""" File: space_complexity.py Created Time: 2022-11-25 Author: krahets (krahets@163.com) """ import sys from pathlib import Path sys.path.append(str(Path(__file__).parent.parent)) from modules import ListNode, TreeNode, print_tree def function() -> int: """Function""" # Perform some operations return 0 def constant(n: int): """Constant order""" # Constants, variables, objects occupy O(1) space a = 0 nums = [0] * 10000 node = ListNode(0) # Variables in the loop occupy O(1) space for _ in range(n): c = 0 # Functions in the loop occupy O(1) space for _ in range(n): function() def linear(n: int): """Linear order""" # A list of length n occupies O(n) space nums = [0] * n # A hash table of length n occupies O(n) space hmap = dict[int, str]() for i in range(n): hmap[i] = str(i) def linear_recur(n: int): """Linear order (recursive implementation)""" print("Recursion n =", n) if n == 1: return linear_recur(n - 1) def quadratic(n: int): """Quadratic order""" # A 2D list occupies O(n^2) space num_matrix = [[0] * n for _ in range(n)] def quadratic_recur(n: int) -> int: """Quadratic order (recursive implementation)""" if n <= 0: return 0 # Array nums length is n, n-1, ..., 2, 1 nums = [0] * n return quadratic_recur(n - 1) def build_tree(n: int) -> TreeNode | None: """Exponential order (build full binary tree)""" if n == 0: return None root = TreeNode(0) root.left = build_tree(n - 1) root.right = build_tree(n - 1) return root """Driver Code""" if __name__ == "__main__": n = 5 # Constant order constant(n) # Linear order linear(n) linear_recur(n) # Quadratic order quadratic(n) quadratic_recur(n) # Exponential order root = build_tree(n) print_tree(root)