feat: Revised the book (#978)

* Sync recent changes to the revised Word.

* Revised the preface chapter

* Revised the introduction chapter

* Revised the computation complexity chapter

* Revised the chapter data structure

* Revised the chapter array and linked list

* Revised the chapter stack and queue

* Revised the chapter hashing

* Revised the chapter tree

* Revised the chapter heap

* Revised the chapter graph

* Revised the chapter searching

* Reivised the sorting chapter

* Revised the divide and conquer chapter

* Revised the chapter backtacking

* Revised the DP chapter

* Revised the greedy chapter

* Revised the appendix chapter

* Revised the preface chapter doubly

* Revised the figures
This commit is contained in:
Yudong Jin
2023-12-02 06:21:34 +08:00
committed by GitHub
parent b824d149cb
commit e720aa2d24
404 changed files with 1537 additions and 1558 deletions

View File

@@ -1,6 +1,6 @@
# 数组
「数组 array」是一种线性数据结构其将相同类型元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的「索引 index」。下图展示了数组的主要术语和概念。
「数组 array」是一种线性数据结构其将相同类型元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的「索引 index」。下图展示了数组的主要术语和概念。
![数组定义与存储方式](array.assets/array_definition.png)
@@ -8,7 +8,7 @@
### 初始化数组
我们可以根据需求选用数组的两种初始化方式:无初始值、给定初始值。在未指定初始值的情况下,大多数编程语言会将数组元素初始化为 $0$
我们可以根据需求选用数组的两种初始化方式:无初始值、给定初始值。在未指定初始值的情况下,大多数编程语言会将数组元素初始化为 $0$
=== "Python"
@@ -115,13 +115,13 @@
### 访问元素
数组元素被存储在连续的内存空间中,这意味着计算数组元素的内存地址非常容易。给定数组内存地址(首元素内存地址)和某个元素的索引,我们可以使用下图所示的公式计算得到该元素的内存地址,从而直接访问元素。
数组元素被存储在连续的内存空间中,这意味着计算数组元素的内存地址非常容易。给定数组内存地址(首元素内存地址)和某个元素的索引,我们可以使用下图所示的公式计算得到该元素的内存地址,从而直接访问元素。
![数组元素的内存地址计算](array.assets/array_memory_location_calculation.png)
观察上图,我们发现数组首个元素的索引为 $0$ ,这似乎有些反直觉,因为从 $1$ 开始计数会更自然。但从地址计算公式的角度看,**索引的含义本质上是内存地址的偏移量**。首个元素的地址偏移量是 $0$ ,因此它的索引为 $0$ 是合理的。
观察上图,我们发现数组首个元素的索引为 $0$ ,这似乎有些反直觉,因为从 $1$ 开始计数会更自然。但从地址计算公式的角度看,**索引本质上是内存地址的偏移量**。首个元素的地址偏移量是 $0$ ,因此它的索引为 $0$ 是合理的。
在数组中访问元素非常高效,我们可以在 $O(1)$ 时间内随机访问数组中的任意一个元素。
在数组中访问元素非常高效,我们可以在 $O(1)$ 时间内随机访问数组中的任意一个元素。
```src
[file]{array}-[class]{}-[func]{random_access}
@@ -129,11 +129,11 @@
### 插入元素
数组元素在内存中是“紧挨着的”,它们之间没有空间再存放任何数据。如下图所示,如果想在数组中间插入一个元素,则需要将该元素之后的所有元素都向后移动一位,之后再把元素赋值给该索引。
数组元素在内存中是“紧挨着的”,它们之间没有空间再存放任何数据。如下图所示,如果想在数组中间插入一个元素,则需要将该元素之后的所有元素都向后移动一位,之后再把元素赋值给该索引。
![数组插入元素示例](array.assets/array_insert_element.png)
值得注意的是,由于数组的长度是固定的,因此插入一个元素必定会导致数组尾部元素“丢失”。我们将这个问题的解决方案留在列表章节中讨论。
值得注意的是,由于数组的长度是固定的,因此插入一个元素必定会导致数组尾部元素“丢失”。我们将这个问题的解决方案留在列表章节中讨论。
```src
[file]{array}-[class]{}-[func]{insert}
@@ -141,7 +141,7 @@
### 删除元素
同理,如下图所示,若想删除索引 $i$ 处的元素,则需要把索引 $i$ 之后的元素都向前移动一位。
同理,如下图所示,若想删除索引 $i$ 处的元素,则需要把索引 $i$ 之后的元素都向前移动一位。
![数组删除元素示例](array.assets/array_remove_element.png)
@@ -155,11 +155,11 @@
- **时间复杂度高**:数组的插入和删除的平均时间复杂度均为 $O(n)$ ,其中 $n$ 为数组长度。
- **丢失元素**:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会丢失。
- **内存浪费**:我们可以初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素都是“无意义”的,但这样做会造成部分内存空间浪费。
- **内存浪费**:我们可以初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素都是“无意义”的,但这样做会造成部分内存空间浪费。
### 遍历数组
在大多数编程语言中,我们既可以通过索引遍历数组,也可以直接遍历获取数组中的每个元素
在大多数编程语言中,我们既可以通过索引遍历数组,也可以直接遍历获取数组中的每个元素
```src
[file]{array}-[class]{}-[func]{traverse}
@@ -179,32 +179,32 @@
在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在大多数编程语言中,**数组的长度是不可变的**。
如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次拷贝到新数组。这是一个 $O(n)$ 的操作,在数组很大的情况下非常耗时
如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次复制到新数组。这是一个 $O(n)$ 的操作,在数组很大的情况下非常耗时。代码如下所示:
```src
[file]{array}-[class]{}-[func]{extend}
```
## 数组优点与局限性
## 数组优点与局限性
数组存储在连续的内存空间内,且元素类型相同。这种做法包含丰富的先验信息,系统可以利用这些信息来优化数据结构的操作效率。
- **空间效率高**: 数组为数据分配了连续的内存块,无须额外的结构开销。
- **支持随机访问**: 数组允许在 $O(1)$ 时间内访问任何元素。
- **缓存局部性**: 当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓存来提升后续操作的执行速度。
- **空间效率高**数组为数据分配了连续的内存块,无须额外的结构开销。
- **支持随机访问**数组允许在 $O(1)$ 时间内访问任何元素。
- **缓存局部性**当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓存来提升后续操作的执行速度。
连续空间存储是一把双刃剑,其存在以下缺点
连续空间存储是一把双刃剑,其存在以下局限性
- **插入与删除效率低**:当数组中元素较多时,插入与删除操作需要移动大量的元素。
- **长度不可变**: 数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。
- **空间浪费**: 如果数组分配的大小超过实际所需,那么多余的空间就被浪费了。
- **插入与删除效率低**当数组中元素较多时,插入与删除操作需要移动大量的元素。
- **长度不可变**数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。
- **空间浪费**如果数组分配的大小超过实际所需,那么多余的空间就被浪费了。
## 数组典型应用
数组是一种基础且常见的数据结构,既频繁应用在各类算法之中,也可用于实现各种复杂数据结构。
- **随机访问**:如果我们想随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽
- **随机访问**:如果我们想随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现随机抽
- **排序和搜索**:数组是排序和搜索算法最常用的数据结构。快速排序、归并排序、二分查找等都主要在数组上进行。
- **查找表**:当我们需要快速查找一个元素或者需要查找一个元素的对应关系时,可以使用数组作为查找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。
- **查找表**:当需要快速查找一个元素或对应关系时,可以使用数组作为查找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。
- **机器学习**:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。
- **数据结构实现**:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,图的邻接矩阵表示实际上是一个二维数组。