/* * File: time_complexity.rs * Created Time: 2023-01-10 * Author: xBLACICEx (xBLACKICEx@outlook.com), codingonion (coderonion@gmail.com) */ /* Constant order */ fn constant(n: i32) -> i32 { _ = n; let mut count = 0; let size = 100_000; for _ in 0..size { count += 1; } count } /* Linear order */ fn linear(n: i32) -> i32 { let mut count = 0; for _ in 0..n { count += 1; } count } /* Linear order (traversing array) */ fn array_traversal(nums: &[i32]) -> i32 { let mut count = 0; // Number of iterations is proportional to the array length for _ in nums { count += 1; } count } /* Exponential order */ fn quadratic(n: i32) -> i32 { let mut count = 0; // Number of iterations is quadratically related to the data size n for _ in 0..n { for _ in 0..n { count += 1; } } count } /* Quadratic order (bubble sort) */ fn bubble_sort(nums: &mut [i32]) -> i32 { let mut count = 0; // Counter // Outer loop: unsorted range is [0, i] for i in (1..nums.len()).rev() { // Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range for j in 0..i { if nums[j] > nums[j + 1] { // Swap nums[j] and nums[j + 1] let tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // Element swap includes 3 unit operations } } } count } /* Exponential order (loop implementation) */ fn exponential(n: i32) -> i32 { let mut count = 0; let mut base = 1; // Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1) for _ in 0..n { for _ in 0..base { count += 1 } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 count } /* Exponential order (recursive implementation) */ fn exp_recur(n: i32) -> i32 { if n == 1 { return 1; } exp_recur(n - 1) + exp_recur(n - 1) + 1 } /* Logarithmic order (loop implementation) */ fn logarithmic(mut n: i32) -> i32 { let mut count = 0; while n > 1 { n = n / 2; count += 1; } count } /* Logarithmic order (recursive implementation) */ fn log_recur(n: i32) -> i32 { if n <= 1 { return 0; } log_recur(n / 2) + 1 } /* Linearithmic order */ fn linear_log_recur(n: i32) -> i32 { if n <= 1 { return 1; } let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2); for _ in 0..n { count += 1; } return count; } /* Factorial order (recursive implementation) */ fn factorial_recur(n: i32) -> i32 { if n == 0 { return 1; } let mut count = 0; // Split from 1 into n for _ in 0..n { count += factorial_recur(n - 1); } count } /* Driver Code */ fn main() { // You can modify n to run and observe the trend of the number of operations for various complexities let n: i32 = 8; println!("Input data size n = {}", n); let mut count = constant(n); println!("Constant-time operations count = {}", count); count = linear(n); println!("Linear-time operations count = {}", count); count = array_traversal(&vec![0; n as usize]); println!("Linear-time (array traversal) operations count = {}", count); count = quadratic(n); println!("Quadratic-time operations count = {}", count); let mut nums = (1..=n).rev().collect::>(); // [n,n-1,...,2,1] count = bubble_sort(&mut nums); println!("Quadratic-time (bubble sort) operations count = {}", count); count = exponential(n); println!("Exponential-time (iterative) operations count = {}", count); count = exp_recur(n); println!("Exponential-time (recursive) operations count = {}", count); count = logarithmic(n); println!("Logarithmic-time (iterative) operations count = {}", count); count = log_recur(n); println!("Logarithmic-time (recursive) operations count = {}", count); count = linear_log_recur(n); println!("Linearithmic-time (recursive) operations count = {}", count); count = factorial_recur(n); println!("Factorial-time (recursive) operations count = {}", count); }