Files
krahets 71c2687c85 deploy
2026-01-04 15:59:49 +08:00

5993 lines
486 KiB
HTML

<!doctype html>
<html lang="en" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="Data Structures and Algorithms Crash Course with Animated Illustrations and Off-the-Shelf Code">
<meta name="author" content="krahets">
<link rel="canonical" href="https://www.hello-algo.com/en/chapter_dynamic_programming/knapsack_problem/">
<link rel="prev" href="../dp_solution_pipeline/">
<link rel="next" href="../unbounded_knapsack_problem/">
<link rel="alternate" href="/chapter_dynamic_programming/knapsack_problem/" hreflang="zh">
<link rel="alternate" href="/zh-hant/chapter_dynamic_programming/knapsack_problem/" hreflang="zh-Hant">
<link rel="alternate" href="/en/chapter_dynamic_programming/knapsack_problem/" hreflang="en">
<link rel="alternate" href="/ja/chapter_dynamic_programming/knapsack_problem/" hreflang="ja">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.6.1, mkdocs-material-9.7.1">
<title>14.4 0-1 Knapsack Problem - Hello Algo</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.484c7ddc.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.ab4e12ef.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Lato:300,300i,400,400i,700,700i%7CJetBrains+Mono:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Lato";--md-code-font:"JetBrains Mono"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce(((e,_)=>(e<<5)-e+_.charCodeAt(0)),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
html.glightbox-open { overflow: initial; height: 100%; }
.gslide-title { margin-top: 0px; user-select: text; }
.gslide-desc { color: #666; user-select: text; }
.gslide-image img { background: white; }
.gscrollbar-fixer { padding-right: 15px; }
.gdesc-inner { font-size: 0.75rem; }
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#144-0-1-knapsack-problem" class="md-skip">
Skip to content
</a>
</div>
<div data-md-component="announce">
<aside class="md-banner">
<div class="md-banner__inner md-grid md-typeset">
<div class="banner-svg">
<svg xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
<path
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
</svg>
<span>Welcome to contribute to Chinese-to-English translation! For more details, please refer to <a href="https://github.com/krahets/hello-algo/blob/main/en/CONTRIBUTING.md">CONTRIBUTING.md</a>.</span>
</div>
</div>
</aside>
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="Header">
<a href="../.." title="Hello Algo" class="md-header__button md-logo" aria-label="Hello Algo" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3zm0 5h18v2H3zm0 5h18v2H3z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello Algo
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
14.4 0-1 Knapsack Problem
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="Dark mode" type="radio" name="__palette" id="__palette_0">
<label class="md-header__button md-icon" title="Dark mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07zm-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13zm-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87zM19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35zm4.33-2.7 1.15-2.77 2.2 2.54zm1.15-4.96-1.14-2.78 3.34.24zM9.63 18.93l2.77 1.15-2.53 2.19z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="Light mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Light mode" for="__palette_0" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07zm-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13zm-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87zM19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35zm4.33-2.7 1.15-2.77 2.2 2.54zm1.15-4.96-1.14-2.78 3.34.24zM9.63 18.93l2.77 1.15-2.53 2.19z"/></svg>
</label>
</form>
<script>var palette=__md_get("__palette");if(palette&&palette.color){if("(prefers-color-scheme)"===palette.color.media){var media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']");palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent")}for(var[key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="Select language">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.5 17.5 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11zM18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2zm-2.62 7 1.62-4.33L19.12 17z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="/chapter_dynamic_programming/knapsack_problem/" hreflang="zh" class="md-select__link">
简体中文
</a>
</li>
<li class="md-select__item">
<a href="/zh-hant/chapter_dynamic_programming/knapsack_problem/" hreflang="zh-Hant" class="md-select__link">
繁體中文
</a>
</li>
<li class="md-select__item">
<a href="/en/chapter_dynamic_programming/knapsack_problem/" hreflang="en" class="md-select__link">
English
</a>
</li>
<li class="md-select__item">
<a href="/ja/chapter_dynamic_programming/knapsack_problem/" hreflang="ja" class="md-select__link">
日本語
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.52 6.52 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.52 6.52 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11z"/></svg>
</label>
<nav class="md-search__options" aria-label="Search">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="Share" aria-label="Share" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7s-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91s2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" tabindex="0" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
Initializing search
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 7.1.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M173.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6m-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3m44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9M252.8 8C114.1 8 8 113.3 8 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C436.2 457.8 504 362.9 504 252 504 113.3 391.5 8 252.8 8M105.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1m-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7m32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1m-11.4-14.7c-1.6 1-1.6 3.6 0 5.9s4.3 3.3 5.6 2.3c1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello Algo" class="md-nav__button md-logo" aria-label="Hello Algo" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
Hello Algo
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 7.1.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M173.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6m-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3m44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9M252.8 8C114.1 8 8 113.3 8 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C436.2 457.8 504 362.9 504 252 504 113.3 391.5 8 252.8 8M105.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1m-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7m32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1m-11.4-14.7c-1.6 1-1.6 3.6 0 5.9s4.3 3.3 5.6 2.3c1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hello_algo/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m13.13 22.19-1.63-3.83c1.57-.58 3.04-1.36 4.4-2.27zM5.64 12.5l-3.83-1.63 6.1-2.77C7 9.46 6.22 10.93 5.64 12.5M19.22 4c.28 0 .53 0 .74.05.17 1.39-.02 4.25-3.3 7.53-1.7 1.71-3.73 3.02-6.01 3.89l-2.15-2.1c.92-2.31 2.23-4.34 3.92-6.03C15.18 4.58 17.64 4 19.22 4m0-2c-1.98 0-4.98.69-8.22 3.93-2.19 2.19-3.5 4.6-4.35 6.71-.28.75-.09 1.57.46 2.13l2.13 2.12c.38.38.89.61 1.42.61.23 0 .47-.06.7-.15A19.1 19.1 0 0 0 18.07 13c5.66-5.66 3.54-10.61 3.54-10.61S20.7 2 19.22 2m-4.68 7.46c-.78-.78-.78-2.05 0-2.83s2.05-.78 2.83 0c.77.78.78 2.05 0 2.83s-2.05.78-2.83 0m-5.66 7.07-1.41-1.41zM6.24 22l3.64-3.64c-.34-.09-.67-.24-.97-.45L4.83 22zM2 22h1.41l4.77-4.76-1.42-1.41L2 20.59zm0-2.83 4.09-4.08c-.21-.3-.36-.62-.45-.97L2 17.76z"/></svg>
<span class="md-ellipsis">
Before Starting
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
Before Starting
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13zm18 0h-8V6h8zm-7-9.5h6V11h-6zm0 2.5h6v1.5h-6zm0 2.5h6V16h-6z"/></svg>
<span class="md-ellipsis">
Chapter 0. Preface
</span>
</a>
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
Chapter 0. Preface
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 About This Book
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 How to Use This Book
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14zM6.2 7.7h5v1.5h-5zm6.8 8.1h5v1.5h-5zm0-2.6h5v1.5h-5zM8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2zm6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9z"/></svg>
<span class="md-ellipsis">
Chapter 1. Encounter With Algorithms
</span>
</a>
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
Chapter 1. Encounter With Algorithms
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 Algorithms Are Everywhere
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 What Is an Algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4zm10 14.5-4-4-4 4V20h8zm-4-5 4-4V4H8v3.5zM10 6h4v.75l-2 2-2-2z"/></svg>
<span class="md-ellipsis">
Chapter 2. Complexity Analysis
</span>
</a>
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
Chapter 2. Complexity Analysis
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 Algorithm Efficiency Evaluation
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
<span class="md-ellipsis">
2.2 Iteration and Recursion
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.3 Time Complexity
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.4 Space Complexity
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
<span class="md-ellipsis">
2.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8zm-2 2H5v4h4zM12 2l5.5 9h-11zm0 3.86L10.08 9h3.84zM17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5"/></svg>
<span class="md-ellipsis">
Chapter 3. Data Structures
</span>
</a>
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
Chapter 3. Data Structures
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 Classification of Data Structures
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 Basic Data Types
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 Number Encoding *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 Character Encoding *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5zm4 2v2H5V7zm-2 6v-2h2v2zm0 2h2v2H5zm13 2H9v-2h9zm0-4H9v-2h9zm0-4H9V7h9z"/></svg>
<span class="md-ellipsis">
Chapter 4. Array and Linked List
</span>
</a>
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
Chapter 4. Array and Linked List
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 Array
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 Linked List
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 List
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
<span class="md-ellipsis">
4.4 Memory and Cache *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38zM6.77 14.32l.37-1.76 8.79 1.85-.37 1.76zm1.16-4.21.76-1.61 8.14 3.78-.76 1.62zm2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37zm4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21zM6.59 18.41v-1.8h8.98v1.8z"/></svg>
<span class="md-ellipsis">
Chapter 5. Stack and Queue
</span>
</a>
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
Chapter 5. Stack and Queue
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 Stack
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 Queue
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 Double-Ended Queue
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21zm-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54zM19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2"/></svg>
<span class="md-ellipsis">
Chapter 6. Hashing
</span>
</a>
<label class="md-nav__link " for="__nav_8" id="__nav_8_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
Chapter 6. Hashing
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 Hash Table
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 Hash Collision
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 Hash Algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_tree/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1"/></svg>
<span class="md-ellipsis">
Chapter 7. Tree
</span>
</a>
<label class="md-nav__link " for="__nav_9" id="__nav_9_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
Chapter 7. Tree
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 Binary Tree
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 Binary Tree Traversal
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 Array Representation of Tree
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.4 Binary Search Tree
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 AVL Tree *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1"/></svg>
<span class="md-ellipsis">
Chapter 8. Heap
</span>
</a>
<label class="md-nav__link " for="__nav_10" id="__nav_10_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
Chapter 8. Heap
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 Heap
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 Building a Heap
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3 Top-K Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59zM6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43s.83.16 1.12.43l4.28-2.53zM12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68s1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25zm2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24z"/></svg>
<span class="md-ellipsis">
Chapter 9. Graph
</span>
</a>
<label class="md-nav__link " for="__nav_11" id="__nav_11_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
Chapter 9. Graph
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 Graph
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 Basic Operations on Graphs
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3 Graph Traversal
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4zM3 16v-2h6v2zm0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1z"/></svg>
<span class="md-ellipsis">
Chapter 10. Searching
</span>
</a>
<label class="md-nav__link " for="__nav_12" id="__nav_12_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
Chapter 10. Searching
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 Binary Search
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 Binary Search Insertion
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 Binary Search Edge Cases
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 Hash Optimization Strategy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 Search Algorithms Revisited
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2z"/></svg>
<span class="md-ellipsis">
Chapter 11. Sorting
</span>
</a>
<label class="md-nav__link " for="__nav_13" id="__nav_13_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
Chapter 11. Sorting
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 Sorting Algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 Selection Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 Bubble Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 Insertion Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 Quick Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 Merge Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 Heap Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 Bucket Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 Counting Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 Radix Sort
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7zM2 9v6h5V9zm10 0v2H9v2h3v2l3-3zm5 2v2h5v-2zm0 4v2h5v-2z"/></svg>
<span class="md-ellipsis">
Chapter 12. Divide and Conquer
</span>
</a>
<label class="md-nav__link " for="__nav_14" id="__nav_14_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
Chapter 12. Divide and Conquer
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 Divide and Conquer Algorithms
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 Divide and Conquer Search Strategy
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 Building a Binary Tree Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 Hanoi Tower Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_backtracking/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2zm-4-6H5v-2h2z"/></svg>
