

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.4.10

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

1.6.2

Table	of	Contents

	64	

	-	start_kernel

RCU	

	Linux	

IRQs

Softirq,	Tasklets	and	Workqueues

Linux	

vsyscall	and	vDSO

Linux	

open	

Linux	

2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

1.8

1.8.1

1.8.2

1.8.3

1.9

1.9.1

1.10

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.12

1.12.1

1.12.2

1.12.3

1.13

1.13.1

1.13.2

1.13.3

1.13.4

1.13.5

1.14

1.14.1

1.15

1.15.1

1.15.2

1.15.3

The	tick	broadcast	framework	and	dyntick

Clockevents	

x86	

Linux	

/

RCU

Lockdep

	ioremap

kmemcheck

SMP

	CPU	

CPU	

initcall	

Linux	

Linux	

ELF	

CPUID

MSR

Initial	ram	disk

initrd

Linux	

3

1.15.4

1.15.5

1.16

1.16.1

1.17

1.18

4

Linux	
	Linux	

	-		Linux		Linux	

/ :		issue	-	 linux-insides		issue	-	 linux-insides-zh		issue

	issues		PRs	 	linux-insides-zh		

	 TRANSLATION_STATUS.md

	 CONTRIBUTING.md		 TRANSLATION_NOTES.md	issue	

@mudongliang

@xinqiu

	 CONTRIBUTORS.md

@0xAX

	 BY-NC-SA	Creative	Commons	

5

https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
https://github.com/mudongliang
https://github.com/xinqiu
https://twitter.com/0xAX
http://creativecommons.org/licenses/by-nc-sa/4.0/

Linux

	-	;
	-		EDDIST	...
	-	
	64	 	-		64	
	-	
	-		Linux	

6

.	.

	Linux	x86_64	 	Linux		

	C	
			AT&T	

	Linux		3.18	

	Linux	 	CPU	CPU	

80386		CPUs		CPU	

IP										0xfff0

CS	selector	0xf000

CS	base					0xffff0000

	 8086	Intel	64		 CPU	x868086	200	2^20	 	1MB	16	
KB	16	64KB	16

PhysicalAddress	=	Segment	*	16	+	Offset

	 	CS:IP			 	0x2000:0x0010	,	

>>>	hex((0x2000	<<	4)	+	0x0010)

'0x20010'

162 	0xffff:0xffff	

>>>	hex((0xffff	<<	4)	+	0xffff)

'0x10ffef'

	1MB	65519		CPU		1MB	 	0x10ffef			 A20		 	0x00ffef	

	CS				 	CS			 	IP		

0xffff0000:0xfff0

EIP

>>>	0xffff0000	+	0xfff0

'0xfffffff0'

7

http://0xax.blogspot.com/search/label/asm
https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Power_good_signal
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/A20_line

	 	0xfffffff0			4GB	-	16			 (Reset	vector)		CPU	 jump	BIOS	 coreboot	

				.section	".reset",	"ax",	%progbits

				.code16

.globl				_start

_start:

				.byte		0xe9

				.int			_start16bit	-	(.	+	2)

				...

	 opcode	-	0xe9	 	_start16bit	-	(.	+	2)			 	reset			 	16				 	0xfffffff0	(src/cpu/x86/16bit/reset16.ld
	CPU		

SECTIONS	{

				/*	Trigger	an	error	if	I	have	an	unuseable	start	address	*/

					_bogus	=	ASSERT(_start16bit	>=	0xffff0000,	"_start16bit	too	low.	Please	report.");

				_ROMTOP	=	0xfffffff0;

				.	=	_ROMTOP;

				.reset	.	:	{

								*(.reset);

								.	=	15;

								BYTE(0x00);

				}

}

BIOS	BIOS	,	BIOS	BIOS	
2

;

;	Note:	this	example	is	written	in	Intel	Assembly	syntax

;

[BITS	16]

[ORG		0x7c00]

boot:

				mov	al,	'!'

				mov	ah,	0x0e

				mov	bh,	0x00

				mov	bl,	0x07

				int	0x10

				jmp	$

times	510-($-$$)	db	0

db	0x55

db	0xaa

nasm	-f	bin	boot.nasm	&&	qemu-system-x86_64	boot

	 QEMU		 	boot		(0x7c00	,	Magic	Bytes)QEMU(MBR)

:

8

http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/JMP_%28x86_instruction%29
http://www.coreboot.org/
http://ref.x86asm.net/coder32.html#xE9
http://qemu.org

160x7c00	 0x10		 	!		0510Magic	Bytes	 	0xaa			 	0x55		

	 	objdump		

nasm	-f	bin	boot.nasm

objdump	-D	-b	binary	-mi386	-Maddr16,data16,intel	boot

BIOS	

NOTE:		CPU	

PhysicalAddress	=	Segment	*	16	+	Offset

CPU	1616 	0xffff		

>>>	hex((0xffff	*	16)	+	0xffff)

'0x10ffef'

	 8086		 	0x0ffef	,	8086	cpu	20	 	2^20	=	1MB			1MB		CPU	

	1MB	

0x00000000	-	0x000003FF	-	Real	Mode	Interrupt	Vector	Table

0x00000400	-	0x000004FF	-	BIOS	Data	Area

0x00000500	-	0x00007BFF	-	Unused

0x00007C00	-	0x00007DFF	-	Our	Bootloader

0x00007E00	-	0x0009FFFF	-	Unused

0x000A0000	-	0x000BFFFF	-	Video	RAM	(VRAM)	Memory

0x000B0000	-	0x000B7777	-	Monochrome	Video	Memory

0x000B8000	-	0x000BFFFF	-	Color	Video	Memory

0x000C0000	-	0x000C7FFF	-	Video	ROM	BIOS

0x000C8000	-	0x000EFFFF	-	BIOS	Shadow	Area

0x000F0000	-	0x000FFFFF	-	System	BIOS

	CPU		 	0xFFFFFFF0			 	0xFFFFF		(1MB)	CPU		 coreboot	:

0xFFFE_0000	-	0xFFFF_FFFF:	128	kilobyte	ROM	mapped	into	address	space

9

http://www.ctyme.com/intr/rb-0106.htm
https://en.wikipedia.org/wiki/Intel_8086
http://www.coreboot.org/Developer_Manual/Memory_map

	0xFFFFFFF0			ROM	CPU		ROM	RAM

	Linux		 GRUB	2		 syslinuxLinux	 Boot	protocol		GRUB	2

	BIOS		 boot.img	GRUB	2's	core	image		Core	image		 diskboot.img	core	image	core
image		core	image		GRUB	2		 grub_main

	grub_main			root		grub		GRUB		normal	 	grub_normal_execute		(from		grub-
core/normal/main.c)	 	grub_menu_execute_entry			GRUB		 	boot		

	kernel	boot	protocol		kernel	setup	header		kernel	setup	code		 	0x01f1			 kernel	setup	header
arch/x86/boot/header.S

				.globl	hdr

hdr:

				setup_sects:	.byte	0

				root_flags:		.word	ROOT_RDONLY

				syssize:					.long	0

				ram_size:				.word	0

				vid_mode:				.word	SVGA_MODE

				root_dev:				.word	0

				boot_flag:			.word	0xAA55

bootloader	Linux	boot	protocol		 	write			 type_of_loader	kernel	setup	header	 boot	protocol	

	kernel	boot	protocol

									|	Protected-mode	kernel		|

100000			+------------------------+

									|	I/O	memory	hole								|

0A0000			+------------------------+

									|	Reserved	for	BIOS						|	Leave	as	much	as	possible	unused

									~																								~

									|	Command	line											|	(Can	also	be	below	the	X+10000	mark)

X+10000		+------------------------+

									|	Stack/heap													|	For	use	by	the	kernel	real-mode	code.

X+08000		+------------------------+

									|	Kernel	setup											|	The	kernel	real-mode	code.

									|	Kernel	boot	sector					|	The	kernel	legacy	boot	sector.

							X	+------------------------+

									|	Boot	loader												|	<-	Boot	sector	entry	point	0x7C00

001000			+------------------------+

									|	Reserved	for	MBR/BIOS		|

000800			+------------------------+

									|	Typically	used	by	MBR		|

000600			+------------------------+

									|	BIOS	use	only										|

000000			+------------------------+

	bootloader		kernelkernel	

0x1000	+	X	+	sizeof(KernelBootSector)	+	1

	X	+	sizeof(KernelBootSector)	+	1		X	

	 	X			kernel	bootsector		 	X			 	0x10000		memory	dump	

10

https://www.gnu.org/software/grub/
http://www.syslinux.org/wiki/index.php/The_Syslinux_Project
http://lxr.free-electrons.com/source/Documentation/x86/boot.txt?v=3.18
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/boot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/diskboot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/kern/main.c
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18
http://lxr.free-electrons.com/source/Documentation/x86/boot.txt?v=3.18#L354
http://lxr.free-electrons.com/source/Documentation/x86/boot.txt?v=3.18#L156

	Linux	kernel	kernel	setup	code	

	 arch/x86/boot/header.S		 _start			 	_start		

	 	_start			kernel		bootloader	bootloader		Linux		Linux		bootloader		Linux			Linux

qemu-system-x86_64	vmlinuz-3.18-generic

	bootloader	,	 	header.S			[MZ]	 MZ	,		 PE		PE	

#ifdef	CONFIG_EFI_STUB

#	"MZ",	MS-DOS	header

.byte	0x4d

.byte	0x5a

#endif

...

...

...

pe_header:

				.ascii	"PE"

11

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L293
https://en.wikipedia.org/wiki/DOS_MZ_executable
https://en.wikipedia.org/wiki/Portable_Executable

				.word	0

	 UEFI	

	bootloader		 	_start		

//	header.S	line	292

.globl	_start

_start:

	bootloader	(grub2	and	others)		_start			 	MZ			 	0x200				bootloader		 	.bstext			

//

//	arch/x86/boot/setup.ld

//

.	=	0;																				//	current	position

.bstext	:	{	*(.bstext)	}		//	put	.bstext	section	to	position	0

.bsdata	:	{	*(.bsdata)	}

				.globl	_start

_start:

				.byte	0xeb

				.byte	start_of_setup-1f

1:

				//

				//	rest	of	the	header

				//

	_start			 	jmp			jmp			opcode		 	0xeb				 	start_of_setup	-	1f			 	Nf			 	N			 	_start		
	1			setup	header		 	1			 	start_of_setup				 	.entrytext			

	GRUB2		 	_start			Linux		 	_start			 	0x200			GRUB2	

		state.gs	=	state.fs	=	state.es	=	state.ds	=	state.ss	=	segment;

		state.cs	=	segment	+	0x20;

	 	0x10000			 	cs	=	0x1020				 	cs	<<	4	+	0	=	0x10200		 	0x10000			 	0x200		

fs	=	es	=	ds	=	ss	=	0x1000

cs	=	0x1020

	 	start_of_setup		

	 bss	
	 main.c	

	 	ds			 	es			 	cld		

				movw				%ds,	%ax

				movw				%ax,	%es

				cld

		 	_start		grub2		 	cs			 	0x1020		 	cs		

12

https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/.bss
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18

				pushw				%ds

				pushw				$6f

				lretw

	 	cs				 	ds		 6			 	lretw			 	6			 	ip			 instruction	pointer	 	ds			 	cs			
	ds			 	cs		

	setup		C		 	ds			 	es			 step		 	ss		

				movw				%ss,	%dx

				cmpw				%ax,	%dx

				movw				%sp,	%dx

				je				2f

	 	ss		

	ss			0x10000	(cs		
	ss			0x10000	 	CAN_USE_HEAP		
	ss			0x10000	 	CAN_USE_HEAP		

	ss			0x10000	 	2		:

2:					andw				$~3,	%dx

				jnz				3f

				movw				$0xfffc,	%dx

3:		movw				%ax,	%ss

				movzwl	%dx,	%esp

				sti

	 	dx		 	sp		4000	 	dx			 	0xfffc		64KB40	 	ax			0x10000		 	ss		
	 	dx			 	sp	

	 	ss		!=		ds		setup	code		 _end		 	dx			 	loadflags			 	CAN_USE_HEAP			 	kernel	boot	protocol	
loadflags		 	Bit	7			 	CAN_USE_HEAP		

Field	name:				loadflags

		This	field	is	a	bitmask.

		Bit	7	(write):	CAN_USE_HEAP

				Set	this	bit	to	1	to	indicate	that	the	value	entered	in	the

				heap_end_ptr	is	valid.		If	this	field	is	clear,	some	setup	code

13

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L494
https://en.wikipedia.org/wiki/Program_counter
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L467
http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L52
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L321

				functionality	will	be	disabled.

	loadflags		

#define	LOADED_HIGH								(1<<0)

#define	QUIET_FLAG								(1<<5)

#define	KEEP_SEGMENTS				(1<<6)

#define	CAN_USE_HEAP				(1<<7)

	 	CAN_USE_HEAP			 	heap_end_ptr			 	dx			 	STACK_SIZE			512	bytesCF	flag		 	2		1

	 	CAN_USE_HEAP				 	dx			 	STACK_SIZE		 	2		

BSS

	C	21	 BSS	2	 	magic			 	magic			 setup_sig	 	setup_bad		

cmpl				$0x5a5aaa55,	setup_sig

jne				setup_bad

	 	magic				 	BSS			C	

BSS		Linux	

				movw				$__bss_start,	%di

				movw				$_end+3,	%cx

				xorl				%eax,	%eax

				subw				%di,	%cx

14

https://en.wikipedia.org/wiki/.bss
http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L39

				shrw				$2,	%cx

				rep;	stosl

	 __bss_start		 	di			 	_end	+	3		4		 	cx		 	xor			 	ax			BSS			 	cx		-		di			 	cx		
	cx		4	 	rep;	stosl			 	ax		0		BSS			BSS	:

	main	
	BSS		 	main()			C	

				call	main

	main()			 arch/x86/boot/main.c

	Linux		C		 	main()			 	memset	,		memcpy	,		earlyprintk		

twitter

	PR		 linux-insides-zh	

Intel	80386	programmer's	reference	manual	1986
Minimal	Boot	Loader	for	Intel®	Architecture
8086
80386
Reset	vector
Real	mode
Linux	kernel	boot	protocol
CoreBoot	developer	manual
Ralf	Brown's	Interrupt	List
Power	supply
Power	good	signal

15

http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L47
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://css.csail.mit.edu/6.858/2014/readings/i386.pdf
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/Real_mode
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://www.coreboot.org/Developer_Manual
http://www.ctyme.com/intr/int.htm
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_good_signal

16

	main		main	C 	main	arch/x86/boot/main.c

		

cpu

Intel	64CPUCPU

1982Intel	CPUIntel	64Intel	CPU

1M640K

20324GB

2

2

2

PhysicalAddress	=	Segment	*	16	+	Offset

64K 		 		(GDT)

			 	GDTR		Linux	 	GDTR		

lgdt	gdt

	lgdt			 	GDTR		 	GDTR		482:

	(16
	(32)

		64

31										24								19						16														7												0

--

|													|	|B|	|A|							|	|			|	|0|E|W|A|												|

17

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18
http://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Protected_mode
http://wiki.osdev.org/Real_Mode
http://en.wikipedia.org/wiki/Paging

|	BASE	31:24		|G|/|L|V|	LIMIT	|P|DPL|S|		TYPE	|	BASE	23:16	|	4

|													|	|D|	|L|	19:16	|	|			|	|1|C|R|A|												|

--

|																													|																												|

|								BASE	15:0												|							LIMIT	15:0											|	0

|																													|																												|

--

	LIMIT	15:0	015015	LIMITE	19:16	1619161920

1.	 Limit[20]	0-1516-19 	G	20

	G		=	0,	Limit	=	0	1	byte
	G		=	1,	Limit	=	0,	4K	bytes
	G		=	0Limit	=	0xfffff1M	bytes
	G		=	1Limit	=	0xfffff4G	bytes

G	=	0,	1	byte	(Limit11	byte)1M	bytes
G	=	1,	4K	bytes	(Limit14K	bytes)4G	bytes;
	base_seg_length	*	(LIMIT	+	1)

2.	 Base[32-bits]	0-15	32-3956-63Base

3.	 Type/Attribute	(40-47	bits)	

	S			44	 	S		=	0 	S		=	1		

	S		=	14343	=	0

|											Type	Field								|	Descriptor	Type	|	Description

|-----------------------------|-----------------|------------------

|	Decimal																					|																	|

|													0				E				W			A	|																	|

|	0											0				0				0			0	|	Data												|	Read-Only

|	1											0				0				0			1	|	Data												|	Read-Only,	accessed

|	2											0				0				1			0	|	Data												|	Read/Write

|	3											0				0				1			1	|	Data												|	Read/Write,	accessed

|	4											0				1				0			0	|	Data												|	Read-Only,	expand-down

|	5											0				1				0			1	|	Data												|	Read-Only,	expand-down,	accessed

|	6											0				1				1			0	|	Data												|	Read/Write,	expand-down

|	7											0				1				1			1	|	Data												|	Read/Write,	expand-down,	accessed

|																		C				R			A	|																	|

|	8											1				0				0			0	|	Code												|	Execute-Only

|	9											1				0				0			1	|	Code												|	Execute-Only,	accessed

|	10										1				0				1			0	|	Code												|	Execute/Read

|	11										1				0				1			1	|	Code												|	Execute/Read,	accessed

|	12										1				1				0			0	|	Code												|	Execute-Only,	conforming

|	14										1				1				0			1	|	Code												|	Execute-Only,	conforming,	accessed

|	13										1				1				1			0	|	Code												|	Execute/Read,	conforming

|	15										1				1				1			1	|	Code												|	Execute/Read,	conforming,	accessed

43 	0	 	1	424140(E W A424140(C R A

	E		=	0
	W		=	1
ACPU
	C		=	1 	C		=	0
	R		=	1

1.	 DPL2-bits,	bit	45		460-3

2.	 P	(bit	47)	-	 	P		=	0

18

http://www.sudleyplace.com/dpmione/expanddown.html

3.	 AVL	(bit	52)	-	Linux

4.	 L	(bit	53)	-	 	L		=	164

5.	 D/B	flag(bit	54)	-	321160

D323280161680x660x67
SSBBigPUSHPOPCALL32ESP016SPB
B0xFFFFFFFF4GB0xFFFF64KB

		 				16

|							Index				|	TI	|	RPL	|

Index	GDT
TI	GDTLDT
RPL	

2

	-	
	-	

cpu

		

CPU		GDT
			limit	+	1	 		 	+ 	

19

	 	lgdt		GDT	 	GDTR		
CR0PE1CPU

Linux	

C	 arch/x86/boot/main.c...

"zeropage"
	main	 	copy_boot_params(void)	

	boot_params	 arch/x86/include/uapi/asm/bootparam.h	boot_params	

	boot_params		struct	setup_header	hdr	 linux	boot	protocolboot	loader 	copy_boot_params	

1.	 header.S	 	hdr			 	boot_params			 	struct	setup_header	hdr		

2.	

	 	hdr			 	memcpy		C	 copy.S

GLOBAL(memcpy)

				pushw				%si										;push	si	to	stack

				pushw				%di										;push	di	to	stack

20

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L30
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/bootparam.h?v=3.18#L113
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L281
http://lxr.free-electrons.com/source/arch/x86/boot/copy.S?v=3.18

				movw				%ax,	%di					;move	&boot_param.hdr	to	di

				movw				%dx,	%si					;move	&hdr	to	si

				pushw				%cx										;push	cx	to	stack	(sizeof(hdr))

				shrw				$2,	%cx				

				rep;	movsl											;copy	based	on	4	bytes

				popw				%cx										;pop	cx

				andw				$3,	%cx						;cx	=	cx	%	4

				rep;	movsb											;copy	based	on	one	byte

				popw				%di

				popw				%si

				retl

ENDPROC(memcpy)

	copy.S		 	GLOBAL			 	ENDPROC		

	 arch/x86/include/asm/linkage.h	 	GLOBAL		

#define	GLOBAL(name)				\

				.globl	name;				\

				name:

include/linux/linkage.h	 	ENDPROC				 	END(name)		

#define	ENDPROC(name)	\

				.type	name,	@function	ASM_NL	\

				END(name)

	memcpy			 	si			 	di			 	si			 	di		 	memcpy		copy.s	 	fastcall			 	ax	,		dx	,		cx	
	memcpy		

memcpy(&boot_params.hdr,	&hdr,	sizeof	hdr);

	ax			 	boot_param.hdr		
	dx			 	hdr		
	cx			 	hdr		

	memcpy			 	si			 	di			 	boot_param.hdr			 	di			 	hdr			 	si			 	hdr			4	 	si			 	di		
4	 	hdr			 	cx			 	cx		4	 	cx			 	si			 	di			 	si			 	di		

	 	hdr			 	boot_params.hdr		 arch/x86/boot/early_serial_console.c	 	console_init		

	 	earlyprintk			 	earlyprintk		

serial,0x3f8,115200
serial,ttyS0,115200
ttyS0,115200

	 	debug		

if	(cmdline_find_option_bool("debug"))

				puts("early	console	in	setup	code\n");

	puts		tty.c	 	putchar			 	putchar	

void	__attribute__((section(".inittext")))	putchar(int	ch)

{

21

http://lxr.free-electrons.com/source/arch/x86/include/asm/linkage.h?v=3.18
http://lxr.free-electrons.com/source/include/linux/linkage.h?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/early_serial_console.c?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/tty.c?v=3.18

				if	(ch	==	'\n')

								putchar('\r');

				bios_putchar(ch);

				if	(early_serial_base	!=	0)

								serial_putchar(ch);

}

	__attribute__((section(".inittext")))			 	.inittext			 	.inittext			 setup.ld

	 	\n			 	putchar			 	\r		 	bios_putchar		bios	int10

static	void	__attribute__((section(".inittext")))	bios_putchar(int	ch)

{

				struct	biosregs	ireg;

				initregs(&ireg);

				ireg.bx	=	0x0007;

				ireg.cx	=	0x0001;

				ireg.ah	=	0x0e;

				ireg.al	=	ch;

				intcall(0x10,	&ireg,	NULL);

}

	 	initreg			 	biosregs			 	memset			 	biosregs		0

				memset(reg,	0,	sizeof	*reg);

				reg->eflags	|=	X86_EFLAGS_CF;

				reg->ds	=	ds();

				reg->es	=	ds();

				reg->fs	=	fs();

				reg->gs	=	gs();

memset	:

GLOBAL(memset)

				pushw			%di

				movw				%ax,	%di

				movzbl		%dl,	%eax

				imull			$0x01010101,%eax

				pushw			%cx

				shrw				$2,	%cx

				rep;	stosl

				popw				%cx

				andw				$3,	%cx

				rep;	stosb

				popw				%di

				retl

ENDPROC(memset)

	memset			 	memcpy			 	fastcall			 	ax		dx			 	cx		

memcpy 	memset			 	di			 	biosregs			 	ax			di		 	movzbl			 	dl			 	ax			 	ax			 	di		

	 	imull			 	eax			 	0x01010101	4	 	0x7			 	imull		 	eax			 	0x7		 	imull		 	eax		
	0x07070707	4	 	0x7		 	imull			 	rep;	stosl			 	eax			 	es:di		

	 	bisoregs			 	initregs		 	bios_putchar			 0x10		 	putchar		 serial_putchar

bssheader.S	(part)		 	init_heap		

22

http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L19
http://lxr.free-electrons.com/source/arch/x86/boot/copy.S?v=3.18#L36
http://www.ctyme.com/intr/rb-0106.htm
http://lxr.free-electrons.com/source/arch/x86/boot/tty.c?v=3.18#L30
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L116

	loadflags		 	CAN_USE_HEAP		:

				char	*stack_end;

				//%P1	is	(-STACK_SIZE)

				if	(boot_params.hdr.loadflags	&	CAN_USE_HEAP)	{

								asm("leal	%P1(%%esp),%0"

												:	"=r"	(stack_end)	:	"i"	(-STACK_SIZE));

	stack_end	=	esp	-	STACK_SIZE	.

				//heap_end	=	heap_end_ptr	+	512

				heap_end	=	(char	*)((size_t)boot_params.hdr.heap_end_ptr	+	0x200);

	 	heap_end			 	stack_end		 	stack_end			 	heap_end	

	 	GET_HEAP		

CPU

arch/x86/boot/cpu.c	 	validate_cpu		CPUCPU

	validate_cpu			check_cpu	CPUCPU

/*from	cpu.c*/

check_cpu(&cpu_level,	&req_level,	&err_flags);

/*after	check_cpu	call,	req_level	=	req_level	defined	in	cpucheck.c*/

if	(cpu_level	<	req_level)	{

				printf("This	kernel	requires	an	%s	CPU,	",	cpu_name(req_level));	

				printf("but	only	detected	an	%s	CPU.\n",	cpu_name(cpu_level));

				return	-1;

}

	check_cpu		1cpucpu64cpu long	mode,	2)	CPUCPUAMDcpu	 	SSE+SSE2	

	 	detect_memory			 	0xe820	 	0xe801			 	0x88	 arch/x86/boot/memory.c
	detect_memory_e820		

	 	initregs			 	biosregs			 	0xe820		

				initregs(&ireg);

				ireg.ax		=	0xe820;

				ireg.cx		=	sizeof	buf;

				ireg.edx	=	SMAP;

				ireg.di		=	(size_t)&buf;

	ax			 	0xe820	

	cx		
	edx			 	SMAP			 	0x534d4150	

	es:di		
	ebx		0.

	 	0x15			 	ebx			 	biosregs			 	0x15			 	0x15		eflags	 	X86_EFLAGS_CF	:

23

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L321
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/bootparam.h?v=3.18#L21
http://lxr.free-electrons.com/source/arch/x86/boot/cpu.c?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/cpucheck.c?v=3.18#L102
http://en.wikipedia.org/wiki/Long_mode
http://lxr.free-electrons.com/source/arch/x86/boot/memory.c?v=3.18

				intcall(0x15,	&ireg,	&oreg);

				ireg.ebx	=	oreg.ebx;

	 	e820entry		3:

reserved,	usable)

	 	dmesg		

[0.000000]	e820:	BIOS-provided	physical	RAM	map:

[0.000000]	BIOS-e820:	[mem	0x0000000000000000-0x000000000009fbff]	usable

[0.000000]	BIOS-e820:	[mem	0x000000000009fc00-0x000000000009ffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000000f0000-0x00000000000fffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x0000000000100000-0x000000003ffdffff]	usable

[0.000000]	BIOS-e820:	[mem	0x000000003ffe0000-0x000000003fffffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000fffc0000-0x00000000ffffffff]	reserved

	keyboard_init()			 	initregs	 0x16

				initregs(&ireg);

				ireg.ah	=	0x02;					/*	Get	keyboard	status	*/

				intcall(0x16,	&ireg,	&oreg);

				boot_params.kbd_status	=	oreg.al;

0x16

				ireg.ax	=	0x0305;			/*	Set	keyboard	repeat	rate	*/

				intcall(0x16,	&ireg,	NULL);

:

query_mca	0x15BIOS

int	query_mca(void)

{

				struct	biosregs	ireg,	oreg;

				u16	len;

				initregs(&ireg);

				ireg.ah	=	0xc0;

				intcall(0x15,	&ireg,	&oreg);

				if	(oreg.eflags	&	X86_EFLAGS_CF)

								return	-1;		/*	No	MCA	present	*/

				set_fs(oreg.es);

				len	=	rdfs16(oreg.bx);

				if	(len	>	sizeof(boot_params.sys_desc_table))

								len	=	sizeof(boot_params.sys_desc_table);

				copy_from_fs(&boot_params.sys_desc_table,	oreg.bx,	len);

				return	0;

}

24

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L65
http://www.ctyme.com/intr/rb-1756.htm
http://www.ctyme.com/intr/rb-1757.htm
http://lxr.free-electrons.com/source/arch/x86/boot/mca.c?v=3.18#L18
http://www.ctyme.com/intr/rb-1594.htm

	 	ah			 	0xc0		 	0x15		BIOS	 carry	flagBIOS MCACF0	 	ES:BX		

Offset		Size				Description

	00h				WORD				number	of	bytes	following

	02h				BYTE				model	(see	#00515)

	03h				BYTE				submodel	(see	#00515)

	04h				BYTE				BIOS	revision:	0	for	first	release,	1	for	2nd,	etc.

	05h				BYTE				feature	byte	1	(see	#00510)

	06h				BYTE				feature	byte	2	(see	#00511)

	07h				BYTE				feature	byte	3	(see	#00512)

	08h				BYTE				feature	byte	4	(see	#00513)

	09h				BYTE				feature	byte	5	(see	#00514)

---AWARD	BIOS---

	0Ah		N	BYTEs			AWARD	copyright	notice

---Phoenix	BIOS---

	0Ah				BYTE				???	(00h)

	0Bh				BYTE				major	version

	0Ch				BYTE				minor	version	(BCD)

	0Dh		4	BYTEs			ASCIZ	string	"PTL"	(Phoenix	Technologies	Ltd)

---Quadram	Quad386---

	0Ah	17	BYTEs			ASCII	signature	string	"Quadram	Quad386XT"

---Toshiba	(Satellite	Pro	435CDS	at	least)---

	0Ah		7	BYTEs			signature	"TOSHIBA"

	11h				BYTE				???	(8h)

	12h				BYTE				???	(E7h)	product	ID???	(guess)

	13h		3	BYTEs			"JPN"

	 	set_fs			 	es			 	fs		:

static	inline	void	set_fs(u16	seg)

{

				asm	volatile("movw	%0,%%fs"	:	:	"rm"	(seg));

}

boot.h		 	set_fs		,		 	set_gs	

	 	query_mca			 	es:bx			 	boot_params.sys_desc_table	

	 	query_ist		Intel	SpeedStepCPU	 	0x15			 	boot_params		

query_apm_bios	BIOS	 	 	query_apm_bios			 	0x15			 	ax			 	0x5300		APM	 	bx			 	cx		
	bx			 	0x504d		(PM)	 	cx			 	0x02		(0x0232)

	 	ax	=	0x5304			 	0x15			 	APM			 	ax	=	0x5303			 	0x15		32	 	APM		 	ax	=	0x5300			 	0x15		
APM	 	boot_params.apm_bios_info	

	 	CONFIG_APM			 	CONFIG_APM_MODULE		 	query_apm_bios		

#if	defined(CONFIG_APM)	||	defined(CONFIG_APM_MODULE)

				query_apm_bios();

#endif

	query_edd		,	BIOS	 	Enhanced	Disk	Drive			 	query_edd		

edd	edd	 	off		query_edd		

EDD 	query_edd		BIOSEDD

for	(devno	=	0x80;	devno	<	0x80+EDD_MBR_SIG_MAX;	devno++)	{

				if	(!get_edd_info(devno,	&ei)	&&	boot_params.eddbuf_entries	<	EDDMAXNR)	{

								memcpy(edp,	&ei,	sizeof	ei);

								edp++;

								boot_params.eddbuf_entries++;

				}

				...

				...

25

http://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Micro_Channel_architecture
http://lxr.free-electrons.com/source/arch/x86/boot/boot.h?v=3.18
http://en.wikipedia.org/wiki/SpeedStep
http://lxr.free-electrons.com/source/arch/x86/boot/apm.c?v=3.18#L21
http://en.wikipedia.org/wiki/Advanced_Power_Management
http://lxr.free-electrons.com/source/arch/x86/boot/edd.c?v=3.18#L122
http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt?v=3.18#L1023

				...

	 	0x80		 	EDD_MBR_SIG_MAX		16 edd_info 	get_edd_info			 	0x13			 	ah	=	0x41)	EDDEDD
	0x13			 	ah	=	0x48		 	si		EDD	 	si		

twitter.

	PR		 linux-insides-zh	

Protected	mode
Protected	mode
Long	mode
Nice	explanation	of	CPU	Modes	with	code
How	to	Use	Expand	Down	Segments	on	Intel	386	and	Later	CPUs
earlyprintk	documentation
Kernel	Parameters
Serial	console
Intel	SpeedStep
APM
EDD	specification
TLDP	documentation	for	Linux	Boot	Process	(old)
Previous	Part
BIOS	Interrupt

26

http://lxr.free-electrons.com/source/include/uapi/linux/edd.h?v=3.18#L172
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Protected_mode
http://wiki.osdev.org/Protected_Mode
http://en.wikipedia.org/wiki/Long_mode
http://www.codeproject.com/Articles/45788/The-Real-Protected-Long-mode-assembly-tutorial-for
http://www.sudleyplace.com/dpmione/expanddown.html
http://lxr.free-electrons.com/source/Documentation/x86/earlyprintk.txt?v=3.18
http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt?v=3.18
http://lxr.free-electrons.com/source/Documentation/serial-console.txt?v=3.18
http://en.wikipedia.org/wiki/SpeedStep
https://en.wikipedia.org/wiki/Advanced_Power_Management
http://www.t13.org/documents/UploadedDocuments/docs2004/d1572r3-EDD3.pdf
http://www.tldp.org/HOWTO/Linux-i386-Boot-Code-HOWTO/setup.html
http://wiki.osdev.org/BIOS

		 	 	set_video			 main.c

	 	 	

	 	set_video			 arch/x86/boot/video.c			 	boot_params.hdr		

u16	mode	=	boot_params.hdr.vid_mode;

	 	boot_params.hdr			 	copy_boot_params			 	boot_params.hdr			 	vid_mode			 	kernel	boot	protocol	

	 	vid_mode		

Offset				Proto				Name								Meaning

/Size

01FA/2				ALL								vid_mode				Video	mode	control

	 	linux	kernel	boot	protocol			 	vid_mode		

****	SPECIAL	COMMAND	LINE	OPTIONS

vga=<mode>

				<mode>	here	is	either	an	integer	(in	C	notation,	either

				decimal,	octal,	or	hexadecimal)	or	one	of	the	strings

				"normal"	(meaning	0xFFFF),	"ext"	(meaning	0xFFFE)	or	"ask"

				(meaning	0xFFFD).		This	value	should	be	entered	into	the

				vid_mode	field,	as	it	is	used	by	the	kernel	before	the	command

				line	is	parsed.

	 	vga			grub		0XFFFD		ask2

27

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L181
http://lxr.free-electrons.com/source/arch/x86/boot/video.c?v=3.18#L315

	 	u16		

Type char short int long u8 u16 u32 u64

Size 1 2 4 8 1 2 4 8

	API

	 	set_video			 	vid_mod			 	RESET_HEAP			HEAP		 	_end		 	RESET_HEAP			 boot.h

#define	RESET_HEAP()	((void	*)(HEAP	=	_end))

	 	init_heap			HEAP		 	boot.h			HEAP

#define	RESET_HEAP()	((void	*)(HEAP	=	_end))

	HEAP		 	_end			 	_end			 	boot.h			 	extern	char	_end[];		

	 	GET_HEAP		

#define	GET_HEAP(type,	n)	\

				((type	*)__get_heap(sizeof(type),__alignof__(type),(n)))

	 	__get_heap		 	__get_heap		3

	__alignof__(type)			(gcc		

28

http://lxr.free-electrons.com/source/arch/x86/boot/boot.h?v=3.18#L199
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L116

	n		

	 	__get_heap		

static	inline	char	*__get_heap(size_t	s,	size_t	a,	size_t	n)

{

				char	*tmp;

				HEAP	=	(char	*)(((size_t)HEAP+(a-1))	&	~(a-1));

				tmp	=	HEAP;

				HEAP	+=	s*n;

				return	tmp;

}

		 	a			 	HEAP			 	HEAP			 	tmp		 	n			 	tmp		

	HEAP	

static	inline	bool	heap_free(size_t	n)

{

				return	(int)(heap_end	-	HEAP)	>=	(int)n;

}

	 	heap_end	-	HEAP	

	HEAP	

	HEAP		 	RESET_HEAP()		 	set_video			 	store_mode_params			 	boot_params.screen_info		
include/uapi/linux/screen_info.h	

	store_mode_params			 	store_cursor_position			 	store_cursor_poistion		

	 	biosregs			 	AH			 	0x3		 	0x10		BIOS	 	DL			 	DH		2	 	boot_params.screen_info			 	orig_x		
	orig_y	

	 	store_cursor_position		 	store_mode_params			 	store_video_mode			 	boot_params.screen_info.orig_video_mode	

	 	store_mode_params			 	video_segment			BIOS	

0xB000:0x0000					32	Kb					Monochrome	Text	Video	Memory

0xB800:0x0000					32	Kb					Color	Text	Video	Memory

	MDA,	HGC		VGA		 	video_sgement			 	0xB000		 	video_segment			 	0xB800	 	store_mode_params		
	boot_params.screen_info.orig_video_points	

//

set_fs(0);

font_size	=	rdfs16(0x485);

boot_params.screen_info.orig_video_points	=	font_size;

	 	set_fs			 boot.h		 	0			 	FS			 	0x485			 	boot_params.screen_info.orig_video_points	

	x	=	rdfs16(0x44a);

	y	=	(adapter	==	ADAPTER_CGA)	?	25	:	rdfs8(0x484)+1;

	 	0x44a			 	0x484			 	boot_params.screen_info.orig_video_cols			 	boot_params.screen_info.orig_video_lines	

	store_mode_params		

29

https://github.com/0xAX/linux/blob/master/include/uapi/linux/screen_info.h
https://github.com/0xAX/linux/blob/master/arch/x86/boot/boot.h

	set_video			 	save_screen			HEAP		 	saved_screen		

static	struct	saved_screen	{

				int	x,	y;

				int	curx,	cury;

				u16	*data;

}	saved;

	HEAP	

if	(!heap_free(saved.x*saved.y*sizeof(u16)+512))

								return;

	HEAP		HEAP		 	saved_screen			HEAP

	 	set_video			 	probe_cards(0)		 arch/x86/boot/video-mode.c	

for	(card	=	video_cards;	card	<	video_cards_end;	card++)	{

								if	(card->unsafe	==	unsafe)	{

												if	(card->probe)

																card->nmodes	=	card->probe();

												else

																card->nmodes	=	0;

								}

}

	 	video_cards			 arch/x86/boot/setup.ld		 	.videocards		

				.videocards				:	{

								video_cards	=	.;

								*(.videocards)

								video_cards_end	=	.;

				}

static	__videocard	video_vga	=	{

				.card_name				=	"VGA",

				.probe								=	vga_probe,

				.set_mode				=	vga_set_mode,

};

	__videocard		

#define	__videocard	struct	card_info	__attribute__((used,section(".videocards")))

	 	__videocard			 	card_info		

struct	card_info	{

				const	char	*card_name;

				int	(*set_mode)(struct	mode_info	*mode);

				int	(*probe)(void);

				struct	mode_info	*modes;

				int	nmodes;

				int	unsafe;

				u16	xmode_first;

				u16	xmode_n;

};

	 	.videocards			 	card_info			 	probe_cards			 	video_cards		 	card_info	

30

https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L33
https://github.com/0xAX/linux/blob/master/arch/x86/boot/setup.ld

	 	probe_cards			 	set_video			 	vid_mode=ask		 	vid_mod				 	set_mode		

for	(;;)	{

						if	(mode	==	ASK_VGA)

										mode	=	mode_menu();

						if	(!set_mode(mode))

										break;

						printf("Undefined	video	mode	number:	%x\n",	mode);

						mode	=	ASK_VGA;

		}

	 video-mode.c		 	set_mode		

	set_mode			 	mode			 	raw_set_mode			 	card_info			 	card_info			 	set_mode			 	video_vga		
	 	card_info			 	set_mode			 	vga_set_mode			 	vga_set_mode			vga	

static	int	vga_set_mode(struct	mode_info	*mode)

{

				vga_set_basic_mode();

				force_x	=	mode->x;

				force_y	=	mode->y;

				switch	(mode->mode)	{

				case	VIDEO_80x25:

								break;

				case	VIDEO_8POINT:

								vga_set_8font();

								break;

				case	VIDEO_80x43:

								vga_set_80x43();

								break;

				case	VIDEO_80x28:

								vga_set_14font();

								break;

				case	VIDEO_80x30:

								vga_set_80x30();

								break;

				case	VIDEO_80x34:

								vga_set_80x34();

								break;

				case	VIDEO_80x60:

								vga_set_80x60();

								break;

				}

				return	0;

}

	 	vga_set***			 	0x10		BIOS	

	 	boot_params.hdr.vid_mode	

	 	set_video			 	vesa_store_edid				 EDID	(Extended	Display	Identification	Data)		 	set_video		
	do_restore		

	 main.c		 	go_to_protected_mode		

	go_to_protected_mode			 arch/x86/boot/pm.c	

31

https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L147
https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L184
http://lxr.free-electrons.com/source/arch/x86/boot/pm.c?v=3.18#L104

	go_to_protected_mode			 	realmode_switch_hook			 	realmode_switch		hook		 NMI		NMI		bootloader	
	DOS			hook		 boot	protocol	(see	ADVANCED	BOOT	LOADER	HOOKS)		hook	

/*

	*	Invoke	the	realmode	switch	hook	if	present;	otherwise

	*	disable	all	interrupts.

	*/

static	void	realmode_switch_hook(void)

{

				if	(boot_params.hdr.realmode_swtch)	{

								asm	volatile("lcallw	*%0"

																	:	:	"m"	(boot_params.hdr.realmode_swtch)

																	:	"eax",	"ebx",	"ecx",	"edx");

				}	else	{

								asm	volatile("cli");

								outb(0x80,	0x70);	/*	Disable	NMI	*/

								io_delay();

				}

}

	realmode_switch		16	16	NMI		 	realmode_swtch		hook		 	lcallw			hook		 	else		
NMI	

asm	volatile("cli");

outb(0x80,	0x70);				/*	Disable	NMI	*/

io_delay();

	 	cli			 	IF		NMI	

	CPU		CPU		NMI	NMI	

	NMI		 	0x80			CMOS		 	0x70			 	io_delay			I/O		 	io_delay		

static	inline	void	io_delay(void)

{

				const	u16	DELAY_PORT	=	0x80;

				asm	volatile("outb	%%al,%0"	:	:	"dN"	(DELAY_PORT));

}

	I/O		 	0x80			1	ms		 	al			 	io_delay			 	realmode_switch_hook		

	 	enable_a20		 A20	line	 arch/x86/boot/a20.c		A20		 	a20_test_short		 	a20_test				A20	

static	int	a20_test(int	loops)

{

				int	ok	=	0;

				int	saved,	ctr;

				set_fs(0x0000);

				set_gs(0xffff);

				saved	=	ctr	=	rdfs32(A20_TEST_ADDR);

				while	(loops--)	{

								wrfs32(++ctr,	A20_TEST_ADDR);

								io_delay();				/*	Serialize	and	make	delay	constant	*/

								ok	=	rdgs32(A20_TEST_ADDR+0x10)	^	ctr;

								if	(ok)

												break;

				}

				wrfs32(saved,	A20_TEST_ADDR);

				return	ok;

}

32

http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://en.wikipedia.org/wiki/A20_line
http://lxr.free-electrons.com/source/arch/x86/boot/a20.c?v=3.18

	 	0x0000			 	FS			 	0xffff			 	GS			 	rdfs32			 	A20_TEST_ADDR			 	saved			 	ctr		

	 	wrfs32			 	ctr			 	fs:gs			1ms		 	GS:A20_TEST_ADDR+0x10		0	A20		A20		A20		BIOS
	0X15			A20	

	 	enabled_a20			 	die		 	die			 arch/x86/boot/header.S:

die:

				hlt

				jmp				die

				.size				die,	.-die

A20	 	reset_coprocessor		

outb(0,	0xf0);

outb(0,	0xf1);

	 	0			I/O		 	0xf0			 	0xf1		

	 	mask_all_interrupts		

outb(0xff,	0xa1);							/*	Mask	all	interrupts	on	the	secondary	PIC	*/

outb(0xfb,	0x21);							/*	Mask	all	but	cascade	on	the	primary	PIC	*/

	(Programmable	Interrupt	Controller)	IRQ2IRQ2	CPU	

	 	setup_idt			IDT	

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

	 	lidtl			 	null_idt			IDT	 	null_idt			0	 	null_idt			 	gdt_ptr		

struct	gdt_ptr	{

				u16	len;

				u32	ptr;

}	__attribute__((packed));

	16	bit		32	bit	 	__attribute__((packed))			48	bit		 	GDTR			GDTR		48	bit	

	 	setup_gdt		 		 	setup_gdt			 	boot_gdt			GDTR	

			//GDT_ENTRY_BOOT_CS	http://lxr.free-electrons.com/source/arch/x86/include/asm/segment.h#L19	=	2

				static	const	u64	boot_gdt[]	__attribute__((aligned(16)))	=	{

								[GDT_ENTRY_BOOT_CS]	=	GDT_ENTRY(0xc09b,	0,	0xfffff),

								[GDT_ENTRY_BOOT_DS]	=	GDT_ENTRY(0xc093,	0,	0xfffff),

								[GDT_ENTRY_BOOT_TSS]	=	GDT_ENTRY(0x0089,	4096,	103),

				};

33

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18

	 	boot_gdt			TSS	(Task	State	Segment,)	 	null_idt		TSS	TSS		Intel	
	boot_gdt			 	__attribute__((aligned(16)))			16		16	

#include	<stdio.h>

struct	aligned	{

				int	a;

}__attribute__((aligned(16)));

struct	nonaligned	{

				int	b;

};

int	main(void)

{

				struct	aligned				a;

				struct	nonaligned	na;

				printf("Not	aligned	-	%zu	\n",	sizeof(na));

				printf("Aligned	-	%zu	\n",	sizeof(a));

				return	0;

}

	16		 	int			16	

$	gcc	test.c	-o	test	&&	test

Not	aligned	-	4

Aligned	-	16

	 	boot_gdt			 	GDT_ENTRY_BOOT_CS	=	2	2	 	align	16		8*5=40	 	align	16			48		

	 	GDT_ENTRY			3		 	GDT_ENTRY_BOOT_CS		 	GDT_ENTRY			3	

	 -	0
	-	0xfffff
	-	0xc09b

	0		 	0xfffff			1	MB	

1100	0000	1001	1011

:

1	-	(G)		1	 	0xfffff	*	4kb		=		4GB	
1	-	(D)	32
0	-	(L)		long	mode
0	-	(AVL)	Linux	
0000	-	4
1	-	(P)	
00	-	(DPL)	-	0
1	-	(S)	
101	-	/
1	-	

	 	 Intel®	64	and	IA-32	Architectures	Software	Developer's	Manuals	3A

	GDT	

gdt.len	=	sizeof(boot_gdt)-1;

34

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

	GDT		gdt.ptr	

gdt.ptr	=	(u32)&boot_gdt	+	(ds()	<<	4);

		ds	<<	4	+	

	 	lgdtl			GDT		GDTR	

asm	volatile("lgdtl	%0"	:	:	"m"	(gdt));

	go_to_protected_mode			IDT,	GDT		NMI		 	protected_mode_jump		

protected_mode_jump(boot_params.hdr.code32_start,	(u32)&boot_params	+	(ds()	<<	4));

	protected_mode_jump			 arch/x86/boot/pmjump.S2:

	boot_params		

	 	eax			 	edx		

	 	boot_params			 	esi			 	cs			 	bx			 	bx	<<	4	+	2		 	bx		2	 	cx			 TSS		 	di		

movw				$__BOOT_DS,	%cx

movw				$__BOOT_TSS,	%di

	 	GDT_ENTRY_BOOT_CS		2	8		 	cx			 	2*8	=	16		di			 	4*8	=32	

	 	CR0			CPU	

movl				%cr0,	%edx

orb				$X86_CR0_PE,	%dl

movl				%edx,	%cr0

	32	

				.byte				0x66,	0xea

2:				.long				in_pm32

				.word				__BOOT_CS	;(GDT_ENTRY_BOOT_CS*8)	=	16

	0x66			16		32	
	0xea		-	
	in_pm32		
	__BOOT_CS		

.code32

.section	".text32","ax"

	 	CS		:

GLOBAL(in_pm32)

35

http://lxr.free-electrons.com/source/arch/x86/boot/pmjump.S?v=3.18#L26

movl				%ecx,	%ds

movl				%ecx,	%es

movl				%ecx,	%fs

movl				%ecx,	%gs

movl				%ecx,	%ss

	 	$__BOOT_DS			 	cx			 	CS			0	

xorl				%ecx,	%ecx

xorl				%edx,	%edx

xorl				%ebx,	%ebx

xorl				%ebp,	%ebp

xorl				%edi,	%edi

	32	

jmpl				*%eax	;?jmpl	cs:eax?

	32	

	32		 long	mode

twitter.

	PR		 linux-insides-zh	

VGA
VESA	BIOS	Extensions
Data	structure	alignment
Non-maskable	interrupt
A20
GCC	designated	inits
GCC	type	attributes
Previous	part

36

http://en.wikipedia.org/wiki/Long_mode
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://en.wikipedia.org/wiki/VESA_BIOS_Extensions
http://en.wikipedia.org/wiki/Data_structure_alignment
http://en.wikipedia.org/wiki/Non-maskable_interrupt
http://en.wikipedia.org/wiki/A20_line
https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Designated-Inits.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html

.	Part	4.

64

	 			 CPU SSE

	 arch/x86/boot/pmjump.S		32	

jmpl				*%eax

	 	eax			32		 x86	linux		

When	using	bzImage,	the	protected-mode	kernel	was	relocated	to	0x100000

	bzImage		0x100000

	32	

eax												0x100000				1048576

ecx												0x0								0

edx												0x0								0

ebx												0x0								0

esp												0x1ff5c				0x1ff5c

ebp												0x0								0x0

esi												0x14470				83056

edi												0x0								0

eip												0x100000				0x100000

eflags									0x46								[PF	ZF]

cs													0x10				16

ss													0x18				24

ds													0x18				24

es													0x18				24

fs													0x18				24

gs													0x18				24

	 	cs			-	 	0x10			 	eip			 	0x100000	0	 	0:0x100000			 	0x100000		32	

32	

	 arch/x86/boot/compressed/head_64.S		32	

				__HEAD

				.code32

ENTRY(startup_32)

....

....

....

ENDPROC(startup_32)

	 		(compressed) 			 	bzimage			 	vmlinux	+		+	 			gzip		 	head_64.S		

	 	arch/x86/boot/compressed		

head_32.S

	64	

37

https://zh.wikipedia.org/wiki/%E4%BF%9D%E8%AD%B7%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/SSE
https://zh.wikipedia.org/wiki/%E5%88%86%E9%A0%81
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
http://lxr.free-electrons.com/source/arch/x86/boot/pmjump.S?v=3.18
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_32.S?v=3.18

head_64.S

	 	x86_64			 	head_64.S			 	head_32.S			 arch/x86/boot/compressed/Makefile

vmlinux-objs-y	:=	$(obj)/vmlinux.lds	$(obj)/head_$(BITS).o	$(obj)/misc.o	\

				$(obj)/string.o	$(obj)/cmdline.o	\

				$(obj)/piggy.o	$(obj)/cpuflags.o

	 	$(obj)/head_$(BITS).o			 	$(BITS)			head_32.o		head_64.o 	$(BITS)			 arch/x86/Makefile		.config	

ifeq	($(CONFIG_X86_32),y)

								BITS	:=	32

								...

								...

else

								BITS	:=	64

								...

								...

endif

	 arch/x86/boot/compressed/head_64.S		 	startup_32		

				__HEAD

				.code32

ENTRY(startup_32)

	 	__HEAD			 include/linux/init.h	

#define	__HEAD								.section				".head.text","ax"

	 	.head.text			 	ax		 	 arch/x86/boot/compressed/vmlinux.lds.S	

SECTIONS

{

				.	=	0;

				.head.text	:	{

								_head	=	.	;

								HEAD_TEXT

								_ehead	=	.	;

				}

	 	GNU	LD		 	 	.			-	0	 	0		

Be	careful	parts	of	head_64.S	assume	startup_32	is	at	address	0.

	head_64.S		startup_32		0

	 	startup_32		

	 	startup_32			 	cld			 	DF		 stos	 scas	 	esi			 	edi		

	 	DF			 	loadflags			 	KEEP_SEGMENTS		 	 	loadflags			 	CAN_USE_HEAP			 	KEEP_SEGMENTS			linux	

	64	

38

http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/Makefile?v=3.18
http://lxr.free-electrons.com/source/arch/x86/Makefile?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://lxr.free-electrons.com/source/include/linux/init.h?v=3.18
https://en.wikipedia.org/wiki/Executable
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/vmlinux.lds.S?v=3.18
https://sourceware.org/binutils/docs/ld/Scripts.html#Scripts
http://baike.baidu.com/view/1845107.htm
http://x86.renejeschke.de/html/file_module_x86_id_306.html
http://x86.renejeschke.de/html/file_module_x86_id_287.html
https://www.kernel.org/doc/Documentation/x86/boot.txt

Bit	6	(write):	KEEP_SEGMENTS

		Protocol:	2.07+

		-	If	0,	reload	the	segment	registers	in	the	32bit	entry	point.

		-	If	1,	do	not	reload	the	segment	registers	in	the	32bit	entry	point.

				Assume	that	%cs	%ds	%ss	%es	are	all	set	to	flat	segments	with

				a	base	of	0	(or	the	equivalent	for	their	environment).

