* [做项目(多个C++、Java、Go、测开、前端项目)](https://www.programmercarl.com/other/kstar.html) * [刷算法(两个月高强度学算法)](https://www.programmercarl.com/xunlian/xunlianying.html) * [背八股(40天挑战高频面试题)](https://www.programmercarl.com/xunlian/bagu.html) # 188.买卖股票的最佳时机IV [力扣题目链接](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/) 给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。 * 示例 1: * 输入:k = 2, prices = [2,4,1] * 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。 * 示例 2: * 输入:k = 2, prices = [3,2,6,5,0,3] * 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。 提示: * 0 <= k <= 100 * 0 <= prices.length <= 1000 * 0 <= prices[i] <= 1000 ## 算法公开课 **[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[动态规划来决定最佳时机,至多可以买卖K次!| LeetCode:188.买卖股票最佳时机4](https://www.bilibili.com/video/BV16M411U7XJ),相信结合视频再看本篇题解,更有助于大家对本题的理解**。 ## 思路 这道题目可以说是[动态规划:123.买卖股票的最佳时机III](https://programmercarl.com/0123.买卖股票的最佳时机III.html)的进阶版,这里要求至多有k次交易。 动规五部曲,分析如下: 1. 确定dp数组以及下标的含义 在[动态规划:123.买卖股票的最佳时机III](https://programmercarl.com/0123.买卖股票的最佳时机III.html)中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。 使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j] j的状态表示为: * 0 表示不操作 * 1 第一次买入 * 2 第一次卖出 * 3 第二次买入 * 4 第二次卖出 * ..... **大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入**。 题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。 所以二维dp数组的C++定义为: ```CPP vector> dp(prices.size(), vector(2 * k + 1, 0)); ``` 2. 确定递推公式 还要强调一下:dp[i][1],**表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区**。 达到dp[i][1]状态,有两个具体操作: * 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i] * 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1] 选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]); 同理dp[i][2]也有两个操作: * 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i] * 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2] 所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2]) 同理可以类比剩下的状态,代码如下: ```CPP for (int j = 0; j < 2 * k - 1; j += 2) { dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); } ``` **本题和[动态规划:123.买卖股票的最佳时机III](https://programmercarl.com/0123.买卖股票的最佳时机III.html)最大的区别就是这里要类比j为奇数是买,偶数是卖的状态**。 3. dp数组如何初始化 第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0; 第0天做第一次买入的操作,dp[0][1] = -prices[0]; 第0天做第一次卖出的操作,这个初始值应该是多少呢? 此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0; 第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢? 第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。 所以第二次买入操作,初始化为:dp[0][3] = -prices[0]; 第二次卖出初始化dp[0][4] = 0; **所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]** 代码如下: ```CPP for (int j = 1; j < 2 * k; j += 2) { dp[0][j] = -prices[0]; } ``` **在初始化的地方同样要类比j为偶数是卖、奇数是买的状态**。 4. 确定遍历顺序 从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。 5. 举例推导dp数组 以输入[1,2,3,4,5],k=2为例。 ![188.买卖股票的最佳时机IV](https://file1.kamacoder.com/i/algo/20201229100358221.png) 最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。 