<span class="md-ellipsis">
Chapter 13. Backtracking
</span>
</a>
<label class="md-nav__link " for="__nav_15" id="__nav_15_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
Chapter 13. Backtracking
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 Backtracking Algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 Permutations Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 Subset-Sum Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.4 N-Queens Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3zm0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4zm0 2v4h4v-4zm4 10v-4H4v4zm6-12V4h-4v4zm6-4h-4v4h4z"/></svg>
<span class="md-ellipsis">
Chapter 14. Dynamic Programming
</span>
</a>
<label class="md-nav__link " for="__nav_16" id="__nav_16_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
Chapter 14. Dynamic Programming
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 Introduction to Dynamic Programming
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 Characteristics of Dynamic Programming Problems
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 Dynamic Programming Problem-Solving Approach
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
14.4 0-1 Knapsack Problem
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
14.4 0-1 Knapsack Problem
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1-method-1-brute-force-search" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; Method 1: Brute Force Search
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2-method-2-memoization" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; Method 2: Memoization
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3-method-3-dynamic-programming" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; Method 3: Dynamic Programming
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#4-space-optimization" class="md-nav__link">
<span class="md-ellipsis">
4. &nbsp; Space Optimization
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 Unbounded Knapsack Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 Edit Distance Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16z"/></svg>
<span class="md-ellipsis">
Chapter 15. Greedy
</span>
</a>
<label class="md-nav__link " for="__nav_17" id="__nav_17_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
Chapter 15. Greedy
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 Greedy Algorithm
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 Fractional Knapsack Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 Maximum Capacity Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 Maximum Product Cutting Problem
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 Summary
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2zm1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4"/></svg>
<span class="md-ellipsis">
Chapter 16. Appendix
</span>
</a>
<label class="md-nav__link " for="__nav_18" id="__nav_18_label" tabindex="0">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
Chapter 16. Appendix
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 Programming Environment Installation
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 Contributing Together
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
<span class="md-ellipsis">
16.3 Terminology Table
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_19" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9 3v15h3V3zm3 2 4 13 3-1-4-13zM5 5v13h3V5zM3 19v2h18v-2z"/></svg>
<span class="md-ellipsis">
References
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_19_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_19">
<span class="md-nav__icon md-icon"></span>
References
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1-method-1-brute-force-search" class="md-nav__link">
<span class="md-ellipsis">
1. &nbsp; Method 1: Brute Force Search
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#2-method-2-memoization" class="md-nav__link">
<span class="md-ellipsis">
2. &nbsp; Method 2: Memoization
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#3-method-3-dynamic-programming" class="md-nav__link">
<span class="md-ellipsis">
3. &nbsp; Method 3: Dynamic Programming
</span>
</a>
</li>
<li class="md-nav__item">
<a href="#4-space-optimization" class="md-nav__link">
<span class="md-ellipsis">
4. &nbsp; Space Optimization
</span>
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<!-- Tags -->
<!-- Actions -->
<!-- Actions -->
<!-- Edit button -->
<a
href="https://github.com/krahets/hello-algo/tree/main/en/docs/chapter_dynamic_programming/knapsack_problem.md"
title="Edit this page"
class="md-content__button md-icon"
>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 7.1.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0M88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24z"/></svg>
</a>
<!-- View button -->
<!-- Page content -->
<h1 id="144-0-1-knapsack-problem">14.4 &nbsp; 0-1 Knapsack Problem<a class="headerlink" href="#144-0-1-knapsack-problem" title="Permanent link">&para;</a></h1>
<p>The knapsack problem is an excellent introductory problem for dynamic programming and is one of the most common problem forms in dynamic programming. It has many variants, such as the 0-1 knapsack problem, the unbounded knapsack problem, and the multiple knapsack problem.</p>
<p>In this section, we will first solve the most common 0-1 knapsack problem.</p>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>Given <span class="arithmatex">\(n\)</span> items, where the weight of the <span class="arithmatex">\(i\)</span>-th item is <span class="arithmatex">\(wgt[i-1]\)</span> and its value is <span class="arithmatex">\(val[i-1]\)</span>, and a knapsack with capacity <span class="arithmatex">\(cap\)</span>. Each item can only be selected once. What is the maximum value that can be placed in the knapsack within the capacity limit?</p>
</div>
<p>Observe Figure 14-17. Since item number <span class="arithmatex">\(i\)</span> starts counting from <span class="arithmatex">\(1\)</span> and array indices start from <span class="arithmatex">\(0\)</span>, item <span class="arithmatex">\(i\)</span> corresponds to weight <span class="arithmatex">\(wgt[i-1]\)</span> and value <span class="arithmatex">\(val[i-1]\)</span>.</p>
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Example data for 0-1 knapsack" class="animation-figure" src="../knapsack_problem.assets/knapsack_example.png" /></a></p>
<p align="center"> Figure 14-17 &nbsp; Example data for 0-1 knapsack </p>
<p>We can view the 0-1 knapsack problem as a process consisting of <span class="arithmatex">\(n\)</span> rounds of decisions, where for each item there are two decisions: not putting it in and putting it in, thus the problem satisfies the decision tree model.</p>
<p>The goal of this problem is to find "the maximum value that can be placed in the knapsack within the capacity limit", so it is more likely to be a dynamic programming problem.</p>
<p><strong>Step 1: Think about the decisions in each round, define the state, and thus obtain the <span class="arithmatex">\(dp\)</span> table</strong></p>
<p>For each item, if not placed in the knapsack, the knapsack capacity remains unchanged; if placed in, the knapsack capacity decreases. From this, we can derive the state definition: current item number <span class="arithmatex">\(i\)</span> and knapsack capacity <span class="arithmatex">\(c\)</span>, denoted as <span class="arithmatex">\([i, c]\)</span>.</p>
<p>State <span class="arithmatex">\([i, c]\)</span> corresponds to the subproblem: <strong>the maximum value among the first <span class="arithmatex">\(i\)</span> items in a knapsack of capacity <span class="arithmatex">\(c\)</span></strong>, denoted as <span class="arithmatex">\(dp[i, c]\)</span>.</p>
<p>What we need to find is <span class="arithmatex">\(dp[n, cap]\)</span>, so we need a two-dimensional <span class="arithmatex">\(dp\)</span> table of size <span class="arithmatex">\((n+1) \times (cap+1)\)</span>.</p>
<p><strong>Step 2: Identify the optimal substructure, and then derive the state transition equation</strong></p>
<p>After making the decision for item <span class="arithmatex">\(i\)</span>, what remains is the subproblem of the first <span class="arithmatex">\(i-1\)</span> items, which can be divided into the following two cases.</p>
<ul>
<li><strong>Not putting item <span class="arithmatex">\(i\)</span></strong>: The knapsack capacity remains unchanged, and the state changes to <span class="arithmatex">\([i-1, c]\)</span>.</li>
<li><strong>Putting item <span class="arithmatex">\(i\)</span></strong>: The knapsack capacity decreases by <span class="arithmatex">\(wgt[i-1]\)</span>, the value increases by <span class="arithmatex">\(val[i-1]\)</span>, and the state changes to <span class="arithmatex">\([i-1, c-wgt[i-1]]\)</span>.</li>
</ul>
<p>The above analysis reveals the optimal substructure of this problem: <strong>the maximum value <span class="arithmatex">\(dp[i, c]\)</span> equals the larger value between not putting item <span class="arithmatex">\(i\)</span> and putting item <span class="arithmatex">\(i\)</span></strong>. From this, the state transition equation can be derived:</p>
<div class="arithmatex">\[
dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
\]</div>
<p>Note that if the weight of the current item <span class="arithmatex">\(wgt[i - 1]\)</span> exceeds the remaining knapsack capacity <span class="arithmatex">\(c\)</span>, then the only option is not to put it in the knapsack.</p>
<p><strong>Step 3: Determine boundary conditions and state transition order</strong></p>
<p>When there are no items or the knapsack capacity is <span class="arithmatex">\(0\)</span>, the maximum value is <span class="arithmatex">\(0\)</span>, i.e., the first column <span class="arithmatex">\(dp[i, 0]\)</span> and the first row <span class="arithmatex">\(dp[0, c]\)</span> are both equal to <span class="arithmatex">\(0\)</span>.</p>
<p>The current state <span class="arithmatex">\([i, c]\)</span> is transferred from the state above <span class="arithmatex">\([i-1, c]\)</span> and the state in the upper-left <span class="arithmatex">\([i-1, c-wgt[i-1]]\)</span>, so the entire <span class="arithmatex">\(dp\)</span> table is traversed in order through two nested loops.</p>
<p>Based on the above analysis, we will next implement the brute force search, memoization, and dynamic programming solutions in order.</p>
<h3 id="1-method-1-brute-force-search">1. &nbsp; Method 1: Brute Force Search<a class="headerlink" href="#1-method-1-brute-force-search" title="Permanent link">&para;</a></h3>
<p>The search code includes the following elements.</p>
<ul>
<li><strong>Recursive parameters</strong>: state <span class="arithmatex">\([i, c]\)</span>.</li>
<li><strong>Return value</strong>: solution to the subproblem <span class="arithmatex">\(dp[i, c]\)</span>.</li>
<li><strong>Termination condition</strong>: when the item number is out of bounds <span class="arithmatex">\(i = 0\)</span> or the remaining knapsack capacity is <span class="arithmatex">\(0\)</span>, terminate recursion and return value <span class="arithmatex">\(0\)</span>.</li>
<li><strong>Pruning</strong>: if the weight of the current item exceeds the remaining knapsack capacity, only the option of not putting it in is available.</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="1:13"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><input id="__tabbed_1_13" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Kotlin</label><label for="__tabbed_1_13">Ruby</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">c</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;0-1 knapsack: Brute-force search&quot;&quot;&quot;</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="c1"># If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">c</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="c1"># If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">c</span><span class="p">:</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="k">return</span> <span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a> <span class="c1"># Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a> <span class="n">no</span> <span class="o">=</span> <span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a> <span class="n">yes</span> <span class="o">=</span> <span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a> <span class="c1"># Return the larger value of the two options</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a> <span class="k">return</span> <span class="nb">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span> <span class="n">yes</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFS</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFS</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">KnapsackDFS</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">KnapsackDFS</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">KnapsackDFS</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">KnapsackDFS</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="o">-</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">int</span><span class="p">(</span><span class="nx">math</span><span class="p">.</span><span class="nx">Max</span><span class="p">(</span><span class="nb">float64</span><span class="p">(</span><span class="nx">no</span><span class="p">),</span><span class="w"> </span><span class="nb">float64</span><span class="p">(</span><span class="nx">yes</span><span class="p">)))</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">func</span><span class="w"> </span><span class="nf">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="nb">Int</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="nb">Int</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="nb">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="p">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="p">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nv">no</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nv">yes</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="bp">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">)</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-11" name="__codelineno-6-11" href="#__codelineno-6-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-6-12" name="__codelineno-6-12" href="#__codelineno-6-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-6-13" name="__codelineno-6-13" href="#__codelineno-6-13"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-6-14" name="__codelineno-6-14" href="#__codelineno-6-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-6-15" name="__codelineno-6-15" href="#__codelineno-6-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
<a id="__codelineno-6-16" name="__codelineno-6-16" href="#__codelineno-6-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="nx">c</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-7-17" name="__codelineno-7-17" href="#__codelineno-7-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-7-18" name="__codelineno-7-18" href="#__codelineno-7-18"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-7-19" name="__codelineno-7-19" href="#__codelineno-7-19"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-7-20" name="__codelineno-7-20" href="#__codelineno-7-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
