Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

168 lines
5.1 KiB
Java

/**
* File: time_complexity.java
* Created Time: 2022-11-25
* Author: krahets (krahets@163.com)
*/
package chapter_computational_complexity;
public class time_complexity {
/* Constant order */
static int constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
/* Linear order */
static int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
/* Linear order (traversing array) */
static int arrayTraversal(int[] nums) {
int count = 0;
// Number of iterations is proportional to the array length
for (int num : nums) {
count++;
}
return count;
}
/* Exponential order */
static int quadratic(int n) {
int count = 0;
// Number of iterations is quadratically related to the data size n
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* Quadratic order (bubble sort) */
static int bubbleSort(int[] nums) {
int count = 0; // Counter
// Outer loop: unsorted range is [0, i]
for (int i = nums.length - 1; i > 0; i--) {
// Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// Swap nums[j] and nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // Element swap includes 3 unit operations
}
}
}
return count;
}
/* Exponential order (loop implementation) */
static int exponential(int n) {
int count = 0, base = 1;
// Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* Exponential order (recursive implementation) */
static int expRecur(int n) {
if (n == 1)
return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
/* Logarithmic order (loop implementation) */
static int logarithmic(int n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
/* Logarithmic order (recursive implementation) */
static int logRecur(int n) {
if (n <= 1)
return 0;
return logRecur(n / 2) + 1;
}
/* Linearithmic order */
static int linearLogRecur(int n) {
if (n <= 1)
return 1;
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* Factorial order (recursive implementation) */
static int factorialRecur(int n) {
if (n == 0)
return 1;
int count = 0;
// Split from 1 into n
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
/* Driver Code */
public static void main(String[] args) {
// You can modify n to run and observe the trend of the number of operations for various complexities
int n = 8;
System.out.println("Input data size n = " + n);
int count = constant(n);
System.out.println("Constant order operation count = " + count);
count = linear(n);
System.out.println("Linear order operation count = " + count);
count = arrayTraversal(new int[n]);
System.out.println("Linear order (array traversal) operation count = " + count);
count = quadratic(n);
System.out.println("Quadratic order operation count = " + count);
int[] nums = new int[n];
for (int i = 0; i < n; i++)
nums[i] = n - i; // [n,n-1,...,2,1]
count = bubbleSort(nums);
System.out.println("Quadratic order (bubble sort) operation count = " + count);
count = exponential(n);
System.out.println("Exponential order (loop implementation) operation count = " + count);
count = expRecur(n);
System.out.println("Exponential order (recursive implementation) operation count = " + count);
count = logarithmic(n);
System.out.println("Logarithmic order (loop implementation) operation count = " + count);
count = logRecur(n);
System.out.println("Logarithmic order (recursive implementation) operation count = " + count);
count = linearLogRecur(n);
System.out.println("Linearithmic order (recursive implementation) operation count = " + count);
count = factorialRecur(n);
System.out.println("Factorial order (recursive implementation) operation count = " + count);
}
}