Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

77 lines
2.8 KiB
C#

/**
* File: n_queens.cs
* Created Time: 2023-05-04
* Author: hpstory (hpstory1024@163.com)
*/
namespace hello_algo.chapter_backtracking;
public class n_queens {
/* Backtracking algorithm: N queens */
void Backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,
bool[] cols, bool[] diags1, bool[] diags2) {
// When all rows are placed, record the solution
if (row == n) {
List<List<string>> copyState = [];
foreach (List<string> sRow in state) {
copyState.Add(new List<string>(sRow));
}
res.Add(copyState);
return;
}
// Traverse all columns
for (int col = 0; col < n; col++) {
// Calculate the main diagonal and anti-diagonal corresponding to this cell
int diag1 = row - col + n - 1;
int diag2 = row + col;
// Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal of this cell
if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
// Attempt: place the queen in this cell
state[row][col] = "Q";
cols[col] = diags1[diag1] = diags2[diag2] = true;
// Place the next row
Backtrack(row + 1, n, state, res, cols, diags1, diags2);
// Backtrack: restore this cell to an empty cell
state[row][col] = "#";
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* Solve N queens */
List<List<List<string>>> NQueens(int n) {
// Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
List<List<string>> state = [];
for (int i = 0; i < n; i++) {
List<string> row = [];
for (int j = 0; j < n; j++) {
row.Add("#");
}
state.Add(row);
}
bool[] cols = new bool[n]; // Record whether there is a queen in the column
bool[] diags1 = new bool[2 * n - 1]; // Record whether there is a queen on the main diagonal
bool[] diags2 = new bool[2 * n - 1]; // Record whether there is a queen on the anti-diagonal
List<List<List<string>>> res = [];
Backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
[Test]
public void Test() {
int n = 4;
List<List<List<string>>> res = NQueens(n);
Console.WriteLine("Input board size is " + n);
Console.WriteLine("Total queen placement solutions: " + res.Count + " solutions");
foreach (List<List<string>> state in res) {
Console.WriteLine("--------------------");
foreach (List<string> row in state) {
PrintUtil.PrintList(row);
}
}
}
}