<a id="__codelineno-7-21" name="__codelineno-7-21" href="#__codelineno-7-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">fn</span><span class="w"> </span><span class="nf">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-11" name="__codelineno-9-11" href="#__codelineno-9-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-9-12" name="__codelineno-9-12" href="#__codelineno-9-12"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-9-13" name="__codelineno-9-13" href="#__codelineno-9-13"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-9-14" name="__codelineno-9-14" href="#__codelineno-9-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-9-15" name="__codelineno-9-15" href="#__codelineno-9-15"></a><span class="w"> </span><span class="n">std</span><span class="p">::</span><span class="n">cmp</span><span class="p">::</span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">)</span>
<a id="__codelineno-9-16" name="__codelineno-9-16" href="#__codelineno-9-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFS</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">wgt</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">val</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">myMax</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-10-16" name="__codelineno-10-16" href="#__codelineno-10-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 0-1 knapsack: Brute-force search */</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">knapsackDFS</span><span class="p">(</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="n">_val</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">,</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="p">):</span><span class="w"> </span><span class="kt">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span>
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">_val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span>
<a id="__codelineno-11-19" name="__codelineno-11-19" href="#__codelineno-11-19"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-11-20" name="__codelineno-11-20" href="#__codelineno-11-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">)</span>
<a id="__codelineno-11-21" name="__codelineno-11-21" href="#__codelineno-11-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="c1">### 0-1 knapsack: brute force search ###</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="c1"># If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="c1"># If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="c1"># Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="c1"># Return the larger value of the two options</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="w"> </span><span class="o">[</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="o">].</span><span class="n">max</span>
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="k">end</span>
</code></pre></div>
</div>
</div>
</div>
<p>As shown in Figure 14-18, since each item generates two search branches of not selecting and selecting, the time complexity is <span class="arithmatex">\(O(2^n)\)</span>.</p>
<p>Observing the recursion tree, it is easy to see overlapping subproblems, such as <span class="arithmatex">\(dp[1, 10]\)</span>. When there are many items, large knapsack capacity, and especially many items with the same weight, the number of overlapping subproblems will increase significantly.</p>
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dfs.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Brute force search recursion tree for 0-1 knapsack problem" class="animation-figure" src="../knapsack_problem.assets/knapsack_dfs.png" /></a></p>
<p align="center"> Figure 14-18 &nbsp; Brute force search recursion tree for 0-1 knapsack problem </p>
<h3 id="2-method-2-memoization">2. &nbsp; Method 2: Memoization<a class="headerlink" href="#2-method-2-memoization" title="Permanent link">&para;</a></h3>
<p>To ensure that overlapping subproblems are only computed once, we use a memo list <code>mem</code> to record the solutions to subproblems, where <code>mem[i][c]</code> corresponds to <span class="arithmatex">\(dp[i, c]\)</span>.</p>
<p>After introducing memoization, <strong>the time complexity depends on the number of subproblems</strong>, which is <span class="arithmatex">\(O(n \times cap)\)</span>. The implementation code is as follows:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:13"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><input id="__tabbed_2_13" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Python</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Java</label><label for="__tabbed_2_4">C#</label><label for="__tabbed_2_5">Go</label><label for="__tabbed_2_6">Swift</label><label for="__tabbed_2_7">JS</label><label for="__tabbed_2_8">TS</label><label for="__tabbed_2_9">Dart</label><label for="__tabbed_2_10">Rust</label><label for="__tabbed_2_11">C</label><label for="__tabbed_2_12">Kotlin</label><label for="__tabbed_2_13">Ruby</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dfs_mem</span><span class="p">(</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a> <span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">mem</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">c</span><span class="p">:</span> <span class="nb">int</span>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;0-1 knapsack: Memoization search&quot;&quot;&quot;</span>
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a> <span class="c1"># If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">c</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a> <span class="c1"># If there&#39;s a record, return it directly</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a> <span class="k">if</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a> <span class="c1"># If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">c</span><span class="p">:</span>
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a> <span class="k">return</span> <span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a> <span class="c1"># Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a> <span class="n">no</span> <span class="o">=</span> <span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a> <span class="n">yes</span> <span class="o">=</span> <span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-13-17" name="__codelineno-13-17" href="#__codelineno-13-17"></a> <span class="c1"># Record and return the larger value of the two options</span>
<a id="__codelineno-13-18" name="__codelineno-13-18" href="#__codelineno-13-18"></a> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span> <span class="n">yes</span><span class="p">)</span>
<a id="__codelineno-13-19" name="__codelineno-13-19" href="#__codelineno-13-19"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFSMem</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">-1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-14-17" name="__codelineno-14-17" href="#__codelineno-14-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-14-18" name="__codelineno-14-18" href="#__codelineno-14-18"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-14-19" name="__codelineno-14-19" href="#__codelineno-14-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-14-20" name="__codelineno-14-20" href="#__codelineno-14-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-14-21" name="__codelineno-14-21" href="#__codelineno-14-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-15-17" name="__codelineno-15-17" href="#__codelineno-15-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-15-18" name="__codelineno-15-18" href="#__codelineno-15-18"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-15-19" name="__codelineno-15-19" href="#__codelineno-15-19"></a><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-15-20" name="__codelineno-15-20" href="#__codelineno-15-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-15-21" name="__codelineno-15-21" href="#__codelineno-15-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">KnapsackDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">KnapsackDFSMem</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">KnapsackDFSMem</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">KnapsackDFSMem</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="w"> </span><span class="p">[][]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span>
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span>
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="o">-</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="c1">// Return the larger value of the two options</span>
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">int</span><span class="p">(</span><span class="nx">math</span><span class="p">.</span><span class="nx">Max</span><span class="p">(</span><span class="nb">float64</span><span class="p">(</span><span class="nx">no</span><span class="p">),</span><span class="w"> </span><span class="nb">float64</span><span class="p">(</span><span class="nx">yes</span><span class="p">)))</span>
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span>
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kd">func</span><span class="w"> </span><span class="nf">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">mem</span><span class="p">:</span><span class="w"> </span><span class="kr">inout</span><span class="w"> </span><span class="p">[[</span><span class="nb">Int</span><span class="p">]],</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="nb">Int</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="nb">Int</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="nb">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="p">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="p">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">:</span><span class="w"> </span><span class="p">&amp;</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nv">no</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">:</span><span class="w"> </span><span class="p">&amp;</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-18-17" name="__codelineno-18-17" href="#__codelineno-18-17"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nv">yes</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">:</span><span class="w"> </span><span class="p">&amp;</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-18-18" name="__codelineno-18-18" href="#__codelineno-18-18"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-18-19" name="__codelineno-18-19" href="#__codelineno-18-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="bp">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">)</span>
<a id="__codelineno-18-20" name="__codelineno-18-20" href="#__codelineno-18-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
<a id="__codelineno-18-21" name="__codelineno-18-21" href="#__codelineno-18-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-19-2" name="__codelineno-19-2" href="#__codelineno-19-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-3" name="__codelineno-19-3" href="#__codelineno-19-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-19-4" name="__codelineno-19-4" href="#__codelineno-19-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-5" name="__codelineno-19-5" href="#__codelineno-19-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-19-6" name="__codelineno-19-6" href="#__codelineno-19-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-19-7" name="__codelineno-19-7" href="#__codelineno-19-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-9" name="__codelineno-19-9" href="#__codelineno-19-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
<a id="__codelineno-19-10" name="__codelineno-19-10" href="#__codelineno-19-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-19-11" name="__codelineno-19-11" href="#__codelineno-19-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-19-12" name="__codelineno-19-12" href="#__codelineno-19-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-13" name="__codelineno-19-13" href="#__codelineno-19-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-19-14" name="__codelineno-19-14" href="#__codelineno-19-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-19-15" name="__codelineno-19-15" href="#__codelineno-19-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-19-16" name="__codelineno-19-16" href="#__codelineno-19-16"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-19-17" name="__codelineno-19-17" href="#__codelineno-19-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span>
<a id="__codelineno-19-18" name="__codelineno-19-18" href="#__codelineno-19-18"></a><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-19-19" name="__codelineno-19-19" href="#__codelineno-19-19"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-19-20" name="__codelineno-19-20" href="#__codelineno-19-20"></a><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
<a id="__codelineno-19-21" name="__codelineno-19-21" href="#__codelineno-19-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
<a id="__codelineno-19-22" name="__codelineno-19-22" href="#__codelineno-19-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span>
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-20-4" name="__codelineno-20-4" href="#__codelineno-20-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a><span class="w"> </span><span class="nx">mem</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="nb">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;&gt;</span><span class="p">,</span>
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a><span class="w"> </span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a><span class="w"> </span><span class="nx">c</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-20-10" name="__codelineno-20-10" href="#__codelineno-20-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-11" name="__codelineno-20-11" href="#__codelineno-20-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-20-12" name="__codelineno-20-12" href="#__codelineno-20-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-13" name="__codelineno-20-13" href="#__codelineno-20-13"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-20-14" name="__codelineno-20-14" href="#__codelineno-20-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-15" name="__codelineno-20-15" href="#__codelineno-20-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
<a id="__codelineno-20-16" name="__codelineno-20-16" href="#__codelineno-20-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-17" name="__codelineno-20-17" href="#__codelineno-20-17"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-20-18" name="__codelineno-20-18" href="#__codelineno-20-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-19" name="__codelineno-20-19" href="#__codelineno-20-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-20-20" name="__codelineno-20-20" href="#__codelineno-20-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-21" name="__codelineno-20-21" href="#__codelineno-20-21"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-20-22" name="__codelineno-20-22" href="#__codelineno-20-22"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
<a id="__codelineno-20-23" name="__codelineno-20-23" href="#__codelineno-20-23"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span>
<a id="__codelineno-20-24" name="__codelineno-20-24" href="#__codelineno-20-24"></a><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-20-25" name="__codelineno-20-25" href="#__codelineno-20-25"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-20-26" name="__codelineno-20-26" href="#__codelineno-20-26"></a><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
<a id="__codelineno-20-27" name="__codelineno-20-27" href="#__codelineno-20-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
<a id="__codelineno-20-28" name="__codelineno-20-28" href="#__codelineno-20-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span>
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span>
<a id="__codelineno-21-4" name="__codelineno-21-4" href="#__codelineno-21-4"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">val</span><span class="p">,</span>
<a id="__codelineno-21-5" name="__codelineno-21-5" href="#__codelineno-21-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span>