	6		():	KEEP_SEGMENTS

		:	2.07+

		-	032

		-	132	%cs	%ds	%ss	%es	0

	 	KEEP_SEGMENTS			 	loadflags			 	ds		,		ss			 	es			 	0		

				testb	$(1	<<	6),	BP_loadflags(%esi)

				jnz	1f

				cli

				movl				$(__BOOT_DS),	%eax

				movl				%eax,	%ds

				movl				%eax,	%es

				movl				%eax,	%ss

	 	__BOOT_DS			 	0x18		 	 	KEEP_SEGMENTS			 	1f			 	1f			 	__BOOT_DS		
arch/x86/boot/pmjump.S	Linux	3232	 	startup_32			 	startup_32		

	 	KEEP_SEGMENTS			 	setup.ld.S			 	.head.text			 	.	=	0			 	0			 	objdump		

arch/x86/boot/compressed/vmlinux:					file	format	elf64-x86-64

Disassembly	of	section	.head.text:

0000000000000000	<startup_32>:

			0:			fc																						cld

			1:			f6	86	11	02	00	00	40				testb		$0x40,0x211(%rsi)

	objdump			 	startup_32			 	0		 	 	rip		 	 	startup_32		

call	label

label:	pop	%reg

	Linux		 	startup_32		

				leal				(BP_scratch+4)(%esi),	%esp

				call				1f

1:		popl				%ebp

				subl				$1b,	%ebp

	 	esi			 boot_params	 	bootparams			 	scratch			 	0x1e4			4		 	call			 	scratch			4		 	esp	

	 	BP_scratch			 	4			 	x86_64			 	1f			 	ebp			 	call			 	1f		
	startup_32		

startup_32	(0x0)					+-----------------------+

																					|																							|

																					|																							|

																					|																							|

																					|																							|

																					|																							|

																					|																							|

																					|																							|

	64	

39

https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://lxr.free-electrons.com/source/arch/x86/boot/pmjump.S?v=3.18
https://zh.wikipedia.org/wiki/%E4%BF%9D%E8%AD%B7%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/%E4%BF%9D%E8%AD%B7%E6%A8%A1%E5%BC%8F
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/bootparam.h?v=3.18#L113

																					|																							|

1f	(0x0	+	1f	offset)	+-----------------------+	%ebp	-	

																					|																							|

																					|																							|

																					+-----------------------+

	startup_32			 	0x0			 	1f			 	0x0	+	1f				 	0x22			 	ebp			 	1f			 	ebp			 	1f			 	startup_32		
Linux	 	 	0x100000			 gdb		 	1f			 	0x100022			 	ebp			 	0x100022		

$	gdb

(gdb)$	target	remote	:1234

Remote	debugging	using	:1234

0x0000fff0	in	??	()

(gdb)$	br	*0x100022

Breakpoint	1	at	0x100022

(gdb)$	c

Continuing.

Breakpoint	1,	0x00100022	in	??	()

(gdb)$	i	r

eax												0x18				0x18

ecx												0x0				0x0

edx												0x0				0x0

ebx												0x0				0x0

esp												0x144a8				0x144a8

ebp												0x100021				0x100021

esi												0x142c0				0x142c0

edi												0x0				0x0

eip												0x100022				0x100022

eflags									0x46				[PF	ZF]

cs													0x10				0x10

ss													0x18				0x18

ds													0x18				0x18

es													0x18				0x18

fs													0x18				0x18

gs													0x18				0x18

	 	subl	$1b,	%ebp		

nexti

...

ebp												0x100000				0x100000

...

	startup_32			 	0x100000			 	startup_32		 	CPU		 SSE	

	CPU	
	 	startup_32			 	esp		

				movl				$boot_stack_end,	%eax

				addl				%ebp,	%eax

				movl				%eax,	%esp

	boots_stack_end			 arch/x86/boot/compressed/head_64.S		 .bss	

				.bss

				.balign	4

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

boot_stack:

				.fill	BOOT_STACK_SIZE,	1,	0

boot_stack_end:

	64	

40

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://zh.wikipedia.org/wiki/GNU%E4%BE%A6%E9%94%99%E5%99%A8
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/SSE
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
https://en.wikipedia.org/wiki/.bss

	 	boot_stack_end			 	eax			 	eax			 	boot_stack_end			 	0x0	+	boot_stack_end			 	boot_stack_end		
	startup_32			 	ebp		 	eax			 	boot_stack_end		

	CPU		 				CPU		 				 	SSE		 	verify_cpu		

				call				verify_cpu

				testl				%eax,	%eax

				jnz				no_longmode

	 arch/x86/kernel/verify_cpu.S		 cpuid		 				 	SSE			 	eax		01

	 	eax			0		 	no_longmode			 	hlt			CPU	

no_longmode:

1:

				hlt

				jmp					1b

	 	eax		0

	Linux	32	 	0x100000		32	 	CONFIG_PHYSICAL_START			 	0x1000000			 	16	MB			 				 kdump
Linux		-	 	CONFIG_RELOCATABLE		

This	builds	a	kernel	image	that	retains	relocation	information

so	it	can	be	loaded	someplace	besides	the	default	1MB.

Note:	If	CONFIG_RELOCATABLE=y,	then	the	kernel	runs	from	the	address

it	has	been	loaded	at	and	the	compile	time	physical	address

(CONFIG_PHYSICAL_START)	is	used	as	the	minimum	location.

	1MB	

	CONFIG_RELOCATABLE=y			(CONFIG_PHYSICAL_START)	

	Linux		 		 /arch/x86/boot/compressed/Makefile	 	-fPIC		

KBUILD_CFLAGS	+=	-fno-strict-aliasing	-fPIC

	 	startup_32			Linux		 	CONFIG_RELOCATABLE		

#ifdef	CONFIG_RELOCATABLE

				movl				%ebp,	%ebx

				movl				BP_kernel_alignment(%esi),	%eax

				decl				%eax

				addl				%eax,	%ebx

				notl				%eax

				andl				%eax,	%ebx

				cmpl				$LOAD_PHYSICAL_ADDR,	%ebx

				jge				1f

#endif

				movl				$LOAD_PHYSICAL_ADDR,	%ebx

1:

				addl				$z_extract_offset,	%ebx

	 	ebp			 	startup_32			 	CONFIG_RELOCATABLE			 	ebx			 	2M				 	LOAD_PHYSICAL_ADDR		
	LOAD_PHYSICAL_ADDR			 arch/x86/include/asm/boot.h	

	64	

41

http://lxr.free-electrons.com/source/arch/x86/kernel/verify_cpu.S?v=3.18
https://en.wikipedia.org/wiki/CPUID
https://www.kernel.org/doc/Documentation/kdump/kdump.txt
https://zh.wikipedia.org/wiki/%E5%9C%B0%E5%9D%80%E6%97%A0%E5%85%B3%E4%BB%A3%E7%A0%81
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/Makefile?v=3.18
http://lxr.free-electrons.com/source/arch/x86/include/asm/boot.h?v=3.18

#define	LOAD_PHYSICAL_ADDR	((CONFIG_PHYSICAL_START	\

																+	(CONFIG_PHYSICAL_ALIGN	-	1))	\

																&	~(CONFIG_PHYSICAL_ALIGN	-	1))

	 	CONFIG_PHYSICAL_ALIGN			 	LOAD_PHYSICAL_ADDR			 	ebx			 	startup_32			 	CONFIG_RELOCATABLE		
	z_extract_offset		

	ebp		 	ebx		

64

				leal				gdt(%ebp),	%eax

				movl				%eax,	gdt+2(%ebp)

				lgdt				gdt(%ebp)

	 	ebp			 	gdt			 	eax			 	ebp			 	gdt+2			 	lgdt			 				 	gdt			 			

				.data

gdt:

				.word				gdt_end	-	gdt

				.long				gdt

				.word				0

				.quad				0x0000000000000000				/*	NULL	descriptor	*/

				.quad				0x00af9a000000ffff				/*	__KERNEL_CS	*/

				.quad				0x00cf92000000ffff				/*	__KERNEL_DS	*/

				.quad				0x0080890000000000				/*	TS	descriptor	*/

				.quad			0x0000000000000000				/*	TS	continued	*/

gdt_end:

	 	.data		5	 	null		 	 				 	CS.L	=	1			CS.D	=	0			 	64			 	gdt			 	gdt_end	-	gdt			 	gdt	

4	 	gdt			 				 	48	GDTR- 		

	(16
	(32)

	 	gdt			 	eax			 	.long	gdt			 	gdt+2		 	GDTR			 	lgdt			 			

	 				 PAE		 	cr4			 	eax		51	 	cr4		

				movl				%cr4,	%eax

				orl				$X86_CR4_PAE,	%eax

				movl				%eax,	%cr4

64

	 x86_64		 	x86_64			 	x86		

	64		

	 	r8			 	r15		864
64	-	 	RIP		;
	-	;
64;
RIP		().

	64	

42

https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://en.wikipedia.org/wiki/Physical_Address_Extension
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://en.wikipedia.org/wiki/X86-64

64

	 	64		

	 PAE;
	 	cr3		;
	 	EFER.LME		;
;

	 	cr4			 	PAE			 	PAE		

	 	64			 	4G		

Linux		 	4		6

1		 	PML4			 	4			1	
1		 	PDP			 				4	
4			 	2048		

	 	4096			 	24		KB	

				leal				pgtable(%ebx),	%edi

				xorl				%eax,	%eax

				movl				$((4096*6)/4),	%ecx

				rep				stosl

	 	ebx			 	pgtable			 	edi			 	eax			 	ecx			 	6144			 	rep	stosl			 	eax			 	edi			 	edi			4	
	ecx			4		 	ecx			0		 	6144			 	ecx		

	pgtable			 arch/x86/boot/compressed/head_64.S	

				.section	".pgtable","a",@nobits

				.balign	4096

pgtable:

				.fill	6*4096,	1,	0

	 	.pgtable			 	24KB		

	 	pgtable			-	 	PML4		

				leal				pgtable	+	0(%ebx),	%edi

				leal				0x1007	(%edi),	%eax

				movl				%eax,	0(%edi)

	 	ebx			 	startup_32			 	pgtable			 	edi			 	0x1007			 	eax			 	0x1007			 	PML4			 	4096			 	7	

	 	7			 	PML4			 	PRESENT+RW+USER			 	PDP 			 	PML4		

	 	PDP 		3	4		 	PRESENT+RW+USE			 	Page	Directory	2 		

				leal				pgtable	+	0x1000(%ebx),	%edi

				leal				0x1007(%edi),	%eax

				movl				$4,	%ecx

1:		movl				%eax,	0x00(%edi)

				addl				$0x00001000,	%eax

	64	

43

https://en.wikipedia.org/wiki/Physical_Address_Extension
https://zh.wikipedia.org/wiki/%E5%88%86%E9%A0%81
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18

				addl				$8,	%edi

				decl				%ecx

				jnz				1b

	3		 	pgtable			 	4096			 	0x1000			 	edi			2		 	eax			 	4			 	ecx			 	edi			 	edi		
	 	0x7			8		 	eax			 	edi			 	2048			 	2MB		

				leal				pgtable	+	0x2000(%ebx),	%edi

				movl				$0x00000183,	%eax

				movl				$2048,	%ecx

1:		movl				%eax,	0(%edi)

				addl				$0x00200000,	%eax

				addl				$8,	%edi

				decl				%ecx

				jnz				1b

	-	 	$0x00000183		-		PRESENT	+	WRITE	+	MBZ			 	2048			 	2MB		

>>>	2048	*	0x00200000

4294967296

	 	4G			 	4G			 	PML4			 	cr3		

				leal				pgtable(%ebx),	%eax

				movl				%eax,	%cr3

	 MSR		 	EFER.LME			 	0xC0000080		

				movl				$MSR_EFER,	%ecx

				rdmsr

				btsl				$_EFER_LME,	%eax

				wrmsr

	 	MSR_EFER			 arch/x86/include/uapi/asm/msr-index.h		 	ecx			 	rdmsr			 MSR		 	rdmsr		
	edx:eax			 	ecx			 	btsl			 	EFER_LME			 	wrmsr			 	eax			 	MSR		

	GDT		 	startup_64			 	eax		

				pushl				$__KERNEL_CS

				leal				startup_64(%ebp),	%eax

	 	cr0			 	PG			 	PE		

				movl				$(X86_CR0_PG	|	X86_CR0_PE),	%eax

				movl				%eax,	%cr0

lret

	 	startup_64			 	lret		CPU	

64

	64	

44

http://en.wikipedia.org/wiki/Model-specific_register
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/msr-index.h?v=3.18#L7
http://en.wikipedia.org/wiki/Model-specific_register

				.code64

				.org	0x200

ENTRY(startup_64)

....

....

....

	linux	4	 twitter		 issue

	PR		 linux-insides-zh	

Protected	mode
Intel®	64	and	IA-32	Architectures	Software	Developer’s	Manual	3A
GNU	linker
SSE
Paging
Model	specific	register
.fill	instruction
Previous	part
Paging	on	osdev.org
Paging	Systems
x86	Paging	Tutorial

	64	

45

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Protected_mode
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.eecs.umich.edu/courses/eecs373/readings/Linker.pdf
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Model-specific_register
http://www.chemie.fu-berlin.de/chemnet/use/info/gas/gas_7.html
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-3.md
http://wiki.osdev.org/Paging
https://www.cs.rutgers.edu/~pxk/416/notes/09a-paging.html
http://www.cirosantilli.com/x86-paging/

.	Part	5.

		 64...

	64	——	startup_64		 arch/x86/boot/compressed/head_64.S	 	startup_32		startup_64	

				pushl				$__KERNEL_CS

				leal				startup_64(%ebp),	%eax

				...

				...

				...

				pushl				%eax

				...

				...

				...

				lret

		CPU 	64	 	startup_64	

				.code64

				.org	0x200

ENTRY(startup_64)

				xorl				%eax,	%eax

				movl				%eax,	%ds

				movl				%eax,	%es

				movl				%eax,	%ss

				movl				%eax,	%fs

				movl				%eax,	%gs

	cs			

#ifdef	CONFIG_RELOCATABLE

				leaq				startup_32(%rip),	%rbp

				movl				BP_kernel_alignment(%rsi),	%eax

				decl				%eax

				addq				%rax,	%rbp

				notq				%rax

				andq				%rax,	%rbp

				cmpq				$LOAD_PHYSICAL_ADDR,	%rbp

				jge				1f

#endif

				movq				$LOAD_PHYSICAL_ADDR,	%rbp

1:

				movl				BP_init_size(%rsi),	%ebx

				subl				$_end,	%ebx

				addq				%rbp,	%rbx

	rbp	 	rbx	 	startup_32	 64 	startup_32	

				leaq				boot_stack_end(%rbx),	%rsp

46

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md#calculate-relocation-address

				pushq				$0

				popfq

	rbx	 	boot_stack_entry		rsp		 arch/x86/boot/compressed/head_64.S		boot_stack_end	

				.bss

				.balign	4

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

boot_stack:

				.fill	BOOT_STACK_SIZE,	1,	0

boot_stack_end:

	.bss	 	.pgtable		 arch/x86/boot/compressed/vmlinux.lds.S	 	.bss		.pgtable	

				pushq				%rsi

				leaq				(_bss-8)(%rip),	%rsi

				leaq				(_bss-8)(%rbx),	%rdi

				movq				$_bss,	%rcx

				shrq				$3,	%rcx

				std

				rep				movsq

				cld

				popq				%rsi

	rsi	 	rsi	 	boot_params	 	boot_params		rsi	.

	leaq		_bss	-	8		rip		rbx		rsi		rdi	.	 	startup_32		 arch/x86/boot/compressed/vmlinux.lds.S	

				.	=	0;

				.head.text	:	{

								_head	=	.	;

								HEAD_TEXT

								_ehead	=	.	;

				}

				.rodata..compressed	:	{

								*(.rodata..compressed)

				}

				.text	:				{

								_text	=	.;					/*	Text	*/

								*(.text)

								(.text.)

								_etext	=	.	;

				}

	.head.text		startup_32	.	

				__HEAD

				.code32

ENTRY(startup_32)

...

...

...

	.text	

				.text

relocated:

...

...

...

/*

47

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/vmlinux.lds.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/vmlinux.lds.S

	*	Do	the	decompression,	and	jump	to	the	new	kernel..

	*/

...

	.rodata..compressed	 	rsi		_bss	-	8	 	rdi		_bss	-	8	 	_bss		rcx	 	vmlinux.lds.S	/ 	movsq	8
	rsi		rdi	

	std	 	DF	 	rsi		rdi	 	cld		DF	 	boot_params		rsi	.

	.text	

				leaq				relocated(%rbx),	%rax

				jmp				*%rax

	.text		relocated	 	.bss	

				xorl				%eax,	%eax

				leaq				_bss(%rip),	%rdi

				leaq				_ebss(%rip),	%rcx

				subq				%rdi,	%rcx

				shrq				$3,	%rcx

				rep				stosq

	.bss	 C 	eax		_bss		rdi		_ebss		rcx		rep	stosq	

	extract_kernel	

				pushq				%rsi

				movq				%rsi,	%rdi

				leaq				boot_heap(%rip),	%rsi

				leaq				input_data(%rip),	%rdx

				movl				$z_input_len,	%ecx

				movq				%rbp,	%r8

				movq				$z_output_len,	%r9

				call				extract_kernel

				popq				%rsi

	rdi		boot_params	 	rsi	 	extract_kernel	 	extract_kernel		 arch/x86/boot/compressed/misc.c	

	rmode		-		 boot_params	 	boot_params	

	heap		-		 	boot_heap		
	input_data		-		 	arch/x86/boot/compressed/vmlinux.bin.bz2		
	input_len		-	
	output		-	
	output_len		-	

	 System	V	Application	Binary	Interface	

	extract_kernel		 arch/x86/boot/compressed/misc.c	/ 3264

free_mem_ptr					=	heap;

free_mem_end_ptr	=	heap	+	BOOT_HEAP_SIZE;

48

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973//arch/x86/include/uapi/asm/bootparam.h#L114
http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c
https://en.wikipedia.org/wiki/Real_mode

	 	heap			 arch/x86/boot/compressed/head_64.S		 	extract_kernel		

leaq				boot_heap(%rip),	%rsi

	boot_heap	

boot_heap:

				.fill	BOOT_HEAP_SIZE,	1,	0

	BOOT_HEAP_SIZE		0x10000	(bzip2		0x400000)

	 arch/x86/boot/compressed/kaslr.c		choose_random_location	 		Linux kASLR

Linux

	 misc.c.	

if	((unsigned	long)output	&	(MIN_KERNEL_ALIGN	-	1))

				error("Destination	physical	address	inappropriately	aligned");

if	(virt_addr	&	(MIN_KERNEL_ALIGN	-	1))

				error("Destination	virtual	address	inappropriately	aligned");

if	(heap	>	0x3fffffffffffUL)

				error("Destination	address	too	large");

if	(virt_addr	+	max(output_len,	kernel_total_size)	>	KERNEL_IMAGE_SIZE)

				error("Destination	virtual	address	is	beyond	the	kernel	mapping	area");

if	((unsigned	long)output	!=	LOAD_PHYSICAL_ADDR)

				error("Destination	address	does	not	match	LOAD_PHYSICAL_ADDR");

if	(virt_addr	!=	LOAD_PHYSICAL_ADDR)

				error("Destination	virtual	address	changed	when	not	relocatable");

Decompressing	Linux...

	__decompress	

__decompress(input_data,	input_len,	NULL,	NULL,	output,	output_len,	NULL,	error);

	__decompress	

#ifdef	CONFIG_KERNEL_GZIP

#include	"../../../../lib/decompress_inflate.c"

#endif

#ifdef	CONFIG_KERNEL_BZIP2

#include	"../../../../lib/decompress_bunzip2.c"

#endif

#ifdef	CONFIG_KERNEL_LZMA

#include	"../../../../lib/decompress_unlzma.c"

#endif

#ifdef	CONFIG_KERNEL_XZ

#include	"../../../../lib/decompress_unxz.c"

#endif

#ifdef	CONFIG_KERNEL_LZO

#include	"../../../../lib/decompress_unlzo.c"

49

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/kaslr.c#L425
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c#L404

#endif

#ifdef	CONFIG_KERNEL_LZ4

#include	"../../../../lib/decompress_unlz4.c"

#endif

	parse_elf		handle_relocations	. ELF 	parse_elf	 	readelf	

readelf	-l	vmlinux

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x1000000

There	are	5	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		LOAD											0x0000000000200000	0xffffffff81000000	0x0000000001000000

																	0x0000000000893000	0x0000000000893000		R	E				200000

		LOAD											0x0000000000a93000	0xffffffff81893000	0x0000000001893000

																	0x000000000016d000	0x000000000016d000		RW					200000

		LOAD											0x0000000000c00000	0x0000000000000000	0x0000000001a00000

																	0x00000000000152d8	0x00000000000152d8		RW					200000

		LOAD											0x0000000000c16000	0xffffffff81a16000	0x0000000001a16000

																	0x0000000000138000	0x000000000029b000		RWE				200000

	parse_elf		choose_random_location		output	ELF

Elf64_Ehdr	ehdr;

Elf64_Phdr	*phdrs,	*phdr;

memcpy(&ehdr,	output,	sizeof(ehdr));

if	(ehdr.e_ident[EI_MAG0]	!=	ELFMAG0	||

				ehdr.e_ident[EI_MAG1]	!=	ELFMAG1	||

				ehdr.e_ident[EI_MAG2]	!=	ELFMAG2	||

				ehdr.e_ident[EI_MAG3]	!=	ELFMAG3)	{

								error("Kernel	is	not	a	valid	ELF	file");

								return;

}

	ELF	 	ELF	

				for	(i	=	0;	i	<	ehdr.e_phnum;	i++)	{

								phdr	=	&phdrs[i];

								switch	(phdr->p_type)	{

								case	PT_LOAD:

#ifdef	CONFIG_RELOCATABLE

												dest	=	output;

												dest	+=	(phdr->p_paddr	-	LOAD_PHYSICAL_ADDR);

#else

												dest	=	(void	*)(phdr->p_paddr);

#endif

												memmove(dest,	output	+	phdr->p_offset,	phdr->p_filesz);

												break;

								default:

												break;

								}

				}

50

https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

	parse_elf		handle_relocations	 	CONFIG_X86_NEED_RELOCS	 	CONFIG_RANDOMIZE_BASE	 	handle_relocations	

	LOAD_PHYSICAL_ADDR	

	extract_kernel		 arch/x86/boot/compressed/head_64.S.

	rax	

jmp				*%rax

	 twitter	

	PR		 linux-insides-zh	

address	space	layout	randomization
initrd
long	mode
bzip2
RDRand	instruction
Time	Stamp	Counter
Programmable	Interval	Timers
Previous	part

51

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Long_mode
http://www.bzip.org/
https://en.wikipedia.org/wiki/RdRand
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Intel_8253
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md

		ACPI	

	-	
	-	
	-		start_kernel	
	-	start_kernel 	-	
	-	
	-	
	-	
	-	
RCU		-		RCU	
	-	Linux

52

	

TODO:	Need	proofreading

	Linux		Linux		Linux	——	 PID		 	1			 	init		

arch/x86/kernel/head_64.S		 	start_kernel			 init/main.c	

	 arch/x86/boot/compressed/head_64.S		 jmp	

jmp				*%rax

	 	rax			Linux		 	decompress_kernel		arch/x86/boot/compressed/misc.c		Linux	

OK	 	decompress_kernel		 	rax			 arch/x86/kernel/head_64.S

				__HEAD

				.code64

				.globl	startup_64

startup_64:

				...

				...

				...

	 	startup_64			 	__HEAD			 	__HEAD			 	.head.text		

#define	__HEAD								.section				".head.text","ax"

	 arch/x86/kernel/vmlinux.lds.S	

.text	:	AT(ADDR(.text)	-	LOAD_OFFSET)	{

				_text	=	.;

				...

				...

				...

}	:text	=	0x9090

	 	.text		 	_text			 x86_64	

.	=	__START_KERNEL;

	__START_KERNEL			 arch/x86/include/asm/page_types.h	

#define	_START_KERNEL				(__START_KERNEL_map	+	__PHYSICAL_START)

#define	__PHYSICAL_START		ALIGN(CONFIG_PHYSICAL_START,	CONFIG_PHYSICAL_ALIGN)

Linux		-	 	0x1000000	;
Linux		-	 	0xffffffff81000000	.

	 	startup_64		

53

https://en.wikipedia.org/wiki/Process_identifier
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c#L489
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S#L93
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_types.h

				leaq				_text(%rip),	%rbp

				subq				$_text	-	__START_KERNEL_map,	%rbp

	 	0x1000000		 kASLR		 	0x1000000		RIP 	rip-relative		 	rbp			 	$_text	-	__START_KERNEL_map		
	 	_text			 	0xffffffff81000000			 	0x1000000		__START_KERNEL_map			 	0xffffffff80000000	

rbp	=	0x1000000	-	(0xffffffff81000000	-	0xffffffff80000000)

	rbp			 	0	 	0			Linux		 kASLR	

	 	startup_64		

				testl				$~PMD_PAGE_MASK,	%ebp

				jnz				bad_address

	 	rbp		32	 	PMD_PAGE_MASK		 	PMD_PAGE_MASK			Page	middle	directory		 paging	

#define	PMD_PAGE_MASK											(~(PMD_PAGE_SIZE-1))

#define	PMD_PAGE_SIZE											(_AC(1,	UL)	<<	PMD_SHIFT)

#define	PMD_SHIFT							21

	 	PMD_PAGE_SIZE			 	2MB			 	text			 	2MB		 	bad_address	

	 	18		

				leaq				_text(%rip),	%rax

				shrq				$MAX_PHYSMEM_BITS,	%rax

				jnz				bad_address

	 	46		246

#define	MAX_PHYSMEM_BITS							46

OK

	Identity	

				addq				%rbp,	early_level4_pgt	+	(L4_START_KERNEL*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(510*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(511*8)(%rip)

				addq				%rbp,	level2_fixmap_pgt	+	(506*8)(%rip)

	 	startup_64			 	0x1000000				 	early_level4_pgt		level3_kernel_pgt		 	rbp	

	early_level4_pgt		level3_kernel_pgt			 	level2_fixmap_pgt		

NEXT_PAGE(early_level4_pgt)

				.fill				511,8,0

				.quad				level3_kernel_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

NEXT_PAGE(level3_kernel_pgt)

				.fill				L3_START_KERNEL,8,0

				.quad				level2_kernel_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.quad				level2_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

54

https://en.wikipedia.org/wiki/Address_space_layout_randomization#Linux
https://en.wikipedia.org/wiki/Address_space_layout_randomization#Linux

NEXT_PAGE(level2_kernel_pgt)

				PMDS(0,	__PAGE_KERNEL_LARGE_EXEC,

								KERNEL_IMAGE_SIZE/PMD_SIZE)

NEXT_PAGE(level2_fixmap_pgt)

				.fill				506,8,0

				.quad				level1_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

				.fill				5,8,0

NEXT_PAGE(level1_fixmap_pgt)

				.fill				512,8,0

	 	early_level4_pgt		(4096	-	8)		 	0		 	511			 	level3_kernel_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE	

	__START_KERNEL_map			 	__START_KERNEL_map			 	level3_kernel_pgt			 	_PAGE_TABLE	

#define	_PAGE_TABLE					(_PAGE_PRESENT	|	_PAGE_RW	|	_PAGE_USER	|	\

																									_PAGE_ACCESSED	|	_PAGE_DIRTY)

	 	.

	level3_kernel_pgt			 	510		 	L3_START_KERNEL		 	0		 	L3_START_KERNEL		Page	Upper	Directory
	__START_KERNEL_map			 	510		 	level2_kernel_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE			 	level2_kernel_pgt		

#define	_KERNPG_TABLE			(_PAGE_PRESENT	|	_PAGE_RW	|	_PAGE_ACCESSED	|	\

																									_PAGE_DIRTY)

	level2_fixmap_pgt		 	level2_fixmap_pgt	 	10	MB		 vsyscalls	 	level2_kernel_pgt			PDMS		
	__START_KERNEL_map			 	.text			 	512	MB		 	512		MB

	rbp			 	startup_64			 	startup_64		

				addq				%rbp,	early_level4_pgt	+	(L4_START_KERNEL*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(510*8)(%rip)

				addq				%rbp,	level3_kernel_pgt	+	(511*8)(%rip)

				addq				%rbp,	level2_fixmap_pgt	+	(506*8)(%rip)

	early_level4_pgt			 	level3_kernel_pgt		level3_kernel_pgt			 	level2_kernel_pgt			 	level2_fixmap_pgt	

	level2_fixmap_pgt		507	 	level1_fixmap_pgt		

early_level4_pgt[511]	->	level3_kernel_pgt[0]

level3_kernel_pgt[510]	->	level2_kernel_pgt[0]

level3_kernel_pgt[511]	->	level2_fixmap_pgt[0]

level2_kernel_pgt[0]			->	512	MB	kernel	mapping

level2_fixmap_pgt[507]	->	level1_fixmap_pgt

	 	early_level4_pgt		

Identity	Map	Paging

	Identity		Identity		 	1	:	1		 	_text			 	_early_level4_pgt			RIP		 	rdi			 	rbx		

				leaq				_text(%rip),	%rdi

				leaq				early_level4_pgt(%rip),	%rbx

	 	rax			 	_text			 	_text			 	_text			 	PGDIR_SHIFT		

55

https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Linker_%28computing%29

				movq				%rdi,	%rax

				shrq				$PGDIR_SHIFT,	%rax

				leaq				(4096	+	_KERNPG_TABLE)(%rbx),	%rdx

				movq				%rdx,	0(%rbx,%rax,8)

				movq				%rdx,	8(%rbx,%rax,8)

	 	PGDIR_SHIFT			 	39		PGDIR_SHIFT	mask

#define	PGDIR_SHIFT					39

#define	PUD_SHIFT							30

#define	PMD_SHIFT							21

	 	level3_kernel_pgt			 	rdx			 	_KERNPG_TABLE		 	level3_kernel_pgt			 	early_level4_pgt		

	 	rdx			 	4096		 	early_level4_pgt			 	rdi			 	_text			 	rax			 	level3_kernel_pgt	

				addq				$4096,	%rdx

				movq				%rdi,	%rax

				shrq				$PUD_SHIFT,	%rax

				andl				$(PTRS_PER_PUD-1),	%eax

				movq				%rdx,	4096(%rbx,%rax,8)

				incl				%eax

				andl				$(PTRS_PER_PUD-1),	%eax

				movq				%rdx,	4096(%rbx,%rax,8)

	 	level2_kernel_pgt		text		data	

				leaq				level2_kernel_pgt(%rip),	%rdi

				leaq				4096(%rdi),	%r8

1:				testq				$1,	0(%rdi)

				jz				2f

				addq				%rbp,	0(%rdi)

2:				addq				$8,	%rdi

				cmp				%r8,	%rdi

				jne				1b

	 	level2_kernel_pgt			 	rdi		 	r8			 	level2_kernel_pgt		0	 	rdi		8	 	r8		 	1		

	 	rbp			 	_text			 	phys_base			 	early_level4_pgt			 	rbp			 	1	

				addq				%rbp,	phys_base(%rip)

				movq				$(early_level4_pgt	-	__START_KERNEL_map),	%rax

				jmp	1f

	 	phys_base			 	level2_kernel_pgt			 	512		MB

	1		 	PAE			 	PGE		Paging	Global	Extension 	phys_base		 	rax			 	cr3		

1:

				movl				$(X86_CR4_PAE	|	X86_CR4_PGE),	%ecx

				movq				%rcx,	%cr4

				addq				phys_base(%rip),	%rax

				movq				%rax,	%cr3

CPU	 NX	

56

http://en.wikipedia.org/wiki/NX_bit

				movl				$0x80000001,	%eax

				cpuid

				movl				%edx,%edi

	 	0x80000001			 	eax			 	cpuid			 	edx			 	edi		

	 	MSR_EFER			 	0xc0000080		 	ecx		 	rdmsr		CPUModel	Specific	Register	(MSR)

				movl				$MSR_EFER,	%ecx

				rdmsr

	 	edx:eax			 	EFER		

63																																																																														32

	--

|																																																																															|

|																																Reserved	MBZ																																			|

|																																																																															|

	--

31																												16		15						14						13			12		11			10		9		8	7		1			0

	--

|																														|	T	|							|							|				|			|			|			|			|			|			|

|	Reserved	MBZ																	|	C	|	FFXSR	|	LMSLE	|SVME|NXE|LMA|MBZ|LME|RAZ|SCE|

|																														|	E	|							|							|				|			|			|			|			|			|			|

	--

	MSR		 	EFER			 	edx:eax			 	btsl			 	_EFER_SCE		01	 	SCE			 	SYSCALL			 	SYSRET		
	edi		 	cpuid			20	 	20			 	NX			 	EFER_SCE	MSR

				btsl				$_EFER_SCE,	%eax

				btl								$20,%edi

				jnc					1f

				btsl				$_EFER_NX,	%eax

				btsq				$_PAGE_BIT_NX,early_pmd_flags(%rip)

1:				wrmsr

	 NX		 	_EFER_NX		MSR	 NX		 	cr0		control	register	

	X86_CR0_PE		-	;
	X86_CR0_MP		-	CR0TS	WAIT/FWAIT	
	X86_CR0_ET		-	3868028780387;
	X86_CR0_NE		-	x87PCx87
	X86_CR0_WP		-	CPU0;
	X86_CR0_AM		-	AMEFLGSAC3;
	X86_CR0_PG		-	.

#define	CR0_STATE				(X86_CR0_PE	|	X86_CR0_MP	|	X86_CR0_ET	|	\

													X86_CR0_NE	|	X86_CR0_WP	|	X86_CR0_AM	|	\

													X86_CR0_PG)

movl				$CR0_STATE,	%eax

movq				%rax,	%cr0

C 	 FLAGS

movq	stack_start(%rip),	%rsp

pushq	$0

popfq

	 	stack_start	

57

https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S

GLOBAL(stack_start)

.quad		init_thread_union+THREAD_SIZE-8

	 	GLOABL			 arch/x86/include/asm/linkage.h	

#define	GLOBAL(name)				\

									.globl	name;											\

									name:

	THREAD_SIZE			 arch/x86/include/asm/page_64_types.h	 	KASAN_STACK_ORDER		:

#define	THREAD_SIZE_ORDER							(2	+	KASAN_STACK_ORDER)

#define	THREAD_SIZE		(PAGE_SIZE	<<	THREAD_SIZE_ORDER)

	 kasan		 	PAGE_SIZE		4096	 	THREAD_SIZE			 	16		KB 		Linux	 	thread_info		union

union	thread_union	{

									struct	thread_info	thread_info;

									unsigned	long	stack[THREAD_SIZE/sizeof(long)];

};

	init_thread_union	

union	thread_union	init_thread_union	__init_task_data	=

				{	INIT_THREAD_INFO(init_task)	};

	 	INIT_THREAD_INFO			 	task_struct		

#define	INIT_THREAD_INFO(tsk)								\

{																																															\

				.task								=	&tsk,																									\

				.flags								=	0,																												\

				.cpu								=	0,																												\

				.addr_limit				=	KERNEL_DS,																				\

}

	task_struct		 	thread_union		

+-----------------------+

|																							|

|																							|

|																							|

|					Kernel	stack						|

|																							|

|																							|

|																							|

|-----------------------|

|																							|

|		struct	thread_info			|

|																							|

+-----------------------+

	 	8		

	 	lgdt		

lgdt				early_gdt_descr(%rip)

	 	early_gdt_descr		

58

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/linkage.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_64_types.h
http://lxr.free-electrons.com/source/Documentation/kasan.txt
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Parent_process
https://en.wikipedia.org/wiki/Child_process
https://en.wikipedia.org/wiki/Union_type#C.2FC.2B.2B
https://en.wikipedia.org/wiki/Global_Descriptor_Table

early_gdt_descr:

				.word				GDT_ENTRIES*8-1

early_gdt_descr_base:

				.quad				INIT_PER_CPU_VAR(gdt_page)

	 				 	early_gdt_descr		32

#define	GDT_ENTRIES	32

	 	early_gdt_descr_base	.	 	gdt_page		arch/x86/include/asm/desc.h:

struct	gdt_page	{

				struct	desc_struct	gdt[GDT_ENTRIES];

}	__attribute__((aligned(PAGE_SIZE)));

	 	desc_struct			gdt		desc_struct	:

struct	desc_struct	{

									union	{

																	struct	{

																									unsigned	int	a;

																									unsigned	int	b;

																	};

																	struct	{

																									u16	limit0;

																									u16	base0;

																									unsigned	base1:	8,	type:	4,	s:	1,	dpl:	2,	p:	1;

																									unsigned	limit:	4,	avl:	1,	l:	1,	d:	1,	g:	1,	base2:	8;

																	};

									};

	}	__attribute__((packed));

	 	GDT		 	gdt_page		 	PAGE_SIZE	(4096)		 	gdt		

	 	INIT_PER_CPU_VAR		 arch/x86/include/asm/percpu.h	 	init_per_cpu__	

#define	INIT_PER_CPU_VAR(var)	init_per_cpu__##var

	 	init_per_cpu__gdt_page		 linker	script	:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(gdt_page);

	INIT_PER_CPU			 	init_per_cpu__gdt_page			 	__per_cpu_load		GDT

per-CPU2.6	 	per-CPU		CPU	 	gdt_page		per-CPUCPU	 	GDT			 Concepts/per-cpu	
	per-CPU		

				xorl	%eax,%eax

				movl	%eax,%ds

				movl	%eax,%ss

				movl	%eax,%es

				movl	%eax,%fs

				movl	%eax,%gs

	 	gs			 	irqstack	

				movl				$MSR_GS_BASE,%ecx

59

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/percpu.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://en.wikipedia.org/wiki/Interrupt

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

	 	MSR_GS_BASE		

#define	MSR_GS_BASE													0xc0000101

	 	MSR_GS_BASE			 	ecx			 	wrmsr			 	eax			 	edx			 	initial_gs	 	cs	,		fs	,		ds			 	ss		64	 	fs		
	gs			 	fs			 	gs			 	cs			 Model	Specific	Registers	 	0xc0000101			 	gs.base		MSR	 		
	MSR_GS_BASE		

	bootparam		 	rdi		(rsi)C

				movq				initial_code(%rip),%rax

				pushq				$0

				pushq				$__KERNEL_CS

				pushq				%rax

				lretq

	 	initial_code			 	rax		 	__KERNEL_CS			 	initial_code			 	lreq		 	initial_code		

				.balign				8

				GLOBAL(initial_code)

				.quad				x86_64_start_kernel

				...

				...

				...

	 	initial_code			 	x86_64_start_kernel			 arch/x86/kerne/head64.c

asmlinkage	__visible	void	__init	x86_64_start_kernel(char	*	real_mode_data)	{

				...

				...

				...

}

	 	real_mode_data		 	rdi		

C

	start_kernel
“”- init/main.cstart_kernel

	 	x86_64_start_kernel		

BUILD_BUG_ON(MODULES_VADDR	<	__START_KERNEL_map);

BUILD_BUG_ON(MODULES_VADDR	-	__START_KERNEL_map	<	KERNEL_IMAGE_SIZE);

BUILD_BUG_ON(MODULES_LEN	+	KERNEL_IMAGE_SIZE	>	2*PUD_SIZE);

BUILD_BUG_ON((__START_KERNEL_map	&	~PMD_MASK)	!=	0);

BUILD_BUG_ON((MODULES_VADDR	&	~PMD_MASK)	!=	0);

BUILD_BUG_ON(!(MODULES_VADDR	>	__START_KERNEL));

BUILD_BUG_ON(!(((MODULES_END	-	1)	&	PGDIR_MASK)	==	(__START_KERNEL	&	PGDIR_MASK)));

BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses)	<=	MODULES_END);

	text		 	__START_KERNEL_map			text	 	BUILD_BUG_ON		

#define	BUILD_BUG_ON(condition)	((void)sizeof(char[1	-	2*!!(condition)]))

60

https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/init/main.c#L489

	 	MODULES_VADDR	<	__START_KERNEL_map		 	!!conditions			 	condition	!=	0		 	MODULES_VADDR	<	__START_KERNEL_map	

	 	!!(condition)		10 	2*!!(condition)		 	2			 	0	

C

	start_kernel		 	cr4_init_shadow		CPU	 	cr4		Shadow	Copy	 	cr4		CPU	 	cr4		
	reset_early_page_tables			 	cr3		

for	(i	=	0;	i	<	PTRS_PER_PGD-1;	i++)

				early_level4_pgt[i].pgd	=	0;

next_early_pgt	=	0;

write_cr3(__pa_nodebug(early_level4_pgt));

	 	PTRS_PER_PGD			 	512	0	 	next_early_pgt		0	 	early_level4_pgt			 	cr3		__pa_nodebug		

((unsigned	long)(x)	-	__START_KERNEL_map	+	phys_base)

	 	__bss_stop			 	__bss_start			 	_bss			 	IDT 		

Linux

twitter	 0xAX issue

Model	Specific	Register
Paging
Previous	part	-	Kernel	decompression
NX
ASLR

61

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Address_space_layout_randomization

	

	 	Linux	 	

	 		 	

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handler_array[i]);

	 arch/x86/kernel/head64.c

CPUCPU——	 (Interrupt	Handler)

	-	CPU
	-	
	-	CPU

	 				 	0			 	255			 	32		 	32			 	255		 	NUM_EXCEPTION_VECTORS		

#define	NUM_EXCEPTION_VECTORS	32

CPU	 APIC		CPU		 				 	0-31		

--

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																			|

--

|0					|	#DE				|Divide	Error								|Fault|NO								|DIV	and	IDIV																										|

|---

|1					|	#DB				|Reserved												|F/T		|NO								|																																						|

|---

|2					|	---				|NMI																	|INT		|NO								|external	NMI																										|

|---

|3					|	#BP				|Breakpoint										|Trap	|NO								|INT	3																																	|

|---

|4					|	#OF				|Overflow												|Trap	|NO								|INTO		instruction																					|

|---

|5					|	#BR				|Bound	Range	Exceeded|Fault|NO								|BOUND	instruction																					|

|---

|6					|	#UD				|Invalid	Opcode						|Fault|NO								|UD2	instruction																							|

|---

|7					|	#NM				|Device	Not	Available|Fault|NO								|Floating	point	or	[F]WAIT													|

|---

|8					|	#DF				|Double	Fault								|Abort|YES							|Ant	instrctions	which	can	generate	NMI|

|---

|9					|	---				|Reserved												|Fault|NO								|																																						|

|---

|10				|	#TS				|Invalid	TSS									|Fault|YES							|Task	switch	or	TSS	access													|

|---

|11				|	#NP				|Segment	Not	Present	|Fault|NO								|Accessing	segment	register												|

|---

|12				|	#SS				|Stack-Segment	Fault	|Fault|YES							|Stack	operations																						|

|---

|13				|	#GP				|General	Protection		|Fault|YES							|Memory	reference																						|

|---

62

https://en.wikipedia.org/wiki/Page_table
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://en.wikipedia.org/wiki/Interrupt_handler
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

|14				|	#PF				|Page	fault										|Fault|YES							|Memory	reference																						|

|---

|15				|	---				|Reserved												|					|NO								|																																						|

|---

|16				|	#MF				|x87	FPU	fp	error				|Fault|NO								|Floating	point	or	[F]Wait													|

|---

|17				|	#AC				|Alignment	Check					|Fault|YES							|Data	reference																								|

|---

|18				|	#MC				|Machine	Check							|Abort|NO								|																																						|

|---

|19				|	#XM				|SIMD	fp	exception			|Fault|NO								|SSE[2,3]	instructions																	|

|---

|20				|	#VE				|Virtualization	exc.	|Fault|NO								|EPT	violations																								|

|---

|21-31	|	---				|Reserved												|INT		|NO								|External	interrupts																			|

--

CPU	-	IDTIDT	8IDT	 	(gate)		CPU	86416CPU	 	GDTR			 	IDTR			 	lidt		

64	IDT	

127																																																																													96

	--

|																																																																															|

|																																Reserved																																							|

|																																																																															|

	--

95																																																																														64

	--

|																																																																															|

|																															Offset	63..32																																			|

|																																																																															|

	--

63																															48	47						46		44			42				39													34				32

	--

|																																		|							|		D		|			|					|						|			|			|					|

|							Offset	31..16														|			P			|		P		|	0	|Type	|0	0	0	|	0	|	0	|	IST	|

|																																		|							|		L		|			|					|						|			|			|					|

	--

31																																			15	16																																						0

	--

|																																						|																																								|

|										Segment	Selector												|																	Offset	15..0											|

|																																						|																																								|

	--

:

	Offset		-	
	DPL		-	
	P		-	Segment	Present	;
	Segment	selector		-	GDTLDT
	IST		-	

	 	Type		

	(far)	CPU	 	IF		CPU		 	IF		CPU	CPU		 	iret			 	IF		

0	CPU	

CPU	 	cs	IP
	 	#PF		CPU

63

	iret	

OK

	IDT

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

				set_intr_gate(i,	early_idt_handler_array[i]);

	 	set_intr_gate		

	 		

	 	IDT			 	&idt_descr			 	IDT			 	early_idt_handler_array			 arch/x86/include/asm/segment.h	32

#define	EARLY_IDT_HANDLER_SIZE			9

#define	NUM_EXCEPTION_VECTORS				32

extern	const	char	early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];

	early_idt_handler_array			 	288			 	9		225

	 	IDT		32 	early_idt_handler_array			 arch/x86/kernel/head_64.S		 	set_intr_gate		

	set_intr_gate			 arch/x86/include/asm/desc.h

#define	set_intr_gate(n,	addr)																									\

									do	{																																																												\

																	BUG_ON((unsigned)n	>	0xFF);																													\

																	_set_gate(n,	GATE_INTERRUPT,	(void	*)addr,	0,	0,								\

																											__KERNEL_CS);																																	\

																	_trace_set_gate(n,	GATE_INTERRUPT,	(void	*)trace_##addr,\

																																	0,	0,	__KERNEL_CS);																					\

									}	while	(0)

	 	BUG_ON		255	 	256			 	_set_gate			 	IDT	

static	inline	void	_set_gate(int	gate,	unsigned	type,	void	*addr,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

									gate_desc	s;

									pack_gate(&s,	type,	(unsigned	long)addr,	dpl,	ist,	seg);

									write_idt_entry(idt_table,	gate,	&s);

									write_trace_idt_entry(gate,	&s);

}

	 	_set_gate			 	pack_gate			 	gate_desc		

static	inline	void	pack_gate(gate_desc	*gate,	unsigned	type,	unsigned	long	func,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate->offset_low								=	PTR_LOW(func);

								gate->segment											=	__KERNEL_CS;

								gate->ist															=	ist;

								gate->p																	=	1;

								gate->dpl															=	dpl;

								gate->zero0													=	0;

								gate->zero1													=	0;

								gate->type														=	type;

64

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/segment.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h

								gate->offset_middle					=	PTR_MIDDLE(func);

								gate->offset_high							=	PTR_HIGH(func);

}

#define	PTR_LOW(x)	((unsigned	long	long)(x)	&	0xFFFF)

#define	PTR_MIDDLE(x)	(((unsigned	long	long)(x)	>>	16)	&	0xFFFF)

#define	PTR_HIGH(x)	((unsigned	long	long)(x)	>>	32)

	 	PTR_LOW			x		 	2			 	PTR_MIDDLE			x		 	2			 	PTR_HIGH			x		 	4			 	__KERNEL_CS	

	Interrupt	Stack	Table			 			0	 	GAT_INTERRUPT		

IDT	 	native_write_idt_entry			 	IDT	

static	inline	void	native_write_idt_entry(gate_desc	*idt,	int	entry,	const	gate_desc	*gate)

{

								memcpy(&idt[entry],	gate,	sizeof(*gate));

}

	idt_table			 	gate_desc			 		

load_idt((const	struct	desc_ptr	*)&idt_descr);

	idt_descr		

struct	desc_ptr	idt_descr	=	{	NR_VECTORS	*	16	-	1,	(unsigned	long)	idt_table	};

	load_idt			 	lidt		

asm	volatile("lidt	%0"::"m"	(*dtr));

	 	trace*			 	_set_gate			 	IDT			 	idt_table			 	trace_idt_table		tracepoint

	 			CPU

	 	early_idt_handler_array			 	IDT			 	early_idt_handler_array			 arch/x86/kernel/head_64.S

				.globl	early_idt_handler_array

early_idt_handlers:

				i	=	0

				.rept	NUM_EXCEPTION_VECTORS

				.if	(EXCEPTION_ERRCODE_MASK	>>	i)	&	1

				pushq	$0

				.endif

				pushq	$i

				jmp	early_idt_handler_common

				i	=	i	+	1

				.fill	early_idt_handler_array	+	i*EARLY_IDT_HANDLER_SIZE	-	.,	1,	0xcc

				.endr

	 	32			 	0		 	early_idt_handler_common			 	objdump		

$	objdump	-D	vmlinux

...

...

...

65

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S

ffffffff81fe5000	<early_idt_handler_array>:

ffffffff81fe5000:							6a	00																			pushq		$0x0

ffffffff81fe5002:							6a	00																			pushq		$0x0

ffffffff81fe5004:							e9	17	01	00	00										jmpq			ffffffff81fe5120	<early_idt_handler_common>

ffffffff81fe5009:							6a	00																			pushq		$0x0

ffffffff81fe500b:							6a	01																			pushq		$0x1

ffffffff81fe500d:							e9	0e	01	00	00										jmpq			ffffffff81fe5120	<early_idt_handler_common>

ffffffff81fe5012:							6a	00																			pushq		$0x0

ffffffff81fe5014:							6a	02																			pushq		$0x2

...

...

...

CPU	 	CS			 	RIP			 	early_idt_handler		

|--------------------|

|	%rflags												|

|	%cs																|

|	%rip															|

|	rsp	-->	error	code	|

|--------------------|

	 	early_idt_handler_common			 arch/x86/kernel/head_64.S		 (NMI)

				cmpl	$2,(%rsp)

				je	.Lis_nmi

	 	is_nmi		:

is_nmi:

				addq	$16,%rsp

				INTERRUPT_RETURN

	 	INTERRUPT_RETURN			 	iretq		

	 	NMI			 	early_recursion_flag			 	early_idt_handler_common		

				pushq	%rax

				pushq	%rcx

				pushq	%rdx

				pushq	%rsi

				pushq	%rdi

				pushq	%r8

				pushq	%r9

				pushq	%r10

				pushq	%r11

				cmpl	$__KERNEL_CS,96(%rsp)

				jne	11f

	 	11			 	PANIC			 	#PF			 Page	Fault 	 	cr2			 	rdi			 	early_make_pgtable		

				cmpl	$14,72(%rsp)

				jnz	10f

				GET_CR2_INTO(%rdi)

				call	early_make_pgtable

				andl	%eax,%eax

				jz	20f

	 	#PF		

66

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S#L343
http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Page_fault

				popq	%r11

				popq	%r10

				popq	%r9

				popq	%r8

				popq	%rdi

				popq	%rsi

				popq	%rdx

				popq	%rcx

				popq	%rax

	 	iret		

	 	early_make_pgtable			 	#PF			 	4G		4G	 	boot_params		

	early_make_pgtable			 arch/x86/kernel/head64.c	 	cr2		

int	__init	early_make_pgtable(unsigned	long	address)

{

				unsigned	long	physaddr	=	address	-	__PAGE_OFFSET;

				unsigned	long	i;

				pgdval_t	pgd,	*pgd_p;

				pudval_t	pud,	*pud_p;

				pmdval_t	pmd,	*pmd_p;

				...

				...

				...

