982\u6211\u4eec\u4ec5\u9700\u67e5\u8be2\u4e00\u6b21\u6570\u636e\uff0c\u90a3\u4e48\u5176\u4ed6\u4e09\u79cd\u65b9\u6cd5\u7684\u6570\u636e\u9884\u5904\u7406\u7684\u65f6\u95f4\u6bd4\u7ebf\u6027\u641c\u7d22\u7684\u65f6\u95f4\u8fd8\u8981\u66f4\u957f\u3002
- \u9002\u7528\u4e8e\u4f53\u91cf\u8f83\u5c0f\u7684\u6570\u636e\uff0c\u6b64\u60c5\u51b5\u4e0b\u65f6\u95f4\u590d\u6742\u5ea6\u5bf9\u6548\u7387\u5f71\u54cd\u8f83\u5c0f\u3002
- \u9002\u7528\u4e8e\u6570\u636e\u66f4\u65b0\u9891\u7387\u8f83\u9ad8\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u8be5\u65b9\u6cd5\u4e0d\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u4efb\u4f55\u989d\u5916\u7ef4\u62a4\u3002
\u4e8c\u5206\u67e5\u627e
- \u9002\u7528\u4e8e\u5927\u6570\u636e\u91cf\u7684\u60c5\u51b5\uff0c\u6548\u7387\u8868\u73b0\u7a33\u5b9a\uff0c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002
- \u6570\u636e\u91cf\u4e0d\u80fd\u8fc7\u5927\uff0c\u56e0\u4e3a\u5b58\u50a8\u6570\u7ec4\u9700\u8981\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u3002
- \u4e0d\u9002\u7528\u4e8e\u9ad8\u9891\u589e\u5220\u6570\u636e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u7ef4\u62a4\u6709\u5e8f\u6570\u7ec4\u7684\u5f00\u9500\u8f83\u5927\u3002
\u54c8\u5e0c\u67e5\u627e
- \u9002\u5408\u5bf9\u67e5\u8be2\u6027\u80fd\u8981\u6c42\u5f88\u9ad8\u7684\u573a\u666f\uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
- \u4e0d\u9002\u5408\u9700\u8981\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u65e0\u6cd5\u7ef4\u62a4\u6570\u636e\u7684\u6709\u5e8f\u6027\u3002
- \u5bf9\u54c8\u5e0c\u51fd\u6570\u548c\u54c8\u5e0c\u51b2\u7a81\u5904\u7406\u7b56\u7565\u7684\u4f9d\u8d56\u6027\u8f83\u9ad8\uff0c\u5177\u6709\u8f83\u5927\u7684\u6027\u80fd\u52a3\u5316\u98ce\u9669\u3002
- \u4e0d\u9002\u5408\u6570\u636e\u91cf\u8fc7\u5927\u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u9700\u8981\u989d\u5916\u7a7a\u95f4\u6765\u6700\u5927\u7a0b\u5ea6\u5730\u51cf\u5c11\u51b2\u7a81\uff0c\u4ece\u800c\u63d0\u4f9b\u826f\u597d\u7684\u67e5\u8be2\u6027\u80fd\u3002
\u6811\u67e5\u627e
- \u9002\u7528\u4e8e\u6d77\u91cf\u6570\u636e\uff0c\u56e0\u4e3a\u6811\u8282\u70b9\u5728\u5185\u5b58\u4e2d\u662f\u5206\u6563\u5b58\u50a8\u7684\u3002
- \u9002\u5408\u9700\u8981\u7ef4\u62a4\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\u3002
- \u5728\u6301\u7eed\u589e\u5220\u8282\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u4ea7\u751f\u503e\u659c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
- \u82e5\u4f7f\u7528 AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u5219\u5404\u9879\u64cd\u4f5c\u53ef\u5728 \\(O(\\log n)\\) \u6548\u7387\u4e0b\u7a33\u5b9a\u8fd0\u884c\uff0c\u4f46\u7ef4\u62a4\u6811\u5e73\u8861\u7684\u64cd\u4f5c\u4f1a\u589e\u52a0\u989d\u5916\u7684\u5f00\u9500\u3002
"},{"location":"chapter_searching/summary/","title":"10.6 \u00a0 \u5c0f\u7ed3","text":" - \u4e8c\u5206\u67e5\u627e\u4f9d\u8d56\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u901a\u8fc7\u5faa\u73af\u9010\u6b65\u7f29\u51cf\u4e00\u534a\u641c\u7d22\u533a\u95f4\u6765\u8fdb\u884c\u67e5\u627e\u3002\u5b83\u8981\u6c42\u8f93\u5165\u6570\u636e\u6709\u5e8f\uff0c\u4e14\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u6216\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
- \u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u6570\u636e\u3002\u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\uff0c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u548c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u9002\u7528\u4e8e\u56fe\u548c\u6811\u3002\u6b64\u7c7b\u7b97\u6cd5\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u5904\u7406\uff0c\u4f46\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u8f83\u9ad8\u3002
- \u54c8\u5e0c\u67e5\u627e\u3001\u6811\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u5c5e\u4e8e\u9ad8\u6548\u641c\u7d22\u65b9\u6cd5\uff0c\u53ef\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002\u6b64\u7c7b\u7b97\u6cd5\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \uff0c\u4f46\u901a\u5e38\u9700\u8981\u501f\u52a9\u989d\u5916\u6570\u636e\u7ed3\u6784\u3002
- \u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5bf9\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u548c\u66f4\u65b0\u9891\u7387\u7b49\u56e0\u7d20\u8fdb\u884c\u5177\u4f53\u5206\u6790\uff0c\u4ece\u800c\u9009\u62e9\u5408\u9002\u7684\u641c\u7d22\u65b9\u6cd5\u3002
- \u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u5c0f\u578b\u6216\u9891\u7e41\u66f4\u65b0\u7684\u6570\u636e\uff1b\u4e8c\u5206\u67e5\u627e\u9002\u7528\u4e8e\u5927\u578b\u3001\u6392\u5e8f\u7684\u6570\u636e\uff1b\u54c8\u5e0c\u67e5\u627e\u9002\u7528\u4e8e\u5bf9\u67e5\u8be2\u6548\u7387\u8981\u6c42\u8f83\u9ad8\u4e14\u65e0\u987b\u8303\u56f4\u67e5\u8be2\u7684\u6570\u636e\uff1b\u6811\u67e5\u627e\u9002\u7528\u4e8e\u9700\u8981\u7ef4\u62a4\u987a\u5e8f\u548c\u652f\u6301\u8303\u56f4\u67e5\u8be2\u7684\u5927\u578b\u52a8\u6001\u6570\u636e\u3002
- \u7528\u54c8\u5e0c\u67e5\u627e\u66ff\u6362\u7ebf\u6027\u67e5\u627e\u662f\u4e00\u79cd\u5e38\u7528\u7684\u4f18\u5316\u8fd0\u884c\u65f6\u95f4\u7684\u7b56\u7565\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u81f3 \\(O(1)\\) \u3002
"},{"location":"chapter_sorting/","title":"\u7b2c 11 \u7ae0 \u00a0 \u6392\u5e8f","text":"Abstract
\u6392\u5e8f\u72b9\u5982\u4e00\u628a\u5c06\u6df7\u4e71\u53d8\u4e3a\u79e9\u5e8f\u7684\u9b54\u6cd5\u94a5\u5319\uff0c\u4f7f\u6211\u4eec\u80fd\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u7406\u89e3\u4e0e\u5904\u7406\u6570\u636e\u3002
\u65e0\u8bba\u662f\u7b80\u5355\u7684\u5347\u5e8f\uff0c\u8fd8\u662f\u590d\u6742\u7684\u5206\u7c7b\u6392\u5217\uff0c\u6392\u5e8f\u90fd\u5411\u6211\u4eec\u5c55\u793a\u4e86\u6570\u636e\u7684\u548c\u8c10\u7f8e\u611f\u3002
"},{"location":"chapter_sorting/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5
- 11.2 \u00a0 \u9009\u62e9\u6392\u5e8f
- 11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f
- 11.4 \u00a0 \u63d2\u5165\u6392\u5e8f
- 11.5 \u00a0 \u5feb\u901f\u6392\u5e8f
- 11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f
- 11.7 \u00a0 \u5806\u6392\u5e8f
- 11.8 \u00a0 \u6876\u6392\u5e8f
- 11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f
- 11.10 \u00a0 \u57fa\u6570\u6392\u5e8f
- 11.11 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_sorting/bubble_sort/","title":"11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f","text":"\u300c\u5192\u6ce1\u6392\u5e8f bubble sort\u300d\u901a\u8fc7\u8fde\u7eed\u5730\u6bd4\u8f83\u4e0e\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u5b9e\u73b0\u6392\u5e8f\u3002\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u50cf\u6c14\u6ce1\u4ece\u5e95\u90e8\u5347\u5230\u9876\u90e8\u4e00\u6837\uff0c\u56e0\u6b64\u5f97\u540d\u5192\u6ce1\u6392\u5e8f\u3002
\u5982\u56fe 11-4 \u6240\u793a\uff0c\u5192\u6ce1\u8fc7\u7a0b\u53ef\u4ee5\u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6765\u6a21\u62df\uff1a\u4ece\u6570\u7ec4\u6700\u5de6\u7aef\u5f00\u59cb\u5411\u53f3\u904d\u5386\uff0c\u4f9d\u6b21\u6bd4\u8f83\u76f8\u90bb\u5143\u7d20\u5927\u5c0f\uff0c\u5982\u679c\u201c\u5de6\u5143\u7d20 > \u53f3\u5143\u7d20\u201d\u5c31\u4ea4\u6362\u4e8c\u8005\u3002\u904d\u5386\u5b8c\u6210\u540e\uff0c\u6700\u5927\u7684\u5143\u7d20\u4f1a\u88ab\u79fb\u52a8\u5230\u6570\u7ec4\u7684\u6700\u53f3\u7aef\u3002
<1><2><3><4><5><6><7> \u56fe 11-4 \u00a0 \u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6a21\u62df\u5192\u6ce1
"},{"location":"chapter_sorting/bubble_sort/#1131","title":"11.3.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6b65\u9aa4\u5982\u56fe 11-5 \u6240\u793a\u3002
- \u9996\u5148\uff0c\u5bf9 \\(n\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
- \u63a5\u4e0b\u6765\uff0c\u5bf9\u5269\u4f59 \\(n - 1\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u7b2c\u4e8c\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
- \u4ee5\u6b64\u7c7b\u63a8\uff0c\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u201c\u5192\u6ce1\u201d\u540e\uff0c\u524d \\(n - 1\\) \u5927\u7684\u5143\u7d20\u90fd\u88ab\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
- \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5c0f\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002
\u56fe 11-5 \u00a0 \u5192\u6ce1\u6392\u5e8f\u6d41\u7a0b
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig bubble_sort.pydef bubble_sort(nums: list[int]):\n \"\"\"\u5192\u6ce1\u6392\u5e8f\"\"\"\n n = len(nums)\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(n - 1, 0, -1):\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j + 1] = nums[j + 1], nums[j]\n
bubble_sort.cpp/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(vector<int> &nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n // \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\n swap(nums[j], nums[j + 1]);\n }\n }\n }\n}\n
bubble_sort.java/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.cs/* \u5192\u6ce1\u6392\u5e8f */\nvoid BubbleSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n }\n }\n }\n}\n
bubble_sort.go/* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums []int) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j+1] = nums[j+1], nums[j]\n }\n }\n }\n}\n
bubble_sort.swift/* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in stride(from: 0, to: i, by: 1) {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n }\n }\n }\n}\n
bubble_sort.js/* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.ts/* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums: number[]): void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.dart/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(List<int> nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.rs/* \u5192\u6ce1\u6392\u5e8f */\nfn bubble_sort(nums: &mut [i32]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
bubble_sort.c/* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int nums[], int size) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = size - 1; i > 0; i--) {\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n int temp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = temp;\n }\n }\n }\n}\n
bubble_sort.zig// \u5192\u6ce1\u6392\u5e8f\nfn bubbleSort(nums: []i32) void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: usize = nums.len - 1;\n while (i > 0) : (i -= 1) {\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n }\n }\n }\n}\n
"},{"location":"chapter_sorting/bubble_sort/#1132","title":"11.3.2 \u00a0 \u6548\u7387\u4f18\u5316","text":"\u6211\u4eec\u53d1\u73b0\uff0c\u5982\u679c\u67d0\u8f6e\u201c\u5192\u6ce1\u201d\u4e2d\u6ca1\u6709\u6267\u884c\u4efb\u4f55\u4ea4\u6362\u64cd\u4f5c\uff0c\u8bf4\u660e\u6570\u7ec4\u5df2\u7ecf\u5b8c\u6210\u6392\u5e8f\uff0c\u53ef\u76f4\u63a5\u8fd4\u56de\u7ed3\u679c\u3002\u56e0\u6b64\uff0c\u53ef\u4ee5\u589e\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d flag \u6765\u76d1\u6d4b\u8fd9\u79cd\u60c5\u51b5\uff0c\u4e00\u65e6\u51fa\u73b0\u5c31\u7acb\u5373\u8fd4\u56de\u3002
\u7ecf\u8fc7\u4f18\u5316\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(n^2)\\) \uff1b\u4f46\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u53ef\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig bubble_sort.pydef bubble_sort_with_flag(nums: list[int]):\n \"\"\"\u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\"\"\"\n n = len(nums)\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in range(n - 1, 0, -1):\n flag = False # \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n # \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j in range(i):\n if nums[j] > nums[j + 1]:\n # \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j + 1] = nums[j + 1], nums[j]\n flag = True # \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n if not flag:\n break # \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n
bubble_sort.cpp/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(vector<int> &nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.size() - 1; i > 0; i--) {\n bool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n // \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\n swap(nums[j], nums[j + 1]);\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag)\n break; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.java/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nvoid bubbleSortWithFlag(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n boolean flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag)\n break; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.cs/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid BubbleSortWithFlag(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.Length - 1; i > 0; i--) {\n bool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.go/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums []int) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := len(nums) - 1; i > 0; i-- {\n flag := false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for j := 0; j < i; j++ {\n if nums[j] > nums[j+1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n nums[j], nums[j+1] = nums[j+1], nums[j]\n flag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if flag == false { // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n break\n }\n }\n}\n
bubble_sort.swift/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n var flag = false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n for j in stride(from: 0, to: i, by: 1) {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j]\n nums[j] = nums[j + 1]\n nums[j + 1] = tmp\n flag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if !flag { // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n break\n }\n }\n}\n
bubble_sort.js/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n let flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.ts/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums: number[]): void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (let i = nums.length - 1; i > 0; i--) {\n let flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (let j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.dart/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(List<int> nums) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = nums.length - 1; i > 0; i--) {\n bool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n int tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.rs/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nfn bubble_sort_with_flag(nums: &mut [i32]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i in (1..nums.len()).rev() {\n let mut flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n for j in 0..i {\n if nums[j] > nums[j + 1] {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n let tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n }\n }\n if !flag {break}; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
bubble_sort.c/* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(int nums[], int size) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for (int i = size - 1; i > 0; i--) {\n bool flag = false;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\n for (int j = 0; j < i; j++) {\n if (nums[j] > nums[j + 1]) {\n int temp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = temp;\n flag = true;\n }\n }\n if (!flag)\n break;\n }\n}\n
bubble_sort.zig// \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\nfn bubbleSortWithFlag(nums: []i32) void {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n var i: usize = nums.len - 1;\n while (i > 0) : (i -= 1) {\n var flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n var j: usize = 0;\n // \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \n while (j < i) : (j += 1) {\n if (nums[j] > nums[j + 1]) {\n // \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n var tmp = nums[j];\n nums[j] = nums[j + 1];\n nums[j + 1] = tmp;\n flag = true;\n }\n }\n if (!flag) break; // \u6b64\u8f6e\u201c\u5192\u6ce1\u201d\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n }\n}\n
"},{"location":"chapter_sorting/bubble_sort/#1133","title":"11.3.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\)\u3001\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5404\u8f6e\u201c\u5192\u6ce1\u201d\u904d\u5386\u7684\u6570\u7ec4\u957f\u5ea6\u4f9d\u6b21\u4e3a \\(n - 1\\)\u3001\\(n - 2\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \uff0c\u603b\u548c\u4e3a \\((n - 1) n / 2\\) \u3002\u5728\u5f15\u5165
flag \u4f18\u5316\u540e\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(n)\\) \u3002 - \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5728\u201c\u5192\u6ce1\u201d\u4e2d\u9047\u5230\u76f8\u7b49\u5143\u7d20\u4e0d\u4ea4\u6362\u3002
"},{"location":"chapter_sorting/bucket_sort/","title":"11.8 \u00a0 \u6876\u6392\u5e8f","text":"\u524d\u8ff0\u51e0\u79cd\u6392\u5e8f\u7b97\u6cd5\u90fd\u5c5e\u4e8e\u201c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u901a\u8fc7\u6bd4\u8f83\u5143\u7d20\u95f4\u7684\u5927\u5c0f\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u6b64\u7c7b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u65e0\u6cd5\u8d85\u8d8a \\(O(n \\log n)\\) \u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u63a2\u8ba8\u51e0\u79cd\u201c\u975e\u6bd4\u8f83\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u7ebf\u6027\u9636\u3002
\u300c\u6876\u6392\u5e8f bucket sort\u300d\u662f\u5206\u6cbb\u7b56\u7565\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u901a\u8fc7\u8bbe\u7f6e\u4e00\u4e9b\u5177\u6709\u5927\u5c0f\u987a\u5e8f\u7684\u6876\uff0c\u6bcf\u4e2a\u6876\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u8303\u56f4\uff0c\u5c06\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff1b\u7136\u540e\uff0c\u5728\u6bcf\u4e2a\u6876\u5185\u90e8\u5206\u522b\u6267\u884c\u6392\u5e8f\uff1b\u6700\u7ec8\u6309\u7167\u6876\u7684\u987a\u5e8f\u5c06\u6240\u6709\u6570\u636e\u5408\u5e76\u3002
"},{"location":"chapter_sorting/bucket_sort/#1181","title":"11.8.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u8003\u8651\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u5176\u5143\u7d20\u662f\u8303\u56f4 \\([0, 1)\\) \u5185\u7684\u6d6e\u70b9\u6570\u3002\u6876\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u56fe 11-13 \u6240\u793a\u3002
- \u521d\u59cb\u5316 \\(k\\) \u4e2a\u6876\uff0c\u5c06 \\(n\\) \u4e2a\u5143\u7d20\u5206\u914d\u5230 \\(k\\) \u4e2a\u6876\u4e2d\u3002
- \u5bf9\u6bcf\u4e2a\u6876\u5206\u522b\u6267\u884c\u6392\u5e8f\uff08\u8fd9\u91cc\u91c7\u7528\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff09\u3002
- \u6309\u7167\u6876\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u5408\u5e76\u7ed3\u679c\u3002
\u56fe 11-13 \u00a0 \u6876\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig bucket_sort.pydef bucket_sort(nums: list[float]):\n \"\"\"\u6876\u6392\u5e8f\"\"\"\n # \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n k = len(nums) // 2\n buckets = [[] for _ in range(k)]\n # 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for num in nums:\n # \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n i = int(num * k)\n # \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].append(num)\n # 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for bucket in buckets:\n # \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort()\n # 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n i = 0\n for bucket in buckets:\n for num in bucket:\n nums[i] = num\n i += 1\n
bucket_sort.cpp/* \u6876\u6392\u5e8f */\nvoid bucketSort(vector<float> &nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.size() / 2;\n vector<vector<float>> buckets(k);\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (float num : nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = num * k;\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\n buckets[i].push_back(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (vector<float> &bucket : buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n sort(bucket.begin(), bucket.end());\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int i = 0;\n for (vector<float> &bucket : buckets) {\n for (float num : bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.java/* \u6876\u6392\u5e8f */\nvoid bucketSort(float[] nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.length / 2;\n List<List<Float>> buckets = new ArrayList<>();\n for (int i = 0; i < k; i++) {\n buckets.add(new ArrayList<>());\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (float num : nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = (int) (num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets.get(i).add(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (List<Float> bucket : buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n Collections.sort(bucket);\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int i = 0;\n for (List<Float> bucket : buckets) {\n for (float num : bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.cs/* \u6876\u6392\u5e8f */\nvoid BucketSort(float[] nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.Length / 2;\n List<List<float>> buckets = [];\n for (int i = 0; i < k; i++) {\n buckets.Add([]);\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n foreach (float num in nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = (int)(num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].Add(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n foreach (List<float> bucket in buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.Sort();\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int j = 0;\n foreach (List<float> bucket in buckets) {\n foreach (float num in bucket) {\n nums[j++] = num;\n }\n }\n}\n
bucket_sort.go/* \u6876\u6392\u5e8f */\nfunc bucketSort(nums []float64) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n k := len(nums) / 2\n buckets := make([][]float64, k)\n for i := 0; i < k; i++ {\n buckets[i] = make([]float64, 0)\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for _, num := range nums {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n i := int(num * float64(k))\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i] = append(buckets[i], num)\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for i := 0; i < k; i++ {\n // \u4f7f\u7528\u5185\u7f6e\u5207\u7247\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n sort.Float64s(buckets[i])\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n i := 0\n for _, bucket := range buckets {\n for _, num := range bucket {\n nums[i] = num\n i++\n }\n }\n}\n
bucket_sort.swift/* \u6876\u6392\u5e8f */\nfunc bucketSort(nums: inout [Double]) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n let k = nums.count / 2\n var buckets = (0 ..< k).map { _ in [Double]() }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for num in nums {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n let i = Int(num * Double(k))\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].append(num)\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for i in buckets.indices {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n buckets[i].sort()\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n var i = nums.startIndex\n for bucket in buckets {\n for num in bucket {\n nums[i] = num\n nums.formIndex(after: &i)\n }\n }\n}\n
bucket_sort.js/* \u6876\u6392\u5e8f */\nfunction bucketSort(nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n const k = nums.length / 2;\n const buckets = [];\n for (let i = 0; i < k; i++) {\n buckets.push([]);\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (const num of nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n const i = Math.floor(num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].push(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (const bucket of buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort((a, b) => a - b);\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n let i = 0;\n for (const bucket of buckets) {\n for (const num of bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.ts/* \u6876\u6392\u5e8f */\nfunction bucketSort(nums: number[]): void {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n const k = nums.length / 2;\n const buckets: number[][] = [];\n for (let i = 0; i < k; i++) {\n buckets.push([]);\n }\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (const num of nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n const i = Math.floor(num * k);\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].push(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (const bucket of buckets) {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort((a, b) => a - b);\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n let i = 0;\n for (const bucket of buckets) {\n for (const num of bucket) {\n nums[i++] = num;\n }\n }\n}\n
bucket_sort.dart/* \u6876\u6392\u5e8f */\nvoid bucketSort(List<double> nums) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = nums.length ~/ 2;\n List<List<double>> buckets = List.generate(k, (index) => []);\n\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (double _num in nums) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 _num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int i = (_num * k).toInt();\n // \u5c06 _num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\n buckets[i].add(_num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (List<double> bucket in buckets) {\n bucket.sort();\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n int i = 0;\n for (List<double> bucket in buckets) {\n for (double _num in bucket) {\n nums[i++] = _num;\n }\n }\n}\n
bucket_sort.rs/* \u6876\u6392\u5e8f */\nfn bucket_sort(nums: &mut [f64]) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n let k = nums.len() / 2;\n let mut buckets = vec![vec![]; k];\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for &mut num in &mut *nums {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n let i = (num * k as f64) as usize;\n // \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\n buckets[i].push(num);\n }\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for bucket in &mut buckets {\n // \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\n bucket.sort_by(|a, b| a.partial_cmp(b).unwrap());\n }\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n let mut i = 0;\n for bucket in &mut buckets {\n for &mut num in bucket {\n nums[i] = num;\n i += 1;\n }\n }\n}\n
bucket_sort.c/* \u6876\u6392\u5e8f */\nvoid bucketSort(float nums[], int size) {\n // \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\n int k = size / 2;\n float **buckets = calloc(k, sizeof(float *));\n for (int i = 0; i < k; i++) {\n // \u6bcf\u4e2a\u6876\u6700\u591a\u53ef\u4ee5\u5206\u914d k \u4e2a\u5143\u7d20\n buckets[i] = calloc(ARRAY_SIZE, sizeof(float));\n }\n\n // 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\n for (int i = 0; i < size; i++) {\n // \u8f93\u5165\u6570\u636e\u8303\u56f4\u4e3a [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\n int bucket_idx = nums[i] * k;\n int j = 0;\n // \u5982\u679c\u6876\u4e2d\u6709\u6570\u636e\u4e14\u6570\u636e\u5c0f\u4e8e\u5f53\u524d\u503c nums[i], \u8981\u5c06\u5176\u653e\u5230\u5f53\u524d\u6876\u7684\u540e\u9762\uff0c\u76f8\u5f53\u4e8e cpp \u4e2d\u7684 push_back\n while (buckets[bucket_idx][j] > 0 && buckets[bucket_idx][j] < nums[i]) {\n j++;\n }\n float temp = nums[i];\n while (j < ARRAY_SIZE && buckets[bucket_idx][j] > 0) {\n swap(&temp, &buckets[bucket_idx][j]);\n j++;\n }\n buckets[bucket_idx][j] = temp;\n }\n\n // 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\n for (int i = 0; i < k; i++) {\n qsort(buckets[i], ARRAY_SIZE, sizeof(float), compare_float);\n }\n\n // 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\n for (int i = 0, j = 0; j < k; j++) {\n for (int l = 0; l < ARRAY_SIZE; l++) {\n if (buckets[j][l] > 0) {\n nums[i++] = buckets[j][l];\n }\n }\n }\n\n // \u91ca\u653e\u4e0a\u8ff0\u5206\u914d\u7684\u5185\u5b58\n for (int i = 0; i < k; i++) {\n free(buckets[i]);\n }\n free(buckets);\n}\n
bucket_sort.zig[class]{}-[func]{bucketSort}\n
"},{"location":"chapter_sorting/bucket_sort/#1182","title":"11.8.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"\u6876\u6392\u5e8f\u9002\u7528\u4e8e\u5904\u7406\u4f53\u91cf\u5f88\u5927\u7684\u6570\u636e\u3002\u4f8b\u5982\uff0c\u8f93\u5165\u6570\u636e\u5305\u542b 100 \u4e07\u4e2a\u5143\u7d20\uff0c\u7531\u4e8e\u7a7a\u95f4\u9650\u5236\uff0c\u7cfb\u7edf\u5185\u5b58\u65e0\u6cd5\u4e00\u6b21\u6027\u52a0\u8f7d\u6240\u6709\u6570\u636e\u3002\u6b64\u65f6\uff0c\u53ef\u4ee5\u5c06\u6570\u636e\u5206\u6210 1000 \u4e2a\u6876\uff0c\u7136\u540e\u5206\u522b\u5bf9\u6bcf\u4e2a\u6876\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u7ed3\u679c\u5408\u5e76\u3002
- \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n + k)\\) \uff1a\u5047\u8bbe\u5143\u7d20\u5728\u5404\u4e2a\u6876\u5185\u5e73\u5747\u5206\u5e03\uff0c\u90a3\u4e48\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u6570\u91cf\u4e3a \\(\\frac{n}{k}\\) \u3002\u5047\u8bbe\u6392\u5e8f\u5355\u4e2a\u6876\u4f7f\u7528 \\(O(\\frac{n}{k} \\log\\frac{n}{k})\\) \u65f6\u95f4\uff0c\u5219\u6392\u5e8f\u6240\u6709\u6876\u4f7f\u7528 \\(O(n \\log\\frac{n}{k})\\) \u65f6\u95f4\u3002\u5f53\u6876\u6570\u91cf \\(k\\) \u6bd4\u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5219\u8d8b\u5411\u4e8e \\(O(n)\\) \u3002\u5408\u5e76\u7ed3\u679c\u65f6\u9700\u8981\u904d\u5386\u6240\u6709\u6876\u548c\u5143\u7d20\uff0c\u82b1\u8d39 \\(O(n + k)\\) \u65f6\u95f4\u3002
- \u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u6570\u636e\u88ab\u5206\u914d\u5230\u4e00\u4e2a\u6876\u4e2d\uff0c\u4e14\u6392\u5e8f\u8be5\u6876\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n + k)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u9700\u8981\u501f\u52a9 \\(k\\) \u4e2a\u6876\u548c\u603b\u5171 \\(n\\) \u4e2a\u5143\u7d20\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u6876\u6392\u5e8f\u662f\u5426\u7a33\u5b9a\u53d6\u51b3\u4e8e\u6392\u5e8f\u6876\u5185\u5143\u7d20\u7684\u7b97\u6cd5\u662f\u5426\u7a33\u5b9a\u3002
"},{"location":"chapter_sorting/bucket_sort/#1183","title":"11.8.3 \u00a0 \u5982\u4f55\u5b9e\u73b0\u5e73\u5747\u5206\u914d","text":"\u6876\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7406\u8bba\u4e0a\u53ef\u4ee5\u8fbe\u5230 \\(O(n)\\) \uff0c\u5173\u952e\u5728\u4e8e\u5c06\u5143\u7d20\u5747\u5300\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u56e0\u4e3a\u5b9e\u9645\u6570\u636e\u5f80\u5f80\u4e0d\u662f\u5747\u5300\u5206\u5e03\u7684\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u60f3\u8981\u5c06\u6dd8\u5b9d\u4e0a\u7684\u6240\u6709\u5546\u54c1\u6309\u4ef7\u683c\u8303\u56f4\u5e73\u5747\u5206\u914d\u5230 10 \u4e2a\u6876\u4e2d\uff0c\u4f46\u5546\u54c1\u4ef7\u683c\u5206\u5e03\u4e0d\u5747\uff0c\u4f4e\u4e8e 100 \u5143\u7684\u975e\u5e38\u591a\uff0c\u9ad8\u4e8e 1000 \u5143\u7684\u975e\u5e38\u5c11\u3002\u82e5\u5c06\u4ef7\u683c\u533a\u95f4\u5e73\u5747\u5212\u5206\u4e3a 10 \u4e2a\uff0c\u5404\u4e2a\u6876\u4e2d\u7684\u5546\u54c1\u6570\u91cf\u5dee\u8ddd\u4f1a\u975e\u5e38\u5927\u3002
\u4e3a\u5b9e\u73b0\u5e73\u5747\u5206\u914d\uff0c\u6211\u4eec\u53ef\u4ee5\u5148\u8bbe\u5b9a\u4e00\u6761\u5927\u81f4\u7684\u5206\u754c\u7ebf\uff0c\u5c06\u6570\u636e\u7c97\u7565\u5730\u5206\u5230 3 \u4e2a\u6876\u4e2d\u3002\u5206\u914d\u5b8c\u6bd5\u540e\uff0c\u518d\u5c06\u5546\u54c1\u8f83\u591a\u7684\u6876\u7ee7\u7eed\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u76f4\u81f3\u6240\u6709\u6876\u4e2d\u7684\u5143\u7d20\u6570\u91cf\u5927\u81f4\u76f8\u7b49\u3002
\u5982\u56fe 11-14 \u6240\u793a\uff0c\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u521b\u5efa\u4e00\u68f5\u9012\u5f52\u6811\uff0c\u76ee\u6807\u662f\u8ba9\u53f6\u8282\u70b9\u7684\u503c\u5c3d\u53ef\u80fd\u5e73\u5747\u3002\u5f53\u7136\uff0c\u4e0d\u4e00\u5b9a\u8981\u6bcf\u8f6e\u5c06\u6570\u636e\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u5177\u4f53\u5212\u5206\u65b9\u5f0f\u53ef\u6839\u636e\u6570\u636e\u7279\u70b9\u7075\u6d3b\u9009\u62e9\u3002
\u56fe 11-14 \u00a0 \u9012\u5f52\u5212\u5206\u6876
\u5982\u679c\u6211\u4eec\u63d0\u524d\u77e5\u9053\u5546\u54c1\u4ef7\u683c\u7684\u6982\u7387\u5206\u5e03\uff0c\u5219\u53ef\u4ee5\u6839\u636e\u6570\u636e\u6982\u7387\u5206\u5e03\u8bbe\u7f6e\u6bcf\u4e2a\u6876\u7684\u4ef7\u683c\u5206\u754c\u7ebf\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u6570\u636e\u5206\u5e03\u5e76\u4e0d\u4e00\u5b9a\u9700\u8981\u7279\u610f\u7edf\u8ba1\uff0c\u4e5f\u53ef\u4ee5\u6839\u636e\u6570\u636e\u7279\u70b9\u91c7\u7528\u67d0\u79cd\u6982\u7387\u6a21\u578b\u8fdb\u884c\u8fd1\u4f3c\u3002
\u5982\u56fe 11-15 \u6240\u793a\uff0c\u6211\u4eec\u5047\u8bbe\u5546\u54c1\u4ef7\u683c\u670d\u4ece\u6b63\u6001\u5206\u5e03\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5408\u7406\u5730\u8bbe\u5b9a\u4ef7\u683c\u533a\u95f4\uff0c\u4ece\u800c\u5c06\u5546\u54c1\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\u3002
\u56fe 11-15 \u00a0 \u6839\u636e\u6982\u7387\u5206\u5e03\u5212\u5206\u6876
"},{"location":"chapter_sorting/counting_sort/","title":"11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f","text":"\u300c\u8ba1\u6570\u6392\u5e8f counting sort\u300d\u901a\u8fc7\u7edf\u8ba1\u5143\u7d20\u6570\u91cf\u6765\u5b9e\u73b0\u6392\u5e8f\uff0c\u901a\u5e38\u5e94\u7528\u4e8e\u6574\u6570\u6570\u7ec4\u3002
"},{"location":"chapter_sorting/counting_sort/#1191","title":"11.9.1 \u00a0 \u7b80\u5355\u5b9e\u73b0","text":"\u5148\u6765\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u3002\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u7684\u5143\u7d20\u90fd\u662f\u201c\u975e\u8d1f\u6574\u6570\u201d\uff0c\u8ba1\u6570\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u56fe 11-16 \u6240\u793a\u3002
- \u904d\u5386\u6570\u7ec4\uff0c\u627e\u51fa\u5176\u4e2d\u7684\u6700\u5927\u6570\u5b57\uff0c\u8bb0\u4e3a \\(m\\) \uff0c\u7136\u540e\u521b\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(m + 1\\) \u7684\u8f85\u52a9\u6570\u7ec4
counter \u3002 - \u501f\u52a9
counter \u7edf\u8ba1 nums \u4e2d\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\uff0c\u5176\u4e2d counter[num] \u5bf9\u5e94\u6570\u5b57 num \u7684\u51fa\u73b0\u6b21\u6570\u3002\u7edf\u8ba1\u65b9\u6cd5\u5f88\u7b80\u5355\uff0c\u53ea\u9700\u904d\u5386 nums\uff08\u8bbe\u5f53\u524d\u6570\u5b57\u4e3a num\uff09\uff0c\u6bcf\u8f6e\u5c06 counter[num] \u589e\u52a0 \\(1\\) \u5373\u53ef\u3002 - \u7531\u4e8e
counter \u7684\u5404\u4e2a\u7d22\u5f15\u5929\u7136\u6709\u5e8f\uff0c\u56e0\u6b64\u76f8\u5f53\u4e8e\u6240\u6709\u6570\u5b57\u5df2\u7ecf\u6392\u5e8f\u597d\u4e86\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u904d\u5386 counter \uff0c\u6839\u636e\u5404\u6570\u5b57\u51fa\u73b0\u6b21\u6570\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u586b\u5165 nums \u5373\u53ef\u3002
\u56fe 11-16 \u00a0 \u8ba1\u6570\u6392\u5e8f\u6d41\u7a0b
\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig counting_sort.pydef counting_sort_naive(nums: list[int]):\n \"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n # \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\n # 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m = 0\n for num in nums:\n m = max(m, num)\n # 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n # counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter = [0] * (m + 1)\n for num in nums:\n counter[num] += 1\n # 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n i = 0\n for num in range(m + 1):\n for _ in range(counter[num]):\n nums[i] = num\n i += 1\n
counting_sort.cpp/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(vector<int> &nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n vector<int> counter(m + 1, 0);\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.java/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.cs/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid CountingSortNaive(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n foreach (int num in nums) {\n m = Math.Max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n foreach (int num in nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.go/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums []int) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m := 0\n for _, num := range nums {\n if num > m {\n m = num\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter := make([]int, m+1)\n for _, num := range nums {\n counter[num]++\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n for i, num := 0, 0; num < m+1; num++ {\n for j := 0; j < counter[num]; j++ {\n nums[i] = num\n i++\n }\n }\n}\n
counting_sort.swift/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums: inout [Int]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = nums.max()!\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n var counter = Array(repeating: 0, count: m + 1)\n for num in nums {\n counter[num] += 1\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n var i = 0\n for num in stride(from: 0, to: m + 1, by: 1) {\n for _ in stride(from: 0, to: counter[num], by: 1) {\n nums[i] = num\n i += 1\n }\n }\n}\n
counting_sort.js/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter = new Array(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n let i = 0;\n for (let num = 0; num < m + 1; num++) {\n for (let j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.ts/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums: number[]): void {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter: number[] = new Array<number>(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n let i = 0;\n for (let num = 0; num < m + 1; num++) {\n for (let j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n}\n
counting_sort.dart/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(List<int> nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int _num in nums) {\n m = max(m, _num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[_num] \u4ee3\u8868 _num \u7684\u51fa\u73b0\u6b21\u6570\n List<int> counter = List.filled(m + 1, 0);\n for (int _num in nums) {\n counter[_num]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int _num = 0; _num < m + 1; _num++) {\n for (int j = 0; j < counter[_num]; j++, i++) {\n nums[i] = _num;\n }\n }\n}\n
counting_sort.rs/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfn counting_sort_naive(nums: &mut [i32]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = *nums.into_iter().max().unwrap();\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n let mut counter = vec![0; m as usize + 1];\n for &num in &*nums {\n counter[num as usize] += 1;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n let mut i = 0;\n for num in 0..m + 1 {\n for _ in 0..counter[num as usize] {\n nums[i] = num;\n i += 1;\n }\n }\n}\n
counting_sort.c/* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int nums[], int size) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int i = 0; i < size; i++) {\n if (nums[i] > m) {\n m = nums[i];\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int *counter = calloc(m, sizeof(int));\n for (int i = 0; i < size; i++) {\n counter[nums[i]]++;\n }\n // 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\n int i = 0;\n for (int num = 0; num < m + 1; num++) {\n for (int j = 0; j < counter[num]; j++, i++) {\n nums[i] = num;\n }\n }\n // 4. \u91ca\u653e\u5185\u5b58\n free(counter);\n}\n
counting_sort.zig[class]{}-[func]{countingSortNaive}\n
\u8ba1\u6570\u6392\u5e8f\u4e0e\u6876\u6392\u5e8f\u7684\u8054\u7cfb
\u4ece\u6876\u6392\u5e8f\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u8ba1\u6570\u6392\u5e8f\u4e2d\u7684\u8ba1\u6570\u6570\u7ec4 counter \u7684\u6bcf\u4e2a\u7d22\u5f15\u89c6\u4e3a\u4e00\u4e2a\u6876\uff0c\u5c06\u7edf\u8ba1\u6570\u91cf\u7684\u8fc7\u7a0b\u770b\u4f5c\u5c06\u5404\u4e2a\u5143\u7d20\u5206\u914d\u5230\u5bf9\u5e94\u7684\u6876\u4e2d\u3002\u672c\u8d28\u4e0a\uff0c\u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u5728\u6574\u578b\u6570\u636e\u4e0b\u7684\u4e00\u4e2a\u7279\u4f8b\u3002
"},{"location":"chapter_sorting/counting_sort/#1192","title":"11.9.2 \u00a0 \u5b8c\u6574\u5b9e\u73b0","text":"\u7ec6\u5fc3\u7684\u8bfb\u8005\u53ef\u80fd\u53d1\u73b0\u4e86\uff0c\u5982\u679c\u8f93\u5165\u6570\u636e\u662f\u5bf9\u8c61\uff0c\u4e0a\u8ff0\u6b65\u9aa4 3. \u5c31\u5931\u6548\u4e86\u3002\u5047\u8bbe\u8f93\u5165\u6570\u636e\u662f\u5546\u54c1\u5bf9\u8c61\uff0c\u6211\u4eec\u60f3\u6309\u7167\u5546\u54c1\u4ef7\u683c\uff08\u7c7b\u7684\u6210\u5458\u53d8\u91cf\uff09\u5bf9\u5546\u54c1\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u4e0a\u8ff0\u7b97\u6cd5\u53ea\u80fd\u7ed9\u51fa\u4ef7\u683c\u7684\u6392\u5e8f\u7ed3\u679c\u3002
\u90a3\u4e48\u5982\u4f55\u624d\u80fd\u5f97\u5230\u539f\u6570\u636e\u7684\u6392\u5e8f\u7ed3\u679c\u5462\uff1f\u6211\u4eec\u9996\u5148\u8ba1\u7b97 counter \u7684\u201c\u524d\u7f00\u548c\u201d\u3002\u987e\u540d\u601d\u4e49\uff0c\u7d22\u5f15 i \u5904\u7684\u524d\u7f00\u548c prefix[i] \u7b49\u4e8e\u6570\u7ec4\u524d i \u4e2a\u5143\u7d20\u4e4b\u548c\uff1a
\\[ \\text{prefix}[i] = \\sum_{j=0}^i \\text{counter[j]} \\] \u524d\u7f00\u548c\u5177\u6709\u660e\u786e\u7684\u610f\u4e49\uff0cprefix[num] - 1 \u4ee3\u8868\u5143\u7d20 num \u5728\u7ed3\u679c\u6570\u7ec4 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\u3002\u8fd9\u4e2a\u4fe1\u606f\u975e\u5e38\u5173\u952e\uff0c\u56e0\u4e3a\u5b83\u544a\u8bc9\u6211\u4eec\u5404\u4e2a\u5143\u7d20\u5e94\u8be5\u51fa\u73b0\u5728\u7ed3\u679c\u6570\u7ec4\u7684\u54ea\u4e2a\u4f4d\u7f6e\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5012\u5e8f\u904d\u5386\u539f\u6570\u7ec4 nums \u7684\u6bcf\u4e2a\u5143\u7d20 num \uff0c\u5728\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\u6267\u884c\u4ee5\u4e0b\u4e24\u6b65\u3002
- \u5c06
num \u586b\u5165\u6570\u7ec4 res \u7684\u7d22\u5f15 prefix[num] - 1 \u5904\u3002 - \u4ee4\u524d\u7f00\u548c
prefix[num] \u51cf\u5c0f \\(1\\) \uff0c\u4ece\u800c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\u3002
\u904d\u5386\u5b8c\u6210\u540e\uff0c\u6570\u7ec4 res \u4e2d\u5c31\u662f\u6392\u5e8f\u597d\u7684\u7ed3\u679c\uff0c\u6700\u540e\u4f7f\u7528 res \u8986\u76d6\u539f\u6570\u7ec4 nums \u5373\u53ef\u3002\u56fe 11-17 \u5c55\u793a\u4e86\u5b8c\u6574\u7684\u8ba1\u6570\u6392\u5e8f\u6d41\u7a0b\u3002
<1><2><3><4><5><6><7><8> \u56fe 11-17 \u00a0 \u8ba1\u6570\u6392\u5e8f\u6b65\u9aa4
\u8ba1\u6570\u6392\u5e8f\u7684\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig counting_sort.pydef counting_sort(nums: list[int]):\n \"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n # \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\n # 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m = max(nums)\n # 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n # counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter = [0] * (m + 1)\n for num in nums:\n counter[num] += 1\n # 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n # \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i in range(m):\n counter[i + 1] += counter[i]\n # 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n # \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n n = len(nums)\n res = [0] * n\n for i in range(n - 1, -1, -1):\n num = nums[i]\n res[counter[num] - 1] = num # \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num] -= 1 # \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n # \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in range(n):\n nums[i] = res[i]\n
counting_sort.cpp/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(vector<int> &nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n vector<int> counter(m + 1, 0);\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.size();\n vector<int> res(n);\n for (int i = n - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n nums = res;\n}\n
counting_sort.java/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int num : nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n for (int num : nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.length;\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.cs/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid CountingSort(int[] nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n foreach (int num in nums) {\n m = Math.Max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int[] counter = new int[m + 1];\n foreach (int num in nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.Length;\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.go/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums []int) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n m := 0\n for _, num := range nums {\n if num > m {\n m = num\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n counter := make([]int, m+1)\n for _, num := range nums {\n counter[num]++\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i := 0; i < m; i++ {\n counter[i+1] += counter[i]\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n n := len(nums)\n res := make([]int, n)\n for i := n - 1; i >= 0; i-- {\n num := nums[i]\n // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n res[counter[num]-1] = num\n // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n counter[num]--\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n copy(nums, res)\n}\n
counting_sort.swift/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums: inout [Int]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = nums.max()!\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n var counter = Array(repeating: 0, count: m + 1)\n for num in nums {\n counter[num] += 1\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i in stride(from: 0, to: m, by: 1) {\n counter[i + 1] += counter[i]\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n var res = Array(repeating: 0, count: nums.count)\n for i in stride(from: nums.count - 1, through: 0, by: -1) {\n let num = nums[i]\n res[counter[num] - 1] = num // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num] -= 1 // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in stride(from: 0, to: nums.count, by: 1) {\n nums[i] = res[i]\n }\n}\n
counting_sort.js/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter = new Array(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (let i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n const n = nums.length;\n const res = new Array(n);\n for (let i = n - 1; i >= 0; i--) {\n const num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.ts/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums: number[]): void {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = 0;\n for (const num of nums) {\n m = Math.max(m, num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n const counter: number[] = new Array<number>(m + 1).fill(0);\n for (const num of nums) {\n counter[num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (let i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n const n = nums.length;\n const res: number[] = new Array<number>(n);\n for (let i = n - 1; i >= 0; i--) {\n const num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n
counting_sort.dart/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(List<int> nums) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int _num in nums) {\n m = max(m, _num);\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[_num] \u4ee3\u8868 _num \u7684\u51fa\u73b0\u6b21\u6570\n List<int> counter = List.filled(m + 1, 0);\n for (int _num in nums) {\n counter[_num]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[_num]-1 \u662f _num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int n = nums.length;\n List<int> res = List.filled(n, 0);\n for (int i = n - 1; i >= 0; i--) {\n int _num = nums[i];\n res[counter[_num] - 1] = _num; // \u5c06 _num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[_num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e _num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n nums.setAll(0, res);\n}\n
counting_sort.rs/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfn counting_sort(nums: &mut [i32]) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n let m = *nums.into_iter().max().unwrap();\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n let mut counter = vec![0; m as usize + 1];\n for &num in &*nums {\n counter[num as usize] += 1;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for i in 0..m as usize {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n let n = nums.len();\n let mut res = vec![0; n];\n for i in (0..n).rev() {\n let num = nums[i];\n res[counter[num as usize] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num as usize] -= 1; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in 0..n {\n nums[i] = res[i];\n }\n}\n
counting_sort.c/* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int nums[], int size) {\n // 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\n int m = 0;\n for (int i = 0; i < size; i++) {\n if (nums[i] > m) {\n m = nums[i];\n }\n }\n // 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n // counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\n int *counter = calloc(m, sizeof(int));\n for (int i = 0; i < size; i++) {\n counter[nums[i]]++;\n }\n // 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n // \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\n for (int i = 0; i < m; i++) {\n counter[i + 1] += counter[i];\n }\n // 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n // \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\n int *res = malloc(sizeof(int) * size);\n for (int i = size - 1; i >= 0; i--) {\n int num = nums[i];\n res[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\n counter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n }\n // \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\n memcpy(nums, res, size * sizeof(int));\n // 5. \u91ca\u653e\u5185\u5b58\n free(counter);\n}\n
counting_sort.zig[class]{}-[func]{countingSort}\n
"},{"location":"chapter_sorting/counting_sort/#1193","title":"11.9.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n + m)\\) \uff1a\u6d89\u53ca\u904d\u5386
nums \u548c\u904d\u5386 counter \uff0c\u90fd\u4f7f\u7528\u7ebf\u6027\u65f6\u95f4\u3002\u4e00\u822c\u60c5\u51b5\u4e0b \\(n \\gg m\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u4e8e \\(O(n)\\) \u3002 - \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n + m)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u501f\u52a9\u4e86\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \u7684\u6570\u7ec4
res \u548c counter \u3002 - \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5411
res \u4e2d\u586b\u5145\u5143\u7d20\u7684\u987a\u5e8f\u662f\u201c\u4ece\u53f3\u5411\u5de6\u201d\u7684\uff0c\u56e0\u6b64\u5012\u5e8f\u904d\u5386 nums \u53ef\u4ee5\u907f\u514d\u6539\u53d8\u76f8\u7b49\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b9e\u73b0\u7a33\u5b9a\u6392\u5e8f\u3002\u5b9e\u9645\u4e0a\uff0c\u6b63\u5e8f\u904d\u5386 nums \u4e5f\u53ef\u4ee5\u5f97\u5230\u6b63\u786e\u7684\u6392\u5e8f\u7ed3\u679c\uff0c\u4f46\u7ed3\u679c\u662f\u975e\u7a33\u5b9a\u7684\u3002
"},{"location":"chapter_sorting/counting_sort/#1194","title":"11.9.4 \u00a0 \u5c40\u9650\u6027","text":"\u770b\u5230\u8fd9\u91cc\uff0c\u4f60\u4e5f\u8bb8\u4f1a\u89c9\u5f97\u8ba1\u6570\u6392\u5e8f\u975e\u5e38\u5de7\u5999\uff0c\u4ec5\u901a\u8fc7\u7edf\u8ba1\u6570\u91cf\u5c31\u53ef\u4ee5\u5b9e\u73b0\u9ad8\u6548\u7684\u6392\u5e8f\u3002\u7136\u800c\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\u76f8\u5bf9\u8f83\u4e3a\u4e25\u683c\u3002
\u8ba1\u6570\u6392\u5e8f\u53ea\u9002\u7528\u4e8e\u975e\u8d1f\u6574\u6570\u3002\u82e5\u60f3\u5c06\u5176\u7528\u4e8e\u5176\u4ed6\u7c7b\u578b\u7684\u6570\u636e\uff0c\u9700\u8981\u786e\u4fdd\u8fd9\u4e9b\u6570\u636e\u53ef\u4ee5\u8f6c\u6362\u4e3a\u975e\u8d1f\u6574\u6570\uff0c\u5e76\u4e14\u5728\u8f6c\u6362\u8fc7\u7a0b\u4e2d\u4e0d\u80fd\u6539\u53d8\u5404\u4e2a\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u5927\u5c0f\u5173\u7cfb\u3002\u4f8b\u5982\uff0c\u5bf9\u4e8e\u5305\u542b\u8d1f\u6570\u7684\u6574\u6570\u6570\u7ec4\uff0c\u53ef\u4ee5\u5148\u7ed9\u6240\u6709\u6570\u5b57\u52a0\u4e0a\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5168\u90e8\u6570\u5b57\u8f6c\u5316\u4e3a\u6b63\u6570\uff0c\u6392\u5e8f\u5b8c\u6210\u540e\u518d\u8f6c\u6362\u56de\u53bb\u3002
\u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u6bd4\u5982\uff0c\u5728\u4e0a\u8ff0\u793a\u4f8b\u4e2d \\(m\\) \u4e0d\u80fd\u592a\u5927\uff0c\u5426\u5219\u4f1a\u5360\u7528\u8fc7\u591a\u7a7a\u95f4\u3002\u800c\u5f53 \\(n \\ll m\\) \u65f6\uff0c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\uff0c\u53ef\u80fd\u6bd4 \\(O(n \\log n)\\) \u7684\u6392\u5e8f\u7b97\u6cd5\u8fd8\u8981\u6162\u3002
"},{"location":"chapter_sorting/heap_sort/","title":"11.7 \u00a0 \u5806\u6392\u5e8f","text":"Tip
\u9605\u8bfb\u672c\u8282\u524d\uff0c\u8bf7\u786e\u4fdd\u5df2\u5b66\u5b8c\u201c\u5806\u201c\u7ae0\u8282\u3002
\u300c\u5806\u6392\u5e8f heap sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5806\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\u7684\u9ad8\u6548\u6392\u5e8f\u7b97\u6cd5\u3002\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u5df2\u7ecf\u5b66\u8fc7\u7684\u201c\u5efa\u5806\u64cd\u4f5c\u201d\u548c\u201c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u201d\u5b9e\u73b0\u5806\u6392\u5e8f\u3002
- \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5c0f\u9876\u5806\uff0c\u6b64\u65f6\u6700\u5c0f\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
- \u4e0d\u65ad\u6267\u884c\u51fa\u5806\u64cd\u4f5c\uff0c\u4f9d\u6b21\u8bb0\u5f55\u51fa\u5806\u5143\u7d20\uff0c\u5373\u53ef\u5f97\u5230\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u7684\u5e8f\u5217\u3002
\u4ee5\u4e0a\u65b9\u6cd5\u867d\u7136\u53ef\u884c\uff0c\u4f46\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u989d\u5916\u6570\u7ec4\u6765\u4fdd\u5b58\u5f39\u51fa\u7684\u5143\u7d20\uff0c\u6bd4\u8f83\u6d6a\u8d39\u7a7a\u95f4\u3002\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u4e00\u79cd\u66f4\u52a0\u4f18\u96c5\u7684\u5b9e\u73b0\u65b9\u5f0f\u3002
"},{"location":"chapter_sorting/heap_sort/#1171","title":"11.7.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5806\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u56fe 11-12 \u6240\u793a\u3002
- \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5927\u9876\u5806\u3002\u5b8c\u6210\u540e\uff0c\u6700\u5927\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
- \u5c06\u5806\u9876\u5143\u7d20\uff08\u7b2c\u4e00\u4e2a\u5143\u7d20\uff09\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u6700\u540e\u4e00\u4e2a\u5143\u7d20\uff09\u4ea4\u6362\u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u5806\u7684\u957f\u5ea6\u51cf \\(1\\) \uff0c\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u52a0 \\(1\\) \u3002
- \u4ece\u5806\u9876\u5143\u7d20\u5f00\u59cb\uff0c\u4ece\u9876\u5230\u5e95\u6267\u884c\u5806\u5316\u64cd\u4f5c\uff08Sift Down\uff09\u3002\u5b8c\u6210\u5806\u5316\u540e\uff0c\u5806\u7684\u6027\u8d28\u5f97\u5230\u4fee\u590d\u3002
- \u5faa\u73af\u6267\u884c\u7b2c
2. \u6b65\u548c\u7b2c 3. \u6b65\u3002\u5faa\u73af \\(n - 1\\) \u8f6e\u540e\uff0c\u5373\u53ef\u5b8c\u6210\u6570\u7ec4\u6392\u5e8f\u3002
Tip
\u5b9e\u9645\u4e0a\uff0c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u4e2d\u4e5f\u5305\u542b\u7b2c 2. \u6b65\u548c\u7b2c 3. \u6b65\uff0c\u53ea\u662f\u591a\u4e86\u4e00\u4e2a\u5f39\u51fa\u5143\u7d20\u7684\u6b65\u9aa4\u3002
<1><2><3><4><5><6><7><8><9><10><11><12> \u56fe 11-12 \u00a0 \u5806\u6392\u5e8f\u6b65\u9aa4
\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4f7f\u7528\u4e86\u4e0e\u201c\u5806\u201d\u7ae0\u8282\u76f8\u540c\u7684\u4ece\u9876\u81f3\u5e95\u5806\u5316 sift_down() \u51fd\u6570\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u5806\u7684\u957f\u5ea6\u4f1a\u968f\u7740\u63d0\u53d6\u6700\u5927\u5143\u7d20\u800c\u51cf\u5c0f\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u7ed9 sift_down() \u51fd\u6570\u6dfb\u52a0\u4e00\u4e2a\u957f\u5ea6\u53c2\u6570 \\(n\\) \uff0c\u7528\u4e8e\u6307\u5b9a\u5806\u7684\u5f53\u524d\u6709\u6548\u957f\u5ea6\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig heap_sort.pydef sift_down(nums: list[int], n: int, i: int):\n \"\"\"\u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\n while True:\n # \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n l = 2 * i + 1\n r = 2 * i + 2\n ma = i\n if l < n and nums[l] > nums[ma]:\n ma = l\n if r < n and nums[r] > nums[ma]:\n ma = r\n # \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i:\n break\n # \u4ea4\u6362\u4e24\u8282\u70b9\n nums[i], nums[ma] = nums[ma], nums[i]\n # \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n\ndef heap_sort(nums: list[int]):\n \"\"\"\u5806\u6392\u5e8f\"\"\"\n # \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in range(len(nums) // 2 - 1, -1, -1):\n sift_down(nums, len(nums), i)\n # \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i in range(len(nums) - 1, 0, -1):\n # \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n nums[0], nums[i] = nums[i], nums[0]\n # \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n sift_down(nums, i, 0)\n
heap_sort.cpp/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(vector<int> &nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n swap(nums[i], nums[ma]);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(vector<int> &nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.size() / 2 - 1; i >= 0; --i) {\n siftDown(nums, nums.size(), i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.size() - 1; i > 0; --i) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n swap(nums[0], nums[i]);\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.java/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int[] nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n int temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int[] nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.length / 2 - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n int tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.cs/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid SiftDown(int[] nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i)\n break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n (nums[ma], nums[i]) = (nums[i], nums[ma]);\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid HeapSort(int[] nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.Length / 2 - 1; i >= 0; i--) {\n SiftDown(nums, nums.Length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.Length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n (nums[i], nums[0]) = (nums[0], nums[i]);\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n SiftDown(nums, i, 0);\n }\n}\n
heap_sort.go/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums *[]int, n, i int) {\n for true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n l := 2*i + 1\n r := 2*i + 2\n ma := i\n if l < n && (*nums)[l] > (*nums)[ma] {\n ma = l\n }\n if r < n && (*nums)[r] > (*nums)[ma] {\n ma = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n (*nums)[i], (*nums)[ma] = (*nums)[ma], (*nums)[i]\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums *[]int) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i := len(*nums)/2 - 1; i >= 0; i-- {\n siftDown(nums, len(*nums), i)\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i := len(*nums) - 1; i > 0; i-- {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n (*nums)[0], (*nums)[i] = (*nums)[i], (*nums)[0]\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0)\n }\n}\n
heap_sort.swift/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums: inout [Int], n: Int, i: Int) {\n var i = i\n while true {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1\n let r = 2 * i + 2\n var ma = i\n if l < n, nums[l] > nums[ma] {\n ma = l\n }\n if r < n, nums[r] > nums[ma] {\n ma = r\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n nums.swapAt(i, ma)\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums: inout [Int]) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in stride(from: nums.count / 2 - 1, through: 0, by: -1) {\n siftDown(nums: &nums, n: nums.count, i: i)\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i in stride(from: nums.count - 1, to: 0, by: -1) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n nums.swapAt(0, i)\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums: &nums, n: i, i: 0)\n }\n}\n
heap_sort.js/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums, n, i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1;\n let r = 2 * i + 2;\n let ma = i;\n if (l < n && nums[l] > nums[ma]) {\n ma = l;\n }\n if (r < n && nums[r] > nums[ma]) {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n [nums[i], nums[ma]] = [nums[ma], nums[i]];\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (let i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n [nums[0], nums[i]] = [nums[i], nums[0]];\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.ts/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums: number[], n: number, i: number): void {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1;\n let r = 2 * i + 2;\n let ma = i;\n if (l < n && nums[l] > nums[ma]) {\n ma = l;\n }\n if (r < n && nums[r] > nums[ma]) {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma === i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n [nums[i], nums[ma]] = [nums[ma], nums[i]];\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums: number[]): void {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (let i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n [nums[0], nums[i]] = [nums[i], nums[0]];\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.dart/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(List<int> nums, int n, int i) {\n while (true) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma]) ma = l;\n if (r < n && nums[r] > nums[ma]) ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) break;\n // \u4ea4\u6362\u4e24\u8282\u70b9\n int temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(List<int> nums) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = nums.length ~/ 2 - 1; i >= 0; i--) {\n siftDown(nums, nums.length, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = nums.length - 1; i > 0; i--) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n int tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.rs/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(nums: &mut [i32], n: usize, mut i: usize) {\n loop {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n let l = 2 * i + 1;\n let r = 2 * i + 2;\n let mut ma = i;\n if l < n && nums[l] > nums[ma] {\n ma = l;\n }\n if r < n && nums[r] > nums[ma] {\n ma = r;\n }\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if ma == i {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n let temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nfn heap_sort(nums: &mut [i32]) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for i in (0..=nums.len() / 2 - 1).rev() {\n sift_down(nums, nums.len(), i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for i in (1..=nums.len() - 1).rev() {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n let tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n sift_down(nums, i, 0);\n }\n}\n
heap_sort.c/* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int nums[], int n, int i) {\n while (1) {\n // \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\n int l = 2 * i + 1;\n int r = 2 * i + 2;\n int ma = i;\n if (l < n && nums[l] > nums[ma])\n ma = l;\n if (r < n && nums[r] > nums[ma])\n ma = r;\n // \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\n if (ma == i) {\n break;\n }\n // \u4ea4\u6362\u4e24\u8282\u70b9\n int temp = nums[i];\n nums[i] = nums[ma];\n nums[ma] = temp;\n // \u5faa\u73af\u5411\u4e0b\u5806\u5316\n i = ma;\n }\n}\n\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int nums[], int n) {\n // \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\n for (int i = n / 2 - 1; i >= 0; --i) {\n siftDown(nums, n, i);\n }\n // \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\n for (int i = n - 1; i > 0; --i) {\n // \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n int tmp = nums[0];\n nums[0] = nums[i];\n nums[i] = tmp;\n // \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\n siftDown(nums, i, 0);\n }\n}\n
heap_sort.zig[class]{}-[func]{siftDown}\n\n[class]{}-[func]{heapSort}\n
"},{"location":"chapter_sorting/heap_sort/#1172","title":"11.7.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\)\u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5efa\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \uff0c\u5171\u5faa\u73af \\(n - 1\\) \u8f6e\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\u4f7f\u7528 \\(O(1)\\) \u7a7a\u95f4\u3002\u5143\u7d20\u4ea4\u6362\u548c\u5806\u5316\u64cd\u4f5c\u90fd\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\u3002