<a id="__codelineno-21-6" name="__codelineno-21-6" href="#__codelineno-21-6"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span>
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">,</span>
<a id="__codelineno-21-8" name="__codelineno-21-8" href="#__codelineno-21-8"></a><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-9" name="__codelineno-21-9" href="#__codelineno-21-9"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-21-10" name="__codelineno-21-10" href="#__codelineno-21-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-11" name="__codelineno-21-11" href="#__codelineno-21-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-21-12" name="__codelineno-21-12" href="#__codelineno-21-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-13" name="__codelineno-21-13" href="#__codelineno-21-13"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-21-14" name="__codelineno-21-14" href="#__codelineno-21-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-15" name="__codelineno-21-15" href="#__codelineno-21-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-21-16" name="__codelineno-21-16" href="#__codelineno-21-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-17" name="__codelineno-21-17" href="#__codelineno-21-17"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-21-18" name="__codelineno-21-18" href="#__codelineno-21-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-19" name="__codelineno-21-19" href="#__codelineno-21-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-21-20" name="__codelineno-21-20" href="#__codelineno-21-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-21" name="__codelineno-21-21" href="#__codelineno-21-21"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-21-22" name="__codelineno-21-22" href="#__codelineno-21-22"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-21-23" name="__codelineno-21-23" href="#__codelineno-21-23"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-21-24" name="__codelineno-21-24" href="#__codelineno-21-24"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-21-25" name="__codelineno-21-25" href="#__codelineno-21-25"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-21-26" name="__codelineno-21-26" href="#__codelineno-21-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-21-27" name="__codelineno-21-27" href="#__codelineno-21-27"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="k">fn</span><span class="w"> </span><span class="nf">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">mem</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="nb">Vec</span><span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="kt">i32</span><span class="o">&gt;&gt;</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-13" name="__codelineno-22-13" href="#__codelineno-22-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-22-14" name="__codelineno-22-14" href="#__codelineno-22-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-15" name="__codelineno-22-15" href="#__codelineno-22-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-22-16" name="__codelineno-22-16" href="#__codelineno-22-16"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-22-17" name="__codelineno-22-17" href="#__codelineno-22-17"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-22-18" name="__codelineno-22-18" href="#__codelineno-22-18"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-22-19" name="__codelineno-22-19" href="#__codelineno-22-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">std</span><span class="p">::</span><span class="n">cmp</span><span class="p">::</span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-22-20" name="__codelineno-22-20" href="#__codelineno-22-20"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
<a id="__codelineno-22-21" name="__codelineno-22-21" href="#__codelineno-22-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">wgt</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">val</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">memCols</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">**</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">-1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">memCols</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">memCols</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">memCols</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-23-19" name="__codelineno-23-19" href="#__codelineno-23-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">myMax</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
<a id="__codelineno-23-20" name="__codelineno-23-20" href="#__codelineno-23-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-23-21" name="__codelineno-23-21" href="#__codelineno-23-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="cm">/* 0-1 knapsack: Memoization search */</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">knapsackDFSMem</span><span class="p">(</span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a><span class="w"> </span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a><span class="w"> </span><span class="n">_val</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a><span class="w"> </span><span class="n">mem</span><span class="p">:</span><span class="w"> </span><span class="n">Array</span><span class="o">&lt;</span><span class="n">IntArray</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a><span class="w"> </span><span class="n">i</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">,</span>
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a><span class="w"> </span><span class="n">c</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span>
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a><span class="p">):</span><span class="w"> </span><span class="kt">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a><span class="w"> </span><span class="c1">// If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-24-10" name="__codelineno-24-10" href="#__codelineno-24-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-11" name="__codelineno-24-11" href="#__codelineno-24-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span>
<a id="__codelineno-24-12" name="__codelineno-24-12" href="#__codelineno-24-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-13" name="__codelineno-24-13" href="#__codelineno-24-13"></a><span class="w"> </span><span class="c1">// If there&#39;s a record, return it directly</span>
<a id="__codelineno-24-14" name="__codelineno-24-14" href="#__codelineno-24-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-15" name="__codelineno-24-15" href="#__codelineno-24-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span>
<a id="__codelineno-24-16" name="__codelineno-24-16" href="#__codelineno-24-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-17" name="__codelineno-24-17" href="#__codelineno-24-17"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-24-18" name="__codelineno-24-18" href="#__codelineno-24-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-24-19" name="__codelineno-24-19" href="#__codelineno-24-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-24-20" name="__codelineno-24-20" href="#__codelineno-24-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-24-21" name="__codelineno-24-21" href="#__codelineno-24-21"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-24-22" name="__codelineno-24-22" href="#__codelineno-24-22"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-24-23" name="__codelineno-24-23" href="#__codelineno-24-23"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">_val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span>
<a id="__codelineno-24-24" name="__codelineno-24-24" href="#__codelineno-24-24"></a><span class="w"> </span><span class="c1">// Record and return the larger value of the two options</span>
<a id="__codelineno-24-25" name="__codelineno-24-25" href="#__codelineno-24-25"></a><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">)</span>
<a id="__codelineno-24-26" name="__codelineno-24-26" href="#__codelineno-24-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span>
<a id="__codelineno-24-27" name="__codelineno-24-27" href="#__codelineno-24-27"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="c1">### 0-1 knapsack: memoization search ###</span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="c1"># If all items have been selected or knapsack has no remaining capacity, return value 0</span>
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="w"> </span><span class="c1"># If there&#39;s a record, return it directly</span>
<a id="__codelineno-25-6" name="__codelineno-25-6" href="#__codelineno-25-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span>
<a id="__codelineno-25-7" name="__codelineno-25-7" href="#__codelineno-25-7"></a><span class="w"> </span><span class="c1"># If exceeds knapsack capacity, can only choose not to put it in</span>
<a id="__codelineno-25-8" name="__codelineno-25-8" href="#__codelineno-25-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span>
<a id="__codelineno-25-9" name="__codelineno-25-9" href="#__codelineno-25-9"></a><span class="w"> </span><span class="c1"># Calculate the maximum value of not putting in and putting in item i</span>
<a id="__codelineno-25-10" name="__codelineno-25-10" href="#__codelineno-25-10"></a><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">)</span>
<a id="__codelineno-25-11" name="__codelineno-25-11" href="#__codelineno-25-11"></a><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span>
<a id="__codelineno-25-12" name="__codelineno-25-12" href="#__codelineno-25-12"></a><span class="w"> </span><span class="c1"># Record and return the larger value of the two options</span>
<a id="__codelineno-25-13" name="__codelineno-25-13" href="#__codelineno-25-13"></a><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="o">[</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="o">].</span><span class="n">max</span>
<a id="__codelineno-25-14" name="__codelineno-25-14" href="#__codelineno-25-14"></a><span class="k">end</span>
</code></pre></div>
</div>
</div>
</div>
<p>Figure 14-19 shows the search branches pruned in memoization.</p>
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dfs_mem.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Memoization recursion tree for 0-1 knapsack problem" class="animation-figure" src="../knapsack_problem.assets/knapsack_dfs_mem.png" /></a></p>
<p align="center"> Figure 14-19 &nbsp; Memoization recursion tree for 0-1 knapsack problem </p>
<h3 id="3-method-3-dynamic-programming">3. &nbsp; Method 3: Dynamic Programming<a class="headerlink" href="#3-method-3-dynamic-programming" title="Permanent link">&para;</a></h3>
<p>Dynamic programming is essentially the process of filling the <span class="arithmatex">\(dp\)</span> table during state transitions. The code is as follows:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="3:13"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><input id="__tabbed_3_13" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Python</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Java</label><label for="__tabbed_3_4">C#</label><label for="__tabbed_3_5">Go</label><label for="__tabbed_3_6">Swift</label><label for="__tabbed_3_7">JS</label><label for="__tabbed_3_8">TS</label><label for="__tabbed_3_9">Dart</label><label for="__tabbed_3_10">Rust</label><label for="__tabbed_3_11">C</label><label for="__tabbed_3_12">Kotlin</label><label for="__tabbed_3_13">Ruby</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">cap</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;0-1 knapsack: Dynamic programming&quot;&quot;&quot;</span>
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">wgt</span><span class="p">)</span>
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a> <span class="c1"># Initialize dp table</span>
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">cap</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
<a id="__codelineno-26-6" name="__codelineno-26-6" href="#__codelineno-26-6"></a> <span class="c1"># State transition</span>
<a id="__codelineno-26-7" name="__codelineno-26-7" href="#__codelineno-26-7"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-26-8" name="__codelineno-26-8" href="#__codelineno-26-8"></a> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">cap</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-26-9" name="__codelineno-26-9" href="#__codelineno-26-9"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">c</span><span class="p">:</span>
<a id="__codelineno-26-10" name="__codelineno-26-10" href="#__codelineno-26-10"></a> <span class="c1"># If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-26-11" name="__codelineno-26-11" href="#__codelineno-26-11"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
<a id="__codelineno-26-12" name="__codelineno-26-12" href="#__codelineno-26-12"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-26-13" name="__codelineno-26-13" href="#__codelineno-26-13"></a> <span class="c1"># The larger value between not selecting and selecting item i</span>
<a id="__codelineno-26-14" name="__codelineno-26-14" href="#__codelineno-26-14"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]]</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span>
<a id="__codelineno-26-15" name="__codelineno-26-15" href="#__codelineno-26-15"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDP</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">size</span><span class="p">();</span>
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">));</span>
<a id="__codelineno-27-6" name="__codelineno-27-6" href="#__codelineno-27-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-27-7" name="__codelineno-27-7" href="#__codelineno-27-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-8" name="__codelineno-27-8" href="#__codelineno-27-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-9" name="__codelineno-27-9" href="#__codelineno-27-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-10" name="__codelineno-27-10" href="#__codelineno-27-10"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-27-11" name="__codelineno-27-11" href="#__codelineno-27-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-27-12" name="__codelineno-27-12" href="#__codelineno-27-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-13" name="__codelineno-27-13" href="#__codelineno-27-13"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-27-14" name="__codelineno-27-14" href="#__codelineno-27-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
<a id="__codelineno-27-15" name="__codelineno-27-15" href="#__codelineno-27-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-16" name="__codelineno-27-16" href="#__codelineno-27-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-17" name="__codelineno-27-17" href="#__codelineno-27-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-18" name="__codelineno-27-18" href="#__codelineno-27-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-27-19" name="__codelineno-27-19" href="#__codelineno-27-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDP</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="na">length</span><span class="p">;</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">);</span>
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="n">cap</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">KnapsackDP</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">weight</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="kt">int</span><span class="p">[,]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">]);</span>
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">knapsackDP</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">wgt</span><span class="p">)</span>