}

	 	*val_t		

typedef	unsigned	long			pgdval_t;

	 	*_t		(val)	 	pgd_t		……	 arch/x86/include/asm/pgtable_types.h

typedef	struct	{	pgdval_t	pgd;	}	pgd_t;

extern	pgd_t	early_level4_pgt[PTRS_PER_PGD];

	 	early_level4_pgt			 	pdg_t			 	pgd		

	 	#PF			 	pgd		

pgd_p	=	&early_level4_pgt[pgd_index(address)].pgd;

pgd	=	*pgd_p;

	 	pgd			 	pud_p		

pud_p	=	(pudval_t	*)((pgd	&	PTE_PFN_MASK)	+	__START_KERNEL_map	-	phys_base);

	 	PTE_PFN_MASK		

#define	PTE_PFN_MASK												((pteval_t)PHYSICAL_PAGE_MASK)

67

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgtable_types.h

(~(PAGE_SIZE-1))	&	((1	<<	46)	-	1)

0b11

46bit

	 	pgd			 	next_early_pgt			 	EARLY_DYNAMIC_PAGE_TABLES		 	64		 	EARLY_DYNAMIC_PAGE_TABLES		
	next_early_pgt			 	EARLY_DYNAMIC_PAGE_TABLES			 	_KERPG_TABLE		

if	(next_early_pgt	>=	EARLY_DYNAMIC_PAGE_TABLES)	{

				reset_early_page_tables();

				goto	again;

}

pud_p	=	(pudval_t	*)early_dynamic_pgts[next_early_pgt++];

for	(i	=	0;	i	<	PTRS_PER_PUD;	i++)

				pud_p[i]	=	0;

*pgd_p	=	(pgdval_t)pud_p	-	__START_KERNEL_map	+	phys_base	+	_KERNPG_TABLE;

pud_p	+=	pud_index(address);

pud	=	*pud_p;

	In	the	end	we	fix	address	of	the	page	middle	directory	which	contains	maps	kernel	text+data	virtual	addresses:

pmd	=	(physaddr	&	PMD_MASK)	+	early_pmd_flags;

pmd_p[pmd_index(address)]	=	pmd;

	 	early_level4_pgt		

twitter	 0xAX issue

	 	start_kernel		

GNU	assembly	.rept
APIC
NMI
Page	table
Interrupt	handler
Page	Fault,
Previous	part

68

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://sourceware.org/binutils/docs-2.23/as/Rept.html
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Page_fault

69

	

	Linux	 		Linux	“”——	 init/main.c		start_kernel			 	start_kernel		

boot_params	again

	 	IDTR			 	copy_bootdata		

copy_bootdata(__va(real_mode_data));

——		read_mode_data		 	boot_params			 arch/x86/include/uapi/asm/bootparam.h		 arch/x86/kernel/head_64.S	
	x86_64_start_kernel		

				/*	rsi	is	pointer	to	real	mode	structure	with	interesting	info.

							pass	it	to	C	*/

				movq				%rsi,	%rdi

	 	__va				 init/main.c

#define	__va(x)																	((void	*)((unsigned	long)(x)+PAGE_OFFSET))

	 	PAGE_OFFSET			 	__PAGE_OFFSET		 	0xffff880000000000		 	boot_params			 	copy_bootdata		
	real_mod_data			 arch/x86/kernel/setup.h		 	boot_params	

extern	struct	boot_params	boot_params;

	copy_boot_data		:

static	void	__init	copy_bootdata(char	*real_mode_data)

{

				char	*	command_line;

				unsigned	long	cmd_line_ptr;

				memcpy(&boot_params,	real_mode_data,	sizeof	boot_params);

				sanitize_boot_params(&boot_params);

				cmd_line_ptr	=	get_cmd_line_ptr();

				if	(cmd_line_ptr)	{

								command_line	=	__va(cmd_line_ptr);

								memcpy(boot_command_line,	command_line,	COMMAND_LINE_SIZE);

				}

}

	 	__init		

	memcpy			 	real_mode_data			 	boot_params	bootloader	 	boot_params			 	sanitize_boot_params		
	ext_ramdisk_image			 	get_cmd_line_ptr		

unsigned	long	cmd_line_ptr	=	boot_params.hdr.cmd_line_ptr;

cmd_line_ptr	|=	(u64)boot_params.ext_cmd_line_ptr	<<	32;

return	cmd_line_ptr;

	get_cmd_line_ptr			 	boot_params		64	 	cmd_line_ptr		 	boot_command_line		

70

https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-2.md
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L114
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.h

extern	char	__initdata	boot_command_line[];

	 	boot_params			 	load_ucode_bsp		microcode

	 	console_loglevel			 	early_printk			 	Kernel	Alive		 	early_printk		bug	 commit

	 	boot_params		 	 	reset_early_page_tables		

				clear_page(init_level4_pgt);

	init_level4_pgt			 arch/x86/kernel/head_64.S:

NEXT_PAGE(init_level4_pgt)

				.quad			level3_ident_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.org				init_level4_pgt	+	L4_PAGE_OFFSET*8,	0

				.quad			level3_ident_pgt	-	__START_KERNEL_map	+	_KERNPG_TABLE

				.org				init_level4_pgt	+	L4_START_KERNEL*8,	0

				.quad			level3_kernel_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

	bss		2.5G	 	clear_page			 arch/x86/lib/clear_page_64.S

ENTRY(clear_page)

				CFI_STARTPROC

				xorl	%eax,%eax

				movl	$4096/64,%ecx

				.p2align	4

				.Lloop:

				decl				%ecx

#define	PUT(x)	movq	%rax,x*8(%rdi)

				movq	%rax,(%rdi)

				PUT(1)

				PUT(2)

				PUT(3)

				PUT(4)

				PUT(5)

				PUT(6)

				PUT(7)

				leaq	64(%rdi),%rdi

				jnz				.Lloop

				nop

				ret

				CFI_ENDPROC

				.Lclear_page_end:

				ENDPROC(clear_page)

	 	CFI_STARTPROC			 	CFI_ENDPROC		GNU	

#define	CFI_STARTPROC											.cfi_startproc

#define	CFI_ENDPROC													.cfi_endproc

	 	CFI_STARTPROC			 	eax			 	ecx			64	 	.Lloop			 	ecx			 	rax		0	 	rdi		 	rdi		
	 	init_level4_pgt		7	 	rdi		8	 	init_level4_pgt		640	 	rdi		64	 	ecx		0	 	init_level4_pgt	

	 	init_level4_pgt		0

init_level4_pgt[511]	=	early_level4_pgt[511];

71

http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=91d8f0416f3989e248d3a3d3efb821eda10a85d2
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/lib/clear_page_64.S

	 	reset_early_page_table			 	early_level4_pgt		

	x86_64_start_kernel		

x86_64_start_reservations(real_mode_data);

	 	real_mode_data			 	x86_64_start_reservations			 	x86_64_start_kernel		

void	__init	x86_64_start_reservations(char	*real_mode_data)

{

				if	(!boot_params.hdr.version)

								copy_bootdata(__va(real_mode_data));

				reserve_ebda_region();

				start_kernel();

}

	 	x86_64_start_reservations			 	boot_params.hdr.version	

if	(!boot_params.hdr.version)

				copy_bootdata(__va(real_mode_data));

0	 	copy_bootdata		 	real_mode_data		

	 	reserve_ebda_region			 arch/x86/kernel/head.c	 	EBDA	Extended	BIOS	Data	AreaBIOSBIOS
Conventiional	Memory640K

	 	reserve_ebda_region		

if	(paravirt_enabled())

				return;

	 	reserve_ebda_region		BIOS

lowmem	=	*(unsigned	short	*)__va(BIOS_LOWMEM_KILOBYTES);

lowmem	<<=	10;

BIOSKB101024BIOS

ebda_addr	=	get_bios_ebda();

	 	get_bios_ebda			 arch/x86/include/asm/bios_ebda.h

static	inline	unsigned	int	get_bios_ebda(void)

{

				unsigned	int	address	=	*(unsigned	short	*)phys_to_virt(0x40E);

				address	<<=	4;

				return	address;

}

	 	0x40E		 	0x0040:0x000e		BIOS	 	phys_to_virt			 	__va		

static	inline	void	*phys_to_virt(phys_addr_t	address)

72

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bios_ebda.h

{

									return	__va(address);

}

	phys_to_virt			 	phys_addr_t			 	CONFIG_PHYS_ADDR_T_64BIT	

#ifdef	CONFIG_PHYS_ADDR_T_64BIT

				typedef	u64	phys_addr_t;

#else

				typedef	u32	phys_addr_t;

#endif

	 	CONFIG_PHYS_ADDR_T_64BIT		BIOS4 	ebda_addr		BIOS

BIOS	 	INSANE_CUTOFF		

if	(ebda_addr	<	INSANE_CUTOFF)

				ebda_addr	=	LOWMEM_CAP;

if	(lowmem	<	INSANE_CUTOFF)

				lowmem	=	LOWMEM_CAP;

	INSANE_CUTOFF		

#define	INSANE_CUTOFF								0x20000U

	128	KB.	BIOS	 	memblock_reserve		1MBBIOS

lowmem	=	min(lowmem,	ebda_addr);

lowmem	=	min(lowmem,	LOWMEM_CAP);

memblock_reserve(lowmem,	0x100000	-	lowmem);

	memblock_reserve			 mm/block.c

	memblock_reserve		Linux

Linux

	 	memblock_reserve			 	memblock_reserve		

memblock_reserve_region(base,	size,	MAX_NUMNODES,	0);

	memblock_reserve_region		

	NUMA	
	flags

	 	memblock_reserve_region			 	memblock_type		

struct	memblock_type	*_rgn	=	&memblock.reserved;

	memblock_type		

73

https://github.com/torvalds/linux/blob/master/mm/block.c

struct	memblock_type	{

									unsigned	long	cnt;

									unsigned	long	max;

									phys_addr_t	total_size;

									struct	memblock_region	*regions;

};

BIOS 	memblock		

struct	memblock	{

									bool	bottom_up;

									phys_addr_t	current_limit;

									struct	memblock_type	memory;

									struct	memblock_type	reserved;

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

									struct	memblock_type	physmem;

#endif

};

	 	memblock.reserved			 	_rgn		memblock		

struct	memblock	memblock	__initdata_memblock	=	{

				.memory.regions								=	memblock_memory_init_regions,

				.memory.cnt								=	1,

				.memory.max								=	INIT_MEMBLOCK_REGIONS,

				.reserved.regions				=	memblock_reserved_init_regions,

				.reserved.cnt								=	1,

				.reserved.max								=	INIT_MEMBLOCK_REGIONS,

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

				.physmem.regions				=	memblock_physmem_init_regions,

				.physmem.cnt								=	1,

				.physmem.max								=	INIT_PHYSMEM_REGIONS,

#endif

				.bottom_up								=	false,

				.current_limit								=	MEMBLOCK_ALLOC_ANYWHERE,

};

	 	__initdata_memblock	

#define	__initdata_memblock	__meminitdata

	 	__meminit_data		

#define	__meminitdata				__section(.meminit.data)

	 	.meminit.data			 	_rgn			 	memblock_dbg			 	memblock=debug		

memblock_add_range(_rgn,	base,	size,	nid,	flags);

	 	.meminit.data			 	_rgn			 	&memblock.reserved	BIOS	 	_rgn		

if	(type->regions[0].size	==	0)	{

				WARN_ON(type->cnt	!=	1	||	type->total_size);

				type->regions[0].base	=	base;

				type->regions[0].size	=	size;

				type->regions[0].flags	=	flags;

				memblock_set_region_node(&type->regions[0],	nid);

				type->total_size	=	size;

				return	0;

}

74

	 	memblock_set_region_node		

NUMAID

	 	memblock_region		

struct	memblock_region	{

				phys_addr_t	base;

				phys_addr_t	size;

				unsigned	long	flags;

#ifdef	CONFIG_HAVE_MEMBLOCK_NODE_MAP

				int	nid;

#endif

};

NUMAID	 	MAX_NUMNODES			 include/linux/numa.h

#define	MAX_NUMNODES				(1	<<	NODES_SHIFT)

	 	NODES_SHIFT			 	CONFIG_NODES_SHIFT		

#ifdef	CONFIG_NODES_SHIFT

		#define	NODES_SHIFT					CONFIG_NODES_SHIFT

#else

		#define	NODES_SHIFT					0

#endif

	memblick_set_region_node			 	memblock_region			 	nid		

static	inline	void	memblock_set_region_node(struct	memblock_region	*r,	int	nid)

{

									r->nid	=	nid;

}

	 	.meminit.data		BIOS	 	memblock		reserve_ebda_region			 arch/x86/kernel/head64.c	

	x86_64_start_reservations			 init/main.c	

start_kernel()

	——		 	start_kernel			 	init		

twitter	 0xAX issue

BIOS	data	area
What	is	in	the	extended	BIOS	data	area	on	a	PC?
Previous	part

75

https://github.com/torvalds/linux/blob/master/include/linux/numa.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
http://stanislavs.org/helppc/bios_data_area.html
http://www.kryslix.com/nsfaq/Q.6.html
https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-2.md

76

.	Part	4.

Kernel	entry	point
	-	 	init/main.c		start_kernel	. 	start_kernel	arch/	 	start_kernel	86

	start_kernel	(1) 	start_kernel	 ,IDcgroupsCPU VFS	Cachercu,vmalloc,scheduler(),IRQs(
),ACPI()

:	 	Linux	Kernel	initialization	process	

	 	__attribute__	

	start_kernel	init/main.c.	__init	GCC	 	__attribute__	

				#define	__init						__section(.init.text)	__cold	notrace

	free_initmem	sections() 	__init		__cold		notrace	 	cold	 	notrace	

				#define	notrace	__attribute__((no_instrument_function))

	no_instrument_function	()

	start_kernel	 	__visible		

				#define	__visible	__attribute__((externally_visible))

	externally_visible	/ 	unusable	include/linux/init.h

start_kernel	

start_kernel

char	*command_line;

char	*after_dashes;

	parse_args	'name=value':

lockdep_init();

	lockdep_init			 lock	validator.		 list_head	lockdep_initialized			1			 spinlockmutex	.

	set_task_stack_end_magic		init_task		STACK_END_MAGIC		(0x57AC6E9D) 	init_task	():

struct	task_struct	init_task	=	INIT_TASK(init_task);

	task_struct			 include/linux/sched.h	task_sreuct		100	 	task_struct	Linux 		

	init_task		INIT_TASK	 include/linux/init_task.h(0)

	zero		 	runnable	.	CPU;

	-	start_kernel

77

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/DataStructures/linux-datastructures-1.md
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/Mutual_exclusion
https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L1278
https://github.com/torvalds/linux/blob/master/include/linux/init_task.h

	-	 	PF_KTHREAD			-	;
;
;
	 	&init_thread_info		-		init_thread_union.thread_info			 	initthread_union			-	 	thread_union			 	thread_info	:

union	thread_union	{

				struct	thread_info	thread_info;

				unsigned	long	stack[THREAD_SIZE/sizeof(long)];

};

	x86_64	CPU16KB	or	4stack 	unsigned	long		thread_union		thread_union		

struct	thread_info	{

								struct	task_struct						*task;

								struct	exec_domain						*exec_domain;

								__u32																			flags;	

								__u32																			status;

								__u32																			cpu;

								int																					saved_preempt_count;

								mm_segment_t												addr_limit;

								struct	restart_block				restart_block;

								void	__user													*sysenter_return;

								unsigned	int												sig_on_uaccess_error:1;

								unsigned	int												uaccess_err:1;

};

52 	thread_info	 	X86_64		thread_union.thread_info	16KB 	thread_info	 	16	kilobytes	-	62	bytes	=	16332	bytes	.
	 	thread_union	union	:

+-----------------------+

|																							|

|																							|

|								stack										|

|																							|

|_______________________|

|										|												|

|										|												|

|										|												|

|__________↓____________|													+--------------------+

|																							|													|																				|

|						thread_info						|<----------->|					task_struct				|

|																							|													|																				|

+-----------------------+													+--------------------+

http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-process-binds-in-union-construct

	INIT_TASK		task_struct's	' 	INIT_TASK	

	set_task_stack_end_magic	 kernel/fork.ccanary		init		

void	set_task_stack_end_magic(struct	task_struct	*tsk)

{

				unsigned	long	*stackend;

				stackend	=	end_of_stack(tsk);

				stackend	=	STACK_END_MAGIC;	/	for	overflow	detection	*/

}

	set_task_stack_end_magic		end_of_stack		 	task_struct			CONFIG_STACK_GROWSUP	x86

(unsigned	long	*)(task_thread_info(p)	+	1);

	task_thread_info	

	-	start_kernel

78

http://en.wikipedia.org/wiki/Union_type
http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-process-binds-in-union-construct
https://github.com/torvalds/linux/blob/master/kernel/fork.c#L297
http://en.wikipedia.org/wiki/Stack_buffer_overflow

#define	task_thread_info(task)		((struct	thread_info	*)(task)->stack)

	STACK_END_MAGIC	 	canary	

if	(*end_of_stack(task)	!=	STACK_END_MAGIC)	{

								//

								//	handle	stack	overflow	here

								//

}

	set_task_stack_end_magic			 	smp_setup_processor_id	.	x86_64	

void	__init	__weak	smp_setup_processor_id(void)

{

}

s390	and	arm64.

	debug_objects_early_init		lockdep_init	

	debug_object_early_init		boot_init_stack_canary	 	task_struct->canary		GCC 	CONFIG_CC_STACKPROTECTOR	

	boot_init_stack_canary				 TSC:

get_random_bytes(&canary,	sizeof(canary));

tsc	=	__native_read_tsc();

canary	+=	tsc	+	(tsc	<<	32UL);

,	 	stack_canary			 	task_struct	

current->stack_canary	=	canary;

IRQ:

this_cpu_write(irq_stack_union.stack_canary,	canary);	//	read	below	about	this_cpu_write

IRQ,	 IRQs.canary,	bootstrap	CPUCPU	maps.		(interrupts	for	current	CPU)		 	local_irq_disable		
	arch_local_irq_disable		include/linux/percpu-defs.h:

static	inline	notrace	void	arch_local_irq_enable(void)

{

								native_irq_enable();

}

	native_irq_enable		cli	 	X86_64		Where		native_irq_enable		is		cli		instruction	for		x86_64	.()CPU	IDCPU	bitmap

CPU

	start_kernel		boot_cpu_init	CPUID

int	cpu	=	smp_processor_id();

0.		CONFIG_DEBUG_PREEMPT			 	smp_processor_id			 	raw_smp_processor_id		:

#define	raw_smp_processor_id()	(this_cpu_read(cpu_number))

	-	start_kernel

79

http://en.wikipedia.org/wiki/IBM_ESA/390
http://en.wikipedia.org/wiki/ARM_architecture#64.2F32-bit_architecture
http://en.wikipedia.org/wiki/Time_Stamp_Counter
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h

	this_cpu_read		(this_cpu_write	,		this_cpu_add		...)	 include/linux/percpu-defs.h		 	this_cpu		.	cpu per-cpu	.	
	 	this_cpu_read	:

__pcpu_size_call_return(this_cpu_read_,	pcp)

cpu 	cpu_number			this_cpu_read		raw_smp_processor_id		 	__pcpu_size_call_return	

#define	__pcpu_size_call_return(stem,	variable)																									\

({																																																																						\

								typeof(variable)	pscr_ret__;																																				\

								__verify_pcpu_ptr(&(variable));																																	\

								switch(sizeof(variable))	{																																						\

								case	1:	pscr_ret__	=	stem##1(variable);	break;																		\

								case	2:	pscr_ret__	=	stem##2(variable);	break;																		\

								case	4:	pscr_ret__	=	stem##4(variable);	break;																		\

								case	8:	pscr_ret__	=	stem##8(variable);	break;																		\

								default:																																																								\

																__bad_size_call_parameter();	break;																					\

								}																																																															\

								pscr_ret__;																																																					\

})

	pscr_ret__			int	int 			common_cpu		cpu(per-cpu):

DECLARE_PER_CPU_READ_MOSTLY(int,	cpu_number);

	__verify_pcpu_ptr	cpu	cpu_number		pscr_ret__		 	common_cpu		int	,4 	this_cpu_read_4(common_cpu)	cpu	pscr_ret__	
	__pcpu_size_call_return		__pcpu_size_call_return

#define	this_cpu_read_4(pcp)							percpu_from_op("mov",	pcp)

	percpu_from_op			mov	cpu 	percpu_from_op	

asm("movl	%%gs:%1,%0"	:	"=r"	(pfo_ret__)	:	"m"	(common_cpu))

	gs	CPU 	mov	copy		common_cpu	

this_cpu_read(common_cpu)

:

movl	%gs:$common_cpu,	$pfo_ret__

CPU,	-	CPU 	zero			 	smp_processor_id	.

IDCPU,	 	boot_cpu_init		CPU,	,	:

set_cpu_online(cpu,	true);

set_cpu_active(cpu,	true);

set_cpu_present(cpu,	true);

set_cpu_possible(cpu,	true);

CPU-	CPU 	cpumask	.		cpu_possible		CPUCPU	ID.		cpu_present		CPU.		cpu_online	CPU	 	cpu_present		CPU.	CPU
	CONFIG_HOTPLUG_CPU		 	possible	==	present			active	==	online	 	true		cpumask_set_cpu		or		cpumask_clear_cpu	

true

	-	start_kernel

80

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h

cpumask_set_cpu(cpu,	to_cpumask(cpu_possible_bits));

	to_cpumask	 	struct	cpumask	*	CPUCPU'sCPU1bitCPU 	cpu_mask	:

typedef	struct	cpumask	{	DECLARE_BITMAP(bits,	NR_CPUS);	}	cpumask_t;

#define	DECLARE_BITMAP(name,	bits)	unsigned	long	name[BITS_TO_LONGS(bits)]

	 	DECLARE_BITMAP		unsigned	long	 	to_cpumask	:

#define	to_cpumask(bitmap)																																														\

								((struct	cpumask	*)(1	?	(bitmap)																																\

																												:	(void	*)sizeof(__check_is_bitmap(bitmap))))

,	 	__check_is_bitmap		__check_is_bitmap	

static	inline	int	__check_is_bitmap(const	unsigned	long	*bitmap)

{

								return	1;

}

1	 	bitmap		bitmap		unsigned	long	*	,	to_cpumask		unsigned	long		struct	cpumask	*		cpumask_set_cpu			 	set_bit	

CPU 	set_cpu_*	

	set_cpu_*		 	cpumask	 cpumask	or	documentation.

CPUstart_kernel 	page_address_init	,

Linux	
pr_notice

#define	pr_notice(fmt,	...)	\

				printk(KERN_NOTICE	pr_fmt(fmt),	##__VA_ARGS__)

pr_noticeprintkLinux	banner

pr_notice("%s",	linux_banner);

:

Linux	version	4.0.0-rc6+	(alex@localhost)	(gcc	version	4.9.1	(Ubuntu	4.9.1-16ubuntu6))	#319	SMP

Linux	 	setup_arch	 	start_kernel	 	arch/	 	setup_arch	arch/x86/kernel/setup.c	-

	_text		_data		_text		_bss_stop	(arch/x86/kernel/head_64.S) 	memblock	

memblock_reserve(__pa_symbol(_text),	(unsigned	long)__bss_stop	-	(unsigned	long)_text);

	-	start_kernel

81

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S#L46

	memblock	Linux	kernel	memory	management	Part	1.	memblock_reserve	

base	physical	address	of	a	memory	block;
size	of	a	memory	block.

	__pa_symbol		_text	

#define	__pa_symbol(x)	\

				__phys_addr_symbol(__phys_reloc_hide((unsigned	long)(x)))

	 	__phys_reloc_hide		 	__phys_reloc_hide		x86_64		 	__phys_addr_symbol	 	_text	

#define	__phys_addr_symbol(x)	\

	((unsigned	long)(x)	-	__START_KERNEL_map	+	phys_base)

	memblock_reserve	

initrd

textdatainitrd,initrd 	early_reserve_initrd		RAM	DISKRAM	DISKRAM	DISK

u64	ramdisk_image	=	get_ramdisk_image();

u64	ramdisk_size		=	get_ramdisk_size();

u64	ramdisk_end			=	PAGE_ALIGN(ramdisk_image	+	ramdisk_size);

Linux	Kernel	Booting	Process	boot_params		boot_params	bootRAM	DISK

Field	name:				ramdisk_image

Type:								write	(obligatory)

Offset/size:				0x218/4

Protocol:				2.00+

		The	32-bit	linear	address	of	the	initial	ramdisk	or	ramfs.		Leave	at

		zero	if	there	is	no	initial	ramdisk/ramfs.

	 	boot_params	.	 	get_ramdisk_image	:

static	u64	__init	get_ramdisk_image(void)

{

								u64	ramdisk_image	=	boot_params.hdr.ramdisk_image;

								ramdisk_image	|=	(u64)boot_params.ext_ramdisk_image	<<	32;

								return	ramdisk_image;

}

32ramdisk Documentation/x86/zero-page.txt:

0C0/004				ALL				ext_ramdisk_image	ramdisk_image	high	32bits

3264ramdiskbootloader	ramdisk

if	(!boot_params.hdr.type_of_loader	||

				!ramdisk_image	||	!ramdisk_size)

				return;

ramdisk

	-	start_kernel

82

http://en.wikipedia.org/wiki/Initrd
https://github.com/0xAX/linux/blob/master/Documentation/x86/zero-page.txt

memblock_reserve(ramdisk_image,	ramdisk_end	-	ramdisk_image);

	start_kernel		setup_arch	

twitter

	PR		 linux-insides-zh.

GCC	function	attributes
this_cpu	operations
cpumask
lock	validator
cgroups
stack	buffer	overflow
IRQs
initrd
Previous	part

	-	start_kernel

83

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://www.kernel.org/doc/Documentation/this_cpu_ops.txt
http://www.crashcourse.ca/wiki/index.php/Cpumask
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Initrd

	

		 setup_arch			 initrd		 	olpc_ofw_detect			 One	Laptop	Per	Child	support		
	early_trap_init			 	#DB		-	 	TF		rflags	 	int3			#BP			 			 	x86		 	INT		INT0			 	INT3		

	INT3			#BP		 	

--

|Vector|Mnemonic|Description									|Type	|Error	Code|Source																																|

--

|3					|	#BP				|Breakpoint										|Trap	|NO								|INT	3																																	|

--

	 	#DB		 	early_trap_init			 arch/x86/kernel/traps.c		 	#DB			 	#BP			 IDT

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

								load_idt(&idt_descr);

}

	 	set_intr_gate			 	set_intr_gate_ist			 	set_system_intr_gate_ist			

/
	 	Interrupt	Stack	Table		 	IST			 TSS		 	x86_64				 	16kb				 	CPU			linux		-
Kernel	stacks		 	x86_64			 	Interrupt	Stack	Table		CPU	7		 	IST			 	DEBUG_STACK	

	set_intr_gate_ist			 	set_system_intr_gate_ist			 	set_intr_gate				 	_set_gate		

BUG_ON((unsigned)n	>	0xFF);

_set_gate(n,	GATE_INTERRUPT,	addr,	0,	ist,	__KERNEL_CS);

	 	set_intr_gate			 dpl		 	ist			0		 	_set_gate			 	set_intr_gate_ist			 	set_system_intr_gate_ist			 	ist		
	DEBUG_STACK		 	set_system_intr_gate_ist			 	dpl			 	0x3			 	IST				 	cpu_init		

	 	#DB			 	#BP			 	idt_descr			 	load_idt			 	ldtr			 	IDT					linux		 	debug		

	#DB		

	 	set_intr_gate_ist			 	&debug			 	#DB		 lxr.free-electorns.com		linux			 	debug		
arch/x86/include/asm/traps.h		 	debug		

asmlinkage	void	debug(void);

	 	asmlinkage			 	debug			 assembly		:)	 	#DB			 arch/x86/kernel/entry_64.S			 	idtentry		

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

	idtentry		/

84

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L856
http://en.wikipedia.org/wiki/Initrd
http://wiki.laptop.org/go/OFW_FAQ
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Task_state_segment
https://www.kernel.org/doc/Documentation/x86/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level
http://lxr.free-electrons.com/ident
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/traps.h
http://en.wikipedia.org/wiki/Assembly_language
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64.S

paranoid	-		1
shift_ist	-	

	 	idtentry			 	ENTRY			 	debug			 	idtentry			 	#DB				 	INTR_FRAME		
	XCPT_FRAM			 	XCPT_FRAME			 	INTR_FRAME				 	CFI			 	CFI			 CFI		 arch/x86/kernel/entry_64.S	

	CFI			 	dwarf2			

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

				/*	Sanity	check	*/

				.if	\shift_ist	!=	-1	&&	\paranoid	==	0

				.error	"using	shift_ist	requires	paranoid=1"

				.endif

				.if	\has_error_code

				XCPT_FRAME

				.else

				INTR_FRAME

				.endif

				...

				...

				...

/

				+-----------------------+

				|																							|

+40	|									SS												|

+32	|									RSP											|

+24	|								RFLAGS									|

+16	|									CS												|

+8		|									RIP											|

	0		|							Error	Code						|	<----	rsp

				|																							|

				+-----------------------+

	idtentry		

				ASM_CLAC

				PARAVIRT_ADJUST_EXCEPTION_FRAME

	 	ASM_CLAC			 	CONFIG_X86_SMAP		 		 	PARAVIRT_EXCEPTION_FRAME			 	Xen				 	$-1	(
	x86_64			 	0xffffffffffffffff)

				.ifeq	\has_error_code

				pushq_cfi	$-1

				.endif

	 	dummy			 	$ORIG_RAX-R15	

				subq	$ORIG_RAX-R15,	%rsp

	ORIG_RAX		R15			 arch/x86/include/asm/calling.h	 	ORIG_RAX-R15			120			120		

testl	$3,	CS(%rsp)

jnz	1f

	 	CS			 	CS			 	RPL	0-3		 	save_paranoid		 	1				 	save_paranoid			 	gs			 	gs	

85

https://sourceware.org/binutils/docs/as/CFI-directives.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64
https://lwn.net/Articles/517475
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h

movl	$1,%ebx

				movl	$MSR_GS_BASE,%ecx

				rdmsr

				testl	%edx,%edx

				js	1f

				SWAPGS

				xorl	%ebx,%ebx

1:				ret

	 	pt_regs			 	rdi			 	rsi			 arch/x86/kernel/trap.c	 	do_debug			do_debug		

pt_regs	-	CPU
error	code	-	

	 	paranoid_exit			 	iret			 	#DB			 	idtentry			 	idtentry	 	early_trap_init		
	early_cpu_init			 arch/x86/kernel/cpu/common.c		 	CPU		

ioremap
	 	ioremap	

I/O

	linux	 	 	outb/inb				 	I/O			 	CPU			 	I/O			 	RAM			 	ioremap		

	 	early_ioremap_init		 	ioremap			 	I/O				 	ioremap			 	I/O			 	ioremap			 arch/x86/mm/ioremap.c	
		 	early_ioremap_init			 	pmd_t			 	pmd			 	typedef	struct	{pmdval_t	pmd;	}	pmd_t;			 	pmdval_t			
	 	fixmap		

pmd_t	*pmd;

BUILD_BUG_ON((fix_to_virt(0)	+	PAGE_SIZE)	&	((1	<<	PMD_SHIFT)	-	1));

	fixmap		-		 	FIXADDR_START			 	FIXADDR_TOP				 	early_ioremap_init			 mm/early_ioremap.c	
	early_ioremap_setup			 	early_ioremap_setup		512	 	slot_virt		

for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

				slot_virt[i]	=	__fix_to_virt(FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*i);

	 	FIX_BTMAP_BEGIN			 	pmd			 	bm_pte			0	 	pmd_populate_kernel		

pmd	=	early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));

memset(bm_pte,	0,	sizeof(bm_pte));

pmd_populate_kernel(&init_mm,	pmd,	bm_pte);

	 		 	ioremap			 	fixmaps	

	ioremap		

ROOT_DEV	=	old_decode_dev(boot_params.hdr.root_dev);

	 	initrd			 	do_mount_root				 	old_decode_dev			 	boot_params_structure			x86	linux	

Field	name:				root_dev

Type:								modify	(optional)

86

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/cpu/common.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/ioremap.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/mm/early_ioremap.c

Offset/size:				0x1fc/2

Protocol:				ALL

		The	default	root	device	device	number.		The	use	of	this	field	is

		deprecated,	use	the	"root="	option	on	the	command	line	instead

	 	old_decode_dev			 	MKDEV			 	dev_t		

static	inline	dev_t	old_decode_dev(u16	val)

{

									return	MKDEV((val	>>	8)	&	255,	val	&	255);

}

	 	dev_t		/	 	old				2		8	bit	8	bit	256		256			32	bit		12	20	
	 	new_decode_dev		

static	inline	dev_t	new_decode_dev(u32	dev)

{

									unsigned	major	=	(dev	&	0xfff00)	>>	8;

									unsigned	minor	=	(dev	&	0xff)	|	((dev	>>	12)	&	0xfff00);

									return	MKDEV(major,	minor);

}

	 	dev			 	0xffffffff		12		 	0xfff	20	 	0xfffff		 	old_decode_dev			 	ROOT_DEV		

Memory	Map
	 	setup_memory_map			 		

screen_info	=	boot_params.screen_info;

				edid_info	=	boot_params.edid_info;

				saved_video_mode	=	boot_params.hdr.vid_mode;

				bootloader_type	=	boot_params.hdr.type_of_loader;

				if	((bootloader_type	>>	4)	==	0xe)	{

								bootloader_type	&=	0xf;

								bootloader_type	|=	(boot_params.hdr.ext_loader_type+0x10)	<<	4;

				}

				bootloader_version		=	bootloader_type	&	0xf;

				bootloader_version	|=	boot_params.hdr.ext_loader_ver	<<	4;

	 	boot_params			 	I/O				 	I/O			 	/proc/ioports			 	/proc/iomem		

/proc/ioports	-	
/proc/iomem	-			 	/proc/iomem	

cat	/proc/iomem

00000000-00000fff	:	reserved

00001000-0009d7ff	:	System	RAM

0009d800-0009ffff	:	reserved

000a0000-000bffff	:	PCI	Bus	0000:00

000c0000-000cffff	:	Video	ROM

000d0000-000d3fff	:	PCI	Bus	0000:00

000d4000-000d7fff	:	PCI	Bus	0000:00

000d8000-000dbfff	:	PCI	Bus	0000:00

000dc000-000dffff	:	PCI	Bus	0000:00

000e0000-000fffff	:	reserved

		000e0000-000e3fff	:	PCI	Bus	0000:00

		000e4000-000e7fff	:	PCI	Bus	0000:00

		000f0000-000fffff	:	System	ROM

linux		API	PICs		I/O		 	resource		

87

struct	resource	{

								resource_size_t	start;

								resource_size_t	end;

								const	char	*name;

								unsigned	long	flags;

								struct	resource	*parent,	*sibling,	*child;

};

	 	start			 	end			resource_size_t			 	phys_addr_t			 	x86_64			 	u64			 	/proc/iomem		
include/linux/ioport.h	

+-------------+						+-------------+

|													|						|													|

|				parent			|------|				sibling		|

|													|						|													|

+-------------+						+-------------+

							|

							|

+-------------+

|													|

|				child				|	

|													|

+-------------+

	iomem			 	iomem_resource		

struct	resource	iomem_resource	=	{

								.name			=	"PCI	mem",

								.start		=	0,

								.end				=	-1,

								.flags		=	IORESOURCE_MEM,

};

EXPORT_SYMBOL(iomem_resource);

TODO	EXPORT_SYMBOL

	iomem_resource			 	PCI	mem			 	IORESOURCE_MEM	(0x00000200)			 	io			 	iomem		

iomem_resource.end	=	(1ULL	<<	boot_cpu_data.x86_phys_bits)	-	1;

1	 	boot_cpu_data.x86_phys_bits		boot_cpu_data			 	early_cpu_init			 	cpuinfo_x86		 	x86_phys_bits			
	iomem_resource			 	EXPORT_SYMBOL			 	iomem_resource			 	iomem			 	setup_memory_map		

void	__init	setup_memory_map(void)

{

								char	*who;

								who	=	x86_init.resources.memory_setup();

								memcpy(&e820_saved,	&e820,	sizeof(struct	e820map));

								printk(KERN_INFO	"e820:	BIOS-provided	physical	RAM	map:\n");

								e820_print_map(who);

}

	 	x86_init.resources.memory_setup		x86_init			 	x86_init_ops		 	pci			 	x86_init		
arch/x86/kernel/x86_init.c	

struct	x86_init_ops	x86_init	__initdata	=	{

				.resources	=	{

												.probe_roms													=	probe_roms,

												.reserve_resources						=	reserve_standard_io_resources,

												.memory_setup											=	default_machine_specific_memory_setup,

				},

				...

88

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/ioport.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/x86_init.c

				...

				...

}

	 	memory_setup			 	default_machine_specific_memory_setup		 		 e820		 	e820map				 	printk			 	dmesg	

[0.000000]	e820:	BIOS-provided	physical	RAM	map:

[0.000000]	BIOS-e820:	[mem	0x0000000000000000-0x000000000009d7ff]	usable

[0.000000]	BIOS-e820:	[mem	0x000000000009d800-0x000000000009ffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000000e0000-0x00000000000fffff]	reserved

[0.000000]	BIOS-e820:	[mem	0x0000000000100000-0x00000000be825fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000be826000-0x00000000be82cfff]	ACPI	NVS

[0.000000]	BIOS-e820:	[mem	0x00000000be82d000-0x00000000bf744fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000bf745000-0x00000000bfff4fff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000bfff5000-0x00000000dc041fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000dc042000-0x00000000dc0d2fff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000dc0d3000-0x00000000dc138fff]	usable

[0.000000]	BIOS-e820:	[mem	0x00000000dc139000-0x00000000dc27dfff]	ACPI	NVS

[0.000000]	BIOS-e820:	[mem	0x00000000dc27e000-0x00000000deffefff]	reserved

[0.000000]	BIOS-e820:	[mem	0x00000000defff000-0x00000000deffffff]	usable

...

...

...

	 	BIOS		

	 	parse_setup_data			 	setup_data		 	BIOS			 	EDD			 	setup_data			 	x86		

Field	name:				setup_data

Type:								write	(special)

Offset/size:				0x250/8

Protocol:				2.09+

		The	64-bit	physical	pointer	to	NULL	terminated	single	linked	list	of

		struct	setup_data.	This	is	used	to	define	a	more	extensible	boot		

		parameters	passing	mechanism.

	 	blob		EFI			 	boot_params			 arch/x86/boot/edd.c		 	BIOS			 	EDD			 	edd		

static	inline	void	__init	copy_edd(void)

{

					memcpy(edd.mbr_signature,	boot_params.edd_mbr_sig_buffer,

												sizeof(edd.mbr_signature));

					memcpy(edd.edd_info,	boot_params.eddbuf,	sizeof(edd.edd_info));

					edd.mbr_signature_nr	=	boot_params.edd_mbr_sig_buf_entries;

					edd.edd_info_nr	=	boot_params.eddbuf_entries;

}

	 	memory	descriptor				linux		 	mm_struct		 	mm_struct		/	 	brk		
include/linux/mm_types.h	 	task_struct			 	mm			 	active_mm				 	init		 	 	INIT_TASK			 	task_struct		

#define	INIT_TASK(tsk)		\

{

				...

				...

				...

				.mm	=	NULL,									\

				.active_mm		=	&init_mm,	\

89

http://en.wikipedia.org/wiki/E820
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/edd.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mm_types.h

				...

}

	mm		 	active_mm		 			 	brk		

				init_mm.start_code	=	(unsigned	long)	_text;

				init_mm.end_code	=	(unsigned	long)	_etext;

				init_mm.end_data	=	(unsigned	long)	_edata;

				init_mm.brk	=	_brk_end;

	init_mm		

struct	mm_struct	init_mm	=	{

				.mm_rb										=	RB_ROOT,

				.pgd												=	swapper_pg_dir,

				.mm_users							=	ATOMIC_INIT(2),

				.mm_count							=	ATOMIC_INIT(1),

				.mmap_sem							=	__RWSEM_INITIALIZER(init_mm.mmap_sem),

				.page_table_lock	=		__SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),

				.mmlist									=	LIST_HEAD_INIT(init_mm.mmlist),

				INIT_MM_CONTEXT(init_mm)

};

	 	mm_rb		 	pgd		 	mm_user		 	mm_count		 	mmap_sem				 	mpx_mm_init			 	Intel		// 	bss	

code_resource.start	=	__pa_symbol(_text);

				code_resource.end	=	__pa_symbol(_etext)-1;

				data_resource.start	=	__pa_symbol(_etext);

				data_resource.end	=	__pa_symbol(_edata)-1;

				bss_resource.start	=	__pa_symbol(__bss_start);

				bss_resource.end	=	__pa_symbol(__bss_stop)-1;

	 	resource		// 	bss			 	/proc/iomem		

00100000-be825fff	:	System	RAM

		01000000-015bb392	:	Kernel	code

		015bb393-01930c3f	:	Kernel	data

		01a11000-01ac3fff	:	Kernel	bss

	[arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/k

ernel/setup.c)	

static	struct	resource	code_resource	=	{

				.name				=	"Kernel	code",

				.start				=	0,

				.end				=	0,

				.flags				=	IORESOURCE_BUSY	|	IORESOURCE_MEM

};

	 	NX		 	NX-bit			 	no-execute			63			 	EFER.NXE		1	 	no-execute		/	 	x86_configure_nx		
	CPU			 	NX-bit			 	_supported_pte_mask		

void	x86_configure_nx(void)

{

								if	(cpu_has_nx	&&	!disable_nx)

																__supported_pte_mask	|=	_PAGE_NX;

								else

																__supported_pte_mask	&=	~_PAGE_NX;

}

90

https://www.kernel.org/doc/Documentation/vm/active_mm.txt

	linux		 	setup_arch		 	setup_arch			
	pci		

twitter

	PR		 linux-insides

mm	vs	active_mm
e820
Supervisor	mode	access	prevention
Kernel	stacks
TSS
IDT
Memory	mapped	I/O
CFI	directives
PDF.	dwarf4	specification
Call	stack
.	Part	4.

91

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://www.kernel.org/doc/Documentation/vm/active_mm.txt
http://en.wikipedia.org/wiki/E820
https://lwn.net/Articles/517475/
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Task_state_segment
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Memory-mapped_I/O
https://sourceware.org/binutils/docs/as/CFI-directives.html
http://dwarfstd.org/doc/DWARF4.pdf
http://en.wikipedia.org/wiki/Call_stack
http://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-4.md

	

	 arch/x86/kernel/setup.c(x86_64)	 	x86_configure_nx		NX	bit	 	_PAGE_NX		,	 	setup_arch		
	start_kernel		 	x86_configure_nx			 	parse_early_param			 init/main.c		(Documentation/kernel-
parameters.txt)		 		 	earlyprintk		 arch/x86/boot/cmdline.c		 	cmdline_find_option			 	__cmdline_find_option	,
	__cmdline_find_option_bool			linux

early_param("gbpages",	parse_direct_gbpages_on);

	early_param		:

:

#define	early_param(str,	fn)	\

								__setup_param(str,	fn,	fn,	1)

	 include/linux/init.h	.
	 	early_param			 	__setup_param		:

#define	__setup_param(str,	unique_id,	fn,	early)																\

								static	const	char	__setup_str_##unique_id[]	__initconst	\

																__aligned(1)	=	str;	\

								static	struct	obs_kernel_param	__setup_##unique_id						\

																__used	__section(.init.setup)																			\

																__attribute__((aligned((sizeof(long)))))								\

																=	{	__setup_str_##unique_id,	fn,	early	}

	 	__setup_str_*_id			(*) 	obs_kernel_param			 	__setup_	*		

	obs_kernel_param		:

struct	obs_kernel_param	{

								const	char	*str;

								int	(*setup_func)(char	*);

								int	early;

};

:

	early	

	 	__set_param			 	__section(.init.setup)			 	__setup_str_	*			 	.init.setup			 include/asm-
generic/vmlinux.lds.h	 	.init.setup			 	__setup_start			 	__setup_end		:

#define	INIT_SETUP(initsetup_align)																\

																.	=	ALIGN(initsetup_align);								\

																VMLINUX_SYMBOL(__setup_start)	=	.;	\

																*(.init.setup)																					\

																VMLINUX_SYMBOL(__setup_end)	=	.;

92

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
http://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/arch/x86/boot/cmdline.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://github.com/torvalds/linux/blob/master/include/asm-generic/vmlinux.lds.h

	 	parse_early_param		:

void	__init	parse_early_param(void)

{

								static	int	done	__initdata;

								static	char	tmp_cmdline[COMMAND_LINE_SIZE]	__initdata;

								if	(done)

																return;

								/*	All	fall	through	to	do_early_param.	*/

								strlcpy(tmp_cmdline,	boot_command_line,	COMMAND_LINE_SIZE);

								parse_early_options(tmp_cmdline);

								done	=	1;

}

	parse_early_param			 	done			 	parse_early_param			 	boot_command_line		(tmp_cmdline)		 	main.c		
	 	parse_early_options			 	parse_early_options		 kernel/params.c		 	parse_args		,	 	parse_args			 	do_early_param	

	 do_early_param			 	__setup_start			 	__setup_end			 	obs_kernel_param			 	early		1	,	 	obs_kernel_param		
	setup_func		 	parse_early_param			 	x86_report_nx				 	x86_configure_nx			 	NX-bit		
arch/x86/mm/setup_nx.c		 	x86_report_nx		 	NX		 	x86_report_nx			 	x86_configure_nx			 	parse_early_param		
:		 	noexec			 	parse_early_param			 	noexec			 	x86_report_nx		:

noexec								[X86]

												On	X86-32	available	only	on	PAE	configured	kernels.

												//X86-32PAE

												noexec=on:	enable	non-executable	mappings	(default)

												//noexec=on:()

												noexec=off:	disable	non-executable	mappings

												//noexec=off:	

:

:

				memblock_x86_reserve_range_setup_data();

	 arch/x86/kernel/setup.c		 	setup_data		(setup_data			 Linux	kernel	memory	management		 	ioremap	

and		memblock)

:

				if	(acpi_mps_check())	{

#ifdef	CONFIG_X86_LOCAL_APIC

								disable_apic	=	1;

#endif

								setup_clear_cpu_cap(X86_FEATURE_APIC);

				}

	acpi_mps_check			 arch/x86/kernel/acpi/boot.c		 	CONFIG_X86_LOCAL_APIC			 	CONFIG_x86_MPPARSE		:

int	__init	acpi_mps_check(void)

{

#if	defined(CONFIG_X86_LOCAL_APIC)	&&	!defined(CONFIG_X86_MPPARSE)

								/*	mptable	code	is	not	built-in*/

								if	(acpi_disabled	||	acpi_noirq)	{

																printk(KERN_WARNING	"MPS	support	code	is	not	built-in.\n"

																							"Using	acpi=off	or	acpi=noirq	or	pci=noacpi	"

																							"may	have	problem\n");

93

https://github.com/torvalds/linux/blob/master/
https://github.com/torvalds/linux/blob/master/init/main.c#L413
https://github.com/torvalds/linux/blob/master/arch/x86/mm/setup_nx.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/acpi/boot.c

																	return	1;

								}

#endif

								return	0;

}

	acpi_mps_check			 	MPS)		 	CONFIG_X86_LOCAL_APIC			 	CONFIG_x86_MPPAARSE			 	acpi=off		acpi=noirq		
	pci=noacpi		 	acpi_mps_check			 	acpi_mps_check		1	 APIC	,	 	setup_clear_cpu_cap		CPU
	X86_FEATURE_APIC			 CPU	masks	CPU	mask)

PCI

	 PCI	:

#ifdef	CONFIG_PCI

				if	(pci_early_dump_regs)

								early_dump_pci_devices();

#endif

	 	pci_early_dump_regs			 arch/x86/pci/common.c	 	pci=earlydump		drivers/pci/pci.c	:

early_param("pci",	pci_setup);

	pci_setup			 	pci=			 drivers/pci/pci.c		 	_weak			 	pcibios_setup			 	_weak				 	x86_64		
arch/x86/pci/common.c	:

char	*__init	pcibios_setup(char	*str)	{

								...

								...

								...

								}	else	if	(!strcmp(str,	"earlydump"))	{

																pci_early_dump_regs	=	1;

																return	NULL;

								}

								...

								...

								...

}

	 	CONFIG_PCI			 	pci=earlydump			 arch/x86/pci/early.c		 	early_dump_pci_devices		pci	 	noearly		:

if	(!early_pci_allowed())

								return;

PCI	 	256		32:

for	(bus	=	0;	bus	<	256;	bus++)	{

																for	(slot	=	0;	slot	<	32;	slot++)	{

																								for	(func	=	0;	func	<	8;	func++)	{

																								...

																								...

																								...

																								}

																}

}

	 	read_pci_config			 	pci		

	pci		 	pci			 	Drivers/PCI		

94

http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Conventional_PCI
https://github.com/torvalds/linux/blob/master/arch/x86/pci/common.c
https://github.com/torvalds/linux/blob/master/arch
https://github.com/torvalds/linux/blob/master/arch
https://github.com/torvalds/linux/blob/master/arch/x86/pci/common.c
https://github.com/torvalds/linux/blob/master/arch/x86/pci/early.c

	 	early_dump_pci_devices		 e820	 e820		 	

				/*	update	the	e820_saved	too	*/

				e820_reserve_setup_data();

				finish_e820_parsing();

				...

				...

				...

				e820_add_kernel_range();

				trim_bios_range(void);

				max_pfn	=	e820_end_of_ram_pfn();

				early_reserve_e820_mpc_new();

	 	e820_reserve_setup_data			 	memblock_x86_reserve_range_setup_data			 	e820_update_range		
	e820map			 	E820_RESERVED_KERN			 	finish_e820_parsing	,	 	sanitize_e820_map			 	e820map			 e820

	e820_add_kernel_range		:

u64	start	=	__pa_symbol(_text);

u64	size	=	__pa_symbol(_end)	-	start;

	 	e820map			 	E820RAM			 	.text			.data			 	.bss			 	trm_bios_range			 	e820Map		4096	 	E820_RESERVED	

	 	sanitize_e820_map			 	e820map		 	e820_end_of_ram_pfn			-	 			 	e820_end_of_ram_pfn			 	e820_end_pfn		:

unsigned	long	__init	e820_end_of_ram_pfn(void)

{

				return	e820_end_pfn(MAX_ARCH_PFN);

}

	e820_end_pfn		(x86_64			 	MAX_ARCH_PFN			 	0x400000000)	 	e820_end_pfn			 	e820			 	e820			 	E820_RAM	

	 	E820_PRAM			 	e820		:

for	(i	=	0;	i	<	e820.nr_map;	i++)	{

								struct	e820entry	*ei	=	&e820.map[i];

								unsigned	long	start_pfn;

								unsigned	long	end_pfn;

								if	(ei->type	!=	E820_RAM	&&	ei->type	!=	E820_PRAM)

												continue;

								start_pfn	=	ei->addr	>>	PAGE_SHIFT;

								end_pfn	=	(ei->addr	+	ei->size)	>>	PAGE_SHIFT;

								if	(start_pfn	>=	limit_pfn)

												continue;

								if	(end_pfn	>	limit_pfn)	{

												last_pfn	=	limit_pfn;

												break;

								}

								if	(end_pfn	>	last_pfn)

												last_pfn	=	end_pfn;

}

				if	(last_pfn	>	max_arch_pfn)

								last_pfn	=	max_arch_pfn;

				printk(KERN_INFO	"e820:	last_pfn	=	%#lx	max_arch_pfn	=	%#lx\n",

													last_pfn,	max_arch_pfn);

				return	last_pfn;

	 	last_pfn		last_pfn		(x86_64),	 	last_pfn		 	dmesg			 	last_pfn		:

95

http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/E820

...

[0.000000]	e820:	last_pfn	=	0x41f000	max_arch_pfn	=	0x400000000

...

	 	max_low_pfn		,	 			4GB4GBRAM 	max_low_pfn			e820_end_of_low_ram_pfn			 	e820_end_of_ram_pfn		
4GB	 	max_low_pfn			 	max_pfn		:

if	(max_pfn	>	(1UL<<(32	-	PAGE_SHIFT)))

				max_low_pfn	=	e820_end_of_low_ram_pfn();

else

				max_low_pfn	=	max_pfn;

high_memory	=	(void	*)__va(max_pfn	*	PAGE_SIZE	-	1)	+	1;

	 	__va			 			(),

	 	e820			 	:

dmi_scan_machine();

dmi_memdev_walk();

	 drivers/firmware/dmi_scan.c		 	dmi_scan_machine			 System	Management	BIOS		 	SMBIOS		:		 EFI	
	SMBIOS			 	0xF0000			 	0x10000		 	dmi_scan_machine			 	dmi_early_remap			 	0xf0000			 	0x10000		
	early_ioremap		:

void	__init	dmi_scan_machine(void)

{

				char	__iomem	*p,	*q;

				char	buf[32];

				...

				...

				...

				p	=	dmi_early_remap(0xF0000,	0x10000);

				if	(p	==	NULL)

												goto	error;

	 	DMI			 	_SM_		:

memset(buf,	0,	16);

for	(q	=	p;	q	<	p	+	0x10000;	q	+=	16)	{

								memcpy_fromio(buf	+	16,	q,	16);

								if	(!dmi_smbios3_present(buf)	||	!dmi_present(buf))	{

												dmi_available	=	1;

												dmi_early_unmap(p,	0x10000);

												goto	out;

								}

								memcpy(buf,	buf	+	16,	16);

}

	SM			 	000F0000h			 	0x000FFFFF			 	memcpy_fromio			 	buf		16	 	memcpy		(buf)	
	dmi_smbios3_present			 	dmi_present			 	buf		4	 	__SM__			 	SMBIOS			 	_DMI_			 	_DMI_		...	
	dmesg		:

[0.000000]	SMBIOS	2.7	present.

