Merge branch 'master' of github.com:youngyangyang04/leetcode-master

This commit is contained in:
programmercarl
2024-07-15 16:49:26 +08:00
16 changed files with 752 additions and 52 deletions

View File

@@ -588,6 +588,40 @@ public class Main {
```
### Python
```python
# 接收输入
v, e = list(map(int, input().strip().split()))
# 按照常规的邻接矩阵存储图信息不可达的初始化为10001
graph = [[10001] * (v+1) for _ in range(v+1)]
for _ in range(e):
x, y, w = list(map(int, input().strip().split()))
graph[x][y] = w
graph[y][x] = w
# 定义加入生成树的标记数组和未加入生成树的最近距离
visited = [False] * (v + 1)
minDist = [10001] * (v + 1)
# 循环 n - 1 次,建立 n - 1 条边
# 从节点视角来看:每次选中一个节点加入树,更新剩余的节点到树的最短距离,
# 这一步其实蕴含了确定下一条选取的边,计入总路程 ans 的计算
for _ in range(1, v + 1):
min_val = 10002
cur = -1
for j in range(1, v + 1):
if visited[j] == False and minDist[j] < min_val:
cur = j
min_val = minDist[j]
visited[cur] = True
for j in range(1, v + 1):
if visited[j] == False and minDist[j] > graph[cur][j]:
minDist[j] = graph[cur][j]
ans = 0
for i in range(2, v + 1):
ans += minDist[i]
print(ans)
```
```python
def prim(v, e, edges):

View File

@@ -422,9 +422,186 @@ int main() {
## 其他语言版本
### Java
#### 邻接矩阵写法
```java
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Main {
static List<List<Integer>> result = new ArrayList<>(); // 收集符合条件的路径
static List<Integer> path = new ArrayList<>(); // 1节点到终点的路径
public static void dfs(int[][] graph, int x, int n) {
// 当前遍历的节点x 到达节点n
if (x == n) { // 找到符合条件的一条路径
result.add(new ArrayList<>(path));
return;
}
for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点
if (graph[x][i] == 1) { // 找到 x链接的节点
path.add(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.remove(path.size() - 1); // 回溯,撤销本节点
}
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
// 节点编号从1到n所以申请 n+1 这么大的数组
int[][] graph = new int[n + 1][n + 1];
for (int i = 0; i < m; i++) {
int s = scanner.nextInt();
int t = scanner.nextInt();
// 使用邻接矩阵表示无向图1 表示 s 与 t 是相连的
graph[s][t] = 1;
}
path.add(1); // 无论什么路径已经是从1节点出发
dfs(graph, 1, n); // 开始遍历
// 输出结果
if (result.isEmpty()) System.out.println(-1);
for (List<Integer> pa : result) {
for (int i = 0; i < pa.size() - 1; i++) {
System.out.print(pa.get(i) + " ");
}
System.out.println(pa.get(pa.size() - 1));
}
}
}
```
#### 邻接表写法
```java
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
public class Main {
static List<List<Integer>> result = new ArrayList<>(); // 收集符合条件的路径
static List<Integer> path = new ArrayList<>(); // 1节点到终点的路径
public static void dfs(List<LinkedList<Integer>> graph, int x, int n) {
if (x == n) { // 找到符合条件的一条路径
result.add(new ArrayList<>(path));
return;
}
for (int i : graph.get(x)) { // 找到 x指向的节点
path.add(i); // 遍历到的节点加入到路径中来
dfs(graph, i, n); // 进入下一层递归
path.remove(path.size() - 1); // 回溯,撤销本节点
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
// 节点编号从1到n所以申请 n+1 这么大的数组
List<LinkedList<Integer>> graph = new ArrayList<>(n + 1);
for (int i = 0; i <= n; i++) {
graph.add(new LinkedList<>());
}
while (m-- > 0) {
int s = scanner.nextInt();
int t = scanner.nextInt();
// 使用邻接表表示 s -> t 是相连的
graph.get(s).add(t);
}
path.add(1); // 无论什么路径已经是从1节点出发
dfs(graph, 1, n); // 开始遍历
// 输出结果
if (result.isEmpty()) System.out.println(-1);
for (List<Integer> pa : result) {
for (int i = 0; i < pa.size() - 1; i++) {
System.out.print(pa.get(i) + " ");
}
System.out.println(pa.get(pa.size() - 1));
}
}
}
```
### Python
#### 邻接矩阵写法
``` python
def dfs(graph, x, n, path, result):
if x == n:
result.append(path.copy())
return
for i in range(1, n + 1):
if graph[x][i] == 1:
path.append(i)
dfs(graph, i, n, path, result)
path.pop()
def main():
n, m = map(int, input().split())
graph = [[0] * (n + 1) for _ in range(n + 1)]
for _ in range(m):
s, t = map(int, input().split())
graph[s][t] = 1
result = []
dfs(graph, 1, n, [1], result)
if not result:
print(-1)
else:
for path in result:
print(' '.join(map(str, path)))
if __name__ == "__main__":
main()
```
#### 邻接表写法
``` python
from collections import defaultdict
result = [] # 收集符合条件的路径
path = [] # 1节点到终点的路径
def dfs(graph, x, n):
if x == n: # 找到符合条件的一条路径
result.append(path.copy())
return
for i in graph[x]: # 找到 x指向的节点
path.append(i) # 遍历到的节点加入到路径中来
dfs(graph, i, n) # 进入下一层递归
path.pop() # 回溯,撤销本节点
def main():
n, m = map(int, input().split())
graph = defaultdict(list) # 邻接表
for _ in range(m):
s, t = map(int, input().split())
graph[s].append(t)
path.append(1) # 无论什么路径已经是从1节点出发
dfs(graph, 1, n) # 开始遍历
# 输出结果
if not result:
print(-1)
for pa in result:
print(' '.join(map(str, pa)))
if __name__ == "__main__":
main()
```
### Go
### Rust