以上分析完毕,C++代码如下: ```CPP class Solution { public: int maxProfit(int k, vector& prices) { if (prices.size() == 0) return 0; vector> dp(prices.size(), vector(2 * k + 1, 0)); for (int j = 1; j < 2 * k; j += 2) { dp[0][j] = -prices[0]; } for (int i = 1;i < prices.size(); i++) { for (int j = 0; j < 2 * k - 1; j += 2) { dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); } } return dp[prices.size() - 1][2 * k]; } }; ``` * 时间复杂度: O(n * k),其中 n 为 prices 的长度 * 空间复杂度: O(n * k) 当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。 但感觉三维数组操作起来有些麻烦,我是直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。 ## 其他语言版本 ### Java: ```java // 版本一: 三维 dp数组 class Solution { public int maxProfit(int k, int[] prices) { if (prices.length == 0) return 0; // [天数][交易次数][是否持有股票] int len = prices.length; int[][][] dp = new int[len][k + 1][2]; // dp数组初始化 // 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润 for (int i = 0; i <= k; i++) { dp[0][i][1] = -prices[0]; } for (int i = 1; i < len; i++) { for (int j = 1; j <= k; j++) { // dp方程, 0表示不持有/卖出, 1表示持有/买入 dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]); dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]); } } return dp[len - 1][k][0]; } } // 版本二: 二维 dp数组 class Solution { public int maxProfit(int k, int[] prices) { if (prices.length == 0) return 0; // [天数][股票状态] // 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作 int len = prices.length; int[][] dp = new int[len][k*2 + 1]; // dp数组的初始化, 与版本一同理 for (int i = 1; i < k*2; i += 2) { dp[0][i] = -prices[0]; } for (int i = 1; i < len; i++) { for (int j = 0; j < k*2 - 1; j += 2) { dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); } } return dp[len - 1][k*2]; } } //版本三:一维 dp数组 (下面有和卡哥邏輯一致的一維數組JAVA解法) class Solution { public int maxProfit(int k, int[] prices) { if(prices.length == 0){ return 0; } if(k == 0){ return 0; } // 其实就是123题的扩展,123题只用记录2次交易的状态 // 这里记录k次交易的状态就行了 // 每次交易都有买入,卖出两个状态,所以要乘 2 int[] dp = new int[2 * k]; // 按123题解题格式那样,做一个初始化 for(int i = 0; i < dp.length / 2; i++){ dp[i * 2] = -prices[0]; } for(int i = 1; i <= prices.length; i++){ dp[0] = Math.max(dp[0], -prices[i - 1]); dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]); // 还是与123题一样,与123题对照来看 // 就很容易啦 for(int j = 2; j < dp.length; j += 2){ dp[j] = Math.max(dp[j], dp[j - 1] - prices[i-1]); dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]); } } // 返回最后一次交易卖出状态的结果就行了 return dp[dp.length - 1]; } } ``` ```JAVA class Solution { public int maxProfit(int k, int[] prices) { //edge cases if(prices.length == 0 || k == 0) return 0; int dp[] = new int [k * 2 + 1]; //和卡哥邏輯一致,奇數天購入股票,故初始化只初始化奇數天。 for(int i = 1; i < 2 * k + 1; i += 2){ dp[i] = -prices[0]; } for(int i = 1; i < prices.length; i++){ //i 從 1 開始,因爲第 i = 0 天已經透過初始化完成了。 for(int j = 1; j < 2 * k + 1; j++){ //j 從 1 開始,因爲第 j = 0 天已經透過初始化完成了。 //奇數天購買 if(j % 2 == 1) dp[j] = Math.max(dp[j], dp[j - 1] - prices[i]); //偶數天賣出 else dp[j] = Math.max(dp[j], dp[j - 1] + prices[i]); } //打印DP數組 //for(int x : dp) // System.out.print(x +", "); //System.out.println(); } //return 第2 * k次賣出的獲利。 