[0.000000]	DMI:	Gigabyte	Technology	Co.,	Ltd.	Z97X-UD5H-BK/Z97X-UD5H-BK,	BIOS	F6	06/17/2014

96

http://en.wikipedia.org/wiki/Desktop_Management_Interface
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/drivers/firmware/dmi_scan.c
http://en.wikipedia.org/wiki/System_Management_BIOS
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

	 	dmi_scan_machine		:

dmi_early_unmap(p,	0x10000);

	-	 	dmi_memdev_walk	:

void	__init	dmi_memdev_walk(void)

{

				if	(!dmi_available)

								return;

				if	(dmi_walk_early(count_mem_devices)	==	0	&&	dmi_memdev_nr)	{

								dmi_memdev	=	dmi_alloc(sizeof(*dmi_memdev)	*	dmi_memdev_nr);

								if	(dmi_memdev)

												dmi_walk_early(save_mem_devices);

				}

}

	 	DMI		(dmi_scan_machine			 	dmi_available)	 	dmi_walk_early			 	dmi_alloc		,	 	dmi_alloc

#ifdef	CONFIG_DMI

RESERVE_BRK(dmi_alloc,	65536);

#endif

	 arch/x86/include/asm/setup.h		 	RESERVE_BRK			 	brk		:

init_hypervisor_platform();

x86_init.resources.probe_roms();

insert_resource(&iomem_resource,	&code_resource);

insert_resource(&iomem_resource,	&data_resource);

insert_resource(&iomem_resource,	&bss_resource);

early_gart_iommu_check();				

(SMP)

	 SMP		 	find_smp_config		:

static	inline	void	find_smp_config(void)

{

								x86_init.mpparse.find_smp_config();

}

	x86_init.mpparse.find_smp_config			 arch/x86/kernel/mpparse.c		 	default_find_smp_config		
	default_find_smp_config			 	SMP		,:

if	(smp_scan_config(0x0,	0x400)	||

												smp_scan_config(639	*	0x400,	0x400)	||

												smp_scan_config(0xF0000,	0x10000))

												return;

	 	smp_scan_config		:

unsigned	int	*bp	=	phys_to_virt(base);

struct	mpf_intel	*mpf;

	 	SMP			 	mpf_intel			 	mpf_intel		 	mpf_intel		:

97

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/setup.h
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/mpparse.c

struct	mpf_intel	{

								char	signature[4];

								unsigned	int	physptr;

								unsigned	char	length;

								unsigned	char	specification;

								unsigned	char	checksum;

								unsigned	char	feature1;

								unsigned	char	feature2;

								unsigned	char	feature3;

								unsigned	char	feature4;

								unsigned	char	feature5;

};

	-		BIOSMPMP	 	mpf_intel		(), 	smp_scan_config			 	MP	floating	pointer	structure			 	SMP		
	 	mpf->specification		14(14):

while	(length	>	0)	{

if	((*bp	==	SMP_MAGIC_IDENT)	&&

				(mpf->length	==	1)	&&

				!mpf_checksum((unsigned	char	*)bp,	16)	&&

				((mpf->specification	==	1)

				||	(mpf->specification	==	4)))	{

								mem	=	virt_to_phys(mpf);

								memblock_reserve(mem,	sizeof(*mpf));

								if	(mpf->physptr)

												smp_reserve_memory(mpf);

				}

}

	 	memblock_reserve			 MultiProcessor	Specification		 	SMP		

	 	setup_arch			 	early_alloc_pgt_buf		,	 	brk		:

void		__init	early_alloc_pgt_buf(void)

{

								unsigned	long	tables	=	INIT_PGT_BUF_SIZE;

								phys_addr_t	base;

								base	=	__pa(extend_brk(tables,	PAGE_SIZE));

								pgt_buf_start	=	base	>>	PAGE_SHIFT;

								pgt_buf_end	=	pgt_buf_start;

								pgt_buf_top	=	pgt_buf_start	+	(tables	>>	PAGE_SHIFT);

}

	 	INIT_PGT_BUF_SIZE		linux	4.0		 	(6	*	PAGE_SIZE)		 	extend_brk		:	sizealign,	 	brk		linux 	brk		
BSS	:

				.	=	ALIGN(PAGE_SIZE);

				.brk	:	AT(ADDR(.brk)	-	LOAD_OFFSET)	{

								__brk_base	=	.;

								.	+=	64	*	1024;								/*	64k	alignment	slop	space	*/

								(.brk_reservation)				/	areas	brk	users	have	reserved	*/

								__brk_limit	=	.;

				}

	 	readelf		:

98

http://www.intel.com/design/pentium/datashts/24201606.pdf
http://en.wikipedia.org/wiki/.bss

	 	_pa			 	brk			 	reserve_brk			 	brk		:

static	void	__init	reserve_brk(void)

{

				if	(_brk_end	>	_brk_start)

								memblock_reserve(__pa_symbol(_brk_start),

																	_brk_end	-	_brk_start);

				_brk_start	=	0;

}

	 	reserve_brk			 	_brk_start		0,	 	brk			 	cleanup_highmap			 	__START_KERNEL_map			 	_end	-	_text		
	level2_kernel_pgt			 	_text		data			 	bss			 	clean_high_map		:

unsigned	long	vaddr	=	__START_KERNEL_map;

unsigned	long	end	=	roundup((unsigned	long)_end,	PMD_SIZE)	-	1;

pmd_t	*pmd	=	level2_kernel_pgt;

pmd_t	*last_pmd	=	pmd	+	PTRS_PER_PMD;

,		 	_text			 	end		:

for	(;	pmd	<	last_pmd;	pmd++,	vaddr	+=	PMD_SIZE)	{

								if	(pmd_none(*pmd))

												continue;

								if	(vaddr	<	(unsigned	long)	_text	||	vaddr	>	end)

												set_pmd(pmd,	__pmd(0));

}

	 	memblock_set_current_limit		(linux		 		 	memblock)		 	memblock			 	ISA_END_ADDRESS			 	0x100000	

	 	memblock_x86_fill			 	e820			 	memblock		:

MEMBLOCK	configuration:

	memory	size	=	0x1fff7ec00	reserved	size	=	0x1e30000

	memory.cnt		=	0x3

	memory[0x0]				[0x00000000001000-0x0000000009efff],	0x9e000	bytes	flags:	0x0

	memory[0x1]				[0x00000000100000-0x000000bffdffff],	0xbfee0000	bytes	flags:	0x0

	memory[0x2]				[0x00000100000000-0x0000023fffffff],	0x140000000	bytes	flags:	0x0

	reserved.cnt		=	0x3

	reserved[0x0]				[0x0000000009f000-0x000000000fffff],	0x61000	bytes	flags:	0x0

	reserved[0x1]				[0x00000001000000-0x00000001a57fff],	0xa58000	bytes	flags:	0x0

	reserved[0x2]				[0x0000007ec89000-0x0000007fffffff],	0x1377000	bytes	flags:	0x0

	 	memblock_x86_fill		:	 	early_reserve_e820_mpc_new			 	e820map			 	reserve_real_mode		-		 	0x0		1M(
...) 	trim_platform_memory_ranges			 	0x20050000	,		0x20110000			 Sandy	Bridge		 	trim_low_memory_range		
	 	memblock		4KB 	init_mem_mapping			 	PAGE_OFFSET		,	 	early_trap_pf_init			 	#PF		(),	 	setup_real_mode		
	 	

	 	setup_arch			(early_gart_iommu_check	mtrr	...),	 	setup_arch		linuxlinux,	:	,	,	
,	linux,	,	,	

linux		 	setup_arch		,	 	setup_arch	

twitter

99

https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/MM/linux-mm-2.md
http://en.wikipedia.org/wiki/Sandy_Bridge
http://en.wikipedia.org/wiki/Real_mode
http://en.wikipedia.org/wiki/Memory_type_range_register
https://twitter.com/0xAX

	PR		 linux-insides.

MultiProcessor	Specification
NX	bit
Documentation/kernel-parameters.txt
APIC
CPU	masks
Linux	kernel	memory	management
PCI
e820
System	Management	BIOS
EFI
SMP
MultiProcessor	Specification
BSS
SMBIOS	specification

100

https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/MultiProcessor_Specification
http://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Conventional_PCI
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/System_Management_BIOS
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://en.wikipedia.org/wiki/.bss
http://www.dmtf.org/sites/default/files/standards/documents/DSP0134v2.5Final.pdf

Kernel	initialization.	Part	7.

The	End	of	the	architecture-specific	initialization,	almost...
This	is	the	seventh	part	of	the	Linux	Kernel	initialization	process	which	covers	insides	of	the		setup_arch		function	from	the
arch/x86/kernel/setup.c.	As	you	can	know	from	the	previous	parts,	the		setup_arch		function	does	some	architecture-specific	(in	our
case	it	is	x86_64)	initialization	stuff	like	reserving	memory	for	kernel	code/data/bss,	early	scanning	of	the	Desktop	Management
Interface,	early	dump	of	the	PCI	device	and	many	many	more.	If	you	have	read	the	previous	part,	you	can	remember	that	we've	finished
it	at	the		setup_real_mode		function.	In	the	next	step,	as	we	set	limit	of	the	memblock	to	the	all	mapped	pages,	we	can	see	the	call	of	the
	setup_log_buf		function	from	the	kernel/printk/printk.c.

The		setup_log_buf		function	setups	kernel	cyclic	buffer	and	its	length	depends	on	the		CONFIG_LOG_BUF_SHIFT		configuration	option.
As	we	can	read	from	the	documentation	of	the		CONFIG_LOG_BUF_SHIFT		it	can	be	between		12		and		21	.	In	the	insides,	buffer	defined
as	array	of	chars:

#define	__LOG_BUF_LEN	(1	<<	CONFIG_LOG_BUF_SHIFT)

static	char	__log_buf[__LOG_BUF_LEN]	__aligned(LOG_ALIGN);

static	char	*log_buf	=	__log_buf;

Now	let's	look	on	the	implementation	of	the		setup_log_buf		function.	It	starts	with	check	that	current	buffer	is	empty	(It	must	be
empty,	because	we	just	setup	it)	and	another	check	that	it	is	early	setup.	If	setup	of	the	kernel	log	buffer	is	not	early,	we	call	the
	log_buf_add_cpu		function	which	increase	size	of	the	buffer	for	every	CPU:

if	(log_buf	!=	__log_buf)

				return;

if	(!early	&&	!new_log_buf_len)

				log_buf_add_cpu();

We	will	not	research		log_buf_add_cpu		function,	because	as	you	can	see	in	the		setup_arch	,	we	call		setup_log_buf		as:

setup_log_buf(1);

where		1		means	that	it	is	early	setup.	In	the	next	step	we	check		new_log_buf_len		variable	which	is	updated	length	of	the	kernel	log
buffer	and	allocate	new	space	for	the	buffer	with	the		memblock_virt_alloc		function	for	it,	or	just	return.

As	kernel	log	buffer	is	ready,	the	next	function	is		reserve_initrd	.	You	can	remember	that	we	already	called	the
	early_reserve_initrd		function	in	the	fourth	part	of	the	Kernel	initialization.	Now,	as	we	reconstructed	direct	memory	mapping	in	the
	init_mem_mapping		function,	we	need	to	move	initrd	into	directly	mapped	memory.	The		reserve_initrd		function	starts	from	the
definition	of	the	base	address	and	end	address	of	the		initrd		and	check	that		initrd		is	provided	by	a	bootloader.	All	the	same	as	what
we	saw	in	the		early_reserve_initrd	.	But	instead	of	the	reserving	place	in	the		memblock		area	with	the	call	of	the
	memblock_reserve		function,	we	get	the	mapped	size	of	the	direct	memory	area	and	check	that	the	size	of	the		initrd		is	not	greater
than	this	area	with:

mapped_size	=	memblock_mem_size(max_pfn_mapped);

if	(ramdisk_size	>=	(mapped_size>>1))

				panic("initrd	too	large	to	handle,	"

										"disabling	initrd	(%lld	needed,	%lld	available)\n",

										ramdisk_size,	mapped_size>>1);

You	can	see	here	that	we	call		memblock_mem_size		function	and	pass	the		max_pfn_mapped		to	it,	where		max_pfn_mapped		contains	the
highest	direct	mapped	page	frame	number.	If	you	do	not	remember	what	is		page	frame	number	,	explanation	is	simple:	First		12		bits
of	the	virtual	address	represent	offset	in	the	physical	page	or	page	frame.	If	we	right-shift	out		12		bits	of	the	virtual	address,	we'll

101

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c#L861
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Desktop_Management_Interface
http://en.wikipedia.org/wiki/PCI
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/printk/printk.c
http://en.wikipedia.org/wiki/Initrd

discard	offset	part	and	will	get		Page	Frame	Number	.	In	the		memblock_mem_size		we	go	through	the	all	memblock		mem		(not	reserved)
regions	and	calculates	size	of	the	mapped	pages	and	return	it	to	the		mapped_size		variable	(see	code	above).	As	we	got	amount	of	the
direct	mapped	memory,	we	check	that	size	of	the		initrd		is	not	greater	than	mapped	pages.	If	it	is	greater	we	just	call		panic		which
halts	the	system	and	prints	famous	Kernel	panic	message.	In	the	next	step	we	print	information	about	the		initrd		size.	We	can	see	the
result	of	this	in	the		dmesg		output:

[0.000000]	RAMDISK:	[mem	0x36d20000-0x37687fff]

and	relocate		initrd		to	the	direct	mapping	area	with	the		relocate_initrd		function.	In	the	start	of	the		relocate_initrd		function	we
try	to	find	a	free	area	with	the		memblock_find_in_range		function:

relocated_ramdisk	=	memblock_find_in_range(0,	PFN_PHYS(max_pfn_mapped),	area_size,	PAGE_SIZE);

if	(!relocated_ramdisk)

				panic("Cannot	find	place	for	new	RAMDISK	of	size	%lld\n",

											ramdisk_size);

The		memblock_find_in_range		function	tries	to	find	a	free	area	in	a	given	range,	in	our	case	from		0		to	the	maximum	mapped	physical
address	and	size	must	equal	to	the	aligned	size	of	the		initrd	.	If	we	didn't	find	a	area	with	the	given	size,	we	call		panic		again.	If	all
is	good,	we	start	to	relocated	RAM	disk	to	the	down	of	the	directly	mapped	memory	in	the	next	step.

In	the	end	of	the		reserve_initrd		function,	we	free	memblock	memory	which	occupied	by	the	ramdisk	with	the	call	of	the:

memblock_free(ramdisk_image,	ramdisk_end	-	ramdisk_image);

After	we	relocated		initrd		ramdisk	image,	the	next	function	is		vsmp_init		from	the	arch/x86/kernel/vsmp_64.c.	This	function
initializes	support	of	the		ScaleMP	vSMP	.	As	I	already	wrote	in	the	previous	parts,	this	chapter	will	not	cover	non-related		x86_64	
initialization	parts	(for	example	as	the	current	or		ACPI	,	etc.).	So	we	will	skip	implementation	of	this	for	now	and	will	back	to	it	in	the
part	which	cover	techniques	of	parallel	computing.

The	next	function	is		io_delay_init		from	the	arch/x86/kernel/io_delay.c.	This	function	allows	to	override	default	I/O	delay		0x80	
port.	We	already	saw	I/O	delay	in	the	Last	preparation	before	transition	into	protected	mode,	now	let's	look	on	the		io_delay_init	
implementation:

void	__init	io_delay_init(void)

{

				if	(!io_delay_override)

								dmi_check_system(io_delay_0xed_port_dmi_table);

}

This	function	check		io_delay_override		variable	and	overrides	I/O	delay	port	if		io_delay_override		is	set.	We	can	set
	io_delay_override		variably	by	passing		io_delay		option	to	the	kernel	command	line.	As	we	can	read	from	the
Documentation/kernel-parameters.txt,		io_delay		option	is:

io_delay=				[X86]	I/O	delay	method

				0x80

								Standard	port	0x80	based	delay

				0xed

								Alternate	port	0xed	based	delay	(needed	on	some	systems)

				udelay

								Simple	two	microseconds	delay

				none

								No	delay

We	can	see		io_delay		command	line	parameter	setup	with	the		early_param		macro	in	the	arch/x86/kernel/io_delay.c

early_param("io_delay",	io_delay_param);

102

http://en.wikipedia.org/wiki/Kernel_panic
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vsmp_64.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/io_delay.c
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.rst
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/io_delay.c

More	about		early_param		you	can	read	in	the	previous	part.	So	the		io_delay_param		function	which	setups		io_delay_override	
variable	will	be	called	in	the	do_early_param	function.		io_delay_param		function	gets	the	argument	of	the		io_delay		kernel	command
line	parameter	and	sets		io_delay_type		depends	on	it:

static	int	__init	io_delay_param(char	*s)

{

								if	(!s)

																return	-EINVAL;

								if	(!strcmp(s,	"0x80"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_0X80;

								else	if	(!strcmp(s,	"0xed"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_0XED;

								else	if	(!strcmp(s,	"udelay"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_UDELAY;

								else	if	(!strcmp(s,	"none"))

																io_delay_type	=	CONFIG_IO_DELAY_TYPE_NONE;

								else

																return	-EINVAL;

								io_delay_override	=	1;

								return	0;

}

The	next	functions	are		acpi_boot_table_init	,		early_acpi_boot_init		and		initmem_init		after	the		io_delay_init	,	but	as	I	wrote
above	we	will	not	cover	ACPI	related	stuff	in	this		Linux	Kernel	initialization	process		chapter.

Allocate	area	for	DMA
In	the	next	step	we	need	to	allocate	area	for	the	Direct	memory	access	with	the		dma_contiguous_reserve		function	which	is	defined	in
the	drivers/base/dma-contiguous.c.		DMA		is	a	special	mode	when	devices	communicate	with	memory	without	CPU.	Note	that	we	pass
one	parameter	-		max_pfn_mapped	<<	PAGE_SHIFT	,	to	the		dma_contiguous_reserve		function	and	as	you	can	understand	from	this
expression,	this	is	limit	of	the	reserved	memory.	Let's	look	on	the	implementation	of	this	function.	It	starts	from	the	definition	of	the
following	variables:

phys_addr_t	selected_size	=	0;

phys_addr_t	selected_base	=	0;

phys_addr_t	selected_limit	=	limit;

bool	fixed	=	false;

where	first	represents	size	in	bytes	of	the	reserved	area,	second	is	base	address	of	the	reserved	area,	third	is	end	address	of	the	reserved
area	and	the	last		fixed		parameter	shows	where	to	place	reserved	area.	If		fixed		is		1		we	just	reserve	area	with	the
	memblock_reserve	,	if	it	is		0		we	allocate	space	with	the		kmemleak_alloc	.	In	the	next	step	we	check		size_cmdline		variable	and	if
it	is	not	equal	to		-1		we	fill	all	variables	which	you	can	see	above	with	the	values	from	the		cma		kernel	command	line	parameter:

if	(size_cmdline	!=	-1)	{

			...

			...

			...

}

You	can	find	in	this	source	code	file	definition	of	the	early	parameter:

early_param("cma",	early_cma);

where		cma		is:

cma=nn[MG]@[start[MG][-end[MG]]]

								[ARM,X86,KNL]

103

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c#L413
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Direct_memory_access
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/drivers/base/dma-contiguous.c

								Sets	the	size	of	kernel	global	memory	area	for

								contiguous	memory	allocations	and	optionally	the

								placement	constraint	by	the	physical	address	range	of

								memory	allocations.	A	value	of	0	disables	CMA

								altogether.	For	more	information,	see

								include/linux/dma-contiguous.h

If	we	will	not	pass		cma		option	to	the	kernel	command	line,		size_cmdline		will	be	equal	to		-1	.	In	this	way	we	need	to	calculate	size
of	the	reserved	area	which	depends	on	the	following	kernel	configuration	options:

	CONFIG_CMA_SIZE_SEL_MBYTES		-	size	in	megabytes,	default	global		CMA		area,	which	is	equal	to		CMA_SIZE_MBYTES	*	SZ_1M		or
	CONFIG_CMA_SIZE_MBYTES	*	1M	;
	CONFIG_CMA_SIZE_SEL_PERCENTAGE		-	percentage	of	total	memory;
	CONFIG_CMA_SIZE_SEL_MIN		-	use	lower	value;
	CONFIG_CMA_SIZE_SEL_MAX		-	use	higher	value.

As	we	calculated	the	size	of	the	reserved	area,	we	reserve	area	with	the	call	of	the		dma_contiguous_reserve_area		function	which	first
of	all	calls:

ret	=	cma_declare_contiguous(base,	size,	limit,	0,	0,	fixed,	res_cma);

function.	The		cma_declare_contiguous		reserves	contiguous	area	from	the	given	base	address	with	given	size.	After	we	reserved	area
for	the		DMA	,	next	function	is	the		memblock_find_dma_reserve	.	As	you	can	understand	from	its	name,	this	function	counts	the
reserved	pages	in	the		DMA		area.	This	part	will	not	cover	all	details	of	the		CMA		and		DMA	,	because	they	are	big.	We	will	see	much	more
details	in	the	special	part	in	the	Linux	Kernel	Memory	management	which	covers	contiguous	memory	allocators	and	areas.

Initialization	of	the	sparse	memory
The	next	step	is	the	call	of	the	function	-		x86_init.paging.pagetable_init	.	If	you	try	to	find	this	function	in	the	linux	kernel	source
code,	in	the	end	of	your	search,	you	will	see	the	following	macro:

#define	native_pagetable_init								paging_init

which	expands	as	you	can	see	to	the	call	of	the		paging_init		function	from	the	arch/x86/mm/init_64.c.	The		paging_init		function
initializes	sparse	memory	and	zone	sizes.	First	of	all	what's	zones	and	what	is	it		Sparsemem	.	The		Sparsemem		is	a	special	foundation	in
the	linux	kernel	memory	manager	which	used	to	split	memory	area	into	different	memory	banks	in	the	NUMA	systems.	Let's	look	on
the	implementation	of	the		paginig_init		function:

void	__init	paging_init(void)

{

								sparse_memory_present_with_active_regions(MAX_NUMNODES);

								sparse_init();

								node_clear_state(0,	N_MEMORY);

								if	(N_MEMORY	!=	N_NORMAL_MEMORY)

																node_clear_state(0,	N_NORMAL_MEMORY);

								zone_sizes_init();

}

As	you	can	see	there	is	call	of	the		sparse_memory_present_with_active_regions		function	which	records	a	memory	area	for	every
	NUMA		node	to	the	array	of	the		mem_section		structure	which	contains	a	pointer	to	the	structure	of	the	array	of		struct	page	.	The	next
	sparse_init		function	allocates	non-linear		mem_section		and		mem_map	.	In	the	next	step	we	clear	state	of	the	movable	memory	nodes
and	initialize	sizes	of	zones.	Every		NUMA		node	is	divided	into	a	number	of	pieces	which	are	called	-		zones	.	So,		zone_sizes_init	
function	from	the	arch/x86/mm/init.c	initializes	size	of	zones.

Again,	this	part	and	next	parts	do	not	cover	this	theme	in	full	details.	There	will	be	special	part	about		NUMA	.

104

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/init_64.c
http://en.wikipedia.org/wiki/Non-uniform_memory_access
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/init.c

vsyscall	mapping

The	next	step	after		SparseMem		initialization	is	setting	of	the		trampoline_cr4_features		which	must	contain	content	of	the		cr4	
Control	register.	First	of	all	we	need	to	check	that	current	CPU	has	support	of	the		cr4		register	and	if	it	has,	we	save	its	content	to	the
	trampoline_cr4_features		which	is	storage	for		cr4		in	the	real	mode:

if	(boot_cpu_data.cpuid_level	>=	0)	{

				mmu_cr4_features	=	__read_cr4();

				if	(trampoline_cr4_features)

								*trampoline_cr4_features	=	mmu_cr4_features;

}

The	next	function	which	you	can	see	is		map_vsyscal		from	the	arch/x86/kernel/vsyscall_64.c.	This	function	maps	memory	space	for
vsyscalls	and	depends	on		CONFIG_X86_VSYSCALL_EMULATION		kernel	configuration	option.	Actually		vsyscall		is	a	special	segment
which	provides	fast	access	to	the	certain	system	calls	like		getcpu	,	etc.	Let's	look	on	implementation	of	this	function:

void	__init	map_vsyscall(void)

{

								extern	char	__vsyscall_page;

								unsigned	long	physaddr_vsyscall	=	__pa_symbol(&__vsyscall_page);

								if	(vsyscall_mode	!=	NONE)

																__set_fixmap(VSYSCALL_PAGE,	physaddr_vsyscall,

																													vsyscall_mode	==	NATIVE

																													?	PAGE_KERNEL_VSYSCALL

																													:	PAGE_KERNEL_VVAR);

								BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

																					(unsigned	long)VSYSCALL_ADDR);

}

In	the	beginning	of	the		map_vsyscall		we	can	see	definition	of	two	variables.	The	first	is	extern	variable		__vsyscall_page	.	As	a
extern	variable,	it	defined	somewhere	in	other	source	code	file.	Actually	we	can	see	definition	of	the		__vsyscall_page		in	the
arch/x86/kernel/vsyscall_emu_64.S.	The		__vsyscall_page		symbol	points	to	the	aligned	calls	of	the		vsyscalls		as		gettimeofday	,
etc.:

				.globl	__vsyscall_page

				.balign	PAGE_SIZE,	0xcc

				.type	__vsyscall_page,	@object

__vsyscall_page:

				mov	$__NR_gettimeofday,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_time,	%rax

				syscall

				ret

				...

				...

				...

The	second	variable	is		physaddr_vsyscall		which	just	stores	physical	address	of	the		__vsyscall_page		symbol.	In	the	next	step	we
check	the		vsyscall_mode		variable,	and	if	it	is	not	equal	to		NONE	,	it	is		EMULATE		by	default:

static	enum	{	EMULATE,	NATIVE,	NONE	}	vsyscall_mode	=	EMULATE;

And	after	this	check	we	can	see	the	call	of	the		__set_fixmap		function	which	calls		native_set_fixmap		with	the	same	parameters:

void	native_set_fixmap(enum	fixed_addresses	idx,	unsigned	long	phys,	pgprot_t	flags)

105

http://en.wikipedia.org/wiki/Control_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vsyscall_64.c
https://lwn.net/Articles/446528/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vsyscall_emu_64.S

{

								__native_set_fixmap(idx,	pfn_pte(phys	>>	PAGE_SHIFT,	flags));

}

void	__native_set_fixmap(enum	fixed_addresses	idx,	pte_t	pte)

{

								unsigned	long	address	=	__fix_to_virt(idx);

								if	(idx	>=	__end_of_fixed_addresses)	{

																BUG();

																return;

								}

								set_pte_vaddr(address,	pte);

								fixmaps_set++;

}

Here	we	can	see	that		native_set_fixmap		makes	value	of		Page	Table	Entry		from	the	given	physical	address	(physical	address	of	the
	__vsyscall_page		symbol	in	our	case)	and	calls	internal	function	-		__native_set_fixmap	.	Internal	function	gets	the	virtual	address	of
the	given		fixed_addresses		index	(VSYSCALL_PAGE		in	our	case)	and	checks	that	given	index	is	not	greater	than	end	of	the	fix-mapped
addresses.	After	this	we	set	page	table	entry	with	the	call	of	the		set_pte_vaddr		function	and	increase	count	of	the	fix-mapped
addresses.	And	in	the	end	of	the		map_vsyscall		we	check	that	virtual	address	of	the		VSYSCALL_PAGE		(which	is	first	index	in	the
	fixed_addresses)	is	not	greater	than		VSYSCALL_ADDR		which	is		-10UL	<<	20		or		ffffffffff600000		with	the		BUILD_BUG_ON		macro:

BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

																					(unsigned	long)VSYSCALL_ADDR);

Now		vsyscall		area	is	in	the		fix-mapped		area.	That's	all	about		map_vsyscall	,	if	you	do	not	know	anything	about	fix-mapped
addresses,	you	can	read	Fix-Mapped	Addresses	and	ioremap.	We	will	see	more	about		vsyscalls		in	the		vsyscalls	and	vdso		part.

Getting	the	SMP	configuration

You	may	remember	how	we	made	a	search	of	the	SMP	configuration	in	the	previous	part.	Now	we	need	to	get	the		SMP		configuration	if
we	found	it.	For	this	we	check		smp_found_config		variable	which	we	set	in	the		smp_scan_config		function	(read	about	it	the	previous
part)	and	call	the		get_smp_config		function:

if	(smp_found_config)

				get_smp_config();

The		get_smp_config		expands	to	the		x86_init.mpparse.default_get_smp_config		function	which	is	defined	in	the
arch/x86/kernel/mpparse.c.	This	function	defines	a	pointer	to	the	multiprocessor	floating	pointer	structure	-		mpf_intel		(you	can	read
about	it	in	the	previous	part)	and	does	some	checks:

struct	mpf_intel	*mpf	=	mpf_found;

if	(!mpf)

				return;

if	(acpi_lapic	&&	early)

			return;

Here	we	can	see	that	multiprocessor	configuration	was	found	in	the		smp_scan_config		function	or	just	return	from	the	function	if	not.
The	next	check	is		acpi_lapic		and		early	.	And	as	we	did	this	checks,	we	start	to	read	the		SMP		configuration.	As	we	finished
reading	it,	the	next	step	is	-		prefill_possible_map		function	which	makes	preliminary	filling	of	the	possible	CPU's		cpumask		(more
about	it	you	can	read	in	the	Introduction	to	the	cpumasks).

The	rest	of	the	setup_arch

106

http://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/mpparse.c

Here	we	are	getting	to	the	end	of	the		setup_arch		function.	The	rest	of	function	of	course	is	important,	but	details	about	these	stuff	will
not	will	not	be	included	in	this	part.	We	will	just	take	a	short	look	on	these	functions,	because	although	they	are	important	as	I	wrote
above,	but	they	cover	non-generic	kernel	features	related	with	the		NUMA	,		SMP	,		ACPI		and		APICs	,	etc.	First	of	all,	the	next	call	of	the
	init_apic_mappings		function.	As	we	can	understand	this	function	sets	the	address	of	the	local	APIC.	The	next	is
	x86_io_apic_ops.init		and	this	function	initializes	I/O	APIC.	Please	note	that	we	will	see	all	details	related	with		APIC		in	the	chapter
about	interrupts	and	exceptions	handling.	In	the	next	step	we	reserve	standard	I/O	resources	like		DMA	,		TIMER	,		FPU	,	etc.,	with	the
call	of	the		x86_init.resources.reserve_resources		function.	Following	is		mcheck_init		function	initializes		Machine	check
Exception		and	the	last	is		register_refined_jiffies		which	registers	jiffy	(There	will	be	separate	chapter	about	timers	in	the	kernel).

So	that's	all.	Finally	we	have	finished	with	the	big		setup_arch		function	in	this	part.	Of	course	as	I	already	wrote	many	times,	we	did
not	see	full	details	about	this	function,	but	do	not	worry	about	it.	We	will	be	back	more	than	once	to	this	function	from	different	chapters
for	understanding	how	different	platform-dependent	parts	are	initialized.

That's	all,	and	now	we	can	back	to	the		start_kernel		from	the		setup_arch	.

Back	to	the	main.c
As	I	wrote	above,	we	have	finished	with	the		setup_arch		function	and	now	we	can	back	to	the		start_kernel		function	from	the
init/main.c.	As	you	may	remember	or	saw	yourself,		start_kernel		function	as	big	as	the		setup_arch	.	So	the	couple	of	the	next	part
will	be	dedicated	to	learning	of	this	function.	So,	let's	continue	with	it.	After	the		setup_arch		we	can	see	the	call	of	the
	mm_init_cpumask		function.	This	function	sets	the	cpumask	pointer	to	the	memory	descriptor		cpumask	.	We	can	look	on	its
implementation:

static	inline	void	mm_init_cpumask(struct	mm_struct	*mm)

{

#ifdef	CONFIG_CPUMASK_OFFSTACK

								mm->cpu_vm_mask_var	=	&mm->cpumask_allocation;

#endif

								cpumask_clear(mm->cpu_vm_mask_var);

}

As	you	can	see	in	the	init/main.c,	we	pass	memory	descriptor	of	the	init	process	to	the		mm_init_cpumask		and	depends	on
	CONFIG_CPUMASK_OFFSTACK		configuration	option	we	clear	TLB	switch		cpumask	.

In	the	next	step	we	can	see	the	call	of	the	following	function:

setup_command_line(command_line);

This	function	takes	pointer	to	the	kernel	command	line	allocates	a	couple	of	buffers	to	store	command	line.	We	need	a	couple	of	buffers,
because	one	buffer	used	for	future	reference	and	accessing	to	command	line	and	one	for	parameter	parsing.	We	will	allocate	space	for
the	following	buffers:

	saved_command_line		-	will	contain	boot	command	line;
	initcall_command_line		-	will	contain	boot	command	line.	will	be	used	in	the		do_initcall_level	;
	static_command_line		-	will	contain	command	line	for	parameters	parsing.

We	will	allocate	space	with	the		memblock_virt_alloc		function.	This	function	calls		memblock_virt_alloc_try_nid		which	allocates
boot	memory	block	with		memblock_reserve		if	slab	is	not	available	or	uses		kzalloc_node		(more	about	it	will	be	in	the	linux	memory
management	chapter).	The		memblock_virt_alloc		uses		BOOTMEM_LOW_LIMIT		(physical	address	of	the		(PAGE_OFFSET	+	0x1000000)	
value)	and		BOOTMEM_ALLOC_ACCESSIBLE		(equal	to	the	current	value	of	the		memblock.current_limit)	as	minimum	address	of	the
memory	region	and	maximum	address	of	the	memory	region.

Let's	look	on	the	implementation	of	the		setup_command_line	:

static	void	__init	setup_command_line(char	*command_line)

{

								saved_command_line	=

107

http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Jiffy_%28time%29
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Slab_allocation

																memblock_virt_alloc(strlen(boot_command_line)	+	1,	0);

								initcall_command_line	=

																memblock_virt_alloc(strlen(boot_command_line)	+	1,	0);

								static_command_line	=	memblock_virt_alloc(strlen(command_line)	+	1,	0);

								strcpy(saved_command_line,	boot_command_line);

								strcpy(static_command_line,	command_line);

	}

Here	we	can	see	that	we	allocate	space	for	the	three	buffers	which	will	contain	kernel	command	line	for	the	different	purposes	(read
above).	And	as	we	allocated	space,	we	store		boot_command_line		in	the		saved_command_line		and		command_line		(kernel	command
line	from	the		setup_arch)	to	the		static_command_line	.

The	next	function	after	the		setup_command_line		is	the		setup_nr_cpu_ids	.	This	function	setting		nr_cpu_ids		(number	of	CPUs)
according	to	the	last	bit	in	the		cpu_possible_mask		(more	about	it	you	can	read	in	the	chapter	describes	cpumasks	concept).	Let's	look
on	its	implementation:

void	__init	setup_nr_cpu_ids(void)

{

								nr_cpu_ids	=	find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS)	+	1;

}

Here		nr_cpu_ids		represents	number	of	CPUs,		NR_CPUS		represents	the	maximum	number	of	CPUs	which	we	can	set	in	configuration
time:

Actually	we	need	to	call	this	function,	because		NR_CPUS		can	be	greater	than	actual	amount	of	the	CPUs	in	the	your	computer.	Here	we
can	see	that	we	call		find_last_bit		function	and	pass	two	parameters	to	it:

	cpu_possible_mask		bits;
maximum	number	of	CPUS.

In	the		setup_arch		we	can	find	the	call	of	the		prefill_possible_map		function	which	calculates	and	writes	to	the
	cpu_possible_mask		actual	number	of	the	CPUs.	We	call	the		find_last_bit		function	which	takes	the	address	and	maximum	size	to
search	and	returns	bit	number	of	the	first	set	bit.	We	passed		cpu_possible_mask		bits	and	maximum	number	of	the	CPUs.	First	of	all
the		find_last_bit		function	splits	given		unsigned	long		address	to	the	words:

108

http://en.wikipedia.org/wiki/Word_%28computer_architecture%29

words	=	size	/	BITS_PER_LONG;

where		BITS_PER_LONG		is		64		on	the		x86_64	.	As	we	got	amount	of	words	in	the	given	size	of	the	search	data,	we	need	to	check	is
given	size	does	not	contain	partial	words	with	the	following	check:

if	(size	&	(BITS_PER_LONG-1))	{

									tmp	=	(addr[words]	&	(~0UL	>>	(BITS_PER_LONG

																																	-	(size	&	(BITS_PER_LONG-1)))));

									if	(tmp)

																	goto	found;

}

if	it	contains	partial	word,	we	mask	the	last	word	and	check	it.	If	the	last	word	is	not	zero,	it	means	that	current	word	contains	at	least
one	set	bit.	We	go	to	the		found		label:

found:

				return	words	*	BITS_PER_LONG	+	__fls(tmp);

Here	you	can	see		__fls		function	which	returns	last	set	bit	in	a	given	word	with	help	of	the		bsr		instruction:

static	inline	unsigned	long	__fls(unsigned	long	word)

{

								asm("bsr	%1,%0"

												:	"=r"	(word)

												:	"rm"	(word));

								return	word;

}

The		bsr		instruction	which	scans	the	given	operand	for	first	bit	set.	If	the	last	word	is	not	partial	we	going	through	the	all	words	in	the
given	address	and	trying	to	find	first	set	bit:

while	(words)	{

				tmp	=	addr[--words];

				if	(tmp)	{

found:

								return	words	*	BITS_PER_LONG	+	__fls(tmp);

				}

}

Here	we	put	the	last	word	to	the		tmp		variable	and	check	that		tmp		contains	at	least	one	set	bit.	If	a	set	bit	found,	we	return	the	number
of	this	bit.	If	no	one	words	do	not	contains	set	bit	we	just	return	given	size:

return	size;

After	this		nr_cpu_ids		will	contain	the	correct	amount	of	the	available	CPUs.

That's	all.

Conclusion
It	is	the	end	of	the	seventh	part	about	the	linux	kernel	initialization	process.	In	this	part,	finally	we	have	finished	with	the		setup_arch	
function	and	returned	to	the		start_kernel		function.	In	the	next	part	we	will	continue	to	learn	generic	kernel	code	from	the
	start_kernel		and	will	continue	our	way	to	the	first		init		process.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

109

https://twitter.com/0xAX

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links
Desktop	Management	Interface
x86_64
initrd
Kernel	panic
Documentation/kernel-parameters.txt
ACPI
Direct	memory	access
NUMA
Control	register
vsyscalls
SMP
jiffy
Previous	part

110

https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Desktop_Management_Interface
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Kernel_panic
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.rst
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Direct_memory_access
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Control_register
https://lwn.net/Articles/446528/
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Jiffy_%28time%29

Kernel	initialization.	Part	8.

Scheduler	initialization
This	is	the	eighth	part	of	the	Linux	kernel	initialization	process	and	we	stopped	on	the		setup_nr_cpu_ids		function	in	the	previous	part.
The	main	point	of	the	current	part	is	scheduler	initialization.	But	before	we	will	start	to	learn	initialization	process	of	the	scheduler,	we
need	to	do	some	stuff.	The	next	step	in	the	init/main.c	is	the		setup_per_cpu_areas		function.	This	function	setups	areas	for	the
	percpu		variables,	more	about	it	you	can	read	in	the	special	part	about	the	Per-CPU	variables.	After		percpu		areas	is	up	and	running,
the	next	step	is	the		smp_prepare_boot_cpu		function.	This	function	does	some	preparations	for	the	SMP:

static	inline	void	smp_prepare_boot_cpu(void)

{

									smp_ops.smp_prepare_boot_cpu();

}

where	the		smp_prepare_boot_cpu		expands	to	the	call	of	the		native_smp_prepare_boot_cpu		function	(more	about		smp_ops		will	be	in
the	special	parts	about		SMP):

void	__init	native_smp_prepare_boot_cpu(void)

{

								int	me	=	smp_processor_id();

								switch_to_new_gdt(me);

								cpumask_set_cpu(me,	cpu_callout_mask);

								per_cpu(cpu_state,	me)	=	CPU_ONLINE;

}

The		native_smp_prepare_boot_cpu		function	gets	the	id	of	the	current	CPU	(which	is	Bootstrap	processor	and	its		id		is	zero)	with	the
	smp_processor_id		function.	I	will	not	explain	how	the		smp_processor_id		works,	because	we	already	saw	it	in	the	Kernel	entry	point
part.	As	we	got	processor		id		number	we	reload	Global	Descriptor	Table	for	the	given	CPU	with	the		switch_to_new_gdt		function:

void	switch_to_new_gdt(int	cpu)

{

								struct	desc_ptr	gdt_descr;

								gdt_descr.address	=	(long)get_cpu_gdt_table(cpu);

								gdt_descr.size	=	GDT_SIZE	-	1;

								load_gdt(&gdt_descr);

								load_percpu_segment(cpu);

}

The		gdt_descr		variable	represents	pointer	to	the		GDT		descriptor	here	(we	already	saw		desc_ptr		in	the	Early	interrupt	and
exception	handling).	We	get	the	address	and	the	size	of	the		GDT		descriptor	where		GDT_SIZE		is		256		or:

#define	GDT_SIZE	(GDT_ENTRIES	*	8)

and	the	address	of	the	descriptor	we	will	get	with	the		get_cpu_gdt_table	:

static	inline	struct	desc_struct	*get_cpu_gdt_table(unsigned	int	cpu)

{

								return	per_cpu(gdt_page,	cpu).gdt;

}

The		get_cpu_gdt_table		uses		per_cpu		macro	for	getting		gdt_page		percpu	variable	for	the	given	CPU	number	(bootstrap	processor
with		id		-	0	in	our	case).	You	may	ask	the	following	question:	so,	if	we	can	access		gdt_page		percpu	variable,	where	it	was	defined?
Actually	we	already	saw	it	in	this	book.	If	you	have	read	the	first	part	of	this	chapter,	you	can	remember	that	we	saw	definition	of	the

111

https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-7.md
http://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Global_Descriptor_Table

	gdt_page		in	the	arch/x86/kernel/head_64.S:

early_gdt_descr:

				.word				GDT_ENTRIES*8-1

early_gdt_descr_base:

				.quad				INIT_PER_CPU_VAR(gdt_page)

and	if	we	will	look	on	the	linker	file	we	can	see	that	it	locates	after	the		__per_cpu_load		symbol:

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(gdt_page);

and	filled		gdt_page		in	the	arch/x86/kernel/cpu/common.c:

DEFINE_PER_CPU_PAGE_ALIGNED(struct	gdt_page,	gdt_page)	=	{	.gdt	=	{

#ifdef	CONFIG_X86_64

				[GDT_ENTRY_KERNEL32_CS]								=	GDT_ENTRY_INIT(0xc09b,	0,	0xfffff),

				[GDT_ENTRY_KERNEL_CS]								=	GDT_ENTRY_INIT(0xa09b,	0,	0xfffff),

				[GDT_ENTRY_KERNEL_DS]								=	GDT_ENTRY_INIT(0xc093,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER32_CS]				=	GDT_ENTRY_INIT(0xc0fb,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER_DS]				=	GDT_ENTRY_INIT(0xc0f3,	0,	0xfffff),

				[GDT_ENTRY_DEFAULT_USER_CS]				=	GDT_ENTRY_INIT(0xa0fb,	0,	0xfffff),

				...

				...

				...

more	about		percpu		variables	you	can	read	in	the	Per-CPU	variables	part.	As	we	got	address	and	size	of	the		GDT		descriptor	we	reload
	GDT		with	the		load_gdt		which	just	execute		lgdt		instruct	and	load		percpu_segment		with	the	following	function:

void	load_percpu_segment(int	cpu)	{

				loadsegment(gs,	0);

				wrmsrl(MSR_GS_BASE,	(unsigned	long)per_cpu(irq_stack_union.gs_base,	cpu));

				load_stack_canary_segment();

}

The	base	address	of	the		percpu		area	must	contain		gs		register	(or		fs		register	for		x86),	so	we	are	using		loadsegment		macro	and
pass		gs	.	In	the	next	step	we	writes	the	base	address	if	the	IRQ	stack	and	setup	stack	canary	(this	is	only	for		x86_32).	After	we	load
new		GDT	,	we	fill		cpu_callout_mask		bitmap	with	the	current	cpu	and	set	cpu	state	as	online	with	the	setting		cpu_state		percpu
variable	for	the	current	processor	-		CPU_ONLINE	:

cpumask_set_cpu(me,	cpu_callout_mask);

per_cpu(cpu_state,	me)	=	CPU_ONLINE;

So,	what	is		cpu_callout_mask		bitmap...	As	we	initialized	bootstrap	processor	(processor	which	is	booted	the	first	on		x86)	the	other
processors	in	a	multiprocessor	system	are	known	as		secondary	processors	.	Linux	kernel	uses	following	two	bitmasks:

	cpu_callout_mask	

	cpu_callin_mask	

After	bootstrap	processor	initialized,	it	updates	the		cpu_callout_mask		to	indicate	which	secondary	processor	can	be	initialized	next.
All	other	or	secondary	processors	can	do	some	initialization	stuff	before	and	check	the		cpu_callout_mask		on	the	boostrap	processor
bit.	Only	after	the	bootstrap	processor	filled	the		cpu_callout_mask		with	this	secondary	processor,	it	will	continue	the	rest	of	its
initialization.	After	that	the	certain	processor	finish	its	initialization	process,	the	processor	sets	bit	in	the		cpu_callin_mask	.	Once	the
bootstrap	processor	finds	the	bit	in	the		cpu_callin_mask		for	the	current	secondary	processor,	this	processor	repeats	the	same
procedure	for	initialization	of	one	of	the	remaining	secondary	processors.	In	a	short	words	it	works	as	i	described,	but	we	will	see	more
details	in	the	chapter	about		SMP	.

That's	all.	We	did	all		SMP		boot	preparation.

112

https://github.com/0xAX/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/0xAX/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c#L94
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Buffer_overflow_protection

Build	zonelists

In	the	next	step	we	can	see	the	call	of	the		build_all_zonelists		function.	This	function	sets	up	the	order	of	zones	that	allocations	are
preferred	from.	What	are	zones	and	what's	order	we	will	understand	soon.	For	the	start	let's	see	how	linux	kernel	considers	physical
memory.	Physical	memory	is	split	into	banks	which	are	called	-		nodes	.	If	you	has	no	hardware	support	for		NUMA	,	you	will	see	only
one	node:

$	cat	/sys/devices/system/node/node0/numastat	

numa_hit	72452442

numa_miss	0

numa_foreign	0

interleave_hit	12925

local_node	72452442

other_node	0

Every		node		is	presented	by	the		struct	pglist_data		in	the	linux	kernel.	Each	node	is	divided	into	a	number	of	special	blocks	which
are	called	-		zones	.	Every	zone	is	presented	by	the		zone	struct		in	the	linux	kernel	and	has	one	of	the	type:

	ZONE_DMA		-	0-16M;
	ZONE_DMA32		-	used	for	32	bit	devices	that	can	only	do	DMA	areas	below	4G;
	ZONE_NORMAL		-	all	RAM	from	the	4GB	on	the		x86_64	;
	ZONE_HIGHMEM		-	absent	on	the		x86_64	;
	ZONE_MOVABLE		-	zone	which	contains	movable	pages.

which	are	presented	by	the		zone_type		enum.	We	can	get	information	about	zones	with	the:

$	cat	/proc/zoneinfo

Node	0,	zone						DMA

		pages	free					3975

								min						3

								low						3

								...

								...

Node	0,	zone				DMA32

		pages	free					694163

								min						875

								low						1093

								...

								...

Node	0,	zone			Normal

		pages	free					2529995

								min						3146

								low						3932

								...

								...

As	I	wrote	above	all	nodes	are	described	with	the		pglist_data		or		pg_data_t		structure	in	memory.	This	structure	is	defined	in	the
include/linux/mmzone.h.	The		build_all_zonelists		function	from	the	mm/page_alloc.c	constructs	an	ordered		zonelist		(of	different
zones		DMA	,		DMA32	,		NORMAL	,		HIGH_MEMORY	,		MOVABLE)	which	specifies	the	zones/nodes	to	visit	when	a	selected		zone		or		node	
cannot	satisfy	the	allocation	request.	That's	all.	More	about		NUMA		and	multiprocessor	systems	will	be	in	the	special	part.

The	rest	of	the	stuff	before	scheduler	initialization
Before	we	will	start	to	dive	into	linux	kernel	scheduler	initialization	process	we	must	do	a	couple	of	things.	The	first	thing	is	the
	page_alloc_init		function	from	the	mm/page_alloc.c.	This	function	looks	pretty	easy:

void	__init	page_alloc_init(void)

{

								hotcpu_notifier(page_alloc_cpu_notify,	0);

}

113

https://github.com/torvalds/linux/blob/master/include/linux/mmzone.h
https://github.com/torvalds/linux/blob/master/mm/page_alloc.c
https://github.com/torvalds/linux/blob/master/mm/page_alloc.c

and	initializes	handler	for	the		CPU		hotplug.	Of	course	the		hotcpu_notifier		depends	on	the		CONFIG_HOTPLUG_CPU		configuration
option	and	if	this	option	is	set,	it	just	calls		cpu_notifier		macro	which	expands	to	the	call	of	the		register_cpu_notifier		which	adds
hotplug	cpu	handler	(page_alloc_cpu_notify		in	our	case).

After	this	we	can	see	the	kernel	command	line	in	the	initialization	output:

And	a	couple	of	functions	such	as		parse_early_param		and		parse_args		which	handles	linux	kernel	command	line.	You	may
remember	that	we	already	saw	the	call	of	the		parse_early_param		function	in	the	sixth	part	of	the	kernel	initialization	chapter,	so	why
we	call	it	again?	Answer	is	simple:	we	call	this	function	in	the	architecture-specific	code	(x86_64		in	our	case),	but	not	all	architecture
calls	this	function.	And	we	need	to	call	the	second	function		parse_args		to	parse	and	handle	non-early	command	line	arguments.

In	the	next	step	we	can	see	the	call	of	the		jump_label_init		from	the	kernel/jump_label.c.	and	initializes	jump	label.

After	this	we	can	see	the	call	of	the		setup_log_buf		function	which	setups	the	printk	log	buffer.	We	already	saw	this	function	in	the
seventh	part	of	the	linux	kernel	initialization	process	chapter.

PID	hash	initialization

The	next	is		pidhash_init		function.	As	you	know	each	process	has	assigned	a	unique	number	which	called	-		process	identification
number		or		PID	.	Each	process	generated	with	fork	or	clone	is	automatically	assigned	a	new	unique		PID		value	by	the	kernel.	The
management	of		PIDs		centered	around	the	two	special	data	structures:		struct	pid		and		struct	upid	.	First	structure	represents
information	about	a		PID		in	the	kernel.	The	second	structure	represents	the	information	that	is	visible	in	a	specific	namespace.	All
	PID		instances	stored	in	the	special	hash	table:

static	struct	hlist_head	*pid_hash;

This	hash	table	is	used	to	find	the	pid	instance	that	belongs	to	a	numeric		PID		value.	So,		pidhash_init		initializes	this	hash	table.	In
the	start	of	the		pidhash_init		function	we	can	see	the	call	of	the		alloc_large_system_hash	:

pid_hash	=	alloc_large_system_hash("PID",	sizeof(*pid_hash),	0,	18,

																																			HASH_EARLY	|	HASH_SMALL,

																																			&pidhash_shift,	NULL,

																																			0,	4096);

The	number	of	elements	of	the		pid_hash		depends	on	the		RAM		configuration,	but	it	can	be	between		2^4		and		2^12	.	The
	pidhash_init		computes	the	size	and	allocates	the	required	storage	(which	is		hlist		in	our	case	-	the	same	as	doubly	linked	list,	but
contains	one	pointer	instead	on	the	struct	hlist_head].	The		alloc_large_system_hash		function	allocates	a	large	system	hash	table	with
	memblock_virt_alloc_nopanic		if	we	pass		HASH_EARLY		flag	(as	it	in	our	case)	or	with		__vmalloc		if	we	did	no	pass	this	flag.

The	result	we	can	see	in	the		dmesg		output:

$	dmesg	|	grep	hash

[0.000000]	PID	hash	table	entries:	4096	(order:	3,	32768	bytes)

...

...

...

That's	all.	The	rest	of	the	stuff	before	scheduler	initialization	is	the	following	functions:		vfs_caches_init_early		does	early
initialization	of	the	virtual	file	system	(more	about	it	will	be	in	the	chapter	which	will	describe	virtual	file	system),		sort_main_extable	
sorts	the	kernel's	built-in	exception	table	entries	which	are	between		__start___ex_table		and		__stop___ex_table	,	and		trap_init	
initializes	trap	handlers	(more	about	last	two	function	we	will	know	in	the	separate	chapter	about	interrupts).

The	last	step	before	the	scheduler	initialization	is	initialization	of	the	memory	manager	with	the		mm_init		function	from	the	init/main.c.
As	we	can	see,	the		mm_init		function	initializes	different	parts	of	the	linux	kernel	memory	manager:

114

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/kernel/jump_label.c
https://lwn.net/Articles/412072/
http://www.makelinux.net/books/lkd2/ch18lev1sec3
https://github.com/torvalds/linux/blob/master/include/linux/types.h
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/init/main.c

page_ext_init_flatmem();

mem_init();

kmem_cache_init();

percpu_init_late();

pgtable_init();

vmalloc_init();

The	first	is		page_ext_init_flatmem		which	depends	on	the		CONFIG_SPARSEMEM		kernel	configuration	option	and	initializes	extended
data	per	page	handling.	The		mem_init		releases	all		bootmem	,	the		kmem_cache_init		initializes	kernel	cache,	the		percpu_init_late		-
replaces		percpu		chunks	with	those	allocated	by	slub,	the		pgtable_init		-	initializes	the		page->ptl		kernel	cache,	the
	vmalloc_init		-	initializes		vmalloc	.	Please,	NOTE	that	we	will	not	dive	into	details	about	all	of	these	functions	and	concepts,	but	we
will	see	all	of	they	it	in	the	Linux	kernel	memory	manager	chapter.

That's	all.	Now	we	can	look	on	the		scheduler	.

Scheduler	initialization
And	now	we	come	to	the	main	purpose	of	this	part	-	initialization	of	the	task	scheduler.	I	want	to	say	again	as	I	already	did	it	many
times,	you	will	not	see	the	full	explanation	of	the	scheduler	here,	there	will	be	special	chapter	about	this.	Ok,	next	point	is	the
	sched_init		function	from	the	kernel/sched/core.c	and	as	we	can	understand	from	the	function's	name,	it	initializes	scheduler.	Let's
start	to	dive	into	this	function	and	try	to	understand	how	the	scheduler	is	initialized.	At	the	start	of	the		sched_init		function	we	can	see
the	following	code:

#ifdef	CONFIG_FAIR_GROUP_SCHED

									alloc_size	+=	2	*	nr_cpu_ids	*	sizeof(void	**);

#endif

#ifdef	CONFIG_RT_GROUP_SCHED

									alloc_size	+=	2	*	nr_cpu_ids	*	sizeof(void	**);

#endif

First	of	all	we	can	see	two	configuration	options	here:

	CONFIG_FAIR_GROUP_SCHED	

	CONFIG_RT_GROUP_SCHED	

Both	of	this	options	provide	two	different	planning	models.	As	we	can	read	from	the	documentation,	the	current	scheduler	-		CFS		or
	Completely	Fair	Scheduler		use	a	simple	concept.	It	models	process	scheduling	as	if	the	system	has	an	ideal	multitasking	processor
where	each	process	would	receive		1/n		processor	time,	where		n		is	the	number	of	the	runnable	processes.	The	scheduler	uses	the
special	set	of	rules.	These	rules	determine	when	and	how	to	select	a	new	process	to	run	and	they	are	called		scheduling	policy	.	The
Completely	Fair	Scheduler	supports	following		normal		or		non-real-time		scheduling	policies:		SCHED_NORMAL	,		SCHED_BATCH		and
	SCHED_IDLE	.	The		SCHED_NORMAL		is	used	for	the	most	normal	applications,	the	amount	of	cpu	each	process	consumes	is	mostly
determined	by	the	nice	value,	the		SCHED_BATCH		used	for	the	100%	non-interactive	tasks	and	the		SCHED_IDLE		runs	tasks	only	when	the
processor	has	no	task	to	run	besides	this	task.	The		real-time		policies	are	also	supported	for	the	time-critical	applications:
	SCHED_FIFO		and		SCHED_RR	.	If	you've	read	something	about	the	Linux	kernel	scheduler,	you	can	know	that	it	is	modular.	It	means	that
it	supports	different	algorithms	to	schedule	different	types	of	processes.	Usually	this	modularity	is	called		scheduler	classes	.	These
modules	encapsulate	scheduling	policy	details	and	are	handled	by	the	scheduler	core	without	knowing	too	much	about	them.

