更新动态规划专题Markdown文件

This commit is contained in:
youngyangyang04
2021-05-10 17:07:39 +08:00
parent 8c9e147998
commit 8072aac750
56 changed files with 9063 additions and 63 deletions

View File

@@ -0,0 +1,204 @@
本周的主题就是股票系列,来一起回顾一下吧
## 周一
[动态规划买卖股票的最佳时机II](https://mp.weixin.qq.com/s/d4TRWFuhaY83HPa6t5ZL-w)中股票可以买买多了次!
这也是和[121. 买卖股票的最佳时机](https://mp.weixin.qq.com/s/keWo5qYJY4zmHn3amfXdfQ)的唯一区别(注意只有一只股票,所以再次购买前要出售掉之前的股票)
重点在于递推公式公式的不同。
在回顾一下dp数组的含义
* dp[i][0] 表示第i天持有股票所得现金。
* dp[i][1] 表示第i天不持有股票所得最多现金
递推公式:
```
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
```
大家可以发现本题和[121. 买卖股票的最佳时机](https://mp.weixin.qq.com/s/keWo5qYJY4zmHn3amfXdfQ)的代码几乎一样,唯一的区别在:
```
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
```
**这正是因为本题的股票可以买卖多次!** 所以买入股票的时候可能会有之前买卖的利润即dp[i - 1][1]所以dp[i - 1][1] - prices[i]。
## 周二
[动态规划买卖股票的最佳时机III](https://mp.weixin.qq.com/s/Sbs157mlVDtAR0gbLpdKzg)中最多只能完成两笔交易。
**这意味着可以买卖一次,可以买卖两次,也可以不买卖**
1. 确定dp数组以及下标的含义
一天一共就有五个状态,
0. 没有操作
1. 第一次买入
2. 第一次卖出
3. 第二次买入
4. 第二次卖出
**dp[i][j]中 i表示第i天j为 [0 - 4] 五个状态dp[i][j]表示第i天状态j所剩最大现金**
2. 确定递推公式
需要注意dp[i][1]**表示的是第i天买入股票的状态并不是说一定要第i天买入股票这是很多同学容易陷入的误区**。
```
dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
```
3. dp数组如何初始化
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
4. 确定遍历顺序
从递归公式其实已经可以看出一定是从前向后遍历因为dp[i]依靠dp[i - 1]的数值。
5. 举例推导dp数组
以输入[1,2,3,4,5]为例
![123.买卖股票的最佳时机III](https://img-blog.csdnimg.cn/20201228181724295.png)
可以看到红色框为最后两次卖出的状态。
现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。
所以最终最大利润是dp[4][4]
## 周三
[动态规划买卖股票的最佳时机IV](https://mp.weixin.qq.com/s/jtxZJWAo2y5sUsW647Z5cw)最多可以完成 k 笔交易。
相对于上一道[动态规划123.买卖股票的最佳时机III](https://mp.weixin.qq.com/s/Sbs157mlVDtAR0gbLpdKzg)本题需要通过前两次的交易来类比前k次的交易
1. 确定dp数组以及下标的含义
使用二维数组 dp[i][j] 第i天的状态为j所剩下的最大现金是dp[i][j]
j的状态表示为
* 0 表示不操作
* 1 第一次买入
* 2 第一次卖出
* 3 第二次买入
* 4 第二次卖出
* .....
**除了0以外偶数就是卖出奇数就是买入**
2. 确定递推公式
还要强调一下dp[i][1]**表示的是第i天买入股票的状态并不是说一定要第i天买入股票这是很多同学容易陷入的误区**。
```C++
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
```
**本题和[动态规划123.买卖股票的最佳时机III](https://mp.weixin.qq.com/s/Sbs157mlVDtAR0gbLpdKzg)最大的区别就是这里要类比j为奇数是买偶数是卖剩的状态**。
3. dp数组如何初始化
**dp[0][j]当j为奇数的时候都初始化为 -prices[0]**
代码如下:
```C++
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
```
**在初始化的地方同样要类比j为偶数是买、奇数是卖的状态**。
4. 确定遍历顺序
从递归公式其实已经可以看出一定是从前向后遍历因为dp[i]依靠dp[i - 1]的数值。
5. 举例推导dp数组
以输入[1,2,3,4,5]k=2为例。
![188.买卖股票的最佳时机IV](https://img-blog.csdnimg.cn/20201229100358221.png)
最后一次卖出一定是利润最大的dp[prices.size() - 1][2 * k]即红色部分就是最后求解。
## 周四
[动态规划:最佳买卖股票时机含冷冻期](https://mp.weixin.qq.com/s/IgC0iWWCDpYL9ZbTHGHgfw)尽可能地完成更多的交易多次买卖一支股票但有冷冻期冷冻期为1天
相对于[动态规划122.买卖股票的最佳时机II](https://mp.weixin.qq.com/s/d4TRWFuhaY83HPa6t5ZL-w),本题加上了一个冷冻期
**本题则需要第三个状态:不持有股票(冷冻期)的最多现金**。
动规五部曲,分析如下:
1. 确定dp数组以及下标的含义
**dp[i][j]第i天状态为j所剩的最多现金为dp[i][j]**。
j的状态为
* 1持有股票后的最多现金
* 2不持有股票能购买的最多现金
* 3不持有股票冷冻期的最多现金
2. 确定递推公式
```
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);
dp[i][2] = dp[i - 1][0] + prices[i];
```
3. dp数组如何初始化
可以统一都初始为0了。
代码如下:
```
vector<vector<int>> dp(n, vector<int>(3, 0));
```
**初始化其实很有讲究很多同学可能是稀里糊涂的全都初始化0反正就可以通过但没有想清楚为什么都初始化为0**
4. 确定遍历顺序
从递归公式上可以看出dp[i] 依赖于 dp[i-1],所以是从前向后遍历。
5. 举例推导dp数组
以 [1,2,3,0,2] 为例dp数组如下
![309.最佳买卖股票时机含冷冻期](https://img-blog.csdnimg.cn/20201229163725348.png)
最后两个状态 不持有股票(能购买) 和 不持有股票(冷冻期)都有可能最后结果,取最大的。
## 总结
下周还会有一篇股票系列的文章,**股票系列后面我也会单独写一篇总结,来高度概括一下,这样大家会对股票问题就有一个整体性的理解了**。