- \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u4ea4\u6362\u5806\u9876\u5143\u7d20\u548c\u5806\u5e95\u5143\u7d20\u65f6\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u76f8\u5bf9\u4f4d\u7f6e\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002
"},{"location":"chapter_sorting/insertion_sort/","title":"11.4 \u00a0 \u63d2\u5165\u6392\u5e8f","text":"\u300c\u63d2\u5165\u6392\u5e8f insertion sort\u300d\u662f\u4e00\u79cd\u7b80\u5355\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5b83\u7684\u5de5\u4f5c\u539f\u7406\u4e0e\u624b\u52a8\u6574\u7406\u4e00\u526f\u724c\u7684\u8fc7\u7a0b\u975e\u5e38\u76f8\u4f3c\u3002
\u5177\u4f53\u6765\u8bf4\uff0c\u6211\u4eec\u5728\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u4e00\u4e2a\u57fa\u51c6\u5143\u7d20\uff0c\u5c06\u8be5\u5143\u7d20\u4e0e\u5176\u5de6\u4fa7\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u5143\u7d20\u9010\u4e00\u6bd4\u8f83\u5927\u5c0f\uff0c\u5e76\u5c06\u8be5\u5143\u7d20\u63d2\u5165\u5230\u6b63\u786e\u7684\u4f4d\u7f6e\u3002
\u56fe 11-6 \u5c55\u793a\u4e86\u6570\u7ec4\u63d2\u5165\u5143\u7d20\u7684\u64cd\u4f5c\u6d41\u7a0b\u3002\u8bbe\u57fa\u51c6\u5143\u7d20\u4e3a base \uff0c\u6211\u4eec\u9700\u8981\u5c06\u4ece\u76ee\u6807\u7d22\u5f15\u5230 base \u4e4b\u95f4\u7684\u6240\u6709\u5143\u7d20\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\uff0c\u7136\u540e\u5c06 base \u8d4b\u503c\u7ed9\u76ee\u6807\u7d22\u5f15\u3002
\u56fe 11-6 \u00a0 \u5355\u6b21\u63d2\u5165\u64cd\u4f5c
"},{"location":"chapter_sorting/insertion_sort/#1141","title":"11.4.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u63d2\u5165\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u56fe 11-7 \u6240\u793a\u3002
- \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6570\u7ec4\u7684\u7b2c 1 \u4e2a\u5143\u7d20\u5df2\u5b8c\u6210\u6392\u5e8f\u3002
- \u9009\u53d6\u6570\u7ec4\u7684\u7b2c 2 \u4e2a\u5143\u7d20\u4f5c\u4e3a
base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002 - \u9009\u53d6\u7b2c 3 \u4e2a\u5143\u7d20\u4f5c\u4e3a
base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 3 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002 - \u4ee5\u6b64\u7c7b\u63a8\uff0c\u5728\u6700\u540e\u4e00\u8f6e\u4e2d\uff0c\u9009\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a
base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6240\u6709\u5143\u7d20\u5747\u5df2\u6392\u5e8f\u3002
\u56fe 11-7 \u00a0 \u63d2\u5165\u6392\u5e8f\u6d41\u7a0b
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig insertion_sort.pydef insertion_sort(nums: list[int]):\n \"\"\"\u63d2\u5165\u6392\u5e8f\"\"\"\n # \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u533a\u95f4\u4e3a [0, i-1]\n for i in range(1, len(nums)):\n base = nums[i]\n j = i - 1\n # \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4 [0, i-1] \u4e2d\u7684\u6b63\u786e\u4f4d\u7f6e\n while j >= 0 and nums[j] > base:\n nums[j + 1] = nums[j] # \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j -= 1\n nums[j + 1] = base # \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n
insertion_sort.cpp/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(vector<int> &nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.size(); i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.java/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.length; i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.cs/* \u63d2\u5165\u6392\u5e8f */\nvoid InsertionSort(int[] nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.Length; i++) {\n int bas = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > bas) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = bas; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.go/* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums []int) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\n for i := 1; i < len(nums); i++ {\n base := nums[i]\n j := i - 1\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n for j >= 0 && nums[j] > base {\n nums[j+1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--\n }\n nums[j+1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.swift/* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for i in stride(from: 1, to: nums.count, by: 1) {\n let base = nums[i]\n var j = i - 1\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while j >= 0, nums[j] > base {\n nums[j + 1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j -= 1\n }\n nums[j + 1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.js/* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (let i = 1; i < nums.length; i++) {\n let base = nums[i],\n j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.ts/* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums: number[]): void {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (let i = 1; i < nums.length; i++) {\n const base = nums[i];\n let j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.dart/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(List<int> nums) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < nums.length; i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n nums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j--;\n }\n nums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.rs/* \u63d2\u5165\u6392\u5e8f */\nfn insertion_sort(nums: &mut [i32]) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for i in 1..nums.len() {\n let (base, mut j) = (nums[i], (i - 1) as i32);\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while j >= 0 && nums[j as usize] > base {\n nums[(j + 1) as usize] = nums[j as usize]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n j -= 1;\n }\n nums[(j + 1) as usize] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
insertion_sort.c/* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int nums[], int size) {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n for (int i = 1; i < size; i++) {\n int base = nums[i], j = i - 1;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 0 && nums[j] > base) {\n // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n nums[j + 1] = nums[j];\n j--;\n }\n // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n nums[j + 1] = base;\n }\n}\n
insertion_sort.zig// \u63d2\u5165\u6392\u5e8f\nfn insertionSort(nums: []i32) void {\n // \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\n var i: usize = 1;\n while (i < nums.len) : (i += 1) {\n var base = nums[i];\n var j: usize = i;\n // \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\n while (j >= 1 and nums[j - 1] > base) : (j -= 1) {\n nums[j] = nums[j - 1]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n }\n nums[j] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n }\n}\n
"},{"location":"chapter_sorting/insertion_sort/#1142","title":"11.4.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\)\u3001\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u6b21\u63d2\u5165\u64cd\u4f5c\u5206\u522b\u9700\u8981\u5faa\u73af \\(n - 1\\)\u3001\\(n-2\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \u6b21\uff0c\u6c42\u548c\u5f97\u5230 \\((n - 1) n / 2\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u5728\u9047\u5230\u6709\u5e8f\u6570\u636e\u65f6\uff0c\u63d2\u5165\u64cd\u4f5c\u4f1a\u63d0\u524d\u7ec8\u6b62\u3002\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u63d2\u5165\u6392\u5e8f\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u63d2\u5165\u64cd\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u4f1a\u5c06\u5143\u7d20\u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\uff0c\u4e0d\u4f1a\u6539\u53d8\u5b83\u4eec\u7684\u987a\u5e8f\u3002
"},{"location":"chapter_sorting/insertion_sort/#1143","title":"11.4.3 \u00a0 \u63d2\u5165\u6392\u5e8f\u7684\u4f18\u52bf","text":"\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u800c\u6211\u4eec\u5373\u5c06\u5b66\u4e60\u7684\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u5c3d\u7ba1\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u66f4\u9ad8\uff0c\u4f46\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u7684\u60c5\u51b5\u4e0b\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u66f4\u5feb\u3002
\u8fd9\u4e2a\u7ed3\u8bba\u4e0e\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u7684\u9002\u7528\u60c5\u51b5\u7684\u7ed3\u8bba\u7c7b\u4f3c\u3002\u5feb\u901f\u6392\u5e8f\u8fd9\u7c7b \\(O(n \\log n)\\) \u7684\u7b97\u6cd5\u5c5e\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5f80\u5f80\u5305\u542b\u66f4\u591a\u5355\u5143\u8ba1\u7b97\u64cd\u4f5c\u3002\u800c\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\\(n^2\\) \u548c \\(n \\log n\\) \u7684\u6570\u503c\u6bd4\u8f83\u63a5\u8fd1\uff0c\u590d\u6742\u5ea6\u4e0d\u5360\u4e3b\u5bfc\u5730\u4f4d\uff1b\u6bcf\u8f6e\u4e2d\u7684\u5355\u5143\u64cd\u4f5c\u6570\u91cf\u8d77\u5230\u51b3\u5b9a\u6027\u4f5c\u7528\u3002
\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java\uff09\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\u91c7\u7528\u4e86\u63d2\u5165\u6392\u5e8f\uff0c\u5927\u81f4\u601d\u8def\u4e3a\uff1a\u5bf9\u4e8e\u957f\u6570\u7ec4\uff0c\u91c7\u7528\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\uff1b\u5bf9\u4e8e\u77ed\u6570\u7ec4\uff0c\u76f4\u63a5\u4f7f\u7528\u63d2\u5165\u6392\u5e8f\u3002
\u867d\u7136\u5192\u6ce1\u6392\u5e8f\u3001\u9009\u62e9\u6392\u5e8f\u548c\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u63d2\u5165\u6392\u5e8f\u7684\u4f7f\u7528\u9891\u7387\u663e\u8457\u9ad8\u4e8e\u5192\u6ce1\u6392\u5e8f\u548c\u9009\u62e9\u6392\u5e8f\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u5192\u6ce1\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u4ea4\u6362\u5b9e\u73b0\uff0c\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u4e34\u65f6\u53d8\u91cf\uff0c\u5171\u6d89\u53ca 3 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u63d2\u5165\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u8d4b\u503c\u5b9e\u73b0\uff0c\u4ec5\u9700 1 \u4e2a\u5355\u5143\u64cd\u4f5c\u3002\u56e0\u6b64\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u8ba1\u7b97\u5f00\u9500\u901a\u5e38\u6bd4\u63d2\u5165\u6392\u5e8f\u66f4\u9ad8\u3002
- \u9009\u62e9\u6392\u5e8f\u5728\u4efb\u4f55\u60c5\u51b5\u4e0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \u3002\u5982\u679c\u7ed9\u5b9a\u4e00\u7ec4\u90e8\u5206\u6709\u5e8f\u7684\u6570\u636e\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u6bd4\u9009\u62e9\u6392\u5e8f\u6548\u7387\u66f4\u9ad8\u3002
- \u9009\u62e9\u6392\u5e8f\u4e0d\u7a33\u5b9a\uff0c\u65e0\u6cd5\u5e94\u7528\u4e8e\u591a\u7ea7\u6392\u5e8f\u3002
"},{"location":"chapter_sorting/merge_sort/","title":"11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f","text":"\u300c\u5f52\u5e76\u6392\u5e8f merge sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5305\u542b\u56fe 11-10 \u6240\u793a\u7684\u201c\u5212\u5206\u201d\u548c\u201c\u5408\u5e76\u201d\u9636\u6bb5\u3002
- \u5212\u5206\u9636\u6bb5\uff1a\u901a\u8fc7\u9012\u5f52\u4e0d\u65ad\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5206\u5f00\uff0c\u5c06\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u8f6c\u6362\u4e3a\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002
- \u5408\u5e76\u9636\u6bb5\uff1a\u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u5212\u5206\uff0c\u5f00\u59cb\u5408\u5e76\uff0c\u6301\u7eed\u5730\u5c06\u5de6\u53f3\u4e24\u4e2a\u8f83\u77ed\u7684\u6709\u5e8f\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u8f83\u957f\u7684\u6709\u5e8f\u6570\u7ec4\uff0c\u76f4\u81f3\u7ed3\u675f\u3002
\u56fe 11-10 \u00a0 \u5f52\u5e76\u6392\u5e8f\u7684\u5212\u5206\u4e0e\u5408\u5e76\u9636\u6bb5
"},{"location":"chapter_sorting/merge_sort/#1161","title":"11.6.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u5982\u56fe 11-11 \u6240\u793a\uff0c\u201c\u5212\u5206\u9636\u6bb5\u201d\u4ece\u9876\u81f3\u5e95\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5207\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\u3002
- \u8ba1\u7b97\u6570\u7ec4\u4e2d\u70b9
mid \uff0c\u9012\u5f52\u5212\u5206\u5de6\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [left, mid] \uff09\u548c\u53f3\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [mid + 1, right] \uff09\u3002 - \u9012\u5f52\u6267\u884c\u6b65\u9aa4
1. \uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u533a\u95f4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u3002
\u201c\u5408\u5e76\u9636\u6bb5\u201d\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ece\u957f\u5ea6\u4e3a 1 \u7684\u5b50\u6570\u7ec4\u5f00\u59cb\u5408\u5e76\uff0c\u5408\u5e76\u9636\u6bb5\u4e2d\u7684\u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u662f\u6709\u5e8f\u7684\u3002
<1><2><3><4><5><6><7><8><9><10> \u56fe 11-11 \u00a0 \u5f52\u5e76\u6392\u5e8f\u6b65\u9aa4
\u89c2\u5bdf\u53d1\u73b0\uff0c\u5f52\u5e76\u6392\u5e8f\u4e0e\u4e8c\u53c9\u6811\u540e\u5e8f\u904d\u5386\u7684\u9012\u5f52\u987a\u5e8f\u662f\u4e00\u81f4\u7684\u3002
- \u540e\u5e8f\u904d\u5386\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6811\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6811\uff0c\u6700\u540e\u5904\u7406\u6839\u8282\u70b9\u3002
- \u5f52\u5e76\u6392\u5e8f\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6570\u7ec4\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6570\u7ec4\uff0c\u6700\u540e\u5904\u7406\u5408\u5e76\u3002
\u5f52\u5e76\u6392\u5e8f\u7684\u5b9e\u73b0\u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\u3002\u8bf7\u6ce8\u610f\uff0cnums \u7684\u5f85\u5408\u5e76\u533a\u95f4\u4e3a [left, right] \uff0c\u800c tmp \u7684\u5bf9\u5e94\u533a\u95f4\u4e3a [0, right - left] \u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig merge_sort.pydef merge(nums: list[int], left: int, mid: int, right: int):\n \"\"\"\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\"\"\"\n # \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n # \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n tmp = [0] * (right - left + 1)\n # \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n i, j, k = left, mid + 1, 0\n # \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid and j <= right:\n if nums[i] <= nums[j]:\n tmp[k] = nums[i]\n i += 1\n else:\n tmp[k] = nums[j]\n j += 1\n k += 1\n # \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid:\n tmp[k] = nums[i]\n i += 1\n k += 1\n while j <= right:\n tmp[k] = nums[j]\n j += 1\n k += 1\n # \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k in range(0, len(tmp)):\n nums[left + k] = tmp[k]\n\ndef merge_sort(nums: list[int], left: int, right: int):\n \"\"\"\u5f52\u5e76\u6392\u5e8f\"\"\"\n # \u7ec8\u6b62\u6761\u4ef6\n if left >= right:\n return # \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n # \u5212\u5206\u9636\u6bb5\n mid = (left + right) // 2 # \u8ba1\u7b97\u4e2d\u70b9\n merge_sort(nums, left, mid) # \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n merge_sort(nums, mid + 1, right) # \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n # \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right)\n
merge_sort.cpp/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(vector<int> &nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n vector<int> tmp(right - left + 1);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.size(); k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(vector<int> &nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right)\n return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.java/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(int[] nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n int[] tmp = new int[right - left + 1];\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int[] nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right)\n return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.cs/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid Merge(int[] nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n int[] tmp = new int[right - left + 1];\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.Length; ++k) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid MergeSort(int[] nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n MergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n MergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n Merge(nums, left, mid, right);\n}\n
merge_sort.go/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunc merge(nums []int, left, mid, right int) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n tmp := make([]int, right-left+1)\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n i, j, k := left, mid+1, 0\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n for i <= mid && j <= right {\n if nums[i] <= nums[j] {\n tmp[k] = nums[i]\n i++\n } else {\n tmp[k] = nums[j]\n j++\n }\n k++\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n for i <= mid {\n tmp[k] = nums[i]\n i++\n k++\n }\n for j <= right {\n tmp[k] = nums[j]\n j++\n k++\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k := 0; k < len(tmp); k++ {\n nums[left+k] = tmp[k]\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums []int, left, right int) {\n // \u7ec8\u6b62\u6761\u4ef6\n if left >= right {\n return\n }\n // \u5212\u5206\u9636\u6bb5\n mid := (left + right) / 2\n mergeSort(nums, left, mid)\n mergeSort(nums, mid+1, right)\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right)\n}\n
merge_sort.swift/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunc merge(nums: inout [Int], left: Int, mid: Int, right: Int) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n var tmp = Array(repeating: 0, count: right - left + 1)\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n var i = left, j = mid + 1, k = 0\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid, j <= right {\n if nums[i] <= nums[j] {\n tmp[k] = nums[i]\n i += 1\n k += 1\n } else {\n tmp[k] = nums[j]\n j += 1\n k += 1\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid {\n tmp[k] = nums[i]\n i += 1\n k += 1\n }\n while j <= right {\n tmp[k] = nums[j]\n j += 1\n k += 1\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k in tmp.indices {\n nums[left + k] = tmp[k]\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums: inout [Int], left: Int, right: Int) {\n // \u7ec8\u6b62\u6761\u4ef6\n if left >= right { // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n return\n }\n // \u5212\u5206\u9636\u6bb5\n let mid = (left + right) / 2 // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums: &nums, left: left, right: mid) // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums: &nums, left: mid + 1, right: right) // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums: &nums, left: left, mid: mid, right: right)\n}\n
merge_sort.js/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunction merge(nums, left, mid, right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n const tmp = new Array(right - left + 1);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n let i = left,\n j = mid + 1,\n k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j]) {\n tmp[k++] = nums[i++];\n } else {\n tmp[k++] = nums[j++];\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums, left, right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n let mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.ts/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfunction merge(nums: number[], left: number, mid: number, right: number): void {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n const tmp = new Array(right - left + 1);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n let i = left,\n j = mid + 1,\n k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j]) {\n tmp[k++] = nums[i++];\n } else {\n tmp[k++] = nums[j++];\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums: number[], left: number, right: number): void {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n let mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.dart/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(List<int> nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n List<int> tmp = List.filled(right - left + 1, 0);\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j])\n tmp[k++] = nums[i++];\n else\n tmp[k++] = nums[j++];\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmp.length; k++) {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(List<int> nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.rs/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nfn merge(nums: &mut [i32], left: usize, mid: usize, right: usize) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n let tmp_size = right - left + 1;\n let mut tmp = vec![0; tmp_size];\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n let (mut i, mut j, mut k) = (left, mid + 1, 0);\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid && j <= right {\n if nums[i] <= nums[j] {\n tmp[k] = nums[j];\n i += 1;\n } else {\n tmp[k] = nums[j];\n j += 1;\n }\n k += 1;\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while i <= mid {\n tmp[k] = nums[i];\n k += 1;\n i += 1;\n }\n while j <= right {\n tmp[k] = nums[j];\n k += 1;\n j += 1;\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for k in 0..tmp_size {\n nums[left + k] = tmp[k];\n }\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nfn merge_sort(nums: &mut [i32], left: usize, right: usize) {\n // \u7ec8\u6b62\u6761\u4ef6\n if left >= right { return; } // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n let mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n merge_sort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n merge_sort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.c/* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\nvoid merge(int *nums, int left, int mid, int right) {\n // \u5de6\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [left, mid], \u53f3\u5b50\u6570\u7ec4\u533a\u95f4\u4e3a [mid+1, right]\n // \u521b\u5efa\u4e00\u4e2a\u4e34\u65f6\u6570\u7ec4 tmp \uff0c\u7528\u4e8e\u5b58\u653e\u5408\u5e76\u540e\u7684\u7ed3\u679c\n int tmpSize = right - left + 1;\n int *tmp = (int *)malloc(tmpSize * sizeof(int));\n // \u521d\u59cb\u5316\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\n int i = left, j = mid + 1, k = 0;\n // \u5f53\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u8fd8\u6709\u5143\u7d20\u65f6\uff0c\u8fdb\u884c\u6bd4\u8f83\u5e76\u5c06\u8f83\u5c0f\u7684\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid && j <= right) {\n if (nums[i] <= nums[j]) {\n tmp[k++] = nums[i++];\n } else {\n tmp[k++] = nums[j++];\n }\n }\n // \u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u7684\u5269\u4f59\u5143\u7d20\u590d\u5236\u5230\u4e34\u65f6\u6570\u7ec4\u4e2d\n while (i <= mid) {\n tmp[k++] = nums[i++];\n }\n while (j <= right) {\n tmp[k++] = nums[j++];\n }\n // \u5c06\u4e34\u65f6\u6570\u7ec4 tmp \u4e2d\u7684\u5143\u7d20\u590d\u5236\u56de\u539f\u6570\u7ec4 nums \u7684\u5bf9\u5e94\u533a\u95f4\n for (k = 0; k < tmpSize; ++k) {\n nums[left + k] = tmp[k];\n }\n // \u91ca\u653e\u5185\u5b58\n free(tmp);\n}\n\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int *nums, int left, int right) {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right)\n return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n int mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n merge(nums, left, mid, right);\n}\n
merge_sort.zig// \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfn merge(nums: []i32, left: usize, mid: usize, right: usize) !void {\n // \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\n var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\n defer mem_arena.deinit();\n const mem_allocator = mem_arena.allocator();\n var tmp = try mem_allocator.alloc(i32, right + 1 - left);\n std.mem.copy(i32, tmp, nums[left..right+1]);\n // \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15 \n var leftStart = left - left;\n var leftEnd = mid - left;\n // \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15 \n var rightStart = mid + 1 - left;\n var rightEnd = right - left;\n // i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\n var i = leftStart;\n var j = rightStart;\n // \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\n var k = left;\n while (k <= right) : (k += 1) {\n // \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n if (i > leftEnd) {\n nums[k] = tmp[j];\n j += 1;\n // \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n } else if (j > rightEnd or tmp[i] <= tmp[j]) {\n nums[k] = tmp[i];\n i += 1;\n // \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n } else {\n nums[k] = tmp[j];\n j += 1;\n }\n }\n}\n\n// \u5f52\u5e76\u6392\u5e8f\nfn mergeSort(nums: []i32, left: usize, right: usize) !void {\n // \u7ec8\u6b62\u6761\u4ef6\n if (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n // \u5212\u5206\u9636\u6bb5\n var mid = (left + right) / 2; // \u8ba1\u7b97\u4e2d\u70b9\n try mergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\n try mergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n // \u5408\u5e76\u9636\u6bb5\n try merge(nums, left, mid, right);\n}\n
"},{"location":"chapter_sorting/merge_sort/#1162","title":"11.6.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\)\u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5212\u5206\u4ea7\u751f\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u5c42\u5408\u5e76\u7684\u603b\u64cd\u4f5c\u6570\u91cf\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u9012\u5f52\u6df1\u5ea6\u4e3a \\(\\log n\\) \uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002\u5408\u5e76\u64cd\u4f5c\u9700\u8981\u501f\u52a9\u8f85\u52a9\u6570\u7ec4\u5b9e\u73b0\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u5408\u5e76\u8fc7\u7a0b\u4e2d\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u6b21\u5e8f\u4fdd\u6301\u4e0d\u53d8\u3002
"},{"location":"chapter_sorting/merge_sort/#1163","title":"11.6.3 \u00a0 \u94fe\u8868\u6392\u5e8f","text":"\u5bf9\u4e8e\u94fe\u8868\uff0c\u5f52\u5e76\u6392\u5e8f\u76f8\u8f83\u4e8e\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\u5177\u6709\u663e\u8457\u4f18\u52bf\uff0c\u53ef\u4ee5\u5c06\u94fe\u8868\u6392\u5e8f\u4efb\u52a1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(1)\\) \u3002
- \u5212\u5206\u9636\u6bb5\uff1a\u53ef\u4ee5\u4f7f\u7528\u201c\u8fed\u4ee3\u201d\u66ff\u4ee3\u201c\u9012\u5f52\u201d\u6765\u5b9e\u73b0\u94fe\u8868\u5212\u5206\u5de5\u4f5c\uff0c\u4ece\u800c\u7701\u53bb\u9012\u5f52\u4f7f\u7528\u7684\u6808\u5e27\u7a7a\u95f4\u3002
- \u5408\u5e76\u9636\u6bb5\uff1a\u5728\u94fe\u8868\u4e2d\uff0c\u8282\u70b9\u589e\u5220\u64cd\u4f5c\u4ec5\u9700\u6539\u53d8\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\u5b9e\u73b0\uff0c\u56e0\u6b64\u5408\u5e76\u9636\u6bb5\uff08\u5c06\u4e24\u4e2a\u77ed\u6709\u5e8f\u94fe\u8868\u5408\u5e76\u4e3a\u4e00\u4e2a\u957f\u6709\u5e8f\u94fe\u8868\uff09\u65e0\u987b\u521b\u5efa\u989d\u5916\u94fe\u8868\u3002
\u5177\u4f53\u5b9e\u73b0\u7ec6\u8282\u6bd4\u8f83\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u67e5\u9605\u76f8\u5173\u8d44\u6599\u8fdb\u884c\u5b66\u4e60\u3002
"},{"location":"chapter_sorting/quick_sort/","title":"11.5 \u00a0 \u5feb\u901f\u6392\u5e8f","text":"\u300c\u5feb\u901f\u6392\u5e8f quick sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u8fd0\u884c\u9ad8\u6548\uff0c\u5e94\u7528\u5e7f\u6cdb\u3002
\u5feb\u901f\u6392\u5e8f\u7684\u6838\u5fc3\u64cd\u4f5c\u662f\u201c\u54e8\u5175\u5212\u5206\u201d\uff0c\u5176\u76ee\u6807\u662f\uff1a\u9009\u62e9\u6570\u7ec4\u4e2d\u7684\u67d0\u4e2a\u5143\u7d20\u4f5c\u4e3a\u201c\u57fa\u51c6\u6570\u201d\uff0c\u5c06\u6240\u6709\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u5de6\u4fa7\uff0c\u800c\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u53f3\u4fa7\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u54e8\u5175\u5212\u5206\u7684\u6d41\u7a0b\u5982\u56fe 11-8 \u6240\u793a\u3002
- \u9009\u53d6\u6570\u7ec4\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u521d\u59cb\u5316\u4e24\u4e2a\u6307\u9488
i \u548c j \u5206\u522b\u6307\u5411\u6570\u7ec4\u7684\u4e24\u7aef\u3002 - \u8bbe\u7f6e\u4e00\u4e2a\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u4f7f\u7528
i\uff08j\uff09\u5206\u522b\u5bfb\u627e\u7b2c\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u5927\uff08\u5c0f\uff09\u7684\u5143\u7d20\uff0c\u7136\u540e\u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\u3002 - \u5faa\u73af\u6267\u884c\u6b65\u9aa4
2. \uff0c\u76f4\u5230 i \u548c j \u76f8\u9047\u65f6\u505c\u6b62\uff0c\u6700\u540e\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\u3002
<1><2><3><4><5><6><7><8><9> \u56fe 11-8 \u00a0 \u54e8\u5175\u5212\u5206\u6b65\u9aa4
\u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u539f\u6570\u7ec4\u88ab\u5212\u5206\u6210\u4e09\u90e8\u5206\uff1a\u5de6\u5b50\u6570\u7ec4\u3001\u57fa\u51c6\u6570\u3001\u53f3\u5b50\u6570\u7ec4\uff0c\u4e14\u6ee1\u8db3\u201c\u5de6\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20 \\(\\leq\\) \u57fa\u51c6\u6570 \\(\\leq\\) \u53f3\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20\u201d\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u53ea\u9700\u5bf9\u8fd9\u4e24\u4e2a\u5b50\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\u3002
\u5feb\u901f\u6392\u5e8f\u7684\u5206\u6cbb\u7b56\u7565
\u54e8\u5175\u5212\u5206\u7684\u5b9e\u8d28\u662f\u5c06\u4e00\u4e2a\u8f83\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u7b80\u5316\u4e3a\u4e24\u4e2a\u8f83\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef partition(self, nums: list[int], left: int, right: int) -> int:\n \"\"\"\u54e8\u5175\u5212\u5206\"\"\"\n # \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j = left, right\n while i < j:\n while i < j and nums[j] >= nums[left]:\n j -= 1 # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while i < j and nums[i] <= nums[left]:\n i += 1 # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n # \u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n # \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
quick_sort.cpp/* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(vector<int> &nums, int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint partition(vector<int> &nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.java/* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int[] nums, int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint partition(int[] nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.cs/* \u5143\u7d20\u4ea4\u6362 */\nvoid Swap(int[] nums, int i, int j) {\n (nums[j], nums[i]) = (nums[i], nums[j]);\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint Partition(int[] nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n Swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n Swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.go/* \u54e8\u5175\u5212\u5206 */\nfunc (q *quickSort) partition(nums []int, left, right int) int {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j := left, right\n for i < j {\n for i < j && nums[j] >= nums[left] {\n j-- // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n for i < j && nums[i] <= nums[left] {\n i++ // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n // \u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n }\n // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.swift/* \u5143\u7d20\u4ea4\u6362 */\nfunc swap(nums: inout [Int], i: Int, j: Int) {\n let tmp = nums[i]\n nums[i] = nums[j]\n nums[j] = tmp\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nfunc partition(nums: inout [Int], left: Int, right: Int) -> Int {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n var i = left\n var j = right\n while i < j {\n while i < j, nums[j] >= nums[left] {\n j -= 1 // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while i < j, nums[i] <= nums[left] {\n i += 1 // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n swap(nums: &nums, i: i, j: j) // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums: &nums, i: i, j: left) // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.js/* \u5143\u7d20\u4ea4\u6362 */\nswap(nums, i, j) {\n let tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums, left, right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while (i < j && nums[i] <= nums[left]) {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n // \u5143\u7d20\u4ea4\u6362\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.ts/* \u5143\u7d20\u4ea4\u6362 */\nswap(nums: number[], i: number, j: number): void {\n let tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums: number[], left: number, right: number): number {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while (i < j && nums[i] <= nums[left]) {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n // \u5143\u7d20\u4ea4\u6362\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.dart/* \u5143\u7d20\u4ea4\u6362 */\nvoid _swap(List<int> nums, int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u54e8\u5175\u5212\u5206 */\nint _partition(List<int> nums, int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n _swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n _swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.rs/* \u54e8\u5175\u5212\u5206 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let (mut i, mut j) = (left, right);\n while i < j {\n while i < j && nums[j] >= nums[left] {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while i < j && nums[i] <= nums[left] {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n nums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n nums.swap(i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.c/* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int nums[], int i, int j) {\n int tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n/* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n j--;\n }\n while (i < j && nums[i] <= nums[left]) {\n // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n i++;\n }\n // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n swap(nums, i, j);\n }\n // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n swap(nums, i, left);\n // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n return i;\n}\n
quick_sort.zig// \u5143\u7d20\u4ea4\u6362\nfn swap(nums: []i32, i: usize, j: usize) void {\n var tmp = nums[i];\n nums[i] = nums[j];\n nums[j] = tmp;\n}\n\n// \u54e8\u5175\u5212\u5206\nfn partition(nums: []i32, left: usize, right: usize) usize {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n var i = left;\n var j = right;\n while (i < j) {\n while (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
"},{"location":"chapter_sorting/quick_sort/#1151","title":"11.5.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u5feb\u901f\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u56fe 11-9 \u6240\u793a\u3002
- \u9996\u5148\uff0c\u5bf9\u539f\u6570\u7ec4\u6267\u884c\u4e00\u6b21\u201c\u54e8\u5175\u5212\u5206\u201d\uff0c\u5f97\u5230\u672a\u6392\u5e8f\u7684\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u3002
- \u7136\u540e\uff0c\u5bf9\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5206\u522b\u9012\u5f52\u6267\u884c\u201c\u54e8\u5175\u5212\u5206\u201d\u3002
- \u6301\u7eed\u9012\u5f52\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\uff0c\u4ece\u800c\u5b8c\u6210\u6574\u4e2a\u6570\u7ec4\u7684\u6392\u5e8f\u3002
\u56fe 11-9 \u00a0 \u5feb\u901f\u6392\u5e8f\u6d41\u7a0b
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef quick_sort(self, nums: list[int], left: int, right: int):\n \"\"\"\u5feb\u901f\u6392\u5e8f\"\"\"\n # \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right:\n return\n # \u54e8\u5175\u5212\u5206\n pivot = self.partition(nums, left, right)\n # \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n self.quick_sort(nums, left, pivot - 1)\n self.quick_sort(nums, pivot + 1, right)\n
quick_sort.cpp/* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(vector<int> &nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right)\n return;\n // \u54e8\u5175\u5212\u5206\n int pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.java/* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right)\n return;\n // \u54e8\u5175\u5212\u5206\n int pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.cs/* \u5feb\u901f\u6392\u5e8f */\nvoid QuickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right)\n return;\n // \u54e8\u5175\u5212\u5206\n int pivot = Partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n QuickSort(nums, left, pivot - 1);\n QuickSort(nums, pivot + 1, right);\n}\n
quick_sort.go/* \u5feb\u901f\u6392\u5e8f */\nfunc (q *quickSort) quickSort(nums []int, left, right int) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right {\n return\n }\n // \u54e8\u5175\u5212\u5206\n pivot := q.partition(nums, left, right)\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n q.quickSort(nums, left, pivot-1)\n q.quickSort(nums, pivot+1, right)\n}\n
quick_sort.swift/* \u5feb\u901f\u6392\u5e8f */\nfunc quickSort(nums: inout [Int], left: Int, right: Int) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right {\n return\n }\n // \u54e8\u5175\u5212\u5206\n let pivot = partition(nums: &nums, left: left, right: right)\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums: &nums, left: left, right: pivot - 1)\n quickSort(nums: &nums, left: pivot + 1, right: right)\n}\n
quick_sort.js/* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums, left, right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) return;\n // \u54e8\u5175\u5212\u5206\n const pivot = this.partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n this.quickSort(nums, left, pivot - 1);\n this.quickSort(nums, pivot + 1, right);\n}\n
quick_sort.ts/* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums: number[], left: number, right: number): void {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) {\n return;\n }\n // \u54e8\u5175\u5212\u5206\n const pivot = this.partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n this.quickSort(nums, left, pivot - 1);\n this.quickSort(nums, pivot + 1, right);\n}\n
quick_sort.dart/* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(List<int> nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) return;\n // \u54e8\u5175\u5212\u5206\n int pivot = _partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.rs/* \u5feb\u901f\u6392\u5e8f */\npub fn quick_sort(left: i32, right: i32, nums: &mut [i32]) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if left >= right {\n return;\n }\n // \u54e8\u5175\u5212\u5206\n let pivot = Self::partition(nums, left as usize, right as usize) as i32;\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n Self::quick_sort(left, pivot - 1, nums);\n Self::quick_sort(pivot + 1, right, nums);\n}\n
quick_sort.c/* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n j--;\n }\n while (i < j && nums[i] <= nums[left]) {\n // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n i++;\n }\n // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n swap(nums, i, j);\n }\n // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n swap(nums, i, left);\n // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n return i;\n}\n\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u5feb\u901f\u6392\u5e8f\nvoid quickSort(int nums[], int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) {\n return;\n }\n // \u54e8\u5175\u5212\u5206\n int pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
quick_sort.zig// \u5feb\u901f\u6392\u5e8f\nfn quickSort(nums: []i32, left: usize, right: usize) void {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n if (left >= right) return;\n // \u54e8\u5175\u5212\u5206\n var pivot = partition(nums, left, right);\n // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\n quickSort(nums, left, pivot - 1);\n quickSort(nums, pivot + 1, right);\n}\n
"},{"location":"chapter_sorting/quick_sort/#1152","title":"11.5.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\)\u3001\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u5e73\u5747\u60c5\u51b5\u4e0b\uff0c\u54e8\u5175\u5212\u5206\u7684\u9012\u5f52\u5c42\u6570\u4e3a \\(\\log n\\) \uff0c\u6bcf\u5c42\u4e2d\u7684\u603b\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n \\log n)\\) \u65f6\u95f4\u3002\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u90fd\u5c06\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u5212\u5206\u4e3a\u957f\u5ea6\u4e3a \\(0\\) \u548c \\(n - 1\\) \u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u6b64\u65f6\u9012\u5f52\u5c42\u6570\u8fbe\u5230 \\(n\\) \uff0c\u6bcf\u5c42\u4e2d\u7684\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u5728\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u5012\u5e8f\u7684\u60c5\u51b5\u4e0b\uff0c\u8fbe\u5230\u6700\u5dee\u9012\u5f52\u6df1\u5ea6 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u6392\u5e8f\u64cd\u4f5c\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\uff0c\u672a\u501f\u52a9\u989d\u5916\u6570\u7ec4\u3002
- \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u54e8\u5175\u5212\u5206\u7684\u6700\u540e\u4e00\u6b65\uff0c\u57fa\u51c6\u6570\u53ef\u80fd\u4f1a\u88ab\u4ea4\u6362\u81f3\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\u3002
"},{"location":"chapter_sorting/quick_sort/#1153","title":"11.5.3 \u00a0 \u5feb\u901f\u6392\u5e8f\u4e3a\u4ec0\u4e48\u5feb","text":"\u4ece\u540d\u79f0\u4e0a\u5c31\u80fd\u770b\u51fa\uff0c\u5feb\u901f\u6392\u5e8f\u5728\u6548\u7387\u65b9\u9762\u5e94\u8be5\u5177\u6709\u4e00\u5b9a\u7684\u4f18\u52bf\u3002\u5c3d\u7ba1\u5feb\u901f\u6392\u5e8f\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e0e\u201c\u5f52\u5e76\u6392\u5e8f\u201d\u548c\u201c\u5806\u6392\u5e8f\u201d\u76f8\u540c\uff0c\u4f46\u901a\u5e38\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u4e3b\u8981\u6709\u4ee5\u4e0b\u539f\u56e0\u3002
- \u51fa\u73b0\u6700\u5dee\u60c5\u51b5\u7684\u6982\u7387\u5f88\u4f4e\uff1a\u867d\u7136\u5feb\u901f\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u6ca1\u6709\u5f52\u5e76\u6392\u5e8f\u7a33\u5b9a\uff0c\u4f46\u5728\u7edd\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u80fd\u5728 \\(O(n \\log n)\\) \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u8fd0\u884c\u3002
- \u7f13\u5b58\u4f7f\u7528\u6548\u7387\u9ad8\uff1a\u5728\u6267\u884c\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u65f6\uff0c\u7cfb\u7edf\u53ef\u5c06\u6574\u4e2a\u5b50\u6570\u7ec4\u52a0\u8f7d\u5230\u7f13\u5b58\uff0c\u56e0\u6b64\u8bbf\u95ee\u5143\u7d20\u7684\u6548\u7387\u8f83\u9ad8\u3002\u800c\u50cf\u201c\u5806\u6392\u5e8f\u201d\u8fd9\u7c7b\u7b97\u6cd5\u9700\u8981\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u5143\u7d20\uff0c\u4ece\u800c\u7f3a\u4e4f\u8fd9\u4e00\u7279\u6027\u3002
- \u590d\u6742\u5ea6\u7684\u5e38\u6570\u7cfb\u6570\u5c0f\uff1a\u5728\u4e0a\u8ff0\u4e09\u79cd\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u6bd4\u8f83\u3001\u8d4b\u503c\u3001\u4ea4\u6362\u7b49\u64cd\u4f5c\u7684\u603b\u6570\u91cf\u6700\u5c11\u3002\u8fd9\u4e0e\u201c\u63d2\u5165\u6392\u5e8f\u201d\u6bd4\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u66f4\u5feb\u7684\u539f\u56e0\u7c7b\u4f3c\u3002
"},{"location":"chapter_sorting/quick_sort/#1154","title":"11.5.4 \u00a0 \u57fa\u51c6\u6570\u4f18\u5316","text":"\u5feb\u901f\u6392\u5e8f\u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\u7684\u65f6\u95f4\u6548\u7387\u53ef\u80fd\u964d\u4f4e\u3002\u4e3e\u4e00\u4e2a\u6781\u7aef\u4f8b\u5b50\uff0c\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u662f\u5b8c\u5168\u5012\u5e8f\u7684\uff0c\u7531\u4e8e\u6211\u4eec\u9009\u62e9\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u5728\u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u57fa\u51c6\u6570\u88ab\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u53f3\u7aef\uff0c\u5bfc\u81f4\u5de6\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n - 1\\)\u3001\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(0\\) \u3002\u5982\u6b64\u9012\u5f52\u4e0b\u53bb\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u540e\u7684\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u90fd\u4e3a \\(0\\) \uff0c\u5206\u6cbb\u7b56\u7565\u5931\u6548\uff0c\u5feb\u901f\u6392\u5e8f\u9000\u5316\u4e3a\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u3002
\u4e3a\u4e86\u5c3d\u91cf\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u53d1\u751f\uff0c\u6211\u4eec\u53ef\u4ee5\u4f18\u5316\u54e8\u5175\u5212\u5206\u4e2d\u7684\u57fa\u51c6\u6570\u7684\u9009\u53d6\u7b56\u7565\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u53ef\u4ee5\u968f\u673a\u9009\u53d6\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u7136\u800c\uff0c\u5982\u679c\u8fd0\u6c14\u4e0d\u4f73\uff0c\u6bcf\u6b21\u90fd\u9009\u5230\u4e0d\u7406\u60f3\u7684\u57fa\u51c6\u6570\uff0c\u6548\u7387\u4ecd\u7136\u4e0d\u5c3d\u5982\u4eba\u610f\u3002
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u751f\u6210\u7684\u662f\u201c\u4f2a\u968f\u673a\u6570\u201d\u3002\u5982\u679c\u6211\u4eec\u9488\u5bf9\u4f2a\u968f\u673a\u6570\u5e8f\u5217\u6784\u5efa\u4e00\u4e2a\u7279\u5b9a\u7684\u6d4b\u8bd5\u6837\u4f8b\uff0c\u90a3\u4e48\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u4ecd\u7136\u53ef\u80fd\u52a3\u5316\u3002
\u4e3a\u4e86\u8fdb\u4e00\u6b65\u6539\u8fdb\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6570\u7ec4\u4e2d\u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\uff08\u901a\u5e38\u4e3a\u6570\u7ec4\u7684\u9996\u3001\u5c3e\u3001\u4e2d\u70b9\u5143\u7d20\uff09\uff0c\u5e76\u5c06\u8fd9\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u57fa\u51c6\u6570\u201c\u65e2\u4e0d\u592a\u5c0f\u4e5f\u4e0d\u592a\u5927\u201d\u7684\u6982\u7387\u5c06\u5927\u5e45\u63d0\u5347\u3002\u5f53\u7136\uff0c\u6211\u4eec\u8fd8\u53ef\u4ee5\u9009\u53d6\u66f4\u591a\u5019\u9009\u5143\u7d20\uff0c\u4ee5\u8fdb\u4e00\u6b65\u63d0\u9ad8\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002\u91c7\u7528\u8fd9\u79cd\u65b9\u6cd5\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u7684\u6982\u7387\u5927\u5927\u964d\u4f4e\u3002
\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef median_three(self, nums: list[int], left: int, mid: int, right: int) -> int:\n \"\"\"\u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\"\"\"\n # \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n # \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]):\n return left\n elif (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]):\n return mid\n return right\n\ndef partition(self, nums: list[int], left: int, right: int) -> int:\n \"\"\"\u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\"\"\"\n # \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n med = self.median_three(nums, left, (left + right) // 2, right)\n # \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n nums[left], nums[med] = nums[med], nums[left]\n # \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j = left, right\n while i < j:\n while i < j and nums[j] >= nums[left]:\n j -= 1 # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while i < j and nums[i] <= nums[left]:\n i += 1 # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n # \u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n # \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
quick_sort.cpp/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(vector<int> &nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(vector<int> &nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.java/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(int[] nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(int[] nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.cs/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint MedianThree(int[] nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint Partition(int[] nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = MedianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n Swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n Swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n Swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.go/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc (q *quickSortMedian) medianThree(nums []int, left, mid, right int) int {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\uff08!= \u5728\u8fd9\u91cc\u8d77\u5230\u5f02\u6216\u7684\u4f5c\u7528\uff09\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\n return left\n } else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\n return mid\n }\n return right\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09*/\nfunc (q *quickSortMedian) partition(nums []int, left, right int) int {\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n med := q.medianThree(nums, left, (left+right)/2, right)\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n nums[left], nums[med] = nums[med], nums[left]\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n i, j := left, right\n for i < j {\n for i < j && nums[j] >= nums[left] {\n j-- //\u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n for i < j && nums[i] <= nums[left] {\n i++ //\u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n //\u5143\u7d20\u4ea4\u6362\n nums[i], nums[j] = nums[j], nums[i]\n }\n //\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n nums[i], nums[left] = nums[left], nums[i]\n return i //\u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.swift/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc medianThree(nums: [Int], left: Int, mid: Int, right: Int) -> Int {\n if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\n return left\n } else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\n return mid\n } else {\n return right\n }\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfunc partitionMedian(nums: inout [Int], left: Int, right: Int) -> Int {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = medianThree(nums: nums, left: left, mid: (left + right) / 2, right: right)\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums: &nums, i: left, j: med)\n return partition(nums: &nums, left: left, right: right)\n}\n
quick_sort.js/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(nums, left, mid, right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right])) return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums, left, right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = this.medianThree(\n nums,\n left,\n Math.floor((left + right) / 2),\n right\n );\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n this.swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.ts/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(\n nums: number[],\n left: number,\n mid: number,\n right: number\n): number {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (Number(nums[left] < nums[mid]) ^ Number(nums[left] < nums[right])) {\n return left;\n } else if (\n Number(nums[mid] < nums[left]) ^ Number(nums[mid] < nums[right])\n ) {\n return mid;\n } else {\n return right;\n }\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums: number[], left: number, right: number): number {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = this.medianThree(\n nums,\n left,\n Math.floor((left + right) / 2),\n right\n );\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n this.swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let i = left,\n j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) {\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while (i < j && nums[i] <= nums[left]) {\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n this.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n this.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.dart/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint _medianThree(List<int> nums, int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint _partition(List<int> nums, int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = _medianThree(nums, left, (left + right) ~/ 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n _swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n _swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n _swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.rs/* \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfn median_three(nums: &mut [i32], left: usize, mid: usize, right: usize) -> usize {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]) {\n return left;\n } else if (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]) {\n return mid;\n } \n right\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n let med = Self::median_three(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n nums.swap(left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n let (mut i, mut j) = (left, right);\n while i < j {\n while i < j && nums[j] >= nums[left] {\n j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n while i < j && nums[i] <= nums[left] {\n i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n }\n nums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n nums.swap(i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.c/* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u4e2d\u4f4d\u57fa\u51c6\u6570\u4f18\u5316\uff09 */\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint medianThree(int nums[], int left, int mid, int right) {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\n return left;\n else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\n return mid;\n else\n return right;\n}\n\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */ \nint partitionMedian(int nums[], int left, int right) {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n int med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n int i = left, j = right;\n while (i < j) {\n while (i < j && nums[j] >= nums[left])\n j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j && nums[i] <= nums[left])\n i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
quick_sort.zig// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nfn medianThree(nums: []i32, left: usize, mid: usize, right: usize) usize {\n // \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n // \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\n if ((nums[left] < nums[mid]) != (nums[left] < nums[right])) {\n return left;\n } else if ((nums[mid] < nums[left]) != (nums[mid] < nums[right])) {\n return mid;\n } else {\n return right;\n }\n}\n\n// \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\nfn partition(nums: []i32, left: usize, right: usize) usize {\n // \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\n var med = medianThree(nums, left, (left + right) / 2, right);\n // \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n swap(nums, left, med);\n // \u4ee5 nums[left] \u4e3a\u57fa\u51c6\u6570\n var i = left;\n var j = right;\n while (i < j) {\n while (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n while (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n }\n swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\n return i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
"},{"location":"chapter_sorting/quick_sort/#1155","title":"11.5.5 \u00a0 \u5c3e\u9012\u5f52\u4f18\u5316","text":"\u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u53ef\u80fd\u5360\u7528\u7a7a\u95f4\u8f83\u591a\u3002\u4ee5\u5b8c\u5168\u6709\u5e8f\u7684\u8f93\u5165\u6570\u7ec4\u4e3a\u4f8b\uff0c\u8bbe\u9012\u5f52\u4e2d\u7684\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(m\\) \uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u90fd\u5c06\u4ea7\u751f\u957f\u5ea6\u4e3a \\(0\\) \u7684\u5de6\u5b50\u6570\u7ec4\u548c\u957f\u5ea6\u4e3a \\(m - 1\\) \u7684\u53f3\u5b50\u6570\u7ec4\uff0c\u8fd9\u610f\u5473\u7740\u6bcf\u4e00\u5c42\u9012\u5f52\u8c03\u7528\u51cf\u5c11\u7684\u95ee\u9898\u89c4\u6a21\u975e\u5e38\u5c0f\uff08\u53ea\u51cf\u5c11\u4e00\u4e2a\u5143\u7d20\uff09\uff0c\u9012\u5f52\u6811\u7684\u9ad8\u5ea6\u4f1a\u8fbe\u5230 \\(n - 1\\) \uff0c\u6b64\u65f6\u9700\u8981\u5360\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002
\u4e3a\u4e86\u9632\u6b62\u6808\u5e27\u7a7a\u95f4\u7684\u7d2f\u79ef\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6bcf\u8f6e\u54e8\u5175\u6392\u5e8f\u5b8c\u6210\u540e\uff0c\u6bd4\u8f83\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\uff0c\u4ec5\u5bf9\u8f83\u77ed\u7684\u5b50\u6570\u7ec4\u8fdb\u884c\u9012\u5f52\u3002\u7531\u4e8e\u8f83\u77ed\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(n / 2\\) \uff0c\u56e0\u6b64\u8fd9\u79cd\u65b9\u6cd5\u80fd\u786e\u4fdd\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff0c\u4ece\u800c\u5c06\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig quick_sort.pydef quick_sort(self, nums: list[int], left: int, right: int):\n \"\"\"\u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\"\"\"\n # \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while left < right:\n # \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n pivot = self.partition(nums, left, right)\n # \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if pivot - left < right - pivot:\n self.quick_sort(nums, left, pivot - 1) # \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1 # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n else:\n self.quick_sort(nums, pivot + 1, right) # \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1 # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n
quick_sort.cpp/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(vector<int> &nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.java/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.cs/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid QuickSort(int[] nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = Partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n QuickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n QuickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.go/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09*/\nfunc (q *quickSortTailCall) quickSort(nums []int, left, right int) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n for left < right {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n pivot := q.partition(nums, left, right)\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if pivot-left < right-pivot {\n q.quickSort(nums, left, pivot-1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n q.quickSort(nums, pivot+1, right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.swift/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nfunc quickSortTailCall(nums: inout [Int], left: Int, right: Int) {\n var left = left\n var right = right\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while left < right {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = partition(nums: &nums, left: left, right: right)\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left) < (right - pivot) {\n quickSortTailCall(nums: &nums, left: left, right: pivot - 1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSortTailCall(nums: &nums, left: pivot + 1, right: right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.js/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums, left, right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = this.partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n this.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n this.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.ts/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums: number[], left: number, right: number): void {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = this.partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n this.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n this.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.dart/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(List<int> nums, int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = _partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.rs/* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\npub fn quick_sort(mut left: i32, mut right: i32, nums: &mut [i32]) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while left < right {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n let pivot = Self::partition(nums, left as usize, right as usize) as i32;\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if pivot - left < right - pivot {\n Self::quick_sort(left, pivot - 1, nums); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n Self::quick_sort(pivot + 1, right, nums); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.c/* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\n// \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nvoid quickSortTailCall(int nums[], int left, int right) {\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n int pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSortTailCall(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSortTailCall(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
quick_sort.zig// \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nfn quickSort(nums: []i32, left_: usize, right_: usize) void {\n var left = left_;\n var right = right_;\n // \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n while (left < right) {\n // \u54e8\u5175\u5212\u5206\u64cd\u4f5c\n var pivot = partition(nums, left, right);\n // \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u901f\u6392\u5e8f\n if (pivot - left < right - pivot) {\n quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\n left = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n } else {\n quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\n right = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n }\n }\n}\n
"},{"location":"chapter_sorting/radix_sort/","title":"11.10 \u00a0 \u57fa\u6570\u6392\u5e8f","text":"\u4e0a\u4e00\u8282\u4ecb\u7ecd\u4e86\u8ba1\u6570\u6392\u5e8f\uff0c\u5b83\u9002\u7528\u4e8e\u6570\u636e\u91cf \\(n\\) \u8f83\u5927\u4f46\u6570\u636e\u8303\u56f4 \\(m\\) \u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u5bf9 \\(n = 10^6\\) \u4e2a\u5b66\u53f7\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u5b66\u53f7\u662f\u4e00\u4e2a \\(8\\) \u4f4d\u6570\u5b57\uff0c\u8fd9\u610f\u5473\u7740\u6570\u636e\u8303\u56f4 \\(m = 10^8\\) \u975e\u5e38\u5927\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u9700\u8981\u5206\u914d\u5927\u91cf\u5185\u5b58\u7a7a\u95f4\uff0c\u800c\u57fa\u6570\u6392\u5e8f\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u3002
\u300c\u57fa\u6570\u6392\u5e8f radix sort\u300d\u7684\u6838\u5fc3\u601d\u60f3\u4e0e\u8ba1\u6570\u6392\u5e8f\u4e00\u81f4\uff0c\u4e5f\u901a\u8fc7\u7edf\u8ba1\u4e2a\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u57fa\u6570\u6392\u5e8f\u5229\u7528\u6570\u5b57\u5404\u4f4d\u4e4b\u95f4\u7684\u9012\u8fdb\u5173\u7cfb\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e00\u4f4d\u8fdb\u884c\u6392\u5e8f\uff0c\u4ece\u800c\u5f97\u5230\u6700\u7ec8\u7684\u6392\u5e8f\u7ed3\u679c\u3002
"},{"location":"chapter_sorting/radix_sort/#11101","title":"11.10.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"\u4ee5\u5b66\u53f7\u6570\u636e\u4e3a\u4f8b\uff0c\u5047\u8bbe\u6570\u5b57\u7684\u6700\u4f4e\u4f4d\u662f\u7b2c \\(1\\) \u4f4d\uff0c\u6700\u9ad8\u4f4d\u662f\u7b2c \\(8\\) \u4f4d\uff0c\u57fa\u6570\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u56fe 11-18 \u6240\u793a\u3002
- \u521d\u59cb\u5316\u4f4d\u6570 \\(k = 1\\) \u3002
- \u5bf9\u5b66\u53f7\u7684\u7b2c \\(k\\) \u4f4d\u6267\u884c\u201c\u8ba1\u6570\u6392\u5e8f\u201d\u3002\u5b8c\u6210\u540e\uff0c\u6570\u636e\u4f1a\u6839\u636e\u7b2c \\(k\\) \u4f4d\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u3002
- \u5c06 \\(k\\) \u589e\u52a0 \\(1\\) \uff0c\u7136\u540e\u8fd4\u56de\u6b65\u9aa4
2. \u7ee7\u7eed\u8fed\u4ee3\uff0c\u76f4\u5230\u6240\u6709\u4f4d\u90fd\u6392\u5e8f\u5b8c\u6210\u540e\u7ed3\u675f\u3002
\u56fe 11-18 \u00a0 \u57fa\u6570\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b
\u4e0b\u9762\u5256\u6790\u4ee3\u7801\u5b9e\u73b0\u3002\u5bf9\u4e8e\u4e00\u4e2a \\(d\\) \u8fdb\u5236\u7684\u6570\u5b57 \\(x\\) \uff0c\u8981\u83b7\u53d6\u5176\u7b2c \\(k\\) \u4f4d \\(x_k\\) \uff0c\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u8ba1\u7b97\u516c\u5f0f\uff1a
\\[ x_k = \\lfloor\\frac{x}{d^{k-1}}\\rfloor \\bmod d \\] \u5176\u4e2d \\(\\lfloor a \\rfloor\\) \u8868\u793a\u5bf9\u6d6e\u70b9\u6570 \\(a\\) \u5411\u4e0b\u53d6\u6574\uff0c\u800c \\(\\bmod \\: d\\) \u8868\u793a\u5bf9 \\(d\\) \u53d6\u6a21\uff08\u53d6\u4f59\uff09\u3002\u5bf9\u4e8e\u5b66\u53f7\u6570\u636e\uff0c\\(d = 10\\) \u4e14 \\(k \\in [1, 8]\\) \u3002