Now	let's	back	to	the	our	code	and	look	on	the	two	configuration	options		CONFIG_FAIR_GROUP_SCHED		and		CONFIG_RT_GROUP_SCHED	.
The	scheduler	operates	on	an	individual	task.	These	options	allows	to	schedule	group	tasks	(more	about	it	you	can	read	in	the	CFS
group	scheduling).	We	can	see	that	we	assign	the		alloc_size		variables	which	represent	size	based	on	amount	of	the	processors	to
allocate	for	the		sched_entity		and		cfs_rq		to	the		2	*	nr_cpu_ids	*	sizeof(void	**)		expression	with		kzalloc	:

ptr	=	(unsigned	long)kzalloc(alloc_size,	GFP_NOWAIT);

#ifdef	CONFIG_FAIR_GROUP_SCHED

								root_task_group.se	=	(struct	sched_entity	**)ptr;

								ptr	+=	nr_cpu_ids	*	sizeof(void	**);

115

http://en.wikipedia.org/wiki/SLUB_%28software%29
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://en.wikipedia.org/wiki/Nice_%28Unix%29
http://lwn.net/Articles/240474/

								root_task_group.cfs_rq	=	(struct	cfs_rq	**)ptr;

								ptr	+=	nr_cpu_ids	*	sizeof(void	**);

#endif

The		sched_entity		is	a	structure	which	is	defined	in	the	include/linux/sched.h	and	used	by	the	scheduler	to	keep	track	of	process
accounting.	The		cfs_rq		presents	run	queue.	So,	you	can	see	that	we	allocated	space	with	size		alloc_size		for	the	run	queue	and
scheduler	entity	of	the		root_task_group	.	The		root_task_group		is	an	instance	of	the		task_group		structure	from	the
kernel/sched/sched.h	which	contains	task	group	related	information:

struct	task_group	{

				...

				...

				struct	sched_entity	**se;

				struct	cfs_rq	**cfs_rq;

				...

				...

}

The	root	task	group	is	the	task	group	which	belongs	to	every	task	in	system.	As	we	allocated	space	for	the	root	task	group	scheduler
entity	and	runqueue,	we	go	over	all	possible	CPUs	(cpu_possible_mask		bitmap)	and	allocate	zeroed	memory	from	a	particular
memory	node	with	the		kzalloc_node		function	for	the		load_balance_mask			percpu		variable:

DECLARE_PER_CPU(cpumask_var_t,	load_balance_mask);

Here		cpumask_var_t		is	the		cpumask_t		with	one	difference:		cpumask_var_t		is	allocated	only		nr_cpu_ids		bits	when	the
	cpumask_t		always	has		NR_CPUS		bits	(more	about		cpumask		you	can	read	in	the	CPU	masks	part).	As	you	can	see:

#ifdef	CONFIG_CPUMASK_OFFSTACK

				for_each_possible_cpu(i)	{

								per_cpu(load_balance_mask,	i)	=	(cpumask_var_t)kzalloc_node(

																cpumask_size(),	GFP_KERNEL,	cpu_to_node(i));

				}

#endif

this	code	depends	on	the		CONFIG_CPUMASK_OFFSTACK		configuration	option.	This	configuration	options	says	to	use	dynamic	allocation
for		cpumask	,	instead	of	putting	it	on	the	stack.	All	groups	have	to	be	able	to	rely	on	the	amount	of	CPU	time.	With	the	call	of	the	two
following	functions:

init_rt_bandwidth(&def_rt_bandwidth,

																		global_rt_period(),	global_rt_runtime());

init_dl_bandwidth(&def_dl_bandwidth,

																		global_rt_period(),	global_rt_runtime());

we	initialize	bandwidth	management	for	the		SCHED_DEADLINE		real-time	tasks.	These	functions	initializes		rt_bandwidth		and
	dl_bandwidth		structures	which	store	information	about	maximum		deadline		bandwidth	of	the	system.	For	example,	let's	look	on	the
implementation	of	the		init_rt_bandwidth		function:

void	init_rt_bandwidth(struct	rt_bandwidth	*rt_b,	u64	period,	u64	runtime)

{

								rt_b->rt_period	=	ns_to_ktime(period);

								rt_b->rt_runtime	=	runtime;

								raw_spin_lock_init(&rt_b->rt_runtime_lock);

								hrtimer_init(&rt_b->rt_period_timer,

																					CLOCK_MONOTONIC,	HRTIMER_MODE_REL);

								rt_b->rt_period_timer.function	=	sched_rt_period_timer;

}

It	takes	three	parameters:

116

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://en.wikipedia.org/wiki/Run_queue
https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

address	of	the		rt_bandwidth		structure	which	contains	information	about	the	allocated	and	consumed	quota	within	a	period;
	period		-	period	over	which	real-time	task	bandwidth	enforcement	is	measured	in		us	;
	runtime		-	part	of	the	period	that	we	allow	tasks	to	run	in		us	.

As		period		and		runtime		we	pass	result	of	the		global_rt_period		and		global_rt_runtime		functions.	Which	are		1s		second	and
and		0.95s		by	default.	The		rt_bandwidth		structure	is	defined	in	the	kernel/sched/sched.h	and	looks:

struct	rt_bandwidth	{

								raw_spinlock_t										rt_runtime_lock;

								ktime_t																	rt_period;

								u64																					rt_runtime;

								struct	hrtimer										rt_period_timer;

};

As	you	can	see,	it	contains		runtime		and		period		and	also	two	following	fields:

	rt_runtime_lock		-	spinlock	for	the		rt_time		protection;
	rt_period_timer		-	high-resolution	kernel	timer	for	unthrottled	of	real-time	tasks.

So,	in	the		init_rt_bandwidth		we	initialize		rt_bandwidth		period	and	runtime	with	the	given	parameters,	initialize	the	spinlock	and
high-resolution	time.	In	the	next	step,	depends	on	enable	of	SMP,	we	make	initialization	of	the	root	domain:

#ifdef	CONFIG_SMP

				init_defrootdomain();

#endif

The	real-time	scheduler	requires	global	resources	to	make	scheduling	decision.	But	unfortunately	scalability	bottlenecks	appear	as	the
number	of	CPUs	increase.	The	concept	of	root	domains	was	introduced	for	improving	scalability.	The	linux	kernel	provides	a	special
mechanism	for	assigning	a	set	of	CPUs	and	memory	nodes	to	a	set	of	tasks	and	it	is	called	-		cpuset	.	If	a		cpuset		contains	non-
overlapping	with	other		cpuset		CPUs,	it	is		exclusive	cpuset	.	Each	exclusive	cpuset	defines	an	isolated	domain	or		root	domain		of
CPUs	partitioned	from	other	cpusets	or	CPUs.	A		root	domain		is	presented	by	the		struct	root_domain		from	the
kernel/sched/sched.h	in	the	linux	kernel	and	its	main	purpose	is	to	narrow	the	scope	of	the	global	variables	to	per-domain	variables	and
all	real-time	scheduling	decisions	are	made	only	within	the	scope	of	a	root	domain.	That's	all	about	it,	but	we	will	see	more	details	about
it	in	the	chapter	about	real-time	scheduler.

After		root	domain		initialization,	we	make	initialization	of	the	bandwidth	for	the	real-time	tasks	of	the	root	task	group	as	we	did	it
above:

#ifdef	CONFIG_RT_GROUP_SCHED

				init_rt_bandwidth(&root_task_group.rt_bandwidth,

												global_rt_period(),	global_rt_runtime());

#endif

In	the	next	step,	depends	on	the		CONFIG_CGROUP_SCHED		kernel	configuration	option	we	initialize	the		siblings		and		children		lists	of
the	root	task	group.	As	we	can	read	from	the	documentation,	the		CONFIG_CGROUP_SCHED		is:

This	option	allows	you	to	create	arbitrary	task	groups	using	the	"cgroup"	pseudo

filesystem	and	control	the	cpu	bandwidth	allocated	to	each	such	task	group.

As	we	finished	with	the	lists	initialization,	we	can	see	the	call	of	the		autogroup_init		function:

#ifdef	CONFIG_CGROUP_SCHED

									list_add(&root_task_group.list,	&task_groups);

									INIT_LIST_HEAD(&root_task_group.children);

									INIT_LIST_HEAD(&root_task_group.siblings);

									autogroup_init(&init_task);

#endif

which	initializes	automatic	process	group	scheduling.

117

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h
http://en.wikipedia.org/wiki/Spinlock
https://www.kernel.org/doc/Documentation/timers/hrtimers.txt
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

After	this	we	are	going	through	the	all		possible		cpu	(you	can	remember	that		possible		CPUs	store	in	the		cpu_possible_mask	
bitmap	that	can	ever	be	available	in	the	system)	and	initialize	a		runqueue		for	each	possible	cpu:

for_each_possible_cpu(i)	{

				struct	rq	*rq;

				...

				...

				...

Each	processor	has	its	own	locking	and	individual	runqueue.	All	runnable	tasks	are	stored	in	an	active	array	and	indexed	according	to
its	priority.	When	a	process	consumes	its	time	slice,	it	is	moved	to	an	expired	array.	All	of	these	arras	are	stored	in	the	special	structure
which	names	is		runqueue	.	As	there	are	no	global	lock	and	runqueue,	we	are	going	through	the	all	possible	CPUs	and	initialize
runqueue	for	the	every	cpu.	The		runqueue		is	presented	by	the		rq		structure	in	the	linux	kernel	which	is	defined	in	the
kernel/sched/sched.h.

rq	=	cpu_rq(i);

raw_spin_lock_init(&rq->lock);

rq->nr_running	=	0;

rq->calc_load_active	=	0;

rq->calc_load_update	=	jiffies	+	LOAD_FREQ;

init_cfs_rq(&rq->cfs);

init_rt_rq(&rq->rt);

init_dl_rq(&rq->dl);

rq->rt.rt_runtime	=	def_rt_bandwidth.rt_runtime;

Here	we	get	the	runqueue	for	the	every	CPU	with	the		cpu_rq		macro	which	returns		runqueues		percpu	variable	and	start	to	initialize	it
with	runqueue	lock,	number	of	running	tasks,		calc_load		relative	fields	(calc_load_active		and		calc_load_update)	which	are	used
in	the	reckoning	of	a	CPU	load	and	initialization	of	the	completely	fair,	real-time	and	deadline	related	fields	in	a	runqueue.	After	this	we
initialize		cpu_load		array	with	zeros	and	set	the	last	load	update	tick	to	the		jiffies		variable	which	determines	the	number	of	time
ticks	(cycles),	since	the	system	boot:

for	(j	=	0;	j	<	CPU_LOAD_IDX_MAX;	j++)

				rq->cpu_load[j]	=	0;

rq->last_load_update_tick	=	jiffies;

where		cpu_load		keeps	history	of	runqueue	loads	in	the	past,	for	now		CPU_LOAD_IDX_MAX		is	5.	In	the	next	step	we	fill		runqueue	
fields	which	are	related	to	the	SMP,	but	we	will	not	cover	them	in	this	part.	And	in	the	end	of	the	loop	we	initialize	high-resolution
timer	for	the	give		runqueue		and	set	the		iowait		(more	about	it	in	the	separate	part	about	scheduler)	number:

init_rq_hrtick(rq);

atomic_set(&rq->nr_iowait,	0);

Now	we	come	out	from	the		for_each_possible_cpu		loop	and	the	next	we	need	to	set	load	weight	for	the		init		task	with	the
	set_load_weight		function.	Weight	of	process	is	calculated	through	its	dynamic	priority	which	is	static	priority	+	scheduling	class	of
the	process.	After	this	we	increase	memory	usage	counter	of	the	memory	descriptor	of	the		init		process	and	set	scheduler	class	for	the
current	process:

atomic_inc(&init_mm.mm_count);

current->sched_class	=	&fair_sched_class;

And	make	current	process	(it	will	be	the	first		init		process)		idle		and	update	the	value	of	the		calc_load_update		with	the	5	seconds
interval:

init_idle(current,	smp_processor_id());

calc_load_update	=	jiffies	+	LOAD_FREQ;

118

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h
http://en.wikipedia.org/wiki/Symmetric_multiprocessing

So,	the		init		process	will	be	run,	when	there	will	be	no	other	candidates	(as	it	is	the	first	process	in	the	system).	In	the	end	we	just	set
	scheduler_running		variable:

scheduler_running	=	1;

That's	all.	Linux	kernel	scheduler	is	initialized.	Of	course,	we	have	skipped	many	different	details	and	explanations	here,	because	we
need	to	know	and	understand	how	different	concepts	(like	process	and	process	groups,	runqueue,	rcu,	etc.)	works	in	the	linux	kernel	,
but	we	took	a	short	look	on	the	scheduler	initialization	process.	We	will	look	all	other	details	in	the	separate	part	which	will	be	fully
dedicated	to	the	scheduler.

Conclusion
It	is	the	end	of	the	eighth	part	about	the	linux	kernel	initialization	process.	In	this	part,	we	looked	on	the	initialization	process	of	the
scheduler	and	we	will	continue	in	the	next	part	to	dive	in	the	linux	kernel	initialization	process	and	will	see	initialization	of	the	RCU
and	many	other	initialization	stuff	in	the	next	part.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links

CPU	masks
high-resolution	kernel	timer
spinlock
Run	queue
Linux	kernem	memory	manager
slub
virtual	file	system
Linux	kernel	hotplug	documentation
IRQ
Global	Descriptor	Table
Per-CPU	variables
SMP
RCU
CFS	Scheduler	documentation
Real-Time	group	scheduling
Previous	part

119

http://en.wikipedia.org/wiki/Read-copy-update
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://www.kernel.org/doc/Documentation/timers/hrtimers.txt
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/Run_queue
http://en.wikipedia.org/wiki/SLUB_%28software%29
http://en.wikipedia.org/wiki/Virtual_file_system
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Read-copy-update
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

Kernel	initialization.	Part	9.

RCU	initialization
This	is	ninth	part	of	the	Linux	Kernel	initialization	process	and	in	the	previous	part	we	stopped	at	the	scheduler	initialization.	In	this
part	we	will	continue	to	dive	to	the	linux	kernel	initialization	process	and	the	main	purpose	of	this	part	will	be	to	learn	about
initialization	of	the	RCU.	We	can	see	that	the	next	step	in	the	init/main.c	after	the		sched_init		is	the	call	of	the		preempt_disable	.
There	are	two	macros:

	preempt_disable	

	preempt_enable	

for	preemption	disabling	and	enabling.	First	of	all	let's	try	to	understand	what	is		preempt		in	the	context	of	an	operating	system	kernel.
In	simple	words,	preemption	is	ability	of	the	operating	system	kernel	to	preempt	current	task	to	run	task	with	higher	priority.	Here	we
need	to	disable	preemption	because	we	will	have	only	one		init		process	for	the	early	boot	time	and	we	don't	need	to	stop	it	before	we
call		cpu_idle		function.	The		preempt_disable		macro	is	defined	in	the	include/linux/preempt.h	and	depends	on	the
	CONFIG_PREEMPT_COUNT		kernel	configuration	option.	This	macro	is	implemented	as:

#define	preempt_disable()	\

do	{	\

								preempt_count_inc();	\

								barrier();	\

}	while	(0)

and	if		CONFIG_PREEMPT_COUNT		is	not	set	just:

#define	preempt_disable()																							barrier()

Let's	look	on	it.	First	of	all	we	can	see	one	difference	between	these	macro	implementations.	The		preempt_disable		with
	CONFIG_PREEMPT_COUNT		set	contains	the	call	of	the		preempt_count_inc	.	There	is	special		percpu		variable	which	stores	the	number	of
held	locks	and		preempt_disable		calls:

DECLARE_PER_CPU(int,	__preempt_count);

In	the	first	implementation	of	the		preempt_disable		we	increment	this		__preempt_count	.	There	is	API	for	returning	value	of	the
	__preempt_count	,	it	is	the		preempt_count		function.	As	we	called		preempt_disable	,	first	of	all	we	increment	preemption	counter
with	the		preempt_count_inc		macro	which	expands	to	the:

#define	preempt_count_inc()	preempt_count_add(1)

#define	preempt_count_add(val)		__preempt_count_add(val)

where		preempt_count_add		calls	the		raw_cpu_add_4		macro	which	adds		1		to	the	given		percpu		variable	(__preempt_count)	in	our
case	(more	about		precpu		variables	you	can	read	in	the	part	about	Per-CPU	variables).	Ok,	we	increased		__preempt_count		and	the
next	step	we	can	see	the	call	of	the		barrier		macro	in	the	both	macros.	The		barrier		macro	inserts	an	optimization	barrier.	In	the
processors	with		x86_64		architecture	independent	memory	access	operations	can	be	performed	in	any	order.	That's	why	we	need	the
opportunity	to	point	compiler	and	processor	on	compliance	of	order.	This	mechanism	is	memory	barrier.	Let's	consider	a	simple
example:

preempt_disable();

foo();

preempt_enable();

RCU	

120

http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/preempt.h

Compiler	can	rearrange	it	as:

preempt_disable();

preempt_enable();

foo();

In	this	case	non-preemptible	function		foo		can	be	preempted.	As	we	put		barrier		macro	in	the		preempt_disable		and
	preempt_enable		macros,	it	prevents	the	compiler	from	swapping		preempt_count_inc		with	other	statements.	More	about	barriers	you
can	read	here	and	here.

In	the	next	step	we	can	see	following	statement:

if	(WARN(!irqs_disabled(),

					"Interrupts	were	enabled	*very*	early,	fixing	it\n"))

				local_irq_disable();

which	check	IRQs	state,	and	disabling	(with		cli		instruction	for		x86_64)	if	they	are	enabled.

That's	all.	Preemption	is	disabled	and	we	can	go	ahead.

Initialization	of	the	integer	ID	management

In	the	next	step	we	can	see	the	call	of	the		idr_init_cache		function	which	defined	in	the	lib/idr.c.	The		idr		library	is	used	in	a	various
places	in	the	linux	kernel	to	manage	assigning	integer		IDs		to	objects	and	looking	up	objects	by	id.

Let's	look	on	the	implementation	of	the		idr_init_cache		function:

void	__init	idr_init_cache(void)

{

								idr_layer_cache	=	kmem_cache_create("idr_layer_cache",

																																sizeof(struct	idr_layer),	0,	SLAB_PANIC,	NULL);

}

Here	we	can	see	the	call	of	the		kmem_cache_create	.	We	already	called	the		kmem_cache_init		in	the	init/main.c.	This	function	create
generalized	caches	again	using	the		kmem_cache_alloc		(more	about	caches	we	will	see	in	the	Linux	kernel	memory	management
chapter).	In	our	case,	as	we	are	using		kmem_cache_t		which	will	be	used	by	the	slab	allocator	and		kmem_cache_create		creates	it.	As
you	can	see	we	pass	five	parameters	to	the		kmem_cache_create	:

name	of	the	cache;
size	of	the	object	to	store	in	cache;
offset	of	the	first	object	in	the	page;
flags;
constructor	for	the	objects.

and	it	will	create		kmem_cache		for	the	integer	IDs.	Integer		IDs		is	commonly	used	pattern	to	map	set	of	integer	IDs	to	the	set	of
pointers.	We	can	see	usage	of	the	integer	IDs	in	the	i2c	drivers	subsystem.	For	example	drivers/i2c/i2c-core.c	which	represents	the	core
of	the		i2c		subsystem	defines		ID		for	the		i2c		adapter	with	the		DEFINE_IDR		macro:

static	DEFINE_IDR(i2c_adapter_idr);

and	then	uses	it	for	the	declaration	of	the		i2c		adapter:

static	int	__i2c_add_numbered_adapter(struct	i2c_adapter	*adap)

{

		int					id;

		...

		...

		...

RCU	

121

http://en.wikipedia.org/wiki/Memory_barrier
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/lib/idr.c
http://lxr.free-electrons.com/ident?i=idr_find
https://github.com/torvalds/linux/blob/master/init/main.c#L485
http://en.wikipedia.org/wiki/Slab_allocation
http://en.wikipedia.org/wiki/I%C2%B2C
https://github.com/torvalds/linux/blob/master/drivers/i2c/i2c-core.c

		id	=	idr_alloc(&i2c_adapter_idr,	adap,	adap->nr,	adap->nr	+	1,	GFP_KERNEL);

		...

		...

		...

}

and		id2_adapter_idr		presents	dynamically	calculated	bus	number.

More	about	integer	ID	management	you	can	read	here.

RCU	initialization
The	next	step	is	RCU	initialization	with	the		rcu_init		function	and	it's	implementation	depends	on	two	kernel	configuration	options:

	CONFIG_TINY_RCU	

	CONFIG_TREE_RCU	

In	the	first	case		rcu_init		will	be	in	the	kernel/rcu/tiny.c	and	in	the	second	case	it	will	be	defined	in	the	kernel/rcu/tree.c.	We	will	see
the	implementation	of	the		tree	rcu	,	but	first	of	all	about	the		RCU		in	general.

	RCU		or	read-copy	update	is	a	scalable	high-performance	synchronization	mechanism	implemented	in	the	Linux	kernel.	On	the	early
stage	the	linux	kernel	provided	support	and	environment	for	the	concurrently	running	applications,	but	all	execution	was	serialized	in
the	kernel	using	a	single	global	lock.	In	our	days	linux	kernel	has	no	single	global	lock,	but	provides	different	mechanisms	including
lock-free	data	structures,	percpu	data	structures	and	other.	One	of	these	mechanisms	is	-	the		read-copy	update	.	The		RCU		technique	is
designed	for	rarely-modified	data	structures.	The	idea	of	the		RCU		is	simple.	For	example	we	have	a	rarely-modified	data	structure.	If
somebody	wants	to	change	this	data	structure,	we	make	a	copy	of	this	data	structure	and	make	all	changes	in	the	copy.	In	the	same	time
all	other	users	of	the	data	structure	use	old	version	of	it.	Next,	we	need	to	choose	safe	moment	when	original	version	of	the	data
structure	will	have	no	users	and	update	it	with	the	modified	copy.

Of	course	this	description	of	the		RCU		is	very	simplified.	To	understand	some	details	about		RCU	,	first	of	all	we	need	to	learn	some
terminology.	Data	readers	in	the		RCU		executed	in	the	critical	section.	Every	time	when	data	reader	get	to	the	critical	section,	it	calls	the
	rcu_read_lock	,	and		rcu_read_unlock		on	exit	from	the	critical	section.	If	the	thread	is	not	in	the	critical	section,	it	will	be	in	state
which	called	-		quiescent	state	.	The	moment	when	every	thread	is	in	the		quiescent	state		called	-		grace	period	.	If	a	thread
wants	to	remove	an	element	from	the	data	structure,	this	occurs	in	two	steps.	First	step	is		removal		-	atomically	removes	element	from
the	data	structure,	but	does	not	release	the	physical	memory.	After	this	thread-writer	announces	and	waits	until	it	is	finished.	From	this
moment,	the	removed	element	is	available	to	the	thread-readers.	After	the		grace	period		finished,	the	second	step	of	the	element
removal	will	be	started,	it	just	removes	the	element	from	the	physical	memory.

There	a	couple	of	implementations	of	the		RCU	.	Old		RCU		called	classic,	the	new	implementation	called		tree		RCU.	As	you	may
already	understand,	the		CONFIG_TREE_RCU		kernel	configuration	option	enables	tree		RCU	.	Another	is	the		tiny		RCU	which	depends
on		CONFIG_TINY_RCU		and		CONFIG_SMP=n	.	We	will	see	more	details	about	the		RCU		in	general	in	the	separate	chapter	about
synchronization	primitives,	but	now	let's	look	on	the		rcu_init		implementation	from	the	kernel/rcu/tree.c:

void	__init	rcu_init(void)

{

									int	cpu;

									rcu_bootup_announce();

									rcu_init_geometry();

									rcu_init_one(&rcu_bh_state,	&rcu_bh_data);

									rcu_init_one(&rcu_sched_state,	&rcu_sched_data);

									__rcu_init_preempt();

									open_softirq(RCU_SOFTIRQ,	rcu_process_callbacks);

									/*

										*	We	don't	need	protection	against	CPU-hotplug	here	because

										*	this	is	called	early	in	boot,	before	either	interrupts

										*	or	the	scheduler	are	operational.

										*/

									cpu_notifier(rcu_cpu_notify,	0);

									pm_notifier(rcu_pm_notify,	0);

RCU	

122

https://lwn.net/Articles/103209/
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/kernel/rcu/tiny.c
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c
http://en.wikipedia.org/wiki/Concurrent_data_structure
http://en.wikipedia.org/wiki/Critical_section
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c

									for_each_online_cpu(cpu)

																	rcu_cpu_notify(NULL,	CPU_UP_PREPARE,	(void	*)(long)cpu);

									rcu_early_boot_tests();

}

In	the	beginning	of	the		rcu_init		function	we	define		cpu		variable	and	call		rcu_bootup_announce	.	The		rcu_bootup_announce	
function	is	pretty	simple:

static	void	__init	rcu_bootup_announce(void)

{

								pr_info("Hierarchical	RCU	implementation.\n");

								rcu_bootup_announce_oddness();

}

It	just	prints	information	about	the		RCU		with	the		pr_info		function	and		rcu_bootup_announce_oddness		which	uses		pr_info		too,
for	printing	different	information	about	the	current		RCU		configuration	which	depends	on	different	kernel	configuration	options	like
	CONFIG_RCU_TRACE	,		CONFIG_PROVE_RCU	,		CONFIG_RCU_FANOUT_EXACT	,	etc.	In	the	next	step,	we	can	see	the	call	of	the
	rcu_init_geometry		function.	This	function	is	defined	in	the	same	source	code	file	and	computes	the	node	tree	geometry	depends	on
the	amount	of	CPUs.	Actually		RCU		provides	scalability	with	extremely	low	internal	RCU	lock	contention.	What	if	a	data	structure	will
be	read	from	the	different	CPUs?		RCU		API	provides	the		rcu_state		structure	which	presents	RCU	global	state	including	node
hierarchy.	Hierarchy	is	presented	by	the:

struct	rcu_node	node[NUM_RCU_NODES];

array	of	structures.	As	we	can	read	in	the	comment	of	above	definition:

The	root	(first	level)	of	the	hierarchy	is	in	->node[0]	(referenced	by	->level[0]),	the	second

level	in	->node[1]	through	->node[m]	(->node[1]	referenced	by	->level[1]),	and	the	third	level

in	->node[m+1]	and	following	(->node[m+1]	referenced	by	->level[2]).		The	number	of	levels	is

determined	by	the	number	of	CPUs	and	by	CONFIG_RCU_FANOUT.

Small	systems	will	have	a	"hierarchy"	consisting	of	a	single	rcu_node.

The		rcu_node		structure	is	defined	in	the	kernel/rcu/tree.h	and	contains	information	about	current	grace	period,	is	grace	period
completed	or	not,	CPUs	or	groups	that	need	to	switch	in	order	for	current	grace	period	to	proceed,	etc.	Every		rcu_node		contains	a	lock
for	a	couple	of	CPUs.	These		rcu_node		structures	are	embedded	into	a	linear	array	in	the		rcu_state		structure	and	represented	as	a
tree	with	the	root	as	the	first	element	and	covers	all	CPUs.	As	you	can	see	the	number	of	the	rcu	nodes	determined	by	the
	NUM_RCU_NODES		which	depends	on	number	of	available	CPUs:

#define	NUM_RCU_NODES	(RCU_SUM	-	NR_CPUS)

#define	RCU_SUM	(NUM_RCU_LVL_0	+	NUM_RCU_LVL_1	+	NUM_RCU_LVL_2	+	NUM_RCU_LVL_3	+	NUM_RCU_LVL_4)

where	levels	values	depend	on	the		CONFIG_RCU_FANOUT_LEAF		configuration	option.	For	example	for	the	simplest	case,	one		rcu_node	
will	cover	two	CPU	on	machine	with	the	eight	CPUs:

+---+

|		rcu_state																																																						|

|																	+----------------------+																								|

|																	|									root									|																								|

|																	|							rcu_node							|																								|

|																	+----------------------+																								|

|																				|																|																											|

|															+----v-----+							+--v-------+																			|

|															|										|							|										|																			|

|															|	rcu_node	|							|	rcu_node	|																			|

|															|										|							|										|																			|

|									+------------------+					+----------------+													|

|									|																		|								|													|													|

|									|																		|								|													|													|

RCU	

123

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.h

|				+----v-----+				+-------v--+			+-v--------+		+-v--------+				|

|				|										|				|										|			|										|		|										|				|

|				|	rcu_node	|				|	rcu_node	|			|	rcu_node	|		|	rcu_node	|				|

|				|										|				|										|			|										|		|										|				|

|				+----------+				+----------+			+----------+		+----------+				|

|									|																	|													|															|							|

|									|																	|													|															|							|

|									|																	|													|															|							|

|									|																	|													|															|							|

+---------|-----------------|-------------|---------------|-------+

										|																	|													|															|

+---------v-----------------v-------------v---------------v--------+

|																	|																|															|															|

|					CPU1								|						CPU3						|						CPU5					|					CPU7						|

|																	|																|															|															|

|					CPU2								|						CPU4						|						CPU6					|					CPU8						|

|																	|																|															|															|

+--+

So,	in	the		rcu_init_geometry		function	we	just	need	to	calculate	the	total	number	of		rcu_node		structures.	We	start	to	do	it	with	the
calculation	of	the		jiffies		till	to	the	first	and	next		fqs		which	is		force-quiescent-state		(read	above	about	it):

d	=	RCU_JIFFIES_TILL_FORCE_QS	+	nr_cpu_ids	/	RCU_JIFFIES_FQS_DIV;

if	(jiffies_till_first_fqs	==	ULONG_MAX)

								jiffies_till_first_fqs	=	d;

if	(jiffies_till_next_fqs	==	ULONG_MAX)

								jiffies_till_next_fqs	=	d;

where:

#define	RCU_JIFFIES_TILL_FORCE_QS	(1	+	(HZ	>	250)	+	(HZ	>	500))

#define	RCU_JIFFIES_FQS_DIV					256

As	we	calculated	these	jiffies,	we	check	that	previous	defined		jiffies_till_first_fqs		and		jiffies_till_next_fqs		variables	are
equal	to	the	ULONG_MAX	(their	default	values)	and	set	they	equal	to	the	calculated	value.	As	we	did	not	touch	these	variables	before,
they	are	equal	to	the		ULONG_MAX	:

static	ulong	jiffies_till_first_fqs	=	ULONG_MAX;

static	ulong	jiffies_till_next_fqs	=	ULONG_MAX;

In	the	next	step	of	the		rcu_init_geometry	,	we	check	that		rcu_fanout_leaf		didn't	change	(it	has	the	same	value	as
	CONFIG_RCU_FANOUT_LEAF		in	compile-time)	and	equal	to	the	value	of	the		CONFIG_RCU_FANOUT_LEAF		configuration	option,	we	just
return:

if	(rcu_fanout_leaf	==	CONFIG_RCU_FANOUT_LEAF	&&

				nr_cpu_ids	==	NR_CPUS)

				return;

After	this	we	need	to	compute	the	number	of	nodes	that	an		rcu_node		tree	can	handle	with	the	given	number	of	levels:

rcu_capacity[0]	=	1;

rcu_capacity[1]	=	rcu_fanout_leaf;

for	(i	=	2;	i	<=	MAX_RCU_LVLS;	i++)

				rcu_capacity[i]	=	rcu_capacity[i	-	1]	*	CONFIG_RCU_FANOUT;

And	in	the	last	step	we	calculate	the	number	of	rcu_nodes	at	each	level	of	the	tree	in	the	loop.

As	we	calculated	geometry	of	the		rcu_node		tree,	we	need	to	go	back	to	the		rcu_init		function	and	next	step	we	need	to	initialize	two
	rcu_state		structures	with	the		rcu_init_one		function:

rcu_init_one(&rcu_bh_state,	&rcu_bh_data);

RCU	

124

http://en.wikipedia.org/wiki/Jiffy_%28time%29
http://www.rowleydownload.co.uk/avr/documentation/index.htm?http://www.rowleydownload.co.uk/avr/documentation/ULONG_MAX.htm
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c#L4094

rcu_init_one(&rcu_sched_state,	&rcu_sched_data);

The		rcu_init_one		function	takes	two	arguments:

Global		RCU		state;
Per-CPU	data	for		RCU	.

Both	variables	defined	in	the	kernel/rcu/tree.h	with	its		percpu		data:

extern	struct	rcu_state	rcu_bh_state;

DECLARE_PER_CPU(struct	rcu_data,	rcu_bh_data);

About	this	states	you	can	read	here.	As	I	wrote	above	we	need	to	initialize		rcu_state		structures	and		rcu_init_one		function	will	help
us	with	it.	After	the		rcu_state		initialization,	we	can	see	the	call	of	the		__rcu_init_preempt		which	depends	on	the
	CONFIG_PREEMPT_RCU		kernel	configuration	option.	It	does	the	same	as	previous	functions	-	initialization	of	the		rcu_preempt_state	
structure	with	the		rcu_init_one		function	which	has		rcu_state		type.	After	this,	in	the		rcu_init	,	we	can	see	the	call	of	the:

open_softirq(RCU_SOFTIRQ,	rcu_process_callbacks);

function.	This	function	registers	a	handler	of	the		pending	interrupt	.	Pending	interrupt	or		softirq		supposes	that	part	of	actions	can
be	delayed	for	later	execution	when	the	system	is	less	loaded.	Pending	interrupts	is	represented	by	the	following	structure:

struct	softirq_action

{

								void				(*action)(struct	softirq_action	*);

};

which	is	defined	in	the	include/linux/interrupt.h	and	contains	only	one	field	-	handler	of	an	interrupt.	You	can	check	about		softirqs		in
the	your	system	with	the:

$	cat	/proc/softirqs

																				CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							CPU6							CPU7

										HI:										2										0										0										1										0										2										0										0

							TIMER:					137779					108110					139573					107647					107408					114972						99653						98665

						NET_TX:							1127										0										4										0										1										1										0										0

						NET_RX:								334								221					132939							3076								451								361								292								303

							BLOCK:							5253							5596										8								779							2016						37442									28							2855

BLOCK_IOPOLL:										0										0										0										0										0										0										0										0

					TASKLET:									66										0							2916								113										0									24						26708										0

							SCHED:					102350						75950						91705						75356						75323						82627						69279						69914

					HRTIMER:								510								302								368								260								219								255								248								246

									RCU:						81290						68062						82979						69015						68390						69385						63304						63473

The		open_softirq		function	takes	two	parameters:

index	of	the	interrupt;
interrupt	handler.

and	adds	interrupt	handler	to	the	array	of	the	pending	interrupts:

void	open_softirq(int	nr,	void	(*action)(struct	softirq_action	*))

{

								softirq_vec[nr].action	=	action;

}

In	our	case	the	interrupt	handler	is	-		rcu_process_callbacks		which	is	defined	in	the	kernel/rcu/tree.c	and	does	the		RCU		core
processing	for	the	current	CPU.	After	we	registered		softirq		interrupt	for	the		RCU	,	we	can	see	the	following	code:

cpu_notifier(rcu_cpu_notify,	0);

pm_notifier(rcu_pm_notify,	0);

RCU	

125

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.h
http://lwn.net/Articles/264090/
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c

for_each_online_cpu(cpu)

				rcu_cpu_notify(NULL,	CPU_UP_PREPARE,	(void	*)(long)cpu);

Here	we	can	see	registration	of	the		cpu		notifier	which	needs	in	systems	which	supports	CPU	hotplug	and	we	will	not	dive	into	details
about	this	theme.	The	last	function	in	the		rcu_init		is	the		rcu_early_boot_tests	:

void	rcu_early_boot_tests(void)

{

								pr_info("Running	RCU	self	tests\n");

								if	(rcu_self_test)

																	early_boot_test_call_rcu();

									if	(rcu_self_test_bh)

																	early_boot_test_call_rcu_bh();

									if	(rcu_self_test_sched)

																early_boot_test_call_rcu_sched();

}

which	runs	self	tests	for	the		RCU	.

That's	all.	We	saw	initialization	process	of	the		RCU		subsystem.	As	I	wrote	above,	more	about	the		RCU		will	be	in	the	separate	chapter
about	synchronization	primitives.

Rest	of	the	initialization	process

Ok,	we	already	passed	the	main	theme	of	this	part	which	is		RCU		initialization,	but	it	is	not	the	end	of	the	linux	kernel	initialization
process.	In	the	last	paragraph	of	this	theme	we	will	see	a	couple	of	functions	which	work	in	the	initialization	time,	but	we	will	not	dive
into	deep	details	around	this	function	for	different	reasons.	Some	reasons	not	to	dive	into	details	are	following:

They	are	not	very	important	for	the	generic	kernel	initialization	process	and	depend	on	the	different	kernel	configuration;
They	have	the	character	of	debugging	and	not	important	for	now;
We	will	see	many	of	this	stuff	in	the	separate	parts/chapters.

After	we	initialized		RCU	,	the	next	step	which	you	can	see	in	the	init/main.c	is	the	-		trace_init		function.	As	you	can	understand	from
its	name,	this	function	initialize	tracing	subsystem.	You	can	read	more	about	linux	kernel	trace	system	-	here.

After	the		trace_init	,	we	can	see	the	call	of	the		radix_tree_init	.	If	you	are	familiar	with	the	different	data	structures,	you	can
understand	from	the	name	of	this	function	that	it	initializes	kernel	implementation	of	the	Radix	tree.	This	function	is	defined	in	the
lib/radix-tree.c	and	you	can	read	more	about	it	in	the	part	about	Radix	tree.

In	the	next	step	we	can	see	the	functions	which	are	related	to	the		interrupts	handling		subsystem,	they	are:

	early_irq_init	

	init_IRQ	

	softirq_init	

We	will	see	explanation	about	this	functions	and	their	implementation	in	the	special	part	about	interrupts	and	exceptions	handling.	After
this	many	different	functions	(like		init_timers	,		hrtimers_init	,		time_init	,	etc.)	which	are	related	to	different	timing	and	timers
stuff.	We	will	see	more	about	these	function	in	the	chapter	about	timers.

The	next	couple	of	functions	are	related	with	the	perf	events	-		perf_event-init		(there	will	be	separate	chapter	about	perf),
initialization	of	the		profiling		with	the		profile_init	.	After	this	we	enable		irq		with	the	call	of	the:

local_irq_enable();

which	expands	to	the		sti		instruction	and	making	post	initialization	of	the	SLAB	with	the	call	of	the		kmem_cache_init_late		function
(As	I	wrote	above	we	will	know	about	the		SLAB		in	the	Linux	memory	management	chapter).

RCU	

126

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Tracing_%28software%29
http://elinux.org/Kernel_Trace_Systems
http://en.wikipedia.org/wiki/Radix_tree
https://github.com/torvalds/linux/blob/master/lib/radix-tree.c
https://perf.wiki.kernel.org/index.php/Main_Page
http://en.wikipedia.org/wiki/Slab_allocation

After	the	post	initialization	of	the		SLAB	,	next	point	is	initialization	of	the	console	with	the		console_init		function	from	the
drivers/tty/tty_io.c.

After	the	console	initialization,	we	can	see	the		lockdep_info		function	which	prints	information	about	the	Lock	dependency	validator.
After	this,	we	can	see	the	initialization	of	the	dynamic	allocation	of	the		debug	objects		with	the		debug_objects_mem_init	,	kernel
memory	leak	detector	initialization	with	the		kmemleak_init	,		percpu		pageset	setup	with	the		setup_per_cpu_pageset	,	setup	of	the
NUMA	policy	with	the		numa_policy_init	,	setting	time	for	the	scheduler	with	the		sched_clock_init	,		pidmap		initialization	with	the
call	of	the		pidmap_init		function	for	the	initial		PID		namespace,	cache	creation	with	the		anon_vma_init		for	the	private	virtual
memory	areas	and	early	initialization	of	the	ACPI	with	the		acpi_early_init	.

This	is	the	end	of	the	ninth	part	of	the	linux	kernel	initialization	process	and	here	we	saw	initialization	of	the	RCU.	In	the	last	paragraph
of	this	part	(Rest	of	the	initialization	process)	we	will	go	through	many	functions	but	did	not	dive	into	details	about	their
implementations.	Do	not	worry	if	you	do	not	know	anything	about	these	stuff	or	you	know	and	do	not	understand	anything	about	this.
As	I	already	wrote	many	times,	we	will	see	details	of	implementations	in	other	parts	or	other	chapters.

Conclusion
It	is	the	end	of	the	ninth	part	about	the	linux	kernel	initialization	process.	In	this	part,	we	looked	on	the	initialization	process	of	the
	RCU		subsystem.	In	the	next	part	we	will	continue	to	dive	into	linux	kernel	initialization	process	and	I	hope	that	we	will	finish	with	the
	start_kernel		function	and	will	go	to	the		rest_init		function	from	the	same	init/main.c	source	code	file	and	will	see	the	start	of	the
first	process.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links
lock-free	data	structures
kmemleak
ACPI
IRQs
RCU
RCU	documentation
integer	ID	management
Documentation/memory-barriers.txt
Runtime	locking	correctness	validator
Per-CPU	variables
Linux	kernel	memory	management
slab
i2c
Previous	part

RCU	

127

https://github.com/torvalds/linux/blob/master/drivers/tty/tty_io.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/kmemleak.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Concurrent_data_structure
https://www.kernel.org/doc/Documentation/kmemleak.txt
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/tree/master/Documentation/RCU
https://lwn.net/Articles/103209/
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Slab_allocation
http://en.wikipedia.org/wiki/I%C2%B2C

Kernel	initialization.	Part	10.

End	of	the	linux	kernel	initialization	process
This	is	tenth	part	of	the	chapter	about	linux	kernel	initialization	process	and	in	the	previous	part	we	saw	the	initialization	of	the	RCU
and	stopped	on	the	call	of	the		acpi_early_init		function.	This	part	will	be	the	last	part	of	the	Kernel	initialization	process	chapter,	so
let's	finish	it.

After	the	call	of	the		acpi_early_init		function	from	the	init/main.c,	we	can	see	the	following	code:

#ifdef	CONFIG_X86_ESPFIX64

				init_espfix_bsp();

#endif

Here	we	can	see	the	call	of	the		init_espfix_bsp		function	which	depends	on	the		CONFIG_X86_ESPFIX64		kernel	configuration	option.
As	we	can	understand	from	the	function	name,	it	does	something	with	the	stack.	This	function	is	defined	in	the
arch/x86/kernel/espfix_64.c	and	prevents	leaking	of		31:16		bits	of	the		esp		register	during	returning	to	16-bit	stack.	First	of	all	we
install		espfix		page	upper	directory	into	the	kernel	page	directory	in	the		init_espfix_bs	:

pgd_p	=	&init_level4_pgt[pgd_index(ESPFIX_BASE_ADDR)];

pgd_populate(&init_mm,	pgd_p,	(pud_t	*)espfix_pud_page);

Where		ESPFIX_BASE_ADDR		is:

#define	PGDIR_SHIFT					39

#define	ESPFIX_PGD_ENTRY	_AC(-2,	UL)

#define	ESPFIX_BASE_ADDR	(ESPFIX_PGD_ENTRY	<<	PGDIR_SHIFT)

Also	we	can	find	it	in	the	Documentation/x86/x86_64/mm:

...	unused	hole	...

ffffff0000000000	-	ffffff7fffffffff	(=39	bits)	%esp	fixup	stacks

...	unused	hole	...

After	we've	filled	page	global	directory	with	the		espfix		pud,	the	next	step	is	call	of	the		init_espfix_random		and		init_espfix_ap	
functions.	The	first	function	returns	random	locations	for	the		espfix		page	and	the	second	enables	the		espfix		for	the	current	CPU.
After	the		init_espfix_bsp		finished	the	work,	we	can	see	the	call	of	the		thread_info_cache_init		function	which	defined	in	the
kernel/fork.c	and	allocates	cache	for	the		thread_info		if		THREAD_SIZE		is	less	than		PAGE_SIZE	:

#	if	THREAD_SIZE	>=	PAGE_SIZE

...

...

...

void	thread_info_cache_init(void)

{

								thread_info_cache	=	kmem_cache_create("thread_info",	THREAD_SIZE,

																																														THREAD_SIZE,	0,	NULL);

								BUG_ON(thread_info_cache	==	NULL);

}

...

...

...

#endif

128

http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/espfix_64.c
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c

As	we	already	know	the		PAGE_SIZE		is		(_AC(1,UL)	<<	PAGE_SHIFT)		or		4096		bytes	and		THREAD_SIZE		is		(PAGE_SIZE	<<
THREAD_SIZE_ORDER)		or		16384		bytes	for	the		x86_64	.	The	next	function	after	the		thread_info_cache_init		is	the		cred_init		from
the	kernel/cred.c.	This	function	just	allocates	cache	for	the	credentials	(like		uid	,		gid	,	etc.):

void	__init	cred_init(void)

{

									cred_jar	=	kmem_cache_create("cred_jar",	sizeof(struct	cred),

																																					0,	SLAB_HWCACHE_ALIGN|SLAB_PANIC,	NULL);

}

more	about	credentials	you	can	read	in	the	Documentation/security/credentials.txt.	Next	step	is	the		fork_init		function	from	the
kernel/fork.c.	The		fork_init		function	allocates	cache	for	the		task_struct	.	Let's	look	on	the	implementation	of	the		fork_init	.
First	of	all	we	can	see	definitions	of	the		ARCH_MIN_TASKALIGN		macro	and	creation	of	a	slab	where	task_structs	will	be	allocated:

#ifndef	CONFIG_ARCH_TASK_STRUCT_ALLOCATOR

#ifndef	ARCH_MIN_TASKALIGN

#define	ARCH_MIN_TASKALIGN						L1_CACHE_BYTES

#endif

								task_struct_cachep	=

																kmem_cache_create("task_struct",	sizeof(struct	task_struct),

																								ARCH_MIN_TASKALIGN,	SLAB_PANIC	|	SLAB_NOTRACK,	NULL);

#endif

As	we	can	see	this	code	depends	on	the		CONFIG_ARCH_TASK_STRUCT_ACLLOCATOR		kernel	configuration	option.	This	configuration	option
shows	the	presence	of	the		alloc_task_struct		for	the	given	architecture.	As		x86_64		has	no		alloc_task_struct		function,	this	code
will	not	work	and	even	will	not	be	compiled	on	the		x86_64	.

Allocating	cache	for	init	task

After	this	we	can	see	the	call	of	the		arch_task_cache_init		function	in	the		fork_init	:

void	arch_task_cache_init(void)

{

								task_xstate_cachep	=

																kmem_cache_create("task_xstate",	xstate_size,

																																		__alignof__(union	thread_xstate),

																																		SLAB_PANIC	|	SLAB_NOTRACK,	NULL);

								setup_xstate_comp();

}

The		arch_task_cache_init		does	initialization	of	the	architecture-specific	caches.	In	our	case	it	is		x86_64	,	so	as	we	can	see,	the
	arch_task_cache_init		allocates	cache	for	the		task_xstate		which	represents	FPU	state	and	sets	up	offsets	and	sizes	of	all	extended
states	in	xsave	area	with	the	call	of	the		setup_xstate_comp		function.	After	the		arch_task_cache_init		we	calculate	default	maximum
number	of	threads	with	the:

set_max_threads(MAX_THREADS);

where	default	maximum	number	of	threads	is:

#define	FUTEX_TID_MASK		0x3fffffff

#define	MAX_THREADS					FUTEX_TID_MASK

In	the	end	of	the		fork_init		function	we	initialize	signal	handler:

init_task.signal->rlim[RLIMIT_NPROC].rlim_cur	=	max_threads/2;

init_task.signal->rlim[RLIMIT_NPROC].rlim_max	=	max_threads/2;

init_task.signal->rlim[RLIMIT_SIGPENDING]	=

								init_task.signal->rlim[RLIMIT_NPROC];

129

https://github.com/torvalds/linux/blob/master/kernel/cred.c
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://en.wikipedia.org/wiki/Floating-point_unit
http://www.felixcloutier.com/x86/XSAVES.html
http://www.win.tue.nl/~aeb/linux/lk/lk-5.html

As	we	know	the		init_task		is	an	instance	of	the		task_struct		structure,	so	it	contains		signal		field	which	represents	signal	handler.
It	has	following	type		struct	signal_struct	.	On	the	first	two	lines	we	can	see	setting	of	the	current	and	maximum	limit	of	the
	resource	limits	.	Every	process	has	an	associated	set	of	resource	limits.	These	limits	specify	amount	of	resources	which	current
process	can	use.	Here		rlim		is	resource	control	limit	and	presented	by	the:

struct	rlimit	{

								__kernel_ulong_t								rlim_cur;

								__kernel_ulong_t								rlim_max;

};

structure	from	the	include/uapi/linux/resource.h.	In	our	case	the	resource	is	the		RLIMIT_NPROC		which	is	the	maximum	number	of
processes	that	user	can	own	and		RLIMIT_SIGPENDING		-	the	maximum	number	of	pending	signals.	We	can	see	it	in	the:

cat	/proc/self/limits

Limit																					Soft	Limit											Hard	Limit											Units					

...

...

...

Max	processes													63815																63815																processes	

Max	pending	signals							63815																63815																signals			

...

...

...

Initialization	of	the	caches
The	next	function	after	the		fork_init		is	the		proc_caches_init		from	the	kernel/fork.c.	This	function	allocates	caches	for	the	memory
descriptors	(or		mm_struct		structure).	At	the	beginning	of	the		proc_caches_init		we	can	see	allocation	of	the	different	SLAB	caches
with	the	call	of	the		kmem_cache_create	:

	sighand_cachep		-	manage	information	about	installed	signal	handlers;
	signal_cachep		-	manage	information	about	process	signal	descriptor;
	files_cachep		-	manage	information	about	opened	files;
	fs_cachep		-	manage	filesystem	information.

After	this	we	allocate		SLAB		cache	for	the		mm_struct		structures:

mm_cachep	=	kmem_cache_create("mm_struct",

																									sizeof(struct	mm_struct),	ARCH_MIN_MMSTRUCT_ALIGN,

																									SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK,	NULL);

After	this	we	allocate		SLAB		cache	for	the	important		vm_area_struct		which	used	by	the	kernel	to	manage	virtual	memory	space:

vm_area_cachep	=	KMEM_CACHE(vm_area_struct,	SLAB_PANIC);

Note,	that	we	use		KMEM_CACHE		macro	here	instead	of	the		kmem_cache_create	.	This	macro	is	defined	in	the	include/linux/slab.h	and
just	expands	to	the		kmem_cache_create		call:

#define	KMEM_CACHE(__struct,	__flags)	kmem_cache_create(#__struct,\

																sizeof(struct	__struct),	__alignof__(struct	__struct),\

																(__flags),	NULL)

The		KMEM_CACHE		has	one	difference	from		kmem_cache_create	.	Take	a	look	on		__alignof__		operator.	The		KMEM_CACHE		macro
aligns		SLAB		to	the	size	of	the	given	structure,	but		kmem_cache_create		uses	given	value	to	align	space.	After	this	we	can	see	the	call
of	the		mmap_init		and		nsproxy_cache_init		functions.	The	first	function	initializes	virtual	memory	area		SLAB		and	the	second
function	initializes		SLAB		for	namespaces.

130

https://github.com/torvalds/linux/blob/master/include/uapi/linux/resource.h
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://en.wikipedia.org/wiki/Slab_allocation
https://github.com/torvalds/linux/blob/master/include/linux/slab.h

The	next	function	after	the		proc_caches_init		is		buffer_init	.	This	function	is	defined	in	the	fs/buffer.c	source	code	file	and	allocate
cache	for	the		buffer_head	.	The		buffer_head		is	a	special	structure	which	defined	in	the	include/linux/buffer_head.h	and	used	for
managing	buffers.	In	the	start	of	the		buffer_init		function	we	allocate	cache	for	the		struct	buffer_head		structures	with	the	call	of
the		kmem_cache_create		function	as	we	did	in	the	previous	functions.	And	calculate	the	maximum	size	of	the	buffers	in	memory	with:

nrpages	=	(nr_free_buffer_pages()	*	10)	/	100;

max_buffer_heads	=	nrpages	*	(PAGE_SIZE	/	sizeof(struct	buffer_head));

which	will	be	equal	to	the		10%		of	the		ZONE_NORMAL		(all	RAM	from	the	4GB	on	the		x86_64).	The	next	function	after	the
	buffer_init		is	-		vfs_caches_init	.	This	function	allocates		SLAB		caches	and	hashtable	for	different	VFS	caches.	We	already	saw
the		vfs_caches_init_early		function	in	the	eighth	part	of	the	linux	kernel	initialization	process	which	initialized	caches	for		dcache	
(or	directory-cache)	and	inode	cache.	The		vfs_caches_init		function	makes	post-early	initialization	of	the		dcache		and		inode	
caches,	private	data	cache,	hash	tables	for	the	mount	points,	etc.	More	details	about	VFS	will	be	described	in	the	separate	part.	After	this
we	can	see		signals_init		function.	This	function	is	defined	in	the	kernel/signal.c	and	allocates	a	cache	for	the		sigqueue		structures
which	represents	queue	of	the	real	time	signals.	The	next	function	is		page_writeback_init	.	This	function	initializes	the	ratio	for	the
dirty	pages.	Every	low-level	page	entry	contains	the		dirty		bit	which	indicates	whether	a	page	has	been	written	to	after	been	loaded
into	memory.