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-30-6" name="__codelineno-30-6" href="#__codelineno-30-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-7" name="__codelineno-30-7" href="#__codelineno-30-7"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-30-8" name="__codelineno-30-8" href="#__codelineno-30-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-9" name="__codelineno-30-9" href="#__codelineno-30-9"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-30-10" name="__codelineno-30-10" href="#__codelineno-30-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-11" name="__codelineno-30-11" href="#__codelineno-30-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-12" name="__codelineno-30-12" href="#__codelineno-30-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-13" name="__codelineno-30-13" href="#__codelineno-30-13"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-30-14" name="__codelineno-30-14" href="#__codelineno-30-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span>
<a id="__codelineno-30-15" name="__codelineno-30-15" href="#__codelineno-30-15"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-16" name="__codelineno-30-16" href="#__codelineno-30-16"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-30-17" name="__codelineno-30-17" href="#__codelineno-30-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">int</span><span class="p">(</span><span class="nx">math</span><span class="p">.</span><span class="nx">Max</span><span class="p">(</span><span class="nb">float64</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="nx">c</span><span class="p">]),</span><span class="w"> </span><span class="nb">float64</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="nx">c</span><span class="o">-</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span><span class="o">+</span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">])))</span>
<a id="__codelineno-30-18" name="__codelineno-30-18" href="#__codelineno-30-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-19" name="__codelineno-30-19" href="#__codelineno-30-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-20" name="__codelineno-30-20" href="#__codelineno-30-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-21" name="__codelineno-30-21" href="#__codelineno-30-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">cap</span><span class="p">]</span>
<a id="__codelineno-30-22" name="__codelineno-30-22" href="#__codelineno-30-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="kd">func</span><span class="w"> </span><span class="nf">knapsackDP</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">cap</span><span class="p">:</span><span class="w"> </span><span class="nb">Int</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="nb">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nv">n</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="bp">count</span>
<a id="__codelineno-31-4" name="__codelineno-31-4" href="#__codelineno-31-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-31-5" name="__codelineno-31-5" href="#__codelineno-31-5"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">dp</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="bp">count</span><span class="p">:</span><span class="w"> </span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">),</span><span class="w"> </span><span class="bp">count</span><span class="p">:</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-31-6" name="__codelineno-31-6" href="#__codelineno-31-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-31-7" name="__codelineno-31-7" href="#__codelineno-31-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">...</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-8" name="__codelineno-31-8" href="#__codelineno-31-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">...</span><span class="w"> </span><span class="n">cap</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-9" name="__codelineno-31-9" href="#__codelineno-31-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-10" name="__codelineno-31-10" href="#__codelineno-31-10"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-31-11" name="__codelineno-31-11" href="#__codelineno-31-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
<a id="__codelineno-31-12" name="__codelineno-31-12" href="#__codelineno-31-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-31-13" name="__codelineno-31-13" href="#__codelineno-31-13"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-31-14" name="__codelineno-31-14" href="#__codelineno-31-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="bp">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span>
<a id="__codelineno-31-15" name="__codelineno-31-15" href="#__codelineno-31-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-16" name="__codelineno-31-16" href="#__codelineno-31-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-17" name="__codelineno-31-17" href="#__codelineno-31-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-18" name="__codelineno-31-18" href="#__codelineno-31-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">]</span>
<a id="__codelineno-31-19" name="__codelineno-31-19" href="#__codelineno-31-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDP</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span>
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a><span class="w"> </span><span class="p">.</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">)</span>
<a id="__codelineno-32-7" name="__codelineno-32-7" href="#__codelineno-32-7"></a><span class="w"> </span><span class="p">.</span><span class="nx">map</span><span class="p">(()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">));</span>
<a id="__codelineno-32-8" name="__codelineno-32-8" href="#__codelineno-32-8"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-32-9" name="__codelineno-32-9" href="#__codelineno-32-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-10" name="__codelineno-32-10" href="#__codelineno-32-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-11" name="__codelineno-32-11" href="#__codelineno-32-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-12" name="__codelineno-32-12" href="#__codelineno-32-12"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-32-13" name="__codelineno-32-13" href="#__codelineno-32-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
<a id="__codelineno-32-14" name="__codelineno-32-14" href="#__codelineno-32-14"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-15" name="__codelineno-32-15" href="#__codelineno-32-15"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-32-16" name="__codelineno-32-16" href="#__codelineno-32-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span>
<a id="__codelineno-32-17" name="__codelineno-32-17" href="#__codelineno-32-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">],</span>
<a id="__codelineno-32-18" name="__codelineno-32-18" href="#__codelineno-32-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
<a id="__codelineno-32-19" name="__codelineno-32-19" href="#__codelineno-32-19"></a><span class="w"> </span><span class="p">);</span>
<a id="__codelineno-32-20" name="__codelineno-32-20" href="#__codelineno-32-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-21" name="__codelineno-32-21" href="#__codelineno-32-21"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-22" name="__codelineno-32-22" href="#__codelineno-32-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-23" name="__codelineno-32-23" href="#__codelineno-32-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">cap</span><span class="p">];</span>
<a id="__codelineno-32-24" name="__codelineno-32-24" href="#__codelineno-32-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDP</span><span class="p">(</span>
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="nx">cap</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span>
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
<a id="__codelineno-33-11" name="__codelineno-33-11" href="#__codelineno-33-11"></a><span class="w"> </span><span class="p">);</span>
<a id="__codelineno-33-12" name="__codelineno-33-12" href="#__codelineno-33-12"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-33-13" name="__codelineno-33-13" href="#__codelineno-33-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-14" name="__codelineno-33-14" href="#__codelineno-33-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-15" name="__codelineno-33-15" href="#__codelineno-33-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-16" name="__codelineno-33-16" href="#__codelineno-33-16"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-33-17" name="__codelineno-33-17" href="#__codelineno-33-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
<a id="__codelineno-33-18" name="__codelineno-33-18" href="#__codelineno-33-18"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-19" name="__codelineno-33-19" href="#__codelineno-33-19"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-33-20" name="__codelineno-33-20" href="#__codelineno-33-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span>
<a id="__codelineno-33-21" name="__codelineno-33-21" href="#__codelineno-33-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">],</span>
<a id="__codelineno-33-22" name="__codelineno-33-22" href="#__codelineno-33-22"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
<a id="__codelineno-33-23" name="__codelineno-33-23" href="#__codelineno-33-23"></a><span class="w"> </span><span class="p">);</span>
<a id="__codelineno-33-24" name="__codelineno-33-24" href="#__codelineno-33-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-25" name="__codelineno-33-25" href="#__codelineno-33-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-26" name="__codelineno-33-26" href="#__codelineno-33-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-27" name="__codelineno-33-27" href="#__codelineno-33-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">cap</span><span class="p">];</span>
<a id="__codelineno-33-28" name="__codelineno-33-28" href="#__codelineno-33-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">knapsackDP</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">length</span><span class="p">;</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">generate</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="n">index</span><span class="p">)</span><span class="w"> </span><span class="o">=&gt;</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">));</span>
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-10" name="__codelineno-34-10" href="#__codelineno-34-10"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-34-11" name="__codelineno-34-11" href="#__codelineno-34-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-34-12" name="__codelineno-34-12" href="#__codelineno-34-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-13" name="__codelineno-34-13" href="#__codelineno-34-13"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-34-14" name="__codelineno-34-14" href="#__codelineno-34-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]);</span>
<a id="__codelineno-34-15" name="__codelineno-34-15" href="#__codelineno-34-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-16" name="__codelineno-34-16" href="#__codelineno-34-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-17" name="__codelineno-34-17" href="#__codelineno-34-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-18" name="__codelineno-34-18" href="#__codelineno-34-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-34-19" name="__codelineno-34-19" href="#__codelineno-34-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="k">fn</span><span class="w"> </span><span class="nf">knapsack_dp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">cap</span><span class="p">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">len</span><span class="p">();</span>
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="fm">vec!</span><span class="p">[</span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="o">..=</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="o">..=</span><span class="n">cap</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-10" name="__codelineno-35-10" href="#__codelineno-35-10"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-35-11" name="__codelineno-35-11" href="#__codelineno-35-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-35-12" name="__codelineno-35-12" href="#__codelineno-35-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-13" name="__codelineno-35-13" href="#__codelineno-35-13"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-35-14" name="__codelineno-35-14" href="#__codelineno-35-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">std</span><span class="p">::</span><span class="n">cmp</span><span class="p">::</span><span class="n">max</span><span class="p">(</span>
<a id="__codelineno-35-15" name="__codelineno-35-15" href="#__codelineno-35-15"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span>
<a id="__codelineno-35-16" name="__codelineno-35-16" href="#__codelineno-35-16"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">usize</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span>
<a id="__codelineno-35-17" name="__codelineno-35-17" href="#__codelineno-35-17"></a><span class="w"> </span><span class="p">);</span>
<a id="__codelineno-35-18" name="__codelineno-35-18" href="#__codelineno-35-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-19" name="__codelineno-35-19" href="#__codelineno-35-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-20" name="__codelineno-35-20" href="#__codelineno-35-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-21" name="__codelineno-35-21" href="#__codelineno-35-21"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">]</span>
<a id="__codelineno-35-22" name="__codelineno-35-22" href="#__codelineno-35-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-36-2" name="__codelineno-36-2" href="#__codelineno-36-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">wgt</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">val</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">wgtSize</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-3" name="__codelineno-36-3" href="#__codelineno-36-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgtSize</span><span class="p">;</span>
<a id="__codelineno-36-4" name="__codelineno-36-4" href="#__codelineno-36-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-36-5" name="__codelineno-36-5" href="#__codelineno-36-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">**</span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">malloc</span><span class="p">((</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="p">));</span>
<a id="__codelineno-36-6" name="__codelineno-36-6" href="#__codelineno-36-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-7" name="__codelineno-36-7" href="#__codelineno-36-7"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">calloc</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">));</span>
<a id="__codelineno-36-8" name="__codelineno-36-8" href="#__codelineno-36-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-9" name="__codelineno-36-9" href="#__codelineno-36-9"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-36-10" name="__codelineno-36-10" href="#__codelineno-36-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-11" name="__codelineno-36-11" href="#__codelineno-36-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-12" name="__codelineno-36-12" href="#__codelineno-36-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-13" name="__codelineno-36-13" href="#__codelineno-36-13"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-36-14" name="__codelineno-36-14" href="#__codelineno-36-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-36-15" name="__codelineno-36-15" href="#__codelineno-36-15"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-16" name="__codelineno-36-16" href="#__codelineno-36-16"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-36-17" name="__codelineno-36-17" href="#__codelineno-36-17"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">myMax</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