View File

@@ -167,7 +167,7 @@
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20240510114004.png)
--------------
--------------
后面的过程一样的节点3 和 节点4入度都为0选哪个都行。
@@ -344,8 +344,107 @@ int main() {
### Java
```java
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
List<List<Integer>> umap = new ArrayList<>(); // 记录文件依赖关系
int[] inDegree = new int[n]; // 记录每个文件的入度
for (int i = 0; i < n; i++)
umap.add(new ArrayList<>());
for (int i = 0; i < m; i++) {
int s = scanner.nextInt();
int t = scanner.nextInt();
umap.get(s).add(t); // 记录s指向哪些文件
inDegree[t]++; // t的入度加一
}
Queue<Integer> queue = new LinkedList<>();
for (int i = 0; i < n; i++) {
if (inDegree[i] == 0) {
// 入度为0的文件可以作为开头先加入队列
queue.add(i);
}
}
List<Integer> result = new ArrayList<>();
// 拓扑排序
while (!queue.isEmpty()) {
int cur = queue.poll(); // 当前选中的文件
result.add(cur);
for (int file : umap.get(cur)) {
inDegree[file]--; // cur的指向的文件入度-1
if (inDegree[file] == 0) {
queue.add(file);
}
}
}
if (result.size() == n) {
for (int i = 0; i < result.size(); i++) {
System.out.print(result.get(i));
if (i < result.size() - 1) {
System.out.print(" ");
}
}
} else {
System.out.println(-1);
}
}
}
```
### Python
```python
from collections import deque, defaultdict
def topological_sort(n, edges):
inDegree = [0] * n # inDegree 记录每个文件的入度
umap = defaultdict(list) # 记录文件依赖关系
# 构建图和入度表
for s, t in edges:
inDegree[t] += 1
umap[s].append(t)
# 初始化队列加入所有入度为0的节点
queue = deque([i for i in range(n) if inDegree[i] == 0])
result = []
while queue:
cur = queue.popleft() # 当前选中的文件
result.append(cur)
for file in umap[cur]: # 获取该文件指向的文件
inDegree[file] -= 1 # cur的指向的文件入度-1
if inDegree[file] == 0:
queue.append(file)
if len(result) == n:
print(" ".join(map(str, result)))
else:
print(-1)
if __name__ == "__main__":
n, m = map(int, input().split())
edges = [tuple(map(int, input().split())) for _ in range(m)]
topological_sort(n, edges)
```
### Go
### Rust