参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 406.根据身高重建队列 [力扣题目链接](https://leetcode.cn/problems/queue-reconstruction-by-height/) 假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。 请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。 示例 1: * 输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]] * 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] * 解释: * 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。 * 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。 * 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。 * 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。 * 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。 * 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。 * 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。 示例 2: * 输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]] * 输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]] 提示: * 1 <= people.length <= 2000 * 0 <= hi <= 10^6 * 0 <= ki < people.length 题目数据确保队列可以被重建 # 视频讲解 **《代码随想录》算法视频公开课:[贪心算法,不要两边一起贪,会顾此失彼 | LeetCode:406.根据身高重建队列](https://www.bilibili.com/video/BV1EA411675Y),相信结合视频在看本篇题解,更有助于大家对本题的理解**。 ## 思路 本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。 其实如果大家认真做了[135. 分发糖果](https://programmercarl.com/0135.分发糖果.html),就会发现和此题有点点的像。 在[135. 分发糖果](https://programmercarl.com/0135.分发糖果.html)我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。 **如果两个维度一起考虑一定会顾此失彼**。 对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢? 如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。 那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。 **此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!** 那么只需要按照k为下标重新插入队列就可以了,为什么呢? 以图中{5,2} 为例: ![406.根据身高重建队列](https://code-thinking-1253855093.file.myqcloud.com/pics/20201216201851982.png) 按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。 所以在按照身高从大到小排序后: **局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性** **全局最优:最后都做完插入操作,整个队列满足题目队列属性** 局部最优可推出全局最优,找不出反例,那就试试贪心。 一些同学可能也会疑惑,你怎么知道局部最优就可以推出全局最优呢? 有数学证明么? 在贪心系列开篇词[关于贪心算法,你该了解这些!](https://programmercarl.com/贪心算法理论基础.html)中,我已经讲过了这个问题了。 刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心,至于严格的数学证明,就不在讨论范围内了。 如果没有读过[关于贪心算法,你该了解这些!](https://programmercarl.com/贪心算法理论基础.html)的同学建议读一下,相信对贪心就有初步的了解了。 回归本题,整个插入过程如下: 排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]] 插入的过程: * 插入[7,0]:[[7,0]] * 插入[7,1]:[[7,0],[7,1]] * 插入[6,1]:[[7,0],[6,1],[7,1]] * 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]] * 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]] * 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 此时就按照题目的要求完成了重新排列。 C++代码如下: ```CPP // 版本一 class Solution { public: static bool cmp(const vector& a, const vector& b) { if (a[0] == b[0]) return a[1] < b[1]; return a[0] > b[0]; } vector> reconstructQueue(vector>& people) { sort (people.begin(), people.end(), cmp); vector> que; for (int i = 0; i < people.size(); i++) { int position = people[i][1]; que.insert(que.begin() + position, people[i]); } return que; } }; ``` * 时间复杂度:O(nlog n + n^2) * 空间复杂度:O(n) 但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。 所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n^2)了,甚至可能拷贝好几次,就不止O(n^2)了。 改成链表之后,C++代码如下: ```CPP // 版本二 class Solution { public: // 身高从大到小排(身高相同k小的站前面) static bool cmp(const vector& a, const vector& b) { if (a[0] == b[0]) return a[1] < b[1]; return a[0] > b[0]; } vector> reconstructQueue(vector>& people) { sort (people.begin(), people.end(), cmp); list> que; // list底层是链表实现,插入效率比vector高的多 for (int i = 0; i < people.size(); i++) { int position = people[i][1]; // 插入到下标为position的位置 std::list>::iterator it = que.begin(); while (position--) { // 寻找在插入位置 it++; } que.insert(it, people[i]); } return vector>(que.begin(), que.end()); } }; ``` * 时间复杂度:O(nlog n + n^2) * 空间复杂度:O(n) 大家可以把两个版本的代码提交一下试试,就可以发现其差别了! 关于本题使用数组还是使用链表的性能差异,我在[贪心算法:根据身高重建队列(续集)](https://programmercarl.com/根据身高重建队列(vector原理讲解).html)中详细讲解了一波 ## 总结 关于出现两个维度一起考虑的情况,我们已经做过两道题目了,另一道就是[135. 分发糖果](https://programmercarl.com/0135.分发糖果.html)。 **其技巧都是确定一边然后贪心另一边,两边一起考虑,就会顾此失彼**。 这道题目可以说比[135. 分发糖果](https://programmercarl.com/0135.分发糖果.html)难不少,其贪心的策略也是比较巧妙。 最后我给出了两个版本的代码,可以明显看是使用C++中的list(底层链表实现)比vector(数组)效率高得多。 **对使用某一种语言容器的使用,特性的选择都会不同程度上影响效率**。 所以很多人都说写算法题用什么语言都可以,主要体现在算法思维上,其实我是同意的但也不同意。 