=begin File: knapsack.rb Created Time: 2024-05-29 Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com) =end ### 0-1 knapsack: brute force search ### def knapsack_dfs(wgt, val, i, c) # If all items have been selected or knapsack has no remaining capacity, return value 0 return 0 if i == 0 || c == 0 # If exceeds knapsack capacity, can only choose not to put it in return knapsack_dfs(wgt, val, i - 1, c) if wgt[i - 1] > c # Calculate the maximum value of not putting in and putting in item i no = knapsack_dfs(wgt, val, i - 1, c) yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1] # Return the larger value of the two options [no, yes].max end ### 0-1 knapsack: memoization search ### def knapsack_dfs_mem(wgt, val, mem, i, c) # If all items have been selected or knapsack has no remaining capacity, return value 0 return 0 if i == 0 || c == 0 # If there's a record, return it directly return mem[i][c] if mem[i][c] != -1 # If exceeds knapsack capacity, can only choose not to put it in return knapsack_dfs_mem(wgt, val, mem, i - 1, c) if wgt[i - 1] > c # Calculate the maximum value of not putting in and putting in item i no = knapsack_dfs_mem(wgt, val, mem, i - 1, c) yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1] # Record and return the larger value of the two options mem[i][c] = [no, yes].max end ### 0-1 knapsack: dynamic programming ### def knapsack_dp(wgt, val, cap) n = wgt.length # Initialize dp table dp = Array.new(n + 1) { Array.new(cap + 1, 0) } # State transition for i in 1...(n + 1) for c in 1...(cap + 1) if wgt[i - 1] > c # If exceeds knapsack capacity, don't select item i dp[i][c] = dp[i - 1][c] else # The larger value between not selecting and selecting item i dp[i][c] = [dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]].max end end end dp[n][cap] end ### 0-1 knapsack: space-optimized DP ### def knapsack_dp_comp(wgt, val, cap) n = wgt.length # Initialize dp table dp = Array.new(cap + 1, 0) # State transition for i in 1...(n + 1) # Traverse in reverse order for c in cap.downto(1) if wgt[i - 1] > c # If exceeds knapsack capacity, don't select item i dp[c] = dp[c] else # The larger value between not selecting and selecting item i dp[c] = [dp[c], dp[c - wgt[i - 1]] + val[i - 1]].max end end end dp[cap] end ### Driver Code ### if __FILE__ == $0 wgt = [10, 20, 30, 40, 50] val = [50, 120, 150, 210, 240] cap = 50 n = wgt.length # Brute-force search res = knapsack_dfs(wgt, val, n, cap) puts "Maximum item value not exceeding knapsack capacity is #{res}" # Memoization search mem = Array.new(n + 1) { Array.new(cap + 1, -1) } res = knapsack_dfs_mem(wgt, val, mem, n, cap) puts "Maximum item value not exceeding knapsack capacity is #{res}" # Dynamic programming res = knapsack_dp(wgt, val, cap) puts "Maximum item value not exceeding knapsack capacity is #{res}" # Space-optimized dynamic programming res = knapsack_dp_comp(wgt, val, cap) puts "Maximum item value not exceeding knapsack capacity is #{res}" end