\u6b64\u5916\uff0c\u6211\u4eec\u9700\u8981\u5c0f\u5e45\u6539\u52a8\u8ba1\u6570\u6392\u5e8f\u4ee3\u7801\uff0c\u4f7f\u4e4b\u53ef\u4ee5\u6839\u636e\u6570\u5b57\u7684\u7b2c \\(k\\) \u4f4d\u8fdb\u884c\u6392\u5e8f\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig radix_sort.pydef digit(num: int, exp: int) -> int:\n \"\"\"\u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\"\"\"\n # \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num // exp) % 10\n\ndef counting_sort_digit(nums: list[int], exp: int):\n \"\"\"\u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\"\"\"\n # \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n counter = [0] * 10\n n = len(nums)\n # \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i in range(n):\n d = digit(nums[i], exp) # \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1 # \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n # \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i in range(1, 10):\n counter[i] += counter[i - 1]\n # \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n res = [0] * n\n for i in range(n - 1, -1, -1):\n d = digit(nums[i], exp)\n j = counter[d] - 1 # \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i] # \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1 # \u5c06 d \u7684\u6570\u91cf\u51cf 1\n # \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in range(n):\n nums[i] = res[i]\n\ndef radix_sort(nums: list[int]):\n \"\"\"\u57fa\u6570\u6392\u5e8f\"\"\"\n # \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n m = max(nums)\n # \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n exp = 1\n while exp <= m:\n # \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n # k = 1 -> exp = 1\n # k = 2 -> exp = 10\n # \u5373 exp = 10^(k-1)\n counting_sort_digit(nums, exp)\n exp *= 10\n
radix_sort.cpp/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(vector<int> &nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n vector<int> counter(10, 0);\n int n = nums.size();\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n vector<int> res(n, 0);\n for (int i = n - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++)\n nums[i] = res[i];\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(vector<int> &nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int m = *max_element(nums.begin(), nums.end());\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n}\n
radix_sort.java/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int[] nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n int[] counter = new int[10];\n int n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++)\n nums[i] = res[i];\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int[] nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int m = Integer.MIN_VALUE;\n for (int num : nums)\n if (num > m)\n m = num;\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n}\n
radix_sort.cs/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint Digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid CountingSortDigit(int[] nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n int[] counter = new int[10];\n int n = nums.Length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = Digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n int[] res = new int[n];\n for (int i = n - 1; i >= 0; i--) {\n int d = Digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid RadixSort(int[] nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int m = int.MinValue;\n foreach (int num in nums) {\n if (num > m) m = num;\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n CountingSortDigit(nums, exp);\n }\n}\n
radix_sort.go/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num, exp int) int {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums []int, exp int) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n counter := make([]int, 10)\n n := len(nums)\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i := 0; i < n; i++ {\n d := digit(nums[i], exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++ // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i := 1; i < 10; i++ {\n counter[i] += counter[i-1]\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n res := make([]int, n)\n for i := n - 1; i >= 0; i-- {\n d := digit(nums[i], exp)\n j := counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i] // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]-- // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i := 0; i < n; i++ {\n nums[i] = res[i]\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums []int) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n max := math.MinInt\n for _, num := range nums {\n if num > max {\n max = num\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for exp := 1; max >= exp; exp *= 10 {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp)\n }\n}\n
radix_sort.swift/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num: Int, exp: Int) -> Int {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n (num / exp) % 10\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums: inout [Int], exp: Int) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n var counter = Array(repeating: 0, count: 10)\n let n = nums.count\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i in nums.indices {\n let d = digit(num: nums[i], exp: exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1 // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i in 1 ..< 10 {\n counter[i] += counter[i - 1]\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n var res = Array(repeating: 0, count: n)\n for i in stride(from: n - 1, through: 0, by: -1) {\n let d = digit(num: nums[i], exp: exp)\n let j = counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i] // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1 // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in nums.indices {\n nums[i] = res[i]\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums: inout [Int]) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n var m = Int.min\n for num in nums {\n if num > m {\n m = num\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for exp in sequence(first: 1, next: { m >= ($0 * 10) ? $0 * 10 : nil }) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums: &nums, exp: exp)\n }\n}\n
radix_sort.js/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num, exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return Math.floor(num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums, exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n const counter = new Array(10).fill(0);\n const n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (let i = 0; i < n; i++) {\n const d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (let i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n const res = new Array(n).fill(0);\n for (let i = n - 1; i >= 0; i--) {\n const d = digit(nums[i], exp);\n const j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n let m = Number.MIN_VALUE;\n for (const num of nums) {\n if (num > m) {\n m = num;\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (let exp = 1; exp <= m; exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n }\n}\n
radix_sort.ts/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num: number, exp: number): number {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return Math.floor(num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums: number[], exp: number): void {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n const counter = new Array(10).fill(0);\n const n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (let i = 0; i < n; i++) {\n const d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (let i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n const res = new Array(n).fill(0);\n for (let i = n - 1; i >= 0; i--) {\n const d = digit(nums[i], exp);\n const j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (let i = 0; i < n; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums: number[]): void {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n let m = Number.MIN_VALUE;\n for (const num of nums) {\n if (num > m) {\n m = num;\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (let exp = 1; exp <= m; exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n }\n}\n
radix_sort.dart/* \u83b7\u53d6\u5143\u7d20 _num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int _num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (_num ~/ exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(List<int> nums, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n List<int> counter = List<int>.filled(10, 0);\n int n = nums.length;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < n; i++) {\n int d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n List<int> res = List<int>.filled(n, 0);\n for (int i = n - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < n; i++) nums[i] = res[i];\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(List<int> nums) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n // dart \u4e2d int \u7684\u957f\u5ea6\u662f 64 \u4f4d\u7684\n int m = -1 << 63;\n for (int _num in nums) if (_num > m) m = _num;\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; exp <= m; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, exp);\n}\n
radix_sort.rs/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfn digit(num: i32, exp: i32) -> usize {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return ((num / exp) % 10) as usize;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfn counting_sort_digit(nums: &mut [i32], exp: i32) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n let mut counter = [0; 10];\n let n = nums.len();\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for i in 0..n {\n let d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for i in 1..10 {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n let mut res = vec![0; n];\n for i in (0..n).rev() {\n let d = digit(nums[i], exp);\n let j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for i in 0..n {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nfn radix_sort(nums: &mut [i32]) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n let m = *nums.into_iter().max().unwrap();\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n let mut exp = 1;\n while exp <= m {\n counting_sort_digit(nums, exp);\n exp *= 10;\n }\n}\n
radix_sort.c/* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return (num / exp) % 10;\n}\n\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int nums[], int size, int exp) {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n int *counter = (int *)malloc((sizeof(int) * 10));\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (int i = 0; i < size; i++) {\n // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n int d = digit(nums[i], exp);\n // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n counter[d]++;\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n for (int i = 1; i < 10; i++) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n int *res = (int *)malloc(sizeof(int) * size);\n for (int i = size - 1; i >= 0; i--) {\n int d = digit(nums[i], exp);\n int j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n for (int i = 0; i < size; i++) {\n nums[i] = res[i];\n }\n}\n\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int nums[], int size) {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n int max = INT32_MIN;\n for (size_t i = 0; i < size - 1; i++) {\n if (nums[i] > max) {\n max = nums[i];\n }\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n for (int exp = 1; max >= exp; exp *= 10)\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n countingSortDigit(nums, size, exp);\n}\n
radix_sort.zig// \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\nfn digit(num: i32, exp: i32) i32 {\n // \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n return @mod(@divFloor(num, exp), 10);\n}\n\n// \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\nfn countingSortDigit(nums: []i32, exp: i32) !void {\n // \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\u6570\u7ec4\n var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\n // defer mem_arena.deinit();\n const mem_allocator = mem_arena.allocator();\n var counter = try mem_allocator.alloc(usize, 10);\n @memset(counter, 0);\n var n = nums.len;\n // \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n for (nums) |num| {\n var d: u32 = @bitCast(digit(num, exp)); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\n counter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n }\n // \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\n var i: usize = 1;\n while (i < 10) : (i += 1) {\n counter[i] += counter[i - 1];\n }\n // \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\n var res = try mem_allocator.alloc(i32, n);\n i = n - 1;\n while (i >= 0) : (i -= 1) {\n var d: u32 = @bitCast(digit(nums[i], exp));\n var j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\n res[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\n counter[d] -= 1; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n if (i == 0) break;\n }\n // \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\n i = 0;\n while (i < n) : (i += 1) {\n nums[i] = res[i];\n }\n}\n\n// \u57fa\u6570\u6392\u5e8f\nfn radixSort(nums: []i32) !void {\n // \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n var m: i32 = std.math.minInt(i32);\n for (nums) |num| {\n if (num > m) m = num;\n }\n // \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\n var exp: i32 = 1;\n while (exp <= m) : (exp *= 10) {\n // \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n // k = 1 -> exp = 1\n // k = 2 -> exp = 10\n // \u5373 exp = 10^(k-1)\n try countingSortDigit(nums, exp); \n }\n} \n
\u4e3a\u4ec0\u4e48\u4ece\u6700\u4f4e\u4f4d\u5f00\u59cb\u6392\u5e8f\uff1f
\u5728\u8fde\u7eed\u7684\u6392\u5e8f\u8f6e\u6b21\u4e2d\uff0c\u540e\u4e00\u8f6e\u6392\u5e8f\u4f1a\u8986\u76d6\u524d\u4e00\u8f6e\u6392\u5e8f\u7684\u7ed3\u679c\u3002\u4e3e\u4f8b\u6765\u8bf4\uff0c\u5982\u679c\u7b2c\u4e00\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a < b\\) \uff0c\u800c\u7b2c\u4e8c\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a > b\\) \uff0c\u90a3\u4e48\u7b2c\u4e8c\u8f6e\u7684\u7ed3\u679c\u5c06\u53d6\u4ee3\u7b2c\u4e00\u8f6e\u7684\u7ed3\u679c\u3002\u7531\u4e8e\u6570\u5b57\u7684\u9ad8\u4f4d\u4f18\u5148\u7ea7\u9ad8\u4e8e\u4f4e\u4f4d\uff0c\u56e0\u6b64\u5e94\u8be5\u5148\u6392\u5e8f\u4f4e\u4f4d\u518d\u6392\u5e8f\u9ad8\u4f4d\u3002
"},{"location":"chapter_sorting/radix_sort/#11102","title":"11.10.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"\u76f8\u8f83\u4e8e\u8ba1\u6570\u6392\u5e8f\uff0c\u57fa\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u503c\u8303\u56f4\u8f83\u5927\u7684\u60c5\u51b5\uff0c\u4f46\u524d\u63d0\u662f\u6570\u636e\u5fc5\u987b\u53ef\u4ee5\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u683c\u5f0f\uff0c\u4e14\u4f4d\u6570\u4e0d\u80fd\u8fc7\u5927\u3002\u4f8b\u5982\uff0c\u6d6e\u70b9\u6570\u4e0d\u9002\u5408\u4f7f\u7528\u57fa\u6570\u6392\u5e8f\uff0c\u56e0\u4e3a\u5176\u4f4d\u6570 \\(k\\) \u8fc7\u5927\uff0c\u53ef\u80fd\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(nk) \\gg O(n^2)\\) \u3002
- \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nk)\\)\uff1a\u8bbe\u6570\u636e\u91cf\u4e3a \\(n\\)\u3001\u6570\u636e\u4e3a \\(d\\) \u8fdb\u5236\u3001\u6700\u5927\u4f4d\u6570\u4e3a \\(k\\) \uff0c\u5219\u5bf9\u67d0\u4e00\u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(n + d)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6240\u6709 \\(k\\) \u4f4d\u4f7f\u7528 \\(O((n + d)k)\\) \u65f6\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\\(d\\) \u548c \\(k\\) \u90fd\u76f8\u5bf9\u8f83\u5c0f\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n + d)\\)\u3001\u975e\u539f\u5730\u6392\u5e8f\uff1a\u4e0e\u8ba1\u6570\u6392\u5e8f\u76f8\u540c\uff0c\u57fa\u6570\u6392\u5e8f\u9700\u8981\u501f\u52a9\u957f\u5ea6\u4e3a \\(n\\) \u548c \\(d\\) \u7684\u6570\u7ec4
res \u548c counter \u3002 - \u7a33\u5b9a\u6392\u5e8f\uff1a\u5f53\u8ba1\u6570\u6392\u5e8f\u7a33\u5b9a\u65f6\uff0c\u57fa\u6570\u6392\u5e8f\u4e5f\u7a33\u5b9a\uff1b\u5f53\u8ba1\u6570\u6392\u5e8f\u4e0d\u7a33\u5b9a\u65f6\uff0c\u57fa\u6570\u6392\u5e8f\u65e0\u6cd5\u4fdd\u8bc1\u5f97\u5230\u6b63\u786e\u7684\u6392\u5e8f\u7ed3\u679c\u3002
"},{"location":"chapter_sorting/selection_sort/","title":"11.2 \u00a0 \u9009\u62e9\u6392\u5e8f","text":"\u300c\u9009\u62e9\u6392\u5e8f selection sort\u300d\u7684\u5de5\u4f5c\u539f\u7406\u975e\u5e38\u7b80\u5355\uff1a\u5f00\u542f\u4e00\u4e2a\u5faa\u73af\uff0c\u6bcf\u8f6e\u4ece\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u6700\u5c0f\u7684\u5143\u7d20\uff0c\u5c06\u5176\u653e\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u672b\u5c3e\u3002
\u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u9009\u62e9\u6392\u5e8f\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u56fe 11-2 \u6240\u793a\u3002
- \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u672a\u6392\u5e8f\uff0c\u5373\u672a\u6392\u5e8f\uff08\u7d22\u5f15\uff09\u533a\u95f4\u4e3a \\([0, n-1]\\) \u3002
- \u9009\u53d6\u533a\u95f4 \\([0, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(0\\) \u5904\u7684\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 1 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
- \u9009\u53d6\u533a\u95f4 \\([1, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(1\\) \u5904\u7684\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
- \u4ee5\u6b64\u7c7b\u63a8\u3002\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u9009\u62e9\u4e0e\u4ea4\u6362\u540e\uff0c\u6570\u7ec4\u524d \\(n - 1\\) \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
- \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5927\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 11-2 \u00a0 \u9009\u62e9\u6392\u5e8f\u6b65\u9aa4
\u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u7528 \\(k\\) \u6765\u8bb0\u5f55\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig selection_sort.pydef selection_sort(nums: list[int]):\n \"\"\"\u9009\u62e9\u6392\u5e8f\"\"\"\n n = len(nums)\n # \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i in range(n - 1):\n # \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n k = i\n for j in range(i + 1, n):\n if nums[j] < nums[k]:\n k = j # \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n # \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums[i], nums[k] = nums[k], nums[i]\n
selection_sort.cpp/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(vector<int> &nums) {\n int n = nums.size();\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n swap(nums[i], nums[k]);\n }\n}\n
selection_sort.java/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int[] nums) {\n int n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n int temp = nums[i];\n nums[i] = nums[k];\n nums[k] = temp;\n }\n}\n
selection_sort.cs/* \u9009\u62e9\u6392\u5e8f */\nvoid SelectionSort(int[] nums) {\n int n = nums.Length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n (nums[k], nums[i]) = (nums[i], nums[k]);\n }\n}\n
selection_sort.go/* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums []int) {\n n := len(nums)\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i := 0; i < n-1; i++ {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n k := i\n for j := i + 1; j < n; j++ {\n if nums[j] < nums[k] {\n // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n k = j\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums[i], nums[k] = nums[k], nums[i]\n\n }\n}\n
selection_sort.swift/* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums: inout [Int]) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i in nums.indices.dropLast() {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n var k = i\n for j in nums.indices.dropFirst(i + 1) {\n if nums[j] < nums[k] {\n k = j // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums.swapAt(i, k)\n }\n}\n
selection_sort.js/* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums) {\n let n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (let i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n let k = i;\n for (let j = i + 1; j < n; j++) {\n if (nums[j] < nums[k]) {\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n [nums[i], nums[k]] = [nums[k], nums[i]];\n }\n}\n
selection_sort.ts/* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums: number[]): void {\n let n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (let i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n let k = i;\n for (let j = i + 1; j < n; j++) {\n if (nums[j] < nums[k]) {\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n [nums[i], nums[k]] = [nums[k], nums[i]];\n }\n}\n
selection_sort.dart/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(List<int> nums) {\n int n = nums.length;\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k]) k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n int temp = nums[i];\n nums[i] = nums[k];\n nums[k] = temp;\n }\n}\n
selection_sort.rs/* \u9009\u62e9\u6392\u5e8f */\nfn selection_sort(nums: &mut [i32]) {\n let n = nums.len();\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for i in 0..n-1 {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n let mut k = i;\n for j in i+1..n {\n if nums[j] < nums[k] {\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n nums.swap(i, k);\n }\n}\n
selection_sort.c/* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int nums[], int n) {\n // \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\n for (int i = 0; i < n - 1; i++) {\n // \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\n int k = i;\n for (int j = i + 1; j < n; j++) {\n if (nums[j] < nums[k])\n k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n }\n // \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n int temp = nums[i];\n nums[i] = nums[k];\n nums[k] = temp;\n }\n}\n
selection_sort.zig[class]{}-[func]{selectionSort}\n
"},{"location":"chapter_sorting/selection_sort/#1121","title":"11.2.1 \u00a0 \u7b97\u6cd5\u7279\u6027","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\)\u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5916\u5faa\u73af\u5171 \\(n - 1\\) \u8f6e\uff0c\u7b2c\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u6700\u540e\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(2\\) \uff0c\u5373\u5404\u8f6e\u5916\u5faa\u73af\u5206\u522b\u5305\u542b \\(n\\)\u3001\\(n - 1\\)\u3001\\(\\dots\\)\u3001\\(3\\)\u3001\\(2\\) \u8f6e\u5185\u5faa\u73af\uff0c\u6c42\u548c\u4e3a \\(\\frac{(n - 1)(n + 2)}{2}\\) \u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\)\u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) \u548c \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
- \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5982\u56fe 11-3 \u6240\u793a\uff0c\u5143\u7d20
nums[i] \u6709\u53ef\u80fd\u88ab\u4ea4\u6362\u81f3\u4e0e\u5176\u76f8\u7b49\u7684\u5143\u7d20\u7684\u53f3\u8fb9\uff0c\u5bfc\u81f4\u4e24\u8005\u7684\u76f8\u5bf9\u987a\u5e8f\u53d1\u751f\u6539\u53d8\u3002
\u56fe 11-3 \u00a0 \u9009\u62e9\u6392\u5e8f\u975e\u7a33\u5b9a\u793a\u4f8b
"},{"location":"chapter_sorting/sorting_algorithm/","title":"11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5","text":"\u300c\u6392\u5e8f\u7b97\u6cd5 sorting algorithm\u300d\u7528\u4e8e\u5bf9\u4e00\u7ec4\u6570\u636e\u6309\u7167\u7279\u5b9a\u987a\u5e8f\u8fdb\u884c\u6392\u5217\u3002\u6392\u5e8f\u7b97\u6cd5\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\uff0c\u56e0\u4e3a\u6709\u5e8f\u6570\u636e\u901a\u5e38\u80fd\u591f\u88ab\u66f4\u9ad8\u6548\u5730\u67e5\u627e\u3001\u5206\u6790\u548c\u5904\u7406\u3002
\u5982\u56fe 11-1 \u6240\u793a\uff0c\u6392\u5e8f\u7b97\u6cd5\u4e2d\u7684\u6570\u636e\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u6570\u3001\u6d6e\u70b9\u6570\u3001\u5b57\u7b26\u6216\u5b57\u7b26\u4e32\u7b49\u3002\u6392\u5e8f\u7684\u5224\u65ad\u89c4\u5219\u53ef\u6839\u636e\u9700\u6c42\u8bbe\u5b9a\uff0c\u5982\u6570\u5b57\u5927\u5c0f\u3001\u5b57\u7b26 ASCII \u7801\u987a\u5e8f\u6216\u81ea\u5b9a\u4e49\u89c4\u5219\u3002
\u56fe 11-1 \u00a0 \u6570\u636e\u7c7b\u578b\u548c\u5224\u65ad\u89c4\u5219\u793a\u4f8b
"},{"location":"chapter_sorting/sorting_algorithm/#1111","title":"11.1.1 \u00a0 \u8bc4\u4ef7\u7ef4\u5ea6","text":"\u8fd0\u884c\u6548\u7387\uff1a\u6211\u4eec\u671f\u671b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c3d\u91cf\u4f4e\uff0c\u4e14\u603b\u4f53\u64cd\u4f5c\u6570\u91cf\u8f83\u5c11\uff08\u65f6\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u53d8\u5c0f\uff09\u3002\u5bf9\u4e8e\u5927\u6570\u636e\u91cf\u7684\u60c5\u51b5\uff0c\u8fd0\u884c\u6548\u7387\u663e\u5f97\u5c24\u4e3a\u91cd\u8981\u3002
\u5c31\u5730\u6027\uff1a\u987e\u540d\u601d\u4e49\uff0c\u300c\u539f\u5730\u6392\u5e8f\u300d\u901a\u8fc7\u5728\u539f\u6570\u7ec4\u4e0a\u76f4\u63a5\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\uff0c\u65e0\u987b\u501f\u52a9\u989d\u5916\u7684\u8f85\u52a9\u6570\u7ec4\uff0c\u4ece\u800c\u8282\u7701\u5185\u5b58\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u539f\u5730\u6392\u5e8f\u7684\u6570\u636e\u642c\u8fd0\u64cd\u4f5c\u8f83\u5c11\uff0c\u8fd0\u884c\u901f\u5ea6\u4e5f\u66f4\u5feb\u3002
\u7a33\u5b9a\u6027\uff1a\u300c\u7a33\u5b9a\u6392\u5e8f\u300d\u5728\u5b8c\u6210\u6392\u5e8f\u540e\uff0c\u76f8\u7b49\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u76f8\u5bf9\u987a\u5e8f\u4e0d\u53d1\u751f\u6539\u53d8\u3002
\u7a33\u5b9a\u6392\u5e8f\u662f\u591a\u7ea7\u6392\u5e8f\u573a\u666f\u7684\u5fc5\u8981\u6761\u4ef6\u3002\u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u5b58\u50a8\u5b66\u751f\u4fe1\u606f\u7684\u8868\u683c\uff0c\u7b2c 1 \u5217\u548c\u7b2c 2 \u5217\u5206\u522b\u662f\u59d3\u540d\u548c\u5e74\u9f84\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u300c\u975e\u7a33\u5b9a\u6392\u5e8f\u300d\u53ef\u80fd\u5bfc\u81f4\u8f93\u5165\u6570\u636e\u7684\u6709\u5e8f\u6027\u4e27\u5931\uff1a
# \u8f93\u5165\u6570\u636e\u662f\u6309\u7167\u59d3\u540d\u6392\u5e8f\u597d\u7684\n# (name, age)\n ('A', 19)\n ('B', 18)\n ('C', 21)\n ('D', 19)\n ('E', 23)\n\n# \u5047\u8bbe\u4f7f\u7528\u975e\u7a33\u5b9a\u6392\u5e8f\u7b97\u6cd5\u6309\u5e74\u9f84\u6392\u5e8f\u5217\u8868\uff0c\n# \u7ed3\u679c\u4e2d ('D', 19) \u548c ('A', 19) \u7684\u76f8\u5bf9\u4f4d\u7f6e\u6539\u53d8\uff0c\n# \u8f93\u5165\u6570\u636e\u6309\u59d3\u540d\u6392\u5e8f\u7684\u6027\u8d28\u4e22\u5931\n ('B', 18)\n ('D', 19)\n ('A', 19)\n ('C', 21)\n ('E', 23)\n
\u81ea\u9002\u5e94\u6027\uff1a\u300c\u81ea\u9002\u5e94\u6392\u5e8f\u300d\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u53d7\u8f93\u5165\u6570\u636e\u7684\u5f71\u54cd\uff0c\u5373\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u3001\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5e76\u4e0d\u5b8c\u5168\u76f8\u7b49\u3002
\u81ea\u9002\u5e94\u6027\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u6765\u8bc4\u4f30\u3002\u5982\u679c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u5dee\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8bf4\u660e\u6392\u5e8f\u7b97\u6cd5\u5728\u67d0\u4e9b\u6570\u636e\u4e0b\u6027\u80fd\u53ef\u80fd\u52a3\u5316\uff0c\u56e0\u6b64\u88ab\u89c6\u4e3a\u8d1f\u9762\u5c5e\u6027\uff1b\u800c\u5982\u679c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u5219\u88ab\u89c6\u4e3a\u6b63\u9762\u5c5e\u6027\u3002
\u662f\u5426\u57fa\u4e8e\u6bd4\u8f83\uff1a\u300c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u300d\u4f9d\u8d56\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff08\\(<\\)\u3001\\(=\\)\u3001\\(>\\)\uff09\u6765\u5224\u65ad\u5143\u7d20\u7684\u76f8\u5bf9\u987a\u5e8f\uff0c\u4ece\u800c\u6392\u5e8f\u6574\u4e2a\u6570\u7ec4\uff0c\u7406\u8bba\u6700\u4f18\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u800c\u300c\u975e\u6bd4\u8f83\u6392\u5e8f\u300d\u4e0d\u4f7f\u7528\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(n)\\) \uff0c\u4f46\u5176\u901a\u7528\u6027\u76f8\u5bf9\u8f83\u5dee\u3002
"},{"location":"chapter_sorting/sorting_algorithm/#1112","title":"11.1.2 \u00a0 \u7406\u60f3\u6392\u5e8f\u7b97\u6cd5","text":"\u8fd0\u884c\u5feb\u3001\u539f\u5730\u3001\u7a33\u5b9a\u3001\u6b63\u5411\u81ea\u9002\u5e94\u3001\u901a\u7528\u6027\u597d\u3002\u663e\u7136\uff0c\u8fc4\u4eca\u4e3a\u6b62\u5c1a\u672a\u53d1\u73b0\u517c\u5177\u4ee5\u4e0a\u6240\u6709\u7279\u6027\u7684\u6392\u5e8f\u7b97\u6cd5\u3002\u56e0\u6b64\uff0c\u5728\u9009\u62e9\u6392\u5e8f\u7b97\u6cd5\u65f6\uff0c\u9700\u8981\u6839\u636e\u5177\u4f53\u7684\u6570\u636e\u7279\u70b9\u548c\u95ee\u9898\u9700\u6c42\u6765\u51b3\u5b9a\u3002
\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u5171\u540c\u5b66\u4e60\u5404\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5e76\u57fa\u4e8e\u4e0a\u8ff0\u8bc4\u4ef7\u7ef4\u5ea6\u5bf9\u5404\u4e2a\u6392\u5e8f\u7b97\u6cd5\u7684\u4f18\u7f3a\u70b9\u8fdb\u884c\u5206\u6790\u3002
"},{"location":"chapter_sorting/summary/","title":"11.11 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_sorting/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u5192\u6ce1\u6392\u5e8f\u901a\u8fc7\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u901a\u8fc7\u6dfb\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d\u6765\u5b9e\u73b0\u63d0\u524d\u8fd4\u56de\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(n)\\) \u3002
- \u63d2\u5165\u6392\u5e8f\u6bcf\u8f6e\u5c06\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u5143\u7d20\u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u6b63\u786e\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002\u867d\u7136\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u7531\u4e8e\u5355\u5143\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u56e0\u6b64\u5728\u5c0f\u6570\u636e\u91cf\u7684\u6392\u5e8f\u4efb\u52a1\u4e2d\u975e\u5e38\u53d7\u6b22\u8fce\u3002
- \u5feb\u901f\u6392\u5e8f\u57fa\u4e8e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u54e8\u5175\u5212\u5206\u4e2d\uff0c\u6709\u53ef\u80fd\u6bcf\u6b21\u90fd\u9009\u53d6\u5230\u6700\u5dee\u7684\u57fa\u51c6\u6570\uff0c\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u3002\u5f15\u5165\u4e2d\u4f4d\u6570\u57fa\u51c6\u6570\u6216\u968f\u673a\u57fa\u51c6\u6570\u53ef\u4ee5\u964d\u4f4e\u8fd9\u79cd\u52a3\u5316\u7684\u6982\u7387\u3002\u5c3e\u9012\u5f52\u65b9\u6cd5\u53ef\u4ee5\u6709\u6548\u5730\u51cf\u5c11\u9012\u5f52\u6df1\u5ea6\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(\\log n)\\) \u3002
- \u5f52\u5e76\u6392\u5e8f\u5305\u62ec\u5212\u5206\u548c\u5408\u5e76\u4e24\u4e2a\u9636\u6bb5\uff0c\u5178\u578b\u5730\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\u3002\u5728\u5f52\u5e76\u6392\u5e8f\u4e2d\uff0c\u6392\u5e8f\u6570\u7ec4\u9700\u8981\u521b\u5efa\u8f85\u52a9\u6570\u7ec4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1b\u7136\u800c\u6392\u5e8f\u94fe\u8868\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \u3002
- \u6876\u6392\u5e8f\u5305\u542b\u4e09\u4e2a\u6b65\u9aa4\uff1a\u6570\u636e\u5206\u6876\u3001\u6876\u5185\u6392\u5e8f\u548c\u5408\u5e76\u7ed3\u679c\u3002\u5b83\u540c\u6837\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u9002\u7528\u4e8e\u6570\u636e\u4f53\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u3002\u6876\u6392\u5e8f\u7684\u5173\u952e\u5728\u4e8e\u5bf9\u6570\u636e\u8fdb\u884c\u5e73\u5747\u5206\u914d\u3002
- \u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5b83\u901a\u8fc7\u7edf\u8ba1\u6570\u636e\u51fa\u73b0\u7684\u6b21\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u6709\u9650\u7684\u60c5\u51b5\uff0c\u5e76\u4e14\u8981\u6c42\u6570\u636e\u80fd\u591f\u8f6c\u6362\u4e3a\u6b63\u6574\u6570\u3002
- \u57fa\u6570\u6392\u5e8f\u901a\u8fc7\u9010\u4f4d\u6392\u5e8f\u6765\u5b9e\u73b0\u6570\u636e\u6392\u5e8f\uff0c\u8981\u6c42\u6570\u636e\u80fd\u591f\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u6570\u5b57\u3002
- \u603b\u7684\u6765\u8bf4\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5177\u6709\u9ad8\u6548\u7387\u3001\u7a33\u5b9a\u3001\u539f\u5730\u4ee5\u53ca\u6b63\u5411\u81ea\u9002\u5e94\u6027\u7b49\u4f18\u70b9\u3002\u7136\u800c\uff0c\u6b63\u5982\u5176\u4ed6\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e00\u6837\uff0c\u6ca1\u6709\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\u80fd\u591f\u540c\u65f6\u6ee1\u8db3\u6240\u6709\u8fd9\u4e9b\u6761\u4ef6\u3002\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u6839\u636e\u6570\u636e\u7684\u7279\u6027\u6765\u9009\u62e9\u5408\u9002\u7684\u6392\u5e8f\u7b97\u6cd5\u3002
- \u56fe 11-19 \u5bf9\u6bd4\u4e86\u4e3b\u6d41\u6392\u5e8f\u7b97\u6cd5\u7684\u6548\u7387\u3001\u7a33\u5b9a\u6027\u3001\u5c31\u5730\u6027\u548c\u81ea\u9002\u5e94\u6027\u7b49\u3002
\u56fe 11-19 \u00a0 \u6392\u5e8f\u7b97\u6cd5\u5bf9\u6bd4
"},{"location":"chapter_sorting/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6392\u5e8f\u7b97\u6cd5\u7a33\u5b9a\u6027\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u662f\u5fc5\u9700\u7684\uff1f
\u5728\u73b0\u5b9e\u4e2d\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u57fa\u4e8e\u5bf9\u8c61\u7684\u67d0\u4e2a\u5c5e\u6027\u8fdb\u884c\u6392\u5e8f\u3002\u4f8b\u5982\uff0c\u5b66\u751f\u6709\u59d3\u540d\u548c\u8eab\u9ad8\u4e24\u4e2a\u5c5e\u6027\uff0c\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u4e00\u4e2a\u591a\u7ea7\u6392\u5e8f\uff1a\u5148\u6309\u7167\u59d3\u540d\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u5230 (A, 180) (B, 185) (C, 170) (D, 170) \uff1b\u518d\u5bf9\u8eab\u9ad8\u8fdb\u884c\u6392\u5e8f\u3002\u7531\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e0d\u7a33\u5b9a\uff0c\u56e0\u6b64\u53ef\u80fd\u5f97\u5230 (D, 170) (C, 170) (A, 180) (B, 185) \u3002
\u53ef\u4ee5\u53d1\u73b0\uff0c\u5b66\u751f D \u548c C \u7684\u4f4d\u7f6e\u53d1\u751f\u4e86\u4ea4\u6362\uff0c\u59d3\u540d\u7684\u6709\u5e8f\u6027\u88ab\u7834\u574f\u4e86\uff0c\u800c\u8fd9\u662f\u6211\u4eec\u4e0d\u5e0c\u671b\u770b\u5230\u7684\u3002
\u54e8\u5175\u5212\u5206\u4e2d\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u4e0e\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u7684\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\u5417\uff1f
\u4e0d\u884c\uff0c\u5f53\u6211\u4eec\u4ee5\u6700\u5de6\u7aef\u5143\u7d20\u4e3a\u57fa\u51c6\u6570\u65f6\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u518d\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002\u8fd9\u4e2a\u7ed3\u8bba\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u6211\u4eec\u6765\u5256\u6790\u4e00\u4e0b\u539f\u56e0\u3002
\u54e8\u5175\u5212\u5206 partition() \u7684\u6700\u540e\u4e00\u6b65\u662f\u4ea4\u6362 nums[left] \u548c nums[i] \u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u57fa\u51c6\u6570\u5de6\u8fb9\u7684\u5143\u7d20\u90fd <= \u57fa\u51c6\u6570\uff0c\u8fd9\u5c31\u8981\u6c42\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u524d nums[left] >= nums[i] \u5fc5\u987b\u6210\u7acb\u3002\u5047\u8bbe\u6211\u4eec\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\uff0c\u90a3\u4e48\u5982\u679c\u627e\u4e0d\u5230\u6bd4\u57fa\u51c6\u6570\u66f4\u5927\u7684\u5143\u7d20\uff0c\u5219\u4f1a\u5728 i == j \u65f6\u8df3\u51fa\u5faa\u73af\uff0c\u6b64\u65f6\u53ef\u80fd nums[j] == nums[i] > nums[left]\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u6b64\u65f6\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u64cd\u4f5c\u4f1a\u628a\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u66f4\u5927\u7684\u5143\u7d20\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\uff0c\u5bfc\u81f4\u54e8\u5175\u5212\u5206\u5931\u8d25\u3002
\u4e3e\u4e2a\u4f8b\u5b50\uff0c\u7ed9\u5b9a\u6570\u7ec4 [0, 0, 0, 0, 1] \uff0c\u5982\u679c\u5148\u201c\u4ece\u5de6\u5411\u53f3\u67e5\u627e\u201d\uff0c\u54e8\u5175\u5212\u5206\u540e\u6570\u7ec4\u4e3a [1, 0, 0, 0, 0] \uff0c\u8fd9\u4e2a\u7ed3\u679c\u662f\u4e0d\u6b63\u786e\u7684\u3002
\u518d\u6df1\u5165\u601d\u8003\u4e00\u4e0b\uff0c\u5982\u679c\u6211\u4eec\u9009\u62e9 nums[right] \u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u6b63\u597d\u53cd\u8fc7\u6765\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002
\u5173\u4e8e\u5c3e\u9012\u5f52\u4f18\u5316\uff0c\u4e3a\u4ec0\u4e48\u9009\u77ed\u7684\u6570\u7ec4\u80fd\u4fdd\u8bc1\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff1f
\u9012\u5f52\u6df1\u5ea6\u5c31\u662f\u5f53\u524d\u672a\u8fd4\u56de\u7684\u9012\u5f52\u65b9\u6cd5\u7684\u6570\u91cf\u3002\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u6211\u4eec\u5c06\u539f\u6570\u7ec4\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\u3002\u5728\u5c3e\u9012\u5f52\u4f18\u5316\u540e\uff0c\u5411\u4e0b\u9012\u5f52\u7684\u5b50\u6570\u7ec4\u957f\u5ea6\u6700\u5927\u4e3a\u539f\u6570\u7ec4\u957f\u5ea6\u7684\u4e00\u534a\u3002\u5047\u8bbe\u6700\u5dee\u60c5\u51b5\uff0c\u4e00\u76f4\u4e3a\u4e00\u534a\u957f\u5ea6\uff0c\u90a3\u4e48\u6700\u7ec8\u7684\u9012\u5f52\u6df1\u5ea6\u5c31\u662f \\(\\log n\\) \u3002
\u56de\u987e\u539f\u59cb\u7684\u5feb\u901f\u6392\u5e8f\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u4f1a\u8fde\u7eed\u5730\u9012\u5f52\u957f\u5ea6\u8f83\u5927\u7684\u6570\u7ec4\uff0c\u6700\u5dee\u60c5\u51b5\u4e0b\u4e3a \\(n\\)\u3001\\(n - 1\\)\u3001\\(\\dots\\)\u3001\\(2\\)\u3001\\(1\\) \uff0c\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \u3002\u5c3e\u9012\u5f52\u4f18\u5316\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u51fa\u73b0\u3002
\u5f53\u6570\u7ec4\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u76f8\u7b49\u65f6\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(n^2)\\) \u5417\uff1f\u8be5\u5982\u4f55\u5904\u7406\u8fd9\u79cd\u9000\u5316\u60c5\u51b5\uff1f
\u662f\u7684\u3002\u5bf9\u4e8e\u8fd9\u79cd\u60c5\u51b5\uff0c\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u54e8\u5175\u5212\u5206\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\uff1a\u5c0f\u4e8e\u3001\u7b49\u4e8e\u3001\u5927\u4e8e\u57fa\u51c6\u6570\u3002\u4ec5\u5411\u4e0b\u9012\u5f52\u5c0f\u4e8e\u548c\u5927\u4e8e\u7684\u4e24\u90e8\u5206\u3002\u5728\u8be5\u65b9\u6cd5\u4e0b\uff0c\u8f93\u5165\u5143\u7d20\u5168\u90e8\u76f8\u7b49\u7684\u6570\u7ec4\uff0c\u4ec5\u4e00\u8f6e\u54e8\u5175\u5212\u5206\u5373\u53ef\u5b8c\u6210\u6392\u5e8f\u3002
\u6876\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u4ec0\u4e48\u662f \\(O(n^2)\\) \uff1f
\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u88ab\u5206\u81f3\u540c\u4e00\u4e2a\u6876\u4e2d\u3002\u5982\u679c\u6211\u4eec\u91c7\u7528\u4e00\u4e2a \\(O(n^2)\\) \u7b97\u6cd5\u6765\u6392\u5e8f\u8fd9\u4e9b\u5143\u7d20\uff0c\u5219\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002
"},{"location":"chapter_stack_and_queue/","title":"\u7b2c 5 \u7ae0 \u00a0 \u6808\u4e0e\u961f\u5217","text":"Abstract
\u6808\u5982\u540c\u53e0\u732b\u732b\uff0c\u800c\u961f\u5217\u5c31\u50cf\u732b\u732b\u6392\u961f\u3002
\u4e24\u8005\u5206\u522b\u4ee3\u8868\u5148\u5165\u540e\u51fa\u548c\u5148\u5165\u5148\u51fa\u7684\u903b\u8f91\u5173\u7cfb\u3002
"},{"location":"chapter_stack_and_queue/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 5.1 \u00a0 \u6808
- 5.2 \u00a0 \u961f\u5217
- 5.3 \u00a0 \u53cc\u5411\u961f\u5217
- 5.4 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_stack_and_queue/deque/","title":"5.3 \u00a0 \u53cc\u5411\u961f\u5217","text":"\u5728\u961f\u5217\u4e2d\uff0c\u6211\u4eec\u4ec5\u80fd\u5220\u9664\u5934\u90e8\u5143\u7d20\u6216\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u3002\u5982\u56fe 5-7 \u6240\u793a\uff0c\u300c\u53cc\u5411\u961f\u5217 double-ended queue\u300d\u63d0\u4f9b\u4e86\u66f4\u9ad8\u7684\u7075\u6d3b\u6027\uff0c\u5141\u8bb8\u5728\u5934\u90e8\u548c\u5c3e\u90e8\u6267\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u6216\u5220\u9664\u64cd\u4f5c\u3002
\u56fe 5-7 \u00a0 \u53cc\u5411\u961f\u5217\u7684\u64cd\u4f5c
"},{"location":"chapter_stack_and_queue/deque/#531","title":"5.3.1 \u00a0 \u53cc\u5411\u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"\u53cc\u5411\u961f\u5217\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u8868 5-3 \u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u79f0\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002
\u8868 5-3 \u00a0 \u53cc\u5411\u961f\u5217\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 pushFirst() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u9996 \\(O(1)\\) pushLast() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) popFirst() \u5220\u9664\u961f\u9996\u5143\u7d20 \\(O(1)\\) popLast() \u5220\u9664\u961f\u5c3e\u5143\u7d20 \\(O(1)\\) peekFirst() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\) peekLast() \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 \\(O(1)\\) \u540c\u6837\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u5df2\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\u7c7b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig deque.pyfrom collections import deque\n\n# \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217\ndeque: deque[int] = deque()\n\n# \u5143\u7d20\u5165\u961f\ndeque.append(2) # \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.appendleft(3) # \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.appendleft(1)\n\n# \u8bbf\u95ee\u5143\u7d20\nfront: int = deque[0] # \u961f\u9996\u5143\u7d20\nrear: int = deque[-1] # \u961f\u5c3e\u5143\u7d20\n\n# \u5143\u7d20\u51fa\u961f\npop_front: int = deque.popleft() # \u961f\u9996\u5143\u7d20\u51fa\u961f\npop_rear: int = deque.pop() # \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n# \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(deque)\n\n# \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(deque) == 0\n
deque.cpp/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\ndeque<int> deque;\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.push_back(5);\ndeque.push_back(4);\ndeque.push_front(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.push_front(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint front = deque.front(); // \u961f\u9996\u5143\u7d20\nint back = deque.back(); // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\ndeque.pop_front(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.pop_back(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = deque.empty();\n
deque.java/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\nDeque<Integer> deque = new LinkedList<>();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.offerLast(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.offerLast(5);\ndeque.offerLast(4);\ndeque.offerFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.offerFirst(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.peekFirst(); // \u961f\u9996\u5143\u7d20\nint peekLast = deque.peekLast(); // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.pollFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.pollLast(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = deque.isEmpty();\n
deque.cs/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 C# \u4e2d\uff0c\u5c06\u94fe\u8868 LinkedList \u770b\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nLinkedList<int> deque = new();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.AddLast(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.AddLast(5);\ndeque.AddLast(4);\ndeque.AddFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.AddFirst(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.First.Value; // \u961f\u9996\u5143\u7d20\nint peekLast = deque.Last.Value; // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\ndeque.RemoveFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.RemoveLast(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.Count;\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.Count == 0;\n
deque_test.go/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u4f7f\u7528\ndeque := list.New()\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.PushBack(2) // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.PushBack(5)\ndeque.PushBack(4)\ndeque.PushFront(3) // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.PushFront(1)\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nfront := deque.Front() // \u961f\u9996\u5143\u7d20\nrear := deque.Back() // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\ndeque.Remove(front) // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.Remove(rear) // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize := deque.Len()\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := deque.Len() == 0\n
deque.swift/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u5411\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nvar deque: [Int] = []\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.append(2) // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.insert(3, at: 0) // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.insert(1, at: 0)\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nlet peekFirst = deque.first! // \u961f\u9996\u5143\u7d20\nlet peekLast = deque.last! // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u4f7f\u7528 Array \u6a21\u62df\u65f6 popFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet popFirst = deque.removeFirst() // \u961f\u9996\u5143\u7d20\u51fa\u961f\nlet popLast = deque.removeLast() // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.count\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = deque.isEmpty\n
deque.js/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque = [];\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront = deque.shift();\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack = deque.pop();\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
deque.ts/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque: number[] = [];\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst: number = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast: number = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront: number = deque.shift() as number;\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack: number = deque.pop() as number;\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size: number = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty: boolean = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
deque.dart/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0cQueue \u88ab\u5b9a\u4e49\u4e3a\u53cc\u5411\u961f\u5217\nQueue<int> deque = Queue<int>();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.addLast(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.addLast(5);\ndeque.addLast(4);\ndeque.addFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.addFirst(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.first; // \u961f\u9996\u5143\u7d20\nint peekLast = deque.last; // \u961f\u5c3e\u5143\u7d20\n\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.removeFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.removeLast(); // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.length;\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.isEmpty;W\n
deque.rs/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\nlet mut deque: VecDeque<u32> = VecDeque::new();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(2); // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.push_back(5);\ndeque.push_back(4);\ndeque.push_front(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.push_front(1);\n\n/* \u8bbf\u95ee\u5143\u7d20 */\nif let Some(front) = deque.front() { // \u961f\u9996\u5143\u7d20\n}\nif let Some(rear) = deque.back() { // \u961f\u5c3e\u5143\u7d20\n}\n\n/* \u5143\u7d20\u51fa\u961f */\nif let Some(pop_front) = deque.pop_front() { // \u961f\u9996\u5143\u7d20\u51fa\u961f\n}\nif let Some(pop_rear) = deque.pop_back() { // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.len();\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = deque.is_empty();\n
deque.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u53cc\u5411\u961f\u5217\n
deque.zig\n
"},{"location":"chapter_stack_and_queue/deque/#532","title":"5.3.2 \u00a0 \u53cc\u5411\u961f\u5217\u5b9e\u73b0 *","text":"\u53cc\u5411\u961f\u5217\u7684\u5b9e\u73b0\u4e0e\u961f\u5217\u7c7b\u4f3c\uff0c\u53ef\u4ee5\u9009\u62e9\u94fe\u8868\u6216\u6570\u7ec4\u4f5c\u4e3a\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
"},{"location":"chapter_stack_and_queue/deque/#1","title":"1. \u00a0 \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u7684\u5b9e\u73b0","text":"\u56de\u987e\u4e0a\u4e00\u8282\u5185\u5bb9\uff0c\u6211\u4eec\u4f7f\u7528\u666e\u901a\u5355\u5411\u94fe\u8868\u6765\u5b9e\u73b0\u961f\u5217\uff0c\u56e0\u4e3a\u5b83\u53ef\u4ee5\u65b9\u4fbf\u5730\u5220\u9664\u5934\u8282\u70b9\uff08\u5bf9\u5e94\u51fa\u961f\u64cd\u4f5c\uff09\u548c\u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0\u65b0\u8282\u70b9\uff08\u5bf9\u5e94\u5165\u961f\u64cd\u4f5c\uff09\u3002
\u5bf9\u4e8e\u53cc\u5411\u961f\u5217\u800c\u8a00\uff0c\u5934\u90e8\u548c\u5c3e\u90e8\u90fd\u53ef\u4ee5\u6267\u884c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u53cc\u5411\u961f\u5217\u9700\u8981\u5b9e\u73b0\u53e6\u4e00\u4e2a\u5bf9\u79f0\u65b9\u5411\u7684\u64cd\u4f5c\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u201c\u53cc\u5411\u94fe\u8868\u201d\u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
\u5982\u56fe 5-8 \u6240\u793a\uff0c\u6211\u4eec\u5c06\u53cc\u5411\u94fe\u8868\u7684\u5934\u8282\u70b9\u548c\u5c3e\u8282\u70b9\u89c6\u4e3a\u53cc\u5411\u961f\u5217\u7684\u961f\u9996\u548c\u961f\u5c3e\uff0c\u540c\u65f6\u5b9e\u73b0\u5728\u4e24\u7aef\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u7684\u529f\u80fd\u3002
LinkedListDequepushLast()pushFirst()popLast()popFirst() \u56fe 5-8 \u00a0 \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linkedlist_deque.pyclass ListNode:\n \"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\"\"\"\n\n def __init__(self, val: int):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self.val: int = val\n self.next: ListNode | None = None # \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n self.prev: ListNode | None = None # \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\nclass LinkedListDeque:\n \"\"\"\u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._front: ListNode | None = None # \u5934\u8282\u70b9 front\n self._rear: ListNode | None = None # \u5c3e\u8282\u70b9 rear\n self._size: int = 0 # \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self.size() == 0\n\n def push(self, num: int, is_front: bool):\n \"\"\"\u5165\u961f\u64cd\u4f5c\"\"\"\n node = ListNode(num)\n # \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if self.is_empty():\n self._front = self._rear = node\n # \u961f\u9996\u5165\u961f\u64cd\u4f5c\n elif is_front:\n # \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n self._front.prev = node\n node.next = self._front\n self._front = node # \u66f4\u65b0\u5934\u8282\u70b9\n # \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else:\n # \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n self._rear.next = node\n node.prev = self._rear\n self._rear = node # \u66f4\u65b0\u5c3e\u8282\u70b9\n self._size += 1 # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n\n def push_first(self, num: int):\n \"\"\"\u961f\u9996\u5165\u961f\"\"\"\n self.push(num, True)\n\n def push_last(self, num: int):\n \"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\n self.push(num, False)\n\n def pop(self, is_front: bool) -> int:\n \"\"\"\u51fa\u961f\u64cd\u4f5c\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n # \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if is_front:\n val: int = self._front.val # \u6682\u5b58\u5934\u8282\u70b9\u503c\n # \u5220\u9664\u5934\u8282\u70b9\n fnext: ListNode | None = self._front.next\n if fnext != None:\n fnext.prev = None\n self._front.next = None\n self._front = fnext # \u66f4\u65b0\u5934\u8282\u70b9\n # \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else:\n val: int = self._rear.val # \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n # \u5220\u9664\u5c3e\u8282\u70b9\n rprev: ListNode | None = self._rear.prev\n if rprev != None:\n rprev.next = None\n self._rear.prev = None\n self._rear = rprev # \u66f4\u65b0\u5c3e\u8282\u70b9\n self._size -= 1 # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val\n\n def pop_first(self) -> int:\n \"\"\"\u961f\u9996\u51fa\u961f\"\"\"\n return self.pop(True)\n\n def pop_last(self) -> int:\n \"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\n return self.pop(False)\n\n def peek_first(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n return self._front.val\n\n def peek_last(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n return self._rear.val\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\n node = self._front\n res = [0] * self.size()\n for i in range(self.size()):\n res[i] = node.val\n node = node.next\n return res\n
linkedlist_deque.cpp/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nstruct DoublyListNode {\n int val; // \u8282\u70b9\u503c\n DoublyListNode *next; // \u540e\u7ee7\u8282\u70b9\u6307\u9488\n DoublyListNode *prev; // \u524d\u9a71\u8282\u70b9\u6307\u9488\n DoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {\n }\n};\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private:\n DoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n LinkedListDeque() : front(nullptr), rear(nullptr) {\n }\n\n /* \u6790\u6784\u65b9\u6cd5 */\n ~LinkedListDeque() {\n // \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\n DoublyListNode *pre, *cur = front;\n while (cur != nullptr) {\n pre = cur;\n cur = cur->next;\n delete pre;\n }\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n void push(int num, bool isFront) {\n DoublyListNode *node = new DoublyListNode(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (isEmpty())\n front = rear = node;\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front->prev = node;\n node->next = front;\n front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear->next = node;\n node->prev = rear;\n rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int num) {\n push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int num) {\n push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n int pop(bool isFront) {\n if (isEmpty())\n throw out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\n int val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = front->val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n DoublyListNode *fNext = front->next;\n if (fNext != nullptr) {\n fNext->prev = nullptr;\n front->next = nullptr;\n delete front;\n }\n front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n } else {\n val = rear->val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n DoublyListNode *rPrev = rear->prev;\n if (rPrev != nullptr) {\n rPrev->next = nullptr;\n rear->prev = nullptr;\n delete rear;\n }\n rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int popFirst() {\n return pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int popLast() {\n return pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peekFirst() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return front->val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int peekLast() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return rear->val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n DoublyListNode *node = front;\n vector<int> res(size());\n for (int i = 0; i < res.size(); i++) {\n res[i] = node->val;\n node = node->next;\n }\n return res;\n }\n};\n
linkedlist_deque.java/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n ListNode prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\n ListNode(int val) {\n this.val = val;\n prev = next = null;\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n private int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n public LinkedListDeque() {\n front = rear = null;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n private void push(int num, boolean isFront) {\n ListNode node = new ListNode(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (isEmpty())\n front = rear = node;\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front.prev = node;\n node.next = front;\n front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear.next = node;\n node.prev = rear;\n rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void pushFirst(int num) {\n push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void pushLast(int num) {\n push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n private int pop(boolean isFront) {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n int val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = front.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode fNext = front.next;\n if (fNext != null) {\n fNext.prev = null;\n front.next = null;\n }\n front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n } else {\n val = rear.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n ListNode rPrev = rear.prev;\n if (rPrev != null) {\n rPrev.next = null;\n rear.prev = null;\n }\n rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int popFirst() {\n return pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int popLast() {\n return pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peekFirst() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return front.val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int peekLast() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return rear.val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int[] toArray() {\n ListNode node = front;\n int[] res = new int[size()];\n for (int i = 0; i < res.length; i++) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_deque.cs/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode(int val) {\n public int val = val; // \u8282\u70b9\u503c\n public ListNode? next = null; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n public ListNode? prev = null; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n ListNode? front, rear; // \u5934\u8282\u70b9 front, \u5c3e\u8282\u70b9 rear\n int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n public LinkedListDeque() {\n front = null;\n rear = null;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n void Push(int num, bool isFront) {\n ListNode node = new(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (IsEmpty()) {\n front = node;\n rear = node;\n }\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front!.prev = node;\n node.next = front;\n front = node; // \u66f4\u65b0\u5934\u8282\u70b9 \n }\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear!.next = node;\n node.prev = rear;\n rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n\n queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void PushFirst(int num) {\n Push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void PushLast(int num) {\n Push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n int? Pop(bool isFront) {\n if (IsEmpty())\n throw new Exception();\n int? val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = front?.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode? fNext = front?.next;\n if (fNext != null) {\n fNext.prev = null;\n front!.next = null;\n }\n front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n val = rear?.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n ListNode? rPrev = rear?.prev;\n if (rPrev != null) {\n rPrev.next = null;\n rear!.prev = null;\n }\n rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n\n queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int? PopFirst() {\n return Pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int? PopLast() {\n return Pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int? PeekFirst() {\n if (IsEmpty())\n throw new Exception();\n return front?.val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int? PeekLast() {\n if (IsEmpty())\n throw new Exception();\n return rear?.val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int?[] ToArray() {\n ListNode? node = front;\n int?[] res = new int?[Size()];\n for (int i = 0; i < res.Length; i++) {\n res[i] = node?.val;\n node = node?.next;\n }\n\n return res;\n }\n}\n
linkedlist_deque.go/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype linkedListDeque struct {\n // \u4f7f\u7528\u5185\u7f6e\u5305 list\n data *list.List\n}\n\n/* \u521d\u59cb\u5316\u53cc\u7aef\u961f\u5217 */\nfunc newLinkedListDeque() *linkedListDeque {\n return &linkedListDeque{\n data: list.New(),\n }\n}\n\n/* \u961f\u9996\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushFirst(value any) {\n s.data.PushFront(value)\n}\n\n/* \u961f\u5c3e\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushLast(value any) {\n s.data.PushBack(value)\n}\n\n/* \u961f\u9996\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popFirst() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u961f\u5c3e\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popLast() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListDeque) peekFirst() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n return e.Value\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (s *linkedListDeque) peekLast() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n return e.Value\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListDeque) size() int {\n return s.data.Len()\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListDeque) isEmpty() bool {\n return s.data.Len() == 0\n}\n\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListDeque) toList() *list.List {\n return s.data\n}\n
linkedlist_deque.swift/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n var val: Int // \u8282\u70b9\u503c\n var next: ListNode? // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n weak var prev: ListNode? // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\n init(val: Int) {\n self.val = val\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private var front: ListNode? // \u5934\u8282\u70b9 front\n private var rear: ListNode? // \u5c3e\u8282\u70b9 rear\n private var queSize: Int // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n init() {\n queSize = 0\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n queSize\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n private func push(num: Int, isFront: Bool) {\n let node = ListNode(val: num)\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if isEmpty() {\n front = node\n rear = node\n }\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if isFront {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n front?.prev = node\n node.next = front\n front = node // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n rear?.next = node\n node.prev = rear\n rear = node // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize += 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n func pushFirst(num: Int) {\n push(num: num, isFront: true)\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n func pushLast(num: Int) {\n push(num: num, isFront: false)\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n private func pop(isFront: Bool) -> Int {\n if isEmpty() {\n fatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n }\n let val: Int\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if isFront {\n val = front!.val // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n let fNext = front?.next\n if fNext != nil {\n fNext?.prev = nil\n front?.next = nil\n }\n front = fNext // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n val = rear!.val // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n let rPrev = rear?.prev\n if rPrev != nil {\n rPrev?.next = nil\n rear?.prev = nil\n }\n rear = rPrev // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n queSize -= 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val\n }\n\n /* \u961f\u9996\u51fa\u961f */\n func popFirst() -> Int {\n pop(isFront: true)\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n func popLast() -> Int {\n pop(isFront: false)\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peekFirst() -> Int? {\n isEmpty() ? nil : front?.val\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n func peekLast() -> Int? {\n isEmpty() ? nil : rear?.val\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n func toArray() -> [Int] {\n var node = front\n var res = Array(repeating: 0, count: size())\n for i in res.indices {\n res[i] = node!.val\n node = node?.next\n }\n return res\n }\n}\n
