/** * File: time_complexity.cs * Created Time: 2022-12-23 * Author: haptear (haptear@hotmail.com) */ namespace hello_algo.chapter_computational_complexity; public class time_complexity { void Algorithm(int n) { int a = 1; // +0 (technique 1) a += n; // +0 (technique 1) // +n (technique 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); } // +n*n (technique 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } // Algorithm A time complexity: constant void AlgorithmA(int n) { Console.WriteLine(0); } // Algorithm B time complexity: linear void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // Algorithm C time complexity: constant void AlgorithmC(int n) { for (int i = 0; i < 1000000; i++) { Console.WriteLine(0); } } /* Constant order */ int Constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } /* Linear order */ int Linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } /* Linear order (traversing array) */ int ArrayTraversal(int[] nums) { int count = 0; // Number of iterations is proportional to the array length foreach (int num in nums) { count++; } return count; } /* Exponential order */ int Quadratic(int n) { int count = 0; // Number of iterations is quadratically related to the data size n for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /* Quadratic order (bubble sort) */ int BubbleSort(int[] nums) { int count = 0; // Counter // Outer loop: unsorted range is [0, i] for (int i = nums.Length - 1; i > 0; i--) { // Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // Swap nums[j] and nums[j + 1] (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]); count += 3; // Element swap includes 3 unit operations } } } return count; } /* Exponential order (loop implementation) */ int Exponential(int n) { int count = 0, bas = 1; // Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < bas; j++) { count++; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* Exponential order (recursive implementation) */ int ExpRecur(int n) { if (n == 1) return 1; return ExpRecur(n - 1) + ExpRecur(n - 1) + 1; } /* Logarithmic order (loop implementation) */ int Logarithmic(int n) { int count = 0; while (n > 1) { n /= 2; count++; } return count; } /* Logarithmic order (recursive implementation) */ int LogRecur(int n) { if (n <= 1) return 0; return LogRecur(n / 2) + 1; } /* Linearithmic order */ int LinearLogRecur(int n) { if (n <= 1) return 1; int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } /* Factorial order (recursive implementation) */ int FactorialRecur(int n) { if (n == 0) return 1; int count = 0; // Split from 1 into n for (int i = 0; i < n; i++) { count += FactorialRecur(n - 1); } return count; } [Test] public void Test() { // You can modify n to run and observe the trend of the number of operations for various complexities int n = 8; Console.WriteLine("Input data size n = " + n); int count = Constant(n); Console.WriteLine("Constant order operation count = " + count); count = Linear(n); Console.WriteLine("Linear order operation count = " + count); count = ArrayTraversal(new int[n]); Console.WriteLine("Linear order (array traversal) operation count = " + count); count = Quadratic(n); Console.WriteLine("Quadratic order operation count = " + count); int[] nums = new int[n]; for (int i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] count = BubbleSort(nums); Console.WriteLine("Quadratic order (bubble sort) operation count = " + count); count = Exponential(n); Console.WriteLine("Exponential order (loop implementation) operation count = " + count); count = ExpRecur(n); Console.WriteLine("Exponential order (recursive implementation) operation count = " + count); count = Logarithmic(n); Console.WriteLine("Logarithmic order (loop implementation) operation count = " + count); count = LogRecur(n); Console.WriteLine("Logarithmic order (recursive implementation) operation count = " + count); count = LinearLogRecur(n); Console.WriteLine("Linearithmic order (recursive implementation) operation count = " + count); count = FactorialRecur(n); Console.WriteLine("Factorial order (recursive implementation) operation count = " + count); } }