feat: Revised the book (#978)

* Sync recent changes to the revised Word.

* Revised the preface chapter

* Revised the introduction chapter

* Revised the computation complexity chapter

* Revised the chapter data structure

* Revised the chapter array and linked list

* Revised the chapter stack and queue

* Revised the chapter hashing

* Revised the chapter tree

* Revised the chapter heap

* Revised the chapter graph

* Revised the chapter searching

* Reivised the sorting chapter

* Revised the divide and conquer chapter

* Revised the chapter backtacking

* Revised the DP chapter

* Revised the greedy chapter

* Revised the appendix chapter

* Revised the preface chapter doubly

* Revised the figures
This commit is contained in:
Yudong Jin
2023-12-02 06:21:34 +08:00
committed by GitHub
parent b824d149cb
commit e720aa2d24
404 changed files with 1537 additions and 1558 deletions

View File

@@ -6,15 +6,15 @@
!!! question
给定 $n$ 个物品,第 $i$ 个物品的重量为 $wgt[i-1]$、价值为 $val[i-1]$ ,和一个容量为 $cap$ 的背包。每个物品只能选择一次,问在不超过背包容量下能放入物品的最大价值。
给定 $n$ 个物品,第 $i$ 个物品的重量为 $wgt[i-1]$、价值为 $val[i-1]$ ,和一个容量为 $cap$ 的背包。每个物品只能选择一次,问在限定背包容量下能放入物品的最大价值。
观察下图,由于物品编号 $i$ 从 $1$ 开始计数,数组索引从 $0$ 开始计数,因此物品 $i$ 对应重量 $wgt[i-1]$ 和价值 $val[i-1]$ 。
![0-1 背包的示例数据](knapsack_problem.assets/knapsack_example.png)
我们可以将 0-1 背包问题看作一个由 $n$ 轮决策组成的过程,每个物体都有不放入和放入两种决策,因此该问题满足决策树模型
我们可以将 0-1 背包问题看作一个由 $n$ 轮决策组成的过程,对于每个物体都有不放入和放入两种决策,因此该问题满足决策树模型。
该问题的目标是求解“在限定背包容量下的最大价值”,因此较大概率是个动态规划问题。
该问题的目标是求解“在限定背包容量下能放入物品的最大价值”,因此较大概率是个动态规划问题。
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
@@ -29,9 +29,9 @@
当我们做出物品 $i$ 的决策后,剩余的是前 $i-1$ 个物品的决策,可分为以下两种情况。
- **不放入物品 $i$** :背包容量不变,状态变化为 $[i-1, c]$ 。
- **放入物品 $i$** :背包容量减 $wgt[i-1]$ ,价值增加 $val[i-1]$ ,状态变化为 $[i-1, c-wgt[i-1]]$ 。
- **放入物品 $i$** :背包容量减 $wgt[i-1]$ ,价值增加 $val[i-1]$ ,状态变化为 $[i-1, c-wgt[i-1]]$ 。
上述分析向我们揭示了本题的最优子结构:**最大价值 $dp[i, c]$ 等于不放入物品 $i$ 和放入物品 $i$ 两种方案中价值更大的那一个**。由此可推出状态转移方程:
上述分析向我们揭示了本题的最优子结构:**最大价值 $dp[i, c]$ 等于不放入物品 $i$ 和放入物品 $i$ 两种方案中价值更大的那一个**。由此可推出状态转移方程:
$$
dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
@@ -54,7 +54,7 @@ $$
- **递归参数**:状态 $[i, c]$ 。
- **返回值**:子问题的解 $dp[i, c]$ 。
- **终止条件**:当物品编号越界 $i = 0$ 或背包剩余容量为 $0$ 时,终止递归并返回价值 $0$ 。
- **剪枝**:若当前物品重量超出背包剩余容量,则只能不放入背包。
- **剪枝**:若当前物品重量超出背包剩余容量,则只能选择不放入背包。
```src
[file]{knapsack}-[class]{}-[func]{knapsack_dfs}
@@ -64,25 +64,25 @@ $$
观察递归树,容易发现其中存在重叠子问题,例如 $dp[1, 10]$ 等。而当物品较多、背包容量较大,尤其是相同重量的物品较多时,重叠子问题的数量将会大幅增多。
![0-1 背包的暴力搜索递归树](knapsack_problem.assets/knapsack_dfs.png)
![0-1 背包问题的暴力搜索递归树](knapsack_problem.assets/knapsack_dfs.png)
### 方法二:记忆化搜索
为了保证重叠子问题只被计算一次,我们借助记忆列表 `mem` 来记录子问题的解,其中 `mem[i][c]` 对应 $dp[i, c]$ 。
引入记忆化之后,**时间复杂度取决于子问题数量**,也就是 $O(n \times cap)$ 。
引入记忆化之后,**时间复杂度取决于子问题数量**,也就是 $O(n \times cap)$ 。实现代码如下:
```src
[file]{knapsack}-[class]{}-[func]{knapsack_dfs_mem}
```
下图展示了在记忆化递归中被剪掉的搜索分支。
下图展示了在记忆化搜索中被剪掉的搜索分支。
![0-1 背包的记忆化搜索递归树](knapsack_problem.assets/knapsack_dfs_mem.png)
![0-1 背包问题的记忆化搜索递归树](knapsack_problem.assets/knapsack_dfs_mem.png)
### 方法三:动态规划
动态规划实质上就是在状态转移中填充 $dp$ 表的过程,代码如下所示
动态规划实质上就是在状态转移中填充 $dp$ 表的过程,代码如下所示
```src
[file]{knapsack}-[class]{}-[func]{knapsack_dp}
@@ -91,7 +91,7 @@ $$
如下图所示,时间复杂度和空间复杂度都由数组 `dp` 大小决定,即 $O(n \times cap)$ 。
=== "<1>"
![0-1 背包的动态规划过程](knapsack_problem.assets/knapsack_dp_step1.png)
![0-1 背包问题的动态规划过程](knapsack_problem.assets/knapsack_dp_step1.png)
=== "<2>"
![knapsack_dp_step2](knapsack_problem.assets/knapsack_dp_step2.png)
@@ -134,9 +134,9 @@ $$
### 空间优化
由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 $O(n^2)$ 将低至 $O(n)$ 。
由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 $O(n^2)$ 至 $O(n)$ 。
进一步思考,我们是否可以仅用一个数组实现空间优化呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当开始遍历第 $i$ 行时,该数组存储的仍然是第 $i-1$ 行的状态。
进一步思考,我们能否仅用一个数组实现空间优化呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当开始遍历第 $i$ 行时,该数组存储的仍然是第 $i-1$ 行的状态。
- 如果采取正序遍历,那么遍历到 $dp[i, j]$ 时,左上方 $dp[i-1, 1]$ ~ $dp[i-1, j-1]$ 值可能已经被覆盖,此时就无法得到正确的状态转移结果。
- 如果采取倒序遍历,则不会发生覆盖问题,状态转移可以正确进行。
@@ -161,7 +161,7 @@ $$
=== "<6>"
![knapsack_dp_comp_step6](knapsack_problem.assets/knapsack_dp_comp_step6.png)
在代码实现中,我们仅需将数组 `dp` 的第一维 $i$ 直接删除,并且把内循环更改为倒序遍历即可
在代码实现中,我们仅需将数组 `dp` 的第一维 $i$ 直接删除,并且把内循环更改为倒序遍历即可
```src
[file]{knapsack}-[class]{}-[func]{knapsack_dp_comp}