mirror of
https://github.com/krahets/hello-algo.git
synced 2026-02-11 06:35:39 +08:00
* Review the EN heading format. * Fix pythontutor headings. * Fix pythontutor headings. * bug fixes * Fix headings in **/summary.md * Revisit the CN-to-EN translation for Python code using Claude-4.5 * Revisit the CN-to-EN translation for Java code using Claude-4.5 * Revisit the CN-to-EN translation for Cpp code using Claude-4.5. * Fix the dictionary. * Fix cpp code translation for the multipart strings. * Translate Go code to English. * Update workflows to test EN code. * Add EN translation for C. * Add EN translation for CSharp. * Add EN translation for Swift. * Trigger the CI check. * Revert. * Update en/hash_map.md * Add the EN version of Dart code. * Add the EN version of Kotlin code. * Add missing code files. * Add the EN version of JavaScript code. * Add the EN version of TypeScript code. * Fix the workflows. * Add the EN version of Ruby code. * Add the EN version of Rust code. * Update the CI check for the English version code. * Update Python CI check. * Fix cmakelists for en/C code. * Fix Ruby comments
125 lines
3.7 KiB
Kotlin
125 lines
3.7 KiB
Kotlin
/**
|
|
* File: knapsack.kt
|
|
* Created Time: 2024-01-25
|
|
* Author: curtishd (1023632660@qq.com)
|
|
*/
|
|
|
|
package chapter_dynamic_programming
|
|
|
|
import kotlin.math.max
|
|
|
|
/* 0-1 knapsack: Brute-force search */
|
|
fun knapsackDFS(
|
|
wgt: IntArray,
|
|
_val: IntArray,
|
|
i: Int,
|
|
c: Int
|
|
): Int {
|
|
// If all items have been selected or knapsack has no remaining capacity, return value 0
|
|
if (i == 0 || c == 0) {
|
|
return 0
|
|
}
|
|
// If exceeds knapsack capacity, can only choose not to put it in
|
|
if (wgt[i - 1] > c) {
|
|
return knapsackDFS(wgt, _val, i - 1, c)
|
|
}
|
|
// Calculate the maximum value of not putting in and putting in item i
|
|
val no = knapsackDFS(wgt, _val, i - 1, c)
|
|
val yes = knapsackDFS(wgt, _val, i - 1, c - wgt[i - 1]) + _val[i - 1]
|
|
// Return the larger value of the two options
|
|
return max(no, yes)
|
|
}
|
|
|
|
/* 0-1 knapsack: Memoization search */
|
|
fun knapsackDFSMem(
|
|
wgt: IntArray,
|
|
_val: IntArray,
|
|
mem: Array<IntArray>,
|
|
i: Int,
|
|
c: Int
|
|
): Int {
|
|
// If all items have been selected or knapsack has no remaining capacity, return value 0
|
|
if (i == 0 || c == 0) {
|
|
return 0
|
|
}
|
|
// If there's a record, return it directly
|
|
if (mem[i][c] != -1) {
|
|
return mem[i][c]
|
|
}
|
|
// If exceeds knapsack capacity, can only choose not to put it in
|
|
if (wgt[i - 1] > c) {
|
|
return knapsackDFSMem(wgt, _val, mem, i - 1, c)
|
|
}
|
|
// Calculate the maximum value of not putting in and putting in item i
|
|
val no = knapsackDFSMem(wgt, _val, mem, i - 1, c)
|
|
val yes = knapsackDFSMem(wgt, _val, mem, i - 1, c - wgt[i - 1]) + _val[i - 1]
|
|
// Record and return the larger value of the two options
|
|
mem[i][c] = max(no, yes)
|
|
return mem[i][c]
|
|
}
|
|
|
|
/* 0-1 knapsack: Dynamic programming */
|
|
fun knapsackDP(wgt: IntArray, _val: IntArray, cap: Int): Int {
|
|
val n = wgt.size
|
|
// Initialize dp table
|
|
val dp = Array(n + 1) { IntArray(cap + 1) }
|
|
// State transition
|
|
for (i in 1..n) {
|
|
for (c in 1..cap) {
|
|
if (wgt[i - 1] > c) {
|
|
// If exceeds knapsack capacity, don't select item i
|
|
dp[i][c] = dp[i - 1][c]
|
|
} else {
|
|
// The larger value between not selecting and selecting item i
|
|
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + _val[i - 1])
|
|
}
|
|
}
|
|
}
|
|
return dp[n][cap]
|
|
}
|
|
|
|
/* 0-1 knapsack: Space-optimized dynamic programming */
|
|
fun knapsackDPComp(wgt: IntArray, _val: IntArray, cap: Int): Int {
|
|
val n = wgt.size
|
|
// Initialize dp table
|
|
val dp = IntArray(cap + 1)
|
|
// State transition
|
|
for (i in 1..n) {
|
|
// Traverse in reverse order
|
|
for (c in cap downTo 1) {
|
|
if (wgt[i - 1] <= c) {
|
|
// The larger value between not selecting and selecting item i
|
|
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + _val[i - 1])
|
|
}
|
|
}
|
|
}
|
|
return dp[cap]
|
|
}
|
|
|
|
/* Driver Code */
|
|
fun main() {
|
|
val wgt = intArrayOf(10, 20, 30, 40, 50)
|
|
val _val = intArrayOf(50, 120, 150, 210, 240)
|
|
val cap = 50
|
|
val n = wgt.size
|
|
|
|
// Brute-force search
|
|
var res = knapsackDFS(wgt, _val, n, cap)
|
|
println("Maximum item value not exceeding knapsack capacity is $res")
|
|
|
|
// Memoization search
|
|
val mem = Array(n + 1) { IntArray(cap + 1) }
|
|
for (row in mem) {
|
|
row.fill(-1)
|
|
}
|
|
res = knapsackDFSMem(wgt, _val, mem, n, cap)
|
|
println("Maximum item value not exceeding knapsack capacity is $res")
|
|
|
|
// Dynamic programming
|
|
res = knapsackDP(wgt, _val, cap)
|
|
println("Maximum item value not exceeding knapsack capacity is $res")
|
|
|
|
// Space-optimized dynamic programming
|
|
res = knapsackDPComp(wgt, _val, cap)
|
|
println("Maximum item value not exceeding knapsack capacity is $res")
|
|
} |