linkedlist_deque.js/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n val; // \u8282\u70b9\u503c\n\n constructor(val) {\n this.val = val;\n this.next = null;\n this.prev = null;\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n #front; // \u5934\u8282\u70b9 front\n #rear; // \u5c3e\u8282\u70b9 rear\n #queSize; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n constructor() {\n this.#front = null;\n this.#rear = null;\n this.#queSize = 0;\n }\n\n /* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\n pushLast(val) {\n const node = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.#queSize === 0) {\n this.#front = node;\n this.#rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n this.#rear.next = node;\n node.prev = this.#rear;\n this.#rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n this.#queSize++;\n }\n\n /* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\n pushFirst(val) {\n const node = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.#queSize === 0) {\n this.#front = node;\n this.#rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n this.#front.prev = node;\n node.next = this.#front;\n this.#front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n this.#queSize++;\n }\n\n /* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\n popLast() {\n if (this.#queSize === 0) {\n return null;\n }\n const value = this.#rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n let temp = this.#rear.prev;\n if (temp !== null) {\n temp.next = null;\n this.#rear.prev = null;\n }\n this.#rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\n this.#queSize--;\n return value;\n }\n\n /* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\n popFirst() {\n if (this.#queSize === 0) {\n return null;\n }\n const value = this.#front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n let temp = this.#front.next;\n if (temp !== null) {\n temp.prev = null;\n this.#front.next = null;\n }\n this.#front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\n this.#queSize--;\n return value;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast() {\n return this.#queSize === 0 ? null : this.#rear.val;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst() {\n return this.#queSize === 0 ? null : this.#front.val;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#queSize === 0;\n }\n\n /* \u6253\u5370\u53cc\u5411\u961f\u5217 */\n print() {\n const arr = [];\n let temp = this.#front;\n while (temp !== null) {\n arr.push(temp.val);\n temp = temp.next;\n }\n console.log('[' + arr.join(', ') + ']');\n }\n}\n
linkedlist_deque.ts/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n prev: ListNode; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n next: ListNode; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\n val: number; // \u8282\u70b9\u503c\n\n constructor(val: number) {\n this.val = val;\n this.next = null;\n this.prev = null;\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n private front: ListNode; // \u5934\u8282\u70b9 front\n private rear: ListNode; // \u5c3e\u8282\u70b9 rear\n private queSize: number; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n constructor() {\n this.front = null;\n this.rear = null;\n this.queSize = 0;\n }\n\n /* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\n pushLast(val: number): void {\n const node: ListNode = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.queSize === 0) {\n this.front = node;\n this.rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n this.rear.next = node;\n node.prev = this.rear;\n this.rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n this.queSize++;\n }\n\n /* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\n pushFirst(val: number): void {\n const node: ListNode = new ListNode(val);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (this.queSize === 0) {\n this.front = node;\n this.rear = node;\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n this.front.prev = node;\n node.next = this.front;\n this.front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n this.queSize++;\n }\n\n /* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\n popLast(): number {\n if (this.queSize === 0) {\n return null;\n }\n const value: number = this.rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n let temp: ListNode = this.rear.prev;\n if (temp !== null) {\n temp.next = null;\n this.rear.prev = null;\n }\n this.rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\n this.queSize--;\n return value;\n }\n\n /* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\n popFirst(): number {\n if (this.queSize === 0) {\n return null;\n }\n const value: number = this.front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n let temp: ListNode = this.front.next;\n if (temp !== null) {\n temp.prev = null;\n this.front.next = null;\n }\n this.front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\n this.queSize--;\n return value;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast(): number {\n return this.queSize === 0 ? null : this.rear.val;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst(): number {\n return this.queSize === 0 ? null : this.front.val;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.queSize === 0;\n }\n\n /* \u6253\u5370\u53cc\u5411\u961f\u5217 */\n print(): void {\n const arr: number[] = [];\n let temp: ListNode = this.front;\n while (temp !== null) {\n arr.push(temp.val);\n temp = temp.next;\n }\n console.log('[' + arr.join(', ') + ']');\n }\n}\n
linkedlist_deque.dart/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\n int val; // \u8282\u70b9\u503c\n ListNode? next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\n ListNode? prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\n\n ListNode(this.val, {this.next, this.prev});\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u5bf9\u5217 */\nclass LinkedListDeque {\n late ListNode? _front; // \u5934\u8282\u70b9 _front\n late ListNode? _rear; // \u5c3e\u8282\u70b9 _rear\n int _queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n\n LinkedListDeque() {\n this._front = null;\n this._rear = null;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u957f\u5ea6 */\n int size() {\n return this._queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n void push(int _num, bool isFront) {\n final ListNode node = ListNode(_num);\n if (isEmpty()) {\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 _front \u548c _rear \u90fd\u6307\u5411 node\n _front = _rear = node;\n } else if (isFront) {\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n _front!.prev = node;\n node.next = _front;\n _front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n } else {\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n _rear!.next = node;\n node.prev = _rear;\n _rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n _queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int _num) {\n push(_num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int _num) {\n push(_num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n int? pop(bool isFront) {\n // \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\n if (isEmpty()) {\n return null;\n }\n final int val;\n if (isFront) {\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n val = _front!.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode? fNext = _front!.next;\n if (fNext != null) {\n fNext.prev = null;\n _front!.next = null;\n }\n _front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n } else {\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n val = _rear!.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n ListNode? rPrev = _rear!.prev;\n if (rPrev != null) {\n rPrev.next = null;\n _rear!.prev = null;\n }\n _rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n _queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int? popFirst() {\n return pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int? popLast() {\n return pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int? peekFirst() {\n return _front?.val;\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int? peekLast() {\n return _rear?.val;\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n List<int> toArray() {\n ListNode? node = _front;\n final List<int> res = [];\n for (int i = 0; i < _queSize; i++) {\n res.add(node!.val);\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_deque.rs/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\npub struct ListNode<T> {\n pub val: T, // \u8282\u70b9\u503c\n pub next: Option<Rc<RefCell<ListNode<T>>>>, // \u540e\u7ee7\u8282\u70b9\u6307\u9488\n pub prev: Option<Rc<RefCell<ListNode<T>>>>, // \u524d\u9a71\u8282\u70b9\u6307\u9488\n}\n\nimpl<T> ListNode<T> {\n pub fn new(val: T) -> Rc<RefCell<ListNode<T>>> {\n Rc::new(RefCell::new(ListNode {\n val,\n next: None,\n prev: None,\n }))\n }\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListDeque<T> {\n front: Option<Rc<RefCell<ListNode<T>>>>, // \u5934\u8282\u70b9 front\n rear: Option<Rc<RefCell<ListNode<T>>>>, // \u5c3e\u8282\u70b9 rear \n que_size: usize, // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n}\n\nimpl<T: Copy> LinkedListDeque<T> {\n pub fn new() -> Self {\n Self {\n front: None,\n rear: None,\n que_size: 0, \n }\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n return self.que_size;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n return self.size() == 0;\n }\n\n /* \u5165\u961f\u64cd\u4f5c */\n pub fn push(&mut self, num: T, is_front: bool) {\n let node = ListNode::new(num);\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n if is_front {\n match self.front.take() {\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n None => {\n self.rear = Some(node.clone());\n self.front = Some(node);\n }\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n Some(old_front) => {\n old_front.borrow_mut().prev = Some(node.clone());\n node.borrow_mut().next = Some(old_front);\n self.front = Some(node); // \u66f4\u65b0\u5934\u8282\u70b9\n }\n }\n } \n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n match self.rear.take() {\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n None => {\n self.front = Some(node.clone());\n self.rear = Some(node);\n }\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n Some(old_rear) => {\n old_rear.borrow_mut().next = Some(node.clone());\n node.borrow_mut().prev = Some(old_rear);\n self.rear = Some(node); // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n }\n }\n self.que_size += 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n }\n\n /* \u961f\u9996\u5165\u961f */\n pub fn push_first(&mut self, num: T) {\n self.push(num, true);\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pub fn push_last(&mut self, num: T) {\n self.push(num, false);\n }\n\n /* \u51fa\u961f\u64cd\u4f5c */\n pub fn pop(&mut self, is_front: bool) -> Option<T> {\n // \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de None\n if self.is_empty() { \n return None \n };\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if is_front {\n self.front.take().map(|old_front| {\n match old_front.borrow_mut().next.take() {\n Some(new_front) => {\n new_front.borrow_mut().prev.take();\n self.front = Some(new_front); // \u66f4\u65b0\u5934\u8282\u70b9\n }\n None => {\n self.rear.take();\n }\n }\n self.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n Rc::try_unwrap(old_front).ok().unwrap().into_inner().val\n })\n\n } \n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n self.rear.take().map(|old_rear| {\n match old_rear.borrow_mut().prev.take() {\n Some(new_rear) => {\n new_rear.borrow_mut().next.take();\n self.rear = Some(new_rear); // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n None => {\n self.front.take();\n }\n }\n self.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n Rc::try_unwrap(old_rear).ok().unwrap().into_inner().val\n })\n }\n }\n\n /* \u961f\u9996\u51fa\u961f */\n pub fn pop_first(&mut self) -> Option<T> {\n return self.pop(true);\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n pub fn pop_last(&mut self) -> Option<T> {\n return self.pop(false);\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n pub fn peek_first(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.front.as_ref()\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n pub fn peek_last(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.rear.as_ref()\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\n if let Some(node) = head {\n let mut nums = self.to_array(node.borrow().next.as_ref());\n nums.insert(0, node.borrow().val);\n return nums;\n }\n return Vec::new();\n }\n}\n
linkedlist_deque.c/* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\ntypedef struct DoublyListNode {\n int val; // \u8282\u70b9\u503c\n struct DoublyListNode *next; // \u540e\u7ee7\u8282\u70b9\n struct DoublyListNode *prev; // \u524d\u9a71\u8282\u70b9\n} DoublyListNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nDoublyListNode *newDoublyListNode(int num) {\n DoublyListNode *new = (DoublyListNode *)malloc(sizeof(DoublyListNode));\n new->val = num;\n new->next = NULL;\n new->prev = NULL;\n return new;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delDoublyListNode(DoublyListNode *node) {\n free(node);\n}\n\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntypedef struct {\n DoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n int queSize; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n} LinkedListDeque;\n\n/* \u6784\u9020\u51fd\u6570 */\nLinkedListDeque *newLinkedListDeque() {\n LinkedListDeque *deque = (LinkedListDeque *)malloc(sizeof(LinkedListDeque));\n deque->front = NULL;\n deque->rear = NULL;\n deque->queSize = 0;\n return deque;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListdeque(LinkedListDeque *deque) {\n // \u91ca\u653e\u6240\u6709\u8282\u70b9\n for (int i = 0; i < deque->queSize && deque->front != NULL; i++) {\n DoublyListNode *tmp = deque->front;\n deque->front = deque->front->next;\n free(tmp);\n }\n // \u91ca\u653e deque \u7ed3\u6784\u4f53\n free(deque);\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(LinkedListDeque *deque) {\n return deque->queSize;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(LinkedListDeque *deque) {\n return (size(deque) == 0);\n}\n\n/* \u5165\u961f */\nvoid push(LinkedListDeque *deque, int num, bool isFront) {\n DoublyListNode *node = newDoublyListNode(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411node\n if (empty(deque)) {\n deque->front = deque->rear = node;\n }\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n else if (isFront) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n deque->front->prev = node;\n node->next = deque->front;\n deque->front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n deque->rear->next = node;\n node->prev = deque->rear;\n deque->rear = node;\n }\n deque->queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(LinkedListDeque *deque, int num) {\n push(deque, num, true);\n}\n\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(LinkedListDeque *deque, int num) {\n push(deque, num, false);\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(LinkedListDeque *deque) {\n assert(size(deque) && deque->front);\n return deque->front->val;\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(LinkedListDeque *deque) {\n assert(size(deque) && deque->rear);\n return deque->rear->val;\n}\n\n/* \u51fa\u961f */\nint pop(LinkedListDeque *deque, bool isFront) {\n if (empty(deque))\n return -1;\n int val;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (isFront) {\n val = peekFirst(deque); // \u6682\u5b58\u5934\u8282\u70b9\u503c\n DoublyListNode *fNext = deque->front->next;\n if (fNext) {\n fNext->prev = NULL;\n deque->front->next = NULL;\n delDoublyListNode(deque->front);\n }\n deque->front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n }\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n else {\n val = peekLast(deque); // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n DoublyListNode *rPrev = deque->rear->prev;\n if (rPrev) {\n rPrev->next = NULL;\n deque->rear->prev = NULL;\n delDoublyListNode(deque->rear);\n }\n deque->rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n deque->queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n}\n\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(LinkedListDeque *deque) {\n return pop(deque, true);\n}\n\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(LinkedListDeque *deque) {\n return pop(deque, false);\n}\n\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListDeque(LinkedListDeque *deque) {\n int *arr = malloc(sizeof(int) * deque->queSize);\n // \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\n int i;\n DoublyListNode *node;\n for (i = 0, node = deque->front; i < deque->queSize; i++) {\n arr[i] = node->val;\n node = node->next;\n }\n printArray(arr, deque->queSize);\n free(arr);\n}\n
linkedlist_deque.zig// \u53cc\u5411\u94fe\u8868\u8282\u70b9\nfn ListNode(comptime T: type) type {\n return struct {\n const Self = @This();\n\n val: T = undefined, // \u8282\u70b9\u503c\n next: ?*Self = null, // \u540e\u7ee7\u8282\u70b9\u6307\u9488\n prev: ?*Self = null, // \u524d\u9a71\u8282\u70b9\u6307\u9488\n\n // Initialize a list node with specific value\n pub fn init(self: *Self, x: i32) void {\n self.val = x;\n self.next = null;\n self.prev = null;\n }\n };\n}\n\n// \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\nfn LinkedListDeque(comptime T: type) type {\n return struct {\n const Self = @This();\n\n front: ?*ListNode(T) = null, // \u5934\u8282\u70b9 front\n rear: ?*ListNode(T) = null, // \u5c3e\u8282\u70b9 rear\n que_size: usize = 0, // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.front = null;\n self.rear = null;\n self.que_size = 0;\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.que_size;\n }\n\n // \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u5165\u961f\u64cd\u4f5c\n pub fn push(self: *Self, num: T, is_front: bool) !void {\n var node = try self.mem_allocator.create(ListNode(T));\n node.init(num);\n // \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front \u548c rear \u90fd\u6307\u5411 node\n if (self.isEmpty()) {\n self.front = node;\n self.rear = node;\n // \u961f\u9996\u5165\u961f\u64cd\u4f5c\n } else if (is_front) {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n self.front.?.prev = node;\n node.next = self.front;\n self.front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n } else {\n // \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n self.rear.?.next = node;\n node.prev = self.rear;\n self.rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n self.que_size += 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n } \n\n // \u961f\u9996\u5165\u961f\n pub fn pushFirst(self: *Self, num: T) !void {\n try self.push(num, true);\n } \n\n // \u961f\u5c3e\u5165\u961f\n pub fn pushLast(self: *Self, num: T) !void {\n try self.push(num, false);\n } \n\n // \u51fa\u961f\u64cd\u4f5c\n pub fn pop(self: *Self, is_front: bool) T {\n if (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n var val: T = undefined;\n // \u961f\u9996\u51fa\u961f\u64cd\u4f5c\n if (is_front) {\n val = self.front.?.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n // \u5220\u9664\u5934\u8282\u70b9\n var fNext = self.front.?.next;\n if (fNext != null) {\n fNext.?.prev = null;\n self.front.?.next = null;\n }\n self.front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n } else {\n val = self.rear.?.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n // \u5220\u9664\u5c3e\u8282\u70b9\n var rPrev = self.rear.?.prev;\n if (rPrev != null) {\n rPrev.?.next = null;\n self.rear.?.prev = null;\n }\n self.rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n }\n self.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n return val;\n } \n\n // \u961f\u9996\u51fa\u961f\n pub fn popFirst(self: *Self) T {\n return self.pop(true);\n } \n\n // \u961f\u5c3e\u51fa\u961f\n pub fn popLast(self: *Self) T {\n return self.pop(false);\n } \n\n // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\n pub fn peekFirst(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return self.front.?.val;\n } \n\n // \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\n pub fn peekLast(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return self.rear.?.val;\n }\n\n // \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\n pub fn toArray(self: *Self) ![]T {\n var node = self.front;\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n while (i < res.len) : (i += 1) {\n res[i] = node.?.val;\n node = node.?.next;\n }\n return res;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/deque/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"\u5982\u56fe 5-9 \u6240\u793a\uff0c\u4e0e\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7c7b\u4f3c\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u4f7f\u7528\u73af\u5f62\u6570\u7ec4\u6765\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u3002
ArrayDequepushLast()pushFirst()popLast()popFirst() \u56fe 5-9 \u00a0 \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u5728\u961f\u5217\u7684\u5b9e\u73b0\u57fa\u7840\u4e0a\uff0c\u4ec5\u9700\u589e\u52a0\u201c\u961f\u9996\u5165\u961f\u201d\u548c\u201c\u961f\u5c3e\u51fa\u961f\u201d\u7684\u65b9\u6cd5\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_deque.pyclass ArrayDeque:\n \"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\n\n def __init__(self, capacity: int):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._nums: list[int] = [0] * capacity\n self._front: int = 0\n self._size: int = 0\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\n return len(self._nums)\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self._size == 0\n\n def index(self, i: int) -> int:\n \"\"\"\u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15\"\"\"\n # \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n # \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n # \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + self.capacity()) % self.capacity()\n\n def push_first(self, num: int):\n \"\"\"\u961f\u9996\u5165\u961f\"\"\"\n if self._size == self.capacity():\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n # \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n # \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n self._front = self.index(self._front - 1)\n # \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n self._nums[self._front] = num\n self._size += 1\n\n def push_last(self, num: int):\n \"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\n if self._size == self.capacity():\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n # \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n rear = self.index(self._front + self._size)\n # \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self._nums[rear] = num\n self._size += 1\n\n def pop_first(self) -> int:\n \"\"\"\u961f\u9996\u51fa\u961f\"\"\"\n num = self.peek_first()\n # \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n self._front = self.index(self._front + 1)\n self._size -= 1\n return num\n\n def pop_last(self) -> int:\n \"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\n num = self.peek_last()\n self._size -= 1\n return num\n\n def peek_first(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n return self._nums[self._front]\n\n def peek_last(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n # \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n last = self.index(self._front + self._size - 1)\n return self._nums[last]\n\n def to_array(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\n # \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n res = []\n for i in range(self._size):\n res.append(self._nums[self.index(self._front + i)])\n return res\n
array_deque.cpp/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private:\n vector<int> nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayDeque(int capacity) {\n nums.resize(capacity);\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n int capacity() {\n return nums.size();\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n int index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + capacity()) % capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int num) {\n if (queSize == capacity()) {\n cout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = index(front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num;\n queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int num) {\n if (queSize == capacity()) {\n cout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = index(front + queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int popFirst() {\n int num = peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = index(front + 1);\n queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int popLast() {\n int num = peekLast();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peekFirst() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n return nums[front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int peekLast() {\n if (isEmpty())\n throw out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = index(front + queSize - 1);\n return nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> res(queSize);\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[index(j)];\n }\n return res;\n }\n};\n
array_deque.java/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private int[] nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public ArrayDeque(int capacity) {\n this.nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n public int capacity() {\n return nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n private int index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + capacity()) % capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void pushFirst(int num) {\n if (queSize == capacity()) {\n System.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = index(front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num;\n queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void pushLast(int num) {\n if (queSize == capacity()) {\n System.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = index(front + queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int popFirst() {\n int num = peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = index(front + 1);\n queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int popLast() {\n int num = peekLast();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peekFirst() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return nums[front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int peekLast() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = index(front + queSize - 1);\n return nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int[] toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[index(j)];\n }\n return res;\n }\n}\n
array_deque.cs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n int[] nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public ArrayDeque(int capacity) {\n nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n int Capacity() {\n return nums.Length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n int Index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + Capacity()) % Capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n public void PushFirst(int num) {\n if (queSize == Capacity()) {\n Console.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = Index(front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num;\n queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n public void PushLast(int num) {\n if (queSize == Capacity()) {\n Console.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = Index(front + queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n public int PopFirst() {\n int num = PeekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = Index(front + 1);\n queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n public int PopLast() {\n int num = PeekLast();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int PeekFirst() {\n if (IsEmpty()) {\n throw new InvalidOperationException();\n }\n return nums[front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n public int PeekLast() {\n if (IsEmpty()) {\n throw new InvalidOperationException();\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = Index(front + queSize - 1);\n return nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[Index(j)];\n }\n return res;\n }\n}\n
array_deque.go/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype arrayDeque struct {\n nums []int // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n queSize int // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n queCapacity int // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayDeque(queCapacity int) *arrayDeque {\n return &arrayDeque{\n nums: make([]int, queCapacity),\n queCapacity: queCapacity,\n front: 0,\n queSize: 0,\n }\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayDeque) size() int {\n return q.queSize\n}\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayDeque) isEmpty() bool {\n return q.queSize == 0\n}\n\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nfunc (q *arrayDeque) index(i int) int {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + q.queCapacity) % q.queCapacity\n}\n\n/* \u961f\u9996\u5165\u961f */\nfunc (q *arrayDeque) pushFirst(num int) {\n if q.queSize == q.queCapacity {\n fmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n q.front = q.index(q.front - 1)\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n q.nums[q.front] = num\n q.queSize++\n}\n\n/* \u961f\u5c3e\u5165\u961f */\nfunc (q *arrayDeque) pushLast(num int) {\n if q.queSize == q.queCapacity {\n fmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n rear := q.index(q.front + q.queSize)\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n q.nums[rear] = num\n q.queSize++\n}\n\n/* \u961f\u9996\u51fa\u961f */\nfunc (q *arrayDeque) popFirst() any {\n num := q.peekFirst()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n q.front = q.index(q.front + 1)\n q.queSize--\n return num\n}\n\n/* \u961f\u5c3e\u51fa\u961f */\nfunc (q *arrayDeque) popLast() any {\n num := q.peekLast()\n q.queSize--\n return num\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayDeque) peekFirst() any {\n if q.isEmpty() {\n return nil\n }\n return q.nums[q.front]\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (q *arrayDeque) peekLast() any {\n if q.isEmpty() {\n return nil\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n last := q.index(q.front + q.queSize - 1)\n return q.nums[last]\n}\n\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayDeque) toSlice() []int {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n res := make([]int, q.queSize)\n for i, j := 0, q.front; i < q.queSize; i++ {\n res[i] = q.nums[q.index(j)]\n j++\n }\n return res\n}\n
array_deque.swift/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private var front: Int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private var queSize: Int // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init(capacity: Int) {\n nums = Array(repeating: 0, count: capacity)\n front = 0\n queSize = 0\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n func capacity() -> Int {\n nums.count\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n queSize\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n private func index(i: Int) -> Int {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n (i + capacity()) % capacity()\n }\n\n /* \u961f\u9996\u5165\u961f */\n func pushFirst(num: Int) {\n if size() == capacity() {\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n front = index(i: front - 1)\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n nums[front] = num\n queSize += 1\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n func pushLast(num: Int) {\n if size() == capacity() {\n print(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n let rear = index(i: front + size())\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num\n queSize += 1\n }\n\n /* \u961f\u9996\u51fa\u961f */\n func popFirst() -> Int {\n let num = peekFirst()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n front = index(i: front + 1)\n queSize -= 1\n return num\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n func popLast() -> Int {\n let num = peekLast()\n queSize -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peekFirst() -> Int {\n if isEmpty() {\n fatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n }\n return nums[front]\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n func peekLast() -> Int {\n if isEmpty() {\n fatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n let last = index(i: front + size() - 1)\n return nums[last]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n func toArray() -> [Int] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var res = Array(repeating: 0, count: size())\n for (i, j) in sequence(first: (0, front), next: { $0 < self.size() - 1 ? ($0 + 1, $1 + 1) : nil }) {\n res[i] = nums[index(i: j)]\n }\n return res\n }\n}\n
array_deque.js/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n #nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n #front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n #queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(capacity) {\n this.#nums = new Array(capacity);\n this.#front = 0;\n this.#queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n capacity() {\n return this.#nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#queSize === 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n index(i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + this.capacity()) % this.capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n pushFirst(num) {\n if (this.#queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n this.#front = this.index(this.#front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n this.#nums[this.#front] = num;\n this.#queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pushLast(num) {\n if (this.#queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n const rear = this.index(this.#front + this.#queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.#nums[rear] = num;\n this.#queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n popFirst() {\n const num = this.peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n this.#front = this.index(this.#front + 1);\n this.#queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n popLast() {\n const num = this.peekLast();\n this.#queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst() {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n return this.#nums[this.#front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast() {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n const last = this.index(this.#front + this.#queSize - 1);\n return this.#nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const res = [];\n for (let i = 0, j = this.#front; i < this.#queSize; i++, j++) {\n res[i] = this.#nums[this.index(j)];\n }\n return res;\n }\n}\n
array_deque.ts/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n private nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private queSize: number; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(capacity: number) {\n this.nums = new Array(capacity);\n this.front = 0;\n this.queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n capacity(): number {\n return this.nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.queSize === 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n index(i: number): number {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + this.capacity()) % this.capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n pushFirst(num: number): void {\n if (this.queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n this.front = this.index(this.front - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n this.nums[this.front] = num;\n this.queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pushLast(num: number): void {\n if (this.queSize === this.capacity()) {\n console.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n const rear: number = this.index(this.front + this.queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.nums[rear] = num;\n this.queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n popFirst(): number {\n const num: number = this.peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n this.front = this.index(this.front + 1);\n this.queSize--;\n return num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n popLast(): number {\n const num: number = this.peekLast();\n this.queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peekFirst(): number {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n return this.nums[this.front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n peekLast(): number {\n if (this.isEmpty()) throw new Error('The Deque Is Empty.');\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n const last = this.index(this.front + this.queSize - 1);\n return this.nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n toArray(): number[] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const res: number[] = [];\n for (let i = 0, j = this.front; i < this.queSize; i++, j++) {\n res[i] = this.nums[this.index(j)];\n }\n return res;\n }\n}\n
array_deque.dart/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n late List<int> _nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n late int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n late int _queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayDeque(int capacity) {\n this._nums = List.filled(capacity, 0);\n this._front = this._queSize = 0;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n int capacity() {\n return _nums.length;\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return _queSize;\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _queSize == 0;\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n int index(int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return (i + capacity()) % capacity();\n }\n\n /* \u961f\u9996\u5165\u961f */\n void pushFirst(int _num) {\n if (_queSize == capacity()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 _front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n _front = index(_front - 1);\n // \u5c06 _num \u6dfb\u52a0\u81f3\u961f\u9996\n _nums[_front] = _num;\n _queSize++;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n void pushLast(int _num) {\n if (_queSize == capacity()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = index(_front + _queSize);\n // \u5c06 _num \u6dfb\u52a0\u81f3\u961f\u5c3e\n _nums[rear] = _num;\n _queSize++;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n int popFirst() {\n int _num = peekFirst();\n // \u961f\u9996\u6307\u9488\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n _front = index(_front + 1);\n _queSize--;\n return _num;\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n int popLast() {\n int _num = peekLast();\n _queSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peekFirst() {\n if (isEmpty()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n }\n return _nums[_front];\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n int peekLast() {\n if (isEmpty()) {\n throw Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n }\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n int last = index(_front + _queSize - 1);\n return _nums[last];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n List<int> toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n List<int> res = List.filled(_queSize, 0);\n for (int i = 0, j = _front; i < _queSize; i++, j++) {\n res[i] = _nums[index(j)];\n }\n return res;\n }\n}\n
array_deque.rs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct ArrayDeque {\n nums: Vec<i32>, // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front: usize, // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n que_size: usize, // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n}\n\nimpl ArrayDeque {\n /* \u6784\u9020\u65b9\u6cd5 */\n pub fn new(capacity: usize) -> Self {\n Self {\n nums: vec![0; capacity],\n front: 0,\n que_size: 0,\n }\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\n pub fn capacity(&self) -> usize {\n self.nums.len()\n }\n\n /* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n self.que_size\n }\n\n /* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n self.que_size == 0\n }\n\n /* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\n fn index(&self, i: i32) -> usize {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return ((i + self.capacity() as i32) % self.capacity() as i32) as usize;\n }\n\n /* \u961f\u9996\u5165\u961f */\n pub fn push_first(&mut self, num: i32) {\n if self.que_size == self.capacity() {\n println!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n self.front = self.index(self.front as i32 - 1);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n self.nums[self.front] = num;\n self.que_size += 1;\n }\n\n /* \u961f\u5c3e\u5165\u961f */\n pub fn push_last(&mut self, num: i32) {\n if self.que_size == self.capacity() {\n println!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n return\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n let rear = self.index(self.front as i32 + self.que_size as i32);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self.nums[rear] = num;\n self.que_size += 1;\n }\n\n /* \u961f\u9996\u51fa\u961f */\n fn pop_first(&mut self) -> i32 {\n let num = self.peek_first();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n self.front = self.index(self.front as i32 + 1);\n self.que_size -= 1;\n num\n }\n\n /* \u961f\u5c3e\u51fa\u961f */\n fn pop_last(&mut self) -> i32 {\n let num = self.peek_last();\n self.que_size -= 1;\n num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n fn peek_first(&self) -> i32 {\n if self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\n self.nums[self.front]\n }\n\n /* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\n fn peek_last(&self) -> i32 {\n if self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\n // \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\n let last = self.index(self.front as i32 + self.que_size as i32 - 1);\n self.nums[last]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\n fn to_array(&self) -> Vec<i32> {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n let mut res = vec![0; self.que_size];\n let mut j = self.front;\n for i in 0..self.que_size {\n res[i] = self.nums[self.index(j as i32)];\n j += 1;\n }\n res\n }\n}\n
array_deque.c/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntypedef struct {\n int *nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\n int queCapacity; // \u961f\u5217\u5bb9\u91cf\n} ArrayDeque;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayDeque *newArrayDeque(int capacity) {\n ArrayDeque *deque = (ArrayDeque *)malloc(sizeof(ArrayDeque));\n // \u521d\u59cb\u5316\u6570\u7ec4\n deque->queCapacity = capacity;\n deque->nums = (int *)malloc(sizeof(int) * deque->queCapacity);\n deque->front = deque->queSize = 0;\n return deque;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayDeque(ArrayDeque *deque) {\n free(deque->nums);\n free(deque);\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(ArrayDeque *deque) {\n return deque->queCapacity;\n}\n\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size(ArrayDeque *deque) {\n return deque->queSize;\n}\n\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(ArrayDeque *deque) {\n return deque->queSize == 0;\n}\n\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint dequeIndex(ArrayDeque *deque, int i) {\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u56de\u5230\u5934\u90e8\n // \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n return ((i + capacity(deque)) % capacity(deque));\n}\n\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(ArrayDeque *deque, int num) {\n if (deque->queSize == capacity(deque)) {\n printf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\n return;\n }\n // \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u56de\u5230\u5c3e\u90e8\n deque->front = dequeIndex(deque, deque->front - 1);\n // \u5c06 num \u6dfb\u52a0\u5230\u961f\u9996\n deque->nums[deque->front] = num;\n deque->queSize++;\n}\n\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(ArrayDeque *deque, int num) {\n if (deque->queSize == capacity(deque)) {\n printf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n int rear = dequeIndex(deque, deque->front + deque->queSize);\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n deque->nums[rear] = num;\n deque->queSize++;\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(ArrayDeque *deque) {\n // \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\n assert(empty(deque) == 0);\n return deque->nums[deque->front];\n}\n\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(ArrayDeque *deque) {\n // \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\n assert(empty(deque) == 0);\n int last = dequeIndex(deque, deque->front + deque->queSize - 1);\n return deque->nums[last];\n}\n\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(ArrayDeque *deque) {\n int num = peekFirst(deque);\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\n deque->front = dequeIndex(deque, deque->front + 1);\n deque->queSize--;\n return num;\n}\n\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(ArrayDeque *deque) {\n int num = peekLast(deque);\n deque->queSize--;\n return num;\n}\n
array_deque.zig[class]{ArrayDeque}-[func]{}\n
"},{"location":"chapter_stack_and_queue/deque/#533","title":"5.3.3 \u00a0 \u53cc\u5411\u961f\u5217\u5e94\u7528","text":"\u53cc\u5411\u961f\u5217\u517c\u5177\u6808\u4e0e\u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u5b83\u53ef\u4ee5\u5b9e\u73b0\u8fd9\u4e24\u8005\u7684\u6240\u6709\u5e94\u7528\u573a\u666f\uff0c\u540c\u65f6\u63d0\u4f9b\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\u3002
\u6211\u4eec\u77e5\u9053\uff0c\u8f6f\u4ef6\u7684\u201c\u64a4\u9500\u201d\u529f\u80fd\u901a\u5e38\u4f7f\u7528\u6808\u6765\u5b9e\u73b0\uff1a\u7cfb\u7edf\u5c06\u6bcf\u6b21\u66f4\u6539\u64cd\u4f5c push \u5230\u6808\u4e2d\uff0c\u7136\u540e\u901a\u8fc7 pop \u5b9e\u73b0\u64a4\u9500\u3002\u7136\u800c\uff0c\u8003\u8651\u5230\u7cfb\u7edf\u8d44\u6e90\u7684\u9650\u5236\uff0c\u8f6f\u4ef6\u901a\u5e38\u4f1a\u9650\u5236\u64a4\u9500\u7684\u6b65\u6570\uff08\u4f8b\u5982\u4ec5\u5141\u8bb8\u4fdd\u5b58 \\(50\\) \u6b65\uff09\u3002\u5f53\u6808\u7684\u957f\u5ea6\u8d85\u8fc7 \\(50\\) \u65f6\uff0c\u8f6f\u4ef6\u9700\u8981\u5728\u6808\u5e95\uff08\u961f\u9996\uff09\u6267\u884c\u5220\u9664\u64cd\u4f5c\u3002\u4f46\u6808\u65e0\u6cd5\u5b9e\u73b0\u8be5\u529f\u80fd\uff0c\u6b64\u65f6\u5c31\u9700\u8981\u4f7f\u7528\u53cc\u5411\u961f\u5217\u6765\u66ff\u4ee3\u6808\u3002\u8bf7\u6ce8\u610f\uff0c\u201c\u64a4\u9500\u201d\u7684\u6838\u5fc3\u903b\u8f91\u4ecd\u7136\u9075\u5faa\u6808\u7684\u5148\u5165\u540e\u51fa\u539f\u5219\uff0c\u53ea\u662f\u53cc\u5411\u961f\u5217\u80fd\u591f\u66f4\u52a0\u7075\u6d3b\u5730\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u903b\u8f91\u3002
"},{"location":"chapter_stack_and_queue/queue/","title":"5.2 \u00a0 \u961f\u5217","text":"\u300c\u961f\u5217 queue\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\u89c4\u5219\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u987e\u540d\u601d\u4e49\uff0c\u961f\u5217\u6a21\u62df\u4e86\u6392\u961f\u73b0\u8c61\uff0c\u5373\u65b0\u6765\u7684\u4eba\u4e0d\u65ad\u52a0\u5165\u961f\u5217\u5c3e\u90e8\uff0c\u800c\u4f4d\u4e8e\u961f\u5217\u5934\u90e8\u7684\u4eba\u9010\u4e2a\u79bb\u5f00\u3002
\u5982\u56fe 5-4 \u6240\u793a\uff0c\u6211\u4eec\u5c06\u961f\u5217\u5934\u90e8\u79f0\u4e3a\u201c\u961f\u9996\u201d\uff0c\u5c3e\u90e8\u79f0\u4e3a\u201c\u961f\u5c3e\u201d\uff0c\u5c06\u628a\u5143\u7d20\u52a0\u5165\u961f\u5c3e\u7684\u64cd\u4f5c\u79f0\u4e3a\u201c\u5165\u961f\u201d\uff0c\u5220\u9664\u961f\u9996\u5143\u7d20\u7684\u64cd\u4f5c\u79f0\u4e3a\u201c\u51fa\u961f\u201d\u3002
\u56fe 5-4 \u00a0 \u961f\u5217\u7684\u5148\u5165\u5148\u51fa\u89c4\u5219
"},{"location":"chapter_stack_and_queue/queue/#521","title":"5.2.1 \u00a0 \u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"\u961f\u5217\u7684\u5e38\u89c1\u64cd\u4f5c\u5982\u8868 5-2 \u6240\u793a\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u65b9\u6cd5\u540d\u79f0\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c\u3002\u6211\u4eec\u5728\u6b64\u91c7\u7528\u4e0e\u6808\u76f8\u540c\u7684\u65b9\u6cd5\u547d\u540d\u3002
\u8868 5-2 \u00a0 \u961f\u5217\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u961f\uff0c\u5373\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) pop() \u961f\u9996\u5143\u7d20\u51fa\u961f \\(O(1)\\) peek() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\) \u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u73b0\u6210\u7684\u961f\u5217\u7c7b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig queue.pyfrom collections import deque\n\n# \u521d\u59cb\u5316\u961f\u5217\n# \u5728 Python \u4e2d\uff0c\u6211\u4eec\u4e00\u822c\u5c06\u53cc\u5411\u961f\u5217\u7c7b deque \u5f53\u4f5c\u961f\u5217\u4f7f\u7528\n# \u867d\u7136 queue.Queue() \u662f\u7eaf\u6b63\u7684\u961f\u5217\u7c7b\uff0c\u4f46\u4e0d\u592a\u597d\u7528\uff0c\u56e0\u6b64\u4e0d\u63a8\u8350\nque: deque[int] = deque()\n\n# \u5143\u7d20\u5165\u961f\nque.append(1)\nque.append(3)\nque.append(2)\nque.append(5)\nque.append(4)\n\n# \u8bbf\u95ee\u961f\u9996\u5143\u7d20\nfront: int = que[0];\n\n# \u5143\u7d20\u51fa\u961f\npop: int = que.popleft()\n\n# \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(que)\n\n# \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(que) == 0\n
queue.cpp/* \u521d\u59cb\u5316\u961f\u5217 */\nqueue<int> queue;\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint front = queue.front();\n\n/* \u5143\u7d20\u51fa\u961f */\nqueue.pop();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = queue.empty();\n
queue.java/* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<Integer> queue = new LinkedList<>();\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.offer(1);\nqueue.offer(3);\nqueue.offer(2);\nqueue.offer(5);\nqueue.offer(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.peek();\n\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.poll();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = queue.isEmpty();\n
queue.cs/* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<int> queue = new();\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.Enqueue(1);\nqueue.Enqueue(3);\nqueue.Enqueue(2);\nqueue.Enqueue(5);\nqueue.Enqueue(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.Peek();\n\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.Dequeue();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.Count;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.Count == 0;\n
queue_test.go/* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u961f\u5217\u6765\u4f7f\u7528\nqueue := list.New()\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.PushBack(1)\nqueue.PushBack(3)\nqueue.PushBack(2)\nqueue.PushBack(5)\nqueue.PushBack(4)\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek := queue.Front()\n\n/* \u5143\u7d20\u51fa\u961f */\npop := queue.Front()\nqueue.Remove(pop)\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nsize := queue.Len()\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := queue.Len() == 0\n
queue.swift/* \u521d\u59cb\u5316\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nvar queue: [Int] = []\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.append(1)\nqueue.append(3)\nqueue.append(2)\nqueue.append(5)\nqueue.append(4)\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nlet peek = queue.first!\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u7531\u4e8e\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 removeFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet pool = queue.removeFirst()\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = queue.count\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = queue.isEmpty\n
queue.js/* \u521d\u59cb\u5316\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nconst queue = [];\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
queue.ts/* \u521d\u59cb\u5316\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528 \nconst queue: number[] = [];\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
queue.dart/* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0c\u961f\u5217\u7c7b Qeque \u662f\u53cc\u5411\u961f\u5217\uff0c\u4e5f\u53ef\u4f5c\u4e3a\u961f\u5217\u4f7f\u7528\nQueue<int> queue = Queue();\n\n/* \u5143\u7d20\u5165\u961f */\nqueue.add(1);\nqueue.add(3);\nqueue.add(2);\nqueue.add(5);\nqueue.add(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.first;\n\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.removeFirst();\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.length;\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.isEmpty;\n
queue.rs/* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Rust \u4e2d\u4f7f\u7528\u53cc\u5411\u961f\u5217\u4f5c\u4e3a\u666e\u901a\u961f\u5217\u6765\u4f7f\u7528\nlet mut deque: VecDeque<u32> = VecDeque::new();\n\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(1);\ndeque.push_back(3);\ndeque.push_back(2);\ndeque.push_back(5);\ndeque.push_back(4);\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nif let Some(front) = deque.front() {\n}\n\n/* \u5143\u7d20\u51fa\u961f */\nif let Some(pop) = deque.pop_front() {\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.len();\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = deque.is_empty();\n
queue.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u961f\u5217\n
queue.zig\n
"},{"location":"chapter_stack_and_queue/queue/#522","title":"5.2.2 \u00a0 \u961f\u5217\u5b9e\u73b0","text":"\u4e3a\u4e86\u5b9e\u73b0\u961f\u5217\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u4ee5\u5728\u4e00\u7aef\u6dfb\u52a0\u5143\u7d20\uff0c\u5e76\u5728\u53e6\u4e00\u7aef\u5220\u9664\u5143\u7d20\uff0c\u94fe\u8868\u548c\u6570\u7ec4\u90fd\u7b26\u5408\u8981\u6c42\u3002
"},{"location":"chapter_stack_and_queue/queue/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"\u5982\u56fe 5-5 \u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u201c\u5934\u8282\u70b9\u201d\u548c\u201c\u5c3e\u8282\u70b9\u201d\u5206\u522b\u89c6\u4e3a\u201c\u961f\u9996\u201d\u548c\u201c\u961f\u5c3e\u201d\uff0c\u89c4\u5b9a\u961f\u5c3e\u4ec5\u53ef\u6dfb\u52a0\u8282\u70b9\uff0c\u961f\u9996\u4ec5\u53ef\u5220\u9664\u8282\u70b9\u3002
LinkedListQueuepush()pop() \u56fe 5-5 \u00a0 \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u4ee5\u4e0b\u662f\u7528\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linkedlist_queue.pyclass LinkedListQueue:\n \"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._front: ListNode | None = None # \u5934\u8282\u70b9 front\n self._rear: ListNode | None = None # \u5c3e\u8282\u70b9 rear\n self._size: int = 0\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return not self._front\n\n def push(self, num: int):\n \"\"\"\u5165\u961f\"\"\"\n # \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n node = ListNode(num)\n # \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if self._front is None:\n self._front = node\n self._rear = node\n # \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else:\n self._rear.next = node\n self._rear = node\n self._size += 1\n\n def pop(self) -> int:\n \"\"\"\u51fa\u961f\"\"\"\n num = self.peek()\n # \u5220\u9664\u5934\u8282\u70b9\n self._front = self._front.next\n self._size -= 1\n return num\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u961f\u5217\u4e3a\u7a7a\")\n return self._front.val\n\n def to_list(self) -> list[int]:\n \"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n queue = []\n temp = self._front\n while temp:\n queue.append(temp.val)\n temp = temp.next\n return queue\n
linkedlist_queue.cpp/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private:\n ListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n int queSize;\n\n public:\n LinkedListQueue() {\n front = nullptr;\n rear = nullptr;\n queSize = 0;\n }\n\n ~LinkedListQueue() {\n // \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\n freeMemoryLinkedList(front);\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return queSize == 0;\n }\n\n /* \u5165\u961f */\n void push(int num) {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n ListNode *node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (front == nullptr) {\n front = node;\n rear = node;\n }\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else {\n rear->next = node;\n rear = node;\n }\n queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n int num = peek();\n // \u5220\u9664\u5934\u8282\u70b9\n ListNode *tmp = front;\n front = front->next;\n // \u91ca\u653e\u5185\u5b58\n delete tmp;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (size() == 0)\n throw out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\n return front->val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\n vector<int> toVector() {\n ListNode *node = front;\n vector<int> res(size());\n for (int i = 0; i < res.size(); i++) {\n res[i] = node->val;\n node = node->next;\n }\n return res;\n }\n};\n
linkedlist_queue.java/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\n private int queSize = 0;\n\n public LinkedListQueue() {\n front = null;\n rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f */\n public void push(int num) {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n ListNode node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (front == null) {\n front = node;\n rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n rear.next = node;\n rear = node;\n }\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int pop() {\n int num = peek();\n // \u5220\u9664\u5934\u8282\u70b9\n front = front.next;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return front.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] toArray() {\n ListNode node = front;\n int[] res = new int[size()];\n for (int i = 0; i < res.length; i++) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_queue.cs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n ListNode? front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear \n int queSize = 0;\n\n public LinkedListQueue() {\n front = null;\n rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u961f */\n public void Push(int num) {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n ListNode node = new(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (front == null) {\n front = node;\n rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else if (rear != null) {\n rear.next = node;\n rear = node;\n }\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int Pop() {\n int num = Peek();\n // \u5220\u9664\u5934\u8282\u70b9\n front = front?.next;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return front!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] ToArray() {\n if (front == null)\n return [];\n\n ListNode? node = front;\n int[] res = new int[Size()];\n for (int i = 0; i < res.Length; i++) {\n res[i] = node!.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_queue.go/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\ntype linkedListQueue struct {\n // \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u961f\u5217\n data *list.List\n}\n\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newLinkedListQueue() *linkedListQueue {\n return &linkedListQueue{\n data: list.New(),\n }\n}\n\n/* \u5165\u961f */\nfunc (s *linkedListQueue) push(value any) {\n s.data.PushBack(value)\n}\n\n/* \u51fa\u961f */\nfunc (s *linkedListQueue) pop() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListQueue) peek() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Front()\n return e.Value\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListQueue) size() int {\n return s.data.Len()\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListQueue) isEmpty() bool {\n return s.data.Len() == 0\n}\n\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListQueue) toList() *list.List {\n return s.data\n}\n
linkedlist_queue.swift/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private var front: ListNode? // \u5934\u8282\u70b9\n private var rear: ListNode? // \u5c3e\u8282\u70b9\n private var _size = 0\n\n init() {}\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n _size\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u5165\u961f */\n func push(num: Int) {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n let node = ListNode(x: num)\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if front == nil {\n front = node\n rear = node\n }\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else {\n rear?.next = node\n rear = node\n }\n _size += 1\n }\n\n /* \u51fa\u961f */\n @discardableResult\n func pop() -> Int {\n let num = peek()\n // \u5220\u9664\u5934\u8282\u70b9\n front = front?.next\n _size -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n }\n return front!.val\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n func toArray() -> [Int] {\n var node = front\n var res = Array(repeating: 0, count: size())\n for i in res.indices {\n res[i] = node!.val\n node = node?.next\n }\n return res\n }\n}\n
linkedlist_queue.js/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n #front; // \u5934\u8282\u70b9 #front\n #rear; // \u5c3e\u8282\u70b9 #rear\n #queSize = 0;\n\n constructor() {\n this.#front = null;\n this.#rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.size === 0;\n }\n\n /* \u5165\u961f */\n push(num) {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n const node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (!this.#front) {\n this.#front = node;\n this.#rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n this.#rear.next = node;\n this.#rear = node;\n }\n this.#queSize++;\n }\n\n /* \u51fa\u961f */\n pop() {\n const num = this.peek();\n // \u5220\u9664\u5934\u8282\u70b9\n this.#front = this.#front.next;\n this.#queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek() {\n if (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.#front.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray() {\n let node = this.#front;\n const res = new Array(this.size);\n for (let i = 0; i < res.length; i++) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_queue.ts/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n private front: ListNode | null; // \u5934\u8282\u70b9 front\n private rear: ListNode | null; // \u5c3e\u8282\u70b9 rear\n private queSize: number = 0;\n\n constructor() {\n this.front = null;\n this.rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.size === 0;\n }\n\n /* \u5165\u961f */\n push(num: number): void {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n const node = new ListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (!this.front) {\n this.front = node;\n this.rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n this.rear!.next = node;\n this.rear = node;\n }\n this.queSize++;\n }\n\n /* \u51fa\u961f */\n pop(): number {\n const num = this.peek();\n if (!this.front) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n // \u5220\u9664\u5934\u8282\u70b9\n this.front = this.front.next;\n this.queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek(): number {\n if (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.front!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray(): number[] {\n let node = this.front;\n const res = new Array<number>(this.size);\n for (let i = 0; i < res.length; i++) {\n res[i] = node!.val;\n node = node!.next;\n }\n return res;\n }\n}\n
