This commit is contained in:
krahets
2023-07-26 10:57:40 +08:00
parent 6381f16506
commit f8f7086196
52 changed files with 4032 additions and 0 deletions

View File

@@ -285,6 +285,12 @@ comments: true
bool isEmpty = queue.isEmpty;
```
=== "Rust"
```rust title="queue.rs"
```
## 5.2.2.   队列实现
为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。因此,链表和数组都可以用来实现队列。
@@ -1090,6 +1096,88 @@ comments: true
}
```
=== "Rust"
```rust title="linkedlist_queue.rs"
/* 基于链表实现的队列 */
#[allow(dead_code)]
pub struct LinkedListQueue<T> {
front: Option<Rc<RefCell<ListNode<T>>>>, // 头节点 front
rear: Option<Rc<RefCell<ListNode<T>>>>, // 尾节点 rear
que_size: usize, // 队列的长度
}
impl<T: Copy> LinkedListQueue<T> {
pub fn new() -> Self {
Self {
front: None,
rear: None,
que_size: 0,
}
}
/* 获取队列的长度 */
pub fn size(&self) -> usize {
return self.que_size;
}
/* 判断队列是否为空 */
pub fn is_empty(&self) -> bool {
return self.size() == 0;
}
/* 入队 */
pub fn push(&mut self, num: T) {
// 尾节点后添加 num
let new_rear = ListNode::new(num);
match self.rear.take() {
// 如果队列不为空,则将该节点添加到尾节点后
Some(old_rear) => {
old_rear.borrow_mut().next = Some(new_rear.clone());
self.rear = Some(new_rear);
}
// 如果队列为空,则令头、尾节点都指向该节点
None => {
self.front = Some(new_rear.clone());
self.rear = Some(new_rear);
}
}
self.que_size += 1;
}
/* 出队 */
pub fn pop(&mut self) -> Option<T> {
self.front.take().map(|old_front| {
match old_front.borrow_mut().next.take() {
Some(new_front) => {
self.front = Some(new_front);
}
None => {
self.rear.take();
}
}
self.que_size -= 1;
Rc::try_unwrap(old_front).ok().unwrap().into_inner().val
})
}
/* 访问队首元素 */
pub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {
self.front.as_ref()
}
/* 将链表转化为 Array 并返回 */
pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {
if let Some(node) = head {
let mut nums = self.to_array(node.borrow().next.as_ref());
nums.insert(0, node.borrow().val);
return nums;
}
return Vec::new();
}
}
```
### 基于数组的实现
由于数组删除首元素的时间复杂度为 $O(n)$ ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。
@@ -1927,6 +2015,88 @@ comments: true
}
```
=== "Rust"
```rust title="array_queue.rs"
/* 基于环形数组实现的队列 */
struct ArrayQueue {
nums: Vec<i32>, // 用于存储队列元素的数组
front: i32, // 队首指针,指向队首元素
que_size: i32, // 队列长度
que_capacity: i32, // 队列容量
}
impl ArrayQueue {
/* 构造方法 */
fn new(capacity: i32) -> ArrayQueue {
ArrayQueue {
nums: vec![0; capacity as usize],
front: 0,
que_size: 0,
que_capacity: capacity,
}
}
/* 获取队列的容量 */
fn capacity(&self) -> i32 {
self.que_capacity
}
/* 获取队列的长度 */
fn size(&self) -> i32 {
self.que_size
}
/* 判断队列是否为空 */
fn is_empty(&self) -> bool {
self.que_size == 0
}
/* 入队 */
fn push(&mut self, num: i32) {
if self.que_size == self.capacity() {
println!("队列已满");
return;
}
// 计算尾指针,指向队尾索引 + 1
// 通过取余操作,实现 rear 越过数组尾部后回到头部
let rear = (self.front + self.que_size) % self.que_capacity;
// 将 num 添加至队尾
self.nums[rear as usize] = num;
self.que_size += 1;
}
/* 出队 */
fn pop(&mut self) -> i32 {
let num = self.peek();
// 队首指针向后移动一位,若越过尾部则返回到数组头部
self.front = (self.front + 1) % self.que_capacity;
self.que_size -= 1;
num
}
/* 访问队首元素 */
fn peek(&self) -> i32 {
if self.is_empty() {
panic!("index out of bounds");
}
self.nums[self.front as usize]
}
/* 返回数组 */
fn to_vector(&self) -> Vec<i32> {
let cap = self.que_capacity;
let mut j = self.front;
let mut arr = vec![0; self.que_size as usize];
for i in 0..self.que_size {
arr[i as usize] = self.nums[(j % cap) as usize];
j += 1;
}
arr
}
}
```
以上实现的队列仍然具有局限性,即其长度不可变。然而,这个问题不难解决,我们可以将数组替换为动态数组,从而引入扩容机制。有兴趣的同学可以尝试自行实现。
两种实现的对比结论与栈一致,在此不再赘述。