Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

217 lines
7.1 KiB
C#

/**
* File: avl_tree.cs
* Created Time: 2022-12-23
* Author: haptear (haptear@hotmail.com)
*/
namespace hello_algo.chapter_tree;
/* AVL tree */
class AVLTree {
public TreeNode? root; // Root node
/* Get node height */
int Height(TreeNode? node) {
// Empty node height is -1, leaf node height is 0
return node == null ? -1 : node.height;
}
/* Update node height */
void UpdateHeight(TreeNode node) {
// Node height equals the height of the tallest subtree + 1
node.height = Math.Max(Height(node.left), Height(node.right)) + 1;
}
/* Get balance factor */
public int BalanceFactor(TreeNode? node) {
// Empty node balance factor is 0
if (node == null) return 0;
// Node balance factor = left subtree height - right subtree height
return Height(node.left) - Height(node.right);
}
/* Right rotation operation */
TreeNode? RightRotate(TreeNode? node) {
TreeNode? child = node?.left;
TreeNode? grandChild = child?.right;
// Using child as pivot, rotate node to the right
child.right = node;
node.left = grandChild;
// Update node height
UpdateHeight(node);
UpdateHeight(child);
// Return root node of subtree after rotation
return child;
}
/* Left rotation operation */
TreeNode? LeftRotate(TreeNode? node) {
TreeNode? child = node?.right;
TreeNode? grandChild = child?.left;
// Using child as pivot, rotate node to the left
child.left = node;
node.right = grandChild;
// Update node height
UpdateHeight(node);
UpdateHeight(child);
// Return root node of subtree after rotation
return child;
}
/* Perform rotation operation to restore balance to this subtree */
TreeNode? Rotate(TreeNode? node) {
// Get balance factor of node
int balanceFactorInt = BalanceFactor(node);
// Left-leaning tree
if (balanceFactorInt > 1) {
if (BalanceFactor(node?.left) >= 0) {
// Right rotation
return RightRotate(node);
} else {
// First left rotation then right rotation
node!.left = LeftRotate(node!.left);
return RightRotate(node);
}
}
// Right-leaning tree
if (balanceFactorInt < -1) {
if (BalanceFactor(node?.right) <= 0) {
// Left rotation
return LeftRotate(node);
} else {
// First right rotation then left rotation
node!.right = RightRotate(node!.right);
return LeftRotate(node);
}
}
// Balanced tree, no rotation needed, return directly
return node;
}
/* Insert node */
public void Insert(int val) {
root = InsertHelper(root, val);
}
/* Recursively insert node (helper method) */
TreeNode? InsertHelper(TreeNode? node, int val) {
if (node == null) return new TreeNode(val);
/* 1. Find insertion position and insert node */
if (val < node.val)
node.left = InsertHelper(node.left, val);
else if (val > node.val)
node.right = InsertHelper(node.right, val);
else
return node; // Duplicate node not inserted, return directly
UpdateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to this subtree */
node = Rotate(node);
// Return root node of subtree
return node;
}
/* Remove node */
public void Remove(int val) {
root = RemoveHelper(root, val);
}
/* Recursively delete node (helper method) */
TreeNode? RemoveHelper(TreeNode? node, int val) {
if (node == null) return null;
/* 1. Find node and delete */
if (val < node.val)
node.left = RemoveHelper(node.left, val);
else if (val > node.val)
node.right = RemoveHelper(node.right, val);
else {
if (node.left == null || node.right == null) {
TreeNode? child = node.left ?? node.right;
// Number of child nodes = 0, delete node directly and return
if (child == null)
return null;
// Number of child nodes = 1, delete node directly
else
node = child;
} else {
// Number of child nodes = 2, delete the next node in inorder traversal and replace current node with it
TreeNode? temp = node.right;
while (temp.left != null) {
temp = temp.left;
}
node.right = RemoveHelper(node.right, temp.val!.Value);
node.val = temp.val;
}
}
UpdateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to this subtree */
node = Rotate(node);
// Return root node of subtree
return node;
}
/* Search node */
public TreeNode? Search(int val) {
TreeNode? cur = root;
// Loop search, exit after passing leaf node
while (cur != null) {
// Target node is in cur's right subtree
if (cur.val < val)
cur = cur.right;
// Target node is in cur's left subtree
else if (cur.val > val)
cur = cur.left;
// Found target node, exit loop
else
break;
}
// Return target node
return cur;
}
}
public class avl_tree {
static void TestInsert(AVLTree tree, int val) {
tree.Insert(val);
Console.WriteLine("\nInsert node " + val + ", AVL tree is");
PrintUtil.PrintTree(tree.root);
}
static void TestRemove(AVLTree tree, int val) {
tree.Remove(val);
Console.WriteLine("\nRemove node " + val + ", AVL tree is");
PrintUtil.PrintTree(tree.root);
}
[Test]
public void Test() {
/* Please pay attention to how the AVL tree maintains balance after inserting nodes */
AVLTree avlTree = new();
/* Insert node */
// Delete nodes
TestInsert(avlTree, 1);
TestInsert(avlTree, 2);
TestInsert(avlTree, 3);
TestInsert(avlTree, 4);
TestInsert(avlTree, 5);
TestInsert(avlTree, 8);
TestInsert(avlTree, 7);
TestInsert(avlTree, 9);
TestInsert(avlTree, 10);
TestInsert(avlTree, 6);
/* Please pay attention to how the AVL tree maintains balance after deleting nodes */
TestInsert(avlTree, 7);
/* Remove node */
// Delete node with degree 1
TestRemove(avlTree, 8); // Delete node with degree 2
TestRemove(avlTree, 5); // Remove node with degree 1
TestRemove(avlTree, 4); // Remove node with degree 2
/* Search node */
TreeNode? node = avlTree.Search(7);
Console.WriteLine("\nFound node object is " + node + ", node value = " + node?.val);
}
}