linkedlist_queue.dart/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n ListNode? _front; // \u5934\u8282\u70b9 _front\n ListNode? _rear; // \u5c3e\u8282\u70b9 _rear\n int _queSize = 0; // \u961f\u5217\u957f\u5ea6\n\n LinkedListQueue() {\n _front = null;\n _rear = null;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return _queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _queSize == 0;\n }\n\n /* \u5165\u961f */\n void push(int _num) {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 _num\n final node = ListNode(_num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (_front == null) {\n _front = node;\n _rear = node;\n } else {\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n _rear!.next = node;\n _rear = node;\n }\n _queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n final int _num = peek();\n // \u5220\u9664\u5934\u8282\u70b9\n _front = _front!.next;\n _queSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (_queSize == 0) {\n throw Exception('\u961f\u5217\u4e3a\u7a7a');\n }\n return _front!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n List<int> toArray() {\n ListNode? node = _front;\n final List<int> queue = [];\n while (node != null) {\n queue.add(node.val);\n node = node.next;\n }\n return queue;\n }\n}\n
linkedlist_queue.rs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListQueue<T> {\n front: Option<Rc<RefCell<ListNode<T>>>>, // \u5934\u8282\u70b9 front\n rear: Option<Rc<RefCell<ListNode<T>>>>, // \u5c3e\u8282\u70b9 rear \n que_size: usize, // \u961f\u5217\u7684\u957f\u5ea6\n}\n\nimpl<T: Copy> LinkedListQueue<T> {\n pub fn new() -> Self {\n Self {\n front: None,\n rear: None,\n que_size: 0, \n }\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n return self.que_size;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n return self.size() == 0;\n }\n\n /* \u5165\u961f */\n pub fn push(&mut self, num: T) {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n let new_rear = ListNode::new(num);\n match self.rear.take() {\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n Some(old_rear) => {\n old_rear.borrow_mut().next = Some(new_rear.clone());\n self.rear = Some(new_rear);\n }\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n None => {\n self.front = Some(new_rear.clone());\n self.rear = Some(new_rear);\n }\n }\n self.que_size += 1;\n }\n\n /* \u51fa\u961f */\n pub fn pop(&mut self) -> Option<T> {\n self.front.take().map(|old_front| {\n match old_front.borrow_mut().next.take() {\n Some(new_front) => {\n self.front = Some(new_front);\n }\n None => {\n self.rear.take();\n }\n }\n self.que_size -= 1;\n Rc::try_unwrap(old_front).ok().unwrap().into_inner().val\n })\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n pub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.front.as_ref()\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\n if let Some(node) = head {\n let mut nums = self.to_array(node.borrow().next.as_ref());\n nums.insert(0, node.borrow().val);\n return nums;\n }\n return Vec::new();\n }\n}\n
linkedlist_queue.c/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\ntypedef struct {\n ListNode *front, *rear;\n int queSize;\n} LinkedListQueue;\n\n/* \u6784\u9020\u51fd\u6570 */\nLinkedListQueue *newLinkedListQueue() {\n LinkedListQueue *queue = (LinkedListQueue *)malloc(sizeof(LinkedListQueue));\n queue->front = NULL;\n queue->rear = NULL;\n queue->queSize = 0;\n return queue;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListQueue(LinkedListQueue *queue) {\n // \u91ca\u653e\u6240\u6709\u8282\u70b9\n for (int i = 0; i < queue->queSize && queue->front != NULL; i++) {\n ListNode *tmp = queue->front;\n queue->front = queue->front->next;\n free(tmp);\n }\n // \u91ca\u653e queue \u7ed3\u6784\u4f53\n free(queue);\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(LinkedListQueue *queue) {\n return queue->queSize;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(LinkedListQueue *queue) {\n return (size(queue) == 0);\n}\n\n/* \u5165\u961f */\nvoid push(LinkedListQueue *queue, int num) {\n // \u5c3e\u8282\u70b9\u5904\u6dfb\u52a0 node\n ListNode *node = newListNode(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (queue->front == NULL) {\n queue->front = node;\n queue->rear = node;\n }\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n else {\n queue->rear->next = node;\n queue->rear = node;\n }\n queue->queSize++;\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(LinkedListQueue *queue) {\n assert(size(queue) && queue->front);\n return queue->front->val;\n}\n\n/* \u51fa\u961f */\nint pop(LinkedListQueue *queue) {\n int num = peek(queue);\n ListNode *tmp = queue->front;\n queue->front = queue->front->next;\n free(tmp);\n queue->queSize--;\n return num;\n}\n\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListQueue(LinkedListQueue *queue) {\n int *arr = malloc(sizeof(int) * queue->queSize);\n // \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\n int i;\n ListNode *node;\n for (i = 0, node = queue->front; i < queue->queSize; i++) {\n arr[i] = node->val;\n node = node->next;\n }\n printArray(arr, queue->queSize);\n free(arr);\n}\n
linkedlist_queue.zig// \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\nfn LinkedListQueue(comptime T: type) type {\n return struct {\n const Self = @This();\n\n front: ?*inc.ListNode(T) = null, // \u5934\u8282\u70b9 front\n rear: ?*inc.ListNode(T) = null, // \u5c3e\u8282\u70b9 rear\n que_size: usize = 0, // \u961f\u5217\u7684\u957f\u5ea6\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.front = null;\n self.rear = null;\n self.que_size = 0;\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.que_size;\n }\n\n // \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.size() == 0) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\n return self.front.?.val;\n } \n\n // \u5165\u961f\n pub fn push(self: *Self, num: T) !void {\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n var node = try self.mem_allocator.create(inc.ListNode(T));\n node.init(num);\n // \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\n if (self.front == null) {\n self.front = node;\n self.rear = node;\n // \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n } else {\n self.rear.?.next = node;\n self.rear = node;\n }\n self.que_size += 1;\n } \n\n // \u51fa\u961f\n pub fn pop(self: *Self) T {\n var num = self.peek();\n // \u5220\u9664\u5934\u8282\u70b9\n self.front = self.front.?.next;\n self.que_size -= 1;\n return num;\n } \n\n // \u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n var node = self.front;\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n while (i < res.len) : (i += 1) {\n res[i] = node.?.val;\n node = node.?.next;\n }\n return res;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/queue/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"\u5728\u6570\u7ec4\u4e2d\u5220\u9664\u9996\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4f1a\u5bfc\u81f4\u51fa\u961f\u64cd\u4f5c\u6548\u7387\u8f83\u4f4e\u3002\u7136\u800c\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u4ee5\u4e0b\u5de7\u5999\u65b9\u6cd5\u6765\u907f\u514d\u8fd9\u4e2a\u95ee\u9898\u3002
\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf front \u6307\u5411\u961f\u9996\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u5e76\u7ef4\u62a4\u4e00\u4e2a\u53d8\u91cf size \u7528\u4e8e\u8bb0\u5f55\u961f\u5217\u957f\u5ea6\u3002\u5b9a\u4e49 rear = front + size \uff0c\u8fd9\u4e2a\u516c\u5f0f\u8ba1\u7b97\u51fa\u7684 rear \u6307\u5411\u961f\u5c3e\u5143\u7d20\u4e4b\u540e\u7684\u4e0b\u4e00\u4e2a\u4f4d\u7f6e\u3002
\u57fa\u4e8e\u6b64\u8bbe\u8ba1\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u5143\u7d20\u7684\u6709\u6548\u533a\u95f4\u4e3a [front, rear - 1]\uff0c\u5404\u79cd\u64cd\u4f5c\u7684\u5b9e\u73b0\u65b9\u6cd5\u5982\u56fe 5-6 \u6240\u793a\u3002
- \u5165\u961f\u64cd\u4f5c\uff1a\u5c06\u8f93\u5165\u5143\u7d20\u8d4b\u503c\u7ed9
rear \u7d22\u5f15\u5904\uff0c\u5e76\u5c06 size \u589e\u52a0 1 \u3002 - \u51fa\u961f\u64cd\u4f5c\uff1a\u53ea\u9700\u5c06
front \u589e\u52a0 1 \uff0c\u5e76\u5c06 size \u51cf\u5c11 1 \u3002
\u53ef\u4ee5\u770b\u5230\uff0c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u90fd\u53ea\u9700\u8fdb\u884c\u4e00\u6b21\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002
ArrayQueuepush()pop() \u56fe 5-6 \u00a0 \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c
\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u4e00\u4e2a\u95ee\u9898\uff1a\u5728\u4e0d\u65ad\u8fdb\u884c\u5165\u961f\u548c\u51fa\u961f\u7684\u8fc7\u7a0b\u4e2d\uff0cfront \u548c rear \u90fd\u5728\u5411\u53f3\u79fb\u52a8\uff0c\u5f53\u5b83\u4eec\u5230\u8fbe\u6570\u7ec4\u5c3e\u90e8\u65f6\u5c31\u65e0\u6cd5\u7ee7\u7eed\u79fb\u52a8\u4e86\u3002\u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u89c6\u4e3a\u9996\u5c3e\u76f8\u63a5\u7684\u201c\u73af\u5f62\u6570\u7ec4\u201d\u3002
\u5bf9\u4e8e\u73af\u5f62\u6570\u7ec4\uff0c\u6211\u4eec\u9700\u8981\u8ba9 front \u6216 rear \u5728\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u76f4\u63a5\u56de\u5230\u6570\u7ec4\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002\u8fd9\u79cd\u5468\u671f\u6027\u89c4\u5f8b\u53ef\u4ee5\u901a\u8fc7\u201c\u53d6\u4f59\u64cd\u4f5c\u201d\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_queue.pyclass ArrayQueue:\n \"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\n\n def __init__(self, size: int):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._nums: list[int] = [0] * size # \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n self._front: int = 0 # \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n self._size: int = 0 # \u961f\u5217\u957f\u5ea6\n\n def capacity(self) -> int:\n \"\"\"\u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\n return len(self._nums)\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self._size == 0\n\n def push(self, num: int):\n \"\"\"\u5165\u961f\"\"\"\n if self._size == self.capacity():\n raise IndexError(\"\u961f\u5217\u5df2\u6ee1\")\n # \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n # \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n rear: int = (self._front + self._size) % self.capacity()\n # \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self._nums[rear] = num\n self._size += 1\n\n def pop(self) -> int:\n \"\"\"\u51fa\u961f\"\"\"\n num: int = self.peek()\n # \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n self._front = (self._front + 1) % self.capacity()\n self._size -= 1\n return num\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u961f\u5217\u4e3a\u7a7a\")\n return self._nums[self._front]\n\n def to_list(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n res = [0] * self.size()\n j: int = self._front\n for i in range(self.size()):\n res[i] = self._nums[(j % self.capacity())]\n j += 1\n return res\n
array_queue.cpp/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private:\n int *nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u961f\u5217\u957f\u5ea6\n int queCapacity; // \u961f\u5217\u5bb9\u91cf\n\n public:\n ArrayQueue(int capacity) {\n // \u521d\u59cb\u5316\u6570\u7ec4\n nums = new int[capacity];\n queCapacity = capacity;\n front = queSize = 0;\n }\n\n ~ArrayQueue() {\n delete[] nums;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n int capacity() {\n return queCapacity;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u961f */\n void push(int num) {\n if (queSize == queCapacity) {\n cout << \"\u961f\u5217\u5df2\u6ee1\" << endl;\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (front + queSize) % queCapacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n int num = peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % queCapacity;\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (isEmpty())\n throw out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\n return nums[front];\n }\n\n /* \u5c06\u6570\u7ec4\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\n vector<int> toVector() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n vector<int> arr(queSize);\n for (int i = 0, j = front; i < queSize; i++, j++) {\n arr[i] = nums[j % queCapacity];\n }\n return arr;\n }\n};\n
array_queue.java/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private int[] nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private int queSize; // \u961f\u5217\u957f\u5ea6\n\n public ArrayQueue(int capacity) {\n nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n public int capacity() {\n return nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return queSize == 0;\n }\n\n /* \u5165\u961f */\n public void push(int num) {\n if (queSize == capacity()) {\n System.out.println(\"\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (front + queSize) % capacity();\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int pop() {\n int num = peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % capacity();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return nums[front];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n public int[] toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[j % capacity()];\n }\n return res;\n }\n}\n
array_queue.cs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n int[] nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u961f\u5217\u957f\u5ea6\n\n public ArrayQueue(int capacity) {\n nums = new int[capacity];\n front = queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n int Capacity() {\n return nums.Length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n public int Size() {\n return queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return queSize == 0;\n }\n\n /* \u5165\u961f */\n public void Push(int num) {\n if (queSize == Capacity()) {\n Console.WriteLine(\"\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (front + queSize) % Capacity();\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num;\n queSize++;\n }\n\n /* \u51fa\u961f */\n public int Pop() {\n int num = Peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % Capacity();\n queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return nums[front];\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n public int[] ToArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n int[] res = new int[queSize];\n for (int i = 0, j = front; i < queSize; i++, j++) {\n res[i] = nums[j % this.Capacity()];\n }\n return res;\n }\n}\n
array_queue.go/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\ntype arrayQueue struct {\n nums []int // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n queSize int // \u961f\u5217\u957f\u5ea6\n queCapacity int // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayQueue(queCapacity int) *arrayQueue {\n return &arrayQueue{\n nums: make([]int, queCapacity),\n queCapacity: queCapacity,\n front: 0,\n queSize: 0,\n }\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayQueue) size() int {\n return q.queSize\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayQueue) isEmpty() bool {\n return q.queSize == 0\n}\n\n/* \u5165\u961f */\nfunc (q *arrayQueue) push(num int) {\n // \u5f53 rear == queCapacity \u8868\u793a\u961f\u5217\u5df2\u6ee1\n if q.queSize == q.queCapacity {\n return\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n rear := (q.front + q.queSize) % q.queCapacity\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n q.nums[rear] = num\n q.queSize++\n}\n\n/* \u51fa\u961f */\nfunc (q *arrayQueue) pop() any {\n num := q.peek()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n q.front = (q.front + 1) % q.queCapacity\n q.queSize--\n return num\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayQueue) peek() any {\n if q.isEmpty() {\n return nil\n }\n return q.nums[q.front]\n}\n\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayQueue) toSlice() []int {\n rear := (q.front + q.queSize)\n if rear >= q.queCapacity {\n rear %= q.queCapacity\n return append(q.nums[q.front:], q.nums[:rear]...)\n }\n return q.nums[q.front:rear]\n}\n
array_queue.swift/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private var front = 0 // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private var queSize = 0 // \u961f\u5217\u957f\u5ea6\n\n init(capacity: Int) {\n // \u521d\u59cb\u5316\u6570\u7ec4\n nums = Array(repeating: 0, count: capacity)\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n func capacity() -> Int {\n nums.count\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n func size() -> Int {\n queSize\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n queSize == 0\n }\n\n /* \u5165\u961f */\n func push(num: Int) {\n if size() == capacity() {\n print(\"\u961f\u5217\u5df2\u6ee1\")\n return\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n let rear = (front + queSize) % capacity()\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n nums[rear] = num\n queSize += 1\n }\n\n /* \u51fa\u961f */\n @discardableResult\n func pop() -> Int {\n let num = peek()\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n front = (front + 1) % capacity()\n queSize -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n }\n return nums[front]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n func toArray() -> [Int] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var res = Array(repeating: 0, count: queSize)\n for (i, j) in sequence(first: (0, front), next: { $0 < self.queSize - 1 ? ($0 + 1, $1 + 1) : nil }) {\n res[i] = nums[j % capacity()]\n }\n return res\n }\n}\n
array_queue.js/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n #nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n #front = 0; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n #queSize = 0; // \u961f\u5217\u957f\u5ea6\n\n constructor(capacity) {\n this.#nums = new Array(capacity);\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n get capacity() {\n return this.#nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size() {\n return this.#queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#queSize === 0;\n }\n\n /* \u5165\u961f */\n push(num) {\n if (this.size === this.capacity) {\n console.log('\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n const rear = (this.#front + this.size) % this.capacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.#nums[rear] = num;\n this.#queSize++;\n }\n\n /* \u51fa\u961f */\n pop() {\n const num = this.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n this.#front = (this.#front + 1) % this.capacity;\n this.#queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek() {\n if (this.isEmpty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.#nums[this.#front];\n }\n\n /* \u8fd4\u56de Array */\n toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(this.size);\n for (let i = 0, j = this.#front; i < this.size; i++, j++) {\n arr[i] = this.#nums[j % this.capacity];\n }\n return arr;\n }\n}\n
array_queue.ts/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n private nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n private front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n private queSize: number; // \u961f\u5217\u957f\u5ea6\n\n constructor(capacity: number) {\n this.nums = new Array(capacity);\n this.front = this.queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n get capacity(): number {\n return this.nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n get size(): number {\n return this.queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.queSize === 0;\n }\n\n /* \u5165\u961f */\n push(num: number): void {\n if (this.size === this.capacity) {\n console.log('\u961f\u5217\u5df2\u6ee1');\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n const rear = (this.front + this.queSize) % this.capacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n this.nums[rear] = num;\n this.queSize++;\n }\n\n /* \u51fa\u961f */\n pop(): number {\n const num = this.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n this.front = (this.front + 1) % this.capacity;\n this.queSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n peek(): number {\n if (this.isEmpty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n return this.nums[this.front];\n }\n\n /* \u8fd4\u56de Array */\n toArray(): number[] {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n const arr = new Array(this.size);\n for (let i = 0, j = this.front; i < this.size; i++, j++) {\n arr[i] = this.nums[j % this.capacity];\n }\n return arr;\n }\n}\n
array_queue.dart/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n late List<int> _nums; // \u7528\u4e8e\u50a8\u5b58\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n late int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n late int _queSize; // \u961f\u5217\u957f\u5ea6\n\n ArrayQueue(int capacity) {\n _nums = List.filled(capacity, 0);\n _front = _queSize = 0;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n int capaCity() {\n return _nums.length;\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n int size() {\n return _queSize;\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _queSize == 0;\n }\n\n /* \u5165\u961f */\n void push(int _num) {\n if (_queSize == capaCity()) {\n throw Exception(\"\u961f\u5217\u5df2\u6ee1\");\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (_front + _queSize) % capaCity();\n // \u5c06 _num \u6dfb\u52a0\u81f3\u961f\u5c3e\n _nums[rear] = _num;\n _queSize++;\n }\n\n /* \u51fa\u961f */\n int pop() {\n int _num = peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n _front = (_front + 1) % capaCity();\n _queSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n int peek() {\n if (isEmpty()) {\n throw Exception(\"\u961f\u5217\u4e3a\u7a7a\");\n }\n return _nums[_front];\n }\n\n /* \u8fd4\u56de Array */\n List<int> toArray() {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n final List<int> res = List.filled(_queSize, 0);\n for (int i = 0, j = _front; i < _queSize; i++, j++) {\n res[i] = _nums[j % capaCity()];\n }\n return res;\n }\n}\n
array_queue.rs/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct ArrayQueue {\n nums: Vec<i32>, // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n front: i32, // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n que_size: i32, // \u961f\u5217\u957f\u5ea6\n que_capacity: i32, // \u961f\u5217\u5bb9\u91cf\n}\n\nimpl ArrayQueue {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(capacity: i32) -> ArrayQueue {\n ArrayQueue {\n nums: vec![0; capacity as usize],\n front: 0,\n que_size: 0,\n que_capacity: capacity,\n }\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\n fn capacity(&self) -> i32 {\n self.que_capacity\n }\n\n /* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\n fn size(&self) -> i32 {\n self.que_size\n }\n\n /* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\n fn is_empty(&self) -> bool {\n self.que_size == 0\n }\n\n /* \u5165\u961f */\n fn push(&mut self, num: i32) {\n if self.que_size == self.capacity() {\n println!(\"\u961f\u5217\u5df2\u6ee1\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n let rear = (self.front + self.que_size) % self.que_capacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n self.nums[rear as usize] = num;\n self.que_size += 1;\n }\n\n /* \u51fa\u961f */\n fn pop(&mut self) -> i32 {\n let num = self.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n self.front = (self.front + 1) % self.que_capacity;\n self.que_size -= 1;\n num\n }\n\n /* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\n fn peek(&self) -> i32 {\n if self.is_empty() {\n panic!(\"index out of bounds\");\n }\n self.nums[self.front as usize]\n }\n\n /* \u8fd4\u56de\u6570\u7ec4 */\n fn to_vector(&self) -> Vec<i32> {\n let cap = self.que_capacity;\n let mut j = self.front;\n let mut arr = vec![0; self.que_size as usize];\n for i in 0..self.que_size {\n arr[i as usize] = self.nums[(j % cap) as usize];\n j += 1;\n }\n arr\n }\n}\n
array_queue.c/* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\ntypedef struct {\n int *nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n int queSize; // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\n int queCapacity; // \u961f\u5217\u5bb9\u91cf\n} ArrayQueue;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayQueue *newArrayQueue(int capacity) {\n ArrayQueue *queue = (ArrayQueue *)malloc(sizeof(ArrayQueue));\n // \u521d\u59cb\u5316\u6570\u7ec4\n queue->queCapacity = capacity;\n queue->nums = (int *)malloc(sizeof(int) * queue->queCapacity);\n queue->front = queue->queSize = 0;\n return queue;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayQueue(ArrayQueue *queue) {\n free(queue->nums);\n free(queue);\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(ArrayQueue *queue) {\n return queue->queCapacity;\n}\n\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(ArrayQueue *queue) {\n return queue->queSize;\n}\n\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(ArrayQueue *queue) {\n return queue->queSize == 0;\n}\n\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(ArrayQueue *queue) {\n assert(size(queue) != 0);\n return queue->nums[queue->front];\n}\n\n/* \u5165\u961f */\nvoid push(ArrayQueue *queue, int num) {\n if (size(queue) == capacity(queue)) {\n printf(\"\u961f\u5217\u5df2\u6ee1\\r\\n\");\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n int rear = (queue->front + queue->queSize) % queue->queCapacity;\n // \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n queue->nums[rear] = num;\n queue->queSize++;\n}\n\n/* \u51fa\u961f */\nint pop(ArrayQueue *queue) {\n int num = peek(queue);\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n queue->front = (queue->front + 1) % queue->queCapacity;\n queue->queSize--;\n return num;\n}\n
array_queue.zig// \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\nfn ArrayQueue(comptime T: type) type {\n return struct {\n const Self = @This();\n\n nums: []T = undefined, // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4 \n cap: usize = 0, // \u961f\u5217\u5bb9\u91cf\n front: usize = 0, // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n queSize: usize = 0, // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6570\u7ec4\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator, cap: usize) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.cap = cap;\n self.nums = try self.mem_allocator.alloc(T, self.cap);\n @memset(self.nums, @as(T, 0));\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\n pub fn capacity(self: *Self) usize {\n return self.cap;\n }\n\n // \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.queSize;\n }\n\n // \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.queSize == 0;\n }\n\n // \u5165\u961f\n pub fn push(self: *Self, num: T) !void {\n if (self.size() == self.capacity()) {\n std.debug.print(\"\u961f\u5217\u5df2\u6ee1\\n\", .{});\n return;\n }\n // \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n // \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\n var rear = (self.front + self.queSize) % self.capacity();\n // \u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\n self.nums[rear] = num;\n self.queSize += 1;\n } \n\n // \u51fa\u961f\n pub fn pop(self: *Self) T {\n var num = self.peek();\n // \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\uff0c\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n self.front = (self.front + 1) % self.capacity();\n self.queSize -= 1;\n return num;\n } \n\n // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\n return self.nums[self.front];\n } \n\n // \u8fd4\u56de\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n // \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n var j: usize = self.front;\n while (i < self.size()) : ({ i += 1; j += 1; }) {\n res[i] = self.nums[j % self.capacity()];\n }\n return res;\n }\n };\n}\n
\u4ee5\u4e0a\u5b9e\u73b0\u7684\u961f\u5217\u4ecd\u7136\u5177\u6709\u5c40\u9650\u6027\uff1a\u5176\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u7136\u800c\uff0c\u8fd9\u4e2a\u95ee\u9898\u4e0d\u96be\u89e3\u51b3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u66ff\u6362\u4e3a\u52a8\u6001\u6570\u7ec4\uff0c\u4ece\u800c\u5f15\u5165\u6269\u5bb9\u673a\u5236\u3002\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u5c1d\u8bd5\u81ea\u884c\u5b9e\u73b0\u3002
\u4e24\u79cd\u5b9e\u73b0\u7684\u5bf9\u6bd4\u7ed3\u8bba\u4e0e\u6808\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002
"},{"location":"chapter_stack_and_queue/queue/#523","title":"5.2.3 \u00a0 \u961f\u5217\u5178\u578b\u5e94\u7528","text":" - \u6dd8\u5b9d\u8ba2\u5355\u3002\u8d2d\u7269\u8005\u4e0b\u5355\u540e\uff0c\u8ba2\u5355\u5c06\u52a0\u5165\u961f\u5217\u4e2d\uff0c\u7cfb\u7edf\u968f\u540e\u4f1a\u6839\u636e\u987a\u5e8f\u5904\u7406\u961f\u5217\u4e2d\u7684\u8ba2\u5355\u3002\u5728\u53cc\u5341\u4e00\u671f\u95f4\uff0c\u77ed\u65f6\u95f4\u5185\u4f1a\u4ea7\u751f\u6d77\u91cf\u8ba2\u5355\uff0c\u9ad8\u5e76\u53d1\u6210\u4e3a\u5de5\u7a0b\u5e08\u4eec\u9700\u8981\u91cd\u70b9\u653b\u514b\u7684\u95ee\u9898\u3002
- \u5404\u7c7b\u5f85\u529e\u4e8b\u9879\u3002\u4efb\u4f55\u9700\u8981\u5b9e\u73b0\u201c\u5148\u6765\u540e\u5230\u201d\u529f\u80fd\u7684\u573a\u666f\uff0c\u4f8b\u5982\u6253\u5370\u673a\u7684\u4efb\u52a1\u961f\u5217\u3001\u9910\u5385\u7684\u51fa\u9910\u961f\u5217\u7b49\uff0c\u961f\u5217\u5728\u8fd9\u4e9b\u573a\u666f\u4e2d\u53ef\u4ee5\u6709\u6548\u5730\u7ef4\u62a4\u5904\u7406\u987a\u5e8f\u3002
"},{"location":"chapter_stack_and_queue/stack/","title":"5.1 \u00a0 \u6808","text":"\u300c\u6808 stack\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\u903b\u8f91\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002
\u6211\u4eec\u53ef\u4ee5\u5c06\u6808\u7c7b\u6bd4\u4e3a\u684c\u9762\u4e0a\u7684\u4e00\u645e\u76d8\u5b50\uff0c\u5982\u679c\u60f3\u53d6\u51fa\u5e95\u90e8\u7684\u76d8\u5b50\uff0c\u5219\u9700\u8981\u5148\u5c06\u4e0a\u9762\u7684\u76d8\u5b50\u4f9d\u6b21\u79fb\u8d70\u3002\u6211\u4eec\u5c06\u76d8\u5b50\u66ff\u6362\u4e3a\u5404\u79cd\u7c7b\u578b\u7684\u5143\u7d20\uff08\u5982\u6574\u6570\u3001\u5b57\u7b26\u3001\u5bf9\u8c61\u7b49\uff09\uff0c\u5c31\u5f97\u5230\u4e86\u6808\u8fd9\u79cd\u6570\u636e\u7ed3\u6784\u3002
\u5982\u56fe 5-1 \u6240\u793a\uff0c\u6211\u4eec\u628a\u5806\u53e0\u5143\u7d20\u7684\u9876\u90e8\u79f0\u4e3a\u201c\u6808\u9876\u201d\uff0c\u5e95\u90e8\u79f0\u4e3a\u201c\u6808\u5e95\u201d\u3002\u5c06\u628a\u5143\u7d20\u6dfb\u52a0\u5230\u6808\u9876\u7684\u64cd\u4f5c\u53eb\u4f5c\u201c\u5165\u6808\u201d\uff0c\u5220\u9664\u6808\u9876\u5143\u7d20\u7684\u64cd\u4f5c\u53eb\u4f5c\u201c\u51fa\u6808\u201d\u3002
\u56fe 5-1 \u00a0 \u6808\u7684\u5148\u5165\u540e\u51fa\u89c4\u5219
"},{"location":"chapter_stack_and_queue/stack/#511","title":"5.1.1 \u00a0 \u6808\u7684\u5e38\u7528\u64cd\u4f5c","text":"\u6808\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u8868 5-1 \u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002\u5728\u6b64\uff0c\u6211\u4eec\u4ee5\u5e38\u89c1\u7684 push()\u3001pop()\u3001peek() \u547d\u540d\u4e3a\u4f8b\u3002
\u8868 5-1 \u00a0 \u6808\u7684\u64cd\u4f5c\u6548\u7387
\u65b9\u6cd5 \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u6808\uff08\u6dfb\u52a0\u81f3\u6808\u9876\uff09 \\(O(1)\\) pop() \u6808\u9876\u5143\u7d20\u51fa\u6808 \\(O(1)\\) peek() \u8bbf\u95ee\u6808\u9876\u5143\u7d20 \\(O(1)\\) \u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u6808\u7c7b\u3002\u7136\u800c\uff0c\u67d0\u4e9b\u8bed\u8a00\u53ef\u80fd\u6ca1\u6709\u4e13\u95e8\u63d0\u4f9b\u6808\u7c7b\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u5c06\u8be5\u8bed\u8a00\u7684\u201c\u6570\u7ec4\u201d\u6216\u201c\u94fe\u8868\u201d\u5f53\u4f5c\u6808\u6765\u4f7f\u7528\uff0c\u5e76\u5728\u7a0b\u5e8f\u903b\u8f91\u4e0a\u5ffd\u7565\u4e0e\u6808\u65e0\u5173\u7684\u64cd\u4f5c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig stack.py# \u521d\u59cb\u5316\u6808\n# Python \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a list \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nstack: list[int] = []\n\n# \u5143\u7d20\u5165\u6808\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n\n# \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npeek: int = stack[-1]\n\n# \u5143\u7d20\u51fa\u6808\npop: int = stack.pop()\n\n# \u83b7\u53d6\u6808\u7684\u957f\u5ea6\nsize: int = len(stack)\n\n# \u5224\u65ad\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(stack) == 0\n
stack.cpp/* \u521d\u59cb\u5316\u6808 */\nstack<int> stack;\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top = stack.top();\n\n/* \u5143\u7d20\u51fa\u6808 */\nstack.pop(); // \u65e0\u8fd4\u56de\u503c\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool empty = stack.empty();\n
stack.java/* \u521d\u59cb\u5316\u6808 */\nStack<Integer> stack = new Stack<>();\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.peek();\n\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = stack.isEmpty();\n
stack.cs/* \u521d\u59cb\u5316\u6808 */\nStack<int> stack = new();\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.Push(1);\nstack.Push(3);\nstack.Push(2);\nstack.Push(5);\nstack.Push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.Peek();\n\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.Pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.Count;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.Count == 0;\n
stack_test.go/* \u521d\u59cb\u5316\u6808 */\n// \u5728 Go \u4e2d\uff0c\u63a8\u8350\u5c06 Slice \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack []int\n\n/* \u5143\u7d20\u5165\u6808 */\nstack = append(stack, 1)\nstack = append(stack, 3)\nstack = append(stack, 2)\nstack = append(stack, 5)\nstack = append(stack, 4)\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek := stack[len(stack)-1]\n\n/* \u5143\u7d20\u51fa\u6808 */\npop := stack[len(stack)-1]\nstack = stack[:len(stack)-1]\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nsize := len(stack)\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nisEmpty := len(stack) == 0\n
stack.swift/* \u521d\u59cb\u5316\u6808 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack: [Int] = []\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nlet peek = stack.last!\n\n/* \u5143\u7d20\u51fa\u6808 */\nlet pop = stack.removeLast()\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nlet size = stack.count\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = stack.isEmpty\n
stack.js/* \u521d\u59cb\u5316\u6808 */\n// Javascript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack = [];\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length-1];\n\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
stack.ts/* \u521d\u59cb\u5316\u6808 */\n// Typescript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack: number[] = [];\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length - 1];\n\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
stack.dart/* \u521d\u59cb\u5316\u6808 */\n// Dart \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a List \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nList<int> stack = [];\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.add(1);\nstack.add(3);\nstack.add(2);\nstack.add(5);\nstack.add(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.last;\n\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.removeLast();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.length;\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.isEmpty;\n
stack.rs/* \u521d\u59cb\u5316\u6808 */\n// \u628a Vec \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nlet mut stack: Vec<i32> = Vec::new();\n\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nlet top = stack.last().unwrap();\n\n/* \u5143\u7d20\u51fa\u6808 */\nlet pop = stack.pop().unwrap();\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nlet size = stack.len();\n\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nlet is_empty = stack.is_empty();\n
stack.c// C \u672a\u63d0\u4f9b\u5185\u7f6e\u6808\n
stack.zig\n
"},{"location":"chapter_stack_and_queue/stack/#512","title":"5.1.2 \u00a0 \u6808\u7684\u5b9e\u73b0","text":"\u4e3a\u4e86\u6df1\u5165\u4e86\u89e3\u6808\u7684\u8fd0\u884c\u673a\u5236\uff0c\u6211\u4eec\u6765\u5c1d\u8bd5\u81ea\u5df1\u5b9e\u73b0\u4e00\u4e2a\u6808\u7c7b\u3002
\u6808\u9075\u5faa\u5148\u5165\u540e\u51fa\u7684\u539f\u5219\uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u80fd\u5728\u6808\u9876\u6dfb\u52a0\u6216\u5220\u9664\u5143\u7d20\u3002\u7136\u800c\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u90fd\u53ef\u4ee5\u5728\u4efb\u610f\u4f4d\u7f6e\u6dfb\u52a0\u548c\u5220\u9664\u5143\u7d20\uff0c\u56e0\u6b64\u6808\u53ef\u4ee5\u89c6\u4e3a\u4e00\u79cd\u53d7\u9650\u5236\u7684\u6570\u7ec4\u6216\u94fe\u8868\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u201c\u5c4f\u853d\u201d\u6570\u7ec4\u6216\u94fe\u8868\u7684\u90e8\u5206\u65e0\u5173\u64cd\u4f5c\uff0c\u4f7f\u5176\u5bf9\u5916\u8868\u73b0\u7684\u903b\u8f91\u7b26\u5408\u6808\u7684\u7279\u6027\u3002
"},{"location":"chapter_stack_and_queue/stack/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u5934\u8282\u70b9\u89c6\u4e3a\u6808\u9876\uff0c\u5c3e\u8282\u70b9\u89c6\u4e3a\u6808\u5e95\u3002
\u5982\u56fe 5-2 \u6240\u793a\uff0c\u5bf9\u4e8e\u5165\u6808\u64cd\u4f5c\uff0c\u6211\u4eec\u53ea\u9700\u5c06\u5143\u7d20\u63d2\u5165\u94fe\u8868\u5934\u90e8\uff0c\u8fd9\u79cd\u8282\u70b9\u63d2\u5165\u65b9\u6cd5\u88ab\u79f0\u4e3a\u201c\u5934\u63d2\u6cd5\u201d\u3002\u800c\u5bf9\u4e8e\u51fa\u6808\u64cd\u4f5c\uff0c\u53ea\u9700\u5c06\u5934\u8282\u70b9\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u5373\u53ef\u3002
LinkedListStackpush()pop() \u56fe 5-2 \u00a0 \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c
\u4ee5\u4e0b\u662f\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u793a\u4f8b\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig linkedlist_stack.pyclass LinkedListStack:\n \"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._peek: ListNode | None = None\n self._size: int = 0\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\n return self._size\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\n return not self._peek\n\n def push(self, val: int):\n \"\"\"\u5165\u6808\"\"\"\n node = ListNode(val)\n node.next = self._peek\n self._peek = node\n self._size += 1\n\n def pop(self) -> int:\n \"\"\"\u51fa\u6808\"\"\"\n num = self.peek()\n self._peek = self._peek.next\n self._size -= 1\n return num\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u6808\u4e3a\u7a7a\")\n return self._peek.val\n\n def to_list(self) -> list[int]:\n \"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n arr = []\n node = self._peek\n while node:\n arr.append(node.val)\n node = node.next\n arr.reverse()\n return arr\n
linkedlist_stack.cpp/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private:\n ListNode *stackTop; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int stkSize; // \u6808\u7684\u957f\u5ea6\n\n public:\n LinkedListStack() {\n stackTop = nullptr;\n stkSize = 0;\n }\n\n ~LinkedListStack() {\n // \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\n freeMemoryLinkedList(stackTop);\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u6808 */\n void push(int num) {\n ListNode *node = new ListNode(num);\n node->next = stackTop;\n stackTop = node;\n stkSize++;\n }\n\n /* \u51fa\u6808 */\n int pop() {\n int num = top();\n ListNode *tmp = stackTop;\n stackTop = stackTop->next;\n // \u91ca\u653e\u5185\u5b58\n delete tmp;\n stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int top() {\n if (isEmpty())\n throw out_of_range(\"\u6808\u4e3a\u7a7a\");\n return stackTop->val;\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n vector<int> toVector() {\n ListNode *node = stackTop;\n vector<int> res(size());\n for (int i = res.size() - 1; i >= 0; i--) {\n res[i] = node->val;\n node = node->next;\n }\n return res;\n }\n};\n
linkedlist_stack.java/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private ListNode stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n private int stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n public LinkedListStack() {\n stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int size() {\n return stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u6808 */\n public void push(int num) {\n ListNode node = new ListNode(num);\n node.next = stackPeek;\n stackPeek = node;\n stkSize++;\n }\n\n /* \u51fa\u6808 */\n public int pop() {\n int num = peek();\n stackPeek = stackPeek.next;\n stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return stackPeek.val;\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] toArray() {\n ListNode node = stackPeek;\n int[] res = new int[size()];\n for (int i = res.length - 1; i >= 0; i--) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_stack.cs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n ListNode? stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n public LinkedListStack() {\n stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int Size() {\n return stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u6808 */\n public void Push(int num) {\n ListNode node = new(num) {\n next = stackPeek\n };\n stackPeek = node;\n stkSize++;\n }\n\n /* \u51fa\u6808 */\n public int Pop() {\n int num = Peek();\n stackPeek = stackPeek!.next;\n stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return stackPeek!.val;\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] ToArray() {\n if (stackPeek == null)\n return [];\n\n ListNode? node = stackPeek;\n int[] res = new int[Size()];\n for (int i = res.Length - 1; i >= 0; i--) {\n res[i] = node!.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_stack.go/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\ntype linkedListStack struct {\n // \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u6808\n data *list.List\n}\n\n/* \u521d\u59cb\u5316\u6808 */\nfunc newLinkedListStack() *linkedListStack {\n return &linkedListStack{\n data: list.New(),\n }\n}\n\n/* \u5165\u6808 */\nfunc (s *linkedListStack) push(value int) {\n s.data.PushBack(value)\n}\n\n/* \u51fa\u6808 */\nfunc (s *linkedListStack) pop() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n s.data.Remove(e)\n return e.Value\n}\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc (s *linkedListStack) peek() any {\n if s.isEmpty() {\n return nil\n }\n e := s.data.Back()\n return e.Value\n}\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc (s *linkedListStack) size() int {\n return s.data.Len()\n}\n\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListStack) isEmpty() bool {\n return s.data.Len() == 0\n}\n\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListStack) toList() *list.List {\n return s.data\n}\n
linkedlist_stack.swift/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private var _peek: ListNode? // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n private var _size = 0 // \u6808\u7684\u957f\u5ea6\n\n init() {}\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n func size() -> Int {\n _size\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n size() == 0\n }\n\n /* \u5165\u6808 */\n func push(num: Int) {\n let node = ListNode(x: num)\n node.next = _peek\n _peek = node\n _size += 1\n }\n\n /* \u51fa\u6808 */\n @discardableResult\n func pop() -> Int {\n let num = peek()\n _peek = _peek?.next\n _size -= 1\n return num\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u6808\u4e3a\u7a7a\")\n }\n return _peek!.val\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n func toArray() -> [Int] {\n var node = _peek\n var res = Array(repeating: 0, count: _size)\n for i in sequence(first: res.count - 1, next: { $0 >= 0 + 1 ? $0 - 1 : nil }) {\n res[i] = node!.val\n node = node?.next\n }\n return res\n }\n}\n
linkedlist_stack.js/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n #stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n #stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n constructor() {\n this.#stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size() {\n return this.#stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.size === 0;\n }\n\n /* \u5165\u6808 */\n push(num) {\n const node = new ListNode(num);\n node.next = this.#stackPeek;\n this.#stackPeek = node;\n this.#stkSize++;\n }\n\n /* \u51fa\u6808 */\n pop() {\n const num = this.peek();\n this.#stackPeek = this.#stackPeek.next;\n this.#stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n peek() {\n if (!this.#stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\n return this.#stackPeek.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray() {\n let node = this.#stackPeek;\n const res = new Array(this.size);\n for (let i = res.length - 1; i >= 0; i--) {\n res[i] = node.val;\n node = node.next;\n }\n return res;\n }\n}\n
linkedlist_stack.ts/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n private stackPeek: ListNode | null; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n private stkSize: number = 0; // \u6808\u7684\u957f\u5ea6\n\n constructor() {\n this.stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size(): number {\n return this.stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.size === 0;\n }\n\n /* \u5165\u6808 */\n push(num: number): void {\n const node = new ListNode(num);\n node.next = this.stackPeek;\n this.stackPeek = node;\n this.stkSize++;\n }\n\n /* \u51fa\u6808 */\n pop(): number {\n const num = this.peek();\n if (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\n this.stackPeek = this.stackPeek.next;\n this.stkSize--;\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n peek(): number {\n if (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\n return this.stackPeek.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n toArray(): number[] {\n let node = this.stackPeek;\n const res = new Array<number>(this.size);\n for (let i = res.length - 1; i >= 0; i--) {\n res[i] = node!.val;\n node = node!.next;\n }\n return res;\n }\n}\n
linkedlist_stack.dart/* \u57fa\u4e8e\u94fe\u8868\u7c7b\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n ListNode? _stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int _stkSize = 0; // \u6808\u7684\u957f\u5ea6\n\n LinkedListStack() {\n _stackPeek = null;\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return _stkSize;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _stkSize == 0;\n }\n\n /* \u5165\u6808 */\n void push(int _num) {\n final ListNode node = ListNode(_num);\n node.next = _stackPeek;\n _stackPeek = node;\n _stkSize++;\n }\n\n /* \u51fa\u6808 */\n int pop() {\n final int _num = peek();\n _stackPeek = _stackPeek!.next;\n _stkSize--;\n return _num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int peek() {\n if (_stackPeek == null) {\n throw Exception(\"\u6808\u4e3a\u7a7a\");\n }\n return _stackPeek!.val;\n }\n\n /* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a List \u5e76\u8fd4\u56de */\n List<int> toList() {\n ListNode? node = _stackPeek;\n List<int> list = [];\n while (node != null) {\n list.add(node.val);\n node = node.next;\n }\n list = list.reversed.toList();\n return list;\n }\n}\n
linkedlist_stack.rs/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\n#[allow(dead_code)]\npub struct LinkedListStack<T> {\n stack_peek: Option<Rc<RefCell<ListNode<T>>>>, // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n stk_size: usize, // \u6808\u7684\u957f\u5ea6\n}\n\nimpl<T: Copy> LinkedListStack<T> {\n pub fn new() -> Self {\n Self {\n stack_peek: None,\n stk_size: 0,\n }\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n pub fn size(&self) -> usize {\n return self.stk_size;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n pub fn is_empty(&self) -> bool {\n return self.size() == 0;\n }\n\n /* \u5165\u6808 */\n pub fn push(&mut self, num: T) {\n let node = ListNode::new(num);\n node.borrow_mut().next = self.stack_peek.take();\n self.stack_peek = Some(node);\n self.stk_size += 1;\n }\n\n /* \u51fa\u6808 */\n pub fn pop(&mut self) -> Option<T> {\n self.stack_peek.take().map(|old_head| {\n match old_head.borrow_mut().next.take() {\n Some(new_head) => {\n self.stack_peek = Some(new_head);\n }\n None => {\n self.stack_peek = None;\n }\n }\n self.stk_size -= 1;\n Rc::try_unwrap(old_head).ok().unwrap().into_inner().val\n })\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n pub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\n self.stack_peek.as_ref()\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\n if let Some(node) = head {\n let mut nums = self.to_array(node.borrow().next.as_ref());\n nums.push(node.borrow().val);\n return nums;\n }\n return Vec::new();\n }\n}\n
linkedlist_stack.c/* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\ntypedef struct {\n ListNode *top; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n int size; // \u6808\u7684\u957f\u5ea6\n} LinkedListStack;\n\n/* \u6784\u9020\u51fd\u6570 */\nLinkedListStack *newLinkedListStack() {\n LinkedListStack *s = malloc(sizeof(LinkedListStack));\n s->top = NULL;\n s->size = 0;\n return s;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListStack(LinkedListStack *s) {\n while (s->top) {\n ListNode *n = s->top->next;\n free(s->top);\n s->top = n;\n }\n free(s);\n}\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(LinkedListStack *s) {\n return s->size;\n}\n\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(LinkedListStack *s) {\n return size(s) == 0;\n}\n\n/* \u5165\u6808 */\nvoid push(LinkedListStack *s, int num) {\n ListNode *node = (ListNode *)malloc(sizeof(ListNode));\n node->next = s->top; // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6307\u9488\u57df\n node->val = num; // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6570\u636e\u57df\n s->top = node; // \u66f4\u65b0\u6808\u9876\n s->size++; // \u66f4\u65b0\u6808\u5927\u5c0f\n}\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(LinkedListStack *s) {\n if (s->size == 0) {\n printf(\"\u6808\u4e3a\u7a7a\\n\");\n return INT_MAX;\n }\n return s->top->val;\n}\n\n/* \u51fa\u6808 */\nint pop(LinkedListStack *s) {\n int val = peek(s);\n ListNode *tmp = s->top;\n s->top = s->top->next;\n // \u91ca\u653e\u5185\u5b58\n free(tmp);\n s->size--;\n return val;\n}\n
linkedlist_stack.zig// \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\nfn LinkedListStack(comptime T: type) type {\n return struct {\n const Self = @This();\n\n stack_top: ?*inc.ListNode(T) = null, // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n stk_size: usize = 0, // \u6808\u7684\u957f\u5ea6\n mem_arena: ?std.heap.ArenaAllocator = null,\n mem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n\n // \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) !void {\n if (self.mem_arena == null) {\n self.mem_arena = std.heap.ArenaAllocator.init(allocator);\n self.mem_allocator = self.mem_arena.?.allocator();\n }\n self.stack_top = null;\n self.stk_size = 0;\n }\n\n // \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.mem_arena == null) return;\n self.mem_arena.?.deinit();\n }\n\n // \u83b7\u53d6\u6808\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.stk_size;\n }\n\n // \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u8bbf\u95ee\u6808\u9876\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.size() == 0) @panic(\"\u6808\u4e3a\u7a7a\");\n return self.stack_top.?.val;\n } \n\n // \u5165\u6808\n pub fn push(self: *Self, num: T) !void {\n var node = try self.mem_allocator.create(inc.ListNode(T));\n node.init(num);\n node.next = self.stack_top;\n self.stack_top = node;\n self.stk_size += 1;\n } \n\n // \u51fa\u6808\n pub fn pop(self: *Self) T {\n var num = self.peek();\n self.stack_top = self.stack_top.?.next;\n self.stk_size -= 1;\n return num;\n } \n\n // \u5c06\u6808\u8f6c\u6362\u4e3a\u6570\u7ec4\n pub fn toArray(self: *Self) ![]T {\n var node = self.stack_top;\n var res = try self.mem_allocator.alloc(T, self.size());\n @memset(res, @as(T, 0));\n var i: usize = 0;\n while (i < res.len) : (i += 1) {\n res[res.len - i - 1] = node.?.val;\n node = node.?.next;\n }\n return res;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/stack/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u7684\u5c3e\u90e8\u4f5c\u4e3a\u6808\u9876\u3002\u5982\u56fe 5-3 \u6240\u793a\uff0c\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u5206\u522b\u5bf9\u5e94\u5728\u6570\u7ec4\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u4e0e\u5220\u9664\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(1)\\) \u3002
ArrayStackpush()pop() \u56fe 5-3 \u00a0 \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c
\u7531\u4e8e\u5165\u6808\u7684\u5143\u7d20\u53ef\u80fd\u4f1a\u6e90\u6e90\u4e0d\u65ad\u5730\u589e\u52a0\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u52a8\u6001\u6570\u7ec4\uff0c\u8fd9\u6837\u5c31\u65e0\u987b\u81ea\u884c\u5904\u7406\u6570\u7ec4\u6269\u5bb9\u95ee\u9898\u3002\u4ee5\u4e0b\u4e3a\u793a\u4f8b\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_stack.pyclass ArrayStack:\n \"\"\"\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\"\"\"\n\n def __init__(self):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._stack: list[int] = []\n\n def size(self) -> int:\n \"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\n return len(self._stack)\n\n def is_empty(self) -> bool:\n \"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\n return self._stack == []\n\n def push(self, item: int):\n \"\"\"\u5165\u6808\"\"\"\n self._stack.append(item)\n\n def pop(self) -> int:\n \"\"\"\u51fa\u6808\"\"\"\n if self.is_empty():\n raise IndexError(\"\u6808\u4e3a\u7a7a\")\n return self._stack.pop()\n\n def peek(self) -> int:\n \"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\n if self.is_empty():\n raise IndexError(\"\u6808\u4e3a\u7a7a\")\n return self._stack[-1]\n\n def to_list(self) -> list[int]:\n \"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\n return self._stack\n
array_stack.cpp/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private:\n vector<int> stack;\n\n public:\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return stack.size();\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return stack.size() == 0;\n }\n\n /* \u5165\u6808 */\n void push(int num) {\n stack.push_back(num);\n }\n\n /* \u51fa\u6808 */\n int pop() {\n int num = top();\n stack.pop_back();\n return num;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int top() {\n if (isEmpty())\n throw out_of_range(\"\u6808\u4e3a\u7a7a\");\n return stack.back();\n }\n\n /* \u8fd4\u56de Vector */\n vector<int> toVector() {\n return stack;\n }\n};\n
array_stack.java/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private ArrayList<Integer> stack;\n\n public ArrayStack() {\n // \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\n stack = new ArrayList<>();\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int size() {\n return stack.size();\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public boolean isEmpty() {\n return size() == 0;\n }\n\n /* \u5165\u6808 */\n public void push(int num) {\n stack.add(num);\n }\n\n /* \u51fa\u6808 */\n public int pop() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return stack.remove(size() - 1);\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int peek() {\n if (isEmpty())\n throw new IndexOutOfBoundsException();\n return stack.get(size() - 1);\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public Object[] toArray() {\n return stack.toArray();\n }\n}\n
array_stack.cs/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n List<int> stack;\n public ArrayStack() {\n // \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\n stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n public int Size() {\n return stack.Count;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n public bool IsEmpty() {\n return Size() == 0;\n }\n\n /* \u5165\u6808 */\n public void Push(int num) {\n stack.Add(num);\n }\n\n /* \u51fa\u6808 */\n public int Pop() {\n if (IsEmpty())\n throw new Exception();\n var val = Peek();\n stack.RemoveAt(Size() - 1);\n return val;\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n public int Peek() {\n if (IsEmpty())\n throw new Exception();\n return stack[Size() - 1];\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n public int[] ToArray() {\n return [.. stack];\n }\n}\n
array_stack.go/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\ntype arrayStack struct {\n data []int // \u6570\u636e\n}\n\n/* \u521d\u59cb\u5316\u6808 */\nfunc newArrayStack() *arrayStack {\n return &arrayStack{\n // \u8bbe\u7f6e\u6808\u7684\u957f\u5ea6\u4e3a 0\uff0c\u5bb9\u91cf\u4e3a 16\n data: make([]int, 0, 16),\n }\n}\n\n/* \u6808\u7684\u957f\u5ea6 */\nfunc (s *arrayStack) size() int {\n return len(s.data)\n}\n\n/* \u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *arrayStack) isEmpty() bool {\n return s.size() == 0\n}\n\n/* \u5165\u6808 */\nfunc (s *arrayStack) push(v int) {\n // \u5207\u7247\u4f1a\u81ea\u52a8\u6269\u5bb9\n s.data = append(s.data, v)\n}\n\n/* \u51fa\u6808 */\nfunc (s *arrayStack) pop() any {\n val := s.peek()\n s.data = s.data[:len(s.data)-1]\n return val\n}\n\n/* \u83b7\u53d6\u6808\u9876\u5143\u7d20 */\nfunc (s *arrayStack) peek() any {\n if s.isEmpty() {\n return nil\n }\n val := s.data[len(s.data)-1]\n return val\n}\n\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (s *arrayStack) toSlice() []int {\n return s.data\n}\n
array_stack.swift/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private var stack: [Int]\n\n init() {\n // \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\n stack = []\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n func size() -> Int {\n stack.count\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n func isEmpty() -> Bool {\n stack.isEmpty\n }\n\n /* \u5165\u6808 */\n func push(num: Int) {\n stack.append(num)\n }\n\n /* \u51fa\u6808 */\n @discardableResult\n func pop() -> Int {\n if isEmpty() {\n fatalError(\"\u6808\u4e3a\u7a7a\")\n }\n return stack.removeLast()\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n func peek() -> Int {\n if isEmpty() {\n fatalError(\"\u6808\u4e3a\u7a7a\")\n }\n return stack.last!\n }\n\n /* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n func toArray() -> [Int] {\n stack\n }\n}\n
array_stack.js/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n #stack;\n constructor() {\n this.#stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size() {\n return this.#stack.length;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty() {\n return this.#stack.length === 0;\n }\n\n /* \u5165\u6808 */\n push(num) {\n this.#stack.push(num);\n }\n\n /* \u51fa\u6808 */\n pop() {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.#stack.pop();\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n top() {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.#stack[this.#stack.length - 1];\n }\n\n /* \u8fd4\u56de Array */\n toArray() {\n return this.#stack;\n }\n}\n
array_stack.ts/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n private stack: number[];\n constructor() {\n this.stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n get size(): number {\n return this.stack.length;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n isEmpty(): boolean {\n return this.stack.length === 0;\n }\n\n /* \u5165\u6808 */\n push(num: number): void {\n this.stack.push(num);\n }\n\n /* \u51fa\u6808 */\n pop(): number | undefined {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.stack.pop();\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n top(): number | undefined {\n if (this.isEmpty()) throw new Error('\u6808\u4e3a\u7a7a');\n return this.stack[this.stack.length - 1];\n }\n\n /* \u8fd4\u56de Array */\n toArray() {\n return this.stack;\n }\n}\n
array_stack.dart/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n late List<int> _stack;\n ArrayStack() {\n _stack = [];\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n int size() {\n return _stack.length;\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n bool isEmpty() {\n return _stack.isEmpty;\n }\n\n /* \u5165\u6808 */\n void push(int _num) {\n _stack.add(_num);\n }\n\n /* \u51fa\u6808 */\n int pop() {\n if (isEmpty()) {\n throw Exception(\"\u6808\u4e3a\u7a7a\");\n }\n return _stack.removeLast();\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n int peek() {\n if (isEmpty()) {\n throw Exception(\"\u6808\u4e3a\u7a7a\");\n }\n return _stack.last;\n }\n\n /* \u5c06\u6808\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\n List<int> toArray() => _stack;\n}\n
array_stack.rs/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nstruct ArrayStack<T> {\n stack: Vec<T>,\n}\n\nimpl<T> ArrayStack<T> {\n /* \u521d\u59cb\u5316\u6808 */\n fn new() -> ArrayStack<T> {\n ArrayStack::<T> { stack: Vec::<T>::new() }\n }\n\n /* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\n fn size(&self) -> usize {\n self.stack.len()\n }\n\n /* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\n fn is_empty(&self) -> bool {\n self.size() == 0\n }\n\n /* \u5165\u6808 */\n fn push(&mut self, num: T) {\n self.stack.push(num);\n }\n\n /* \u51fa\u6808 */\n fn pop(&mut self) -> Option<T> {\n match self.stack.pop() {\n Some(num) => Some(num),\n None => None,\n }\n }\n\n /* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\n fn peek(&self) -> Option<&T> {\n if self.is_empty() { panic!(\"\u6808\u4e3a\u7a7a\") };\n self.stack.last()\n }\n\n /* \u8fd4\u56de &Vec */\n fn to_array(&self) -> &Vec<T> {\n &self.stack\n }\n}\n
array_stack.c/* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\ntypedef struct {\n int *data;\n int size;\n} ArrayStack;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayStack *newArrayStack() {\n ArrayStack *stack = malloc(sizeof(ArrayStack));\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5927\u5bb9\u91cf\uff0c\u907f\u514d\u6269\u5bb9\n stack->data = malloc(sizeof(int) * MAX_SIZE);\n stack->size = 0;\n return stack;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayStack(ArrayStack *stack) {\n free(stack->data);\n free(stack);\n}\n\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(ArrayStack *stack) {\n return stack->size;\n}\n\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(ArrayStack *stack) {\n return stack->size == 0;\n}\n\n/* \u5165\u6808 */\nvoid push(ArrayStack *stack, int num) {\n if (stack->size == MAX_SIZE) {\n printf(\"\u6808\u5df2\u6ee1\\n\");\n return;\n }\n stack->data[stack->size] = num;\n stack->size++;\n}\n\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(ArrayStack *stack) {\n if (stack->size == 0) {\n printf(\"\u6808\u4e3a\u7a7a\\n\");\n return INT_MAX;\n }\n return stack->data[stack->size - 1];\n}\n\n/* \u51fa\u6808 */\nint pop(ArrayStack *stack) {\n int val = peek(stack);\n stack->size--;\n return val;\n}\n
array_stack.zig// \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\nfn ArrayStack(comptime T: type) type {\n return struct {\n const Self = @This();\n\n stack: ?std.ArrayList(T) = null, \n\n // \u6784\u9020\u65b9\u6cd5\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\n pub fn init(self: *Self, allocator: std.mem.Allocator) void {\n if (self.stack == null) {\n self.stack = std.ArrayList(T).init(allocator);\n }\n }\n\n // \u6790\u6784\u65b9\u6cd5\uff08\u91ca\u653e\u5185\u5b58\uff09\n pub fn deinit(self: *Self) void {\n if (self.stack == null) return;\n self.stack.?.deinit();\n }\n\n // \u83b7\u53d6\u6808\u7684\u957f\u5ea6\n pub fn size(self: *Self) usize {\n return self.stack.?.items.len;\n }\n\n // \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\n pub fn isEmpty(self: *Self) bool {\n return self.size() == 0;\n }\n\n // \u8bbf\u95ee\u6808\u9876\u5143\u7d20\n pub fn peek(self: *Self) T {\n if (self.isEmpty()) @panic(\"\u6808\u4e3a\u7a7a\");\n return self.stack.?.items[self.size() - 1];\n } \n\n // \u5165\u6808\n pub fn push(self: *Self, num: T) !void {\n try self.stack.?.append(num);\n } \n\n // \u51fa\u6808\n pub fn pop(self: *Self) T {\n var num = self.stack.?.pop();\n return num;\n } \n\n // \u8fd4\u56de ArrayList\n pub fn toList(self: *Self) std.ArrayList(T) {\n return self.stack.?;\n }\n };\n}\n
"},{"location":"chapter_stack_and_queue/stack/#513","title":"5.1.3 \u00a0 \u4e24\u79cd\u5b9e\u73b0\u5bf9\u6bd4","text":"\u652f\u6301\u64cd\u4f5c
\u4e24\u79cd\u5b9e\u73b0\u90fd\u652f\u6301\u6808\u5b9a\u4e49\u4e2d\u7684\u5404\u9879\u64cd\u4f5c\u3002\u6570\u7ec4\u5b9e\u73b0\u989d\u5916\u652f\u6301\u968f\u673a\u8bbf\u95ee\uff0c\u4f46\u8fd9\u5df2\u8d85\u51fa\u4e86\u6808\u7684\u5b9a\u4e49\u8303\u7574\uff0c\u56e0\u6b64\u4e00\u822c\u4e0d\u4f1a\u7528\u5230\u3002
\u65f6\u95f4\u6548\u7387
\u5728\u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0\u4e2d\uff0c\u5165\u6808\u548c\u51fa\u6808\u64cd\u4f5c\u90fd\u5728\u9884\u5148\u5206\u914d\u597d\u7684\u8fde\u7eed\u5185\u5b58\u4e2d\u8fdb\u884c\uff0c\u5177\u6709\u5f88\u597d\u7684\u7f13\u5b58\u672c\u5730\u6027\uff0c\u56e0\u6b64\u6548\u7387\u8f83\u9ad8\u3002\u7136\u800c\uff0c\u5982\u679c\u5165\u6808\u65f6\u8d85\u51fa\u6570\u7ec4\u5bb9\u91cf\uff0c\u4f1a\u89e6\u53d1\u6269\u5bb9\u673a\u5236\uff0c\u5bfc\u81f4\u8be5\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53d8\u4e3a \\(O(n)\\) \u3002