Creation	of	the	root	for	the	procfs
After	all	of	this	preparations	we	need	to	create	the	root	for	the	proc	filesystem.	We	will	do	it	with	the	call	of	the		proc_root_init	
function	from	the	fs/proc/root.c.	At	the	start	of	the		proc_root_init		function	we	allocate	the	cache	for	the	inodes	and	register	a	new
filesystem	in	the	system	with	the:

err	=	register_filesystem(&proc_fs_type);

						if	(err)

																return;

As	I	wrote	above	we	will	not	dive	into	details	about	VFS	and	different	filesystems	in	this	chapter,	but	will	see	it	in	the	chapter	about	the
	VFS	.	After	we've	registered	a	new	filesystem	in	our	system,	we	call	the		proc_self_init		function	from	the	fs/proc/self.c	and	this
function	allocates		inode		number	for	the		self		(/proc/self		directory	refers	to	the	process	accessing	the		/proc		filesystem).	The
next	step	after	the		proc_self_init		is		proc_setup_thread_self		which	setups	the		/proc/thread-self		directory	which	contains
information	about	current	thread.	After	this	we	create		/proc/self/mounts		symlink	which	will	contains	mount	points	with	the	call	of
the

proc_symlink("mounts",	NULL,	"self/mounts");

and	a	couple	of	directories	depends	on	the	different	configuration	options:

#ifdef	CONFIG_SYSVIPC

								proc_mkdir("sysvipc",	NULL);

#endif

								proc_mkdir("fs",	NULL);

								proc_mkdir("driver",	NULL);

								proc_mkdir("fs/nfsd",	NULL);

#if	defined(CONFIG_SUN_OPENPROMFS)	||	defined(CONFIG_SUN_OPENPROMFS_MODULE)

								proc_mkdir("openprom",	NULL);

#endif

								proc_mkdir("bus",	NULL);

								...

								...

								...

								if	(!proc_mkdir("tty",	NULL))

																	return;

								proc_mkdir("tty/ldisc",	NULL);

								...

								...

								...

131

https://github.com/torvalds/linux/blob/master/fs/buffer.c
https://github.com/torvalds/linux/blob/master/include/linux/buffer_head.h
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/kernel/signal.c
http://en.wikipedia.org/wiki/Procfs
https://github.com/torvalds/linux/blob/master/fs/proc/root.c
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/fs/proc/self.c

In	the	end	of	the		proc_root_init		we	call	the		proc_sys_init		function	which	creates		/proc/sys		directory	and	initializes	the	Sysctl.

It	is	the	end	of		start_kernel		function.	I	did	not	describe	all	functions	which	are	called	in	the		start_kernel	.	I	skipped	them,	because
they	are	not	important	for	the	generic	kernel	initialization	stuff	and	depend	on	only	different	kernel	configurations.	They	are
	taskstats_init_early		which	exports	per-task	statistic	to	the	user-space,		delayacct_init		-	initializes	per-task	delay	accounting,
	key_init		and		security_init		initialize	different	security	stuff,		check_bugs		-	fix	some	architecture-dependent	bugs,		ftrace_init	
function	executes	initialization	of	the	ftrace,		cgroup_init		makes	initialization	of	the	rest	of	the	cgroup	subsystem,etc.	Many	of	these
parts	and	subsystems	will	be	described	in	the	other	chapters.

That's	all.	Finally	we	have	passed	through	the	long-long		start_kernel		function.	But	it	is	not	the	end	of	the	linux	kernel	initialization
process.	We	haven't	run	the	first	process	yet.	In	the	end	of	the		start_kernel		we	can	see	the	last	call	of	the	-		rest_init		function.
Let's	go	ahead.

First	steps	after	the	start_kernel

The		rest_init		function	is	defined	in	the	same	source	code	file	as		start_kernel		function,	and	this	file	is	init/main.c.	In	the
beginning	of	the		rest_init		we	can	see	call	of	the	two	following	functions:

				rcu_scheduler_starting();

				smpboot_thread_init();

The	first		rcu_scheduler_starting		makes	RCU	scheduler	active	and	the	second		smpboot_thread_init		registers	the
	smpboot_thread_notifier		CPU	notifier	(more	about	it	you	can	read	in	the	CPU	hotplug	documentation.	After	this	we	can	see	the
following	calls:

kernel_thread(kernel_init,	NULL,	CLONE_FS);

pid	=	kernel_thread(kthreadd,	NULL,	CLONE_FS	|	CLONE_FILES);

Here	the		kernel_thread		function	(defined	in	the	kernel/fork.c)	creates	new	kernel	thread.As	we	can	see	the		kernel_thread		function
takes	three	arguments:

Function	which	will	be	executed	in	a	new	thread;
Parameter	for	the		kernel_init		function;
Flags.

We	will	not	dive	into	details	about		kernel_thread		implementation	(we	will	see	it	in	the	chapter	which	describe	scheduler,	just	need	to
say	that		kernel_thread		invokes	clone).	Now	we	only	need	to	know	that	we	create	new	kernel	thread	with		kernel_thread		function,
parent	and	child	of	the	thread	will	use	shared	information	about	filesystem	and	it	will	start	to	execute		kernel_init		function.	A	kernel
thread	differs	from	a	user	thread	that	it	runs	in	kernel	mode.	So	with	these	two		kernel_thread		calls	we	create	two	new	kernel	threads
with	the		PID	=	1		for		init		process	and		PID	=	2		for		kthreadd	.	We	already	know	what	is		init		process.	Let's	look	on	the
	kthreadd	.	It	is	a	special	kernel	thread	which	manages	and	helps	different	parts	of	the	kernel	to	create	another	kernel	thread.	We	can
see	it	in	the	output	of	the		ps		util:

$	ps	-ef	|	grep	kthread

root									2					0		0	Jan11	?								00:00:00	[kthreadd]

Let's	postpone		kernel_init		and		kthreadd		for	now	and	go	ahead	in	the		rest_init	.	In	the	next	step	after	we	have	created	two	new
kernel	threads	we	can	see	the	following	code:

				rcu_read_lock();

				kthreadd_task	=	find_task_by_pid_ns(pid,	&init_pid_ns);

				rcu_read_unlock();

132

http://en.wikipedia.org/wiki/Sysctl
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://en.wikipedia.org/wiki/Cgroups
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Read-copy-update
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://www.tutorialspoint.com/unix_system_calls/clone.htm

The	first		rcu_read_lock		function	marks	the	beginning	of	an	RCU	read-side	critical	section	and	the		rcu_read_unlock		marks	the	end
of	an	RCU	read-side	critical	section.	We	call	these	functions	because	we	need	to	protect	the		find_task_by_pid_ns	.	The
	find_task_by_pid_ns		returns	pointer	to	the		task_struct		by	the	given	pid.	So,	here	we	are	getting	the	pointer	to	the		task_struct	
for		PID	=	2		(we	got	it	after		kthreadd		creation	with	the		kernel_thread).	In	the	next	step	we	call		complete		function

complete(&kthreadd_done);

and	pass	address	of	the		kthreadd_done	.	The		kthreadd_done		defined	as

static	__initdata	DECLARE_COMPLETION(kthreadd_done);

where		DECLARE_COMPLETION		macro	defined	as:

#define	DECLARE_COMPLETION(work)	\

									struct	completion	work	=	COMPLETION_INITIALIZER(work)

and	expands	to	the	definition	of	the		completion		structure.	This	structure	is	defined	in	the	include/linux/completion.h	and	presents
	completions		concept.	Completions	is	a	code	synchronization	mechanism	which	provides	race-free	solution	for	the	threads	that	must
wait	for	some	process	to	have	reached	a	point	or	a	specific	state.	Using	completions	consists	of	three	parts:	The	first	is	definition	of	the
	complete		structure	and	we	did	it	with	the		DECLARE_COMPLETION	.	The	second	is	call	of	the		wait_for_completion	.	After	the	call	of
this	function,	a	thread	which	called	it	will	not	continue	to	execute	and	will	wait	while	other	thread	did	not	call		complete		function.
Note	that	we	call		wait_for_completion		with	the		kthreadd_done		in	the	beginning	of	the		kernel_init_freeable	:

wait_for_completion(&kthreadd_done);

And	the	last	step	is	to	call		complete		function	as	we	saw	it	above.	After	this	the		kernel_init_freeable		function	will	not	be	executed
while		kthreadd		thread	will	not	be	set.	After	the		kthreadd		was	set,	we	can	see	three	following	functions	in	the		rest_init	:

				init_idle_bootup_task(current);

				schedule_preempt_disabled();

				cpu_startup_entry(CPUHP_ONLINE);

The	first		init_idle_bootup_task		function	from	the	kernel/sched/core.c	sets	the	Scheduling	class	for	the	current	process	(idle		class
in	our	case):

void	init_idle_bootup_task(struct	task_struct	*idle)

{

									idle->sched_class	=	&idle_sched_class;

}

where		idle		class	is	a	low	task	priority	and	tasks	can	be	run	only	when	the	processor	doesn't	have	anything	to	run	besides	this	tasks.
The	second	function		schedule_preempt_disabled		disables	preempt	in		idle		tasks.	And	the	third	function		cpu_startup_entry		is
defined	in	the	kernel/sched/idle.c	and	calls		cpu_idle_loop		from	the	kernel/sched/idle.c.	The		cpu_idle_loop		function	works	as
process	with		PID	=	0		and	works	in	the	background.	Main	purpose	of	the		cpu_idle_loop		is	to	consume	the	idle	CPU	cycles.	When
there	is	no	process	to	run,	this	process	starts	to	work.	We	have	one	process	with		idle		scheduling	class	(we	just	set	the		current		task
to	the		idle		with	the	call	of	the		init_idle_bootup_task		function),	so	the		idle		thread	does	not	do	useful	work	but	just	checks	if
there	is	an	active	task	to	switch	to:

static	void	cpu_idle_loop(void)

{

								...

								...

								...

								while	(1)	{

																while	(!need_resched())	{

																...

133

http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/include/linux/completion.h
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://github.com/torvalds/linux/blob/master/sched/idle.c
https://github.com/torvalds/linux/blob/master/sched/idle.c

																...

																...

																}

								...

								}

More	about	it	will	be	in	the	chapter	about	scheduler.	So	for	this	moment	the		start_kernel		calls	the		rest_init		function	which
spawns	an		init		(kernel_init		function)	process	and	become		idle		process	itself.	Now	is	time	to	look	on	the		kernel_init	.
Execution	of	the		kernel_init		function	starts	from	the	call	of	the		kernel_init_freeable		function.	The		kernel_init_freeable	
function	first	of	all	waits	for	the	completion	of	the		kthreadd		setup.	I	already	wrote	about	it	above:

wait_for_completion(&kthreadd_done);

After	this	we	set		gfp_allowed_mask		to		__GFP_BITS_MASK		which	means	that	system	is	already	running,	set	allowed	cpus/mems	to	all
CPUs	and	NUMA	nodes	with	the		set_mems_allowed		function,	allow		init		process	to	run	on	any	CPU	with	the
	set_cpus_allowed_ptr	,	set	pid	for	the		cad		or		Ctrl-Alt-Delete	,	do	preparation	for	booting	of	the	other	CPUs	with	the	call	of	the
	smp_prepare_cpus	,	call	early	initcalls	with	the		do_pre_smp_initcalls	,	initialize		SMP		with	the		smp_init		and	initialize
lockup_detector	with	the	call	of	the		lockup_detector_init		and	initialize	scheduler	with	the		sched_init_smp	.

After	this	we	can	see	the	call	of	the	following	functions	-		do_basic_setup	.	Before	we	will	call	the		do_basic_setup		function,	our
kernel	already	initialized	for	this	moment.	As	comment	says:

Now	we	can	finally	start	doing	some	real	work..

The		do_basic_setup		will	reinitialize	cpuset	to	the	active	CPUs,	initialize	the		khelper		-	which	is	a	kernel	thread	which	used	for
making	calls	out	to	userspace	from	within	the	kernel,	initialize	tmpfs,	initialize		drivers		subsystem,	enable	the	user-mode	helper
	workqueue		and	make	post-early	call	of	the		initcalls	.	We	can	see	opening	of	the		dev/console		and	dup	twice	file	descriptors	from
	0		to		2		after	the		do_basic_setup	:

if	(sys_open((const	char	__user	*)	"/dev/console",	O_RDWR,	0)	<	0)

				pr_err("Warning:	unable	to	open	an	initial	console.\n");

(void)	sys_dup(0);

(void)	sys_dup(0);

We	are	using	two	system	calls	here		sys_open		and		sys_dup	.	In	the	next	chapters	we	will	see	explanation	and	implementation	of	the
different	system	calls.	After	we	opened	initial	console,	we	check	that		rdinit=		option	was	passed	to	the	kernel	command	line	or	set
default	path	of	the	ramdisk:

if	(!ramdisk_execute_command)

				ramdisk_execute_command	=	"/init";

Check	user's	permissions	for	the		ramdisk		and	call	the		prepare_namespace		function	from	the	init/do_mounts.c	which	checks	and
mounts	the	initrd:

if	(sys_access((const	char	__user	*)	ramdisk_execute_command,	0)	!=	0)	{

				ramdisk_execute_command	=	NULL;

				prepare_namespace();

}

This	is	the	end	of	the		kernel_init_freeable		function	and	we	need	return	to	the		kernel_init	.	The	next	step	after	the
	kernel_init_freeable		finished	its	execution	is	the		async_synchronize_full	.	This	function	waits	until	all	asynchronous	function
calls	have	been	done	and	after	it	we	will	call	the		free_initmem		which	will	release	all	memory	occupied	by	the	initialization	stuff
which	located	between		__init_begin		and		__init_end	.	After	this	we	protect		.rodata		with	the		mark_rodata_ro		and	update	state
of	the	system	from	the		SYSTEM_BOOTING		to	the

134

https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://kernelnewbies.org/Documents/InitcallMechanism
https://www.kernel.org/doc/Documentation/lockup-watchdogs.txt
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://en.wikipedia.org/wiki/Tmpfs
https://github.com/torvalds/linux/blob/master/init/do_mounts.c
http://en.wikipedia.org/wiki/Initrd

system_state	=	SYSTEM_RUNNING;

And	tries	to	run	the		init		process:

if	(ramdisk_execute_command)	{

				ret	=	run_init_process(ramdisk_execute_command);

				if	(!ret)

								return	0;

				pr_err("Failed	to	execute	%s	(error	%d)\n",

											ramdisk_execute_command,	ret);

}

First	of	all	it	checks	the		ramdisk_execute_command		which	we	set	in	the		kernel_init_freeable		function	and	it	will	be	equal	to	the
value	of	the		rdinit=		kernel	command	line	parameters	or		/init		by	default.	The		run_init_process		function	fills	the	first	element
of	the		argv_init		array:

static	const	char	*argv_init[MAX_INIT_ARGS+2]	=	{	"init",	NULL,	};

which	represents	arguments	of	the		init		program	and	call		do_execve		function:

argv_init[0]	=	init_filename;

return	do_execve(getname_kernel(init_filename),

				(const	char	__user	*const	__user	*)argv_init,

				(const	char	__user	*const	__user	*)envp_init);

The		do_execve		function	is	defined	in	the	include/linux/sched.h	and	runs	program	with	the	given	file	name	and	arguments.	If	we	did
not	pass		rdinit=		option	to	the	kernel	command	line,	kernel	starts	to	check	the		execute_command		which	is	equal	to	value	of	the
	init=		kernel	command	line	parameter:

				if	(execute_command)	{

								ret	=	run_init_process(execute_command);

								if	(!ret)

												return	0;

								panic("Requested	init	%s	failed	(error	%d).",

														execute_command,	ret);

				}

If	we	did	not	pass		init=		kernel	command	line	parameter	either,	kernel	tries	to	run	one	of	the	following	executable	files:

if	(!try_to_run_init_process("/sbin/init")	||

				!try_to_run_init_process("/etc/init")	||

				!try_to_run_init_process("/bin/init")	||

				!try_to_run_init_process("/bin/sh"))

				return	0;

Otherwise	we	finish	with	panic:

panic("No	working	init	found.		Try	passing	init=	option	to	kernel.	"

						"See	Linux	Documentation/init.txt	for	guidance.");

That's	all!	Linux	kernel	initialization	process	is	finished!

Conclusion

It	is	the	end	of	the	tenth	part	about	the	linux	kernel	initialization	process.	It	is	not	only	the		tenth		part,	but	also	is	the	last	part	which
describes	initialization	of	the	linux	kernel.	As	I	wrote	in	the	first	part	of	this	chapter,	we	will	go	through	all	steps	of	the	kernel
initialization	and	we	did	it.	We	started	at	the	first	architecture-independent	function	-		start_kernel		and	finished	with	the	launch	of	the

135

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://en.wikipedia.org/wiki/Kernel_panic

first		init		process	in	the	our	system.	I	skipped	details	about	different	subsystem	of	the	kernel,	for	example	I	almost	did	not	cover
scheduler,	interrupts,	exception	handling,	etc.	From	the	next	part	we	will	start	to	dive	to	the	different	kernel	subsystems.	Hope	it	will	be
interesting.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links
SLAB
xsave
FPU
Documentation/security/credentials.txt
Documentation/x86/x86_64/mm
RCU
VFS
inode
proc
man	proc
Sysctl
ftrace
cgroup
CPU	hotplug	documentation
completions	-	wait	for	completion	handling
NUMA
cpus/mems
initcalls
Tmpfs
initrd
panic
Previous	part

136

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Slab_allocation
http://www.felixcloutier.com/x86/XSAVES.html
http://en.wikipedia.org/wiki/Floating-point_unit
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.txt
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Procfs
http://linux.die.net/man/5/proc
http://en.wikipedia.org/wiki/Sysctl
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://en.wikipedia.org/wiki/Cgroups
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://www.kernel.org/doc/Documentation/scheduler/completion.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://kernelnewbies.org/Documents/InitcallMechanism
http://en.wikipedia.org/wiki/Tmpfs
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Kernel_panic

	linux	

	-	
	Linux	 	-	
	-	
	-	fourth	part	describes	first	non-early	interrupt	handlers.
	-	
	-	
	-	
IRQs	-	
Softirq,	Tasklets	and	Workqueues	-	softirqstasklets		workqueues	
	-	

137

	Part	1.

Introduction

	 linux		 	 	init		 interrupts

	 	interrupts 		

	 	interrupts 		
	 	interrupt	handlers 		

	 				Linux	

	CPU		 	event 		CPU		CPU		CPU	 PIC	 Advanced	Programmable
Interrupt	Controller 	 	APIC		APIC	

	Local	APIC	

	I/O	APIC	

	-	 	Local	APIC		CPULocal	APIC		CPU	Local	APIC		APIC	APIC-timer	I/O	

	-	 	I/O	APIC			CPU		local		I/O	APIC		 			

()
()

	3	

	 	Interrupt	Descriptor	Table 			 	IDT		 	vector	number 		 	IDT			 	0			 	255		Linux	

BUG_ON((unsigned)n	>	0xFF);

	Linux	(set_intr_gate	,		void	set_system_intr_gate			 arch/x86/include/asm/desc.h)	 	0			 	31			32	
Linux		-	 	 	32			 	255			I/O	

	-		 	Local	APIC			 	Local	APIC			-	()	 			 	syscall 		

	CPU		 	synchronous 			3	

	Faults 	

	Traps 	

	Aborts 	

			“”

	 				 				 			

	 			

	 	maskable 			 	non-maskable 		 	x86_64			-	 	sti			 	cli		Linux	

138

http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h

static	inline	void	native_irq_disable(void)

{

								asm	volatile("cli":	:	:"memory");

}

and

static	inline	void	native_irq_enable(void)

{

								asm	volatile("sti":	:	:"memory");

}

	 	IF			 	sti			 	IF		 	cli		

+--+

|														|																																																	|

|			Priority			|	Description																																					|

|														|																																																	|

+--------------+---+

|														|	Hardware	Reset	and	Machine	Checks															|

|					1								|	-	RESET																																									|

|														|	-	Machine	Check																																	|

+--------------+---+

|														|	Trap	on	Task	Switch																													|

|					2								|	-	T	flag	in	TSS	is	set																										|

|														|																																																	|

+--------------+---+

|														|	External	Hardware	Interventions																	|

|														|	-	FLUSH																																									|

|					3								|	-	STOPCLK																																							|

|														|	-	SMI																																											|

|														|	-	INIT																																										|

+--------------+---+

|														|	Traps	on	the	Previous	Instruction															|

|					4								|	-	Breakpoints																																			|

|														|	-	Debug	Trap	Exceptions																									|

+--------------+---+

|					5								|	Nonmaskable	Interrupts																										|

+--------------+---+

|					6								|	Maskable	Hardware	Interrupts																				|

+--------------+---+

|					7								|	Code	Breakpoint	Fault																											|

+--------------+---+

|					8								|	Faults	from	Fetching	Next	Instruction											|

|														|	Code-Segment	Limit	Violation																				|

|														|	Code	Page	Fault																																	|

+--------------+---+

|														|	Faults	from	Decoding	the	Next	Instruction							|

|														|	Instruction	length	>	15	bytes																			|

|					9								|	Invalid	Opcode																																		|

|														|	Coprocessor	Not	Available																							|

|														|																																																	|

+--------------+---+

|					10							|	Faults	on	Executing	an	Instruction														|

|														|	Overflow																																								|

|														|	Bound	error																																					|

|														|	Invalid	TSS																																					|

|														|	Segment	Not	Present																													|

|														|	Stack	fault																																					|

|														|	General	Protection																														|

|														|	Data	Page	Fault																																	|

|														|	Alignment	Check																																	|

|														|	x87	FPU	Floating-point	exception																|

|														|	SIMD	floating-point	exception																			|

|														|	Virtualization	exception																								|

+--------------+---+

139

	 	IDT 		 	IDT		 	IDT			 	Global	Descriptor	Table 	 	IDT			 	gates 		 	descriptors 	

Interrupt	gates
Task	gates
Trap	gates

	 	x86			 long	mode		 	x86_64			 						 	x86			8		 	x86_64			16	 				 	NULL			 			
			 	 	NULL		

/*

	*	Set	up	the	IDT

	*/

static	void	setup_idt(void)

{

				static	const	struct	gdt_ptr	null_idt	=	{0,	0};

				asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

	 arch/x86/boot/pm.c 				 	x86			8		 	x86_64			16	 	IDT			-	IDTR	 	x86			-		 	IDTR		

	LIDT	

	SIDT	

	 	LIDT			 	IDT			 	IDTR			 	SIDT			 	IDTR			 	x86			 	IDTR			48	

+-----------------------------------+----------------------+

|																																			|																						|

|					Base	address	of	the	IDT							|			Limit	of	the	IDT			|

|																																			|																						|

+-----------------------------------+----------------------+

47																																16	15																				0

	 	setup_idt			 	null_idt		 	lidt			 	IDTR		 	null_idt			 	gdt_ptr		

struct	gdt_ptr	{

								u16	len;

								u32	ptr;

}	__attribute__((packed));

	 	IDTR			2		4		48		 	IDT			 	x86			16	

127																																																																													96

+---+

|																																																																															|

|																																Reserved																																							|

|																																																																															|

+--

95																																																																														64

+---+

|																																																																															|

|																															Offset	63..32																																			|

|																																																																															|

+---+

63																															48	47						46		44			42				39													34				32

+---+

|																																		|							|		D		|			|					|						|			|			|					|

|							Offset	31..16														|			P			|		P		|	0	|Type	|0	0	0	|	0	|	0	|	IST	|

|																																		|							|		L		|			|					|						|			|			|					|

	---+

31																																			16	15																																						0

+---+

|																																						|																																								|

|										Segment	Selector												|																	Offset	15..0											|

|																																						|																																								|

140

http://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/Protected_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pm.c

+---+

	IDT		16		 	call			 				 				 	IDT		

	 	IDT		

	0-15		bits	-	
	16-31		bits	-	
	IST		-		 	x86_64		
	DPL		-	
	P		-	
	48-63		bits	-	
	64-95		bits	-	
	96-127		bits	-	CPU	.

	Type			 	IDT		

Interrupt	gate
Trap	gate
Task	gate

	IST			 	Interrupt	Stack	Table			 	x86_64			 	x86		 	IST			 	x86			 	IDT		 	IST		
	IST		Task	State	Segment 	 	TSS			7		 	IST		 	TSS			Linux		 	IDT		

				 	gate_desc		

extern	gate_desc	idt_table[];

	gate_desc		

#ifdef	CONFIG_X86_64

...

...

...

typedef	struct	gate_struct64	gate_desc;

...

...

...

#endif

	gate_struct64		

struct	gate_struct64	{

								u16	offset_low;

								u16	segment;

								unsigned	ist	:	3,	zero0	:	5,	type	:	5,	dpl	:	2,	p	:	1;

								u16	offset_middle;

								u32	offset_high;

								u32	zero1;

}	__attribute__((packed));

	 	x86_64			Linux		 	THREAD_SIZE		

#define	PAGE_SHIFT						12

#define	PAGE_SIZE							(_AC(1,UL)	<<	PAGE_SHIFT)

...

...

...

#define	THREAD_SIZE_ORDER							(2	+	KASAN_STACK_ORDER)

#define	THREAD_SIZE		(PAGE_SIZE	<<	THREAD_SIZE_ORDER)

141

http://en.wikipedia.org/wiki/Task_state_segment

	PAGE_SIZE			 	4096		 	THREAD_SIZE_ORDER			 	KASAN_STACK_ORDER	 	KASAN_STACK			 	CONFIG_KASAN		

#ifdef	CONFIG_KASAN

				#define	KASAN_STACK_ORDER	1

#else

				#define	KASAN_STACK_ORDER	0

#endif

	KASan			 	CONFIG_KASAN		 	THREAD_SIZE			 	16384		 	THREAD_SIZE			 	32768		 	thread_info		
	Linux	 	CPU		CPU		CPU		CPU		per-cpu		 	interrupt	stack

#define	IRQ_STACK_ORDER	(2	+	KASAN_STACK_ORDER)

#define	IRQ_STACK_SIZE	(PAGE_SIZE	<<	IRQ_STACK_ORDER)

	 	16384		Per-cpu		 	x86_64			 	irq_stack_union		:

union	irq_stack_union	{

				char	irq_stack[IRQ_STACK_SIZE];

				struct	{

								char	gs_base[40];

								unsigned	long	stack_canary;

				};

};

	 	irq_stack			16KB		 	irq_stack_union		

	gs_base		-		 	irqstack			 	gs			 	x86_64			per-cpu	 	per-cpu				stack	canary		 	gs			per-cpu
	 	gs			per-cpu	 Model	specific	registers 	-	 	fs			 	gs			Linux	 	 	gs		

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

	initial_gs			 	irq_stack_union	:

GLOBAL(initial_gs)

.quad				INIT_PER_CPU_VAR(irq_stack_union)

	stack_canary		-	Stack	canary		 	stack	protector 		gs_base			40	 	GCC			stack	canary		 	gs		
	x86_64			 	40		 	x86			 	20	

	irq_stack_union			 	percpu		,		 	System.map	

0000000000000000	D	__per_cpu_start

0000000000000000	D	irq_stack_union

0000000000004000	d	exception_stacks

0000000000009000	D	gdt_page

...

...

...

:

DECLARE_PER_CPU_FIRST(union	irq_stack_union,	irq_stack_union)	__visible;

	 	irq_stack_union			 	irq_stack_union		 arch/x86/include/asm/processor.h	per-cpu	

142

http://lwn.net/Articles/618180/
http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/processor.h

DECLARE_PER_CPU(char	*,	irq_stack_ptr);

DECLARE_PER_CPU(unsigned	int,	irq_count);

	 	irq_stack_ptr		 	irq_count			CPU	 	irq_stack_ptr		arch/x86/kernel/setup_percpu.c	 	setup_per_cpu_areas	

void	__init	setup_per_cpu_areas(void)

{

...

...

#ifdef	CONFIG_X86_64

for_each_possible_cpu(cpu)	{

				...

				...

				...

				per_cpu(irq_stack_ptr,	cpu)	=

												per_cpu(irq_stack_union.irq_stack,	cpu)	+

												IRQ_STACK_SIZE	-	64;

				...

				...

				...

#endif

...

...

}

	CPU	 	irq_stack_ptr		 	64		 	64	TODO	[arch/x86/kernel/cpu/common.c]	

void	load_percpu_segment(int	cpu)

{

								...

								...

								...

								__loadsegment_simple(gs,	0);

								wrmsrl(MSR_GS_BASE,	cpu_kernelmode_gs_base(cpu));

								...

								load_stack_canary_segment();

}

	gs		

				movl				$MSR_GS_BASE,%ecx

				movl				initial_gs(%rip),%eax

				movl				initial_gs+4(%rip),%edx

				wrmsr

SYM_DATA(initial_gs,

.quad	INIT_PER_CPU_VAR(fixed_percpu_data))

	 	wrmsr			 	edx:eax				 	ecx		MSR)MSR	 	MSR_GS_BASE		 	gs		 	edx:eax			 	initial_gs		
	fixed_percpu_data		

	x86_64			 	Interrupt	Stack	Table 			 	IST		7	 	IST		per-cpu	;

	DOUBLEFAULT_STACK	

	NMI_STACK	

	DEBUG_STACK	

	MCE_STACK	

#define	DOUBLEFAULT_STACK	1

#define	NMI_STACK	2

143

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c

#define	DEBUG_STACK	3

#define	MCE_STACK	4

	 	IST			 	set_intr_gate_ist		:

static	const	__initconst	struct	idt_data	def_idts[]	=	{

				...

				INTG(X86_TRAP_NMI,								nmi),

				...

				INTG(X86_TRAP_DF,								double_fault),

	 	&nmi			 	&double_fault		

arch/x86/kernel/entry_64.S

idtentry	double_fault												do_double_fault												has_error_code=1	paranoid=2	read_cr2=1

...

...

...

SYM_CODE_START(nmi)

...

...

...

SYM_CODE_END(nmi)

SYM_CODE_END(nmi)

	 arch/x86/include/asm/traps.h:

asmlinkage	void	nmi(void);

asmlinkage	void	double_fault(void);

	 	ss			 	NULL		 	ss			 	rpl			 	cpl		 	ss		rsp	 	cs		rip			64		8	:

+---------------+

|															|

|						SS							|	40

|						RSP						|	32

|					RFLAGS				|	24

|						CS							|	16

|						RIP						|	8

|			Error	code		|	0

|															|

+---------------+

	 	IST			 	0		 	IST			 	rsp			CS		 	21			64		 	L			 	Global	Descriptor	Table 	

	rip		 	rip			 	iret		 	iret			ss:rsp		 	cpl		

	Linux		-	

	 Twitter

	PR		 linux-insides(PR		 linux-insides-zh)

PIC

144

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/traps.h
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller

Advanced	Programmable	Interrupt	Controller
protected	mode
long	mode
kernel	stacks
Task	State	Segement
segmented	memory	model
Model	specific	registers
Stack	canary
Previous	chapter

145

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Long_mode
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Task_state_segment
http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries

	Part	2.

Linux

	 LinuxLinuxLinux	 LinuxLinux	 Linux

Linux	 	x86_64		 arch/x86/boot/pm.c	 (IDT)IDT 	go_to_protected_mode		 	setup_idt	IDT	 :

void	go_to_protected_mode(void)

{

								...

								setup_idt();

								...

}

	setup_idt		 	NULL	:

static	void	setup_idt(void)

{

								static	const	struct	gdt_ptr	null_idt	=	{0,	0};

								asm	volatile("lidtl	%0"	:	:	"m"	(null_idt));

}

	gdt_ptr	48-bit	 	GDTR		 	Global	Descriptor	:

struct	gdt_ptr	{

								u16	len;

								u32	ptr;

}	__attribute__((packed));

	 	gdt_prt		 	GDTR		 	IDTR	Linux 	idt_ptr	 	gdt_prt	 	Interrupt	Descriptor	Table	 	NULL		IDT	

	 Interrupt	descriptor	table,	Global	Descriptor	Table	 arch/x86/boot/pmjump.S	

	 	boot_params.hdr.code32_start		 arch/x86/boot/pm.c	 	boot_params		 	protected_mode_jump	:

protected_mode_jump(boot_params.hdr.code32_start,

																												(u32)&boot_params	+	(ds()	<<	4));

	 arch/x86/boot/pmjump.S	protected_mode_jump	8086	 	 	ax		 	dx	:

GLOBAL(protected_mode_jump)

								...

								...

								...

								.byte			0x66,	0xea														#	ljmpl	opcode

2:						.long			in_pm32																	#	offset

								.word			__BOOT_CS															#	segment

...

...

...

ENDPROC(protected_mode_jump)

	 	in_pm32	32-bit:

GLOBAL(in_pm32)

								...

								...

	Linux	

146

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
http://0xax.gitbooks.io/linux-insides/content/Booting/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/header.S#L292
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pm.c
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/GDT
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pmjump.S
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pm.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pmjump.S
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/X86_calling_conventions#List_of_x86_calling_conventions

								jmpl				*%eax	//	%eax	contains	address	of	the	`startup_32`

								...

								...

ENDPROC(in_pm32)

32-bit	 arch/x86/boot/compressed/head_64.S	 	_64		 	arch/x86/boot/compressed	:

	arch/x86/boot/compressed/head_32.S	.
	arch/x86/boot/compressed/head_64.S	;

32-bit	 	x86_64		 arch/x86/boot/compressed/Makefile:

vmlinux-objs-y	:=	$(obj)/vmlinux.lds	$(obj)/head_$(BITS).o	$(obj)/misc.o	\

...

...

	 	head_*		 	$(BITS)		""	 arch/x86/Makefile:

ifeq	($(CONFIG_X86_32),y)

...

								BITS	:=	32

else

								BITS	:=	64

								...

endif

	 arch/x86/boot/compressed/head_64.S	 	startup_32	 	startup_32		 long	mode	 	long	mode		 	long	mode	

	startup_64		 	 arch/x86/boot/compressed/misc.c	 	decompress_kernel		 arch/x86/kernel/head_64.S
	startup_64		 	identity-mapped	pages		 NX	 	Extended	Feature	Enable	Register	()	 	lgdt		Global

Descriptor	Table		 	gs	:

movl				$MSR_GS_BASE,%ecx

movl				initial_gs(%rip),%eax

movl				initial_gs+4(%rip),%edx

wrmsr

	 	 	wrmsr		 	edx:eax		 	ecx		 model	specific	register 	ecx		 	$MSR_GS_BASE		 arch/x86/include/uapi/asm/msr-
index.h:

#define	MSR_GS_BASE													0xc0000101

	MSR_GS_BASE		 	model	specific	register		 	cs	,		ds	,		es	,	 	ss	64-bit	 	fs		 	gs	 	model	specific

register		 	back	door		 	fs		 	gs	64-bit	 	GS.base		 	initial_gs	:

GLOBAL(initial_gs)

								.quad			INIT_PER_CPU_VAR(irq_stack_union)

	 	irq_stack_union		 	INIT_PER_CPU_VAR		 	init_per_cpu__		 	init_per_cpu__irq_stack_union		 :

#define	INIT_PER_CPU(x)	init_per_cpu__##x	=	x	+	__per_cpu_load

INIT_PER_CPU(irq_stack_union);

	 	init_per_cpu__irq_stack_union		 	irq_stack_union	+	__per_cpu_load		 	init_per_cpu__irq_stack_union		 	__per_cpu_load	

	irq_stack_union		 arch/x86/include/asm/processor.h	 	DECLARE_INIT_PER_CPU		 	init_per_cpu_var	:

DECLARE_INIT_PER_CPU(irq_stack_union);

#define	DECLARE_INIT_PER_CPU(var)	\

							extern	typeof(per_cpu_var(var))	init_per_cpu_var(var)

	Linux	

147

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/Makefile
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/Makefile
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
http://en.wikipedia.org/wiki/Long_mode
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head_64.S
http://en.wikipedia.org/wiki/NX_bit
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
http://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/uapi/asm/msr-index.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/processor.h

#define	init_per_cpu_var(var)		init_per_cpu__##var

	 	init_per_cpu__irq_stack_union		 	typeof(per_cpu_var(var))	,	 	var		 	irq_stack_union		 	per_cpu_var	

arch/x86/include/asm/percpu.h:

#define	PER_CPU_VAR(var)								%__percpu_seg:var

:

#ifdef	CONFIG_X86_64

				#define	__percpu_seg	gs

endif

	 	gs:irq_stack_union		 	irq_union		 	__per_cpu_load		 include/asm-generic/sections.h	 	per-cpu	:

extern	char	__per_cpu_load[],	__per_cpu_start[],	__per_cpu_end[];

	 	irq_stack_union		 	__per_cpu_load		 	init_per_cpu__irq_stack_union		 	__per_cpu_load		 System.map:

...

...

...

ffffffff819ed000	D	__init_begin

ffffffff819ed000	D	__per_cpu_load

ffffffff819ed000	A	init_per_cpu__irq_stack_union

...

...

...

	 	initial_gs	:

movl				$MSR_GS_BASE,%ecx

movl				initial_gs(%rip),%eax

movl				initial_gs+4(%rip),%edx

wrmsr

	 	MSR_GS_BASE		 	initial_gs	64-bit	 	edx:eax		 	wrmsr		 	init_per_cpu__irq_stack_union		 	gs	

	x86_64_start_kernel	C	 arch/x86/kernel/head64.c	 	 	Interrupt	Descriptor	Table	

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

								set_intr_gate(i,	early_idt_handlers[i]);

load_idt((const	struct	desc_ptr	*)&idt_descr);

	 		Linux	 	3.18	Linux	 	4.1.0-rc6+		 	Andy	Lutomirski		 	early_idt_handlers		 patch NOTE	 patchLinux:

for	(i	=	0;	i	<	NUM_EXCEPTION_VECTORS;	i++)

								set_intr_gate(i,	early_idt_handler_array[i]);

load_idt((const	struct	desc_ptr	*)&idt_descr);

	 	early_idt_handler_array	:

extern	const	char	early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];

	 	NUM_EXCEPTION_VECTORS			 	EARLY_IDT_HANDLER_SIZE		:

	Linux	

148

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/percpu.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/asm-generic-sections.h
http://en.wikipedia.org/wiki/System.map
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head64.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
https://lkml.org/lkml/2015/6/2/106
https://github.com/torvalds/linux/commit/425be5679fd292a3c36cb1fe423086708a99f11a

#define	NUM_EXCEPTION_VECTORS	32

#define	EARLY_IDT_HANDLER_SIZE	9

	 	early_idt_handler_array		9 	early_idt_handlers		arch/x86/kernel/head_64.S 	early_idt_handler_array		:

ENTRY(early_idt_handler_array)

...

...

...

ENDPROC(early_idt_handler_common)

	 	.rept	NUM_EXCEPTION_VECTORS			 	early_idt_handler_array			 	early_make_pgtable		() 	x86-64	

	setup_arch			 	x86_64		

	Stack	Canary	

Linuxarch/x86/kernel/head_64.Sinit/main.c	 	start_kernel		 pid	-		1		init			 	boot_init_stack_canary		 canary
	 	boot_init_stack_canary		 arch/x86/include/asm/stackprotector.h	 	CONFIG_CC_STACKPROTECTOR		:

#ifdef	CONFIG_CC_STACKPROTECTOR

...

...

...

#else

static	inline	void	boot_init_stack_canary(void)

{

}

#endif

	 	CONFIG_CC_STACKPROTECTOR			boot_init_stack_canary			 	irq_stack_union		 per-cpu	 	stack_canary		40
	offset		:

#ifdef	CONFIG_X86_64

								BUILD_BUG_ON(offsetof(union	irq_stack_union,	stack_canary)	!=	40);

#endif

	 	irq_stack_union		:

union	irq_stack_union	{

								char	irq_stack[IRQ_STACK_SIZE];

				struct	{

																char	gs_base[40];

																unsigned	long	stack_canary;

								};

};

arch/x86/include/asm/processor.h C	 	gs_base		40	bytes	 	irq_stack			 	BUILD_BUG_ON		(
	BUILD_BUG_ON		Linux)

	 	canary		:

get_random_bytes(&canary,	sizeof(canary));

tsc	=	__native_read_tsc();

canary	+=	tsc	+	(tsc	<<	32UL);

	 	this_cpu_write			 	canary			 	irq_stack_union		:

	Linux	

149

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head_64.S
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://en.wikipedia.org/wiki/Process_identifier
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/stackprotector.h
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/processor.h
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Union_type
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
http://en.wikipedia.org/wiki/Time_Stamp_Counter

this_cpu_write(irq_stack_union.stack_canary,	canary);

	 	this_cpu_*		Linux	kernel	documentation

/

	 init/main.c		 	canary			 	local_irq_disable		

	 include/linux/irqflags.h	CPU	 	CONFIG_TRACE_IRQFLAGS_SUPPORT		:

#ifdef	CONFIG_TRACE_IRQFLAGS_SUPPORT

...

#define	local_irq_disable()	\

									do	{	raw_local_irq_disable();	trace_hardirqs_off();	}	while	(0)

...

#else

...

#define	local_irq_disable()					do	{	raw_local_irq_disable();	}	while	(0)

...

#endif

	 	CONFIG_TRACE_IRQFLAGS_SUPPORT			 	local_irq_disable			 	trace_hardirqs_off		Linux lockdep	 	irq-flags

tracing			 	hardirq			 	softirq			 	lockdep		//	 	trace_hardirqs_off		kernel/locking/lockdep.c:

void	trace_hardirqs_off(void)

{

									trace_hardirqs_off_caller(CALLER_ADDR0);

}

EXPORT_SYMBOL(trace_hardirqs_off);

	 	trace_hardirqs_off_caller			 	trace_hardirqs_off_caller		,	 	hardirqs_enabled			 	local_irq_disable		
	redundant_hardirqs_off			 	hardirqs_off_events			 	lockdep		kernel/locking/lockdep_insides.h	 	lockdep_stats		
:

struct	lockdep_stats	{

...

...

...

int					softirqs_off_events;

int					redundant_softirqs_off;

...

...

...

}

	 	CONFIG_DEBUG_LOCKDEP		 	lockdep_stats_debug_show		 	/proc/lockdep		:

static	void	lockdep_stats_debug_show(struct	seq_file	*m)

{

#ifdef	CONFIG_DEBUG_LOCKDEP

				unsigned	long	long	hi1	=	debug_atomic_read(hardirqs_on_events),

								hi2	=	debug_atomic_read(hardirqs_off_events),

								hr1	=	debug_atomic_read(redundant_hardirqs_on),

								...

				...

				...

				seq_printf(m,	"	hardirq	on	events:													%11llu\n",	hi1);

				seq_printf(m,	"	hardirq	off	events:												%11llu\n",	hi2);

				seq_printf(m,	"	redundant	hardirq	ons:									%11llu\n",	hr1);

#endif

}

	Linux	

150

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irqflags.h
http://lwn.net/Articles/321663/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/lockdep.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/lockdep_insides.h

:

$	sudo	cat	/proc/lockdep

	hardirq	on	events:													12838248974

	hardirq	off	events:												12838248979

	redundant	hardirq	ons:															67792

	redundant	hardirq	offs:									3836339146

	softirq	on	events:																38002159

	softirq	off	events:															38002187

	redundant	softirq	ons:																			0

	redundant	softirq	offs:																		0

	 	trace_hardirqs_off			 	lockdep			 	trancing		local_disable_irq			 	raw_local_irq_disable		
arch/x86/include/asm/irqflags.h	:

static	inline	void	native_irq_disable(void)

{

								asm	volatile("cli":	:	:"memory");

}

	 	cli		IF		 	local_irq_disable			 	local_irq_enable			 	local_irq_disable			 	sti		:

static	inline	void	native_irq_enable(void)

{

								asm	volatile("sti":	:	:"memory");

}

	 	local_irq_disable			 	local_irq_enable			 	local_irq_disable		Linux	 init/main.c		 	start_kernel		 		

""	 	cli		 	 	local_irq_{enabled,disable}			 	local_irq_disable

early_boot_irqs_disabled	=	true;

	 	early_boot_irqs_disabled			 include/linux/kernel.h	:

extern	bool	early_boot_irqs_disabled;

	 kernel/smp.c		 	smp_call_function_many		:

WARN_ON_ONCE(cpu_online(this_cpu)	&&	irqs_disabled()

																					&&	!oops_in_progress	&&	!early_boot_irqs_disabled);

	 	trap		

	 	local_disable_irq			 	boot_cpu_init			 	page_address_init	()	 	setup_arch		 arch/x86/kernel/setup.c	
	setup_arch			 	early_trap_init			 arch/x86/kernel/traps.c		 	Interrupt	Descriptor	Table		:

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

#ifdef	CONFIG_X86_32

								set_intr_gate(X86_TRAP_PF,	page_fault);

#endif

								load_idt(&idt_descr);

}

	Linux	

151

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/irqflags.h
http://en.wikipedia.org/wiki/Interrupt_flag
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://lwn.net/Articles/291956/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/kernel.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/smp.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel.setup.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c

	set_intr_gate_ist	

	set_system_intr_gate_ist	

	set_intr_gate	

	 arch/x86/include/asm/desc.h		 	set_intr_gate_ist			IDT	:

static	inline	void	set_intr_gate_ist(int	n,	void	*addr,	unsigned	ist)

{

								BUG_ON((unsigned)n	>	0xFF);

								_set_gate(n,	GATE_INTERRUPT,	addr,	0,	ist,	__KERNEL_CS);

}

	 	n				 	0xff			255	[]	(http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html)		0		255	
	_set_gate			 	IDT		:

static	inline	void	_set_gate(int	gate,	unsigned	type,	void	*addr,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate_desc	s;

								pack_gate(&s,	type,	(unsigned	long)addr,	dpl,	ist,	seg);

								write_idt_entry(idt_table,	gate,	&s);

								write_trace_idt_entry(gate,	&s);

}

	 	pack_gate			 	IDT			 	gate_desc		 ,		:

	GATE_INTERRUPT	

	GATE_TRAP	

	GATE_CALL	

	GATE_TASK	

	 	IDT			present	:

static	inline	void	pack_gate(gate_desc	*gate,	unsigned	type,	unsigned	long	func,

																													unsigned	dpl,	unsigned	ist,	unsigned	seg)

{

								gate->offset_low								=	PTR_LOW(func);

								gate->segment											=	__KERNEL_CS;

								gate->ist															=	ist;

								gate->p																	=	1;

								gate->dpl															=	dpl;

								gate->zero0													=	0;

								gate->zero1													=	0;

								gate->type														=	type;

								gate->offset_middle					=	PTR_MIDDLE(func);

								gate->offset_high							=	PTR_HIGH(func);

}

	 	write_idt_entry			 	IDT			 	native_write_idt_entry			 	idt_table		:

#define	write_idt_entry(dt,	entry,	g)											native_write_idt_entry(dt,	entry,	g)

static	inline	void	native_write_idt_entry(gate_desc	*idt,	int	entry,	const	gate_desc	*gate)

{

								memcpy(&idt[entry],	gate,	sizeof(*gate));

}

	 	idt_table			 	gate_desc		:

extern	gate_desc	idt_table[];

	Linux	

152

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h
http://en.wikipedia.org/wiki/Interrupt_vector_table
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level

	 	set_intr_gate_ist			 	set_system_intr_gate_ist		:

static	inline	void	set_system_intr_gate_ist(int	n,	void	*addr,	unsigned	ist)

{

								BUG_ON((unsigned)n	>	0xFF);

								_set_gate(n,	GATE_INTERRUPT,	addr,	0x3,	ist,	__KERNEL_CS);

}

	 	_set_gate			 	0x3		 	set_intr_gate_ist		 	0x0		 	DPL	 	0		 	3		 	set_system_intr_gate_ist	,
	set_intr_gate_ist	,		set_intr_gate		 	early_trap_init	:

set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

	 	#DB		 	int3		 	IDT	:

vector	number	of	an	interrupt;
address	of	an	interrupt	handler;
interrupt	stack	table	index.

	 	early_trap_init	

LinuxLinux

	 twitter

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

IDT
Protected	mode
List	of	x86	calling	conventions
8086
Long	mode
NX
Extended	Feature	Enable	Register
Model-specific	register
Process	identifier
lockdep
irqflags	tracing
IF
Stack	canary
Union	type
thiscpu*	operations
vector	number
Interrupt	Stack	Table
Privilege	level
Previous	part

	Linux	

153

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/X86_calling_conventions#List_of_x86_calling_conventions
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Control_register#Additional_Control_registers_in_x86-64_series
http://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Process_identifier
http://lwn.net/Articles/321663/
https://www.kernel.org/doc/Documentation/irqflags-tracing.txt
http://en.wikipedia.org/wiki/Interrupt_flag
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
http://en.wikipedia.org/wiki/Union_type
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt
http://en.wikipedia.org/wiki/Interrupt_vector_table
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html

	Linux	

154

.	Part	3.

	 chapter	Linux		 part		 	setup_arch			 arch/x86/kernel/setup.c	.

	 	setup_arch	x86_64	architecture	 	setup_arch	

	#DB		-	
	#BP		-	 	int	

x86_64 kgdb		 	early_trap_init	

void	__init	early_trap_init(void)

{

								set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

								set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

								load_idt(&idt_descr);

}

	 arch/x86/kernel/traps.c.		set_intr_gate_ist		set_system_intr_gate_ist	

Ok 	early_trap_init		#DB		#BP	

- 	DB		debug	- debug	register	debug	register	 Intel	80386		x86	CPU

debug	register general	protection	fault	 	#DB		set_intr_gate_ist		set_system_intr_gate_ist	

	#DB	1X86_TRAP_DB

+---+

|Vector|Mnemonic|Description									|Type	|Error	Code|

+---+

|1					|	#DB				|Reserved												|F/T		|NO								|

+---+

int	3		#BP		breakpointv		 	DB	 	BP		

//	breakpoint.c

#include	<stdio.h>

int	main()	{

				int	i;

				while	(i	<	6){

								printf("i	equal	to:	%d\n",	i);

								__asm__("int3");

								++i;

				}

}

$	gcc	breakpoint.c	-o	breakpoint

i	equal	to:	0

Trace/breakpoint	trap

155

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://github.com/torvalds/linux/blame/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/KGDB
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
http://en.wikipedia.org/wiki/X86_debug_register
http://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/General_protection_fault
http://en.wikipedia.org/wiki/INT_%28x86_instruction%29#INT_3

gdb

$	gdb	breakpoint

...

...

...

(gdb)	run

Starting	program:	/home/alex/breakpoints	

i	equal	to:	0

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

(gdb)	c

Continuing.

i	equal	to:	1

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

(gdb)	c

Continuing.

i	equal	to:	2

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0x0000000000400585	in	main	()

=>	0x0000000000400585	<main+31>:				83	45	fc	01				add				DWORD	PTR	[rbp-0x4],0x1

...

...

...

	set_intr_gate_ist		set_system_intr_gate_ist		

	debug	;
	int3	.

C 	*.c/*.h	 arch/x86/include/asm/traps.h

asmlinkage	void	debug(void);

and

asmlinkage	void	int3(void);

	asmlinkage		 gcc		C 	asmlinkage	 	gcc		So,	both	handlers	are	defined	in	the
arch/x86/entry/entry_64.S	assembly	source	code	file	with	the		idtentry		macro:

arch/x86/entry/entry_64.S		idtentry	

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

and

idtentry	int3	do_int3	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

156

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/traps.h
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S

		 general	purpose	registers				 	SIGILL		signal		 arch/x86/kernel/entry_64.S
	 	idtentry	

	sym		globl	name		 	do_sym		* 	has_error_code	

	paranoid	-	 	shift_ist	-“”

	idtentry	

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

...

...

...

END(\sym)

.endm

Before	we	will	consider	internals	of	the		idtentry		macro,	we	should	to	know	state	of	stack	when	an	exception	occurs.	As	we	may	read
in	the	Intel®	64	and	IA-32	Architectures	Software	Developer’s	Manual	3A,	the	state	of	stack	when	an	exception	occurs	is	following:

	identry		 Intel®64	and	IA-32	Architectures	Software	Developer's	Manual	3A	

				+------------+

+40	|	%SS								|

+32	|	%RSP							|

+24	|	%RFLAGS				|

+16	|	%CS								|

	+8	|	%RIP							|

		0	|	ERROR	CODE	|	<--	%RSP

				+------------+

	idtmacro		 	#DB		BP	

idtentry	debug	do_debug	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

idtentry	int3	do_int3	has_error_code=0	paranoid=1	shift_ist=DEBUG_STACK

	debug		int3	 	do_debug		do_int3				 	debug		int3			 	idtentry	

.ifeq	\has_error_code

				pushq				$-1

.endif

“-1”

	idtentry		shift_ist		paranoid		Interrupt	Stack	Table	-	 x86_64			double	fault
shift_istIST

	paranoid	 	CS		CPL		Current	Privilege	Level		3	

testl	$3,CS(%rsp)

jnz	userspace

...

