Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

154 lines
4.2 KiB
Python

"""
File: time_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
def constant(n: int) -> int:
"""Constant order"""
count = 0
size = 100000
for _ in range(size):
count += 1
return count
def linear(n: int) -> int:
"""Linear order"""
count = 0
for _ in range(n):
count += 1
return count
def array_traversal(nums: list[int]) -> int:
"""Linear order (traversing array)"""
count = 0
# Number of iterations is proportional to the array length
for num in nums:
count += 1
return count
def quadratic(n: int) -> int:
"""Quadratic order"""
count = 0
# Number of iterations is quadratically related to the data size n
for i in range(n):
for j in range(n):
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
"""Quadratic order (bubble sort)"""
count = 0 # Counter
# Outer loop: unsorted range is [0, i]
for i in range(len(nums) - 1, 0, -1):
# Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range
for j in range(i):
if nums[j] > nums[j + 1]:
# Swap nums[j] and nums[j + 1]
tmp: int = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # Element swap includes 3 unit operations
return count
def exponential(n: int) -> int:
"""Exponential order (loop implementation)"""
count = 0
base = 1
# Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1)
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
"""Exponential order (recursive implementation)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: int) -> int:
"""Logarithmic order (loop implementation)"""
count = 0
while n > 1:
n = n / 2
count += 1
return count
def log_recur(n: int) -> int:
"""Logarithmic order (recursive implementation)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: int) -> int:
"""Linearithmic order"""
if n <= 1:
return 1
# Divide into two, the scale of subproblems is reduced by half
count = linear_log_recur(n // 2) + linear_log_recur(n // 2)
# Current subproblem contains n operations
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
"""Factorial order (recursive implementation)"""
if n == 0:
return 1
count = 0
# Split from 1 into n
for _ in range(n):
count += factorial_recur(n - 1)
return count
"""Driver Code"""
if __name__ == "__main__":
# You can modify n to run and observe the trend of the number of operations for various complexities
n = 8
print("Input data size n =", n)
count = constant(n)
print("Number of operations of constant order =", count)
count = linear(n)
print("Number of operations of linear order =", count)
count = array_traversal([0] * n)
print("Number of operations of linear order (traversing array) =", count)
count = quadratic(n)
print("Number of operations of quadratic order =", count)
nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1]
count = bubble_sort(nums)
print("Number of operations of quadratic order (bubble sort) =", count)
count = exponential(n)
print("Number of operations of exponential order (loop implementation) =", count)
count = exp_recur(n)
print("Number of operations of exponential order (recursive implementation) =", count)
count = logarithmic(n)
print("Number of operations of logarithmic order (loop implementation) =", count)
count = log_recur(n)
print("Number of operations of logarithmic order (recursive implementation) =", count)
count = linear_log_recur(n)
print("Number of operations of linearithmic order (recursive implementation) =", count)
count = factorial_recur(n)
print("Number of operations of factorial order (recursive implementation) =", count)