\u5728\u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0\u4e2d\uff0c\u94fe\u8868\u7684\u6269\u5bb9\u975e\u5e38\u7075\u6d3b\uff0c\u4e0d\u5b58\u5728\u4e0a\u8ff0\u6570\u7ec4\u6269\u5bb9\u65f6\u6548\u7387\u964d\u4f4e\u7684\u95ee\u9898\u3002\u4f46\u662f\uff0c\u5165\u6808\u64cd\u4f5c\u9700\u8981\u521d\u59cb\u5316\u8282\u70b9\u5bf9\u8c61\u5e76\u4fee\u6539\u6307\u9488\uff0c\u56e0\u6b64\u6548\u7387\u76f8\u5bf9\u8f83\u4f4e\u3002\u4e0d\u8fc7\uff0c\u5982\u679c\u5165\u6808\u5143\u7d20\u672c\u8eab\u5c31\u662f\u8282\u70b9\u5bf9\u8c61\uff0c\u90a3\u4e48\u53ef\u4ee5\u7701\u53bb\u521d\u59cb\u5316\u6b65\u9aa4\uff0c\u4ece\u800c\u63d0\u9ad8\u6548\u7387\u3002
\u7efc\u4e0a\u6240\u8ff0\uff0c\u5f53\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u7684\u5143\u7d20\u662f\u57fa\u672c\u6570\u636e\u7c7b\u578b\u65f6\uff0c\u4f8b\u5982 int \u6216 double \uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\u3002
- \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u5728\u89e6\u53d1\u6269\u5bb9\u65f6\u6548\u7387\u4f1a\u964d\u4f4e\uff0c\u4f46\u7531\u4e8e\u6269\u5bb9\u662f\u4f4e\u9891\u64cd\u4f5c\uff0c\u56e0\u6b64\u5e73\u5747\u6548\u7387\u66f4\u9ad8\u3002
- \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u53ef\u4ee5\u63d0\u4f9b\u66f4\u52a0\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
\u7a7a\u95f4\u6548\u7387
\u5728\u521d\u59cb\u5316\u5217\u8868\u65f6\uff0c\u7cfb\u7edf\u4f1a\u4e3a\u5217\u8868\u5206\u914d\u201c\u521d\u59cb\u5bb9\u91cf\u201d\uff0c\u8be5\u5bb9\u91cf\u53ef\u80fd\u8d85\u51fa\u5b9e\u9645\u9700\u6c42\uff1b\u5e76\u4e14\uff0c\u6269\u5bb9\u673a\u5236\u901a\u5e38\u662f\u6309\u7167\u7279\u5b9a\u500d\u7387\uff08\u4f8b\u5982 2 \u500d\uff09\u8fdb\u884c\u6269\u5bb9\u7684\uff0c\u6269\u5bb9\u540e\u7684\u5bb9\u91cf\u4e5f\u53ef\u80fd\u8d85\u51fa\u5b9e\u9645\u9700\u6c42\u3002\u56e0\u6b64\uff0c\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u53ef\u80fd\u9020\u6210\u4e00\u5b9a\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002
\u7136\u800c\uff0c\u7531\u4e8e\u94fe\u8868\u8282\u70b9\u9700\u8981\u989d\u5916\u5b58\u50a8\u6307\u9488\uff0c\u56e0\u6b64\u94fe\u8868\u8282\u70b9\u5360\u7528\u7684\u7a7a\u95f4\u76f8\u5bf9\u8f83\u5927\u3002
\u7efc\u4e0a\uff0c\u6211\u4eec\u4e0d\u80fd\u7b80\u5355\u5730\u786e\u5b9a\u54ea\u79cd\u5b9e\u73b0\u66f4\u52a0\u8282\u7701\u5185\u5b58\uff0c\u9700\u8981\u9488\u5bf9\u5177\u4f53\u60c5\u51b5\u8fdb\u884c\u5206\u6790\u3002
"},{"location":"chapter_stack_and_queue/stack/#514","title":"5.1.4 \u00a0 \u6808\u5178\u578b\u5e94\u7528","text":" - \u6d4f\u89c8\u5668\u4e2d\u7684\u540e\u9000\u4e0e\u524d\u8fdb\u3001\u8f6f\u4ef6\u4e2d\u7684\u64a4\u9500\u4e0e\u53cd\u64a4\u9500\u3002\u6bcf\u5f53\u6211\u4eec\u6253\u5f00\u65b0\u7684\u7f51\u9875\uff0c\u6d4f\u89c8\u5668\u5c31\u4f1a\u5bf9\u4e0a\u4e00\u4e2a\u7f51\u9875\u6267\u884c\u5165\u6808\uff0c\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u901a\u8fc7\u540e\u9000\u64cd\u4f5c\u56de\u5230\u4e0a\u4e00\u4e2a\u7f51\u9875\u3002\u540e\u9000\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5728\u6267\u884c\u51fa\u6808\u3002\u5982\u679c\u8981\u540c\u65f6\u652f\u6301\u540e\u9000\u548c\u524d\u8fdb\uff0c\u90a3\u4e48\u9700\u8981\u4e24\u4e2a\u6808\u6765\u914d\u5408\u5b9e\u73b0\u3002
- \u7a0b\u5e8f\u5185\u5b58\u7ba1\u7406\u3002\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\uff0c\u7cfb\u7edf\u90fd\u4f1a\u5728\u6808\u9876\u6dfb\u52a0\u4e00\u4e2a\u6808\u5e27\uff0c\u7528\u4e8e\u8bb0\u5f55\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u4fe1\u606f\u3002\u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u5411\u4e0b\u9012\u63a8\u9636\u6bb5\u4f1a\u4e0d\u65ad\u6267\u884c\u5165\u6808\u64cd\u4f5c\uff0c\u800c\u5411\u4e0a\u56de\u6eaf\u9636\u6bb5\u5219\u4f1a\u4e0d\u65ad\u6267\u884c\u51fa\u6808\u64cd\u4f5c\u3002
"},{"location":"chapter_stack_and_queue/summary/","title":"5.4 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_stack_and_queue/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u6808\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002
- \u5728\u65f6\u95f4\u6548\u7387\u65b9\u9762\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u5177\u6709\u8f83\u9ad8\u7684\u5e73\u5747\u6548\u7387\uff0c\u4f46\u5728\u6269\u5bb9\u8fc7\u7a0b\u4e2d\uff0c\u5355\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u52a3\u5316\u81f3 \\(O(n)\\) \u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u6808\u7684\u94fe\u8868\u5b9e\u73b0\u5177\u6709\u66f4\u4e3a\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
- \u5728\u7a7a\u95f4\u6548\u7387\u65b9\u9762\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u53ef\u80fd\u5bfc\u81f4\u4e00\u5b9a\u7a0b\u5ea6\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002\u4f46\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u94fe\u8868\u8282\u70b9\u6240\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u6bd4\u6570\u7ec4\u5143\u7d20\u66f4\u5927\u3002
- \u961f\u5217\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u540c\u6837\u53ef\u4ee5\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u7684\u5bf9\u6bd4\u4e0a\uff0c\u961f\u5217\u7684\u7ed3\u8bba\u4e0e\u524d\u8ff0\u6808\u7684\u7ed3\u8bba\u76f8\u4f3c\u3002
- \u53cc\u5411\u961f\u5217\u662f\u4e00\u79cd\u5177\u6709\u66f4\u9ad8\u81ea\u7531\u5ea6\u7684\u961f\u5217\uff0c\u5b83\u5141\u8bb8\u5728\u4e24\u7aef\u8fdb\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u3002
"},{"location":"chapter_stack_and_queue/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u662f\u5426\u662f\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\uff1f
\u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u529f\u80fd\u672c\u8d28\u4e0a\u662f\u201c\u6808\u201d\u7684\u4f53\u73b0\u3002\u5f53\u7528\u6237\u8bbf\u95ee\u4e00\u4e2a\u65b0\u9875\u9762\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u88ab\u6dfb\u52a0\u5230\u6808\u9876\uff1b\u5f53\u7528\u6237\u70b9\u51fb\u540e\u9000\u6309\u94ae\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u4ece\u6808\u9876\u5f39\u51fa\u3002\u4f7f\u7528\u53cc\u5411\u961f\u5217\u53ef\u4ee5\u65b9\u4fbf\u5730\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u64cd\u4f5c\uff0c\u8fd9\u4e2a\u5728\u201c\u53cc\u5411\u961f\u5217\u201d\u7ae0\u8282\u6709\u63d0\u5230\u3002
\u5728\u51fa\u6808\u540e\uff0c\u662f\u5426\u9700\u8981\u91ca\u653e\u51fa\u6808\u8282\u70b9\u7684\u5185\u5b58\uff1f
\u5982\u679c\u540e\u7eed\u4ecd\u9700\u8981\u4f7f\u7528\u5f39\u51fa\u8282\u70b9\uff0c\u5219\u4e0d\u9700\u8981\u91ca\u653e\u5185\u5b58\u3002\u82e5\u4e4b\u540e\u4e0d\u9700\u8981\u7528\u5230\uff0cJava \u548c Python \u7b49\u8bed\u8a00\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u673a\u5236\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\uff1b\u5728 C \u548c C++ \u4e2d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\u3002
\u53cc\u5411\u961f\u5217\u50cf\u662f\u4e24\u4e2a\u6808\u62fc\u63a5\u5728\u4e86\u4e00\u8d77\uff0c\u5b83\u7684\u7528\u9014\u662f\u4ec0\u4e48\uff1f
\u53cc\u5411\u961f\u5217\u5c31\u50cf\u662f\u6808\u548c\u961f\u5217\u7684\u7ec4\u5408\uff0c\u6216\u4e24\u4e2a\u6808\u62fc\u5728\u4e86\u4e00\u8d77\u3002\u5b83\u8868\u73b0\u7684\u662f\u6808 + \u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u53ef\u4ee5\u5b9e\u73b0\u6808\u4e0e\u961f\u5217\u7684\u6240\u6709\u5e94\u7528\uff0c\u5e76\u4e14\u66f4\u52a0\u7075\u6d3b\u3002
\u64a4\u9500\uff08undo\uff09\u548c\u53cd\u64a4\u9500\uff08redo\uff09\u5177\u4f53\u662f\u5982\u4f55\u5b9e\u73b0\u7684\uff1f
\u4f7f\u7528\u4e24\u4e2a\u6808\uff0c\u6808 A \u7528\u4e8e\u64a4\u9500\uff0c\u6808 B \u7528\u4e8e\u53cd\u64a4\u9500\u3002
- \u6bcf\u5f53\u7528\u6237\u6267\u884c\u4e00\u4e2a\u64cd\u4f5c\uff0c\u5c06\u8fd9\u4e2a\u64cd\u4f5c\u538b\u5165\u6808
A \uff0c\u5e76\u6e05\u7a7a\u6808 B \u3002 - \u5f53\u7528\u6237\u6267\u884c\u201c\u64a4\u9500\u201d\u65f6\uff0c\u4ece\u6808
A \u4e2d\u5f39\u51fa\u6700\u8fd1\u7684\u64cd\u4f5c\uff0c\u5e76\u5c06\u5176\u538b\u5165\u6808 B \u3002 - \u5f53\u7528\u6237\u6267\u884c\u201c\u53cd\u64a4\u9500\u201d\u65f6\uff0c\u4ece\u6808
B \u4e2d\u5f39\u51fa\u6700\u8fd1\u7684\u64cd\u4f5c\uff0c\u5e76\u5c06\u5176\u538b\u5165\u6808 A \u3002
"},{"location":"chapter_tree/","title":"\u7b2c 7 \u7ae0 \u00a0 \u6811","text":"Abstract
\u53c2\u5929\u5927\u6811\u5145\u6ee1\u751f\u547d\u529b\uff0c\u6839\u6df1\u53f6\u8302\uff0c\u5206\u679d\u6276\u758f\u3002
\u5b83\u4e3a\u6211\u4eec\u5c55\u73b0\u4e86\u6570\u636e\u5206\u6cbb\u7684\u751f\u52a8\u5f62\u6001\u3002
"},{"location":"chapter_tree/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":" - 7.1 \u00a0 \u4e8c\u53c9\u6811
- 7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386
- 7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a
- 7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811
- 7.5 \u00a0 AVL \u6811 *
- 7.6 \u00a0 \u5c0f\u7ed3
"},{"location":"chapter_tree/array_representation_of_tree/","title":"7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a","text":"\u5728\u94fe\u8868\u8868\u793a\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u5b58\u50a8\u5355\u5143\u4e3a\u8282\u70b9 TreeNode \uff0c\u8282\u70b9\u4e4b\u95f4\u901a\u8fc7\u6307\u9488\u76f8\u8fde\u63a5\u3002\u4e0a\u4e00\u8282\u4ecb\u7ecd\u4e86\u94fe\u8868\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7684\u5404\u9879\u57fa\u672c\u64cd\u4f5c\u3002
\u90a3\u4e48\uff0c\u6211\u4eec\u80fd\u5426\u7528\u6570\u7ec4\u6765\u8868\u793a\u4e8c\u53c9\u6811\u5462\uff1f\u7b54\u6848\u662f\u80af\u5b9a\u7684\u3002
"},{"location":"chapter_tree/array_representation_of_tree/#731","title":"7.3.1 \u00a0 \u8868\u793a\u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"\u5148\u5206\u6790\u4e00\u4e2a\u7b80\u5355\u6848\u4f8b\u3002\u7ed9\u5b9a\u4e00\u68f5\u5b8c\u7f8e\u4e8c\u53c9\u6811\uff0c\u6211\u4eec\u5c06\u6240\u6709\u8282\u70b9\u6309\u7167\u5c42\u5e8f\u904d\u5386\u7684\u987a\u5e8f\u5b58\u50a8\u5728\u4e00\u4e2a\u6570\u7ec4\u4e2d\uff0c\u5219\u6bcf\u4e2a\u8282\u70b9\u90fd\u5bf9\u5e94\u552f\u4e00\u7684\u6570\u7ec4\u7d22\u5f15\u3002
\u6839\u636e\u5c42\u5e8f\u904d\u5386\u7684\u7279\u6027\uff0c\u6211\u4eec\u53ef\u4ee5\u63a8\u5bfc\u51fa\u7236\u8282\u70b9\u7d22\u5f15\u4e0e\u5b50\u8282\u70b9\u7d22\u5f15\u4e4b\u95f4\u7684\u201c\u6620\u5c04\u516c\u5f0f\u201d\uff1a\u82e5\u67d0\u8282\u70b9\u7684\u7d22\u5f15\u4e3a \\(i\\) \uff0c\u5219\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 2\\) \u3002\u56fe 7-12 \u5c55\u793a\u4e86\u5404\u4e2a\u8282\u70b9\u7d22\u5f15\u4e4b\u95f4\u7684\u6620\u5c04\u5173\u7cfb\u3002
\u56fe 7-12 \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a
\u6620\u5c04\u516c\u5f0f\u7684\u89d2\u8272\u76f8\u5f53\u4e8e\u94fe\u8868\u4e2d\u7684\u6307\u9488\u3002\u7ed9\u5b9a\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u8282\u70b9\uff0c\u6211\u4eec\u90fd\u53ef\u4ee5\u901a\u8fc7\u6620\u5c04\u516c\u5f0f\u6765\u8bbf\u95ee\u5b83\u7684\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3002
"},{"location":"chapter_tree/array_representation_of_tree/#732","title":"7.3.2 \u00a0 \u8868\u793a\u4efb\u610f\u4e8c\u53c9\u6811","text":"\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u4e00\u4e2a\u7279\u4f8b\uff0c\u5728\u4e8c\u53c9\u6811\u7684\u4e2d\u95f4\u5c42\u901a\u5e38\u5b58\u5728\u8bb8\u591a None \u3002\u7531\u4e8e\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5e76\u4e0d\u5305\u542b\u8fd9\u4e9b None \uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u6cd5\u4ec5\u51ed\u8be5\u5e8f\u5217\u6765\u63a8\u6d4b None \u7684\u6570\u91cf\u548c\u5206\u5e03\u4f4d\u7f6e\u3002\u8fd9\u610f\u5473\u7740\u5b58\u5728\u591a\u79cd\u4e8c\u53c9\u6811\u7ed3\u6784\u90fd\u7b26\u5408\u8be5\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002
\u5982\u56fe 7-13 \u6240\u793a\uff0c\u7ed9\u5b9a\u4e00\u68f5\u975e\u5b8c\u7f8e\u4e8c\u53c9\u6811\uff0c\u4e0a\u8ff0\u6570\u7ec4\u8868\u793a\u65b9\u6cd5\u5df2\u7ecf\u5931\u6548\u3002
\u56fe 7-13 \u00a0 \u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5bf9\u5e94\u591a\u79cd\u4e8c\u53c9\u6811\u53ef\u80fd\u6027
\u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u4e2d\u663e\u5f0f\u5730\u5199\u51fa\u6240\u6709 None \u3002\u5982\u56fe 7-14 \u6240\u793a\uff0c\u8fd9\u6837\u5904\u7406\u540e\uff0c\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5c31\u53ef\u4ee5\u552f\u4e00\u8868\u793a\u4e8c\u53c9\u6811\u4e86\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig # \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\n# \u4f7f\u7528 None \u6765\u8868\u793a\u7a7a\u4f4d\ntree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c INT_MAX \u6807\u8bb0\u7a7a\u4f4d\nvector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u7684\u5305\u88c5\u7c7b Integer \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nInteger[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nint?[] tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 any \u7c7b\u578b\u7684\u5207\u7247, \u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\ntree := []any{1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15}\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 Int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\nlet tree: [Int?] = [1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15]\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree: (number | null)[] = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nList<int?> tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 None \u6765\u6807\u8bb0\u7a7a\u4f4d\nlet tree = [Some(1), Some(2), Some(3), Some(4), None, Some(6), Some(7), Some(8), Some(9), None, None, Some(12), None, None, Some(15)];\n
/* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c\u6807\u8bb0\u7a7a\u4f4d\uff0c\u56e0\u6b64\u8981\u6c42\u8282\u70b9\u503c\u4e0d\u80fd\u4e3a INT_MAX\nint tree[] = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
\n
\u56fe 7-14 \u00a0 \u4efb\u610f\u7c7b\u578b\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a
\u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u4f7f\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u56de\u987e\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u5b9a\u4e49\uff0cNone \u53ea\u51fa\u73b0\u5728\u6700\u5e95\u5c42\u4e14\u9760\u53f3\u7684\u4f4d\u7f6e\uff0c\u56e0\u6b64\u6240\u6709 None \u4e00\u5b9a\u51fa\u73b0\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u672b\u5c3e\u3002
\u8fd9\u610f\u5473\u7740\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u5b8c\u5168\u4e8c\u53c9\u6811\u65f6\uff0c\u53ef\u4ee5\u7701\u7565\u5b58\u50a8\u6240\u6709 None \uff0c\u975e\u5e38\u65b9\u4fbf\u3002\u56fe 7-15 \u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50\u3002
\u56fe 7-15 \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a
\u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u68f5\u57fa\u4e8e\u6570\u7ec4\u8868\u793a\u7684\u4e8c\u53c9\u6811\uff0c\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u64cd\u4f5c\u3002
- \u7ed9\u5b9a\u67d0\u8282\u70b9\uff0c\u83b7\u53d6\u5b83\u7684\u503c\u3001\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3001\u7236\u8282\u70b9\u3002
- \u83b7\u53d6\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u3001\u540e\u5e8f\u904d\u5386\u3001\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig array_binary_tree.pyclass ArrayBinaryTree:\n \"\"\"\u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b\"\"\"\n\n def __init__(self, arr: list[int | None]):\n \"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n self._tree = list(arr)\n\n def size(self):\n \"\"\"\u8282\u70b9\u6570\u91cf\"\"\"\n return len(self._tree)\n\n def val(self, i: int) -> int:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c\"\"\"\n # \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 or i >= self.size():\n return None\n return self._tree[i]\n\n def left(self, i: int) -> int | None:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return 2 * i + 1\n\n def right(self, i: int) -> int | None:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return 2 * i + 2\n\n def parent(self, i: int) -> int | None:\n \"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\n return (i - 1) // 2\n\n def level_order(self) -> list[int]:\n \"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\n self.res = []\n # \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i in range(self.size()):\n if self.val(i) is not None:\n self.res.append(self.val(i))\n return self.res\n\n def dfs(self, i: int, order: str):\n \"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\"\"\"\n if self.val(i) is None:\n return\n # \u524d\u5e8f\u904d\u5386\n if order == \"pre\":\n self.res.append(self.val(i))\n self.dfs(self.left(i), order)\n # \u4e2d\u5e8f\u904d\u5386\n if order == \"in\":\n self.res.append(self.val(i))\n self.dfs(self.right(i), order)\n # \u540e\u5e8f\u904d\u5386\n if order == \"post\":\n self.res.append(self.val(i))\n\n def pre_order(self) -> list[int]:\n \"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\n self.res = []\n self.dfs(0, order=\"pre\")\n return self.res\n\n def in_order(self) -> list[int]:\n \"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\n self.res = []\n self.dfs(0, order=\"in\")\n return self.res\n\n def post_order(self) -> list[int]:\n \"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\n self.res = []\n self.dfs(0, order=\"post\")\n return self.res\n
array_binary_tree.cpp/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n public:\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayBinaryTree(vector<int> arr) {\n tree = arr;\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n int size() {\n return tree.size();\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n int val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size())\n return INT_MAX;\n return tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n int parent(int i) {\n return (i - 1) / 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n vector<int> levelOrder() {\n vector<int> res;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n if (val(i) != INT_MAX)\n res.push_back(val(i));\n }\n return res;\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n vector<int> preOrder() {\n vector<int> res;\n dfs(0, \"pre\", res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n vector<int> inOrder() {\n vector<int> res;\n dfs(0, \"in\", res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n vector<int> postOrder() {\n vector<int> res;\n dfs(0, \"post\", res);\n return res;\n }\n\n private:\n vector<int> tree;\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n void dfs(int i, string order, vector<int> &res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(i) == INT_MAX)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (order == \"pre\")\n res.push_back(val(i));\n dfs(left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order == \"in\")\n res.push_back(val(i));\n dfs(right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order == \"post\")\n res.push_back(val(i));\n }\n};\n
array_binary_tree.java/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n private List<Integer> tree;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n public ArrayBinaryTree(List<Integer> arr) {\n tree = new ArrayList<>(arr);\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n public int size() {\n return tree.size();\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n public Integer val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size())\n return null;\n return tree.get(i);\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public Integer left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public Integer right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n public Integer parent(int i) {\n return (i - 1) / 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n public List<Integer> levelOrder() {\n List<Integer> res = new ArrayList<>();\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size(); i++) {\n if (val(i) != null)\n res.add(val(i));\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n private void dfs(Integer i, String order, List<Integer> res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(i) == null)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (\"pre\".equals(order))\n res.add(val(i));\n dfs(left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (\"in\".equals(order))\n res.add(val(i));\n dfs(right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (\"post\".equals(order))\n res.add(val(i));\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n public List<Integer> preOrder() {\n List<Integer> res = new ArrayList<>();\n dfs(0, \"pre\", res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n public List<Integer> inOrder() {\n List<Integer> res = new ArrayList<>();\n dfs(0, \"in\", res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n public List<Integer> postOrder() {\n List<Integer> res = new ArrayList<>();\n dfs(0, \"post\", res);\n return res;\n }\n}\n
array_binary_tree.cs/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree(List<int?> arr) {\n List<int?> tree = new(arr);\n\n /* \u8282\u70b9\u6570\u91cf */\n public int Size() {\n return tree.Count;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n public int? Val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= Size())\n return null;\n return tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public int Left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n public int Right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n public int Parent(int i) {\n return (i - 1) / 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n public List<int> LevelOrder() {\n List<int> res = [];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < Size(); i++) {\n if (Val(i).HasValue)\n res.Add(Val(i)!.Value);\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n void DFS(int i, string order, List<int> res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (!Val(i).HasValue)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (order == \"pre\")\n res.Add(Val(i)!.Value);\n DFS(Left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order == \"in\")\n res.Add(Val(i)!.Value);\n DFS(Right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order == \"post\")\n res.Add(Val(i)!.Value);\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n public List<int> PreOrder() {\n List<int> res = [];\n DFS(0, \"pre\", res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n public List<int> InOrder() {\n List<int> res = [];\n DFS(0, \"in\", res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n public List<int> PostOrder() {\n List<int> res = [];\n DFS(0, \"post\", res);\n return res;\n }\n}\n
array_binary_tree.go/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\ntype arrayBinaryTree struct {\n tree []any\n}\n\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newArrayBinaryTree(arr []any) *arrayBinaryTree {\n return &arrayBinaryTree{\n tree: arr,\n }\n}\n\n/* \u8282\u70b9\u6570\u91cf */\nfunc (abt *arrayBinaryTree) size() int {\n return len(abt.tree)\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfunc (abt *arrayBinaryTree) val(i int) any {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 || i >= abt.size() {\n return nil\n }\n return abt.tree[i]\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) left(i int) int {\n return 2*i + 1\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) right(i int) int {\n return 2*i + 2\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) parent(i int) int {\n return (i - 1) / 2\n}\n\n/* \u5c42\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) levelOrder() []any {\n var res []any\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i := 0; i < abt.size(); i++ {\n if abt.val(i) != nil {\n res = append(res, abt.val(i))\n }\n }\n return res\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nfunc (abt *arrayBinaryTree) dfs(i int, order string, res *[]any) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if abt.val(i) == nil {\n return\n }\n // \u524d\u5e8f\u904d\u5386\n if order == \"pre\" {\n *res = append(*res, abt.val(i))\n }\n abt.dfs(abt.left(i), order, res)\n // \u4e2d\u5e8f\u904d\u5386\n if order == \"in\" {\n *res = append(*res, abt.val(i))\n }\n abt.dfs(abt.right(i), order, res)\n // \u540e\u5e8f\u904d\u5386\n if order == \"post\" {\n *res = append(*res, abt.val(i))\n }\n}\n\n/* \u524d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) preOrder() []any {\n var res []any\n abt.dfs(0, \"pre\", &res)\n return res\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) inOrder() []any {\n var res []any\n abt.dfs(0, \"in\", &res)\n return res\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) postOrder() []any {\n var res []any\n abt.dfs(0, \"post\", &res)\n return res\n}\n
array_binary_tree.swift/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n private var tree: [Int?]\n\n /* \u6784\u9020\u65b9\u6cd5 */\n init(arr: [Int?]) {\n tree = arr\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n func size() -> Int {\n tree.count\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n func val(i: Int) -> Int? {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 || i >= size() {\n return nil\n }\n return tree[i]\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n func left(i: Int) -> Int {\n 2 * i + 1\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n func right(i: Int) -> Int {\n 2 * i + 2\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n func parent(i: Int) -> Int {\n (i - 1) / 2\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n func levelOrder() -> [Int] {\n var res: [Int] = []\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i in stride(from: 0, to: size(), by: 1) {\n if let val = val(i: i) {\n res.append(val)\n }\n }\n return res\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n private func dfs(i: Int, order: String, res: inout [Int]) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n guard let val = val(i: i) else {\n return\n }\n // \u524d\u5e8f\u904d\u5386\n if order == \"pre\" {\n res.append(val)\n }\n dfs(i: left(i: i), order: order, res: &res)\n // \u4e2d\u5e8f\u904d\u5386\n if order == \"in\" {\n res.append(val)\n }\n dfs(i: right(i: i), order: order, res: &res)\n // \u540e\u5e8f\u904d\u5386\n if order == \"post\" {\n res.append(val)\n }\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n func preOrder() -> [Int] {\n var res: [Int] = []\n dfs(i: 0, order: \"pre\", res: &res)\n return res\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n func inOrder() -> [Int] {\n var res: [Int] = []\n dfs(i: 0, order: \"in\", res: &res)\n return res\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n func postOrder() -> [Int] {\n var res: [Int] = []\n dfs(i: 0, order: \"post\", res: &res)\n return res\n }\n}\n
array_binary_tree.js/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n #tree;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(arr) {\n this.#tree = arr;\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n size() {\n return this.#tree.length;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n val(i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= this.size()) return null;\n return this.#tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n left(i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n right(i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n parent(i) {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n levelOrder() {\n let res = [];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < this.size(); i++) {\n if (this.val(i) !== null) res.push(this.val(i));\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n #dfs(i, order, res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (this.val(i) === null) return;\n // \u524d\u5e8f\u904d\u5386\n if (order === 'pre') res.push(this.val(i));\n this.#dfs(this.left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order === 'in') res.push(this.val(i));\n this.#dfs(this.right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order === 'post') res.push(this.val(i));\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n preOrder() {\n const res = [];\n this.#dfs(0, 'pre', res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n inOrder() {\n const res = [];\n this.#dfs(0, 'in', res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n postOrder() {\n const res = [];\n this.#dfs(0, 'post', res);\n return res;\n }\n}\n
array_binary_tree.ts/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n #tree: (number | null)[];\n\n /* \u6784\u9020\u65b9\u6cd5 */\n constructor(arr: (number | null)[]) {\n this.#tree = arr;\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n size(): number {\n return this.#tree.length;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n val(i: number): number | null {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= this.size()) return null;\n return this.#tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n left(i: number): number {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n right(i: number): number {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n parent(i: number): number {\n return Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n levelOrder(): number[] {\n let res = [];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (let i = 0; i < this.size(); i++) {\n if (this.val(i) !== null) res.push(this.val(i));\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n #dfs(i: number, order: Order, res: (number | null)[]): void {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (this.val(i) === null) return;\n // \u524d\u5e8f\u904d\u5386\n if (order === 'pre') res.push(this.val(i));\n this.#dfs(this.left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order === 'in') res.push(this.val(i));\n this.#dfs(this.right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order === 'post') res.push(this.val(i));\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n preOrder(): (number | null)[] {\n const res = [];\n this.#dfs(0, 'pre', res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n inOrder(): (number | null)[] {\n const res = [];\n this.#dfs(0, 'in', res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n postOrder(): (number | null)[] {\n const res = [];\n this.#dfs(0, 'post', res);\n return res;\n }\n}\n
array_binary_tree.dart/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n late List<int?> _tree;\n\n /* \u6784\u9020\u65b9\u6cd5 */\n ArrayBinaryTree(this._tree);\n\n /* \u8282\u70b9\u6570\u91cf */\n int size() {\n return _tree.length;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n int? val(int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size()) {\n return null;\n }\n return _tree[i];\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int? left(int i) {\n return 2 * i + 1;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n int? right(int i) {\n return 2 * i + 2;\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n int? parent(int i) {\n return (i - 1) ~/ 2;\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n List<int> levelOrder() {\n List<int> res = [];\n for (int i = 0; i < size(); i++) {\n if (val(i) != null) {\n res.add(val(i)!);\n }\n }\n return res;\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n void dfs(int i, String order, List<int?> res) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(i) == null) {\n return;\n }\n // \u524d\u5e8f\u904d\u5386\n if (order == 'pre') {\n res.add(val(i));\n }\n dfs(left(i)!, order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if (order == 'in') {\n res.add(val(i));\n }\n dfs(right(i)!, order, res);\n // \u540e\u5e8f\u904d\u5386\n if (order == 'post') {\n res.add(val(i));\n }\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n List<int?> preOrder() {\n List<int?> res = [];\n dfs(0, 'pre', res);\n return res;\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n List<int?> inOrder() {\n List<int?> res = [];\n dfs(0, 'in', res);\n return res;\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n List<int?> postOrder() {\n List<int?> res = [];\n dfs(0, 'post', res);\n return res;\n }\n}\n
array_binary_tree.rs/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nstruct ArrayBinaryTree {\n tree: Vec<Option<i32>>,\n}\n\nimpl ArrayBinaryTree {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(arr: Vec<Option<i32>>) -> Self {\n Self { tree: arr }\n }\n\n /* \u8282\u70b9\u6570\u91cf */\n fn size(&self) -> i32 {\n self.tree.len() as i32\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\n fn val(&self, i: i32) -> Option<i32> {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if i < 0 || i >= self.size() {\n None\n } else {\n self.tree[i as usize]\n }\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n fn left(&self, i: i32) -> i32 {\n 2 * i + 1\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\n fn right(&self, i: i32) -> i32 {\n 2 * i + 2\n }\n\n /* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\n fn parent(&self, i: i32) -> i32 {\n (i - 1) / 2\n }\n\n /* \u5c42\u5e8f\u904d\u5386 */\n fn level_order(&self) -> Vec<i32> {\n let mut res = vec![];\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for i in 0..self.size() {\n if let Some(val) = self.val(i) {\n res.push(val)\n }\n }\n res\n }\n\n /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n fn dfs(&self, i: i32, order: &str, res: &mut Vec<i32>) {\n if self.val(i).is_none() {\n return;\n }\n let val = self.val(i).unwrap();\n // \u524d\u5e8f\u904d\u5386\n if order == \"pre\" {\n res.push(val);\n }\n self.dfs(self.left(i), order, res);\n // \u4e2d\u5e8f\u904d\u5386\n if order == \"in\" {\n res.push(val);\n }\n self.dfs(self.right(i), order, res);\n // \u540e\u5e8f\u904d\u5386\n if order == \"post\" {\n res.push(val);\n }\n }\n\n /* \u524d\u5e8f\u904d\u5386 */\n fn pre_order(&self) -> Vec<i32> {\n let mut res = vec![];\n self.dfs(0, \"pre\", &mut res);\n res\n }\n\n /* \u4e2d\u5e8f\u904d\u5386 */\n fn in_order(&self) -> Vec<i32> {\n let mut res = vec![];\n self.dfs(0, \"in\", &mut res);\n res\n }\n\n /* \u540e\u5e8f\u904d\u5386 */\n fn post_order(&self) -> Vec<i32> {\n let mut res = vec![];\n self.dfs(0, \"post\", &mut res);\n res\n }\n}\n
array_binary_tree.c/* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7ed3\u6784\u4f53 */\ntypedef struct {\n int *tree;\n int size;\n} ArrayBinaryTree;\n\n/* \u6784\u9020\u51fd\u6570 */\nArrayBinaryTree *newArrayBinaryTree(int *arr, int arrSize) {\n ArrayBinaryTree *abt = (ArrayBinaryTree *)malloc(sizeof(ArrayBinaryTree));\n abt->tree = malloc(sizeof(int) * arrSize);\n memcpy(abt->tree, arr, sizeof(int) * arrSize);\n abt->size = arrSize;\n return abt;\n}\n\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayBinaryTree(ArrayBinaryTree *abt) {\n free(abt->tree);\n free(abt);\n}\n\n/* \u8282\u70b9\u6570\u91cf */\nint size(ArrayBinaryTree *abt) {\n return abt->size;\n}\n\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint val(ArrayBinaryTree *abt, int i) {\n // \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\n if (i < 0 || i >= size(abt))\n return INT_MAX;\n return abt->tree[i];\n}\n\n/* \u5c42\u5e8f\u904d\u5386 */\nint *levelOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n // \u76f4\u63a5\u904d\u5386\u6570\u7ec4\n for (int i = 0; i < size(abt); i++) {\n if (val(abt, i) != INT_MAX)\n res[index++] = val(abt, i);\n }\n *returnSize = index;\n return res;\n}\n\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(ArrayBinaryTree *abt, int i, char *order, int *res, int *index) {\n // \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\n if (val(abt, i) == INT_MAX)\n return;\n // \u524d\u5e8f\u904d\u5386\n if (strcmp(order, \"pre\") == 0)\n res[(*index)++] = val(abt, i);\n dfs(abt, left(i), order, res, index);\n // \u4e2d\u5e8f\u904d\u5386\n if (strcmp(order, \"in\") == 0)\n res[(*index)++] = val(abt, i);\n dfs(abt, right(i), order, res, index);\n // \u540e\u5e8f\u904d\u5386\n if (strcmp(order, \"post\") == 0)\n res[(*index)++] = val(abt, i);\n}\n\n/* \u524d\u5e8f\u904d\u5386 */\nint *preOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n dfs(abt, 0, \"pre\", res, &index);\n *returnSize = index;\n return res;\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nint *inOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n dfs(abt, 0, \"in\", res, &index);\n *returnSize = index;\n return res;\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nint *postOrder(ArrayBinaryTree *abt, int *returnSize) {\n int *res = (int *)malloc(sizeof(int) * size(abt));\n int index = 0;\n dfs(abt, 0, \"post\", res, &index);\n *returnSize = index;\n return res;\n}\n
array_binary_tree.zig[class]{ArrayBinaryTree}-[func]{}\n
"},{"location":"chapter_tree/array_representation_of_tree/#733","title":"7.3.3 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\u4e3b\u8981\u6709\u4ee5\u4e0b\u4f18\u70b9\u3002
- \u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u5bf9\u7f13\u5b58\u53cb\u597d\uff0c\u8bbf\u95ee\u4e0e\u904d\u5386\u901f\u5ea6\u8f83\u5feb\u3002
- \u4e0d\u9700\u8981\u5b58\u50a8\u6307\u9488\uff0c\u6bd4\u8f83\u8282\u7701\u7a7a\u95f4\u3002
- \u5141\u8bb8\u968f\u673a\u8bbf\u95ee\u8282\u70b9\u3002
\u7136\u800c\uff0c\u6570\u7ec4\u8868\u793a\u4e5f\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\u3002
- \u6570\u7ec4\u5b58\u50a8\u9700\u8981\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5b58\u50a8\u6570\u636e\u91cf\u8fc7\u5927\u7684\u6811\u3002
- \u589e\u5220\u8282\u70b9\u9700\u8981\u901a\u8fc7\u6570\u7ec4\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u5b9e\u73b0\uff0c\u6548\u7387\u8f83\u4f4e\u3002
- \u5f53\u4e8c\u53c9\u6811\u4e2d\u5b58\u5728\u5927\u91cf
None \u65f6\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u7684\u8282\u70b9\u6570\u636e\u6bd4\u91cd\u8f83\u4f4e\uff0c\u7a7a\u95f4\u5229\u7528\u7387\u8f83\u4f4e\u3002
"},{"location":"chapter_tree/avl_tree/","title":"7.5 \u00a0 AVL \u6811 *","text":"\u5728\u201c\u4e8c\u53c9\u641c\u7d22\u6811\u201d\u7ae0\u8282\u4e2d\u6211\u4eec\u63d0\u5230\uff0c\u5728\u591a\u6b21\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u540e\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u9000\u5316\u4e3a\u94fe\u8868\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c06\u4ece \\(O(\\log n)\\) \u52a3\u5316\u4e3a \\(O(n)\\) \u3002
\u5982\u56fe 7-24 \u6240\u793a\uff0c\u7ecf\u8fc7\u4e24\u6b21\u5220\u9664\u8282\u70b9\u64cd\u4f5c\uff0c\u8fd9\u68f5\u4e8c\u53c9\u641c\u7d22\u6811\u4fbf\u4f1a\u9000\u5316\u4e3a\u94fe\u8868\u3002
\u56fe 7-24 \u00a0 AVL \u6811\u5728\u5220\u9664\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316
\u518d\u4f8b\u5982\uff0c\u5728\u56fe 7-25 \u6240\u793a\u7684\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e24\u4e2a\u8282\u70b9\u540e\uff0c\u6811\u5c06\u4e25\u91cd\u5411\u5de6\u503e\u659c\uff0c\u67e5\u627e\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u968f\u4e4b\u52a3\u5316\u3002
\u56fe 7-25 \u00a0 AVL \u6811\u5728\u63d2\u5165\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316
1962 \u5e74 G. M. Adelson-Velsky \u548c E. M. Landis \u5728\u8bba\u6587\u201cAn algorithm for the organization of information\u201d\u4e2d\u63d0\u51fa\u4e86\u300cAVL \u6811\u300d\u3002\u8bba\u6587\u4e2d\u8be6\u7ec6\u63cf\u8ff0\u4e86\u4e00\u7cfb\u5217\u64cd\u4f5c\uff0c\u786e\u4fdd\u5728\u6301\u7eed\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4e0d\u4f1a\u9000\u5316\uff0c\u4ece\u800c\u4f7f\u5f97\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4fdd\u6301\u5728 \\(O(\\log n)\\) \u7ea7\u522b\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u5728\u9700\u8981\u9891\u7e41\u8fdb\u884c\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u7684\u573a\u666f\u4e2d\uff0cAVL \u6811\u80fd\u59cb\u7ec8\u4fdd\u6301\u9ad8\u6548\u7684\u6570\u636e\u64cd\u4f5c\u6027\u80fd\uff0c\u5177\u6709\u5f88\u597d\u7684\u5e94\u7528\u4ef7\u503c\u3002
"},{"location":"chapter_tree/avl_tree/#751-avl","title":"7.5.1 \u00a0 AVL \u6811\u5e38\u89c1\u672f\u8bed","text":"AVL \u6811\u65e2\u662f\u4e8c\u53c9\u641c\u7d22\u6811\u4e5f\u662f\u5e73\u8861\u4e8c\u53c9\u6811\uff0c\u540c\u65f6\u6ee1\u8db3\u8fd9\u4e24\u7c7b\u4e8c\u53c9\u6811\u7684\u6240\u6709\u6027\u8d28\uff0c\u56e0\u6b64\u4e5f\u88ab\u79f0\u4e3a\u300c\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811 balanced binary search tree\u300d\u3002
"},{"location":"chapter_tree/avl_tree/#1","title":"1. \u00a0 \u8282\u70b9\u9ad8\u5ea6","text":"\u7531\u4e8e AVL \u6811\u7684\u76f8\u5173\u64cd\u4f5c\u9700\u8981\u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u4e3a\u8282\u70b9\u7c7b\u6dfb\u52a0 height \u53d8\u91cf\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig class TreeNode:\n \"\"\"AVL \u6811\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.height: int = 0 # \u8282\u70b9\u9ad8\u5ea6\n self.left: TreeNode | None = None # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n self.right: TreeNode | None = None # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nstruct TreeNode {\n int val{}; // \u8282\u70b9\u503c\n int height = 0; // \u8282\u70b9\u9ad8\u5ea6\n TreeNode *left{}; // \u5de6\u5b50\u8282\u70b9\n TreeNode *right{}; // \u53f3\u5b50\u8282\u70b9\n TreeNode() = default;\n explicit TreeNode(int x) : val(x){}\n};\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n public int val; // \u8282\u70b9\u503c\n public int height; // \u8282\u70b9\u9ad8\u5ea6\n public TreeNode left; // \u5de6\u5b50\u8282\u70b9\n public TreeNode right; // \u53f3\u5b50\u8282\u70b9\n public TreeNode(int x) { val = x; }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode(int? x) {\n public int? val = x; // \u8282\u70b9\u503c\n public int height; // \u8282\u70b9\u9ad8\u5ea6\n public TreeNode? left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n public TreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
/* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\n Val int // \u8282\u70b9\u503c\n Height int // \u8282\u70b9\u9ad8\u5ea6\n Left *TreeNode // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n Right *TreeNode // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n var val: Int // \u8282\u70b9\u503c\n var height: Int // \u8282\u70b9\u9ad8\u5ea6\n var left: TreeNode? // \u5de6\u5b50\u8282\u70b9\n var right: TreeNode? // \u53f3\u5b50\u8282\u70b9\n\n init(x: Int) {\n val = x\n height = 0\n }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val; // \u8282\u70b9\u503c\n height; //\u8282\u70b9\u9ad8\u5ea6\n left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n constructor(val, left, right, height) {\n this.val = val === undefined ? 0 : val;\n this.height = height === undefined ? 0 : height;\n this.left = left === undefined ? null : left;\n this.right = right === undefined ? null : right;\n }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val: number; // \u8282\u70b9\u503c\n height: number; // \u8282\u70b9\u9ad8\u5ea6\n left: TreeNode | null; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n right: TreeNode | null; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {\n this.val = val === undefined ? 0 : val;\n this.height = height === undefined ? 0 : height; \n this.left = left === undefined ? null : left; \n this.right = right === undefined ? null : right; \n }\n}\n
/* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n int val; // \u8282\u70b9\u503c\n int height; // \u8282\u70b9\u9ad8\u5ea6\n TreeNode? left; // \u5de6\u5b50\u8282\u70b9\n TreeNode? right; // \u53f3\u5b50\u8282\u70b9\n TreeNode(this.val, [this.height = 0, this.left, this.right]);\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\n val: i32, // \u8282\u70b9\u503c\n height: i32, // \u8282\u70b9\u9ad8\u5ea6\n left: Option<Rc<RefCell<TreeNode>>>, // \u5de6\u5b50\u8282\u70b9\n right: Option<Rc<RefCell<TreeNode>>>, // \u53f3\u5b50\u8282\u70b9\n}\n\nimpl TreeNode {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(val: i32) -> Rc<RefCell<Self>> {\n Rc::new(RefCell::new(Self {\n val,\n height: 0,\n left: None,\n right: None\n }))\n }\n}\n
/* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nTreeNode struct TreeNode {\n int val;\n int height;\n struct TreeNode *left;\n struct TreeNode *right;\n} TreeNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\n TreeNode *node;\n\n node = (TreeNode *)malloc(sizeof(TreeNode));\n node->val = val;\n node->height = 0;\n node->left = NULL;\n node->right = NULL;\n return node;\n}\n
\n
\u201c\u8282\u70b9\u9ad8\u5ea6\u201d\u662f\u6307\u4ece\u8be5\u8282\u70b9\u5230\u5b83\u7684\u6700\u8fdc\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u5373\u6240\u7ecf\u8fc7\u7684\u201c\u8fb9\u201d\u7684\u6570\u91cf\u3002\u9700\u8981\u7279\u522b\u6ce8\u610f\u7684\u662f\uff0c\u53f6\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a \\(0\\) \uff0c\u800c\u7a7a\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a \\(-1\\) \u3002\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u5de5\u5177\u51fd\u6570\uff0c\u5206\u522b\u7528\u4e8e\u83b7\u53d6\u548c\u66f4\u65b0\u8282\u70b9\u7684\u9ad8\u5ea6\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef height(self, node: TreeNode | None) -> int:\n \"\"\"\u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\"\"\"\n # \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n if node is not None:\n return node.height\n return -1\n\ndef update_height(self, node: TreeNode | None):\n \"\"\"\u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\"\"\"\n # \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height = max([self.height(node.left), self.height(node.right)]) + 1\n
avl_tree.cpp/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == nullptr ? -1 : node->height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node->height = max(height(node->left), height(node->right)) + 1;\n}\n
avl_tree.java/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height = Math.max(height(node.left), height(node.right)) + 1;\n}\n
avl_tree.cs/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint Height(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid UpdateHeight(TreeNode node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height = Math.Max(Height(node.left), Height(node.right)) + 1;\n}\n
avl_tree.go/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) height(node *TreeNode) int {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n if node != nil {\n return node.Height\n }\n return -1\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) updateHeight(node *TreeNode) {\n lh := t.height(node.Left)\n rh := t.height(node.Right)\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n if lh > rh {\n node.Height = lh + 1\n } else {\n node.Height = rh + 1\n }\n}\n
avl_tree.swift/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc height(node: TreeNode?) -> Int {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n node == nil ? -1 : node!.height\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc updateHeight(node: TreeNode?) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node?.height = max(height(node: node?.left), height(node: node?.right)) + 1\n}\n
avl_tree.js/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node === null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\n#updateHeight(node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height =\n Math.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
avl_tree.ts/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node: TreeNode): number {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node === null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nupdateHeight(node: TreeNode): void {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.height =\n Math.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
avl_tree.dart/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return node == null ? -1 : node.height;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode? node) {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node!.height = max(height(node.left), height(node.right)) + 1;\n}\n
avl_tree.rs/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfn height(node: OptionTreeNodeRc) -> i32 {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n match node {\n Some(node) => node.borrow().height,\n None => -1,\n }\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfn update_height(node: OptionTreeNodeRc) {\n if let Some(node) = node {\n let left = node.borrow().left.clone();\n let right = node.borrow().right.clone();\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.borrow_mut().height = std::cmp::max(Self::height(left), Self::height(right)) + 1;\n }\n}\n
avl_tree.c/* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n if (node != NULL) {\n return node->height;\n }\n return -1;\n}\n\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\n int lh = height(node->left);\n int rh = height(node->right);\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n if (lh > rh) {\n node->height = lh + 1;\n } else {\n node->height = rh + 1;\n }\n}\n
avl_tree.zig// \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\nfn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n _ = self;\n // \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\n return if (node == null) -1 else node.?.height;\n}\n\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nfn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {\n // \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\n node.?.height = @max(self.height(node.?.left), self.height(node.?.right)) + 1;\n}\n
"},{"location":"chapter_tree/avl_tree/#2","title":"2. \u00a0 \u8282\u70b9\u5e73\u8861\u56e0\u5b50","text":"\u8282\u70b9\u7684\u300c\u5e73\u8861\u56e0\u5b50 balance factor\u300d\u5b9a\u4e49\u4e3a\u8282\u70b9\u5de6\u5b50\u6811\u7684\u9ad8\u5ea6\u51cf\u53bb\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\uff0c\u540c\u65f6\u89c4\u5b9a\u7a7a\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4e3a \\(0\\) \u3002\u6211\u4eec\u540c\u6837\u5c06\u83b7\u53d6\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u7684\u529f\u80fd\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef balance_factor(self, node: TreeNode | None) -> int:\n \"\"\"\u83b7\u53d6\u5e73\u8861\u56e0\u5b50\"\"\"\n # \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if node is None:\n return 0\n # \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return self.height(node.left) - self.height(node.right)\n
avl_tree.cpp/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == nullptr)\n return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node->left) - height(node->right);\n}\n
avl_tree.java/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null)\n return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node.left) - height(node.right);\n}\n
avl_tree.cs/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint BalanceFactor(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return Height(node.left) - Height(node.right);\n}\n
avl_tree.go/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc (t *aVLTree) balanceFactor(node *TreeNode) int {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if node == nil {\n return 0\n }\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return t.height(node.Left) - t.height(node.Right)\n}\n
avl_tree.swift/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc balanceFactor(node: TreeNode?) -> Int {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n guard let node = node else { return 0 }\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node: node.left) - height(node: node.right)\n}\n
avl_tree.js/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node === null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return this.height(node.left) - this.height(node.right);\n}\n
avl_tree.ts/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node: TreeNode): number {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node === null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return this.height(node.left) - this.height(node.right);\n}\n
avl_tree.dart/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode? node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node.left) - height(node.right);\n}\n
avl_tree.rs/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfn balance_factor(node: OptionTreeNodeRc) -> i32 {\n match node {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n None => 0,\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n Some(node) => {\n Self::height(node.borrow().left.clone()) - Self::height(node.borrow().right.clone())\n }\n }\n}\n
avl_tree.c/* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == NULL) {\n return 0;\n }\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return height(node->left) - height(node->right);\n}\n
avl_tree.zig// \u83b7\u53d6\u5e73\u8861\u56e0\u5b50\nfn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n // \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\n if (node == null) return 0;\n // \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\n return self.height(node.?.left) - self.height(node.?.right);\n}\n
Note
\u8bbe\u5e73\u8861\u56e0\u5b50\u4e3a \\(f\\) \uff0c\u5219\u4e00\u68f5 AVL \u6811\u7684\u4efb\u610f\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7686\u6ee1\u8db3 \\(-1 \\le f \\le 1\\) \u3002
"},{"location":"chapter_tree/avl_tree/#752-avl","title":"7.5.2 \u00a0 AVL \u6811\u65cb\u8f6c","text":"AVL \u6811\u7684\u7279\u70b9\u5728\u4e8e\u201c\u65cb\u8f6c\u201d\u64cd\u4f5c\uff0c\u5b83\u80fd\u591f\u5728\u4e0d\u5f71\u54cd\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u524d\u63d0\u4e0b\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u65cb\u8f6c\u64cd\u4f5c\u65e2\u80fd\u4fdd\u6301\u201c\u4e8c\u53c9\u641c\u7d22\u6811\u201d\u7684\u6027\u8d28\uff0c\u4e5f\u80fd\u4f7f\u6811\u91cd\u65b0\u53d8\u4e3a\u201c\u5e73\u8861\u4e8c\u53c9\u6811\u201d\u3002
\u6211\u4eec\u5c06\u5e73\u8861\u56e0\u5b50\u7edd\u5bf9\u503c \\(> 1\\) \u7684\u8282\u70b9\u79f0\u4e3a\u201c\u5931\u8861\u8282\u70b9\u201d\u3002\u6839\u636e\u8282\u70b9\u5931\u8861\u60c5\u51b5\u7684\u4e0d\u540c\uff0c\u65cb\u8f6c\u64cd\u4f5c\u5206\u4e3a\u56db\u79cd\uff1a\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u540e\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u540e\u53f3\u65cb\u3002\u4e0b\u9762\u8be6\u7ec6\u4ecb\u7ecd\u8fd9\u4e9b\u65cb\u8f6c\u64cd\u4f5c\u3002
"},{"location":"chapter_tree/avl_tree/#1_1","title":"1. \u00a0 \u53f3\u65cb","text":"\u5982\u56fe 7-26 \u6240\u793a\uff0c\u8282\u70b9\u4e0b\u65b9\u4e3a\u5e73\u8861\u56e0\u5b50\u3002\u4ece\u5e95\u81f3\u9876\u770b\uff0c\u4e8c\u53c9\u6811\u4e2d\u9996\u4e2a\u5931\u8861\u8282\u70b9\u662f\u201c\u8282\u70b9 3\u201d\u3002\u6211\u4eec\u5173\u6ce8\u4ee5\u8be5\u5931\u8861\u8282\u70b9\u4e3a\u6839\u8282\u70b9\u7684\u5b50\u6811\uff0c\u5c06\u8be5\u8282\u70b9\u8bb0\u4e3a node \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u8bb0\u4e3a child \uff0c\u6267\u884c\u201c\u53f3\u65cb\u201d\u64cd\u4f5c\u3002\u5b8c\u6210\u53f3\u65cb\u540e\uff0c\u5b50\u6811\u6062\u590d\u5e73\u8861\uff0c\u5e76\u4e14\u4ecd\u7136\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6027\u8d28\u3002
<1><2><3><4> \u56fe 7-26 \u00a0 \u53f3\u65cb\u64cd\u4f5c\u6b65\u9aa4
\u5982\u56fe 7-27 \u6240\u793a\uff0c\u5f53\u8282\u70b9 child \u6709\u53f3\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grand_child \uff09\u65f6\uff0c\u9700\u8981\u5728\u53f3\u65cb\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grand_child \u4f5c\u4e3a node \u7684\u5de6\u5b50\u8282\u70b9\u3002
\u56fe 7-27 \u00a0 \u6709 grand_child \u7684\u53f3\u65cb\u64cd\u4f5c
\u201c\u5411\u53f3\u65cb\u8f6c\u201d\u662f\u4e00\u79cd\u5f62\u8c61\u5316\u7684\u8bf4\u6cd5\uff0c\u5b9e\u9645\u4e0a\u9700\u8981\u901a\u8fc7\u4fee\u6539\u8282\u70b9\u6307\u9488\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef right_rotate(self, node: TreeNode | None) -> TreeNode | None:\n \"\"\"\u53f3\u65cb\u64cd\u4f5c\"\"\"\n child = node.left\n grand_child = child.right\n # \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node\n node.left = grand_child\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n self.update_height(child)\n # \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n
avl_tree.cpp/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\n TreeNode *child = node->left;\n TreeNode *grandChild = child->right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child->right = node;\n node->left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.java/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode rightRotate(TreeNode node) {\n TreeNode child = node.left;\n TreeNode grandChild = child.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.cs/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? RightRotate(TreeNode? node) {\n TreeNode? child = node?.left;\n TreeNode? grandChild = child?.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n UpdateHeight(node);\n UpdateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.go/* \u53f3\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) rightRotate(node *TreeNode) *TreeNode {\n child := node.Left\n grandChild := child.Right\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.Right = node\n node.Left = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n t.updateHeight(child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.swift/* \u53f3\u65cb\u64cd\u4f5c */\nfunc rightRotate(node: TreeNode?) -> TreeNode? {\n let child = node?.left\n let grandChild = child?.right\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child?.right = node\n node?.left = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node: node)\n updateHeight(node: child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.js/* \u53f3\u65cb\u64cd\u4f5c */\n#rightRotate(node) {\n const child = node.left;\n const grandChild = child.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.#updateHeight(node);\n this.#updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.ts/* \u53f3\u65cb\u64cd\u4f5c */\nrightRotate(node: TreeNode): TreeNode {\n const child = node.left;\n const grandChild = child.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.updateHeight(node);\n this.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.dart/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? rightRotate(TreeNode? node) {\n TreeNode? child = node!.left;\n TreeNode? grandChild = child!.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.right = node;\n node.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.rs/* \u53f3\u65cb\u64cd\u4f5c */\nfn right_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n match node {\n Some(node) => {\n let child = node.borrow().left.clone().unwrap();\n let grand_child = child.borrow().right.clone();\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.borrow_mut().right = Some(node.clone());\n node.borrow_mut().left = grand_child;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n Self::update_height(Some(node));\n Self::update_height(Some(child.clone()));\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(child)\n }\n None => None,\n }\n}\n
avl_tree.c/* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\n TreeNode *child, *grandChild;\n child = node->left;\n grandChild = child->right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child->right = node;\n node->left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.zig// \u53f3\u65cb\u64cd\u4f5c\nfn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n var child = node.?.left;\n var grandChild = child.?.right;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\n child.?.right = node;\n node.?.left = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.updateHeight(node);\n self.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
"},{"location":"chapter_tree/avl_tree/#2_1","title":"2. \u00a0 \u5de6\u65cb","text":"\u76f8\u5e94\u5730\uff0c\u5982\u679c\u8003\u8651\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u201c\u955c\u50cf\u201d\uff0c\u5219\u9700\u8981\u6267\u884c\u56fe 7-28 \u6240\u793a\u7684\u201c\u5de6\u65cb\u201d\u64cd\u4f5c\u3002
\u56fe 7-28 \u00a0 \u5de6\u65cb\u64cd\u4f5c
\u540c\u7406\uff0c\u5982\u56fe 7-29 \u6240\u793a\uff0c\u5f53\u8282\u70b9 child \u6709\u5de6\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grand_child \uff09\u65f6\uff0c\u9700\u8981\u5728\u5de6\u65cb\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grand_child \u4f5c\u4e3a node \u7684\u53f3\u5b50\u8282\u70b9\u3002
\u56fe 7-29 \u00a0 \u6709 grand_child \u7684\u5de6\u65cb\u64cd\u4f5c
\u53ef\u4ee5\u89c2\u5bdf\u5230\uff0c\u53f3\u65cb\u548c\u5de6\u65cb\u64cd\u4f5c\u5728\u903b\u8f91\u4e0a\u662f\u955c\u50cf\u5bf9\u79f0\u7684\uff0c\u5b83\u4eec\u5206\u522b\u89e3\u51b3\u7684\u4e24\u79cd\u5931\u8861\u60c5\u51b5\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u57fa\u4e8e\u5bf9\u79f0\u6027\uff0c\u6211\u4eec\u53ea\u9700\u5c06\u53f3\u65cb\u7684\u5b9e\u73b0\u4ee3\u7801\u4e2d\u7684\u6240\u6709\u7684 left \u66ff\u6362\u4e3a right \uff0c\u5c06\u6240\u6709\u7684 right \u66ff\u6362\u4e3a left \uff0c\u5373\u53ef\u5f97\u5230\u5de6\u65cb\u7684\u5b9e\u73b0\u4ee3\u7801\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef left_rotate(self, node: TreeNode | None) -> TreeNode | None:\n \"\"\"\u5de6\u65cb\u64cd\u4f5c\"\"\"\n child = node.right\n grand_child = child.left\n # \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node\n node.right = grand_child\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n self.update_height(child)\n # \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n
avl_tree.cpp/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\n TreeNode *child = node->right;\n TreeNode *grandChild = child->left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child->left = node;\n node->right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.java/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode leftRotate(TreeNode node) {\n TreeNode child = node.right;\n TreeNode grandChild = child.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.cs/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? LeftRotate(TreeNode? node) {\n TreeNode? child = node?.right;\n TreeNode? grandChild = child?.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n UpdateHeight(node);\n UpdateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.go/* \u5de6\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) leftRotate(node *TreeNode) *TreeNode {\n child := node.Right\n grandChild := child.Left\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.Left = node\n node.Right = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n t.updateHeight(child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.swift/* \u5de6\u65cb\u64cd\u4f5c */\nfunc leftRotate(node: TreeNode?) -> TreeNode? {\n let child = node?.right\n let grandChild = child?.left\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child?.left = node\n node?.right = grandChild\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node: node)\n updateHeight(node: child)\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child\n}\n
avl_tree.js/* \u5de6\u65cb\u64cd\u4f5c */\n#leftRotate(node) {\n const child = node.right;\n const grandChild = child.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.#updateHeight(node);\n this.#updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.ts/* \u5de6\u65cb\u64cd\u4f5c */\nleftRotate(node: TreeNode): TreeNode {\n const child = node.right;\n const grandChild = child.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n this.updateHeight(node);\n this.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.dart/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? leftRotate(TreeNode? node) {\n TreeNode? child = node!.right;\n TreeNode? grandChild = child!.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.left = node;\n node.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.rs/* \u5de6\u65cb\u64cd\u4f5c */\nfn left_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n match node {\n Some(node) => {\n let child = node.borrow().right.clone().unwrap();\n let grand_child = child.borrow().left.clone();\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.borrow_mut().left = Some(node.clone());\n node.borrow_mut().right = grand_child;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n Self::update_height(Some(node));\n Self::update_height(Some(child.clone()));\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(child)\n }\n None => None,\n }\n}\n
avl_tree.c/* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\n TreeNode *child, *grandChild;\n child = node->right;\n grandChild = child->left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child->left = node;\n node->right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