对于看别人题解的同学,题解用什么语言其实影响不大,只要题解把所使用语言特性优化的点讲出来,大家都可以看懂,并使用自己语言的时候注意一下。 对于写题解的同学,刷题用什么语言影响就非常大,如果自己语言没有学好而强调算法和编程语言没关系,其实是会误伤别人的。 **这也是我为什么统一使用C++写题解的原因** ## 其他语言版本 ### Java ```java class Solution { public int[][] reconstructQueue(int[][] people) { // 身高从大到小排(身高相同k小的站前面) Arrays.sort(people, (a, b) -> { if (a[0] == b[0]) return a[1] - b[1]; // a - b 是升序排列,故在a[0] == b[0]的狀況下,會根據k值升序排列 return b[0] - a[0]; //b - a 是降序排列,在a[0] != b[0],的狀況會根據h值降序排列 }); LinkedList que = new LinkedList<>(); for (int[] p : people) { que.add(p[1],p); //Linkedlist.add(index, value),會將value插入到指定index裡。 } return que.toArray(new int[people.length][]); } } ``` ### Python ```python class Solution: def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]: # 先按照h维度的身高顺序从高到低排序。确定第一个维度 # lambda返回的是一个元组:当-x[0](维度h)相同时,再根据x[1](维度k)从小到大排序 people.sort(key=lambda x: (-x[0], x[1])) que = [] # 根据每个元素的第二个维度k,贪心算法,进行插入 # people已经排序过了:同一高度时k值小的排前面。 for p in people: que.insert(p[1], p) return que ``` ### Go ```go func reconstructQueue(people [][]int) [][]int { // 先将身高从大到小排序,确定最大个子的相对位置 sort.Slice(people, func(i, j int) bool { if people[i][0] == people[j][0] { return people[i][1] < people[j][1] // 当身高相同时,将K按照从小到大排序 } return people[i][0] > people[j][0] // 身高按照由大到小的顺序来排 }) // 再按照K进行插入排序,优先插入K小的 for i, p := range people { copy(people[p[1]+1 : i+1], people[p[1] : i+1]) // 空出一个位置 people[p[1]] = p } return people } ``` ```go // 链表实现 func reconstructQueue(people [][]int) [][]int { sort.Slice(people,func (i,j int) bool { if people[i][0] == people[j][0] { return people[i][1] < people[j][1] //当身高相同时,将K按照从小到大排序 } return people[i][0] > people[j][0] }) l := list.New() //创建链表 for i:=0; i < len(people); i++ { position := people[i][1] mark := l.PushBack(people[i]) //插入元素 e := l.Front() for position != 0 { //获取相对位置 position-- e = e.Next() } l.MoveBefore(mark, e) //移动位置 } res := [][]int{} for e := l.Front(); e != nil; e = e.Next() { res = append(res, e.Value.([]int)) } return res } ``` ### Javascript ```Javascript var reconstructQueue = function(people) { let queue = [] people.sort((a, b ) => { if(b[0] !== a[0]) { return b[0] - a[0] } else { return a[1] - b[1] } }) for(let i = 0; i < people.length; i++) { queue.splice(people[i][1], 0, people[i]) } return queue }; ``` ### Rust ```Rust impl Solution { pub fn reconstruct_queue(mut people: Vec>) -> Vec> { let mut queue = vec![]; people.sort_by(|a, b| { if a[0] == b[0] { return a[1].cmp(&b[1]); } b[0].cmp(&a[0]) }); queue.push(people[0].clone()); for v in people.iter().skip(1) { queue.insert(v[1] as usize, v.clone()); } queue } } ``` ### C ```c int cmp(const void *p1, const void *p2) { int *pp1 = *(int**)p1; int *pp2 = *(int**)p2; // 若身高相同,则按照k从小到大排列 // 若身高不同,按身高从大到小排列 return pp1[0] == pp2[0] ? pp1[1] - pp2[1] : pp2[0] - pp1[0]; } // 将start与end中间的元素都后移一位 // start为将要新插入元素的位置 void moveBack(int **people, int peopleSize, int start, int end) { int i; for(i = end; i > start; i--) { people[i] = people[i-1]; } } int** reconstructQueue(int** people, int peopleSize, int* peopleColSize, int* returnSize, int** returnColumnSizes){ int i; // 将people按身高从大到小排列(若身高相同,按k从小到大排列) qsort(people, peopleSize, sizeof(int*), cmp); for(i = 0; i < peopleSize; ++i) { // people[i]要插入的位置 int position = people[i][1]; int *temp = people[i]; // 将position到i中间的元素后移一位 // 注:因为已经排好序,position不会比i大。(举例:排序后people最后一位元素最小,其可能的k最大值为peopleSize-2,小于此时的i) moveBack(people, peopleSize, position, i); // 将temp放置到position处 people[position] = temp; } // 设置返回二维数组的大小以及里面每个一维数组的长度 *returnSize = peopleSize; *returnColumnSizes = (int*)malloc(sizeof(int) * peopleSize); for(i = 0; i < peopleSize; ++i) { (*returnColumnSizes)[i] = 2; } return people; } ``` ### TypeScript ```typescript function reconstructQueue(people: number[][]): number[][] { people.sort((a, b) => { if (a[0] === b[0]) return a[1] - b[1]; return b[0] - a[0]; }); const resArr: number[][] = []; for (let i = 0, length = people.length; i < length; i++) { resArr.splice(people[i][1], 0, people[i]); } return resArr; }; ``` ### Scala ```scala object Solution { import scala.collection.mutable def reconstructQueue(people: Array[Array[Int]]): Array[Array[Int]] = { val person = people.sortWith((a, b) => { if (a(0) == b(0)) a(1) < b(1) else a(0) > b(0) }) var que = mutable.ArrayBuffer[Array[Int]]() for (per <- person) { que.insert(per(1), per) } que.toArray } } ```