<a id="__codelineno-36-18" name="__codelineno-36-18" href="#__codelineno-36-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-19" name="__codelineno-36-19" href="#__codelineno-36-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-20" name="__codelineno-36-20" href="#__codelineno-36-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-21" name="__codelineno-36-21" href="#__codelineno-36-21"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-36-22" name="__codelineno-36-22" href="#__codelineno-36-22"></a><span class="w"> </span><span class="c1">// Free memory</span>
<a id="__codelineno-36-23" name="__codelineno-36-23" href="#__codelineno-36-23"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-36-24" name="__codelineno-36-24" href="#__codelineno-36-24"></a><span class="w"> </span><span class="n">free</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-36-25" name="__codelineno-36-25" href="#__codelineno-36-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-36-26" name="__codelineno-36-26" href="#__codelineno-36-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-36-27" name="__codelineno-36-27" href="#__codelineno-36-27"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="cm">/* 0-1 knapsack: Dynamic programming */</span>
<a id="__codelineno-37-2" name="__codelineno-37-2" href="#__codelineno-37-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">knapsackDP</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span><span class="w"> </span><span class="n">cap</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">):</span><span class="w"> </span><span class="kt">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-3" name="__codelineno-37-3" href="#__codelineno-37-3"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="na">size</span>
<a id="__codelineno-37-4" name="__codelineno-37-4" href="#__codelineno-37-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-37-5" name="__codelineno-37-5" href="#__codelineno-37-5"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Array</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="n">IntArray</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-6" name="__codelineno-37-6" href="#__codelineno-37-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-37-7" name="__codelineno-37-7" href="#__codelineno-37-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">1.</span><span class="p">.</span><span class="na">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-8" name="__codelineno-37-8" href="#__codelineno-37-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">1.</span><span class="p">.</span><span class="na">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-9" name="__codelineno-37-9" href="#__codelineno-37-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-10" name="__codelineno-37-10" href="#__codelineno-37-10"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-37-11" name="__codelineno-37-11" href="#__codelineno-37-11"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span>
<a id="__codelineno-37-12" name="__codelineno-37-12" href="#__codelineno-37-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-13" name="__codelineno-37-13" href="#__codelineno-37-13"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-37-14" name="__codelineno-37-14" href="#__codelineno-37-14"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">_val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="p">)</span>
<a id="__codelineno-37-15" name="__codelineno-37-15" href="#__codelineno-37-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-16" name="__codelineno-37-16" href="#__codelineno-37-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-17" name="__codelineno-37-17" href="#__codelineno-37-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-18" name="__codelineno-37-18" href="#__codelineno-37-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="n">cap</span><span class="o">]</span>
<a id="__codelineno-37-19" name="__codelineno-37-19" href="#__codelineno-37-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="c1">### 0-1 knapsack: dynamic programming ###</span>
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dp</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="o">.</span><span class="n">length</span>
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a><span class="w"> </span><span class="c1"># Initialize dp table</span>
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-6" name="__codelineno-38-6" href="#__codelineno-38-6"></a><span class="w"> </span><span class="c1"># State transition</span>
<a id="__codelineno-38-7" name="__codelineno-38-7" href="#__codelineno-38-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="o">...</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-38-8" name="__codelineno-38-8" href="#__codelineno-38-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="o">...</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-38-9" name="__codelineno-38-9" href="#__codelineno-38-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span>
<a id="__codelineno-38-10" name="__codelineno-38-10" href="#__codelineno-38-10"></a><span class="w"> </span><span class="c1"># If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-38-11" name="__codelineno-38-11" href="#__codelineno-38-11"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span>
<a id="__codelineno-38-12" name="__codelineno-38-12" href="#__codelineno-38-12"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-38-13" name="__codelineno-38-13" href="#__codelineno-38-13"></a><span class="w"> </span><span class="c1"># The larger value between not selecting and selecting item i</span>
<a id="__codelineno-38-14" name="__codelineno-38-14" href="#__codelineno-38-14"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="o">[</span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]].</span><span class="n">max</span>
<a id="__codelineno-38-15" name="__codelineno-38-15" href="#__codelineno-38-15"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-38-16" name="__codelineno-38-16" href="#__codelineno-38-16"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-38-17" name="__codelineno-38-17" href="#__codelineno-38-17"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-38-18" name="__codelineno-38-18" href="#__codelineno-38-18"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="n">cap</span><span class="o">]</span>
<a id="__codelineno-38-19" name="__codelineno-38-19" href="#__codelineno-38-19"></a><span class="k">end</span>
</code></pre></div>
</div>
</div>
</div>
<p>As shown in Figure 14-20, both time complexity and space complexity are determined by the size of the array <code>dp</code>, which is <span class="arithmatex">\(O(n \times cap)\)</span>.</p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:14"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><input id="__tabbed_4_12" name="__tabbed_4" type="radio" /><input id="__tabbed_4_13" name="__tabbed_4" type="radio" /><input id="__tabbed_4_14" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">&lt;1&gt;</label><label for="__tabbed_4_2">&lt;2&gt;</label><label for="__tabbed_4_3">&lt;3&gt;</label><label for="__tabbed_4_4">&lt;4&gt;</label><label for="__tabbed_4_5">&lt;5&gt;</label><label for="__tabbed_4_6">&lt;6&gt;</label><label for="__tabbed_4_7">&lt;7&gt;</label><label for="__tabbed_4_8">&lt;8&gt;</label><label for="__tabbed_4_9">&lt;9&gt;</label><label for="__tabbed_4_10">&lt;10&gt;</label><label for="__tabbed_4_11">&lt;11&gt;</label><label for="__tabbed_4_12">&lt;12&gt;</label><label for="__tabbed_4_13">&lt;13&gt;</label><label for="__tabbed_4_14">&lt;14&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Dynamic programming process for 0-1 knapsack problem" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step1.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step2" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step2.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step3" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step3.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step4" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step4.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step5.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step5" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step5.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step6.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step6" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step6.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step7.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step7" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step7.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step8.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step8" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step8.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step9.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step9" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step9.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step10.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step10" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step10.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step11.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step11" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step11.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step12.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step12" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step12.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step13.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step13" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step13.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step14.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step14" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step14.png" /></a></p>
</div>
</div>
</div>
<p align="center"> Figure 14-20 &nbsp; Dynamic programming process for 0-1 knapsack problem </p>
<h3 id="4-space-optimization">4. &nbsp; Space Optimization<a class="headerlink" href="#4-space-optimization" title="Permanent link">&para;</a></h3>
<p>Since each state is only related to the state in the row above it, we can use two arrays rolling forward to reduce the space complexity from <span class="arithmatex">\(O(n^2)\)</span> to <span class="arithmatex">\(O(n)\)</span>.</p>
<p>Further thinking, can we achieve space optimization using just one array? Observing, we can see that each state is transferred from the cell directly above or the cell in the upper-left. If there is only one array, when we start traversing row <span class="arithmatex">\(i\)</span>, that array still stores the state of row <span class="arithmatex">\(i-1\)</span>.</p>
<ul>
<li>If using forward traversal, then when traversing to <span class="arithmatex">\(dp[i, j]\)</span>, the values in the upper-left <span class="arithmatex">\(dp[i-1, 1]\)</span> ~ <span class="arithmatex">\(dp[i-1, j-1]\)</span> may have already been overwritten, thus preventing correct state transition.</li>
<li>If using reverse traversal, there will be no overwriting issue, and state transition can proceed correctly.</li>
</ul>
<p>Figure 14-21 shows the transition process from row <span class="arithmatex">\(i = 1\)</span> to row <span class="arithmatex">\(i = 2\)</span> using a single array. Please consider the difference between forward and reverse traversal.</p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:6"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">&lt;1&gt;</label><label for="__tabbed_5_2">&lt;2&gt;</label><label for="__tabbed_5_3">&lt;3&gt;</label><label for="__tabbed_5_4">&lt;4&gt;</label><label for="__tabbed_5_5">&lt;5&gt;</label><label for="__tabbed_5_6">&lt;6&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Space-optimized dynamic programming process for 0-1 knapsack" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step1.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step2" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step2.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step3" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step3.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step4" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step4.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step5.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step5" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step5.png" /></a></p>
</div>
<div class="tabbed-block">
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step6.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step6" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step6.png" /></a></p>
</div>
</div>
</div>
<p align="center"> Figure 14-21 &nbsp; Space-optimized dynamic programming process for 0-1 knapsack </p>
<p>In the code implementation, we simply need to delete the first dimension <span class="arithmatex">\(i\)</span> of the array <code>dp</code> and change the inner loop to reverse traversal:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:13"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><input id="__tabbed_6_12" name="__tabbed_6" type="radio" /><input id="__tabbed_6_13" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Python</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Java</label><label for="__tabbed_6_4">C#</label><label for="__tabbed_6_5">Go</label><label for="__tabbed_6_6">Swift</label><label for="__tabbed_6_7">JS</label><label for="__tabbed_6_8">TS</label><label for="__tabbed_6_9">Dart</label><label for="__tabbed_6_10">Rust</label><label for="__tabbed_6_11">C</label><label for="__tabbed_6_12">Kotlin</label><label for="__tabbed_6_13">Ruby</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dp_comp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">cap</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-39-2" name="__codelineno-39-2" href="#__codelineno-39-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;0-1 knapsack: Space-optimized dynamic programming&quot;&quot;&quot;</span>
<a id="__codelineno-39-3" name="__codelineno-39-3" href="#__codelineno-39-3"></a> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">wgt</span><span class="p">)</span>
<a id="__codelineno-39-4" name="__codelineno-39-4" href="#__codelineno-39-4"></a> <span class="c1"># Initialize dp table</span>
<a id="__codelineno-39-5" name="__codelineno-39-5" href="#__codelineno-39-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">cap</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-39-6" name="__codelineno-39-6" href="#__codelineno-39-6"></a> <span class="c1"># State transition</span>
<a id="__codelineno-39-7" name="__codelineno-39-7" href="#__codelineno-39-7"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-39-8" name="__codelineno-39-8" href="#__codelineno-39-8"></a> <span class="c1"># Traverse in reverse order</span>
<a id="__codelineno-39-9" name="__codelineno-39-9" href="#__codelineno-39-9"></a> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">cap</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-39-10" name="__codelineno-39-10" href="#__codelineno-39-10"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">c</span><span class="p">:</span>
<a id="__codelineno-39-11" name="__codelineno-39-11" href="#__codelineno-39-11"></a> <span class="c1"># If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-39-12" name="__codelineno-39-12" href="#__codelineno-39-12"></a> <span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span>
<a id="__codelineno-39-13" name="__codelineno-39-13" href="#__codelineno-39-13"></a> <span class="k">else</span><span class="p">:</span>