avl_tree.zig// \u5de6\u65cb\u64cd\u4f5c\nfn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n var child = node.?.right;\n var grandChild = child.?.left;\n // \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\n child.?.left = node;\n node.?.right = grandChild;\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.updateHeight(node);\n self.updateHeight(child);\n // \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\n return child;\n}\n
"},{"location":"chapter_tree/avl_tree/#3","title":"3. \u00a0 \u5148\u5de6\u65cb\u540e\u53f3\u65cb","text":"\u5bf9\u4e8e\u56fe 7-30 \u4e2d\u7684\u5931\u8861\u8282\u70b9 3 \uff0c\u4ec5\u4f7f\u7528\u5de6\u65cb\u6216\u53f3\u65cb\u90fd\u65e0\u6cd5\u4f7f\u5b50\u6811\u6062\u590d\u5e73\u8861\u3002\u6b64\u65f6\u9700\u8981\u5148\u5bf9 child \u6267\u884c\u201c\u5de6\u65cb\u201d\uff0c\u518d\u5bf9 node \u6267\u884c\u201c\u53f3\u65cb\u201d\u3002
\u56fe 7-30 \u00a0 \u5148\u5de6\u65cb\u540e\u53f3\u65cb
"},{"location":"chapter_tree/avl_tree/#4","title":"4. \u00a0 \u5148\u53f3\u65cb\u540e\u5de6\u65cb","text":"\u5982\u56fe 7-31 \u6240\u793a\uff0c\u5bf9\u4e8e\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u955c\u50cf\u60c5\u51b5\uff0c\u9700\u8981\u5148\u5bf9 child \u6267\u884c\u201c\u53f3\u65cb\u201d\uff0c\u518d\u5bf9 node \u6267\u884c\u201c\u5de6\u65cb\u201d\u3002
\u56fe 7-31 \u00a0 \u5148\u53f3\u65cb\u540e\u5de6\u65cb
"},{"location":"chapter_tree/avl_tree/#5","title":"5. \u00a0 \u65cb\u8f6c\u7684\u9009\u62e9","text":"\u56fe 7-32 \u5c55\u793a\u7684\u56db\u79cd\u5931\u8861\u60c5\u51b5\u4e0e\u4e0a\u8ff0\u6848\u4f8b\u9010\u4e2a\u5bf9\u5e94\uff0c\u5206\u522b\u9700\u8981\u91c7\u7528\u53f3\u65cb\u3001\u5148\u5de6\u65cb\u540e\u53f3\u65cb\u3001\u5148\u53f3\u65cb\u540e\u5de6\u65cb\u3001\u5de6\u65cb\u7684\u64cd\u4f5c\u3002
\u56fe 7-32 \u00a0 AVL \u6811\u7684\u56db\u79cd\u65cb\u8f6c\u60c5\u51b5
\u5982\u4e0b\u8868\u6240\u793a\uff0c\u6211\u4eec\u901a\u8fc7\u5224\u65ad\u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4ee5\u53ca\u8f83\u9ad8\u4e00\u4fa7\u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7684\u6b63\u8d1f\u53f7\uff0c\u6765\u786e\u5b9a\u5931\u8861\u8282\u70b9\u5c5e\u4e8e\u56fe 7-32 \u4e2d\u7684\u54ea\u79cd\u60c5\u51b5\u3002
\u8868 7-3 \u00a0 \u56db\u79cd\u65cb\u8f6c\u60c5\u51b5\u7684\u9009\u62e9\u6761\u4ef6
\u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5e94\u91c7\u7528\u7684\u65cb\u8f6c\u65b9\u6cd5 \\(> 1\\) \uff08\u5de6\u504f\u6811\uff09 \\(\\geq 0\\) \u53f3\u65cb \\(> 1\\) \uff08\u5de6\u504f\u6811\uff09 \\(<0\\) \u5148\u5de6\u65cb\u540e\u53f3\u65cb \\(< -1\\) \uff08\u53f3\u504f\u6811\uff09 \\(\\leq 0\\) \u5de6\u65cb \\(< -1\\) \uff08\u53f3\u504f\u6811\uff09 \\(>0\\) \u5148\u53f3\u65cb\u540e\u5de6\u65cb \u4e3a\u4e86\u4fbf\u4e8e\u4f7f\u7528\uff0c\u6211\u4eec\u5c06\u65cb\u8f6c\u64cd\u4f5c\u5c01\u88c5\u6210\u4e00\u4e2a\u51fd\u6570\u3002\u6709\u4e86\u8fd9\u4e2a\u51fd\u6570\uff0c\u6211\u4eec\u5c31\u80fd\u5bf9\u5404\u79cd\u5931\u8861\u60c5\u51b5\u8fdb\u884c\u65cb\u8f6c\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef rotate(self, node: TreeNode | None) -> TreeNode | None:\n \"\"\"\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\"\"\"\n # \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n balance_factor = self.balance_factor(node)\n # \u5de6\u504f\u6811\n if balance_factor > 1:\n if self.balance_factor(node.left) >= 0:\n # \u53f3\u65cb\n return self.right_rotate(node)\n else:\n # \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = self.left_rotate(node.left)\n return self.right_rotate(node)\n # \u53f3\u504f\u6811\n elif balance_factor < -1:\n if self.balance_factor(node.right) <= 0:\n # \u5de6\u65cb\n return self.left_rotate(node)\n else:\n # \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = self.right_rotate(node.right)\n return self.left_rotate(node)\n # \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n
avl_tree.cpp/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int _balanceFactor = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (_balanceFactor > 1) {\n if (balanceFactor(node->left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node->left = leftRotate(node->left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (_balanceFactor < -1) {\n if (balanceFactor(node->right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node->right = rightRotate(node->right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.java/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode rotate(TreeNode node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int balanceFactor = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactor > 1) {\n if (balanceFactor(node.left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = leftRotate(node.left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactor < -1) {\n if (balanceFactor(node.right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = rightRotate(node.right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.cs/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? Rotate(TreeNode? node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int balanceFactorInt = BalanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactorInt > 1) {\n if (BalanceFactor(node?.left) >= 0) {\n // \u53f3\u65cb\n return RightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node!.left = LeftRotate(node!.left);\n return RightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactorInt < -1) {\n if (BalanceFactor(node?.right) <= 0) {\n // \u5de6\u65cb\n return LeftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node!.right = RightRotate(node!.right);\n return LeftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.go/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc (t *aVLTree) rotate(node *TreeNode) *TreeNode {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n // Go \u63a8\u8350\u77ed\u53d8\u91cf\uff0c\u8fd9\u91cc bf \u6307\u4ee3 t.balanceFactor\n bf := t.balanceFactor(node)\n // \u5de6\u504f\u6811\n if bf > 1 {\n if t.balanceFactor(node.Left) >= 0 {\n // \u53f3\u65cb\n return t.rightRotate(node)\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.Left = t.leftRotate(node.Left)\n return t.rightRotate(node)\n }\n }\n // \u53f3\u504f\u6811\n if bf < -1 {\n if t.balanceFactor(node.Right) <= 0 {\n // \u5de6\u65cb\n return t.leftRotate(node)\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.Right = t.rightRotate(node.Right)\n return t.leftRotate(node)\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n}\n
avl_tree.swift/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc rotate(node: TreeNode?) -> TreeNode? {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n let balanceFactor = balanceFactor(node: node)\n // \u5de6\u504f\u6811\n if balanceFactor > 1 {\n if self.balanceFactor(node: node?.left) >= 0 {\n // \u53f3\u65cb\n return rightRotate(node: node)\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node?.left = leftRotate(node: node?.left)\n return rightRotate(node: node)\n }\n }\n // \u53f3\u504f\u6811\n if balanceFactor < -1 {\n if self.balanceFactor(node: node?.right) <= 0 {\n // \u5de6\u65cb\n return leftRotate(node: node)\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node?.right = rightRotate(node: node?.right)\n return leftRotate(node: node)\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n}\n
avl_tree.js/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n#rotate(node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n const balanceFactor = this.balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactor > 1) {\n if (this.balanceFactor(node.left) >= 0) {\n // \u53f3\u65cb\n return this.#rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = this.#leftRotate(node.left);\n return this.#rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactor < -1) {\n if (this.balanceFactor(node.right) <= 0) {\n // \u5de6\u65cb\n return this.#leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = this.#rightRotate(node.right);\n return this.#leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.ts/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nrotate(node: TreeNode): TreeNode {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n const balanceFactor = this.balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balanceFactor > 1) {\n if (this.balanceFactor(node.left) >= 0) {\n // \u53f3\u65cb\n return this.rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = this.leftRotate(node.left);\n return this.rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balanceFactor < -1) {\n if (this.balanceFactor(node.right) <= 0) {\n // \u5de6\u65cb\n return this.leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = this.rightRotate(node.right);\n return this.leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.dart/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? rotate(TreeNode? node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int factor = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (factor > 1) {\n if (balanceFactor(node!.left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.left = leftRotate(node.left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (factor < -1) {\n if (balanceFactor(node!.right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.right = rightRotate(node.right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.rs/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfn rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n let balance_factor = Self::balance_factor(node.clone());\n // \u5de6\u504f\u6811\n if balance_factor > 1 {\n let node = node.unwrap();\n if Self::balance_factor(node.borrow().left.clone()) >= 0 {\n // \u53f3\u65cb\n Self::right_rotate(Some(node))\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n let left = node.borrow().left.clone();\n node.borrow_mut().left = Self::left_rotate(left);\n Self::right_rotate(Some(node))\n }\n }\n // \u53f3\u504f\u6811\n else if balance_factor < -1 {\n let node = node.unwrap();\n if Self::balance_factor(node.borrow().right.clone()) <= 0 {\n // \u5de6\u65cb\n Self::left_rotate(Some(node))\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::right_rotate(right);\n Self::left_rotate(Some(node))\n }\n } else {\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n node\n }\n}\n
avl_tree.c/* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n int bf = balanceFactor(node);\n // \u5de6\u504f\u6811\n if (bf > 1) {\n if (balanceFactor(node->left) >= 0) {\n // \u53f3\u65cb\n return rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node->left = leftRotate(node->left);\n return rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (bf < -1) {\n if (balanceFactor(node->right) <= 0) {\n // \u5de6\u65cb\n return leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node->right = rightRotate(node->right);\n return leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
avl_tree.zig// \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nfn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n // \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n var balance_factor = self.balanceFactor(node);\n // \u5de6\u504f\u6811\n if (balance_factor > 1) {\n if (self.balanceFactor(node.?.left) >= 0) {\n // \u53f3\u65cb\n return self.rightRotate(node);\n } else {\n // \u5148\u5de6\u65cb\u540e\u53f3\u65cb\n node.?.left = self.leftRotate(node.?.left);\n return self.rightRotate(node);\n }\n }\n // \u53f3\u504f\u6811\n if (balance_factor < -1) {\n if (self.balanceFactor(node.?.right) <= 0) {\n // \u5de6\u65cb\n return self.leftRotate(node);\n } else {\n // \u5148\u53f3\u65cb\u540e\u5de6\u65cb\n node.?.right = self.rightRotate(node.?.right);\n return self.leftRotate(node);\n }\n }\n // \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n}\n
"},{"location":"chapter_tree/avl_tree/#753-avl","title":"7.5.3 \u00a0 AVL \u6811\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_tree/avl_tree/#1_2","title":"1. \u00a0 \u63d2\u5165\u8282\u70b9","text":"AVL \u6811\u7684\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u4e0e\u4e8c\u53c9\u641c\u7d22\u6811\u5728\u4e3b\u4f53\u4e0a\u7c7b\u4f3c\u3002\u552f\u4e00\u7684\u533a\u522b\u5728\u4e8e\uff0c\u5728 AVL \u6811\u4e2d\u63d2\u5165\u8282\u70b9\u540e\uff0c\u4ece\u8be5\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u53ef\u80fd\u4f1a\u51fa\u73b0\u4e00\u7cfb\u5217\u5931\u8861\u8282\u70b9\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4ece\u8fd9\u4e2a\u8282\u70b9\u5f00\u59cb\uff0c\u81ea\u5e95\u5411\u4e0a\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef insert(self, val):\n \"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\n self._root = self.insert_helper(self._root, val)\n\ndef insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:\n \"\"\"\u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\n if node is None:\n return TreeNode(val)\n # 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9\n if val < node.val:\n node.left = self.insert_helper(node.left, val)\n elif val > node.val:\n node.right = self.insert_helper(node.right, val)\n else:\n # \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n # 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n return self.rotate(node)\n
avl_tree.cpp/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\n root = insertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\n if (node == nullptr)\n return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node->val)\n node->left = insertHelper(node->left, val);\n else if (val > node->val)\n node->right = insertHelper(node->right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.java/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\n root = insertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode insertHelper(TreeNode node, int val) {\n if (node == null)\n return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val)\n node.left = insertHelper(node.left, val);\n else if (val > node.val)\n node.right = insertHelper(node.right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.cs/* \u63d2\u5165\u8282\u70b9 */\nvoid Insert(int val) {\n root = InsertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? InsertHelper(TreeNode? node, int val) {\n if (node == null) return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val)\n node.left = InsertHelper(node.left, val);\n else if (val > node.val)\n node.right = InsertHelper(node.right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n UpdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.go/* \u63d2\u5165\u8282\u70b9 */\nfunc (t *aVLTree) insert(val int) {\n t.root = t.insertHelper(t.root, val)\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) insertHelper(node *TreeNode, val int) *TreeNode {\n if node == nil {\n return NewTreeNode(val)\n }\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if val < node.Val.(int) {\n node.Left = t.insertHelper(node.Left, val)\n } else if val > node.Val.(int) {\n node.Right = t.insertHelper(node.Right, val)\n } else {\n // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n return node\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = t.rotate(node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.swift/* \u63d2\u5165\u8282\u70b9 */\nfunc insert(val: Int) {\n root = insertHelper(node: root, val: val)\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc insertHelper(node: TreeNode?, val: Int) -> TreeNode? {\n var node = node\n if node == nil {\n return TreeNode(x: val)\n }\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if val < node!.val {\n node?.left = insertHelper(node: node?.left, val: val)\n } else if val > node!.val {\n node?.right = insertHelper(node: node?.right, val: val)\n } else {\n return node // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n updateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node: node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.js/* \u63d2\u5165\u8282\u70b9 */\ninsert(val) {\n this.root = this.#insertHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#insertHelper(node, val) {\n if (node === null) return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val) node.left = this.#insertHelper(node.left, val);\n else if (val > node.val)\n node.right = this.#insertHelper(node.right, val);\n else return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n this.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.#rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.ts/* \u63d2\u5165\u8282\u70b9 */\ninsert(val: number): void {\n this.root = this.insertHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\ninsertHelper(node: TreeNode, val: number): TreeNode {\n if (node === null) return new TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val) {\n node.left = this.insertHelper(node.left, val);\n } else if (val > node.val) {\n node.right = this.insertHelper(node.right, val);\n } else {\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n this.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.dart/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\n root = insertHelper(root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? insertHelper(TreeNode? node, int val) {\n if (node == null) return TreeNode(val);\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node.val)\n node.left = insertHelper(node.left, val);\n else if (val > node.val)\n node.right = insertHelper(node.right, val);\n else\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.rs/* \u63d2\u5165\u8282\u70b9 */\nfn insert(&mut self, val: i32) {\n self.root = Self::insert_helper(self.root.clone(), val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn insert_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\n match node {\n Some(mut node) => {\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n match {\n let node_val = node.borrow().val;\n node_val\n }\n .cmp(&val)\n {\n Ordering::Greater => {\n let left = node.borrow().left.clone();\n node.borrow_mut().left = Self::insert_helper(left, val);\n }\n Ordering::Less => {\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::insert_helper(right, val);\n }\n Ordering::Equal => {\n return Some(node); // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n }\n Self::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Self::rotate(Some(node)).unwrap();\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(node)\n }\n None => Some(TreeNode::new(val)),\n }\n}\n
avl_tree.c/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(AVLTree *tree, int val) {\n tree->root = insertHelper(tree->root, val);\n}\n\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\n if (node == NULL) {\n return newTreeNode(val);\n }\n /* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9 */\n if (val < node->val) {\n node->left = insertHelper(node->left, val);\n } else if (val > node->val) {\n node->right = insertHelper(node->right, val);\n } else {\n // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n return node;\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.zig// \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, val: T) !void {\n self.root = (try self.insertHelper(self.root, val)).?;\n}\n\n// \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {\n var node = node_;\n if (node == null) {\n var tmp_node = try self.mem_allocator.create(inc.TreeNode(T));\n tmp_node.init(val);\n return tmp_node;\n }\n // 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\u5e76\u63d2\u5165\u8282\u70b9\n if (val < node.?.val) {\n node.?.left = try self.insertHelper(node.?.left, val);\n } else if (val > node.?.val) {\n node.?.right = try self.insertHelper(node.?.right, val);\n } else {\n return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n }\n self.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n // 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n node = self.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
"},{"location":"chapter_tree/avl_tree/#2_2","title":"2. \u00a0 \u5220\u9664\u8282\u70b9","text":"\u7c7b\u4f3c\u5730\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5220\u9664\u8282\u70b9\u65b9\u6cd5\u7684\u57fa\u7840\u4e0a\uff0c\u9700\u8981\u4ece\u5e95\u81f3\u9876\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig avl_tree.pydef remove(self, val: int):\n \"\"\"\u5220\u9664\u8282\u70b9\"\"\"\n self._root = self.remove_helper(self._root, val)\n\ndef remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:\n \"\"\"\u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\n if node is None:\n return None\n # 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664\n if val < node.val:\n node.left = self.remove_helper(node.left, val)\n elif val > node.val:\n node.right = self.remove_helper(node.right, val)\n else:\n if node.left is None or node.right is None:\n child = node.left or node.right\n # \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if child is None:\n return None\n # \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else:\n node = child\n else:\n # \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n temp = node.right\n while temp.left is not None:\n temp = temp.left\n node.right = self.remove_helper(node.right, temp.val)\n node.val = temp.val\n # \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n self.update_height(node)\n # 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n return self.rotate(node)\n
avl_tree.cpp/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\n root = removeHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\n if (node == nullptr)\n return nullptr;\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if (val < node->val)\n node->left = removeHelper(node->left, val);\n else if (val > node->val)\n node->right = removeHelper(node->right, val);\n else {\n if (node->left == nullptr || node->right == nullptr) {\n TreeNode *child = node->left != nullptr ? node->left : node->right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == nullptr) {\n delete node;\n return nullptr;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else {\n delete node;\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode *temp = node->right;\n while (temp->left != nullptr) {\n temp = temp->left;\n }\n int tempVal = temp->val;\n node->right = removeHelper(node->right, temp->val);\n node->val = tempVal;\n }\n }\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.java/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\n root = removeHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode removeHelper(TreeNode node, int val) {\n if (node == null)\n return null;\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if (val < node.val)\n node.left = removeHelper(node.left, val);\n else if (val > node.val)\n node.right = removeHelper(node.right, val);\n else {\n if (node.left == null || node.right == null) {\n TreeNode child = node.left != null ? node.left : node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null)\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else\n node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode temp = node.right;\n while (temp.left != null) {\n temp = temp.left;\n }\n node.right = removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.cs/* \u5220\u9664\u8282\u70b9 */\nvoid Remove(int val) {\n root = RemoveHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? RemoveHelper(TreeNode? node, int val) {\n if (node == null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if (val < node.val)\n node.left = RemoveHelper(node.left, val);\n else if (val > node.val)\n node.right = RemoveHelper(node.right, val);\n else {\n if (node.left == null || node.right == null) {\n TreeNode? child = node.left ?? node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null)\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else\n node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode? temp = node.right;\n while (temp.left != null) {\n temp = temp.left;\n }\n node.right = RemoveHelper(node.right, temp.val!.Value);\n node.val = temp.val;\n }\n }\n UpdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.go/* \u5220\u9664\u8282\u70b9 */\nfunc (t *aVLTree) remove(val int) {\n t.root = t.removeHelper(t.root, val)\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) removeHelper(node *TreeNode, val int) *TreeNode {\n if node == nil {\n return nil\n }\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if val < node.Val.(int) {\n node.Left = t.removeHelper(node.Left, val)\n } else if val > node.Val.(int) {\n node.Right = t.removeHelper(node.Right, val)\n } else {\n if node.Left == nil || node.Right == nil {\n child := node.Left\n if node.Right != nil {\n child = node.Right\n }\n if child == nil {\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n return nil\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n node = child\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n temp := node.Right\n for temp.Left != nil {\n temp = temp.Left\n }\n node.Right = t.removeHelper(node.Right, temp.Val.(int))\n node.Val = temp.Val\n }\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n t.updateHeight(node)\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = t.rotate(node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.swift/* \u5220\u9664\u8282\u70b9 */\nfunc remove(val: Int) {\n root = removeHelper(node: root, val: val)\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc removeHelper(node: TreeNode?, val: Int) -> TreeNode? {\n var node = node\n if node == nil {\n return nil\n }\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if val < node!.val {\n node?.left = removeHelper(node: node?.left, val: val)\n } else if val > node!.val {\n node?.right = removeHelper(node: node?.right, val: val)\n } else {\n if node?.left == nil || node?.right == nil {\n let child = node?.left != nil ? node?.left : node?.right\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if child == nil {\n return nil\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else {\n node = child\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n var temp = node?.right\n while temp?.left != nil {\n temp = temp?.left\n }\n node?.right = removeHelper(node: node?.right, val: temp!.val)\n node?.val = temp!.val\n }\n }\n updateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node: node)\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node\n}\n
avl_tree.js/* \u5220\u9664\u8282\u70b9 */\nremove(val) {\n this.root = this.#removeHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#removeHelper(node, val) {\n if (node === null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if (val < node.val) node.left = this.#removeHelper(node.left, val);\n else if (val > node.val)\n node.right = this.#removeHelper(node.right, val);\n else {\n if (node.left === null || node.right === null) {\n const child = node.left !== null ? node.left : node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child === null) return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n let temp = node.right;\n while (temp.left !== null) {\n temp = temp.left;\n }\n node.right = this.#removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n this.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.#rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.ts/* \u5220\u9664\u8282\u70b9 */\nremove(val: number): void {\n this.root = this.removeHelper(this.root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nremoveHelper(node: TreeNode, val: number): TreeNode {\n if (node === null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if (val < node.val) {\n node.left = this.removeHelper(node.left, val);\n } else if (val > node.val) {\n node.right = this.removeHelper(node.right, val);\n } else {\n if (node.left === null || node.right === null) {\n const child = node.left !== null ? node.left : node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child === null) {\n return null;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n let temp = node.right;\n while (temp.left !== null) {\n temp = temp.left;\n }\n node.right = this.removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n this.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = this.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.dart/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\n root = removeHelper(root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? removeHelper(TreeNode? node, int val) {\n if (node == null) return null;\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if (val < node.val)\n node.left = removeHelper(node.left, val);\n else if (val > node.val)\n node.right = removeHelper(node.right, val);\n else {\n if (node.left == null || node.right == null) {\n TreeNode? child = node.left ?? node.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null)\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n else\n node = child;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode? temp = node.right;\n while (temp!.left != null) {\n temp = temp.left;\n }\n node.right = removeHelper(node.right, temp.val);\n node.val = temp.val;\n }\n }\n updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.rs/* \u5220\u9664\u8282\u70b9 */\nfn remove(&self, val: i32) {\n Self::remove_helper(self.root.clone(), val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn remove_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\n match node {\n Some(mut node) => {\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if val < node.borrow().val {\n let left = node.borrow().left.clone();\n node.borrow_mut().left = Self::remove_helper(left, val);\n } else if val > node.borrow().val {\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::remove_helper(right, val);\n } else if node.borrow().left.is_none() || node.borrow().right.is_none() {\n let child = if node.borrow().left.is_some() {\n node.borrow().left.clone()\n } else {\n node.borrow().right.clone()\n };\n match child {\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n None => {\n return None;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n Some(child) => node = child,\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n let mut temp = node.borrow().right.clone().unwrap();\n loop {\n let temp_left = temp.borrow().left.clone();\n if temp_left.is_none() {\n break;\n }\n temp = temp_left.unwrap();\n }\n let right = node.borrow().right.clone();\n node.borrow_mut().right = Self::remove_helper(right, temp.borrow().val);\n node.borrow_mut().val = temp.borrow().val;\n }\n Self::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = Self::rotate(Some(node)).unwrap();\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n Some(node)\n }\n None => None,\n }\n}\n
avl_tree.c/* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeItem(AVLTree *tree, int val) {\n TreeNode *root = removeHelper(tree->root, val);\n}\n\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\n TreeNode *child, *grandChild;\n if (node == NULL) {\n return NULL;\n }\n /* 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664 */\n if (val < node->val) {\n node->left = removeHelper(node->left, val);\n } else if (val > node->val) {\n node->right = removeHelper(node->right, val);\n } else {\n if (node->left == NULL || node->right == NULL) {\n child = node->left;\n if (node->right != NULL) {\n child = node->right;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == NULL) {\n return NULL;\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n TreeNode *temp = node->right;\n while (temp->left != NULL) {\n temp = temp->left;\n }\n int tempVal = temp->val;\n node->right = removeHelper(node->right, temp->val);\n node->val = tempVal;\n }\n }\n // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n updateHeight(node);\n /* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n node = rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
avl_tree.zig// \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, val: T) void {\n self.root = self.removeHelper(self.root, val).?;\n}\n\n// \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {\n var node = node_;\n if (node == null) return null;\n // 1. \u67e5\u627e\u8282\u70b9\u5e76\u5220\u9664\n if (val < node.?.val) {\n node.?.left = self.removeHelper(node.?.left, val);\n } else if (val > node.?.val) {\n node.?.right = self.removeHelper(node.?.right, val);\n } else {\n if (node.?.left == null or node.?.right == null) {\n var child = if (node.?.left != null) node.?.left else node.?.right;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\n if (child == null) {\n return null;\n // \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n } else {\n node = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\n var temp = node.?.right;\n while (temp.?.left != null) {\n temp = temp.?.left;\n }\n node.?.right = self.removeHelper(node.?.right, temp.?.val);\n node.?.val = temp.?.val;\n }\n }\n self.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n // 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\n node = self.rotate(node);\n // \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\n return node;\n}\n
"},{"location":"chapter_tree/avl_tree/#3_1","title":"3. \u00a0 \u67e5\u627e\u8282\u70b9","text":"AVL \u6811\u7684\u8282\u70b9\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u53c9\u641c\u7d22\u6811\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002
"},{"location":"chapter_tree/avl_tree/#754-avl","title":"7.5.4 \u00a0 AVL \u6811\u5178\u578b\u5e94\u7528","text":" - \u7ec4\u7ec7\u548c\u5b58\u50a8\u5927\u578b\u6570\u636e\uff0c\u9002\u7528\u4e8e\u9ad8\u9891\u67e5\u627e\u3001\u4f4e\u9891\u589e\u5220\u7684\u573a\u666f\u3002
- \u7528\u4e8e\u6784\u5efa\u6570\u636e\u5e93\u4e2d\u7684\u7d22\u5f15\u7cfb\u7edf\u3002
- \u7ea2\u9ed1\u6811\u5728\u8bb8\u591a\u5e94\u7528\u4e2d\u6bd4 AVL \u6811\u66f4\u53d7\u6b22\u8fce\u3002\u8fd9\u662f\u56e0\u4e3a\u7ea2\u9ed1\u6811\u7684\u5e73\u8861\u6761\u4ef6\u76f8\u5bf9\u5bbd\u677e\uff0c\u5728\u7ea2\u9ed1\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u6240\u9700\u7684\u65cb\u8f6c\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u5176\u8282\u70b9\u589e\u5220\u64cd\u4f5c\u7684\u5e73\u5747\u6548\u7387\u66f4\u9ad8\u3002
"},{"location":"chapter_tree/binary_search_tree/","title":"7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811","text":"\u5982\u56fe 7-16 \u6240\u793a\uff0c\u300c\u4e8c\u53c9\u641c\u7d22\u6811 binary search tree\u300d\u6ee1\u8db3\u4ee5\u4e0b\u6761\u4ef6\u3002
- \u5bf9\u4e8e\u6839\u8282\u70b9\uff0c\u5de6\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c \\(<\\) \u6839\u8282\u70b9\u7684\u503c \\(<\\) \u53f3\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c\u3002
- \u4efb\u610f\u8282\u70b9\u7684\u5de6\u3001\u53f3\u5b50\u6811\u4e5f\u662f\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5373\u540c\u6837\u6ee1\u8db3\u6761\u4ef6
1. \u3002
\u56fe 7-16 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811
"},{"location":"chapter_tree/binary_search_tree/#741","title":"7.4.1 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u64cd\u4f5c","text":"\u6211\u4eec\u5c06\u4e8c\u53c9\u641c\u7d22\u6811\u5c01\u88c5\u4e3a\u4e00\u4e2a\u7c7b BinarySearchTree \uff0c\u5e76\u58f0\u660e\u4e00\u4e2a\u6210\u5458\u53d8\u91cf root \uff0c\u6307\u5411\u6811\u7684\u6839\u8282\u70b9\u3002
"},{"location":"chapter_tree/binary_search_tree/#1","title":"1. \u00a0 \u67e5\u627e\u8282\u70b9","text":"\u7ed9\u5b9a\u76ee\u6807\u8282\u70b9\u503c num \uff0c\u53ef\u4ee5\u6839\u636e\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6027\u8d28\u6765\u67e5\u627e\u3002\u5982\u56fe 7-17 \u6240\u793a\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u8282\u70b9 cur \uff0c\u4ece\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9 root \u51fa\u53d1\uff0c\u5faa\u73af\u6bd4\u8f83\u8282\u70b9\u503c cur.val \u548c num \u4e4b\u95f4\u7684\u5927\u5c0f\u5173\u7cfb\u3002
- \u82e5
cur.val < num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.right \u3002 - \u82e5
cur.val > num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.left \u3002 - \u82e5
cur.val = num \uff0c\u8bf4\u660e\u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\u5e76\u8fd4\u56de\u8be5\u8282\u70b9\u3002
<1><2><3><4> \u56fe 7-17 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u8282\u70b9\u793a\u4f8b
\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u4e00\u81f4\uff0c\u90fd\u662f\u6bcf\u8f6e\u6392\u9664\u4e00\u534a\u60c5\u51b5\u3002\u5faa\u73af\u6b21\u6570\u6700\u591a\u4e3a\u4e8c\u53c9\u6811\u7684\u9ad8\u5ea6\uff0c\u5f53\u4e8c\u53c9\u6811\u5e73\u8861\u65f6\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_tree.pydef search(self, num: int) -> TreeNode | None:\n \"\"\"\u67e5\u627e\u8282\u70b9\"\"\"\n cur = self._root\n # \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur is not None:\n # \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur.val < num:\n cur = cur.right\n # \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n elif cur.val > num:\n cur = cur.left\n # \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else:\n break\n return cur\n
binary_search_tree.cpp/* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(int num) {\n TreeNode *cur = root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != nullptr) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur->val < num)\n cur = cur->right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur->val > num)\n cur = cur->left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.java/* \u67e5\u627e\u8282\u70b9 */\nTreeNode search(int num) {\n TreeNode cur = root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num)\n cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.cs/* \u67e5\u627e\u8282\u70b9 */\nTreeNode? Search(int num) {\n TreeNode? cur = root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur =\n cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num)\n cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.go/* \u67e5\u627e\u8282\u70b9 */\nfunc (bst *binarySearchTree) search(num int) *TreeNode {\n node := bst.root\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n for node != nil {\n if node.Val.(int) < num {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n node = node.Right\n } else if node.Val.(int) > num {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n node = node.Left\n } else {\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n break\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return node\n}\n
binary_search_tree.swift/* \u67e5\u627e\u8282\u70b9 */\nfunc search(num: Int) -> TreeNode? {\n var cur = root\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur != nil {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur!.val < num {\n cur = cur?.right\n }\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if cur!.val > num {\n cur = cur?.left\n }\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else {\n break\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur\n}\n
binary_search_tree.js/* \u67e5\u627e\u8282\u70b9 */\nsearch(num) {\n let cur = this.root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num) cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.ts/* \u67e5\u627e\u8282\u70b9 */\nsearch(num: number): TreeNode | null {\n let cur = this.root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > num) cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.dart/* \u67e5\u627e\u8282\u70b9 */\nTreeNode? search(int _num) {\n TreeNode? cur = _root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < _num)\n cur = cur.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else if (cur.val > _num)\n cur = cur.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n else\n break;\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.rs/* \u67e5\u627e\u8282\u70b9 */\npub fn search(&self, num: i32) -> OptionTreeNodeRc {\n let mut cur = self.root.clone();\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while let Some(node) = cur.clone() {\n match num.cmp(&node.borrow().val) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n Ordering::Greater => cur = node.borrow().right.clone(),\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n Ordering::Less => cur = node.borrow().left.clone(),\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n Ordering::Equal => break,\n }\n }\n\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n cur\n}\n
binary_search_tree.c/* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(BinarySearchTree *bst, int num) {\n TreeNode *cur = bst->root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != NULL) {\n if (cur->val < num) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n cur = cur->right;\n } else if (cur->val > num) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n cur = cur->left;\n } else {\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n break;\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
binary_search_tree.zig// \u67e5\u627e\u8282\u70b9\nfn search(self: *Self, num: T) ?*inc.TreeNode(T) {\n var cur = self.root;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.?.val < num) {\n cur = cur.?.right;\n // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n } else if (cur.?.val > num) {\n cur = cur.?.left;\n // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n } else {\n break;\n }\n }\n // \u8fd4\u56de\u76ee\u6807\u8282\u70b9\n return cur;\n}\n
"},{"location":"chapter_tree/binary_search_tree/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"\u7ed9\u5b9a\u4e00\u4e2a\u5f85\u63d2\u5165\u5143\u7d20 num \uff0c\u4e3a\u4e86\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\uff0c\u63d2\u5165\u64cd\u4f5c\u6d41\u7a0b\u5982\u56fe 7-18 \u6240\u793a\u3002
- \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff1a\u4e0e\u67e5\u627e\u64cd\u4f5c\u76f8\u4f3c\uff0c\u4ece\u6839\u8282\u70b9\u51fa\u53d1\uff0c\u6839\u636e\u5f53\u524d\u8282\u70b9\u503c\u548c
num \u7684\u5927\u5c0f\u5173\u7cfb\u5faa\u73af\u5411\u4e0b\u641c\u7d22\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\uff08\u904d\u5386\u81f3 None \uff09\u65f6\u8df3\u51fa\u5faa\u73af\u3002 - \u5728\u8be5\u4f4d\u7f6e\u63d2\u5165\u8282\u70b9\uff1a\u521d\u59cb\u5316\u8282\u70b9
num \uff0c\u5c06\u8be5\u8282\u70b9\u7f6e\u4e8e None \u7684\u4f4d\u7f6e\u3002
\u56fe 7-18 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u63d2\u5165\u8282\u70b9
\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u9700\u8981\u6ce8\u610f\u4ee5\u4e0b\u4e24\u70b9\u3002
- \u4e8c\u53c9\u641c\u7d22\u6811\u4e0d\u5141\u8bb8\u5b58\u5728\u91cd\u590d\u8282\u70b9\uff0c\u5426\u5219\u5c06\u8fdd\u53cd\u5176\u5b9a\u4e49\u3002\u56e0\u6b64\uff0c\u82e5\u5f85\u63d2\u5165\u8282\u70b9\u5728\u6811\u4e2d\u5df2\u5b58\u5728\uff0c\u5219\u4e0d\u6267\u884c\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\u3002
- \u4e3a\u4e86\u5b9e\u73b0\u63d2\u5165\u8282\u70b9\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u8282\u70b9
pre \u4fdd\u5b58\u4e0a\u4e00\u8f6e\u5faa\u73af\u7684\u8282\u70b9\u3002\u8fd9\u6837\u5728\u904d\u5386\u81f3 None \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u83b7\u53d6\u5230\u5176\u7236\u8282\u70b9\uff0c\u4ece\u800c\u5b8c\u6210\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_tree.pydef insert(self, num: int):\n \"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\n # \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if self._root is None:\n self._root = TreeNode(num)\n return\n # \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n cur, pre = self._root, None\n while cur is not None:\n # \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if cur.val == num:\n return\n pre = cur\n # \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur.val < num:\n cur = cur.right\n # \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else:\n cur = cur.left\n # \u63d2\u5165\u8282\u70b9\n node = TreeNode(num)\n if pre.val < num:\n pre.right = node\n else:\n pre.left = node\n
binary_search_tree.cpp/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (root == nullptr) {\n root = new TreeNode(num);\n return;\n }\n TreeNode *cur = root, *pre = nullptr;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != nullptr) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur->val == num)\n return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur->val < num)\n cur = cur->right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur->left;\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode *node = new TreeNode(num);\n if (pre->val < num)\n pre->right = node;\n else\n pre->left = node;\n}\n
binary_search_tree.java/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (root == null) {\n root = new TreeNode(num);\n return;\n }\n TreeNode cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val == num)\n return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode node = new TreeNode(num);\n if (pre.val < num)\n pre.right = node;\n else\n pre.left = node;\n}\n
binary_search_tree.cs/* \u63d2\u5165\u8282\u70b9 */\nvoid Insert(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (root == null) {\n root = new TreeNode(num);\n return;\n }\n TreeNode? cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val == num)\n return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n\n // \u63d2\u5165\u8282\u70b9\n TreeNode node = new(num);\n if (pre != null) {\n if (pre.val < num)\n pre.right = node;\n else\n pre.left = node;\n }\n}\n
binary_search_tree.go/* \u63d2\u5165\u8282\u70b9 */\nfunc (bst *binarySearchTree) insert(num int) {\n cur := bst.root\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if cur == nil {\n bst.root = NewTreeNode(num)\n return\n }\n // \u5f85\u63d2\u5165\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\n var pre *TreeNode = nil\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n for cur != nil {\n if cur.Val == num {\n return\n }\n pre = cur\n if cur.Val.(int) < num {\n cur = cur.Right\n } else {\n cur = cur.Left\n }\n }\n // \u63d2\u5165\u8282\u70b9\n node := NewTreeNode(num)\n if pre.Val.(int) < num {\n pre.Right = node\n } else {\n pre.Left = node\n }\n}\n
binary_search_tree.swift/* \u63d2\u5165\u8282\u70b9 */\nfunc insert(num: Int) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if root == nil {\n root = TreeNode(x: num)\n return\n }\n var cur = root\n var pre: TreeNode?\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur != nil {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if cur!.val == num {\n return\n }\n pre = cur\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur!.val < num {\n cur = cur?.right\n }\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else {\n cur = cur?.left\n }\n }\n // \u63d2\u5165\u8282\u70b9\n let node = TreeNode(x: num)\n if pre!.val < num {\n pre?.right = node\n } else {\n pre?.left = node\n }\n}\n
binary_search_tree.js/* \u63d2\u5165\u8282\u70b9 */\ninsert(num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (this.root === null) {\n this.root = new TreeNode(num);\n return;\n }\n let cur = this.root,\n pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val === num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n const node = new TreeNode(num);\n if (pre.val < num) pre.right = node;\n else pre.left = node;\n}\n
binary_search_tree.ts/* \u63d2\u5165\u8282\u70b9 */\ninsert(num: number): void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (this.root === null) {\n this.root = new TreeNode(num);\n return;\n }\n let cur: TreeNode | null = this.root,\n pre: TreeNode | null = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val === num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n const node = new TreeNode(num);\n if (pre!.val < num) pre!.right = node;\n else pre!.left = node;\n}\n
binary_search_tree.dart/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int _num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (_root == null) {\n _root = TreeNode(_num);\n return;\n }\n TreeNode? cur = _root;\n TreeNode? pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.val == _num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < _num)\n cur = cur.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode? node = TreeNode(_num);\n if (pre!.val < _num)\n pre.right = node;\n else\n pre.left = node;\n}\n
binary_search_tree.rs/* \u63d2\u5165\u8282\u70b9 */\npub fn insert(&mut self, num: i32) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if self.root.is_none() {\n self.root = Some(TreeNode::new(num));\n return;\n }\n let mut cur = self.root.clone();\n let mut pre = None;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while let Some(node) = cur.clone() {\n match num.cmp(&node.borrow().val) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n Ordering::Equal => return,\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n Ordering::Greater => {\n pre = cur.clone();\n cur = node.borrow().right.clone();\n }\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n Ordering::Less => {\n pre = cur.clone();\n cur = node.borrow().left.clone();\n }\n }\n }\n // \u63d2\u5165\u8282\u70b9\n let pre = pre.unwrap();\n let node = Some(TreeNode::new(num));\n if num > pre.borrow().val {\n pre.borrow_mut().right = node;\n } else {\n pre.borrow_mut().left = node;\n }\n}\n
binary_search_tree.c/* \u63d2\u5165\u8282\u70b9 */\nvoid insert(BinarySearchTree *bst, int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (bst->root == NULL) {\n bst->root = newTreeNode(num);\n return;\n }\n TreeNode *cur = bst->root, *pre = NULL;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != NULL) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur->val == num) {\n return;\n }\n pre = cur;\n if (cur->val < num) {\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n cur = cur->right;\n } else {\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n cur = cur->left;\n }\n }\n // \u63d2\u5165\u8282\u70b9\n TreeNode *node = newTreeNode(num);\n if (pre->val < num) {\n pre->right = node;\n } else {\n pre->left = node;\n }\n}\n
binary_search_tree.zig// \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, num: T) !void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u5219\u521d\u59cb\u5316\u6839\u8282\u70b9\n if (self.root == null) {\n self.root = try self.mem_allocator.create(inc.TreeNode(T));\n return;\n }\n var cur = self.root;\n var pre: ?*inc.TreeNode(T) = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur.?.val == num) return;\n pre = cur;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.?.val < num) {\n cur = cur.?.right;\n // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n } else {\n cur = cur.?.left;\n }\n }\n // \u63d2\u5165\u8282\u70b9\n var node = try self.mem_allocator.create(inc.TreeNode(T));\n node.init(num);\n if (pre.?.val < num) {\n pre.?.right = node;\n } else {\n pre.?.left = node;\n }\n}\n
\u4e0e\u67e5\u627e\u8282\u70b9\u76f8\u540c\uff0c\u63d2\u5165\u8282\u70b9\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002
"},{"location":"chapter_tree/binary_search_tree/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"\u5148\u5728\u4e8c\u53c9\u6811\u4e2d\u67e5\u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u518d\u5c06\u5176\u5220\u9664\u3002\u4e0e\u63d2\u5165\u8282\u70b9\u7c7b\u4f3c\uff0c\u6211\u4eec\u9700\u8981\u4fdd\u8bc1\u5728\u5220\u9664\u64cd\u4f5c\u5b8c\u6210\u540e\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\u4ecd\u7136\u6ee1\u8db3\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u6839\u636e\u76ee\u6807\u8282\u70b9\u7684\u5b50\u8282\u70b9\u6570\u91cf\uff0c\u5206 0\u30011 \u548c 2 \u4e09\u79cd\u60c5\u51b5\uff0c\u6267\u884c\u5bf9\u5e94\u7684\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u3002
\u5982\u56fe 7-19 \u6240\u793a\uff0c\u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \u65f6\uff0c\u8868\u793a\u8be5\u8282\u70b9\u662f\u53f6\u8282\u70b9\uff0c\u53ef\u4ee5\u76f4\u63a5\u5220\u9664\u3002
\u56fe 7-19 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 0 \uff09
\u5982\u56fe 7-20 \u6240\u793a\uff0c\u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(1\\) \u65f6\uff0c\u5c06\u5f85\u5220\u9664\u8282\u70b9\u66ff\u6362\u4e3a\u5176\u5b50\u8282\u70b9\u5373\u53ef\u3002
\u56fe 7-20 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 1 \uff09
\u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(2\\) \u65f6\uff0c\u6211\u4eec\u65e0\u6cd5\u76f4\u63a5\u5220\u9664\u5b83\uff0c\u800c\u9700\u8981\u4f7f\u7528\u4e00\u4e2a\u8282\u70b9\u66ff\u6362\u8be5\u8282\u70b9\u3002\u7531\u4e8e\u8981\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6\u5b50\u6811 \\(<\\) \u6839\u8282\u70b9 \\(<\\) \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\uff0c\u56e0\u6b64\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\u6216\u5de6\u5b50\u6811\u7684\u6700\u5927\u8282\u70b9\u3002
\u5047\u8bbe\u6211\u4eec\u9009\u62e9\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\uff08\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\uff0c\u5219\u5220\u9664\u64cd\u4f5c\u6d41\u7a0b\u5982\u56fe 7-21 \u6240\u793a\u3002
- \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\u5728\u201c\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u201d\u4e2d\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff0c\u8bb0\u4e3a
tmp \u3002 - \u7528
tmp \u7684\u503c\u8986\u76d6\u5f85\u5220\u9664\u8282\u70b9\u7684\u503c\uff0c\u5e76\u5728\u6811\u4e2d\u9012\u5f52\u5220\u9664\u8282\u70b9 tmp \u3002
<1><2><3><4> \u56fe 7-21 \u00a0 \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 2 \uff09
\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u540c\u6837\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d\u67e5\u627e\u5f85\u5220\u9664\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u540e\u7ee7\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\u3002\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_search_tree.pydef remove(self, num: int):\n \"\"\"\u5220\u9664\u8282\u70b9\"\"\"\n # \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if self._root is None:\n return\n # \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n cur, pre = self._root, None\n while cur is not None:\n # \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if cur.val == num:\n break\n pre = cur\n # \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur.val < num:\n cur = cur.right\n # \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else:\n cur = cur.left\n # \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur is None:\n return\n\n # \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if cur.left is None or cur.right is None:\n # \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n child = cur.left or cur.right\n # \u5220\u9664\u8282\u70b9 cur\n if cur != self._root:\n if pre.left == cur:\n pre.left = child\n else:\n pre.right = child\n else:\n # \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n self._root = child\n # \u5b50\u8282\u70b9\u6570\u91cf = 2\n else:\n # \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n tmp: TreeNode = cur.right\n while tmp.left is not None:\n tmp = tmp.left\n # \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n self.remove(tmp.val)\n # \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val\n
binary_search_tree.cpp/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (root == nullptr)\n return;\n TreeNode *cur = root, *pre = nullptr;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != nullptr) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur->val == num)\n break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur->val < num)\n cur = cur->right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur->left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == nullptr)\n return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur->left == nullptr || cur->right == nullptr) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\n TreeNode *child = cur->left != nullptr ? cur->left : cur->right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != root) {\n if (pre->left == cur)\n pre->left = child;\n else\n pre->right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child;\n }\n // \u91ca\u653e\u5185\u5b58\n delete cur;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode *tmp = cur->right;\n while (tmp->left != nullptr) {\n tmp = tmp->left;\n }\n int tmpVal = tmp->val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(tmp->val);\n // \u7528 tmp \u8986\u76d6 cur\n cur->val = tmpVal;\n }\n}\n
binary_search_tree.java/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (root == null)\n return;\n TreeNode cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val == num)\n break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == null)\n return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left == null || cur.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n TreeNode child = cur.left != null ? cur.left : cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != root) {\n if (pre.left == cur)\n pre.left = child;\n else\n pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode tmp = cur.right;\n while (tmp.left != null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(tmp.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.cs/* \u5220\u9664\u8282\u70b9 */\nvoid Remove(int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (root == null)\n return;\n TreeNode? cur = root, pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val == num)\n break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num)\n cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == null)\n return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left == null || cur.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n TreeNode? child = cur.left ?? cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != root) {\n if (pre!.left == cur)\n pre.left = child;\n else\n pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode? tmp = cur.right;\n while (tmp.left != null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n Remove(tmp.val!.Value);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.go/* \u5220\u9664\u8282\u70b9 */\nfunc (bst *binarySearchTree) remove(num int) {\n cur := bst.root\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if cur == nil {\n return\n }\n // \u5f85\u5220\u9664\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\n var pre *TreeNode = nil\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n for cur != nil {\n if cur.Val == num {\n break\n }\n pre = cur\n if cur.Val.(int) < num {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728\u53f3\u5b50\u6811\u4e2d\n cur = cur.Right\n } else {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728\u5de6\u5b50\u6811\u4e2d\n cur = cur.Left\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur == nil {\n return\n }\n // \u5b50\u8282\u70b9\u6570\u4e3a 0 \u6216 1\n if cur.Left == nil || cur.Right == nil {\n var child *TreeNode = nil\n // \u53d6\u51fa\u5f85\u5220\u9664\u8282\u70b9\u7684\u5b50\u8282\u70b9\n if cur.Left != nil {\n child = cur.Left\n } else {\n child = cur.Right\n }\n // \u5220\u9664\u8282\u70b9 cur\n if cur != bst.root {\n if pre.Left == cur {\n pre.Left = child\n } else {\n pre.Right = child\n }\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n bst.root = child\n }\n // \u5b50\u8282\u70b9\u6570\u4e3a 2\n } else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d\u5f85\u5220\u9664\u8282\u70b9 cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n tmp := cur.Right\n for tmp.Left != nil {\n tmp = tmp.Left\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n bst.remove(tmp.Val.(int))\n // \u7528 tmp \u8986\u76d6 cur\n cur.Val = tmp.Val\n }\n}\n
binary_search_tree.swift/* \u5220\u9664\u8282\u70b9 */\nfunc remove(num: Int) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if root == nil {\n return\n }\n var cur = root\n var pre: TreeNode?\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while cur != nil {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if cur!.val == num {\n break\n }\n pre = cur\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if cur!.val < num {\n cur = cur?.right\n }\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else {\n cur = cur?.left\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur == nil {\n return\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if cur?.left == nil || cur?.right == nil {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n let child = cur?.left != nil ? cur?.left : cur?.right\n // \u5220\u9664\u8282\u70b9 cur\n if cur !== root {\n if pre?.left === cur {\n pre?.left = child\n } else {\n pre?.right = child\n }\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n root = child\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n var tmp = cur?.right\n while tmp?.left != nil {\n tmp = tmp?.left\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(num: tmp!.val)\n // \u7528 tmp \u8986\u76d6 cur\n cur?.val = tmp!.val\n }\n}\n
binary_search_tree.js/* \u5220\u9664\u8282\u70b9 */\nremove(num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (this.root === null) return;\n let cur = this.root,\n pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val === num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur === null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left === null || cur.right === null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n const child = cur.left !== null ? cur.left : cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur !== this.root) {\n if (pre.left === cur) pre.left = child;\n else pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n this.root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n let tmp = cur.right;\n while (tmp.left !== null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n this.remove(tmp.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.ts/* \u5220\u9664\u8282\u70b9 */\nremove(num: number): void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (this.root === null) return;\n let cur: TreeNode | null = this.root,\n pre: TreeNode | null = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur !== null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val === num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < num) cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur === null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left === null || cur.right === null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n const child: TreeNode | null =\n cur.left !== null ? cur.left : cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur !== this.root) {\n if (pre!.left === cur) pre!.left = child;\n else pre!.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n this.root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n let tmp: TreeNode | null = cur.right;\n while (tmp!.left !== null) {\n tmp = tmp!.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n this.remove(tmp!.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp!.val;\n }\n}\n
binary_search_tree.dart/* \u5220\u9664\u8282\u70b9 */\nvoid remove(int _num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (_root == null) return;\n TreeNode? cur = _root;\n TreeNode? pre = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.val == _num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.val < _num)\n cur = cur.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n else\n cur = cur.left;\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n if (cur == null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.left == null || cur.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n TreeNode? child = cur.left ?? cur.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (cur != _root) {\n if (pre!.left == cur)\n pre.left = child;\n else\n pre.right = child;\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n _root = child;\n }\n } else {\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode? tmp = cur.right;\n while (tmp!.left != null) {\n tmp = tmp.left;\n }\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n remove(tmp.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.val = tmp.val;\n }\n}\n