...

...

//	

100

157

https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64.S
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/X86-64

if	we	are	in	an	NMI/MCE/DEBUG/whatever	super-atomic	entry	context,	which	might	have	triggered	right	after	a	normal	entry
wrote	CS	to	the	stack	but	before	we	executed	SWAPGS,	then	the	only	safe	way	to	check	for	GS	is	the	slower	method:	the
RDMSR.

	NMI	swapgs		 	MSR_GS_BASE			cpu	 	MSR_GS_BASE	

movl	$MSR_GS_BASE,%ecx

rdmsr

testl	%edx,%edx

js	1f

	MSR_GS_BASE	edx:eax	gs	 	0xffff880000000000		 	MSR_GS_BASE	

	0xffff880000000000		0xffffc7ffffffffff		 	rdmsr	 	edx 	- 	0xffff8800	4	-30720		 	CPU		gs		

ALLOC_PT_GPREGS_ON_STACK

arch	/	x86	/	entry	/	calling.h		15	*	8

.macro	ALLOC_PT_GPREGS_ON_STACK	addskip=0

				addq				$-(15*8+\addskip),	%rsp

.endm

	ALLOC_PT_GPREGS_ON_STACK	

					+------------+

+160	|	%SS								|

+152	|	%RSP							|

+144	|	%RFLAGS				|

+136	|	%CS								|

+128	|	%RIP							|

+120	|	ERROR	CODE	|

					|------------|

+112	|												|

+104	|												|

	+96	|												|

	+88	|												|

	+80	|												|

	+72	|												|

	+64	|												|

	+56	|												|

	+48	|												|

	+40	|												|

	+32	|												|

	+24	|												|

	+16	|												|

		+8	|												|

		+0	|												|	<-	%RSP

					+------------+

.if	\paranoid

				.if	\paranoid	==	1

								testb				$3,	CS(%rsp)

								jnz				1f

				.endif

				call				paranoid_entry

.else

				call				error_entry

.endif

158

http://www.felixcloutier.com/x86/SWAPGS.html
https://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h

	debug		int3		paranoid	=	1		CS 	1f	 	paranoid_entry		Let's	consider	first	case	when	we	came	from
userspace	to	an	exception	handler.	As	described	above	we	should	jump	at		1		label.	The		1		label	starts	from	the	call	of	the

call				error_entry

:

SAVE_C_REGS	8

SAVE_EXTRA_REGS	8

arch/x86/entry/calling.h		

.macro	SAVE_EXTRA_REGS	offset=0

				movq	%r15,	0*8+\offset(%rsp)

				movq	%r14,	1*8+\offset(%rsp)

				movq	%r13,	2*8+\offset(%rsp)

				movq	%r12,	3*8+\offset(%rsp)

				movq	%rbp,	4*8+\offset(%rsp)

				movq	%rbx,	5*8+\offset(%rsp)

.endm

	SAVE_C_REGS		SAVE_EXTRA_REGS	:

					+------------+

+160	|	%SS								|

+152	|	%RSP							|

+144	|	%RFLAGS				|

+136	|	%CS								|

+128	|	%RIP							|

+120	|	ERROR	CODE	|

					|------------|

+112	|	%RDI							|

+104	|	%RSI							|

	+96	|	%RDX							|

	+88	|	%RCX							|

	+80	|	%RAX							|

	+72	|	%R8								|

	+64	|	%R9								|

	+56	|	%R10							|

	+48	|	%R11							|

	+40	|	%RBX							|

	+32	|	%RBP							|

	+24	|	%R12							|

	+16	|	%R13							|

		+8	|	%R14							|

		+0	|	%R15							|	<-	%RSP

					+------------+

testb				$3,	CS+8(%rsp)

jz				.Lerror_kernelspace

	RIP 		 SWAPGS	 	MSR_KERNEL_GS_BASE		MSR_GS_BASE		 	gs 		 	SWAPGS	 	error_entry	

	idtentry		 	error_entry	

movq				%rsp,	%rdi

call				sync_regs

159

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h
http://www.felixcloutier.com/x86/SWAPGS.html

	rdi 	 	sync_regs	(x86_64	ABI)	arch	/	x86	/	kernel	/	traps.c		

asmlinkage	__visible	notrace	struct	pt_regs	*sync_regs(struct	pt_regs	*eregs)

{

				struct	pt_regs	*regs	=	task_pt_regs(current);

				*regs	=	*eregs;

				return	regs;

}

[arch/x86/include/asm/processor.h]	task_ptr_regs	
(https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/	include	/	asm	/	processor.h)
	task_ptr_regs		thread.sp0	

#define	task_pt_regs(tsk)							((struct	pt_regs	*)(tsk)->thread.sp0	-	1)

	 	sync_regs	

movq				%rax,	%rsp

1.	pt_regs	 	rdi 	

movq				%rsp,	%rdi

2.	rsi 	-1		

.if	\has_error_code

				movq				ORIG_RAX(%rsp),	%rsi

				movq				$-1,	ORIG_RAX(%rsp)

.else

				xorl				%esi,	%esi

.endif

	esi 	

call				\do_sym

which:

dotraplinkage	void	do_debug(struct	pt_regs	*regs,	long	error_code);

	debug	

dotraplinkage	void	notrace	do_int3(struct	pt_regs	*regs,	long	error_code);

	int	3		

	

>	0

160

https://www.uclibc.org/docs/psABI-x86_64.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/

	paranoid	=	1		idtentry		 	paranoid		 	paranoid_entry	

ENTRY(paranoid_entry)

				cld

				SAVE_C_REGS	8

				SAVE_EXTRA_REGS	8

				movl				$1,	%ebx

				movl				$MSR_GS_BASE,	%ecx

				rdmsr

				testl				%edx,	%edx

				js				1f

				SWAPGS

				xorl				%ebx,	%ebx

1:				ret

END(paranoid_entry)

		 	SWAPGS	 	rdi 		rsi

movq				%rsp,	%rdi

.if	\has_error_code

				movq				ORIG_RAX(%rsp),	%rsi

				movq				$-1,	ORIG_RAX(%rsp)

.else

				xorl				%esi,	%esi

.endif

	IST	

.if	\shift_ist	!=	-1

				subq				$EXCEPTION_STKSZ,	CPU_TSS_IST(\shift_ist)

.endif

	shift_ist		iddentry		-1 	shift_ist				

call				\do_sym

	paranoid	=	0	

	idtentry	 	error_exit	

jmp				error_exit

arch/x86/entry/entry_64.S		error_exit		 	SWPAGS		 	iret	

That's	all.

Linux	 	#DB		#BP				 	setup_arch		 twitter	ping	 PR[linux-
insides] https://github.com/0xAX/linux-insides

161

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides）。

Debug	registers
Intel	80385
INT	3
gcc
TSS
GNU	assembly	.error	directive
dwarf2
CFI	directives
IRQ
system	call
swapgs
SIGTRAP
Per-CPU	variables
kgdb
ACPI
Previous	part

162

http://en.wikipedia.org/wiki/X86_debug_register
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/INT_%28x86_instruction%29#INT_3
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Task_state_segment
https://sourceware.org/binutils/docs/as/Error.html#Error
http://en.wikipedia.org/wiki/DWARF
https://sourceware.org/binutils/docs/as/CFI-directives.html
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/System_call
http://www.felixcloutier.com/x86/SWAPGS.html
https://en.wikipedia.org/wiki/Unix_signal#SIGTRAP
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/KGDB
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html

Interrupts	and	Interrupt	Handling.	Part	4.

Initialization	of	non-early	interrupt	gates

This	is	fourth	part	about	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	and	in	the	previous	part	we	saw	first	early		#DB		and
	#BP		exceptions	handlers	from	the	arch/x86/kernel/traps.c.	We	stopped	on	the	right	after	the		early_trap_init		function	that	called	in
the		setup_arch		function	which	defined	in	the	arch/x86/kernel/setup.c.	In	this	part	we	will	continue	to	dive	into	an	interrupts	and
exceptions	handling	in	the	Linux	kernel	for		x86_64		and	continue	to	do	it	from	the	place	where	we	left	off	in	the	last	part.	First	thing
which	is	related	to	the	interrupts	and	exceptions	handling	is	the	setup	of	the		#PF		or	page	fault	handler	with	the		early_trap_pf_init	
function.	Let's	start	from	it.

Early	page	fault	handler

The		early_trap_pf_init		function	defined	in	the	arch/x86/kernel/traps.c.	It	uses		set_intr_gate		macro	that	fills	Interrupt	Descriptor
Table	with	the	given	entry:

void	__init	early_trap_pf_init(void)

{

#ifdef	CONFIG_X86_64

									set_intr_gate(X86_TRAP_PF,	page_fault);

#endif

}

This	macro	defined	in	the	arch/x86/include/asm/desc.h.	We	already	saw	macros	like	this	in	the	previous	part	-		set_system_intr_gate	
and		set_intr_gate_ist	.	This	macro	checks	that	given	vector	number	is	not	greater	than		255		(maximum	vector	number)	and	calls
	_set_gate		function	as		set_system_intr_gate		and		set_intr_gate_ist		did	it:

#define	set_intr_gate(n,	addr)																																		\

do	{																																																												\

								BUG_ON((unsigned)n	>	0xFF);																													\

								_set_gate(n,	GATE_INTERRUPT,	(void	*)addr,	0,	0,								\

																		__KERNEL_CS);																																	\

								_trace_set_gate(n,	GATE_INTERRUPT,	(void	*)trace_##addr,\

																								0,	0,	__KERNEL_CS);																					\

}	while	(0)

The		set_intr_gate		macro	takes	two	parameters:

vector	number	of	a	interrupt;
address	of	an	interrupt	handler;

In	our	case	they	are:

	X86_TRAP_PF		-		14	;
	page_fault		-	the	interrupt	handler	entry	point.

The		X86_TRAP_PF		is	the	element	of	enum	which	defined	in	the	arch/x86/include/asm/traprs.h:

enum	{

				...

				...

				...

				...

				X86_TRAP_PF,												/*	14,	Page	Fault	*/

				...

				...

				...

163

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/traprs.h

}

When	the		early_trap_pf_init		will	be	called,	the		set_intr_gate		will	be	expanded	to	the	call	of	the		_set_gate		which	will	fill	the
	IDT		with	the	handler	for	the	page	fault.	Now	let's	look	on	the	implementation	of	the		page_fault		handler.	The		page_fault		handler
defined	in	the	arch/x86/kernel/entry_64.S	assembly	source	code	file	as	all	exceptions	handlers.	Let's	look	on	it:

trace_idtentry	page_fault	do_page_fault	has_error_code=1

We	saw	in	the	previous	part	how		#DB		and		#BP		handlers	defined.	They	were	defined	with	the		idtentry		macro,	but	here	we	can	see
	trace_idtentry	.	This	macro	defined	in	the	same	source	code	file	and	depends	on	the		CONFIG_TRACING		kernel	configuration	option:

#ifdef	CONFIG_TRACING

.macro	trace_idtentry	sym	do_sym	has_error_code:req

idtentry	trace(\sym)	trace(\do_sym)	has_error_code=\has_error_code

idtentry	\sym	\do_sym	has_error_code=\has_error_code

.endm

#else

.macro	trace_idtentry	sym	do_sym	has_error_code:req

idtentry	\sym	\do_sym	has_error_code=\has_error_code

.endm

#endif

We	will	not	dive	into	exceptions	Tracing	now.	If		CONFIG_TRACING		is	not	set,	we	can	see	that		trace_idtentry		macro	just	expands	to
the	normal		idtentry	.	We	already	saw	implementation	of	the		idtentry		macro	in	the	previous	part,	so	let's	start	from	the
	page_fault		exception	handler.

As	we	can	see	in	the		idtentry		definition,	the	handler	of	the		page_fault		is		do_page_fault		function	which	defined	in	the
arch/x86/mm/fault.c	and	as	all	exceptions	handlers	it	takes	two	arguments:

	regs		-		pt_regs		structure	that	holds	state	of	an	interrupted	process;
	error_code		-	error	code	of	the	page	fault	exception.

Let's	look	inside	this	function.	First	of	all	we	read	content	of	the	cr2	control	register:

dotraplinkage	void	notrace

do_page_fault(struct	pt_regs	*regs,	unsigned	long	error_code)

{

				unsigned	long	address	=	read_cr2();

				...

				...

				...

}

This	register	contains	a	linear	address	which	caused		page	fault	.	In	the	next	step	we	make	a	call	of	the		exception_enter		function
from	the	include/linux/context_tracking.h.	The		exception_enter		and		exception_exit		are	functions	from	context	tracking	subsystem
in	the	Linux	kernel	used	by	the	RCU	to	remove	its	dependency	on	the	timer	tick	while	a	processor	runs	in	userspace.	Almost	in	the
every	exception	handler	we	will	see	similar	code:

enum	ctx_state	prev_state;

prev_state	=	exception_enter();

...

...	//	exception	handler	here

...

exception_exit(prev_state);

The		exception_enter		function	checks	that		context	tracking		is	enabled	with	the		context_tracking_is_enabled		and	if	it	is	in
enabled	state,	we	get	previous	context	with	the		this_cpu_read		(more	about		this_cpu_*		operations	you	can	read	in	the
Documentation).	After	this	it	calls		context_tracking_user_exit		function	which	informs	the	context	tracking	that	the	processor	is
exiting	userspace	mode	and	entering	the	kernel:

164

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64.S
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://en.wikipedia.org/wiki/Tracing_%28software%29
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/fault.c
https://en.wikipedia.org/wiki/Control_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/context_tracking.h
https://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt

static	inline	enum	ctx_state	exception_enter(void)

{

								enum	ctx_state	prev_ctx;

								if	(!context_tracking_is_enabled())

																return	0;

								prev_ctx	=	this_cpu_read(context_tracking.state);

								context_tracking_user_exit();

								return	prev_ctx;

}

The	state	can	be	one	of	the:

enum	ctx_state	{

				IN_KERNEL	=	0,

				IN_USER,

}	state;

And	in	the	end	we	return	previous	context.	Between	the		exception_enter		and		exception_exit		we	call	actual	page	fault	handler:

__do_page_fault(regs,	error_code,	address);

The		__do_page_fault		is	defined	in	the	same	source	code	file	as		do_page_fault		-	arch/x86/mm/fault.c.	In	the	beginning	of	the
	__do_page_fault		we	check	state	of	the	kmemcheck	checker.	The		kmemcheck		detects	warns	about	some	uses	of	uninitialized	memory.
We	need	to	check	it	because	page	fault	can	be	caused	by	kmemcheck:

if	(kmemcheck_active(regs))

								kmemcheck_hide(regs);

				prefetchw(&mm->mmap_sem);

After	this	we	can	see	the	call	of	the		prefetchw		which	executes	instruction	with	the	same	name	which	fetches
X86_FEATURE_3DNOW	to	get	exclusive	cache	line.	The	main	purpose	of	prefetching	is	to	hide	the	latency	of	a	memory	access.	In	the
next	step	we	check	that	we	got	page	fault	not	in	the	kernel	space	with	the	following	condition:

if	(unlikely(fault_in_kernel_space(address)))	{

...

...

...

}

where		fault_in_kernel_space		is:

static	int	fault_in_kernel_space(unsigned	long	address)

{

								return	address	>=	TASK_SIZE_MAX;

}

The		TASK_SIZE_MAX		macro	expands	to	the:

#define	TASK_SIZE_MAX			((1UL	<<	47)	-	PAGE_SIZE)

or		0x00007ffffffff000	.	Pay	attention	on		unlikely		macro.	There	are	two	macros	in	the	Linux	kernel:

#define	likely(x)						__builtin_expect(!!(x),	1)

#define	unlikely(x)				__builtin_expect(!!(x),	0)

165

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/fault.c
https://www.kernel.org/doc/Documentation/kmemcheck.txt
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/?title=3DNow!
https://en.wikipedia.org/wiki/CPU_cache

You	can	often	find	these	macros	in	the	code	of	the	Linux	kernel.	Main	purpose	of	these	macros	is	optimization.	Sometimes	this	situation
is	that	we	need	to	check	the	condition	of	the	code	and	we	know	that	it	will	rarely	be		true		or		false	.	With	these	macros	we	can	tell	to
the	compiler	about	this.	For	example

static	int	proc_root_readdir(struct	file	*file,	struct	dir_context	*ctx)

{

								if	(ctx->pos	<	FIRST_PROCESS_ENTRY)	{

																int	error	=	proc_readdir(file,	ctx);

																if	(unlikely(error	<=	0))

																								return	error;

...

...

...

}

Here	we	can	see		proc_root_readdir		function	which	will	be	called	when	the	Linux	VFS	needs	to	read	the		root		directory	contents.	If
condition	marked	with		unlikely	,	compiler	can	put		false		code	right	after	branching.	Now	let's	back	to	the	our	address	check.
Comparison	between	the	given	address	and	the		0x00007ffffffff000		will	give	us	to	know,	was	page	fault	in	the	kernel	mode	or	user
mode.	After	this	check	we	know	it.	After	this		__do_page_fault		routine	will	try	to	understand	the	problem	that	provoked	page	fault
exception	and	then	will	pass	address	to	the	appropriate	routine.	It	can	be		kmemcheck		fault,	spurious	fault,	kprobes	fault	and	etc.	Will
not	dive	into	implementation	details	of	the	page	fault	exception	handler	in	this	part,	because	we	need	to	know	many	different	concepts
which	are	provided	by	the	Linux	kernel,	but	will	see	it	in	the	chapter	about	the	memory	management	in	the	Linux	kernel.

Back	to	start_kernel
There	are	many	different	function	calls	after	the		early_trap_pf_init		in	the		setup_arch		function	from	different	kernel	subsystems,
but	there	are	no	one	interrupts	and	exceptions	handling	related.	So,	we	have	to	go	back	where	we	came	from	-		start_kernel		function
from	the	init/main.c.	The	first	things	after	the		setup_arch		is	the		trap_init		function	from	the	arch/x86/kernel/traps.c.	This	function
makes	initialization	of	the	remaining	exceptions	handlers	(remember	that	we	already	setup	3	handlers	for	the		#DB		-	debug	exception,
	#BP		-	breakpoint	exception	and		#PF		-	page	fault	exception).	The		trap_init		function	starts	from	the	check	of	the	Extended	Industry
Standard	Architecture:

#ifdef	CONFIG_EISA

								void	__iomem	*p	=	early_ioremap(0x0FFFD9,	4);

								if	(readl(p)	==	'E'	+	('I'<<8)	+	('S'<<16)	+	('A'<<24))

																EISA_bus	=	1;

								early_iounmap(p,	4);

#endif

Note	that	it	depends	on	the		CONFIG_EISA		kernel	configuration	parameter	which	represents		EISA		support.	Here	we	use
	early_ioremap		function	to	map		I/O		memory	on	the	page	tables.	We	use		readl		function	to	read	first		4		bytes	from	the	mapped
region	and	if	they	are	equal	to		EISA		string	we	set		EISA_bus		to	one.	In	the	end	we	just	unmap	previously	mapped	region.	More	about
	early_ioremap		you	can	read	in	the	part	which	describes	Fix-Mapped	Addresses	and	ioremap.

After	this	we	start	to	fill	the		Interrupt	Descriptor	Table		with	the	different	interrupt	gates.	First	of	all	we	set		#DE		or		Divide
Error		and		#NMI		or		Non-maskable	Interrupt	:

set_intr_gate(X86_TRAP_DE,	divide_error);

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

We	use		set_intr_gate		macro	to	set	the	interrupt	gate	for	the		#DE		exception	and		set_intr_gate_ist		for	the		#NMI	.	You	can
remember	that	we	already	used	these	macros	when	we	have	set	the	interrupts	gates	for	the	page	fault	handler,	debug	handler	and	etc,
you	can	find	explanation	of	it	in	the	previous	part.	After	this	we	setup	exception	gates	for	the	following	exceptions:

set_system_intr_gate(X86_TRAP_OF,	&overflow);

set_intr_gate(X86_TRAP_BR,	bounds);

166

http://lxr.free-electrons.com/ident?i=unlikely
https://en.wikipedia.org/wiki/Virtual_file_system
https://www.kernel.org/doc/Documentation/kprobes.txt
http://0xax.gitbooks.io/linux-insides/content/MM/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c#L492
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture
http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

set_intr_gate(X86_TRAP_UD,	invalid_op);

set_intr_gate(X86_TRAP_NM,	device_not_available);

Here	we	can	see:

	#OF		or		Overflow		exception.	This	exception	indicates	that	an	overflow	trap	occurred	when	an	special	INTO	instruction	was
executed;
	#BR		or		BOUND	Range	exceeded		exception.	This	exception	indicates	that	a		BOUND-range-exceed		fault	occurred	when	a	BOUND
instruction	was	executed;
	#UD		or		Invalid	Opcode		exception.	Occurs	when	a	processor	attempted	to	execute	invalid	or	reserved	opcode,	processor
attempted	to	execute	instruction	with	invalid	operand(s)	and	etc;
	#NM		or		Device	Not	Available		exception.	Occurs	when	the	processor	tries	to	execute		x87	FPU		floating	point	instruction	while
	EM		flag	in	the	control	register		cr0		was	set.

In	the	next	step	we	set	the	interrupt	gate	for	the		#DF		or		Double	fault		exception:

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

This	exception	occurs	when	processor	detected	a	second	exception	while	calling	an	exception	handler	for	a	prior	exception.	In	usual
way	when	the	processor	detects	another	exception	while	trying	to	call	an	exception	handler,	the	two	exceptions	can	be	handled	serially.
If	the	processor	cannot	handle	them	serially,	it	signals	the	double-fault	or		#DF		exception.

The	following	set	of	the	interrupt	gates	is:

set_intr_gate(X86_TRAP_OLD_MF,	&coprocessor_segment_overrun);

set_intr_gate(X86_TRAP_TS,	&invalid_TSS);

set_intr_gate(X86_TRAP_NP,	&segment_not_present);

set_intr_gate_ist(X86_TRAP_SS,	&stack_segment,	STACKFAULT_STACK);

set_intr_gate(X86_TRAP_GP,	&general_protection);

set_intr_gate(X86_TRAP_SPURIOUS,	&spurious_interrupt_bug);

set_intr_gate(X86_TRAP_MF,	&coprocessor_error);

set_intr_gate(X86_TRAP_AC,	&alignment_check);

Here	we	can	see	setup	for	the	following	exception	handlers:

	#CSO		or		Coprocessor	Segment	Overrun		-	this	exception	indicates	that	math	coprocessor	of	an	old	processor	detected	a	page	or
segment	violation.	Modern	processors	do	not	generate	this	exception
	#TS		or		Invalid	TSS		exception	-	indicates	that	there	was	an	error	related	to	the	Task	State	Segment.
	#NP		or		Segment	Not	Present		exception	indicates	that	the		present	flag		of	a	segment	or	gate	descriptor	is	clear	during	attempt
to	load	one	of		cs	,		ds	,		es	,		fs	,	or		gs		register.
	#SS		or		Stack	Fault		exception	indicates	one	of	the	stack	related	conditions	was	detected,	for	example	a	not-present	stack
segment	is	detected	when	attempting	to	load	the		ss		register.
	#GP		or		General	Protection		exception	indicates	that	the	processor	detected	one	of	a	class	of	protection	violations	called
general-protection	violations.	There	are	many	different	conditions	that	can	cause	general-protection	exception.	For	example
loading	the		ss	,		ds	,		es	,		fs	,	or		gs		register	with	a	segment	selector	for	a	system	segment,	writing	to	a	code	segment	or	a
read-only	data	segment,	referencing	an	entry	in	the		Interrupt	Descriptor	Table		(following	an	interrupt	or	exception)	that	is	not
an	interrupt,	trap,	or	task	gate	and	many	many	more.
	Spurious	Interrupt		-	a	hardware	interrupt	that	is	unwanted.
	#MF		or		x87	FPU	Floating-Point	Error		exception	caused	when	the	x87	FPU	has	detected	a	floating	point	error.
	#AC		or		Alignment	Check		exception	Indicates	that	the	processor	detected	an	unaligned	memory	operand	when	alignment
checking	was	enabled.

After	that	we	setup	this	exception	gates,	we	can	see	setup	of	the		Machine-Check		exception:

#ifdef	CONFIG_X86_MCE

				set_intr_gate_ist(X86_TRAP_MC,	&machine_check,	MCE_STACK);

#endif

167

http://x86.renejeschke.de/html/file_module_x86_id_142.html
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/?title=Opcode
https://en.wikipedia.org/wiki/Control_register#CR0
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Task_state_segment
https://en.wikipedia.org/wiki/X86_instruction_listings#x87_floating-point_instructions

Note	that	it	depends	on	the		CONFIG_X86_MCE		kernel	configuration	option	and	indicates	that	the	processor	detected	an	internal	machine
error	or	a	bus	error,	or	that	an	external	agent	detected	a	bus	error.	The	next	exception	gate	is	for	the	SIMD	Floating-Point	exception:

set_intr_gate(X86_TRAP_XF,	&simd_coprocessor_error);

which	indicates	the	processor	has	detected	an		SSE		or		SSE2		or		SSE3		SIMD	floating-point	exception.	There	are	six	classes	of
numeric	exception	conditions	that	can	occur	while	executing	an	SIMD	floating-point	instruction:

Invalid	operation
Divide-by-zero
Denormal	operand
Numeric	overflow
Numeric	underflow
Inexact	result	(Precision)

In	the	next	step	we	fill	the		used_vectors		array	which	defined	in	the	arch/x86/include/asm/desc.h	header	file	and	represents		bitmap	:

DECLARE_BITMAP(used_vectors,	NR_VECTORS);

of	the	first		32		interrupts	(more	about	bitmaps	in	the	Linux	kernel	you	can	read	in	the	part	which	describes	cpumasks	and	bitmaps)

for	(i	=	0;	i	<	FIRST_EXTERNAL_VECTOR;	i++)

				set_bit(i,	used_vectors)

where		FIRST_EXTERNAL_VECTOR		is:

#define	FIRST_EXTERNAL_VECTOR											0x20

After	this	we	setup	the	interrupt	gate	for	the		ia32_syscall		and	add		0x80		to	the		used_vectors		bitmap:

#ifdef	CONFIG_IA32_EMULATION

								set_system_intr_gate(IA32_SYSCALL_VECTOR,	ia32_syscall);

								set_bit(IA32_SYSCALL_VECTOR,	used_vectors);

#endif

There	is		CONFIG_IA32_EMULATION		kernel	configuration	option	on		x86_64		Linux	kernels.	This	option	provides	ability	to	execute	32-bit
processes	in	compatibility-mode.	In	the	next	parts	we	will	see	how	it	works,	in	the	meantime	we	need	only	to	know	that	there	is	yet
another	interrupt	gate	in	the		IDT		with	the	vector	number		0x80	.	In	the	next	step	we	maps		IDT		to	the	fixmap	area:

__set_fixmap(FIX_RO_IDT,	__pa_symbol(idt_table),	PAGE_KERNEL_RO);

idt_descr.address	=	fix_to_virt(FIX_RO_IDT);

and	write	its	address	to	the		idt_descr.address		(more	about	fix-mapped	addresses	you	can	read	in	the	second	part	of	the	Linux	kernel
memory	management	chapter).	After	this	we	can	see	the	call	of	the		cpu_init		function	that	defined	in	the
arch/x86/kernel/cpu/common.c.	This	function	makes	initialization	of	the	all		per-cpu		state.	In	the	beginning	of	the		cpu_init		we	do
the	following	things:	First	of	all	we	wait	while	current	cpu	is	initialized	and	than	we	call	the		cr4_init_shadow		function	which	stores
shadow	copy	of	the		cr4		control	register	for	the	current	cpu	and	load	CPU	microcode	if	need	with	the	following	function	calls:

wait_for_master_cpu(cpu);

cr4_init_shadow();

load_ucode_ap();

Next	we	get	the		Task	State	Segment		for	the	current	cpu	and		orig_ist		structure	which	represents	origin		Interrupt	Stack	Table	
values	with	the:

168

https://en.wikipedia.org/wiki/Machine-check_exception
https://en.wikipedia.org/?title=SIMD
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/cpu/common.c

t	=	&per_cpu(cpu_tss,	cpu);

oist	=	&per_cpu(orig_ist,	cpu);

As	we	got	values	of	the		Task	State	Segment		and		Interrupt	Stack	Table		for	the	current	processor,	we	clear	following	bits	in	the
	cr4		control	register:

cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);

with	this	we	disable		vm86		extension,	virtual	interrupts,	timestamp	(RDTSC	can	only	be	executed	with	the	highest	privilege)	and	debug
extension.	After	this	we	reload	the		Global	Descriptor	Table		and		Interrupt	Descriptor	table		with	the:

				switch_to_new_gdt(cpu);

				loadsegment(fs,	0);

				load_current_idt();

After	this	we	setup	array	of	the	Thread-Local	Storage	Descriptors,	configure	NX	and	load	CPU	microcode.	Now	is	time	to	setup	and
load		per-cpu		Task	State	Segments.	We	are	going	in	a	loop	through	the	all	exception	stack	which	is		N_EXCEPTION_STACKS		or		4		and
fill	it	with		Interrupt	Stack	Tables	:

				if	(!oist->ist[0])	{

								char	*estacks	=	per_cpu(exception_stacks,	cpu);

								for	(v	=	0;	v	<	N_EXCEPTION_STACKS;	v++)	{

												estacks	+=	exception_stack_sizes[v];

												oist->ist[v]	=	t->x86_tss.ist[v]	=

																				(unsigned	long)estacks;

												if	(v	==	DEBUG_STACK-1)

																per_cpu(debug_stack_addr,	cpu)	=	(unsigned	long)estacks;

								}

				}

As	we	have	filled		Task	State	Segments		with	the		Interrupt	Stack	Tables		we	can	set		TSS		descriptor	for	the	current	processor	and
load	it	with	the:

set_tss_desc(cpu,	t);

load_TR_desc();

where		set_tss_desc		macro	from	the	arch/x86/include/asm/desc.h	writes	given	descriptor	to	the		Global	Descriptor	Table		of	the
given	processor:

#define	set_tss_desc(cpu,	addr)	__set_tss_desc(cpu,	GDT_ENTRY_TSS,	addr)

static	inline	void	__set_tss_desc(unsigned	cpu,	unsigned	int	entry,	void	*addr)

{

								struct	desc_struct	*d	=	get_cpu_gdt_table(cpu);

								tss_desc	tss;

								set_tssldt_descriptor(&tss,	(unsigned	long)addr,	DESC_TSS,

																														IO_BITMAP_OFFSET	+	IO_BITMAP_BYTES	+

																														sizeof(unsigned	long)	-	1);

								write_gdt_entry(d,	entry,	&tss,	DESC_TSS);

}

and		load_TR_desc		macro	expands	to	the		ltr		or		Load	Task	Register		instruction:

#define	load_TR_desc()																										native_load_tr_desc()

static	inline	void	native_load_tr_desc(void)

{

								asm	volatile("ltr	%w0"::"q"	(GDT_ENTRY_TSS*8));

}

169

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h

In	the	end	of	the		trap_init		function	we	can	see	the	following	code:

set_intr_gate_ist(X86_TRAP_DB,	&debug,	DEBUG_STACK);

set_system_intr_gate_ist(X86_TRAP_BP,	&int3,	DEBUG_STACK);

...

...

...

#ifdef	CONFIG_X86_64

								memcpy(&nmi_idt_table,	&idt_table,	IDT_ENTRIES	*	16);

								set_nmi_gate(X86_TRAP_DB,	&debug);

								set_nmi_gate(X86_TRAP_BP,	&int3);

#endif

Here	we	copy		idt_table		to	the		nmi_dit_table		and	setup	exception	handlers	for	the		#DB		or		Debug	exception		and		#BR		or
	Breakpoint	exception	.	You	can	remember	that	we	already	set	these	interrupt	gates	in	the	previous	part,	so	why	do	we	need	to	setup	it
again?	We	setup	it	again	because	when	we	initialized	it	before	in	the		early_trap_init		function,	the		Task	State	Segment		was	not
ready	yet,	but	now	it	is	ready	after	the	call	of	the		cpu_init		function.

That's	all.	Soon	we	will	consider	all	handlers	of	these	interrupts/exceptions.

Conclusion

It	is	the	end	of	the	fourth	part	about	interrupts	and	interrupt	handling	in	the	Linux	kernel.	We	saw	the	initialization	of	the	Task	State
Segment	in	this	part	and	initialization	of	the	different	interrupt	handlers	as		Divide	Error	,		Page	Fault		exception	and	etc.	You	can
note	that	we	saw	just	initialization	stuff,	and	will	dive	into	details	about	handlers	for	these	exceptions.	In	the	next	part	we	will	start	to	do
it.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links
page	fault
Interrupt	Descriptor	Table
Tracing
cr2
RCU
thiscpu*	operations
kmemcheck
prefetchw
3DNow
CPU	caches
VFS
Linux	kernel	memory	management
Fix-Mapped	Addresses	and	ioremap
Extended	Industry	Standard	Architecture
INT	isntruction
INTO
BOUND
opcode
control	register
x87	FPU
MCE	exception

170

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://en.wikipedia.org/wiki/Task_state_segment
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://en.wikipedia.org/wiki/Tracing_%28software%29
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/?title=3DNow!
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Virtual_file_system
http://0xax.gitbooks.io/linux-insides/content/MM/index.html
http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture
https://en.wikipedia.org/wiki/INT_%28x86_instruction%29
http://x86.renejeschke.de/html/file_module_x86_id_142.html
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/?title=Opcode
https://en.wikipedia.org/wiki/Control_register#CR0
https://en.wikipedia.org/wiki/X86_instruction_listings#x87_floating-point_instructions
https://en.wikipedia.org/wiki/Machine-check_exception

SIMD
cpumasks	and	bitmaps
NX
Task	State	Segment
Previous	part

171

https://en.wikipedia.org/?title=SIMD
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Task_state_segment
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

Interrupts	and	Interrupt	Handling.	Part	5.

Implementation	of	exception	handlers

This	is	the	fifth	part	about	an	interrupts	and	exceptions	handling	in	the	Linux	kernel	and	in	the	previous	part	we	stopped	on	the	setting
of	interrupt	gates	to	the	Interrupt	descriptor	Table.	We	did	it	in	the		trap_init		function	from	the	arch/x86/kernel/traps.c	source	code
file.	We	saw	only	setting	of	these	interrupt	gates	in	the	previous	part	and	in	the	current	part	we	will	see	implementation	of	the	exception
handlers	for	these	gates.	The	preparation	before	an	exception	handler	will	be	executed	is	in	the	arch/x86/entry/entry_64.S	assembly	file
and	occurs	in	the	idtentry	macro	that	defines	exceptions	entry	points:

idtentry	divide_error																				do_divide_error																			has_error_code=0

idtentry	overflow																								do_overflow																							has_error_code=0

idtentry	invalid_op																								do_invalid_op																			has_error_code=0

idtentry	bounds																												do_bounds																							has_error_code=0

idtentry	device_not_available												do_device_not_available											has_error_code=0

idtentry	coprocessor_segment_overrun				do_coprocessor_segment_overrun	has_error_code=0

idtentry	invalid_TSS																				do_invalid_TSS																			has_error_code=1

idtentry	segment_not_present												do_segment_not_present											has_error_code=1

idtentry	spurious_interrupt_bug												do_spurious_interrupt_bug							has_error_code=0

idtentry	coprocessor_error																do_coprocessor_error											has_error_code=0

idtentry	alignment_check																do_alignment_check															has_error_code=1

idtentry	simd_coprocessor_error												do_simd_coprocessor_error							has_error_code=0

The		idtentry		macro	does	following	preparation	before	an	actual	exception	handler	(do_divide_error		for	the		divide_error	,
	do_overflow		for	the		overflow		and	etc.)	will	get	control.	In	another	words	the		idtentry		macro	allocates	place	for	the	registers
(pt_regs	structure)	on	the	stack,	pushes	dummy	error	code	for	the	stack	consistency	if	an	interrupt/exception	has	no	error	code,	checks
the	segment	selector	in	the		cs		segment	register	and	switches	depends	on	the	previous	state(userspace	or	kernelspace).	After	all	of
these	preparations	it	makes	a	call	of	an	actual	interrupt/exception	handler:

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

				...

				...

				...

				call				\do_sym

				...

				...

				...

END(\sym)

.endm

After	an	exception	handler	will	finish	its	work,	the		idtentry		macro	restores	stack	and	general	purpose	registers	of	an	interrupted	task
and	executes	iret	instruction:

ENTRY(paranoid_exit)

				...

				...

				...

				RESTORE_EXTRA_REGS

				RESTORE_C_REGS

				REMOVE_PT_GPREGS_FROM_STACK	8

				INTERRUPT_RETURN

END(paranoid_exit)

where		INTERRUPT_RETURN		is:

#define	INTERRUPT_RETURN				jmp	native_iret

...

172

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-4.html
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S#L820
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/uapi/asm/ptrace.h#L43
http://x86.renejeschke.de/html/file_module_x86_id_145.html

ENTRY(native_iret)

.global	native_irq_return_iret

native_irq_return_iret:

iretq

More	about	the		idtentry		macro	you	can	read	in	the	third	part	of	the	http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-
3.html	chapter.	Ok,	now	we	saw	the	preparation	before	an	exception	handler	will	be	executed	and	now	time	to	look	on	the	handlers.
First	of	all	let's	look	on	the	following	handlers:

divide_error
overflow
invalid_op
coprocessor_segment_overrun
invalid_TSS
segment_not_present
stack_segment
alignment_check

All	these	handlers	defined	in	the	arch/x86/kernel/traps.c	source	code	file	with	the		DO_ERROR		macro:

DO_ERROR(X86_TRAP_DE,					SIGFPE,		"divide	error",																divide_error)

DO_ERROR(X86_TRAP_OF,					SIGSEGV,	"overflow",																				overflow)

DO_ERROR(X86_TRAP_UD,					SIGILL,		"invalid	opcode",														invalid_op)

DO_ERROR(X86_TRAP_OLD_MF,	SIGFPE,		"coprocessor	segment	overrun",	coprocessor_segment_overrun)

DO_ERROR(X86_TRAP_TS,					SIGSEGV,	"invalid	TSS",																	invalid_TSS)

DO_ERROR(X86_TRAP_NP,					SIGBUS,		"segment	not	present",									segment_not_present)

DO_ERROR(X86_TRAP_SS,					SIGBUS,		"stack	segment",															stack_segment)

DO_ERROR(X86_TRAP_AC,					SIGBUS,		"alignment	check",													alignment_check)

As	we	can	see	the		DO_ERROR		macro	takes	4	parameters:

Vector	number	of	an	interrupt;
Signal	number	which	will	be	sent	to	the	interrupted	process;
String	which	describes	an	exception;
Exception	handler	entry	point.

This	macro	defined	in	the	same	source	code	file	and	expands	to	the	function	with	the		do_handler		name:

#define	DO_ERROR(trapnr,	signr,	str,	name)																														\

dotraplinkage	void	do_##name(struct	pt_regs	*regs,	long	error_code)					\

{																																																																							\

								do_error_trap(regs,	error_code,	str,	trapnr,	signr);												\

}

Note	on	the		##		tokens.	This	is	special	feature	-	GCC	macro	Concatenation	which	concatenates	two	given	strings.	For	example,	first
	DO_ERROR		in	our	example	will	expands	to	the:

dotraplinkage	void	do_divide_error(struct	pt_regs	*regs,	long	error_code)					\

{

				...

}

We	can	see	that	all	functions	which	are	generated	by	the		DO_ERROR		macro	just	make	a	call	of	the		do_error_trap		function	from	the
arch/x86/kernel/traps.c.	Let's	look	on	implementation	of	the		do_error_trap		function.

Trap	handlers

The		do_error_trap		function	starts	and	ends	from	the	two	following	functions:

173

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

enum	ctx_state	prev_state	=	exception_enter();

...

...

...

exception_exit(prev_state);

from	the	include/linux/context_tracking.h.	The	context	tracking	in	the	Linux	kernel	subsystem	which	provide	kernel	boundaries	probes
to	keep	track	of	the	transitions	between	level	contexts	with	two	basic	initial	contexts:		user		or		kernel	.	The		exception_enter	
function	checks	that	context	tracking	is	enabled.	After	this	if	it	is	enabled,	the		exception_enter		reads	previous	context	and	compares
it	with	the		CONTEXT_KERNEL	.	If	the	previous	context	is		user	,	we	call		context_tracking_exit		function	from	the
kernel/context_tracking.c	which	inform	the	context	tracking	subsystem	that	a	processor	is	exiting	user	mode	and	entering	the	kernel
mode:

if	(!context_tracking_is_enabled())

				return	0;

prev_ctx	=	this_cpu_read(context_tracking.state);

if	(prev_ctx	!=	CONTEXT_KERNEL)

				context_tracking_exit(prev_ctx);

return	prev_ctx;

If	previous	context	is	non		user	,	we	just	return	it.	The		pre_ctx		has		enum	ctx_state		type	which	defined	in	the
include/linux/context_tracking_state.h	and	looks	as:

enum	ctx_state	{

				CONTEXT_KERNEL	=	0,

				CONTEXT_USER,

				CONTEXT_GUEST,

}	state;

The	second	function	is		exception_exit		defined	in	the	same	include/linux/context_tracking.h	file	and	checks	that	context	tracking	is
enabled	and	call	the		contert_tracking_enter		function	if	the	previous	context	was		user	:

static	inline	void	exception_exit(enum	ctx_state	prev_ctx)

{

				if	(context_tracking_is_enabled())	{

								if	(prev_ctx	!=	CONTEXT_KERNEL)

												context_tracking_enter(prev_ctx);

				}

}

The		context_tracking_enter		function	informs	the	context	tracking	subsystem	that	a	processor	is	going	to	enter	to	the	user	mode	from
the	kernel	mode.	We	can	see	the	following	code	between	the		exception_enter		and		exception_exit	:

if	(notify_die(DIE_TRAP,	str,	regs,	error_code,	trapnr,	signr)	!=

								NOTIFY_STOP)	{

				conditional_sti(regs);

				do_trap(trapnr,	signr,	str,	regs,	error_code,

								fill_trap_info(regs,	signr,	trapnr,	&info));

}

First	of	all	it	calls	the		notify_die		function	which	defined	in	the	kernel/notifier.c.	To	get	notified	for	kernel	panic,	kernel	oops,	Non-
Maskable	Interrupt	or	other	events	the	caller	needs	to	insert	itself	in	the		notify_die		chain	and	the		notify_die		function	does	it.	The
Linux	kernel	has	special	mechanism	that	allows	kernel	to	ask	when	something	happens	and	this	mechanism	called		notifiers		or
	notifier	chains	.	This	mechanism	used	for	example	for	the		USB		hotplug	events	(look	on	the	drivers/usb/core/notify.c),	for	the
memory	hotplug	(look	on	the	include/linux/memory.h,	the		hotplug_memory_notifier		macro	and	etc...),	system	reboots	and	etc.	A
notifier	chain	is	thus	a	simple,	singly-linked	list.	When	a	Linux	kernel	subsystem	wants	to	be	notified	of	specific	events,	it	fills	out	a

174

https://github.com/torvalds/linux/tree/master/include/linux/context_tracking.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/context_tracking.c
https://github.com/torvalds/linux/tree/master/include/linux/context_tracking_state.h
https://github.com/torvalds/linux/tree/master/include/linux/context_tracking.h
https://github.com/torvalds/linux/tree/master/kernel/notifier.c
https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://github.com/torvalds/linux/tree/master/drivers/usb/core/notify.c
https://en.wikipedia.org/wiki/Hot_swapping
https://github.com/torvalds/linux/tree/master/include/linux/memory.h

special		notifier_block		structure	and	passes	it	to	the		notifier_chain_register		function.	An	event	can	be	sent	with	the	call	of	the
	notifier_call_chain		function.	First	of	all	the		notify_die		function	fills		die_args		structure	with	the	trap	number,	trap	string,
registers	and	other	values:

struct	die_args	args	=	{

							.regs			=	regs,

							.str				=	str,

							.err				=	err,

							.trapnr	=	trap,

							.signr		=	sig,

}

and	returns	the	result	of	the		atomic_notifier_call_chain		function	with	the		die_chain	:

static	ATOMIC_NOTIFIER_HEAD(die_chain);

return	atomic_notifier_call_chain(&die_chain,	val,	&args);

which	just	expands	to	the		atomic_notifier_head		structure	that	contains	lock	and		notifier_block	:

struct	atomic_notifier_head	{

								spinlock_t	lock;

								struct	notifier_block	__rcu	*head;

};

The		atomic_notifier_call_chain		function	calls	each	function	in	a	notifier	chain	in	turn	and	returns	the	value	of	the	last	notifier
function	called.	If	the		notify_die		in	the		do_error_trap		does	not	return		NOTIFY_STOP		we	execute		conditional_sti		function	from
the	arch/x86/kernel/traps.c	that	checks	the	value	of	the	interrupt	flag	and	enables	interrupt	depends	on	it:

static	inline	void	conditional_sti(struct	pt_regs	*regs)

{

								if	(regs->flags	&	X86_EFLAGS_IF)

																local_irq_enable();

}

more	about		local_irq_enable		macro	you	can	read	in	the	second	part	of	this	chapter.	The	next	and	last	call	in	the		do_error_trap		is
the		do_trap		function.	First	of	all	the		do_trap		function	defined	the		tsk		variable	which	has		task_struct		type	and	represents	the
current	interrupted	process.	After	the	definition	of	the		tsk	,	we	can	see	the	call	of	the		do_trap_no_signal		function:

struct	task_struct	*tsk	=	current;

if	(!do_trap_no_signal(tsk,	trapnr,	str,	regs,	error_code))

				return;

The		do_trap_no_signal		function	makes	two	checks:

Did	we	come	from	the	Virtual	8086	mode;
Did	we	come	from	the	kernelspace.

if	(v8086_mode(regs))	{

				...

}

if	(!user_mode(regs))	{

				...

}

return	-1;

We	will	not	consider	first	case	because	the	long	mode	does	not	support	the	Virtual	8086	mode.	In	the	second	case	we	invoke
	fixup_exception		function	which	will	try	to	recover	a	fault	and		die		if	we	can't:

175

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Interrupt_flag
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-2.html
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Virtual_8086_mode

if	(!fixup_exception(regs))	{

				tsk->thread.error_code	=	error_code;

				tsk->thread.trap_nr	=	trapnr;

				die(str,	regs,	error_code);

}

The		die		function	defined	in	the	arch/x86/kernel/dumpstack.c	source	code	file,	prints	useful	information	about	stack,	registers,	kernel
modules	and	caused	kernel	oops.	If	we	came	from	the	userspace	the		do_trap_no_signal		function	will	return		-1		and	the	execution	of
the		do_trap		function	will	continue.	If	we	passed	through	the		do_trap_no_signal		function	and	did	not	exit	from	the		do_trap		after
this,	it	means	that	previous	context	was	-		user	.	Most	exceptions	caused	by	the	processor	are	interpreted	by	Linux	as	error	conditions,
for	example	division	by	zero,	invalid	opcode	and	etc.	When	an	exception	occurs	the	Linux	kernel	sends	a	signal	to	the	interrupted
process	that	caused	the	exception	to	notify	it	of	an	incorrect	condition.	So,	in	the		do_trap		function	we	need	to	send	a	signal	with	the
given	number	(SIGFPE		for	the	divide	error,		SIGILL		for	the	overflow	exception	and	etc...).	First	of	all	we	save	error	code	and	vector
number	in	the	current	interrupts	process	with	the	filling		thread.error_code		and		thread_trap_nr	:

tsk->thread.error_code	=	error_code;

tsk->thread.trap_nr	=	trapnr;

After	this	we	make	a	check	do	we	need	to	print	information	about	unhandled	signals	for	the	interrupted	process.	We	check	that
	show_unhandled_signals		variable	is	set,	that		unhandled_signal		function	from	the	kernel/signal.c	will	return	unhandled	signal(s)	and
printk	rate	limit:

#ifdef	CONFIG_X86_64

				if	(show_unhandled_signals	&&	unhandled_signal(tsk,	signr)	&&

								printk_ratelimit())	{

								pr_info("%s[%d]	trap	%s	ip:%lx	sp:%lx	error:%lx",

												tsk->comm,	tsk->pid,	str,

												regs->ip,	regs->sp,	error_code);

								print_vma_addr("	in	",	regs->ip);

								pr_cont("\n");

				}

#endif

And	send	a	given	signal	to	interrupted	process:

force_sig_info(signr,	info	?:	SEND_SIG_PRIV,	tsk);

This	is	the	end	of	the		do_trap	.	We	just	saw	generic	implementation	for	eight	different	exceptions	which	are	defined	with	the
	DO_ERROR		macro.	Now	let's	look	on	another	exception	handlers.

Double	fault

The	next	exception	is		#DF		or		Double	fault	.	This	exception	occurs	when	the	processor	detected	a	second	exception	while	calling	an
exception	handler	for	a	prior	exception.	We	set	the	trap	gate	for	this	exception	in	the	previous	part:

set_intr_gate_ist(X86_TRAP_DF,	&double_fault,	DOUBLEFAULT_STACK);

Note	that	this	exception	runs	on	the		DOUBLEFAULT_STACK		Interrupt	Stack	Table	which	has	index	-		1	:

#define	DOUBLEFAULT_STACK	1

The		double_fault		is	handler	for	this	exception	and	defined	in	the	arch/x86/kernel/traps.c.	The		double_fault		handler	starts	from	the
definition	of	two	variables:	string	that	describes	exception	and	interrupted	process,	as	other	exception	handlers:

static	const	char	str[]	=	"double	fault";

176

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/dumpstack.c
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/signal.c
https://en.wikipedia.org/wiki/Printk
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

struct	task_struct	*tsk	=	current;

The	handler	of	the	double	fault	exception	split	on	two	parts.	The	first	part	is	the	check	which	checks	that	a	fault	is	a		non-IST		fault	on
the		espfix64		stack.	Actually	the		iret		instruction	restores	only	the	bottom		16		bits	when	returning	to	a		16		bit	segment.	The
	espfix		feature	solves	this	problem.	So	if	the		non-IST		fault	on	the	espfix64	stack	we	modify	the	stack	to	make	it	look	like		General
Protection	Fault	:

struct	pt_regs	*normal_regs	=	task_pt_regs(current);

memmove(&normal_regs->ip,	(void	*)regs->sp,	5*8);

ormal_regs->orig_ax	=	0;

regs->ip	=	(unsigned	long)general_protection;

regs->sp	=	(unsigned	long)&normal_regs->orig_ax;

return;

In	the	second	case	we	do	almost	the	same	that	we	did	in	the	previous	exception	handlers.	The	first	is	the	call	of	the		ist_enter	
function	that	discards	previous	context,		user		in	our	case:

ist_enter(regs);

And	after	this	we	fill	the	interrupted	process	with	the	vector	number	of	the		Double	fault		exception	and	error	code	as	we	did	it	in	the
previous	handlers:

tsk->thread.error_code	=	error_code;

tsk->thread.trap_nr	=	X86_TRAP_DF;

Next	we	print	useful	information	about	the	double	fault	(PID	number,	registers	content):

#ifdef	CONFIG_DOUBLEFAULT

				df_debug(regs,	error_code);

#endif

And	die:

				for	(;;)

								die(str,	regs,	error_code);

That's	all.

Device	not	available	exception	handler
The	next	exception	is	the		#NM		or		Device	not	available	.	The		Device	not	available		exception	can	occur	depending	on	these
things:

The	processor	executed	an	x87	FPU	floating-point	instruction	while	the	EM	flag	in	control	register		cr0		was	set;
The	processor	executed	a		wait		or		fwait		instruction	while	the		MP		and		TS		flags	of	register		cr0		were	set;
The	processor	executed	an	x87	FPU,	MMX	or	SSE	instruction	while	the		TS		flag	in	control	register		cr0		was	set	and	the		EM	
flag	is	clear.

The	handler	of	the		Device	not	available		exception	is	the		do_device_not_available		function	and	it	defined	in	the
arch/x86/kernel/traps.c	source	code	file	too.	It	starts	and	ends	from	the	getting	of	the	previous	context,	as	other	traps	which	we	saw	in
the	beginning	of	this	part:

enum	ctx_state	prev_state;

prev_state	=	exception_enter();

...

177

https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/MMX_%28instruction_set%29
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

...

...

exception_exit(prev_state);

In	the	next	step	we	check	that		FPU		is	not	eager:

BUG_ON(use_eager_fpu());

When	we	switch	into	a	task	or	interrupt	we	may	avoid	loading	the		FPU		state.	If	a	task	will	use	it,	we	catch		Device	not	Available
exception		exception.	If	we	loading	the		FPU		state	during	task	switching,	the		FPU		is	eager.	In	the	next	step	we	check		cr0		control
register	on	the		EM		flag	which	can	show	us	is		x87		floating	point	unit	present	(flag	clear)	or	not	(flag	set):

#ifdef	CONFIG_MATH_EMULATION

				if	(read_cr0()	&	X86_CR0_EM)	{

								struct	math_emu_info	info	=	{	};

								conditional_sti(regs);

								info.regs	=	regs;

								math_emulate(&info);

								exception_exit(prev_state);

								return;

				}

#endif

If	the		x87		floating	point	unit	not	presented,	we	enable	interrupts	with	the		conditional_sti	,	fill	the		math_emu_info		(defined	in	the
arch/x86/include/asm/math_emu.h)	structure	with	the	registers	of	an	interrupt	task	and	call		math_emulate		function	from	the
arch/x86/math-emu/fpu_entry.c.	As	you	can	understand	from	function's	name,	it	emulates		X87	FPU		unit	(more	about	the		x87		we	will
know	in	the	special	chapter).	In	other	way,	if		X86_CR0_EM		flag	is	clear	which	means	that		x87	FPU		unit	is	presented,	we	call	the
	fpu__restore		function	from	the	arch/x86/kernel/fpu/core.c	which	copies	the		FPU		registers	from	the		fpustate		to	the	live	hardware
registers.	After	this		FPU		instructions	can	be	used:

fpu__restore(¤t->thread.fpu);

General	protection	fault	exception	handler
The	next	exception	is	the		#GP		or		General	protection	fault	.	This	exception	occurs	when	the	processor	detected	one	of	a	class	of
protection	violations	called		general-protection	violations	.	It	can	be:

Exceeding	the	segment	limit	when	accessing	the		cs	,		ds	,		es	,		fs		or		gs		segments;
Loading	the		ss	,		ds	,		es	,		fs		or		gs		register	with	a	segment	selector	for	a	system	segment.;
Violating	any	of	the	privilege	rules;
and	other...