return dp[2 * k]; } } ``` ### Python: > 版本一 ```python class Solution: def maxProfit(self, k: int, prices: List[int]) -> int: if len(prices) == 0: return 0 dp = [[0] * (2*k+1) for _ in range(len(prices))] for j in range(1, 2*k, 2): dp[0][j] = -prices[0] for i in range(1, len(prices)): for j in range(0, 2*k-1, 2): dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i]) dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i]) return dp[-1][2*k] ``` > 版本二 ```python class Solution: def maxProfit(self, k: int, prices: List[int]) -> int: if len(prices) == 0: return 0 dp = [0] * (2*k + 1) for i in range(1,2*k,2): dp[i] = -prices[0] for i in range(1,len(prices)): for j in range(1,2*k + 1): if j % 2: dp[j] = max(dp[j],dp[j-1]-prices[i]) else: dp[j] = max(dp[j],dp[j-1]+prices[i]) return dp[2*k] ``` > 版本三: 一维 dp 数组(易理解版本) ```python class Solution: def maxProfit(self, k: int, prices: List[int]) -> int: dp = [0] * k * 2 for i in range(k): dp[i * 2] = -prices[0] for price in prices[1:]: dc = dp.copy() # 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp,逻辑简单易懂 for i in range(2 * k): if i % 2 == 1: dp[i] = max(dc[i], dc[i - 1] + price) else: pre = 0 if i == 0 else dc[i - 1] dp[i] = max(dc[i], pre - price) return dp[-1] ``` ### Go: > 版本一: ```go // 买卖股票的最佳时机IV 动态规划 // 时间复杂度O(kn) 空间复杂度O(kn) func maxProfit(k int, prices []int) int { if k == 0 || len(prices) == 0 { return 0 } dp := make([][]int, len(prices)) status := make([]int, (2 * k + 1) * len(prices)) for i := range dp { dp[i] = status[:2 * k + 1] status = status[2 * k + 1:] } for j := 1; j < 2 * k; j += 2 { dp[0][j] = -prices[0] } for i := 1; i < len(prices); i++ { for j := 0; j < 2 * k; j += 2 { dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]) dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]) } } return dp[len(prices) - 1][2 * k] } func max(a, b int) int { if a > b { return a } return b } ``` > 版本二: 三维 dp数组 ```go func maxProfit(k int, prices []int) int { length := len(prices) if length == 0 { return 0 } // [天数][交易次数][是否持有股票] // 1表示不持有/卖出, 0表示持有/买入 dp := make([][][]int, length) for i := 0; i < length; i++ { dp[i] = make([][]int, k+1) for j := 0; j <= k; j++ { dp[i][j] = make([]int, 2) } } for j := 0; j <= k; j++ { dp[0][j][0] = -prices[0] } for i := 1; i < length; i++ { for j := 1; j <= k; j++ { dp[i][j][0] = max188(dp[i-1][j][0], dp[i-1][j-1][1]-prices[i]) dp[i][j][1] = max188(dp[i-1][j][1], dp[i-1][j][0]+prices[i]) } } return dp[length-1][k][1] } func max188(a, b int) int { if a > b { return a } return b } ``` 版本三:空间优化版本 ```go func maxProfit(k int, prices []int) int { n := len(prices) // k次交易,2 * k种状态 // 状态从1开始计算,避免判断 // 奇数时持有(保持或买入) // 偶数时不持有(保持或卖出) dp := make([][]int, 2) dp[0] = make([]int, k * 2 + 1) dp[1] = make([]int, k * 2 + 1) // 奇数状态时持有,i += 2 for i := 1; i <= k * 2; i += 2 { dp[0][i] = -prices[0] } for i := 1; i < len(prices); i++ { for j := 1; j <= k * 2; j++ { if j % 2 == 1 { dp[i % 2][j] = max(dp[(i - 1) % 2][j], dp[(i - 1) % 2][j - 1] - prices[i]) } else { dp[i % 2][j] = max(dp[(i - 1) % 2][j], dp[(i - 1) % 2][j - 1] + prices[i]) } } } return dp[(n - 1) % 2][k * 2] } func max(a, b int) int { if a > b { return a } return b } ``` > 版本四:一维 dp 数组(易理解版本) ```go func maxProfit(k int, prices []int) int { dp := make([]int, 2 * k) for i := range k { dp[i * 2] = -prices[0] } for j := 1; j < len(prices); j++ { dc := slices.Clone(dp) // 这句话是关键,把前一天的 dp 状态保存下来,防止被覆盖掉,后面只用它,不用 dp,逻辑简单易懂 for i := range k * 2 { if i % 2 == 1 { dp[i] = max(dc[i], dc[i - 1] + prices[j]) } else { pre := 0; if i >= 1 { pre = dc[i - 1] } dp[i] = max(dc[i], pre - prices[j]) } } } return dp[2 * k - 1] } ``` ### JavaScript: ```javascript // 方法一:动态规划 const maxProfit = (k,prices) => { if (prices == null || prices.length < 2 || k == 0) { return 0; } let dp = Array.from(Array(prices.length), () => Array(2*k+1).fill(0)); for (let j = 1; j < 2 * k; j += 2) { dp[0][j] = 0 - prices[0]; } for(let i = 1; i < prices.length; i++) { for (let j = 0; j < 2 * k; j += 2) { dp[i][j+1] = Math.max(dp[i-1][j+1], dp[i-1][j] - prices[i]); dp[i][j+2] = Math.max(dp[i-1][j+2], dp[i-1][j+1] + prices[i]); } } return dp[prices.length - 1][2 * k]; }; // 方法二:动态规划+空间优化 var maxProfit = function(k, prices) { let n = prices.length; let dp = new Array(2*k+1).fill(0); // dp 买入状态初始化 for (let i = 1; i <= 2*k; i += 2) { dp[i] = - prices[0]; } for (let i = 1; i < n; i++) { for (let j = 1; j < 2*k+1; j++) { // j 为奇数:买入状态 if (j % 2) { dp[j] = Math.max(dp[j], dp[j-1] - prices[i]); } else { // j为偶数:卖出状态 dp[j] = Math.max(dp[j], dp[j-1] + prices[i]); } } } return dp[2*k]; }; ``` ### TypeScript: ```typescript function maxProfit(k: number, prices: number[]): number { const length: number = prices.length; if (length === 0) return 0; const dp: number[][] = new Array(length).fill(0) .map(_ => new Array(k * 2 + 1).fill(0)); for (let i = 1; i <= k; i++) { dp[0][i * 2 - 1] = -prices[0]; } for (let i = 1; i < length; i++) { for (let j = 1; j < 2 * k + 1; j++) { dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + Math.pow(-1, j) * prices[i]); } } return dp[length - 1][2 * k]; }; ``` ### C: ```c #define max(a, b) ((a) > (b) ? (a) : (b)) int maxProfit(int k, int* prices, int pricesSize) { if(pricesSize == 0){ return 0; } int dp[pricesSize][2 * k + 1]; memset(dp, 0, sizeof(int) * pricesSize * (2 * k + 1)); for (int j = 1; j < 2 * k; j += 2) { dp[0][j] = -prices[0]; } for (int i = 1;i < pricesSize; i++) {//枚举股票 for (int j = 0; j < 2 * k - 1; j += 2) { //更新每一次买入卖出 dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); } } return dp[pricesSize - 1][2 * k]; } ``` ### Rust: ```rust impl Solution { pub fn max_profit(k: i32, prices: Vec) -> i32 { let mut dp = vec![vec![0; 2 * k as usize + 1]; prices.len()]; for v in dp[0].iter_mut().skip(1).step_by(2) { *v = -prices[0]; } for (i, &p) in prices.iter().enumerate().skip(1) { for j in (0..2 * k as usize - 1).step_by(2) { dp[i][j + 1] = dp[i - 1][j + 1].max(dp[i - 1][j] - p); dp[i][j + 2] = dp[i - 1][j + 2].max(dp[i - 1][j + 1] + p); } } dp[prices.len() - 1][2 * k as usize] } } ``` 空间优化: ```rust impl Solution { pub fn max_profit(k: i32, prices: Vec) -> i32 { let mut dp = vec![0; 2 * k as usize + 1]; for v in dp.iter_mut().skip(1).step_by(2) { *v = -prices[0]; } for p in prices { for i in 1..=2 * k as usize { if i % 2 == 1 { // 买入 dp[i] = dp[i].max(dp[i - 1] - p); continue; } // 卖出 dp[i] = dp[i].max(dp[i - 1] + p); } } dp[2 * k as usize] } } ```