<a id="__codelineno-39-14" name="__codelineno-39-14" href="#__codelineno-39-14"></a> <span class="c1"># The larger value between not selecting and selecting item i</span>
<a id="__codelineno-39-15" name="__codelineno-39-15" href="#__codelineno-39-15"></a> <span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]]</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span>
<a id="__codelineno-39-16" name="__codelineno-39-16" href="#__codelineno-39-16"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">]</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDPComp</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">size</span><span class="p">();</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-16" name="__codelineno-40-16" href="#__codelineno-40-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-40-17" name="__codelineno-40-17" href="#__codelineno-40-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDPComp</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="na">length</span><span class="p">;</span>
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-41-9" name="__codelineno-41-9" href="#__codelineno-41-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-10" name="__codelineno-41-10" href="#__codelineno-41-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-11" name="__codelineno-41-11" href="#__codelineno-41-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-41-12" name="__codelineno-41-12" href="#__codelineno-41-12"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">);</span>
<a id="__codelineno-41-13" name="__codelineno-41-13" href="#__codelineno-41-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-14" name="__codelineno-41-14" href="#__codelineno-41-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-15" name="__codelineno-41-15" href="#__codelineno-41-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-41-16" name="__codelineno-41-16" href="#__codelineno-41-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">cap</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-41-17" name="__codelineno-41-17" href="#__codelineno-41-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-42-2" name="__codelineno-42-2" href="#__codelineno-42-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">KnapsackDPComp</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">weight</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">weight</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span>
<a id="__codelineno-42-4" name="__codelineno-42-4" href="#__codelineno-42-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-42-5" name="__codelineno-42-5" href="#__codelineno-42-5"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-42-6" name="__codelineno-42-6" href="#__codelineno-42-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-42-7" name="__codelineno-42-7" href="#__codelineno-42-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-8" name="__codelineno-42-8" href="#__codelineno-42-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-42-9" name="__codelineno-42-9" href="#__codelineno-42-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-10" name="__codelineno-42-10" href="#__codelineno-42-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-11" name="__codelineno-42-11" href="#__codelineno-42-11"></a><span class="w"> </span><span class="c1">// If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-42-12" name="__codelineno-42-12" href="#__codelineno-42-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">];</span>
<a id="__codelineno-42-13" name="__codelineno-42-13" href="#__codelineno-42-13"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-14" name="__codelineno-42-14" href="#__codelineno-42-14"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-42-15" name="__codelineno-42-15" href="#__codelineno-42-15"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">weight</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
<a id="__codelineno-42-16" name="__codelineno-42-16" href="#__codelineno-42-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-42-17" name="__codelineno-42-17" href="#__codelineno-42-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-42-18" name="__codelineno-42-18" href="#__codelineno-42-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-42-19" name="__codelineno-42-19" href="#__codelineno-42-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-42-20" name="__codelineno-42-20" href="#__codelineno-42-20"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-43-2" name="__codelineno-43-2" href="#__codelineno-43-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">knapsackDPComp</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-3" name="__codelineno-43-3" href="#__codelineno-43-3"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">wgt</span><span class="p">)</span>
<a id="__codelineno-43-4" name="__codelineno-43-4" href="#__codelineno-43-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-43-5" name="__codelineno-43-5" href="#__codelineno-43-5"></a><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-43-6" name="__codelineno-43-6" href="#__codelineno-43-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-43-7" name="__codelineno-43-7" href="#__codelineno-43-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-8" name="__codelineno-43-8" href="#__codelineno-43-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-43-9" name="__codelineno-43-9" href="#__codelineno-43-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">--</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-10" name="__codelineno-43-10" href="#__codelineno-43-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-11" name="__codelineno-43-11" href="#__codelineno-43-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-43-12" name="__codelineno-43-12" href="#__codelineno-43-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">int</span><span class="p">(</span><span class="nx">math</span><span class="p">.</span><span class="nx">Max</span><span class="p">(</span><span class="nb">float64</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]),</span><span class="w"> </span><span class="nb">float64</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="o">-</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span><span class="o">+</span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">])))</span>
<a id="__codelineno-43-13" name="__codelineno-43-13" href="#__codelineno-43-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-43-14" name="__codelineno-43-14" href="#__codelineno-43-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-43-15" name="__codelineno-43-15" href="#__codelineno-43-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-43-16" name="__codelineno-43-16" href="#__codelineno-43-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">cap</span><span class="p">]</span>
<a id="__codelineno-43-17" name="__codelineno-43-17" href="#__codelineno-43-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-44-2" name="__codelineno-44-2" href="#__codelineno-44-2"></a><span class="kd">func</span><span class="w"> </span><span class="nf">knapsackDPComp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="p">[</span><span class="nb">Int</span><span class="p">],</span><span class="w"> </span><span class="n">cap</span><span class="p">:</span><span class="w"> </span><span class="nb">Int</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="nb">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-3" name="__codelineno-44-3" href="#__codelineno-44-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nv">n</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="bp">count</span>
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-44-5" name="__codelineno-44-5" href="#__codelineno-44-5"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nv">dp</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="bp">count</span><span class="p">:</span><span class="w"> </span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-44-6" name="__codelineno-44-6" href="#__codelineno-44-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-44-7" name="__codelineno-44-7" href="#__codelineno-44-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">...</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-8" name="__codelineno-44-8" href="#__codelineno-44-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-44-9" name="__codelineno-44-9" href="#__codelineno-44-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="w"> </span><span class="p">...</span><span class="w"> </span><span class="n">cap</span><span class="p">).</span><span class="n">reversed</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-10" name="__codelineno-44-10" href="#__codelineno-44-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-11" name="__codelineno-44-11" href="#__codelineno-44-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-44-12" name="__codelineno-44-12" href="#__codelineno-44-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="bp">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span>
<a id="__codelineno-44-13" name="__codelineno-44-13" href="#__codelineno-44-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-44-14" name="__codelineno-44-14" href="#__codelineno-44-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-44-15" name="__codelineno-44-15" href="#__codelineno-44-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-44-16" name="__codelineno-44-16" href="#__codelineno-44-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">]</span>
<a id="__codelineno-44-17" name="__codelineno-44-17" href="#__codelineno-44-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-45-1" name="__codelineno-45-1" href="#__codelineno-45-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-45-2" name="__codelineno-45-2" href="#__codelineno-45-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDPComp</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-3" name="__codelineno-45-3" href="#__codelineno-45-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
<a id="__codelineno-45-4" name="__codelineno-45-4" href="#__codelineno-45-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-45-5" name="__codelineno-45-5" href="#__codelineno-45-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-45-6" name="__codelineno-45-6" href="#__codelineno-45-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-45-7" name="__codelineno-45-7" href="#__codelineno-45-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-8" name="__codelineno-45-8" href="#__codelineno-45-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-45-9" name="__codelineno-45-9" href="#__codelineno-45-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-10" name="__codelineno-45-10" href="#__codelineno-45-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-11" name="__codelineno-45-11" href="#__codelineno-45-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-45-12" name="__codelineno-45-12" href="#__codelineno-45-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]);</span>
<a id="__codelineno-45-13" name="__codelineno-45-13" href="#__codelineno-45-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-45-14" name="__codelineno-45-14" href="#__codelineno-45-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-45-15" name="__codelineno-45-15" href="#__codelineno-45-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-45-16" name="__codelineno-45-16" href="#__codelineno-45-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">cap</span><span class="p">];</span>
<a id="__codelineno-45-17" name="__codelineno-45-17" href="#__codelineno-45-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-46-2" name="__codelineno-46-2" href="#__codelineno-46-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDPComp</span><span class="p">(</span>
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-46-4" name="__codelineno-46-4" href="#__codelineno-46-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">,</span>
<a id="__codelineno-46-5" name="__codelineno-46-5" href="#__codelineno-46-5"></a><span class="w"> </span><span class="nx">cap</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-7" name="__codelineno-46-7" href="#__codelineno-46-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
<a id="__codelineno-46-8" name="__codelineno-46-8" href="#__codelineno-46-8"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-46-9" name="__codelineno-46-9" href="#__codelineno-46-9"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-46-10" name="__codelineno-46-10" href="#__codelineno-46-10"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-46-11" name="__codelineno-46-11" href="#__codelineno-46-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-12" name="__codelineno-46-12" href="#__codelineno-46-12"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-46-13" name="__codelineno-46-13" href="#__codelineno-46-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-14" name="__codelineno-46-14" href="#__codelineno-46-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-15" name="__codelineno-46-15" href="#__codelineno-46-15"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-46-16" name="__codelineno-46-16" href="#__codelineno-46-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]);</span>
<a id="__codelineno-46-17" name="__codelineno-46-17" href="#__codelineno-46-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-18" name="__codelineno-46-18" href="#__codelineno-46-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-19" name="__codelineno-46-19" href="#__codelineno-46-19"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-20" name="__codelineno-46-20" href="#__codelineno-46-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">cap</span><span class="p">];</span>
<a id="__codelineno-46-21" name="__codelineno-46-21" href="#__codelineno-46-21"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-47-2" name="__codelineno-47-2" href="#__codelineno-47-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">knapsackDPComp</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-3" name="__codelineno-47-3" href="#__codelineno-47-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">length</span><span class="p">;</span>
<a id="__codelineno-47-4" name="__codelineno-47-4" href="#__codelineno-47-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-47-5" name="__codelineno-47-5" href="#__codelineno-47-5"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-47-6" name="__codelineno-47-6" href="#__codelineno-47-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-47-7" name="__codelineno-47-7" href="#__codelineno-47-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-8" name="__codelineno-47-8" href="#__codelineno-47-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-47-9" name="__codelineno-47-9" href="#__codelineno-47-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-10" name="__codelineno-47-10" href="#__codelineno-47-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-11" name="__codelineno-47-11" href="#__codelineno-47-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-47-12" name="__codelineno-47-12" href="#__codelineno-47-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]);</span>
<a id="__codelineno-47-13" name="__codelineno-47-13" href="#__codelineno-47-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-47-14" name="__codelineno-47-14" href="#__codelineno-47-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-47-15" name="__codelineno-47-15" href="#__codelineno-47-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-47-16" name="__codelineno-47-16" href="#__codelineno-47-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-47-17" name="__codelineno-47-17" href="#__codelineno-47-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-48-1" name="__codelineno-48-1" href="#__codelineno-48-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-48-2" name="__codelineno-48-2" href="#__codelineno-48-2"></a><span class="k">fn</span><span class="w"> </span><span class="nf">knapsack_dp_comp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">val</span><span class="p">:</span><span class="w"> </span><span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">],</span><span class="w"> </span><span class="n">cap</span><span class="p">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="p">-&gt;</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-48-3" name="__codelineno-48-3" href="#__codelineno-48-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">len</span><span class="p">();</span>
