/* * File: binary_search_tree.rs * Created Time: 2023-04-20 * Author: xBLACKICEx (xBLACKICE@outlook.com)、night-cruise (2586447362@qq.com) */ use hello_algo_rust::include::print_util; use std::cell::RefCell; use std::cmp::Ordering; use std::rc::Rc; use hello_algo_rust::include::TreeNode; type OptionTreeNodeRc = Option>>; /* Binary search tree */ pub struct BinarySearchTree { root: OptionTreeNodeRc, } impl BinarySearchTree { /* Constructor */ pub fn new() -> Self { // Initialize empty tree Self { root: None } } /* Get binary tree root node */ pub fn get_root(&self) -> OptionTreeNodeRc { self.root.clone() } /* Search node */ pub fn search(&self, num: i32) -> OptionTreeNodeRc { let mut cur = self.root.clone(); // Loop search, exit after passing leaf node while let Some(node) = cur.clone() { match num.cmp(&node.borrow().val) { // Target node is in cur's right subtree Ordering::Greater => cur = node.borrow().right.clone(), // Target node is in cur's left subtree Ordering::Less => cur = node.borrow().left.clone(), // Found target node, exit loop Ordering::Equal => break, } } // Return target node cur } /* Insert node */ pub fn insert(&mut self, num: i32) { // If tree is empty, initialize root node if self.root.is_none() { self.root = Some(TreeNode::new(num)); return; } let mut cur = self.root.clone(); let mut pre = None; // Loop search, exit after passing leaf node while let Some(node) = cur.clone() { match num.cmp(&node.borrow().val) { // Found duplicate node, return directly Ordering::Equal => return, // Insertion position is in cur's right subtree Ordering::Greater => { pre = cur.clone(); cur = node.borrow().right.clone(); } // Insertion position is in cur's left subtree Ordering::Less => { pre = cur.clone(); cur = node.borrow().left.clone(); } } } // Insert node let pre = pre.unwrap(); let node = Some(TreeNode::new(num)); if num > pre.borrow().val { pre.borrow_mut().right = node; } else { pre.borrow_mut().left = node; } } /* Remove node */ pub fn remove(&mut self, num: i32) { // If tree is empty, return directly if self.root.is_none() { return; } let mut cur = self.root.clone(); let mut pre = None; // Loop search, exit after passing leaf node while let Some(node) = cur.clone() { match num.cmp(&node.borrow().val) { // Found node to delete, exit loop Ordering::Equal => break, // Node to delete is in cur's right subtree Ordering::Greater => { pre = cur.clone(); cur = node.borrow().right.clone(); } // Node to delete is in cur's left subtree Ordering::Less => { pre = cur.clone(); cur = node.borrow().left.clone(); } } } // If no node to delete, return directly if cur.is_none() { return; } let cur = cur.unwrap(); let (left_child, right_child) = (cur.borrow().left.clone(), cur.borrow().right.clone()); match (left_child.clone(), right_child.clone()) { // Number of child nodes = 0 or 1 (None, None) | (Some(_), None) | (None, Some(_)) => { // When number of child nodes = 0 / 1, child = nullptr / that child node let child = left_child.or(right_child); let pre = pre.unwrap(); // Delete node cur if !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) { let left = pre.borrow().left.clone(); if left.is_some() && Rc::ptr_eq(left.as_ref().unwrap(), &cur) { pre.borrow_mut().left = child; } else { pre.borrow_mut().right = child; } } else { // If deleted node is root node, reassign root node self.root = child; } } // Number of child nodes = 2 (Some(_), Some(_)) => { // Get next node of cur in inorder traversal let mut tmp = cur.borrow().right.clone(); while let Some(node) = tmp.clone() { if node.borrow().left.is_some() { tmp = node.borrow().left.clone(); } else { break; } } let tmp_val = tmp.unwrap().borrow().val; // Recursively delete node tmp self.remove(tmp_val); // Replace cur with tmp cur.borrow_mut().val = tmp_val; } } } } /* Driver Code */ fn main() { /* Initialize binary search tree */ let mut bst = BinarySearchTree::new(); // Please note that different insertion orders will generate different binary trees, this sequence can generate a perfect binary tree let nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15]; for &num in &nums { bst.insert(num); } println!("\nInitialized binary tree is\n"); print_util::print_tree(bst.get_root().as_ref().unwrap()); /* Search node */ let node = bst.search(7); println!( "\nFound node object is {:?}, node value = {}", node.clone().unwrap(), node.clone().unwrap().borrow().val ); /* Insert node */ bst.insert(16); println!("\nAfter inserting node 16, binary tree is\n"); print_util::print_tree(bst.get_root().as_ref().unwrap()); /* Remove node */ bst.remove(1); println!("\nAfter removing node 1, binary tree is\n"); print_util::print_tree(bst.get_root().as_ref().unwrap()); bst.remove(2); println!("\nAfter removing node 2, binary tree is\n"); print_util::print_tree(bst.get_root().as_ref().unwrap()); bst.remove(4); println!("\nAfter removing node 4, binary tree is\n"); print_util::print_tree(bst.get_root().as_ref().unwrap()); }