Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

209 lines
6.7 KiB
JavaScript

/**
* File: avl_tree.js
* Created Time: 2023-02-05
* Author: what-is-me (whatisme@outlook.jp)
*/
const { TreeNode } = require('../modules/TreeNode');
const { printTree } = require('../modules/PrintUtil');
/* AVL tree */
class AVLTree {
/* Constructor */
constructor() {
this.root = null; // Root node
}
/* Get node height */
height(node) {
// Empty node height is -1, leaf node height is 0
return node === null ? -1 : node.height;
}
/* Update node height */
#updateHeight(node) {
// Node height equals the height of the tallest subtree + 1
node.height =
Math.max(this.height(node.left), this.height(node.right)) + 1;
}
/* Get balance factor */
balanceFactor(node) {
// Empty node balance factor is 0
if (node === null) return 0;
// Node balance factor = left subtree height - right subtree height
return this.height(node.left) - this.height(node.right);
}
/* Right rotation operation */
#rightRotate(node) {
const child = node.left;
const grandChild = child.right;
// Using child as pivot, rotate node to the right
child.right = node;
node.left = grandChild;
// Update node height
this.#updateHeight(node);
this.#updateHeight(child);
// Return root node of subtree after rotation
return child;
}
/* Left rotation operation */
#leftRotate(node) {
const child = node.right;
const grandChild = child.left;
// Using child as pivot, rotate node to the left
child.left = node;
node.right = grandChild;
// Update node height
this.#updateHeight(node);
this.#updateHeight(child);
// Return root node of subtree after rotation
return child;
}
/* Perform rotation operation to restore balance to this subtree */
#rotate(node) {
// Get balance factor of node
const balanceFactor = this.balanceFactor(node);
// Left-leaning tree
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
// Right rotation
return this.#rightRotate(node);
} else {
// First left rotation then right rotation
node.left = this.#leftRotate(node.left);
return this.#rightRotate(node);
}
}
// Right-leaning tree
if (balanceFactor < -1) {
if (this.balanceFactor(node.right) <= 0) {
// Left rotation
return this.#leftRotate(node);
} else {
// First right rotation then left rotation
node.right = this.#rightRotate(node.right);
return this.#leftRotate(node);
}
}
// Balanced tree, no rotation needed, return directly
return node;
}
/* Insert node */
insert(val) {
this.root = this.#insertHelper(this.root, val);
}
/* Recursively insert node (helper method) */
#insertHelper(node, val) {
if (node === null) return new TreeNode(val);
/* 1. Find insertion position and insert node */
if (val < node.val) node.left = this.#insertHelper(node.left, val);
else if (val > node.val)
node.right = this.#insertHelper(node.right, val);
else return node; // Duplicate node not inserted, return directly
this.#updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to this subtree */
node = this.#rotate(node);
// Return root node of subtree
return node;
}
/* Remove node */
remove(val) {
this.root = this.#removeHelper(this.root, val);
}
/* Recursively delete node (helper method) */
#removeHelper(node, val) {
if (node === null) return null;
/* 1. Find node and delete */
if (val < node.val) node.left = this.#removeHelper(node.left, val);
else if (val > node.val)
node.right = this.#removeHelper(node.right, val);
else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// Number of child nodes = 0, delete node directly and return
if (child === null) return null;
// Number of child nodes = 1, delete node directly
else node = child;
} else {
// Number of child nodes = 2, delete the next node in inorder traversal and replace current node with it
let temp = node.right;
while (temp.left !== null) {
temp = temp.left;
}
node.right = this.#removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.#updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to this subtree */
node = this.#rotate(node);
// Return root node of subtree
return node;
}
/* Search node */
search(val) {
let cur = this.root;
// Loop search, exit after passing leaf node
while (cur !== null) {
// Target node is in cur's right subtree
if (cur.val < val) cur = cur.right;
// Target node is in cur's left subtree
else if (cur.val > val) cur = cur.left;
// Found target node, exit loop
else break;
}
// Return target node
return cur;
}
}
function testInsert(tree, val) {
tree.insert(val);
console.log('\nInsert node ' + val + ', AVL tree is');
printTree(tree.root);
}
function testRemove(tree, val) {
tree.remove(val);
console.log('\nRemove node ' + val + ', AVL tree is');
printTree(tree.root);
}
/* Driver Code */
/* Please pay attention to how the AVL tree maintains balance after inserting nodes */
const avlTree = new AVLTree();
/* Insert node */
// Delete nodes
testInsert(avlTree, 1);
testInsert(avlTree, 2);
testInsert(avlTree, 3);
testInsert(avlTree, 4);
testInsert(avlTree, 5);
testInsert(avlTree, 8);
testInsert(avlTree, 7);
testInsert(avlTree, 9);
testInsert(avlTree, 10);
testInsert(avlTree, 6);
/* Please pay attention to how the AVL tree maintains balance after deleting nodes */
testInsert(avlTree, 7);
/* Remove node */
// Delete node with degree 1
testRemove(avlTree, 8); // Delete node with degree 2
testRemove(avlTree, 5); // Remove node with degree 1
testRemove(avlTree, 4); // Remove node with degree 2
/* Search node */
const node = avlTree.search(7);
console.log('\nFound node object is', node, ', node value = ' + node.val);