binary_search_tree.rs/* \u5220\u9664\u8282\u70b9 */\npub fn remove(&mut self, num: i32) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if self.root.is_none() { \n return; \n }\n let mut cur = self.root.clone();\n let mut pre = None;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while let Some(node) = cur.clone() {\n match num.cmp(&node.borrow().val) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n Ordering::Equal => break,\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n Ordering::Greater => {\n pre = cur.clone();\n cur = node.borrow().right.clone();\n }\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n Ordering::Less => {\n pre = cur.clone();\n cur = node.borrow().left.clone();\n }\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if cur.is_none() {\n return;\n }\n let cur = cur.unwrap();\n let (left_child, right_child) = (cur.borrow().left.clone(), cur.borrow().right.clone());\n match (left_child.clone(), right_child.clone()) {\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n (None, None) | (Some(_), None) | (None, Some(_)) => {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\n let child = left_child.or(right_child);\n let pre = pre.unwrap();\n // \u5220\u9664\u8282\u70b9 cur\n if !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) {\n let left = pre.borrow().left.clone();\n if left.is_some() && Rc::ptr_eq(&left.as_ref().unwrap(), &cur) {\n pre.borrow_mut().left = child;\n } else {\n pre.borrow_mut().right = child;\n }\n } else {\n // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n self.root = child;\n }\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n (Some(_), Some(_)) => {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n let mut tmp = cur.borrow().right.clone();\n while let Some(node) = tmp.clone() {\n if node.borrow().left.is_some() {\n tmp = node.borrow().left.clone();\n } else {\n break;\n }\n }\n let tmpval = tmp.unwrap().borrow().val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n self.remove(tmpval);\n // \u7528 tmp \u8986\u76d6 cur\n cur.borrow_mut().val = tmpval;\n }\n }\n}\n
binary_search_tree.c/* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeItem(BinarySearchTree *bst, int num) {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (bst->root == NULL)\n return;\n TreeNode *cur = bst->root, *pre = NULL;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != NULL) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur->val == num)\n break;\n pre = cur;\n if (cur->val < num) {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u53f3\u5b50\u6811\u4e2d\n cur = cur->right;\n } else {\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u5de6\u5b50\u6811\u4e2d\n cur = cur->left;\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == NULL)\n return;\n // \u5224\u65ad\u5f85\u5220\u9664\u8282\u70b9\u662f\u5426\u5b58\u5728\u5b50\u8282\u70b9\n if (cur->left == NULL || cur->right == NULL) {\n /* \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1 */\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\n TreeNode *child = cur->left != NULL ? cur->left : cur->right;\n // \u5220\u9664\u8282\u70b9 cur\n if (pre->left == cur) {\n pre->left = child;\n } else {\n pre->right = child;\n }\n } else {\n /* \u5b50\u8282\u70b9\u6570\u91cf = 2 */\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n TreeNode *tmp = cur->right;\n while (tmp->left != NULL) {\n tmp = tmp->left;\n }\n int tmpVal = tmp->val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n removeItem(bst, tmp->val);\n // \u7528 tmp \u8986\u76d6 cur\n cur->val = tmpVal;\n }\n}\n
binary_search_tree.zig// \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, num: T) void {\n // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\n if (self.root == null) return;\n var cur = self.root;\n var pre: ?*inc.TreeNode(T) = null;\n // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n while (cur != null) {\n // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n if (cur.?.val == num) break;\n pre = cur;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n if (cur.?.val < num) {\n cur = cur.?.right;\n // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n } else {\n cur = cur.?.left;\n }\n }\n // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\n if (cur == null) return;\n // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n if (cur.?.left == null or cur.?.right == null) {\n // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n var child = if (cur.?.left != null) cur.?.left else cur.?.right;\n // \u5220\u9664\u8282\u70b9 cur\n if (pre.?.left == cur) {\n pre.?.left = child;\n } else {\n pre.?.right = child;\n }\n // \u5b50\u8282\u70b9\u6570\u91cf = 2\n } else {\n // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n var tmp = cur.?.right;\n while (tmp.?.left != null) {\n tmp = tmp.?.left;\n }\n var tmp_val = tmp.?.val;\n // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n self.remove(tmp.?.val);\n // \u7528 tmp \u8986\u76d6 cur\n cur.?.val = tmp_val;\n }\n}\n
"},{"location":"chapter_tree/binary_search_tree/#4","title":"4. \u00a0 \u4e2d\u5e8f\u904d\u5386\u6709\u5e8f","text":"\u5982\u56fe 7-22 \u6240\u793a\uff0c\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u9075\u5faa\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u7684\u904d\u5386\u987a\u5e8f\uff0c\u800c\u4e8c\u53c9\u641c\u7d22\u6811\u6ee1\u8db3\u201c\u5de6\u5b50\u8282\u70b9 \\(<\\) \u6839\u8282\u70b9 \\(<\\) \u53f3\u5b50\u8282\u70b9\u201d\u7684\u5927\u5c0f\u5173\u7cfb\u3002
\u8fd9\u610f\u5473\u7740\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u8fdb\u884c\u4e2d\u5e8f\u904d\u5386\u65f6\uff0c\u603b\u662f\u4f1a\u4f18\u5148\u904d\u5386\u4e0b\u4e00\u4e2a\u6700\u5c0f\u8282\u70b9\uff0c\u4ece\u800c\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u6027\u8d28\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u662f\u5347\u5e8f\u7684\u3002
\u5229\u7528\u4e2d\u5e8f\u904d\u5386\u5347\u5e8f\u7684\u6027\u8d28\uff0c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u83b7\u53d6\u6709\u5e8f\u6570\u636e\u4ec5\u9700 \\(O(n)\\) \u65f6\u95f4\uff0c\u65e0\u987b\u8fdb\u884c\u989d\u5916\u7684\u6392\u5e8f\u64cd\u4f5c\uff0c\u975e\u5e38\u9ad8\u6548\u3002
\u56fe 7-22 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217
"},{"location":"chapter_tree/binary_search_tree/#742","title":"7.4.2 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387","text":"\u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528\u6570\u7ec4\u6216\u4e8c\u53c9\u641c\u7d22\u6811\u5b58\u50a8\u3002\u89c2\u5bdf\u8868 7-2 \uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5404\u9879\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f\u5bf9\u6570\u9636\uff0c\u5177\u6709\u7a33\u5b9a\u4e14\u9ad8\u6548\u7684\u6027\u80fd\u3002\u53ea\u6709\u5728\u9ad8\u9891\u6dfb\u52a0\u3001\u4f4e\u9891\u67e5\u627e\u5220\u9664\u6570\u636e\u7684\u573a\u666f\u4e0b\uff0c\u6570\u7ec4\u6bd4\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387\u66f4\u9ad8\u3002
\u8868 7-2 \u00a0 \u6570\u7ec4\u4e0e\u641c\u7d22\u6811\u7684\u6548\u7387\u5bf9\u6bd4
\u65e0\u5e8f\u6570\u7ec4 \u4e8c\u53c9\u641c\u7d22\u6811 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(\\log n)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \u5728\u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u662f\u201c\u5e73\u8861\u201d\u7684\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728 \\(\\log n\\) \u8f6e\u5faa\u73af\u5185\u67e5\u627e\u4efb\u610f\u8282\u70b9\u3002
\u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u4e0d\u65ad\u5730\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\uff0c\u53ef\u80fd\u5bfc\u81f4\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u56fe 7-23 \u6240\u793a\u7684\u94fe\u8868\uff0c\u8fd9\u65f6\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4f1a\u9000\u5316\u4e3a \\(O(n)\\) \u3002
\u56fe 7-23 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u9000\u5316
"},{"location":"chapter_tree/binary_search_tree/#743","title":"7.4.3 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u5e38\u89c1\u5e94\u7528","text":" - \u7528\u4f5c\u7cfb\u7edf\u4e2d\u7684\u591a\u7ea7\u7d22\u5f15\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u67e5\u627e\u3001\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u3002
- \u4f5c\u4e3a\u67d0\u4e9b\u641c\u7d22\u7b97\u6cd5\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
- \u7528\u4e8e\u5b58\u50a8\u6570\u636e\u6d41\uff0c\u4ee5\u4fdd\u6301\u5176\u6709\u5e8f\u72b6\u6001\u3002
"},{"location":"chapter_tree/binary_tree/","title":"7.1 \u00a0 \u4e8c\u53c9\u6811","text":"\u300c\u4e8c\u53c9\u6811 binary tree\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4ee3\u8868\u201c\u7956\u5148\u201d\u4e0e\u201c\u540e\u4ee3\u201d\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff0c\u4f53\u73b0\u4e86\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u4e8c\u53c9\u6811\u7684\u57fa\u672c\u5355\u5143\u662f\u8282\u70b9\uff0c\u6bcf\u4e2a\u8282\u70b9\u5305\u542b\u503c\u3001\u5de6\u5b50\u8282\u70b9\u5f15\u7528\u548c\u53f3\u5b50\u8282\u70b9\u5f15\u7528\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig class TreeNode:\n \"\"\"\u4e8c\u53c9\u6811\u8282\u70b9\u7c7b\"\"\"\n def __init__(self, val: int):\n self.val: int = val # \u8282\u70b9\u503c\n self.left: TreeNode | None = None # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n self.right: TreeNode | None = None # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\n int val; // \u8282\u70b9\u503c\n TreeNode *left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n TreeNode *right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}\n};\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n int val; // \u8282\u70b9\u503c\n TreeNode left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode(int x) { val = x; }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode(int? x) {\n public int? val = x; // \u8282\u70b9\u503c\n public TreeNode? left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n public TreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\n Val int\n Left *TreeNode\n Right *TreeNode\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc NewTreeNode(v int) *TreeNode {\n return &TreeNode{\n Left: nil, // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n Right: nil, // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n Val: v, // \u8282\u70b9\u503c\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n var val: Int // \u8282\u70b9\u503c\n var left: TreeNode? // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n var right: TreeNode? // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n\n init(x: Int) {\n val = x\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val; // \u8282\u70b9\u503c\n left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n constructor(val, left, right) {\n this.val = val === undefined ? 0 : val;\n this.left = left === undefined ? null : left;\n this.right = right === undefined ? null : right;\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n val: number;\n left: TreeNode | null;\n right: TreeNode | null;\n\n constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {\n this.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\n this.left = left === undefined ? null : left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n this.right = right === undefined ? null : right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\n int val; // \u8282\u70b9\u503c\n TreeNode? left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n TreeNode(this.val, [this.left, this.right]);\n}\n
use std::rc::Rc;\nuse std::cell::RefCell;\n\n/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\n val: i32, // \u8282\u70b9\u503c\n left: Option<Rc<RefCell<TreeNode>>>, // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\n right: Option<Rc<RefCell<TreeNode>>>, // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n\nimpl TreeNode {\n /* \u6784\u9020\u65b9\u6cd5 */\n fn new(val: i32) -> Rc<RefCell<Self>> {\n Rc::new(RefCell::new(Self {\n val,\n left: None,\n right: None\n }))\n }\n}\n
/* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntypedef struct TreeNode {\n int val; // \u8282\u70b9\u503c\n int height; // \u8282\u70b9\u9ad8\u5ea6\n struct TreeNode *left; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\n struct TreeNode *right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n} TreeNode;\n\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\n TreeNode *node;\n\n node = (TreeNode *)malloc(sizeof(TreeNode));\n node->val = val;\n node->height = 0;\n node->left = NULL;\n node->right = NULL;\n return node;\n}\n
\n
\u6bcf\u4e2a\u8282\u70b9\u90fd\u6709\u4e24\u4e2a\u5f15\u7528\uff08\u6307\u9488\uff09\uff0c\u5206\u522b\u6307\u5411\u300c\u5de6\u5b50\u8282\u70b9 left-child node\u300d\u548c\u300c\u53f3\u5b50\u8282\u70b9 right-child node\u300d\uff0c\u8be5\u8282\u70b9\u88ab\u79f0\u4e3a\u8fd9\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u300c\u7236\u8282\u70b9 parent node\u300d\u3002\u5f53\u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u65f6\uff0c\u6211\u4eec\u5c06\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u300c\u5de6\u5b50\u6811 left subtree\u300d\uff0c\u540c\u7406\u53ef\u5f97\u300c\u53f3\u5b50\u6811 right subtree\u300d\u3002
\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u9664\u53f6\u8282\u70b9\u5916\uff0c\u5176\u4ed6\u6240\u6709\u8282\u70b9\u90fd\u5305\u542b\u5b50\u8282\u70b9\u548c\u975e\u7a7a\u5b50\u6811\u3002\u5982\u56fe 7-1 \u6240\u793a\uff0c\u5982\u679c\u5c06\u201c\u8282\u70b9 2\u201d\u89c6\u4e3a\u7236\u8282\u70b9\uff0c\u5219\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u5206\u522b\u662f\u201c\u8282\u70b9 4\u201d\u548c\u201c\u8282\u70b9 5\u201d\uff0c\u5de6\u5b50\u6811\u662f\u201c\u8282\u70b9 4 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\uff0c\u53f3\u5b50\u6811\u662f\u201c\u8282\u70b9 5 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\u3002
\u56fe 7-1 \u00a0 \u7236\u8282\u70b9\u3001\u5b50\u8282\u70b9\u3001\u5b50\u6811
"},{"location":"chapter_tree/binary_tree/#711","title":"7.1.1 \u00a0 \u4e8c\u53c9\u6811\u5e38\u89c1\u672f\u8bed","text":"\u4e8c\u53c9\u6811\u7684\u5e38\u7528\u672f\u8bed\u5982\u56fe 7-2 \u6240\u793a\u3002
- \u300c\u6839\u8282\u70b9 root node\u300d\uff1a\u4f4d\u4e8e\u4e8c\u53c9\u6811\u9876\u5c42\u7684\u8282\u70b9\uff0c\u6ca1\u6709\u7236\u8282\u70b9\u3002
- \u300c\u53f6\u8282\u70b9 leaf node\u300d\uff1a\u6ca1\u6709\u5b50\u8282\u70b9\u7684\u8282\u70b9\uff0c\u5176\u4e24\u4e2a\u6307\u9488\u5747\u6307\u5411
None \u3002 - \u300c\u8fb9 edge\u300d\uff1a\u8fde\u63a5\u4e24\u4e2a\u8282\u70b9\u7684\u7ebf\u6bb5\uff0c\u5373\u8282\u70b9\u5f15\u7528\uff08\u6307\u9488\uff09\u3002
- \u8282\u70b9\u6240\u5728\u7684\u300c\u5c42 level\u300d\uff1a\u4ece\u9876\u81f3\u5e95\u9012\u589e\uff0c\u6839\u8282\u70b9\u6240\u5728\u5c42\u4e3a 1 \u3002
- \u8282\u70b9\u7684\u300c\u5ea6 degree\u300d\uff1a\u8282\u70b9\u7684\u5b50\u8282\u70b9\u7684\u6570\u91cf\u3002\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u5ea6\u7684\u53d6\u503c\u8303\u56f4\u662f 0\u30011\u30012 \u3002
- \u4e8c\u53c9\u6811\u7684\u300c\u9ad8\u5ea6 height\u300d\uff1a\u4ece\u6839\u8282\u70b9\u5230\u6700\u8fdc\u53f6\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
- \u8282\u70b9\u7684\u300c\u6df1\u5ea6 depth\u300d\uff1a\u4ece\u6839\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
- \u8282\u70b9\u7684\u300c\u9ad8\u5ea6 height\u300d\uff1a\u4ece\u8ddd\u79bb\u8be5\u8282\u70b9\u6700\u8fdc\u7684\u53f6\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
\u56fe 7-2 \u00a0 \u4e8c\u53c9\u6811\u7684\u5e38\u7528\u672f\u8bed
Tip
\u8bf7\u6ce8\u610f\uff0c\u6211\u4eec\u901a\u5e38\u5c06\u201c\u9ad8\u5ea6\u201d\u548c\u201c\u6df1\u5ea6\u201d\u5b9a\u4e49\u4e3a\u201c\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u201d\uff0c\u4f46\u6709\u4e9b\u9898\u76ee\u6216\u6559\u6750\u53ef\u80fd\u4f1a\u5c06\u5176\u5b9a\u4e49\u4e3a\u201c\u7ecf\u8fc7\u7684\u8282\u70b9\u7684\u6570\u91cf\u201d\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u9ad8\u5ea6\u548c\u6df1\u5ea6\u90fd\u9700\u8981\u52a0 1 \u3002
"},{"location":"chapter_tree/binary_tree/#712","title":"7.1.2 \u00a0 \u4e8c\u53c9\u6811\u57fa\u672c\u64cd\u4f5c","text":""},{"location":"chapter_tree/binary_tree/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u4e8c\u53c9\u6811","text":"\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u9996\u5148\u521d\u59cb\u5316\u8282\u70b9\uff0c\u7136\u540e\u6784\u5efa\u5f15\u7528\uff08\u6307\u9488\uff09\u3002
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree.py# \u521d\u59cb\u5316\u4e8c\u53c9\u6811\n# \u521d\u59cb\u5316\u8282\u70b9\nn1 = TreeNode(val=1)\nn2 = TreeNode(val=2)\nn3 = TreeNode(val=3)\nn4 = TreeNode(val=4)\nn5 = TreeNode(val=5)\n# \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
binary_tree.cpp/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode* n1 = new TreeNode(1);\nTreeNode* n2 = new TreeNode(2);\nTreeNode* n3 = new TreeNode(3);\nTreeNode* n4 = new TreeNode(4);\nTreeNode* n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
binary_tree.java// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.cs/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new(1);\nTreeNode n2 = new(2);\nTreeNode n3 = new(3);\nTreeNode n4 = new(4);\nTreeNode n5 = new(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.go/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nn1 := NewTreeNode(1)\nn2 := NewTreeNode(2)\nn3 := NewTreeNode(3)\nn4 := NewTreeNode(4)\nn5 := NewTreeNode(5)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.Left = n2\nn1.Right = n3\nn2.Left = n4\nn2.Right = n5\n
binary_tree.swift// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = TreeNode(x: 1)\nlet n2 = TreeNode(x: 2)\nlet n3 = TreeNode(x: 3)\nlet n4 = TreeNode(x: 4)\nlet n5 = TreeNode(x: 5)\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
binary_tree.js/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\n n2 = new TreeNode(2),\n n3 = new TreeNode(3),\n n4 = new TreeNode(4),\n n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.ts/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\n n2 = new TreeNode(2),\n n3 = new TreeNode(3),\n n4 = new TreeNode(4),\n n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.dart/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
binary_tree.rs// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = TreeNode::new(1);\nlet n2 = TreeNode::new(2);\nlet n3 = TreeNode::new(3);\nlet n4 = TreeNode::new(4);\nlet n5 = TreeNode::new(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1.borrow_mut().left = Some(n2.clone());\nn1.borrow_mut().right = Some(n3);\nn2.borrow_mut().left = Some(n4);\nn2.borrow_mut().right = Some(n5);\n
binary_tree.c/* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode *n1 = newTreeNode(1);\nTreeNode *n2 = newTreeNode(2);\nTreeNode *n3 = newTreeNode(3);\nTreeNode *n4 = newTreeNode(4);\nTreeNode *n5 = newTreeNode(5);\n// \u6784\u5efa\u8282\u70b9\u4e4b\u95f4\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
binary_tree.zig\n
"},{"location":"chapter_tree/binary_tree/#2","title":"2. \u00a0 \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9","text":"\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u5728\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u6307\u9488\u6765\u5b9e\u73b0\u3002\u56fe 7-3 \u7ed9\u51fa\u4e86\u4e00\u4e2a\u793a\u4f8b\u3002
\u56fe 7-3 \u00a0 \u5728\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree.py# \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\np = TreeNode(0)\n# \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = p\np.left = n2\n# \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
binary_tree.cpp/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode* P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
binary_tree.javaTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.cs/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.go/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\np := NewTreeNode(0)\nn1.Left = p\np.Left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.Left = n2\n
binary_tree.swiftlet P = TreeNode(x: 0)\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P\nP.left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
binary_tree.js/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nlet P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.ts/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nconst P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.dart/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
binary_tree.rslet p = TreeNode::new(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.borrow_mut().left = Some(p.clone());\np.borrow_mut().left = Some(n2.clone());\n// \u5220\u9664\u8282\u70b9 p\nn1.borrow_mut().left = Some(n2);\n
binary_tree.c/* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode *P = newTreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
binary_tree.zig\n
Note
\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u63d2\u5165\u8282\u70b9\u53ef\u80fd\u4f1a\u6539\u53d8\u4e8c\u53c9\u6811\u7684\u539f\u6709\u903b\u8f91\u7ed3\u6784\uff0c\u800c\u5220\u9664\u8282\u70b9\u901a\u5e38\u610f\u5473\u7740\u5220\u9664\u8be5\u8282\u70b9\u53ca\u5176\u6240\u6709\u5b50\u6811\u3002\u56e0\u6b64\uff0c\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u901a\u5e38\u662f\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\u7684\uff0c\u4ee5\u5b9e\u73b0\u6709\u5b9e\u9645\u610f\u4e49\u7684\u64cd\u4f5c\u3002
"},{"location":"chapter_tree/binary_tree/#713","title":"7.1.3 \u00a0 \u5e38\u89c1\u4e8c\u53c9\u6811\u7c7b\u578b","text":""},{"location":"chapter_tree/binary_tree/#1_1","title":"1. \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-4 \u6240\u793a\uff0c\u300c\u5b8c\u7f8e\u4e8c\u53c9\u6811 perfect binary tree\u300d\u6240\u6709\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u5b8c\u5168\u586b\u6ee1\u3002\u5728\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\uff0c\u53f6\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u7684\u5ea6\u90fd\u4e3a \\(2\\) \uff1b\u82e5\u6811\u7684\u9ad8\u5ea6\u4e3a \\(h\\) \uff0c\u5219\u8282\u70b9\u603b\u6570\u4e3a \\(2^{h+1} - 1\\) \uff0c\u5448\u73b0\u6807\u51c6\u7684\u6307\u6570\u7ea7\u5173\u7cfb\uff0c\u53cd\u6620\u4e86\u81ea\u7136\u754c\u4e2d\u5e38\u89c1\u7684\u7ec6\u80de\u5206\u88c2\u73b0\u8c61\u3002
Tip
\u8bf7\u6ce8\u610f\uff0c\u5728\u4e2d\u6587\u793e\u533a\u4e2d\uff0c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u5e38\u88ab\u79f0\u4e3a\u300c\u6ee1\u4e8c\u53c9\u6811\u300d\u3002
\u56fe 7-4 \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#2_1","title":"2. \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-5 \u6240\u793a\uff0c\u300c\u5b8c\u5168\u4e8c\u53c9\u6811 complete binary tree\u300d\u53ea\u6709\u6700\u5e95\u5c42\u7684\u8282\u70b9\u672a\u88ab\u586b\u6ee1\uff0c\u4e14\u6700\u5e95\u5c42\u8282\u70b9\u5c3d\u91cf\u9760\u5de6\u586b\u5145\u3002
\u56fe 7-5 \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#3","title":"3. \u00a0 \u5b8c\u6ee1\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-6 \u6240\u793a\uff0c\u300c\u5b8c\u6ee1\u4e8c\u53c9\u6811 full binary tree\u300d\u9664\u4e86\u53f6\u8282\u70b9\u4e4b\u5916\uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u90fd\u6709\u4e24\u4e2a\u5b50\u8282\u70b9\u3002
\u56fe 7-6 \u00a0 \u5b8c\u6ee1\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#4","title":"4. \u00a0 \u5e73\u8861\u4e8c\u53c9\u6811","text":"\u5982\u56fe 7-7 \u6240\u793a\uff0c\u300c\u5e73\u8861\u4e8c\u53c9\u6811 balanced binary tree\u300d\u4e2d\u4efb\u610f\u8282\u70b9\u7684\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\u4e4b\u5dee\u7684\u7edd\u5bf9\u503c\u4e0d\u8d85\u8fc7 1 \u3002
\u56fe 7-7 \u00a0 \u5e73\u8861\u4e8c\u53c9\u6811
"},{"location":"chapter_tree/binary_tree/#714","title":"7.1.4 \u00a0 \u4e8c\u53c9\u6811\u7684\u9000\u5316","text":"\u56fe 7-8 \u5c55\u793a\u4e86\u4e8c\u53c9\u6811\u7684\u7406\u60f3\u7ed3\u6784\u4e0e\u9000\u5316\u7ed3\u6784\u3002\u5f53\u4e8c\u53c9\u6811\u7684\u6bcf\u5c42\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u65f6\uff0c\u8fbe\u5230\u201c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u201d\uff1b\u800c\u5f53\u6240\u6709\u8282\u70b9\u90fd\u504f\u5411\u4e00\u4fa7\u65f6\uff0c\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u201c\u94fe\u8868\u201d\u3002
- \u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u7406\u60f3\u60c5\u51b5\uff0c\u53ef\u4ee5\u5145\u5206\u53d1\u6325\u4e8c\u53c9\u6811\u201c\u5206\u6cbb\u201d\u7684\u4f18\u52bf\u3002
- \u94fe\u8868\u5219\u662f\u53e6\u4e00\u4e2a\u6781\u7aef\uff0c\u5404\u9879\u64cd\u4f5c\u90fd\u53d8\u4e3a\u7ebf\u6027\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002
\u56fe 7-8 \u00a0 \u4e8c\u53c9\u6811\u7684\u6700\u4f73\u7ed3\u6784\u4e0e\u6700\u5dee\u7ed3\u6784
\u5982\u8868 7-1 \u6240\u793a\uff0c\u5728\u6700\u4f73\u7ed3\u6784\u548c\u6700\u5dee\u7ed3\u6784\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf\u3001\u8282\u70b9\u603b\u6570\u3001\u9ad8\u5ea6\u7b49\u8fbe\u5230\u6781\u5927\u503c\u6216\u6781\u5c0f\u503c\u3002
\u8868 7-1 \u00a0 \u4e8c\u53c9\u6811\u7684\u6700\u4f73\u7ed3\u6784\u4e0e\u6700\u5dee\u7ed3\u6784
\u5b8c\u7f8e\u4e8c\u53c9\u6811 \u94fe\u8868 \u7b2c \\(i\\) \u5c42\u7684\u8282\u70b9\u6570\u91cf \\(2^{i-1}\\) \\(1\\) \u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf \\(2^h\\) \\(1\\) \u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u6811\u7684\u8282\u70b9\u603b\u6570 \\(2^{h+1} - 1\\) \\(h + 1\\) \u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \u7684\u6811\u7684\u9ad8\u5ea6 \\(\\log_2 (n+1) - 1\\) \\(n - 1\\)"},{"location":"chapter_tree/binary_tree_traversal/","title":"7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386","text":"\u4ece\u7269\u7406\u7ed3\u6784\u7684\u89d2\u5ea6\u6765\u770b\uff0c\u6811\u662f\u4e00\u79cd\u57fa\u4e8e\u94fe\u8868\u7684\u6570\u636e\u7ed3\u6784\uff0c\u56e0\u6b64\u5176\u904d\u5386\u65b9\u5f0f\u662f\u901a\u8fc7\u6307\u9488\u9010\u4e2a\u8bbf\u95ee\u8282\u70b9\u3002\u7136\u800c\uff0c\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u8fd9\u4f7f\u5f97\u904d\u5386\u6811\u6bd4\u904d\u5386\u94fe\u8868\u66f4\u52a0\u590d\u6742\uff0c\u9700\u8981\u501f\u52a9\u641c\u7d22\u7b97\u6cd5\u6765\u5b9e\u73b0\u3002
\u4e8c\u53c9\u6811\u5e38\u89c1\u7684\u904d\u5386\u65b9\u5f0f\u5305\u62ec\u5c42\u5e8f\u904d\u5386\u3001\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u7b49\u3002
"},{"location":"chapter_tree/binary_tree_traversal/#721","title":"7.2.1 \u00a0 \u5c42\u5e8f\u904d\u5386","text":"\u5982\u56fe 7-9 \u6240\u793a\uff0c\u300c\u5c42\u5e8f\u904d\u5386 level-order traversal\u300d\u4ece\u9876\u90e8\u5230\u5e95\u90e8\u9010\u5c42\u904d\u5386\u4e8c\u53c9\u6811\uff0c\u5e76\u5728\u6bcf\u4e00\u5c42\u6309\u7167\u4ece\u5de6\u5230\u53f3\u7684\u987a\u5e8f\u8bbf\u95ee\u8282\u70b9\u3002
\u5c42\u5e8f\u904d\u5386\u672c\u8d28\u4e0a\u5c5e\u4e8e\u300c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 breadth-first traversal\u300d\uff0c\u4e5f\u79f0\u300c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22 breadth-first search, BFS\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u6269\u5c55\u201d\u7684\u9010\u5c42\u904d\u5386\u65b9\u5f0f\u3002
\u56fe 7-9 \u00a0 \u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386
"},{"location":"chapter_tree/binary_tree_traversal/#1","title":"1. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u901a\u5e38\u501f\u52a9\u201c\u961f\u5217\u201d\u6765\u5b9e\u73b0\u3002\u961f\u5217\u9075\u5faa\u201c\u5148\u8fdb\u5148\u51fa\u201d\u7684\u89c4\u5219\uff0c\u800c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5219\u9075\u5faa\u201c\u9010\u5c42\u63a8\u8fdb\u201d\u7684\u89c4\u5219\uff0c\u4e24\u8005\u80cc\u540e\u7684\u601d\u60f3\u662f\u4e00\u81f4\u7684\u3002\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree_bfs.pydef level_order(root: TreeNode | None) -> list[int]:\n \"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\n # \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n queue: deque[TreeNode] = deque()\n queue.append(root)\n # \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n res = []\n while queue:\n node: TreeNode = queue.popleft() # \u961f\u5217\u51fa\u961f\n res.append(node.val) # \u4fdd\u5b58\u8282\u70b9\u503c\n if node.left is not None:\n queue.append(node.left) # \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if node.right is not None:\n queue.append(node.right) # \u53f3\u5b50\u8282\u70b9\u5165\u961f\n return res\n
binary_tree_bfs.cpp/* \u5c42\u5e8f\u904d\u5386 */\nvector<int> levelOrder(TreeNode *root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n queue<TreeNode *> queue;\n queue.push(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n vector<int> vec;\n while (!queue.empty()) {\n TreeNode *node = queue.front();\n queue.pop(); // \u961f\u5217\u51fa\u961f\n vec.push_back(node->val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node->left != nullptr)\n queue.push(node->left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node->right != nullptr)\n queue.push(node->right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return vec;\n}\n
binary_tree_bfs.java/* \u5c42\u5e8f\u904d\u5386 */\nList<Integer> levelOrder(TreeNode root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n Queue<TreeNode> queue = new LinkedList<>();\n queue.add(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n List<Integer> list = new ArrayList<>();\n while (!queue.isEmpty()) {\n TreeNode node = queue.poll(); // \u961f\u5217\u51fa\u961f\n list.add(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null)\n queue.offer(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right != null)\n queue.offer(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return list;\n}\n
binary_tree_bfs.cs/* \u5c42\u5e8f\u904d\u5386 */\nList<int> LevelOrder(TreeNode root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n Queue<TreeNode> queue = new();\n queue.Enqueue(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n List<int> list = [];\n while (queue.Count != 0) {\n TreeNode node = queue.Dequeue(); // \u961f\u5217\u51fa\u961f\n list.Add(node.val!.Value); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null)\n queue.Enqueue(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right != null)\n queue.Enqueue(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return list;\n}\n
binary_tree_bfs.go/* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root *TreeNode) []any {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n queue := list.New()\n queue.PushBack(root)\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5207\u7247\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n nums := make([]any, 0)\n for queue.Len() > 0 {\n // \u961f\u5217\u51fa\u961f\n node := queue.Remove(queue.Front()).(*TreeNode)\n // \u4fdd\u5b58\u8282\u70b9\u503c\n nums = append(nums, node.Val)\n if node.Left != nil {\n // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n queue.PushBack(node.Left)\n }\n if node.Right != nil {\n // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n queue.PushBack(node.Right)\n }\n }\n return nums\n}\n
binary_tree_bfs.swift/* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root: TreeNode) -> [Int] {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n var queue: [TreeNode] = [root]\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n var list: [Int] = []\n while !queue.isEmpty {\n let node = queue.removeFirst() // \u961f\u5217\u51fa\u961f\n list.append(node.val) // \u4fdd\u5b58\u8282\u70b9\u503c\n if let left = node.left {\n queue.append(left) // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if let right = node.right {\n queue.append(right) // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n }\n return list\n}\n
binary_tree_bfs.js/* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n const queue = [root];\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n const list = [];\n while (queue.length) {\n let node = queue.shift(); // \u961f\u5217\u51fa\u961f\n list.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left) queue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right) queue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return list;\n}\n
binary_tree_bfs.ts/* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root: TreeNode | null): number[] {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n const queue = [root];\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n const list: number[] = [];\n while (queue.length) {\n let node = queue.shift() as TreeNode; // \u961f\u5217\u51fa\u961f\n list.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left) {\n queue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if (node.right) {\n queue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n }\n return list;\n}\n
binary_tree_bfs.dart/* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder(TreeNode? root) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n Queue<TreeNode?> queue = Queue();\n queue.add(root);\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n List<int> res = [];\n while (queue.isNotEmpty) {\n TreeNode? node = queue.removeFirst(); // \u961f\u5217\u51fa\u961f\n res.add(node!.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null) queue.add(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n if (node.right != null) queue.add(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n }\n return res;\n}\n
binary_tree_bfs.rs/* \u5c42\u5e8f\u904d\u5386 */\nfn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n let mut que = VecDeque::new();\n que.push_back(Rc::clone(&root));\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n let mut vec = Vec::new();\n\n while let Some(node) = que.pop_front() { // \u961f\u5217\u51fa\u961f\n vec.push(node.borrow().val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if let Some(left) = node.borrow().left.as_ref() {\n que.push_back(Rc::clone(left)); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if let Some(right) = node.borrow().right.as_ref() {\n que.push_back(Rc::clone(right)); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n };\n }\n vec\n}\n
binary_tree_bfs.c/* \u5c42\u5e8f\u904d\u5386 */\nint *levelOrder(TreeNode *root, int *size) {\n /* \u8f85\u52a9\u961f\u5217 */\n int front, rear;\n int index, *arr;\n TreeNode *node;\n TreeNode **queue;\n\n /* \u8f85\u52a9\u961f\u5217 */\n queue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_SIZE);\n // \u961f\u5217\u6307\u9488\n front = 0, rear = 0;\n // \u52a0\u5165\u6839\u8282\u70b9\n queue[rear++] = root;\n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n /* \u8f85\u52a9\u6570\u7ec4 */\n arr = (int *)malloc(sizeof(int) * MAX_SIZE);\n // \u6570\u7ec4\u6307\u9488\n index = 0;\n while (front < rear) {\n // \u961f\u5217\u51fa\u961f\n node = queue[front++];\n // \u4fdd\u5b58\u8282\u70b9\u503c\n arr[index++] = node->val;\n if (node->left != NULL) {\n // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n queue[rear++] = node->left;\n }\n if (node->right != NULL) {\n // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n queue[rear++] = node->right;\n }\n }\n // \u66f4\u65b0\u6570\u7ec4\u957f\u5ea6\u7684\u503c\n *size = index;\n arr = realloc(arr, sizeof(int) * (*size));\n\n // \u91ca\u653e\u8f85\u52a9\u6570\u7ec4\u7a7a\u95f4\n free(queue);\n return arr;\n}\n
binary_tree_bfs.zig// \u5c42\u5e8f\u904d\u5386\nfn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {\n // \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\n const L = std.TailQueue(*inc.TreeNode(T));\n var queue = L{};\n var root_node = try mem_allocator.create(L.Node);\n root_node.data = root;\n queue.append(root_node); \n // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n var list = std.ArrayList(T).init(std.heap.page_allocator);\n while (queue.len > 0) {\n var queue_node = queue.popFirst().?; // \u961f\u5217\u51fa\u961f\n var node = queue_node.data;\n try list.append(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\n if (node.left != null) {\n var tmp_node = try mem_allocator.create(L.Node);\n tmp_node.data = node.left.?;\n queue.append(tmp_node); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n }\n if (node.right != null) {\n var tmp_node = try mem_allocator.create(L.Node);\n tmp_node.data = node.right.?;\n queue.append(tmp_node); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n } \n }\n return list;\n}\n
"},{"location":"chapter_tree/binary_tree_traversal/#2","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d \\(n\\) \u4e3a\u8282\u70b9\u6570\u91cf\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6ee1\u4e8c\u53c9\u6811\u65f6\uff0c\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u6700\u591a\u540c\u65f6\u5b58\u5728 \\((n + 1) / 2\\) \u4e2a\u8282\u70b9\uff0c\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002
"},{"location":"chapter_tree/binary_tree_traversal/#722","title":"7.2.2 \u00a0 \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386","text":"\u76f8\u5e94\u5730\uff0c\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386 depth-first traversal\u300d\uff0c\u4e5f\u79f0\u300c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22 depth-first search, DFS\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u5148\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u6eaf\u7ee7\u7eed\u201d\u7684\u904d\u5386\u65b9\u5f0f\u3002
\u56fe 7-10 \u5c55\u793a\u4e86\u5bf9\u4e8c\u53c9\u6811\u8fdb\u884c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5de5\u4f5c\u539f\u7406\u3002\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5c31\u50cf\u662f\u7ed5\u7740\u6574\u68f5\u4e8c\u53c9\u6811\u7684\u5916\u56f4\u201c\u8d70\u201d\u4e00\u5708\uff0c\u5728\u6bcf\u4e2a\u8282\u70b9\u90fd\u4f1a\u9047\u5230\u4e09\u4e2a\u4f4d\u7f6e\uff0c\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u3002
\u56fe 7-10 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386
"},{"location":"chapter_tree/binary_tree_traversal/#1_1","title":"1. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\uff1a
PythonC++JavaC#GoSwiftJSTSDartRustCZig binary_tree_dfs.pydef pre_order(root: TreeNode | None):\n \"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\n if root is None:\n return\n # \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n res.append(root.val)\n pre_order(root=root.left)\n pre_order(root=root.right)\n\ndef in_order(root: TreeNode | None):\n \"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\n if root is None:\n return\n # \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n in_order(root=root.left)\n res.append(root.val)\n in_order(root=root.right)\n\ndef post_order(root: TreeNode | None):\n \"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\n if root is None:\n return\n # \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n post_order(root=root.left)\n post_order(root=root.right)\n res.append(root.val)\n
binary_tree_dfs.cpp/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root) {\n if (root == nullptr)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n vec.push_back(root->val);\n preOrder(root->left);\n preOrder(root->right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root) {\n if (root == nullptr)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root->left);\n vec.push_back(root->val);\n inOrder(root->right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root) {\n if (root == nullptr)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root->left);\n postOrder(root->right);\n vec.push_back(root->val);\n}\n
binary_tree_dfs.java/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode root) {\n if (root == null)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.add(root.val);\n preOrder(root.left);\n preOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode root) {\n if (root == null)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root.left);\n list.add(root.val);\n inOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode root) {\n if (root == null)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root.left);\n postOrder(root.right);\n list.add(root.val);\n}\n
binary_tree_dfs.cs/* \u524d\u5e8f\u904d\u5386 */\nvoid PreOrder(TreeNode? root) {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.Add(root.val!.Value);\n PreOrder(root.left);\n PreOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid InOrder(TreeNode? root) {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n InOrder(root.left);\n list.Add(root.val!.Value);\n InOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid PostOrder(TreeNode? root) {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n PostOrder(root.left);\n PostOrder(root.right);\n list.Add(root.val!.Value);\n}\n
binary_tree_dfs.go/* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(node *TreeNode) {\n if node == nil {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n nums = append(nums, node.Val)\n preOrder(node.Left)\n preOrder(node.Right)\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(node *TreeNode) {\n if node == nil {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(node.Left)\n nums = append(nums, node.Val)\n inOrder(node.Right)\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(node *TreeNode) {\n if node == nil {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(node.Left)\n postOrder(node.Right)\n nums = append(nums, node.Val)\n}\n
binary_tree_dfs.swift/* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.append(root.val)\n preOrder(root: root.left)\n preOrder(root: root.right)\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root: root.left)\n list.append(root.val)\n inOrder(root: root.right)\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(root: TreeNode?) {\n guard let root = root else {\n return\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root: root.left)\n postOrder(root: root.right)\n list.append(root.val)\n}\n
binary_tree_dfs.js/* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root) {\n if (root === null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.push(root.val);\n preOrder(root.left);\n preOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root) {\n if (root === null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root.left);\n list.push(root.val);\n inOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root) {\n if (root === null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root.left);\n postOrder(root.right);\n list.push(root.val);\n}\n
binary_tree_dfs.ts/* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root: TreeNode | null): void {\n if (root === null) {\n return;\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.push(root.val);\n preOrder(root.left);\n preOrder(root.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root: TreeNode | null): void {\n if (root === null) {\n return;\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root.left);\n list.push(root.val);\n inOrder(root.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root: TreeNode | null): void {\n if (root === null) {\n return;\n }\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root.left);\n postOrder(root.right);\n list.push(root.val);\n}\n
binary_tree_dfs.dart/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode? node) {\n if (node == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n list.add(node.val);\n preOrder(node.left);\n preOrder(node.right);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode? node) {\n if (node == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(node.left);\n list.add(node.val);\n inOrder(node.right);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode? node) {\n if (node == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(node.left);\n postOrder(node.right);\n list.add(node.val);\n}\n
binary_tree_dfs.rs/* \u524d\u5e8f\u904d\u5386 */\nfn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\n let mut result = vec![];\n\n if let Some(node) = root {\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n result.push(node.borrow().val);\n result.append(&mut pre_order(node.borrow().left.as_ref()));\n result.append(&mut pre_order(node.borrow().right.as_ref()));\n }\n result\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nfn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\n let mut result = vec![];\n\n if let Some(node) = root {\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n result.append(&mut in_order(node.borrow().left.as_ref()));\n result.push(node.borrow().val);\n result.append(&mut in_order(node.borrow().right.as_ref()));\n }\n result\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nfn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\n let mut result = vec![];\n\n if let Some(node) = root {\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n result.append(&mut post_order(node.borrow().left.as_ref()));\n result.append(&mut post_order(node.borrow().right.as_ref()));\n result.push(node.borrow().val);\n }\n result\n}\n
binary_tree_dfs.c/* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root, int *size) {\n if (root == NULL)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n arr[(*size)++] = root->val;\n preOrder(root->left, size);\n preOrder(root->right, size);\n}\n\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root, int *size) {\n if (root == NULL)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n inOrder(root->left, size);\n arr[(*size)++] = root->val;\n inOrder(root->right, size);\n}\n\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root, int *size) {\n if (root == NULL)\n return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n postOrder(root->left, size);\n postOrder(root->right, size);\n arr[(*size)++] = root->val;\n}\n
binary_tree_dfs.zig// \u524d\u5e8f\u904d\u5386\nfn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\n try list.append(root.?.val);\n try preOrder(T, root.?.left);\n try preOrder(T, root.?.right);\n}\n\n// \u4e2d\u5e8f\u904d\u5386\nfn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\n try inOrder(T, root.?.left);\n try list.append(root.?.val);\n try inOrder(T, root.?.right);\n}\n\n// \u540e\u5e8f\u904d\u5386\nfn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\n if (root == null) return;\n // \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\n try postOrder(T, root.?.left);\n try postOrder(T, root.?.right);\n try list.append(root.?.val);\n}\n
Tip
\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u4e5f\u53ef\u4ee5\u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\uff0c\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u7814\u7a76\u3002
\u56fe 7-11 \u5c55\u793a\u4e86\u524d\u5e8f\u904d\u5386\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5176\u53ef\u5206\u4e3a\u201c\u9012\u201d\u548c\u201c\u5f52\u201d\u4e24\u4e2a\u9006\u5411\u7684\u90e8\u5206\u3002
- \u201c\u9012\u201d\u8868\u793a\u5f00\u542f\u65b0\u65b9\u6cd5\uff0c\u7a0b\u5e8f\u5728\u6b64\u8fc7\u7a0b\u4e2d\u8bbf\u95ee\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002
- \u201c\u5f52\u201d\u8868\u793a\u51fd\u6570\u8fd4\u56de\uff0c\u4ee3\u8868\u5f53\u524d\u8282\u70b9\u5df2\u7ecf\u8bbf\u95ee\u5b8c\u6bd5\u3002
<1><2><3><4><5><6><7><8><9><10><11> \u56fe 7-11 \u00a0 \u524d\u5e8f\u904d\u5386\u7684\u9012\u5f52\u8fc7\u7a0b
"},{"location":"chapter_tree/binary_tree_traversal/#2_1","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":" - \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
- \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u7cfb\u7edf\u5360\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002
"},{"location":"chapter_tree/summary/","title":"7.6 \u00a0 \u5c0f\u7ed3","text":""},{"location":"chapter_tree/summary/#1","title":"1. \u00a0 \u91cd\u70b9\u56de\u987e","text":" - \u4e8c\u53c9\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4f53\u73b0\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u6bcf\u4e2a\u4e8c\u53c9\u6811\u8282\u70b9\u5305\u542b\u4e00\u4e2a\u503c\u4ee5\u53ca\u4e24\u4e2a\u6307\u9488\uff0c\u5206\u522b\u6307\u5411\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u3002
- \u5bf9\u4e8e\u4e8c\u53c9\u6811\u4e2d\u7684\u67d0\u4e2a\u8282\u70b9\uff0c\u5176\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u5f62\u6210\u7684\u6811\u88ab\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u5de6\uff08\u53f3\uff09\u5b50\u6811\u3002
- \u4e8c\u53c9\u6811\u7684\u76f8\u5173\u672f\u8bed\u5305\u62ec\u6839\u8282\u70b9\u3001\u53f6\u8282\u70b9\u3001\u5c42\u3001\u5ea6\u3001\u8fb9\u3001\u9ad8\u5ea6\u548c\u6df1\u5ea6\u7b49\u3002
- \u4e8c\u53c9\u6811\u7684\u521d\u59cb\u5316\u3001\u8282\u70b9\u63d2\u5165\u548c\u8282\u70b9\u5220\u9664\u64cd\u4f5c\u4e0e\u94fe\u8868\u64cd\u4f5c\u65b9\u6cd5\u7c7b\u4f3c\u3002
- \u5e38\u89c1\u7684\u4e8c\u53c9\u6811\u7c7b\u578b\u6709\u5b8c\u7f8e\u4e8c\u53c9\u6811\u3001\u5b8c\u5168\u4e8c\u53c9\u6811\u3001\u5b8c\u6ee1\u4e8c\u53c9\u6811\u548c\u5e73\u8861\u4e8c\u53c9\u6811\u3002\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u6700\u7406\u60f3\u7684\u72b6\u6001\uff0c\u800c\u94fe\u8868\u662f\u9000\u5316\u540e\u7684\u6700\u5dee\u72b6\u6001\u3002
- \u4e8c\u53c9\u6811\u53ef\u4ee5\u7528\u6570\u7ec4\u8868\u793a\uff0c\u65b9\u6cd5\u662f\u5c06\u8282\u70b9\u503c\u548c\u7a7a\u4f4d\u6309\u5c42\u5e8f\u904d\u5386\u987a\u5e8f\u6392\u5217\uff0c\u5e76\u6839\u636e\u7236\u8282\u70b9\u4e0e\u5b50\u8282\u70b9\u4e4b\u95f4\u7684\u7d22\u5f15\u6620\u5c04\u5173\u7cfb\u6765\u5b9e\u73b0\u6307\u9488\u3002
- \u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386\u662f\u4e00\u79cd\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u65b9\u6cd5\uff0c\u5b83\u4f53\u73b0\u4e86\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u6269\u5c55\u201d\u7684\u9010\u5c42\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u901a\u8fc7\u961f\u5217\u6765\u5b9e\u73b0\u3002
- \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\u7686\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u5b83\u4eec\u4f53\u73b0\u4e86\u201c\u5148\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u6eaf\u7ee7\u7eed\u201d\u7684\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u6765\u5b9e\u73b0\u3002
- \u4e8c\u53c9\u641c\u7d22\u6811\u662f\u4e00\u79cd\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u627e\u6570\u636e\u7ed3\u6784\uff0c\u5176\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \u3002\u5f53\u4e8c\u53c9\u641c\u7d22\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u5404\u9879\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
- AVL \u6811\uff0c\u4e5f\u79f0\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5b83\u901a\u8fc7\u65cb\u8f6c\u64cd\u4f5c\u786e\u4fdd\u5728\u4e0d\u65ad\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\u540e\u6811\u4ecd\u7136\u4fdd\u6301\u5e73\u8861\u3002
- AVL \u6811\u7684\u65cb\u8f6c\u64cd\u4f5c\u5305\u62ec\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u518d\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u518d\u53f3\u65cb\u3002\u5728\u63d2\u5165\u6216\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4f1a\u4ece\u5e95\u5411\u9876\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002
"},{"location":"chapter_tree/summary/#2-q-a","title":"2. \u00a0 Q & A","text":"\u5bf9\u4e8e\u53ea\u6709\u4e00\u4e2a\u8282\u70b9\u7684\u4e8c\u53c9\u6811\uff0c\u6811\u7684\u9ad8\u5ea6\u548c\u6839\u8282\u70b9\u7684\u6df1\u5ea6\u90fd\u662f \\(0\\) \u5417\uff1f
\u662f\u7684\uff0c\u56e0\u4e3a\u9ad8\u5ea6\u548c\u6df1\u5ea6\u901a\u5e38\u5b9a\u4e49\u4e3a\u201c\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u201d\u3002
\u4e8c\u53c9\u6811\u4e2d\u7684\u63d2\u5165\u4e0e\u5220\u9664\u4e00\u822c\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\uff0c\u8fd9\u91cc\u7684\u201c\u4e00\u5957\u64cd\u4f5c\u201d\u6307\u4ec0\u4e48\u5462\uff1f\u53ef\u4ee5\u7406\u89e3\u4e3a\u8d44\u6e90\u7684\u5b50\u8282\u70b9\u7684\u8d44\u6e90\u91ca\u653e\u5417\uff1f
\u62ff\u4e8c\u53c9\u641c\u7d22\u6811\u6765\u4e3e\u4f8b\uff0c\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u8981\u5206\u4e09\u79cd\u60c5\u51b5\u5904\u7406\uff0c\u5176\u4e2d\u6bcf\u79cd\u60c5\u51b5\u90fd\u9700\u8981\u8fdb\u884c\u591a\u4e2a\u6b65\u9aa4\u7684\u8282\u70b9\u64cd\u4f5c\u3002
\u4e3a\u4ec0\u4e48 DFS \u904d\u5386\u4e8c\u53c9\u6811\u6709\u524d\u3001\u4e2d\u3001\u540e\u4e09\u79cd\u987a\u5e8f\uff0c\u5206\u522b\u6709\u4ec0\u4e48\u7528\u5462\uff1f
\u4e0e\u987a\u5e8f\u548c\u9006\u5e8f\u904d\u5386\u6570\u7ec4\u7c7b\u4f3c\uff0c\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\u662f\u4e09\u79cd\u4e8c\u53c9\u6811\u904d\u5386\u65b9\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u4eec\u5f97\u5230\u4e00\u4e2a\u7279\u5b9a\u987a\u5e8f\u7684\u904d\u5386\u7ed3\u679c\u3002\u4f8b\u5982\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\uff0c\u7531\u4e8e\u8282\u70b9\u5927\u5c0f\u6ee1\u8db3 \u5de6\u5b50\u8282\u70b9\u503c < \u6839\u8282\u70b9\u503c < \u53f3\u5b50\u8282\u70b9\u503c \uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u8981\u6309\u7167 \u5de6 $\\rightarrow$ \u6839 $\\rightarrow$ \u53f3 \u7684\u4f18\u5148\u7ea7\u904d\u5386\u6811\uff0c\u5c31\u53ef\u4ee5\u83b7\u5f97\u6709\u5e8f\u7684\u8282\u70b9\u5e8f\u5217\u3002
\u53f3\u65cb\u64cd\u4f5c\u662f\u5904\u7406\u5931\u8861\u8282\u70b9 node\u3001child\u3001grand_child \u4e4b\u95f4\u7684\u5173\u7cfb\uff0c\u90a3 node \u7684\u7236\u8282\u70b9\u548c node \u539f\u6765\u7684\u8fde\u63a5\u4e0d\u9700\u8981\u7ef4\u62a4\u5417\uff1f\u53f3\u65cb\u64cd\u4f5c\u540e\u5c82\u4e0d\u662f\u65ad\u6389\u4e86\uff1f
\u6211\u4eec\u9700\u8981\u4ece\u9012\u5f52\u7684\u89c6\u89d2\u6765\u770b\u8fd9\u4e2a\u95ee\u9898\u3002\u53f3\u65cb\u64cd\u4f5c right_rotate(root) \u4f20\u5165\u7684\u662f\u5b50\u6811\u7684\u6839\u8282\u70b9\uff0c\u6700\u7ec8 return child \u8fd4\u56de\u65cb\u8f6c\u4e4b\u540e\u7684\u5b50\u6811\u7684\u6839\u8282\u70b9\u3002\u5b50\u6811\u7684\u6839\u8282\u70b9\u548c\u5176\u7236\u8282\u70b9\u7684\u8fde\u63a5\u662f\u5728\u8be5\u51fd\u6570\u8fd4\u56de\u540e\u5b8c\u6210\u7684\uff0c\u4e0d\u5c5e\u4e8e\u53f3\u65cb\u64cd\u4f5c\u7684\u7ef4\u62a4\u8303\u56f4\u3002
\u5728 C++ \u4e2d\uff0c\u51fd\u6570\u88ab\u5212\u5206\u5230 private \u548c public \u4e2d\uff0c\u8fd9\u65b9\u9762\u6709\u4ec0\u4e48\u8003\u91cf\u5417\uff1f\u4e3a\u4ec0\u4e48\u8981\u5c06 height() \u51fd\u6570\u548c updateHeight() \u51fd\u6570\u5206\u522b\u653e\u5728 public \u548c private \u4e2d\u5462\uff1f
\u4e3b\u8981\u770b\u65b9\u6cd5\u7684\u4f7f\u7528\u8303\u56f4\uff0c\u5982\u679c\u65b9\u6cd5\u53ea\u5728\u7c7b\u5185\u90e8\u4f7f\u7528\uff0c\u90a3\u4e48\u5c31\u8bbe\u8ba1\u4e3a private \u3002\u4f8b\u5982\uff0c\u7528\u6237\u5355\u72ec\u8c03\u7528 updateHeight() \u662f\u6ca1\u6709\u610f\u4e49\u7684\uff0c\u5b83\u53ea\u662f\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u4e2d\u7684\u4e00\u6b65\u3002\u800c height() \u662f\u8bbf\u95ee\u8282\u70b9\u9ad8\u5ea6\uff0c\u7c7b\u4f3c\u4e8e vector.size() \uff0c\u56e0\u6b64\u8bbe\u7f6e\u6210 public \u4ee5\u4fbf\u4f7f\u7528\u3002
\u5982\u4f55\u4ece\u4e00\u7ec4\u8f93\u5165\u6570\u636e\u6784\u5efa\u4e00\u68f5\u4e8c\u53c9\u641c\u7d22\u6811\uff1f\u6839\u8282\u70b9\u7684\u9009\u62e9\u662f\u4e0d\u662f\u5f88\u91cd\u8981\uff1f
\u662f\u7684\uff0c\u6784\u5efa\u6811\u7684\u65b9\u6cd5\u5df2\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4ee3\u7801\u4e2d\u7684 build_tree() \u65b9\u6cd5\u4e2d\u7ed9\u51fa\u3002\u81f3\u4e8e\u6839\u8282\u70b9\u7684\u9009\u62e9\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u8f93\u5165\u6570\u636e\u6392\u5e8f\uff0c\u7136\u540e\u5c06\u4e2d\u70b9\u5143\u7d20\u4f5c\u4e3a\u6839\u8282\u70b9\uff0c\u518d\u9012\u5f52\u5730\u6784\u5efa\u5de6\u53f3\u5b50\u6811\u3002\u8fd9\u6837\u505a\u53ef\u4ee5\u6700\u5927\u7a0b\u5ea6\u4fdd\u8bc1\u6811\u7684\u5e73\u8861\u6027\u3002
\u5728 Java \u4e2d\uff0c\u5b57\u7b26\u4e32\u5bf9\u6bd4\u662f\u5426\u4e00\u5b9a\u8981\u7528 equals() \u65b9\u6cd5\uff1f
\u5728 Java \u4e2d\uff0c\u5bf9\u4e8e\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c== \u7528\u4e8e\u5bf9\u6bd4\u4e24\u4e2a\u53d8\u91cf\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002\u5bf9\u4e8e\u5f15\u7528\u7c7b\u578b\uff0c\u4e24\u79cd\u7b26\u53f7\u7684\u5de5\u4f5c\u539f\u7406\u662f\u4e0d\u540c\u7684\u3002
== \uff1a\u7528\u6765\u6bd4\u8f83\u4e24\u4e2a\u53d8\u91cf\u662f\u5426\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u5373\u5b83\u4eec\u5728\u5185\u5b58\u4e2d\u7684\u4f4d\u7f6e\u662f\u5426\u76f8\u540c\u3002 equals()\uff1a\u7528\u6765\u5bf9\u6bd4\u4e24\u4e2a\u5bf9\u8c61\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002
\u56e0\u6b64\uff0c\u5982\u679c\u8981\u5bf9\u6bd4\u503c\uff0c\u6211\u4eec\u5e94\u8be5\u4f7f\u7528 equals() \u3002\u7136\u800c\uff0c\u901a\u8fc7 String a = \"hi\"; String b = \"hi\"; \u521d\u59cb\u5316\u7684\u5b57\u7b26\u4e32\u90fd\u5b58\u50a8\u5728\u5b57\u7b26\u4e32\u5e38\u91cf\u6c60\u4e2d\uff0c\u5b83\u4eec\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u56e0\u6b64\u4e5f\u53ef\u4ee5\u7528 a == b \u6765\u6bd4\u8f83\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5185\u5bb9\u3002
\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u7684\u8282\u70b9\u6570\u91cf\u662f \\(2^h\\) \u5417\uff1f
\u662f\u7684\uff0c\u4f8b\u5982\u9ad8\u5ea6 \\(h = 2\\) \u7684\u6ee1\u4e8c\u53c9\u6811\uff0c\u5176\u8282\u70b9\u603b\u6570 \\(n = 7\\) \uff0c\u5219\u5e95\u5c42\u8282\u70b9\u6570\u91cf \\(4 = 2^h = (n + 1) / 2\\) \u3002
"}]}
\ No newline at end of file
diff --git a/sitemap.xml b/sitemap.xml
index 8cdb7aeb7..409c02c00 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -2,522 +2,522 @@
https://www.hello-algo.com/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_appendix/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_appendix/contribution/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_appendix/installation/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_appendix/terminology/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_array_and_linkedlist/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_array_and_linkedlist/array/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_array_and_linkedlist/linked_list/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_array_and_linkedlist/list/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_array_and_linkedlist/ram_and_cache/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_array_and_linkedlist/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_backtracking/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_backtracking/backtracking_algorithm/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_backtracking/n_queens_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_backtracking/permutations_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_backtracking/subset_sum_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_backtracking/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_computational_complexity/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_computational_complexity/iteration_and_recursion/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_computational_complexity/performance_evaluation/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_computational_complexity/space_complexity/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_computational_complexity/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_computational_complexity/time_complexity/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_data_structure/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_data_structure/basic_data_types/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_data_structure/character_encoding/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_data_structure/classification_of_data_structure/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_data_structure/number_encoding/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_data_structure/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_divide_and_conquer/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_divide_and_conquer/binary_search_recur/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_divide_and_conquer/build_binary_tree_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_divide_and_conquer/divide_and_conquer/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_divide_and_conquer/hanota_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_divide_and_conquer/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/dp_problem_features/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/dp_solution_pipeline/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/edit_distance_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/intro_to_dynamic_programming/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/knapsack_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_dynamic_programming/unbounded_knapsack_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_graph/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_graph/graph/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_graph/graph_operations/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_graph/graph_traversal/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_graph/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_greedy/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_greedy/fractional_knapsack_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_greedy/greedy_algorithm/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_greedy/max_capacity_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_greedy/max_product_cutting_problem/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_greedy/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_hashing/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_hashing/hash_algorithm/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_hashing/hash_collision/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_hashing/hash_map/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_hashing/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_heap/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_heap/build_heap/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_heap/heap/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_heap/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_heap/top_k/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_introduction/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_introduction/algorithms_are_everywhere/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_introduction/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_introduction/what_is_dsa/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_preface/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_preface/about_the_book/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_preface/suggestions/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_preface/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_reference/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_searching/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_searching/binary_search/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_searching/binary_search_edge/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_searching/binary_search_insertion/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_searching/replace_linear_by_hashing/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_searching/searching_algorithm_revisited/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_searching/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/bubble_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/bucket_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/counting_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/heap_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/insertion_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/merge_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/quick_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/radix_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/selection_sort/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/sorting_algorithm/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_sorting/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_stack_and_queue/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_stack_and_queue/deque/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_stack_and_queue/queue/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_stack_and_queue/stack/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_stack_and_queue/summary/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_tree/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_tree/array_representation_of_tree/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_tree/avl_tree/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_tree/binary_search_tree/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_tree/binary_tree/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_tree/binary_tree_traversal/
- 2023-12-26
+ 2023-12-28
daily
https://www.hello-algo.com/chapter_tree/summary/
- 2023-12-26
+ 2023-12-28
daily
\ No newline at end of file
diff --git a/sitemap.xml.gz b/sitemap.xml.gz
index 3fa8d7b69..99a6b4e05 100644
Binary files a/sitemap.xml.gz and b/sitemap.xml.gz differ
