<a id="__codelineno-48-4" name="__codelineno-48-4" href="#__codelineno-48-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-48-5" name="__codelineno-48-5" href="#__codelineno-48-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-48-6" name="__codelineno-48-6" href="#__codelineno-48-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-48-7" name="__codelineno-48-7" href="#__codelineno-48-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="o">..=</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-48-8" name="__codelineno-48-8" href="#__codelineno-48-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-48-9" name="__codelineno-48-9" href="#__codelineno-48-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="o">..=</span><span class="n">cap</span><span class="p">).</span><span class="n">rev</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-48-10" name="__codelineno-48-10" href="#__codelineno-48-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-48-11" name="__codelineno-48-11" href="#__codelineno-48-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-48-12" name="__codelineno-48-12" href="#__codelineno-48-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">std</span><span class="p">::</span><span class="n">cmp</span><span class="p">::</span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">usize</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
<a id="__codelineno-48-13" name="__codelineno-48-13" href="#__codelineno-48-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-48-14" name="__codelineno-48-14" href="#__codelineno-48-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-48-15" name="__codelineno-48-15" href="#__codelineno-48-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-48-16" name="__codelineno-48-16" href="#__codelineno-48-16"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">]</span>
<a id="__codelineno-48-17" name="__codelineno-48-17" href="#__codelineno-48-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-49-1" name="__codelineno-49-1" href="#__codelineno-49-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-49-2" name="__codelineno-49-2" href="#__codelineno-49-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDPComp</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">wgt</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">val</span><span class="p">[],</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">wgtSize</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-49-3" name="__codelineno-49-3" href="#__codelineno-49-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgtSize</span><span class="p">;</span>
<a id="__codelineno-49-4" name="__codelineno-49-4" href="#__codelineno-49-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-49-5" name="__codelineno-49-5" href="#__codelineno-49-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">calloc</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">));</span>
<a id="__codelineno-49-6" name="__codelineno-49-6" href="#__codelineno-49-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-49-7" name="__codelineno-49-7" href="#__codelineno-49-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-49-8" name="__codelineno-49-8" href="#__codelineno-49-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-49-9" name="__codelineno-49-9" href="#__codelineno-49-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-49-10" name="__codelineno-49-10" href="#__codelineno-49-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-49-11" name="__codelineno-49-11" href="#__codelineno-49-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-49-12" name="__codelineno-49-12" href="#__codelineno-49-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">myMax</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
<a id="__codelineno-49-13" name="__codelineno-49-13" href="#__codelineno-49-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-49-14" name="__codelineno-49-14" href="#__codelineno-49-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-49-15" name="__codelineno-49-15" href="#__codelineno-49-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-49-16" name="__codelineno-49-16" href="#__codelineno-49-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">];</span>
<a id="__codelineno-49-17" name="__codelineno-49-17" href="#__codelineno-49-17"></a><span class="w"> </span><span class="c1">// Free memory</span>
<a id="__codelineno-49-18" name="__codelineno-49-18" href="#__codelineno-49-18"></a><span class="w"> </span><span class="n">free</span><span class="p">(</span><span class="n">dp</span><span class="p">);</span>
<a id="__codelineno-49-19" name="__codelineno-49-19" href="#__codelineno-49-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-49-20" name="__codelineno-49-20" href="#__codelineno-49-20"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-50-1" name="__codelineno-50-1" href="#__codelineno-50-1"></a><span class="cm">/* 0-1 knapsack: Space-optimized dynamic programming */</span>
<a id="__codelineno-50-2" name="__codelineno-50-2" href="#__codelineno-50-2"></a><span class="kd">fun</span><span class="w"> </span><span class="nf">knapsackDPComp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span><span class="w"> </span><span class="n">_val</span><span class="p">:</span><span class="w"> </span><span class="n">IntArray</span><span class="p">,</span><span class="w"> </span><span class="n">cap</span><span class="p">:</span><span class="w"> </span><span class="kt">Int</span><span class="p">):</span><span class="w"> </span><span class="kt">Int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-50-3" name="__codelineno-50-3" href="#__codelineno-50-3"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="na">size</span>
<a id="__codelineno-50-4" name="__codelineno-50-4" href="#__codelineno-50-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
<a id="__codelineno-50-5" name="__codelineno-50-5" href="#__codelineno-50-5"></a><span class="w"> </span><span class="kd">val</span><span class="w"> </span><span class="nv">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">IntArray</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">)</span>
<a id="__codelineno-50-6" name="__codelineno-50-6" href="#__codelineno-50-6"></a><span class="w"> </span><span class="c1">// State transition</span>
<a id="__codelineno-50-7" name="__codelineno-50-7" href="#__codelineno-50-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="m">1.</span><span class="p">.</span><span class="na">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-50-8" name="__codelineno-50-8" href="#__codelineno-50-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
<a id="__codelineno-50-9" name="__codelineno-50-9" href="#__codelineno-50-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">cap</span><span class="w"> </span><span class="n">downTo</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-50-10" name="__codelineno-50-10" href="#__codelineno-50-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-50-11" name="__codelineno-50-11" href="#__codelineno-50-11"></a><span class="w"> </span><span class="c1">// The larger value between not selecting and selecting item i</span>
<a id="__codelineno-50-12" name="__codelineno-50-12" href="#__codelineno-50-12"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">_val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="o">]</span><span class="p">)</span>
<a id="__codelineno-50-13" name="__codelineno-50-13" href="#__codelineno-50-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-50-14" name="__codelineno-50-14" href="#__codelineno-50-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-50-15" name="__codelineno-50-15" href="#__codelineno-50-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-50-16" name="__codelineno-50-16" href="#__codelineno-50-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">cap</span><span class="o">]</span>
<a id="__codelineno-50-17" name="__codelineno-50-17" href="#__codelineno-50-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-51-1" name="__codelineno-51-1" href="#__codelineno-51-1"></a><span class="c1">### 0-1 knapsack: space-optimized DP ###</span>
<a id="__codelineno-51-2" name="__codelineno-51-2" href="#__codelineno-51-2"></a><span class="k">def</span><span class="w"> </span><span class="nf">knapsack_dp_comp</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span>
<a id="__codelineno-51-3" name="__codelineno-51-3" href="#__codelineno-51-3"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="o">.</span><span class="n">length</span>
<a id="__codelineno-51-4" name="__codelineno-51-4" href="#__codelineno-51-4"></a><span class="w"> </span><span class="c1"># Initialize dp table</span>
<a id="__codelineno-51-5" name="__codelineno-51-5" href="#__codelineno-51-5"></a><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="o">.</span><span class="n">new</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-51-6" name="__codelineno-51-6" href="#__codelineno-51-6"></a><span class="w"> </span><span class="c1"># State transition</span>
<a id="__codelineno-51-7" name="__codelineno-51-7" href="#__codelineno-51-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">1</span><span class="o">...</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-51-8" name="__codelineno-51-8" href="#__codelineno-51-8"></a><span class="w"> </span><span class="c1"># Traverse in reverse order</span>
<a id="__codelineno-51-9" name="__codelineno-51-9" href="#__codelineno-51-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">cap</span><span class="o">.</span><span class="n">downto</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-51-10" name="__codelineno-51-10" href="#__codelineno-51-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">c</span>
<a id="__codelineno-51-11" name="__codelineno-51-11" href="#__codelineno-51-11"></a><span class="w"> </span><span class="c1"># If exceeds knapsack capacity, don&#39;t select item i</span>
<a id="__codelineno-51-12" name="__codelineno-51-12" href="#__codelineno-51-12"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span>
<a id="__codelineno-51-13" name="__codelineno-51-13" href="#__codelineno-51-13"></a><span class="w"> </span><span class="k">else</span>
<a id="__codelineno-51-14" name="__codelineno-51-14" href="#__codelineno-51-14"></a><span class="w"> </span><span class="c1"># The larger value between not selecting and selecting item i</span>
<a id="__codelineno-51-15" name="__codelineno-51-15" href="#__codelineno-51-15"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="o">[</span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]].</span><span class="n">max</span>
<a id="__codelineno-51-16" name="__codelineno-51-16" href="#__codelineno-51-16"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-51-17" name="__codelineno-51-17" href="#__codelineno-51-17"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-51-18" name="__codelineno-51-18" href="#__codelineno-51-18"></a><span class="w"> </span><span class="k">end</span>
<a id="__codelineno-51-19" name="__codelineno-51-19" href="#__codelineno-51-19"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">cap</span><span class="o">]</span>
<a id="__codelineno-51-20" name="__codelineno-51-20" href="#__codelineno-51-20"></a><span class="k">end</span>
</code></pre></div>
</div>
</div>
</div>
<!-- Source file information -->
<!-- Was this page helpful? -->
<!-- Previous and next pages link -->
<nav
class="md-footer__inner md-grid"
aria-label="Footer"
>
<!-- Link to previous page -->
<a
href="../dp_solution_pipeline/"
class="md-footer__link md-footer__link--prev"
aria-label="Previous: 14.3 Dynamic Programming Problem-Solving Approach"
rel="prev"
>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
Previous
</span>
<div class="md-ellipsis">
14.3 Dynamic Programming Problem-Solving Approach
</div>
</div>
</a>
<!-- Link to next page -->
<a
href="../unbounded_knapsack_problem/"
class="md-footer__link md-footer__link--next"
aria-label="Next: 14.5 Unbounded Knapsack Problem"
rel="next"
>
<div class="md-footer__title">
<span class="md-footer__direction">
Next
</span>
<div class="md-ellipsis">
14.5 Unbounded Knapsack Problem
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11z"/></svg>
</div>
</a>
</nav>
<!-- Comment system -->
<h5 align="center" id="__comments">Feel free to drop your insights, questions or suggestions</h5>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="light"
data-lang="en"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var labels=set.querySelector(".tabbed-labels");for(var tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8z"/></svg>
Back to top
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="Footer" >
<a href="../dp_solution_pipeline/" class="md-footer__link md-footer__link--prev" aria-label="Previous: 14.3 Dynamic Programming Problem-Solving Approach">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
Previous
</span>
<div class="md-ellipsis">
14.3 Dynamic Programming Problem-Solving Approach
</div>
</div>
</a>
<a href="../unbounded_knapsack_problem/" class="md-footer__link md-footer__link--next" aria-label="Next: 14.5 Unbounded Knapsack Problem">
<div class="md-footer__title">
<span class="md-footer__direction">
Next
</span>
<div class="md-ellipsis">
14.5 Unbounded Knapsack Problem
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2026 krahets<br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 7.1.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M173.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6m-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3m44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9M252.8 8C114.1 8 8 113.3 8 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C436.2 457.8 504 362.9 504 252 504 113.3 391.5 8 252.8 8M105.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1m-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7m32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1m-11.4-14.7c-1.6 1-1.6 3.6 0 5.9s4.3 3.3 5.6 2.3c1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 7.1.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M357.2 48h70.6L273.6 224.2 455 464H313L201.7 318.6 74.5 464H3.8l164.9-188.5L-5.2 48h145.6l100.5 132.9zm-24.8 373.8h39.1L119.1 88h-42z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512"><!--! Font Awesome Free 7.1.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2025 Fonticons, Inc.--><path d="M360.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6m64.6 136.1c-12.5 12.5-12.5 32.8 0 45.3l73.4 73.4-73.4 73.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l96-96c12.5-12.5 12.5-32.8 0-45.3l-96-96c-12.5-12.5-32.8-12.5-45.3 0zm-274.7 0c-12.5-12.5-32.8-12.5-45.3 0l-96 96c-12.5 12.5-12.5 32.8 0 45.3l96 96c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l73.3-73.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"annotate": null, "base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.2c215733.min.js", "tags": null, "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}, "version": null}</script>
<script src="../../assets/javascripts/bundle.79ae519e.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.min.js"></script>
<script id="init-glightbox">const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});
document$.subscribe(() => { lightbox.reload() });
</script></body>
</html>