/* * File: array_binary_tree.rs * Created Time: 2023-07-25 * Author: night-cruise (2586447362@qq.com) */ use hello_algo_rust::include::{print_util, tree_node}; /* Binary tree class represented by array */ struct ArrayBinaryTree { tree: Vec>, } impl ArrayBinaryTree { /* Constructor */ fn new(arr: Vec>) -> Self { Self { tree: arr } } /* List capacity */ fn size(&self) -> i32 { self.tree.len() as i32 } /* Get value of node at index i */ fn val(&self, i: i32) -> Option { // If index is out of bounds, return None, representing empty position if i < 0 || i >= self.size() { None } else { self.tree[i as usize] } } /* Get index of left child node of node at index i */ fn left(&self, i: i32) -> i32 { 2 * i + 1 } /* Get index of right child node of node at index i */ fn right(&self, i: i32) -> i32 { 2 * i + 2 } /* Get index of parent node of node at index i */ fn parent(&self, i: i32) -> i32 { (i - 1) / 2 } /* Level-order traversal */ fn level_order(&self) -> Vec { self.tree.iter().filter_map(|&x| x).collect() } /* Depth-first traversal */ fn dfs(&self, i: i32, order: &'static str, res: &mut Vec) { if self.val(i).is_none() { return; } let val = self.val(i).unwrap(); // Preorder traversal if order == "pre" { res.push(val); } self.dfs(self.left(i), order, res); // Inorder traversal if order == "in" { res.push(val); } self.dfs(self.right(i), order, res); // Postorder traversal if order == "post" { res.push(val); } } /* Preorder traversal */ fn pre_order(&self) -> Vec { let mut res = vec![]; self.dfs(0, "pre", &mut res); res } /* Inorder traversal */ fn in_order(&self) -> Vec { let mut res = vec![]; self.dfs(0, "in", &mut res); res } /* Postorder traversal */ fn post_order(&self) -> Vec { let mut res = vec![]; self.dfs(0, "post", &mut res); res } } /* Driver Code */ fn main() { // Initialize binary tree // Here we use a function to generate a binary tree directly from an array let arr = vec![ Some(1), Some(2), Some(3), Some(4), None, Some(6), Some(7), Some(8), Some(9), None, None, Some(12), None, None, Some(15), ]; let root = tree_node::vec_to_tree(arr.clone()).unwrap(); println!("\nInitialize binary tree\n"); println!("Array representation of binary tree:"); println!( "[{}]", arr.iter() .map(|&val| if let Some(val) = val { format!("{val}") } else { "null".to_string() }) .collect::>() .join(", ") ); println!("Linked list representation of binary tree:"); print_util::print_tree(&root); // Binary tree class represented by array let abt = ArrayBinaryTree::new(arr); // Access node let i = 1; let l = abt.left(i); let r = abt.right(i); let p = abt.parent(i); println!( "\nCurrent node index is {}, value is {}", i, if let Some(val) = abt.val(i) { format!("{val}") } else { "null".to_string() } ); println!( "Left child index is {}, value is {}", l, if let Some(val) = abt.val(l) { format!("{val}") } else { "null".to_string() } ); println!( "Right child index is {}, value is {}", r, if let Some(val) = abt.val(r) { format!("{val}") } else { "null".to_string() } ); println!( "Parent node index is {}, value is {}", p, if let Some(val) = abt.val(p) { format!("{val}") } else { "null".to_string() } ); // Traverse tree let mut res = abt.level_order(); println!("\nLevel-order traversal is: {:?}", res); res = abt.pre_order(); println!("Pre-order traversal is: {:?}", res); res = abt.in_order(); println!("In-order traversal is: {:?}", res); res = abt.post_order(); println!("Post-order traversal is: {:?}", res); }