Files
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

201 lines
6.9 KiB
Python

"""
File: avl_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import TreeNode, print_tree
class AVLTree:
"""AVL tree"""
def __init__(self):
"""Constructor"""
self._root = None
def get_root(self) -> TreeNode | None:
"""Get binary tree root node"""
return self._root
def height(self, node: TreeNode | None) -> int:
"""Get node height"""
# Empty node height is -1, leaf node height is 0
if node is not None:
return node.height
return -1
def update_height(self, node: TreeNode | None):
"""Update node height"""
# Node height equals the height of the tallest subtree + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
def balance_factor(self, node: TreeNode | None) -> int:
"""Get balance factor"""
# Empty node balance factor is 0
if node is None:
return 0
# Node balance factor = left subtree height - right subtree height
return self.height(node.left) - self.height(node.right)
def right_rotate(self, node: TreeNode | None) -> TreeNode | None:
"""Right rotation operation"""
child = node.left
grand_child = child.right
# Using child as pivot, rotate node to the right
child.right = node
node.left = grand_child
# Update node height
self.update_height(node)
self.update_height(child)
# Return root node of subtree after rotation
return child
def left_rotate(self, node: TreeNode | None) -> TreeNode | None:
"""Left rotation operation"""
child = node.right
grand_child = child.left
# Using child as pivot, rotate node to the left
child.left = node
node.right = grand_child
# Update node height
self.update_height(node)
self.update_height(child)
# Return root node of subtree after rotation
return child
def rotate(self, node: TreeNode | None) -> TreeNode | None:
"""Perform rotation operation to restore balance to this subtree"""
# Get balance factor of node
balance_factor = self.balance_factor(node)
# Left-leaning tree
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# Right rotation
return self.right_rotate(node)
else:
# First left rotation then right rotation
node.left = self.left_rotate(node.left)
return self.right_rotate(node)
# Right-leaning tree
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# Left rotation
return self.left_rotate(node)
else:
# First right rotation then left rotation
node.right = self.right_rotate(node.right)
return self.left_rotate(node)
# Balanced tree, no rotation needed, return directly
return node
def insert(self, val):
"""Insert node"""
self._root = self.insert_helper(self._root, val)
def insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
"""Recursively insert node (helper method)"""
if node is None:
return TreeNode(val)
# 1. Find insertion position and insert node
if val < node.val:
node.left = self.insert_helper(node.left, val)
elif val > node.val:
node.right = self.insert_helper(node.right, val)
else:
# Duplicate node not inserted, return directly
return node
# Update node height
self.update_height(node)
# 2. Perform rotation operation to restore balance to this subtree
return self.rotate(node)
def remove(self, val: int):
"""Delete node"""
self._root = self.remove_helper(self._root, val)
def remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
"""Recursively delete node (helper method)"""
if node is None:
return None
# 1. Find node and delete
if val < node.val:
node.left = self.remove_helper(node.left, val)
elif val > node.val:
node.right = self.remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# Number of child nodes = 0, delete node directly and return
if child is None:
return None
# Number of child nodes = 1, delete node directly
else:
node = child
else:
# Number of child nodes = 2, delete the next node in inorder traversal and replace current node with it
temp = node.right
while temp.left is not None:
temp = temp.left
node.right = self.remove_helper(node.right, temp.val)
node.val = temp.val
# Update node height
self.update_height(node)
# 2. Perform rotation operation to restore balance to this subtree
return self.rotate(node)
def search(self, val: int) -> TreeNode | None:
"""Search node"""
cur = self._root
# Loop search, exit after passing leaf node
while cur is not None:
# Target node is in cur's right subtree
if cur.val < val:
cur = cur.right
# Target node is in cur's left subtree
elif cur.val > val:
cur = cur.left
# Found target node, exit loop
else:
break
# Return target node
return cur
"""Driver Code"""
if __name__ == "__main__":
def test_insert(tree: AVLTree, val: int):
tree.insert(val)
print("\nAfter inserting node {}, AVL tree is".format(val))
print_tree(tree.get_root())
def test_remove(tree: AVLTree, val: int):
tree.remove(val)
print("\nAfter deleting node {}, AVL tree is".format(val))
print_tree(tree.get_root())
# Initialize empty AVL tree
avl_tree = AVLTree()
# Insert nodes
# Please pay attention to how the AVL tree maintains balance after inserting nodes
for val in [1, 2, 3, 4, 5, 8, 7, 9, 10, 6]:
test_insert(avl_tree, val)
# Insert duplicate node
test_insert(avl_tree, 7)
# Delete nodes
# Please pay attention to how the AVL tree maintains balance after deleting nodes
test_remove(avl_tree, 8) # Delete node with degree 0
test_remove(avl_tree, 5) # Delete node with degree 1
test_remove(avl_tree, 4) # Delete node with degree 2
result_node = avl_tree.search(7)
print("\nFound node object is {}, node value = {}".format(result_node, result_node.val))