The	exception	handler	for	this	exception	is	the		do_general_protection		from	the	arch/x86/kernel/traps.c.	The
	do_general_protection		function	starts	and	ends	as	other	exception	handlers	from	the	getting	of	the	previous	context:

prev_state	=	exception_enter();

...

exception_exit(prev_state);

After	this	we	enable	interrupts	if	they	were	disabled	and	check	that	we	came	from	the	Virtual	8086	mode:

conditional_sti(regs);

if	(v8086_mode(regs))	{

				local_irq_enable();

				handle_vm86_fault((struct	kernel_vm86_regs	*)	regs,	error_code);

178

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/math_emu.h
https://github.com/torvalds/linux/tree/master/arch/x86/math-emu/fpu_entry.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/fpu/core.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Virtual_8086_mode

				goto	exit;

}

As	long	mode	does	not	support	this	mode,	we	will	not	consider	exception	handling	for	this	case.	In	the	next	step	check	that	previous
mode	was	kernel	mode	and	try	to	fix	the	trap.	If	we	can't	fix	the	current	general	protection	fault	exception	we	fill	the	interrupted	process
with	the	vector	number	and	error	code	of	the	exception	and	add	it	to	the		notify_die		chain:

if	(!user_mode(regs))	{

				if	(fixup_exception(regs))

								goto	exit;

				tsk->thread.error_code	=	error_code;

				tsk->thread.trap_nr	=	X86_TRAP_GP;

				if	(notify_die(DIE_GPF,	"general	protection	fault",	regs,	error_code,

															X86_TRAP_GP,	SIGSEGV)	!=	NOTIFY_STOP)

								die("general	protection	fault",	regs,	error_code);

				goto	exit;

}

If	we	can	fix	exception	we	go	to	the		exit		label	which	exits	from	exception	state:

exit:

				exception_exit(prev_state);

If	we	came	from	user	mode	we	send		SIGSEGV		signal	to	the	interrupted	process	from	user	mode	as	we	did	it	in	the		do_trap		function:

if	(show_unhandled_signals	&&	unhandled_signal(tsk,	SIGSEGV)	&&

								printk_ratelimit())	{

				pr_info("%s[%d]	general	protection	ip:%lx	sp:%lx	error:%lx",

								tsk->comm,	task_pid_nr(tsk),

								regs->ip,	regs->sp,	error_code);

				print_vma_addr("	in	",	regs->ip);

				pr_cont("\n");

}

force_sig_info(SIGSEGV,	SEND_SIG_PRIV,	tsk);

That's	all.

Conclusion

It	is	the	end	of	the	fifth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	saw	implementation	of	some	interrupt	handlers	in
this	part.	In	the	next	part	we	will	continue	to	dive	into	interrupt	and	exception	handlers	and	will	see	handler	for	the	Non-Maskable
Interrupts,	handling	of	the	math	coprocessor	and	SIMD	coprocessor	exceptions	and	many	many	more.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links

Interrupt	descriptor	Table
iret	instruction
GCC	macro	Concatenation
kernel	panic
kernel	oops
Non-Maskable	Interrupt

179

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://x86.renejeschke.de/html/file_module_x86_id_145.html
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation
https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Non-maskable_interrupt

hotplug
interrupt	flag
long	mode
signal
printk
coprocessor
SIMD
Interrupt	Stack	Table
PID
x87	FPU
control	register
MMX
Previous	part

180

https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/MMX_%28instruction_set%29
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-4.html

Interrupts	and	Interrupt	Handling.	Part	6.

Non-maskable	interrupt	handler

It	is	sixth	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in	the	previous	part	we	saw	implementation	of
some	exception	handlers	for	the	General	Protection	Fault	exception,	divide	exception,	invalid	opcode	exceptions	and	etc.	As	I	wrote	in
the	previous	part	we	will	see	implementations	of	the	rest	exceptions	in	this	part.	We	will	see	implementation	of	the	following	handlers:

Non-Maskable	interrupt;
BOUND	Range	Exceeded	Exception;
Coprocessor	exception;
SIMD	coprocessor	exception.

in	this	part.	So,	let's	start.

Non-Maskable	interrupt	handling

A	Non-Maskable	interrupt	is	a	hardware	interrupt	that	cannot	be	ignored	by	standard	masking	techniques.	In	a	general	way,	a	non-
maskable	interrupt	can	be	generated	in	either	of	two	ways:

External	hardware	asserts	the	non-maskable	interrupt	pin	on	the	CPU.
The	processor	receives	a	message	on	the	system	bus	or	the	APIC	serial	bus	with	a	delivery	mode		NMI	.

When	the	processor	receives	a		NMI		from	one	of	these	sources,	the	processor	handles	it	immediately	by	calling	the		NMI		handler
pointed	to	by	interrupt	vector	which	has	number		2		(see	table	in	the	first	part).	We	already	filled	the	Interrupt	Descriptor	Table	with	the
vector	number,	address	of	the		nmi		interrupt	handler	and		NMI_STACK		Interrupt	Stack	Table	entry:

set_intr_gate_ist(X86_TRAP_NMI,	&nmi,	NMI_STACK);

in	the		trap_init		function	which	defined	in	the	arch/x86/kernel/traps.c	source	code	file.	In	the	previous	parts	we	saw	that	entry	points
of	the	all	interrupt	handlers	are	defined	with	the:

.macro	idtentry	sym	do_sym	has_error_code:req	paranoid=0	shift_ist=-1

ENTRY(\sym)

...

...

...

END(\sym)

.endm

macro	from	the	arch/x86/entry/entry_64.S	assembly	source	code	file.	But	the	handler	of	the		Non-Maskable		interrupts	is	not	defined
with	this	macro.	It	has	own	entry	point:

ENTRY(nmi)

...

...

...

END(nmi)

in	the	same	arch/x86/entry/entry_64.S	assembly	file.	Lets	dive	into	it	and	will	try	to	understand	how		Non-Maskable		interrupt	handler
works.	The		nmi		handlers	starts	from	the	call	of	the:

PARAVIRT_ADJUST_EXCEPTION_FRAME

181

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Non-maskable_interrupt
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/CPU_socket
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://en.wikipedia.org/wiki/Interrupt_vector_table
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/x86/kernel-stacks
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S

macro	but	we	will	not	dive	into	details	about	it	in	this	part,	because	this	macro	related	to	the	Paravirtualization	stuff	which	we	will	see
in	another	chapter.	After	this	save	the	content	of	the		rdx		register	on	the	stack:

pushq				%rdx

And	allocated	check	that		cs		was	not	the	kernel	segment	when	an	non-maskable	interrupt	occurs:

cmpl				$__KERNEL_CS,	16(%rsp)

jne				first_nmi

The		__KERNEL_CS		macro	defined	in	the	arch/x86/include/asm/segment.h	and	represented	second	descriptor	in	the	Global	Descriptor
Table:

#define	GDT_ENTRY_KERNEL_CS				2

#define	__KERNEL_CS				(GDT_ENTRY_KERNEL_CS*8)

more	about		GDT		you	can	read	in	the	second	part	of	the	Linux	kernel	booting	process	chapter.	If		cs		is	not	kernel	segment,	it	means
that	it	is	not	nested		NMI		and	we	jump	on	the		first_nmi		label.	Let's	consider	this	case.	First	of	all	we	put	address	of	the	current	stack
pointer	to	the		rdx		and	pushes		1		to	the	stack	in	the		first_nmi		label:

first_nmi:

				movq				(%rsp),	%rdx

				pushq				$1

Why	do	we	push		1		on	the	stack?	As	the	comment	says:		We	allow	breakpoints	in	NMIs	.	On	the	x86_64,	like	other	architectures,	the
CPU	will	not	execute	another		NMI		until	the	first		NMI		is	completed.	A		NMI		interrupt	finished	with	the	iret	instruction	like	other
interrupts	and	exceptions	do	it.	If	the		NMI		handler	triggers	either	a	page	fault	or	breakpoint	or	another	exception	which	are	use		iret	
instruction	too.	If	this	happens	while	in		NMI		context,	the	CPU	will	leave		NMI		context	and	a	new		NMI		may	come	in.	The		iret		used
to	return	from	those	exceptions	will	re-enable		NMIs		and	we	will	get	nested	non-maskable	interrupts.	The	problem	the		NMI		handler
will	not	return	to	the	state	that	it	was,	when	the	exception	triggered,	but	instead	it	will	return	to	a	state	that	will	allow	new		NMIs		to
preempt	the	running		NMI		handler.	If	another		NMI		comes	in	before	the	first	NMI	handler	is	complete,	the	new	NMI	will	write	all	over
the	preempted		NMIs		stack.	We	can	have	nested		NMIs		where	the	next		NMI		is	using	the	top	of	the	stack	of	the	previous		NMI	.	It
means	that	we	cannot	execute	it	because	a	nested	non-maskable	interrupt	will	corrupt	stack	of	a	previous	non-maskable	interrupt.	That's
why	we	have	allocated	space	on	the	stack	for	temporary	variable.	We	will	check	this	variable	that	it	was	set	when	a	previous		NMI		is
executing	and	clear	if	it	is	not	nested		NMI	.	We	push		1		here	to	the	previously	allocated	space	on	the	stack	to	denote	that	a		non-
maskable		interrupt	executed	currently.	Remember	that	when	and		NMI		or	another	exception	occurs	we	have	the	following	stack	frame:

+------------------------+

|									SS													|

|									RSP												|

|								RFLAGS										|

|									CS													|

|									RIP												|

+------------------------+

and	also	an	error	code	if	an	exception	has	it.	So,	after	all	of	these	manipulations	our	stack	frame	will	look	like	this:

+------------------------+

|									SS													|

|									RSP												|

|								RFLAGS										|

|									CS													|

|									RIP												|

|									RDX												|

|										1													|

+------------------------+

182

https://en.wikipedia.org/wiki/Paravirtualization
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/segment.h
https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
https://en.wikipedia.org/wiki/X86-64
http://faydoc.tripod.com/cpu/iret.htm
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Breakpoint
https://en.wikipedia.org/wiki/Call_stack

In	the	next	step	we	allocate	yet	another		40		bytes	on	the	stack:

subq				$(5*8),	%rsp

and	pushes	the	copy	of	the	original	stack	frame	after	the	allocated	space:

.rept	5

pushq				11*8(%rsp)

.endr

with	the	.rept	assembly	directive.	We	need	in	the	copy	of	the	original	stack	frame.	Generally	we	need	in	two	copies	of	the	interrupt
stack.	First	is		copied		interrupts	stack:		saved		stack	frame	and		copied		stack	frame.	Now	we	pushes	original	stack	frame	to	the
	saved		stack	frame	which	locates	after	the	just	allocated		40		bytes	(copied		stack	frame).	This	stack	frame	is	used	to	fixup	the
	copied		stack	frame	that	a	nested	NMI	may	change.	The	second	-		copied		stack	frame	modified	by	any	nested		NMIs		to	let	the	first
	NMI		know	that	we	triggered	a	second		NMI		and	we	should	repeat	the	first		NMI		handler.	Ok,	we	have	made	first	copy	of	the	original
stack	frame,	now	time	to	make	second	copy:

addq				$(10*8),	%rsp

.rept	5

pushq				-6*8(%rsp)

.endr

subq				$(5*8),	%rsp

After	all	of	these	manipulations	our	stack	frame	will	be	like	this:

+-------------------------+

|	original	SS													|

|	original	Return	RSP					|

|	original	RFLAGS									|

|	original	CS													|

|	original	RIP												|

+-------------------------+

|	temp	storage	for	rdx				|

+-------------------------+

|	NMI	executing	variable		|

+-------------------------+

|	copied	SS															|

|	copied	Return	RSP							|

|	copied	RFLAGS											|

|	copied	CS															|

|	copied	RIP														|

+-------------------------+

|	Saved	SS																|

|	Saved	Return	RSP								|

|	Saved	RFLAGS												|

|	Saved	CS																|

|	Saved	RIP															|

+-------------------------+

After	this	we	push	dummy	error	code	on	the	stack	as	we	did	it	already	in	the	previous	exception	handlers	and	allocate	space	for	the
general	purpose	registers	on	the	stack:

pushq				$-1

ALLOC_PT_GPREGS_ON_STACK

We	already	saw	implementation	of	the		ALLOC_PT_GREGS_ON_STACK		macro	in	the	third	part	of	the	interrupts	chapter.	This	macro	defined
in	the	arch/x86/entry/calling.h	and	yet	another	allocates		120		bytes	on	stack	for	the	general	purpose	registers,	from	the		rdi		to	the
	r15	:

.macro	ALLOC_PT_GPREGS_ON_STACK	addskip=0

183

http://tigcc.ticalc.org/doc/gnuasm.html#SEC116
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h

addq				$-(15*8+\addskip),	%rsp

.endm

After	space	allocation	for	the	general	registers	we	can	see	call	of	the		paranoid_entry	:

call				paranoid_entry

We	can	remember	from	the	previous	parts	this	label.	It	pushes	general	purpose	registers	on	the	stack,	reads		MSR_GS_BASE		Model
Specific	register	and	checks	its	value.	If	the	value	of	the		MSR_GS_BASE		is	negative,	we	came	from	the	kernel	mode	and	just	return	from
the		paranoid_entry	,	in	other	way	it	means	that	we	came	from	the	usermode	and	need	to	execute		swapgs		instruction	which	will
change	user		gs		with	the	kernel		gs	:

ENTRY(paranoid_entry)

				cld

				SAVE_C_REGS	8

				SAVE_EXTRA_REGS	8

				movl				$1,	%ebx

				movl				$MSR_GS_BASE,	%ecx

				rdmsr

				testl				%edx,	%edx

				js				1f

				SWAPGS

				xorl				%ebx,	%ebx

1:				ret

END(paranoid_entry)

Note	that	after	the		swapgs		instruction	we	zeroed	the		ebx		register.	Next	time	we	will	check	content	of	this	register	and	if	we	executed
	swapgs		than		ebx		must	contain		0		and		1		in	other	way.	In	the	next	step	we	store	value	of	the		cr2		control	register	to	the		r12	
register,	because	the		NMI		handler	can	cause		page	fault		and	corrupt	the	value	of	this	control	register:

movq				%cr2,	%r12

Now	time	to	call	actual		NMI		handler.	We	push	the	address	of	the		pt_regs		to	the		rdi	,	error	code	to	the		rsi		and	call	the		do_nmi	
handler:

movq				%rsp,	%rdi

movq				$-1,	%rsi

call				do_nmi

We	will	back	to	the		do_nmi		little	later	in	this	part,	but	now	let's	look	what	occurs	after	the		do_nmi		will	finish	its	execution.	After	the
	do_nmi		handler	will	be	finished	we	check	the		cr2		register,	because	we	can	got	page	fault	during		do_nmi		performed	and	if	we	got	it
we	restore	original		cr2	,	in	other	way	we	jump	on	the	label		1	.	After	this	we	test	content	of	the		ebx		register	(remember	it	must
contain		0		if	we	have	used		swapgs		instruction	and		1		if	we	didn't	use	it)	and	execute		SWAPGS_UNSAFE_STACK		if	it	contains		1		or
jump	to	the		nmi_restore		label.	The		SWAPGS_UNSAFE_STACK		macro	just	expands	to	the		swapgs		instruction.	In	the		nmi_restore		label
we	restore	general	purpose	registers,	clear	allocated	space	on	the	stack	for	this	registers,	clear	our	temporary	variable	and	exit	from	the
interrupt	handler	with	the		INTERRUPT_RETURN		macro:

				movq				%cr2,	%rcx

				cmpq				%rcx,	%r12

				je				1f

				movq				%r12,	%cr2

1:

				testl				%ebx,	%ebx

				jnz				nmi_restore

nmi_swapgs:

				SWAPGS_UNSAFE_STACK

nmi_restore:

				RESTORE_EXTRA_REGS

				RESTORE_C_REGS

				/*	Pop	the	extra	iret	frame	at	once	*/

184

https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Control_register

				REMOVE_PT_GPREGS_FROM_STACK	6*8

				/*	Clear	the	NMI	executing	stack	variable	*/

				movq				$0,	5*8(%rsp)

				INTERRUPT_RETURN

where		INTERRUPT_RETURN		is	defined	in	the	arch/x86/include/irqflags.h	and	just	expands	to	the		iret		instruction.	That's	all.

Now	let's	consider	case	when	another		NMI		interrupt	occurred	when	previous		NMI		interrupt	didn't	finish	its	execution.	You	can
remember	from	the	beginning	of	this	part	that	we've	made	a	check	that	we	came	from	userspace	and	jump	on	the		first_nmi		in	this
case:

cmpl				$__KERNEL_CS,	16(%rsp)

jne				first_nmi

Note	that	in	this	case	it	is	first		NMI		every	time,	because	if	the	first		NMI		catched	page	fault,	breakpoint	or	another	exception	it	will	be
executed	in	the	kernel	mode.	If	we	didn't	come	from	userspace,	first	of	all	we	test	our	temporary	variable:

cmpl				$1,	-8(%rsp)

je				nested_nmi

and	if	it	is	set	to		1		we	jump	to	the		nested_nmi		label.	If	it	is	not		1	,	we	test	the		IST		stack.	In	the	case	of	nested		NMIs		we	check
that	we	are	above	the		repeat_nmi	.	In	this	case	we	ignore	it,	in	other	way	we	check	that	we	above	than		end_repeat_nmi		and	jump	on
the		nested_nmi_out		label.

Now	let's	look	on	the		do_nmi		exception	handler.	This	function	defined	in	the	arch/x86/kernel/nmi.c	source	code	file	and	takes	two
parameters:

address	of	the		pt_regs	;
error	code.

as	all	exception	handlers.	The		do_nmi		starts	from	the	call	of	the		nmi_nesting_preprocess		function	and	ends	with	the	call	of	the
	nmi_nesting_postprocess	.	The		nmi_nesting_preprocess		function	checks	that	we	likely	do	not	work	with	the	debug	stack	and	if	we
on	the	debug	stack	set	the		update_debug_stack		per-cpu	variable	to		1		and	call	the		debug_stack_set_zero		function	from	the
arch/x86/kernel/cpu/common.c.	This	function	increases	the		debug_stack_use_ctr		per-cpu	variable	and	loads	new		Interrupt
Descriptor	Table	:

static	inline	void	nmi_nesting_preprocess(struct	pt_regs	*regs)

{

								if	(unlikely(is_debug_stack(regs->sp)))	{

																debug_stack_set_zero();

																this_cpu_write(update_debug_stack,	1);

								}

}

The		nmi_nesting_postprocess		function	checks	the		update_debug_stack		per-cpu	variable	which	we	set	in	the
	nmi_nesting_preprocess		and	resets	debug	stack	or	in	another	words	it	loads	origin		Interrupt	Descriptor	Table	.	After	the	call	of
the		nmi_nesting_preprocess		function,	we	can	see	the	call	of	the		nmi_enter		in	the		do_nmi	.	The		nmi_enter		increases
	lockdep_recursion		field	of	the	interrupted	process,	update	preempt	counter	and	informs	the	RCU	subsystem	about		NMI	.	There	is
also		nmi_exit		function	that	does	the	same	stuff	as		nmi_enter	,	but	vice-versa.	After	the		nmi_enter		we	increase		__nmi_count		in
the		irq_stat		structure	and	call	the		default_do_nmi		function.	First	of	all	in	the		default_do_nmi		we	check	the	address	of	the
previous	nmi	and	update	address	of	the	last	nmi	to	the	actual:

if	(regs->ip	==	__this_cpu_read(last_nmi_rip))

				b2b	=	true;

else

				__this_cpu_write(swallow_nmi,	false);

__this_cpu_write(last_nmi_rip,	regs->ip);

185

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/irqflags.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/nmi.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/cpu/common.c
https://en.wikipedia.org/wiki/Read-copy-update

After	this	first	of	all	we	need	to	handle	CPU-specific		NMIs	:

handled	=	nmi_handle(NMI_LOCAL,	regs,	b2b);

__this_cpu_add(nmi_stats.normal,	handled);

And	then	non-specific		NMIs		depends	on	its	reason:

reason	=	x86_platform.get_nmi_reason();

if	(reason	&	NMI_REASON_MASK)	{

				if	(reason	&	NMI_REASON_SERR)

								pci_serr_error(reason,	regs);

				else	if	(reason	&	NMI_REASON_IOCHK)

								io_check_error(reason,	regs);

				__this_cpu_add(nmi_stats.external,	1);

				return;

}

That's	all.

Range	Exceeded	Exception

The	next	exception	is	the		BOUND		range	exceeded	exception.	The		BOUND		instruction	determines	if	the	first	operand	(array	index)	is
within	the	bounds	of	an	array	specified	the	second	operand	(bounds	operand).	If	the	index	is	not	within	bounds,	a		BOUND		range
exceeded	exception	or		#BR		is	occurred.	The	handler	of	the		#BR		exception	is	the		do_bounds		function	that	defined	in	the
arch/x86/kernel/traps.c.	The		do_bounds		handler	starts	with	the	call	of	the		exception_enter		function	and	ends	with	the	call	of	the
	exception_exit	:

prev_state	=	exception_enter();

if	(notify_die(DIE_TRAP,	"bounds",	regs,	error_code,

															X86_TRAP_BR,	SIGSEGV)	==	NOTIFY_STOP)

				goto	exit;

...

...

...

exception_exit(prev_state);

return;

After	we	have	got	the	state	of	the	previous	context,	we	add	the	exception	to	the		notify_die		chain	and	if	it	will	return		NOTIFY_STOP	
we	return	from	the	exception.	More	about	notify	chains	and	the		context	tracking		functions	you	can	read	in	the	previous	part.	In	the
next	step	we	enable	interrupts	if	they	were	disabled	with	the		contidional_sti		function	that	checks		IF		flag	and	call	the
	local_irq_enable		depends	on	its	value:

conditional_sti(regs);

if	(!user_mode(regs))

				die("bounds",	regs,	error_code);

and	check	that	if	we	didn't	came	from	user	mode	we	send		SIGSEGV		signal	with	the		die		function.	After	this	we	check	is	MPX	enabled
or	not,	and	if	this	feature	is	disabled	we	jump	on	the		exit_trap		label:

if	(!cpu_feature_enabled(X86_FEATURE_MPX))	{

				goto	exit_trap;

}

where	we	execute	`do_trap`	function	(more	about	it	you	can	find	in	the	previous	part):

```C

exit_trap:

186

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html
https://en.wikipedia.org/wiki/Intel_MPX


				do_trap(X86_TRAP_BR,	SIGSEGV,	"bounds",	regs,	error_code,	NULL);

				exception_exit(prev_state);

If		MPX		feature	is	enabled	we	check	the		BNDSTATUS		with	the		get_xsave_field_ptr		function	and	if	it	is	zero,	it	means	that	the		MPX	
was	not	responsible	for	this	exception:

bndcsr	=	get_xsave_field_ptr(XSTATE_BNDCSR);

if	(!bndcsr)

								goto	exit_trap;

After	all	of	this,	there	is	still	only	one	way	when		MPX		is	responsible	for	this	exception.	We	will	not	dive	into	the	details	about	Intel
Memory	Protection	Extensions	in	this	part,	but	will	see	it	in	another	chapter.

Coprocessor	exception	and	SIMD	exception

The	next	two	exceptions	are	x87	FPU	Floating-Point	Error	exception	or		#MF		and	SIMD	Floating-Point	Exception	or		#XF	.	The	first
exception	occurs	when	the		x87	FPU		has	detected	floating	point	error.	For	example	divide	by	zero,	numeric	overflow	and	etc.	The
second	exception	occurs	when	the	processor	has	detected	SSE/SSE2/SSE3		SIMD		floating-point	exception.	It	can	be	the	same	as	for	the
	x87	FPU	.	The	handlers	for	these	exceptions	are		do_coprocessor_error		and		do_simd_coprocessor_error		are	defined	in	the
arch/x86/kernel/traps.c	and	very	similar	on	each	other.	They	both	make	a	call	of	the		math_error		function	from	the	same	source	code
file	but	pass	different	vector	number.	The		do_coprocessor_error		passes		X86_TRAP_MF		vector	number	to	the		math_error	:

dotraplinkage	void	do_coprocessor_error(struct	pt_regs	*regs,	long	error_code)

{

				enum	ctx_state	prev_state;

				prev_state	=	exception_enter();

				math_error(regs,	error_code,	X86_TRAP_MF);

				exception_exit(prev_state);

}

and		do_simd_coprocessor_error		passes		X86_TRAP_XF		to	the		math_error		function:

dotraplinkage	void

do_simd_coprocessor_error(struct	pt_regs	*regs,	long	error_code)

{

				enum	ctx_state	prev_state;

				prev_state	=	exception_enter();

				math_error(regs,	error_code,	X86_TRAP_XF);

				exception_exit(prev_state);

}

First	of	all	the		math_error		function	defines	current	interrupted	task,	address	of	its	fpu,	string	which	describes	an	exception,	add	it	to
the		notify_die		chain	and	return	from	the	exception	handler	if	it	will	return		NOTIFY_STOP	:

				struct	task_struct	*task	=	current;

				struct	fpu	*fpu	=	&task->thread.fpu;

				siginfo_t	info;

				char	*str	=	(trapnr	==	X86_TRAP_MF)	?	"fpu	exception"	:

																								"simd	exception";

				if	(notify_die(DIE_TRAP,	str,	regs,	error_code,	trapnr,	SIGFPE)	==	NOTIFY_STOP)

								return;

After	this	we	check	that	we	are	from	the	kernel	mode	and	if	yes	we	will	try	to	fix	an	exception	with	the		fixup_exception		function.	If
we	cannot	we	fill	the	task	with	the	exception's	error	code	and	vector	number	and	die:

if	(!user_mode(regs))	{

187

https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SSE3
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c


				if	(!fixup_exception(regs))	{

								task->thread.error_code	=	error_code;

								task->thread.trap_nr	=	trapnr;

								die(str,	regs,	error_code);

				}

				return;

}

If	we	came	from	the	user	mode,	we	save	the		fpu		state,	fill	the	task	structure	with	the	vector	number	of	an	exception	and		siginfo_t	
with	the	number	of	signal,		errno	,	the	address	where	exception	occurred	and	signal	code:

fpu__save(fpu);

task->thread.trap_nr				=	trapnr;

task->thread.error_code	=	error_code;

info.si_signo								=	SIGFPE;

info.si_errno								=	0;

info.si_addr								=	(void	__user	*)uprobe_get_trap_addr(regs);

info.si_code	=	fpu__exception_code(fpu,	trapnr);

After	this	we	check	the	signal	code	and	if	it	is	non-zero	we	return:

if	(!info.si_code)

				return;

Or	send	the		SIGFPE		signal	in	the	end:

force_sig_info(SIGFPE,	&info,	task);

That's	all.

Conclusion

It	is	the	end	of	the	sixth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	saw	implementation	of	some	exception	handlers	in
this	part,	like		non-maskable		interrupt,	SIMD	and	x87	FPU	floating	point	exception.	Finally	we	have	finsihed	with	the		trap_init	
function	in	this	part	and	will	go	ahead	in	the	next	part.	The	next	our	point	is	the	external	interrupts	and	the		early_irq_init		function
from	the	init/main.c.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links

General	Protection	Fault
opcode
Non-Maskable
BOUND	instruction
CPU	socket
Interrupt	Descriptor	Table
Interrupt	Stack	Table
Paravirtualization
.rept
SIMD
Coprocessor

188

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/X87
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Non-maskable_interrupt
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/x86/kernel-stacks
https://en.wikipedia.org/wiki/Paravirtualization
http://tigcc.ticalc.org/doc/gnuasm.html#SEC116
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Coprocessor


x86_64
iret
page	fault
breakpoint
Global	Descriptor	Table
stack	frame
Model	Specific	regiser
percpu
RCU
MPX
x87	FPU
Previous	part

189

https://en.wikipedia.org/wiki/X86-64
http://faydoc.tripod.com/cpu/iret.htm
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Breakpoint
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Model-specific_register
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Intel_MPX
https://en.wikipedia.org/wiki/X87
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html


Interrupts	and	Interrupt	Handling.	Part	7.

Introduction	to	external	interrupts

This	is	the	seventh	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in	the	previous	part	we	have	finished
with	the	exceptions	which	are	generated	by	the	processor.	In	this	part	we	will	continue	to	dive	to	the	interrupt	handling	and	will	start
with	the	external	hardware	interrupt	handling.	As	you	can	remember,	in	the	previous	part	we	have	finished	with	the		trap_init	
function	from	the	arch/x86/kernel/trap.c	and	the	next	step	is	the	call	of	the		early_irq_init		function	from	the	init/main.c.

Interrupts	are	signal	that	are	sent	across	IRQ	or		Interrupt	Request	Line		by	a	hardware	or	software.	External	hardware	interrupts
allow	devices	like	keyboard,	mouse	and	etc,	to	indicate	that	it	needs	attention	of	the	processor.	Once	the	processor	receives	the
	Interrupt	Request	,	it	will	temporary	stop	execution	of	the	running	program	and	invoke	special	routine	which	depends	on	an
interrupt.	We	already	know	that	this	routine	is	called	interrupt	handler	(or	how	we	will	call	it		ISR		or		Interrupt	Service	Routine	
from	this	part).	The		ISR		or		Interrupt	Handler	Routine		can	be	found	in	Interrupt	Vector	table	that	is	located	at	fixed	address	in	the
memory.	After	the	interrupt	is	handled	processor	resumes	the	interrupted	process.	At	the	boot/initialization	time,	the	Linux	kernel
identifies	all	devices	in	the	machine,	and	appropriate	interrupt	handlers	are	loaded	into	the	interrupt	table.	As	we	saw	in	the	previous
parts,	most	exceptions	are	handled	simply	by	the	sending	a	Unix	signal	to	the	interrupted	process.	That's	why	kernel	is	can	handle	an
exception	quickly.	Unfortunately	we	can	not	use	this	approach	for	the	external	hardware	interrupts,	because	often	they	arrive	after	(and
sometimes	long	after)	the	process	to	which	they	are	related	has	been	suspended.	So	it	would	make	no	sense	to	send	a	Unix	signal	to	the
current	process.	External	interrupt	handling	depends	on	the	type	of	an	interrupt:

	I/O		interrupts;
Timer	interrupts;
Interprocessor	interrupts.

I	will	try	to	describe	all	types	of	interrupts	in	this	book.

Generally,	a	handler	of	an		I/O		interrupt	must	be	flexible	enough	to	service	several	devices	at	the	same	time.	For	example	in	the	PCI
bus	architecture	several	devices	may	share	the	same		IRQ		line.	In	the	simplest	way	the	Linux	kernel	must	do	following	thing	when	an
	I/O		interrupt	occurred:

Save	the	value	of	an		IRQ		and	the	register's	contents	on	the	kernel	stack;
Send	an	acknowledgment	to	the	hardware	controller	which	is	servicing	the		IRQ		line;
Execute	the	interrupt	service	routine	(next	we	will	call	it		ISR	)	which	is	associated	with	the	device;
Restore	registers	and	return	from	an	interrupt;

Ok,	we	know	a	little	theory	and	now	let's	start	with	the		early_irq_init		function.	The	implementation	of	the		early_irq_init	
function	is	in	the	kernel/irq/irqdesc.c.	This	function	make	early	initialization	of	the		irq_desc		structure.	The		irq_desc		structure	is	the
foundation	of	interrupt	management	code	in	the	Linux	kernel.	An	array	of	this	structure,	which	has	the	same	name	-		irq_desc	,	keeps
track	of	every	interrupt	request	source	in	the	Linux	kernel.	This	structure	defined	in	the	include/linux/irqdesc.h	and	as	you	can	note	it
depends	on	the		CONFIG_SPARSE_IRQ		kernel	configuration	option.	This	kernel	configuration	option	enables	support	for	sparse	irqs.	The
	irq_desc		structure	contains	many	different	files:

	irq_common_data		-	per	irq	and	chip	data	passed	down	to	chip	functions;
	status_use_accessors		-	contains	status	of	the	interrupt	source	which	is	combination	of	the	values	from	the		enum		from	the
include/linux/irq.h	and	different	macros	which	are	defined	in	the	same	source	code	file;
	kstat_irqs		-	irq	stats	per-cpu;
	handle_irq		-	highlevel	irq-events	handler;
	action		-	identifies	the	interrupt	service	routines	to	be	invoked	when	the	IRQ	occurs;
	irq_count		-	counter	of	interrupt	occurrences	on	the	IRQ	line;
	depth		-		0		if	the	IRQ	line	is	enabled	and	a	positive	value	if	it	has	been	disabled	at	least	once;
	last_unhandled		-	aging	timer	for	unhandled	count;
	irqs_unhandled		-	count	of	the	unhandled	interrupts;
	lock		-	a	spin	lock	used	to	serialize	the	accesses	to	the		IRQ		descriptor;

190

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-6.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Conventional_PCI
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irqdesc.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irq.h
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29


	pending_mask		-	pending	rebalanced	interrupts;
	owner		-	an	owner	of	interrupt	descriptor.	Interrupt	descriptors	can	be	allocated	from	modules.	This	field	is	need	to	proved
refcount	on	the	module	which	provides	the	interrupts;
and	etc.

Of	course	it	is	not	all	fields	of	the		irq_desc		structure,	because	it	is	too	long	to	describe	each	field	of	this	structure,	but	we	will	see	it
all	soon.	Now	let's	start	to	dive	into	the	implementation	of	the		early_irq_init		function.

Early	external	interrupts	initialization

Now,	let's	look	on	the	implementation	of	the		early_irq_init		function.	Note	that	implementation	of	the		early_irq_init		function
depends	on	the		CONFIG_SPARSE_IRQ		kernel	configuration	option.	Now	we	consider	implementation	of	the		early_irq_init		function
when	the		CONFIG_SPARSE_IRQ		kernel	configuration	option	is	not	set.	This	function	starts	from	the	declaration	of	the	following
variables:		irq		descriptors	counter,	loop	counter,	memory	node	and	the		irq_desc		descriptor:

int	__init	early_irq_init(void)

{

								int	count,	i,	node	=	first_online_node;

								struct	irq_desc	*desc;

								...

								...

								...

}

The		node		is	an	online	NUMA	node	which	depends	on	the		MAX_NUMNODES		value	which	depends	on	the		CONFIG_NODES_SHIFT		kernel
configuration	parameter:

#define	MAX_NUMNODES				(1	<<	NODES_SHIFT)

...

...

...

#ifdef	CONFIG_NODES_SHIFT

				#define	NODES_SHIFT					CONFIG_NODES_SHIFT

#else

				#define	NODES_SHIFT					0

#endif

As	I	already	wrote,	implementation	of	the		first_online_node		macro	depends	on	the		MAX_NUMNODES		value:

#if	MAX_NUMNODES	>	1

		#define	first_online_node							first_node(node_states[N_ONLINE])

#else

		#define	first_online_node							0

The		node_states		is	the	enum	which	defined	in	the	include/linux/nodemask.h	and	represent	the	set	of	the	states	of	a	node.	In	our	case
we	are	searching	an	online	node	and	it	will	be		0		if		MAX_NUMNODES		is	one	or	zero.	If	the		MAX_NUMNODES		is	greater	than	one,	the
	node_states[N_ONLINE]		will	return		1		and	the		first_node		macro	will	be	expands	to	the	call	of	the		__first_node		function	which
will	return		minimal		or	the	first	online	node:

#define	first_node(src)	__first_node(&(src))

static	inline	int	__first_node(const	nodemask_t	*srcp)

{

								return	min_t(int,	MAX_NUMNODES,	find_first_bit(srcp->bits,	MAX_NUMNODES));

}

More	about	this	will	be	in	the	another	chapter	about	the		NUMA	.	The	next	step	after	the	declaration	of	these	local	variables	is	the	call	of
the:

191

https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Enumerated_type
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/nodemask.h


init_irq_default_affinity();

function.	The		init_irq_default_affinity		function	defined	in	the	same	source	code	file	and	depends	on	the		CONFIG_SMP		kernel
configuration	option	allocates	a	given	cpumask	structure	(in	our	case	it	is	the		irq_default_affinity	):

#if	defined(CONFIG_SMP)

cpumask_var_t	irq_default_affinity;

static	void	__init	init_irq_default_affinity(void)

{

								alloc_cpumask_var(&irq_default_affinity,	GFP_NOWAIT);

								cpumask_setall(irq_default_affinity);

}

#else

static	void	__init	init_irq_default_affinity(void)

{

}

#endif

We	know	that	when	a	hardware,	such	as	disk	controller	or	keyboard,	needs	attention	from	the	processor,	it	throws	an	interrupt.	The
interrupt	tells	to	the	processor	that	something	has	happened	and	that	the	processor	should	interrupt	current	process	and	handle	an
incoming	event.	In	order	to	prevent	multiple	devices	from	sending	the	same	interrupts,	the	IRQ	system	was	established	where	each
device	in	a	computer	system	is	assigned	its	own	special	IRQ	so	that	its	interrupts	are	unique.	Linux	kernel	can	assign	certain		IRQs		to
specific	processors.	This	is	known	as		SMP	IRQ	affinity	,	and	it	allows	you	control	how	your	system	will	respond	to	various	hardware
events	(that's	why	it	has	certain	implementation	only	if	the		CONFIG_SMP		kernel	configuration	option	is	set).	After	we	allocated
	irq_default_affinity		cpumask,	we	can	see		printk		output:

printk(KERN_INFO	"NR_IRQS:%d\n",	NR_IRQS);

which	prints		NR_IRQS	:

~$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352

The		NR_IRQS		is	the	maximum	number	of	the		irq		descriptors	or	in	another	words	maximum	number	of	interrupts.	Its	value	depends
on	the	state	of	the		CONFIG_X86_IO_APIC		kernel	configuration	option.	If	the		CONFIG_X86_IO_APIC		is	not	set	and	the	Linux	kernel	uses
an	old	PIC	chip,	the		NR_IRQS		is:

#define	NR_IRQS_LEGACY																				16

#ifdef	CONFIG_X86_IO_APIC

...

...

...

#else

#	define	NR_IRQS																								NR_IRQS_LEGACY

#endif

In	other	way,	when	the		CONFIG_X86_IO_APIC		kernel	configuration	option	is	set,	the		NR_IRQS		depends	on	the	amount	of	the	processors
and	amount	of	the	interrupt	vectors:

#define	CPU_VECTOR_LIMIT															(64	*	NR_CPUS)

#define	NR_VECTORS																					256

#define	IO_APIC_VECTOR_LIMIT											(	32	*	MAX_IO_APICS	)

#define	MAX_IO_APICS																			128

#	define	NR_IRQS																																							\

								(CPU_VECTOR_LIMIT	>	IO_APIC_VECTOR_LIMIT	?					\

																(NR_VECTORS	+	CPU_VECTOR_LIMIT)		:					\

																(NR_VECTORS	+	IO_APIC_VECTOR_LIMIT))

...

192

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller


...

...

We	remember	from	the	previous	parts,	that	the	amount	of	processors	we	can	set	during	Linux	kernel	configuration	process	with	the
	CONFIG_NR_CPUS		configuration	option:

In	the	first	case	(	CPU_VECTOR_LIMIT	>	IO_APIC_VECTOR_LIMIT	),	the		NR_IRQS		will	be		4352	,	in	the	second	case	(	CPU_VECTOR_LIMIT	<
IO_APIC_VECTOR_LIMIT	),	the		NR_IRQS		will	be		768	.	In	my	case	the		NR_CPUS		is		8		as	you	can	see	in	the	my	configuration,	the
	CPU_VECTOR_LIMIT		is		512		and	the		IO_APIC_VECTOR_LIMIT		is		4096	.	So		NR_IRQS		for	my	configuration	is		4352	:

~$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352

In	the	next	step	we	assign	array	of	the	IRQ	descriptors	to	the		irq_desc		variable	which	we	defined	in	the	start	of	the		early_irq_init	
function	and	calculate	count	of	the		irq_desc		array	with	the		ARRAY_SIZE		macro:

desc	=	irq_desc;

count	=	ARRAY_SIZE(irq_desc);

The		irq_desc		array	defined	in	the	same	source	code	file	and	looks	like:

struct	irq_desc	irq_desc[NR_IRQS]	__cacheline_aligned_in_smp	=	{

								[0	...	NR_IRQS-1]	=	{

																.handle_irq					=	handle_bad_irq,

																.depth										=	1,

																.lock											=	__RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),

								}

};

The		irq_desc		is	array	of	the		irq		descriptors.	It	has	three	already	initialized	fields:

	handle_irq		-	as	I	already	wrote	above,	this	field	is	the	highlevel	irq-event	handler.	In	our	case	it	initialized	with	the
	handle_bad_irq		function	that	defined	in	the	kernel/irq/handle.c	source	code	file	and	handles	spurious	and	unhandled	irqs;
	depth		-		0		if	the	IRQ	line	is	enabled	and	a	positive	value	if	it	has	been	disabled	at	least	once;
	lock		-	A	spin	lock	used	to	serialize	the	accesses	to	the		IRQ		descriptor.

193

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/handle.c


As	we	calculated	count	of	the	interrupts	and	initialized	our		irq_desc		array,	we	start	to	fill	descriptors	in	the	loop:

for	(i	=	0;	i	<	count;	i++)	{

				desc[i].kstat_irqs	=	alloc_percpu(unsigned	int);

				alloc_masks(&desc[i],	GFP_KERNEL,	node);

				raw_spin_lock_init(&desc[i].lock);

				lockdep_set_class(&desc[i].lock,	&irq_desc_lock_class);

				desc_set_defaults(i,	&desc[i],	node,	NULL);

}

We	are	going	through	the	all	interrupt	descriptors	and	do	the	following	things:

First	of	all	we	allocate	percpu	variable	for	the		irq		kernel	statistic	with	the		alloc_percpu		macro.	This	macro	allocates	one	instance
of	an	object	of	the	given	type	for	every	processor	on	the	system.	You	can	access	kernel	statistic	from	the	userspace	via		/proc/stat	:

~$	cat	/proc/stat

cpu		207907	68	53904	5427850	14394	0	394	0	0	0

cpu0	25881	11	6684	679131	1351	0	18	0	0	0

cpu1	24791	16	5894	679994	2285	0	24	0	0	0

cpu2	26321	4	7154	678924	664	0	71	0	0	0

cpu3	26648	8	6931	678891	414	0	244	0	0	0

...

...

...

Where	the	sixth	column	is	the	servicing	interrupts.	After	this	we	allocate	cpumask	for	the	given	irq	descriptor	affinity	and	initialize	the
spinlock	for	the	given	interrupt	descriptor.	After	this	before	the	critical	section,	the	lock	will	be	acquired	with	a	call	of	the
	raw_spin_lock		and	unlocked	with	the	call	of	the		raw_spin_unlock	.	In	the	next	step	we	call	the		lockdep_set_class		macro	which
set	the	Lock	validator		irq_desc_lock_class		class	for	the	lock	of	the	given	interrupt	descriptor.	More	about		lockdep	,		spinlock		and
other	synchronization	primitives	will	be	described	in	the	separate	chapter.

In	the	end	of	the	loop	we	call	the		desc_set_defaults		function	from	the	kernel/irq/irqdesc.c.	This	function	takes	four	parameters:

number	of	a	irq;
interrupt	descriptor;
online		NUMA		node;
owner	of	interrupt	descriptor.	Interrupt	descriptors	can	be	allocated	from	modules.	This	field	is	need	to	proved	refcount	on	the
module	which	provides	the	interrupts;

and	fills	the	rest	of	the		irq_desc		fields.	The		desc_set_defaults		function	fills	interrupt	number,		irq		chip,	platform-specific	per-
chip	private	data	for	the	chip	methods,	per-IRQ	data	for	the		irq_chip		methods	and	MSI	descriptor	for	the	per		irq		and		irq		chip
data:

desc->irq_data.irq	=	irq;

desc->irq_data.chip	=	&no_irq_chip;

desc->irq_data.chip_data	=	NULL;

desc->irq_data.handler_data	=	NULL;

desc->irq_data.msi_desc	=	NULL;

...

...

...

The		irq_data.chip		structure	provides	general		API		like	the		irq_set_chip	,		irq_set_irq_type		and	etc,	for	the	irq	controller
drivers.	You	can	find	it	in	the	kernel/irq/chip.c	source	code	file.

After	this	we	set	the	status	of	the	accessor	for	the	given	descriptor	and	set	disabled	state	of	the	interrupts:

...

...

...

irq_settings_clr_and_set(desc,	~0,	_IRQ_DEFAULT_INIT_FLAGS);

irqd_set(&desc->irq_data,	IRQD_IRQ_DISABLED);

194

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Critical_section
https://lwn.net/Articles/185666/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://github.com/torvalds/linux/tree/master/drivers/irqchip
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/chip.c


...

...

...

In	the	next	step	we	set	the	high	level	interrupt	handlers	to	the		handle_bad_irq		which	handles	spurious	and	unhandled	irqs	(as	the
hardware	stuff	is	not	initialized	yet,	we	set	this	handler),	set		irq_desc.desc		to		1		which	means	that	an		IRQ		is	disabled,	reset	count
of	the	unhandled	interrupts	and	interrupts	in	general:

...

...

...

desc->handle_irq	=	handle_bad_irq;

desc->depth	=	1;

desc->irq_count	=	0;

desc->irqs_unhandled	=	0;

desc->name	=	NULL;

desc->owner	=	owner;

...

...

...

After	this	we	go	through	the	all	possible	processor	with	the	for_each_possible_cpu	helper	and	set	the		kstat_irqs		to	zero	for	the	given
interrupt	descriptor:

				for_each_possible_cpu(cpu)

								*per_cpu_ptr(desc->kstat_irqs,	cpu)	=	0;

and	call	the		desc_smp_init		function	from	the	kernel/irq/irqdesc.c	that	initializes		NUMA		node	of	the	given	interrupt	descriptor,	sets
default		SMP		affinity	and	clears	the		pending_mask		of	the	given	interrupt	descriptor	depends	on	the	value	of	the
	CONFIG_GENERIC_PENDING_IRQ		kernel	configuration	option:

static	void	desc_smp_init(struct	irq_desc	*desc,	int	node)

{

								desc->irq_data.node	=	node;

								cpumask_copy(desc->irq_data.affinity,	irq_default_affinity);

#ifdef	CONFIG_GENERIC_PENDING_IRQ

								cpumask_clear(desc->pending_mask);

#endif

}

In	the	end	of	the		early_irq_init		function	we	return	the	return	value	of	the		arch_early_irq_init		function:

return	arch_early_irq_init();

This	function	defined	in	the	kernel/apic/vector.c	and	contains	only	one	call	of	the		arch_early_ioapic_init		function	from	the
kernel/apic/io_apic.c.	As	we	can	understand	from	the		arch_early_ioapic_init		function's	name,	this	function	makes	early
initialization	of	the	I/O	APIC.	First	of	all	it	make	a	check	of	the	number	of	the	legacy	interrupts	with	the	call	of	the		nr_legacy_irqs	
function.	If	we	have	no	legacy	interrupts	with	the	Intel	8259	programmable	interrupt	controller	we	set		io_apic_irqs		to	the
	0xffffffffffffffff	:

if	(!nr_legacy_irqs())

				io_apic_irqs	=	~0UL;

After	this	we	are	going	through	the	all		I/O	APICs		and	allocate	space	for	the	registers	with	the	call	of	the
	alloc_ioapic_saved_registers	:

for_each_ioapic(i)

				alloc_ioapic_saved_registers(i);

195

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cpumask.h#L714
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/apic/vector.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/apic/io_apic.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Intel_8259


And	in	the	end	of	the		arch_early_ioapic_init		function	we	are	going	through	the	all	legacy	irqs	(from		IRQ0		to		IRQ15	)	in	the	loop
and	allocate	space	for	the		irq_cfg		which	represents	configuration	of	an	irq	on	the	given		NUMA		node:

for	(i	=	0;	i	<	nr_legacy_irqs();	i++)	{

				cfg	=	alloc_irq_and_cfg_at(i,	node);

				cfg->vector	=	IRQ0_VECTOR	+	i;

				cpumask_setall(cfg->domain);

}

That's	all.

Sparse	IRQs
We	already	saw	in	the	beginning	of	this	part	that	implementation	of	the		early_irq_init		function	depends	on	the		CONFIG_SPARSE_IRQ	
kernel	configuration	option.	Previously	we	saw	implementation	of	the		early_irq_init		function	when	the		CONFIG_SPARSE_IRQ	
configuration	option	is	not	set,	now	let's	look	on	the	its	implementation	when	this	option	is	set.	Implementation	of	this	function	very
similar,	but	little	differ.	We	can	see	the	same	definition	of	variables	and	call	of	the		init_irq_default_affinity		in	the	beginning	of	the
	early_irq_init		function:

#ifdef	CONFIG_SPARSE_IRQ

int	__init	early_irq_init(void)

{

				int	i,	initcnt,	node	=	first_online_node;

				struct	irq_desc	*desc;

				init_irq_default_affinity();

				...

				...

				...

}

#else

...

...

...

But	after	this	we	can	see	the	following	call:

initcnt	=	arch_probe_nr_irqs();

The		arch_probe_nr_irqs		function	defined	in	the	arch/x86/kernel/apic/vector.c	and	calculates	count	of	the	pre-allocated	irqs	and
update		nr_irqs		with	its	number.	But	stop.	Why	there	are	pre-allocated	irqs?	There	is	alternative	form	of	interrupts	called	-	Message
Signaled	Interrupts	available	in	the	PCI.	Instead	of	assigning	a	fixed	number	of	the	interrupt	request,	the	device	is	allowed	to	record	a
message	at	a	particular	address	of	RAM,	in	fact,	the	display	on	the	Local	APIC.		MSI		permits	a	device	to	allocate		1	,		2	,		4	,		8	,
	16		or		32		interrupts	and		MSI-X		permits	a	device	to	allocate	up	to		2048		interrupts.	Now	we	know	that	irqs	can	be	pre-allocated.
More	about		MSI		will	be	in	a	next	part,	but	now	let's	look	on	the		arch_probe_nr_irqs		function.	We	can	see	the	check	which	assign
amount	of	the	interrupt	vectors	for	the	each	processor	in	the	system	to	the		nr_irqs		if	it	is	greater	and	calculate	the		nr		which
represents	number	of		MSI		interrupts:

int	nr_irqs	=	NR_IRQS;

if	(nr_irqs	>	(NR_VECTORS	*	nr_cpu_ids))

				nr_irqs	=	NR_VECTORS	*	nr_cpu_ids;

nr	=	(gsi_top	+	nr_legacy_irqs())	+	8	*	nr_cpu_ids;

Take	a	look	on	the		gsi_top		variable.	Each		APIC		is	identified	with	its	own		ID		and	with	the	offset	where	its		IRQ		starts.	It	is	called
	GSI		base	or		Global	System	Interrupt		base.	So	the		gsi_top		represents	it.	We	get	the		Global	System	Interrupt		base	from	the
MultiProcessor	Configuration	Table	table	(you	can	remember	that	we	have	parsed	this	table	in	the	sixth	part	of	the	Linux	Kernel

196

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/apic/vector.c
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/MultiProcessor_Specification
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html


initialization	process	chapter).

After	this	we	update	the		nr		depends	on	the	value	of	the		gsi_top	:

#if	defined(CONFIG_PCI_MSI)	||	defined(CONFIG_HT_IRQ)

								if	(gsi_top	<=	NR_IRQS_LEGACY)

																nr	+=		8	*	nr_cpu_ids;

								else

																nr	+=	gsi_top	*	16;

#endif

Update	the		nr_irqs		if	it	less	than		nr		and	return	the	number	of	the	legacy	irqs:

if	(nr	<	nr_irqs)

				nr_irqs	=	nr;

return	nr_legacy_irqs();

}

The	next	after	the		arch_probe_nr_irqs		is	printing	information	about	number	of		IRQs	:

printk(KERN_INFO	"NR_IRQS:%d	nr_irqs:%d	%d\n",	NR_IRQS,	nr_irqs,	initcnt);

We	can	find	it	in	the	dmesg	output:

$	dmesg	|	grep	NR_IRQS

[				0.000000]	NR_IRQS:4352	nr_irqs:488	16

After	this	we	do	some	checks	that		nr_irqs		and		initcnt		values	is	not	greater	than	maximum	allowable	number	of		irqs	:

if	(WARN_ON(nr_irqs	>	IRQ_BITMAP_BITS))

				nr_irqs	=	IRQ_BITMAP_BITS;

if	(WARN_ON(initcnt	>	IRQ_BITMAP_BITS))

				initcnt	=	IRQ_BITMAP_BITS;

where		IRQ_BITMAP_BITS		is	equal	to	the		NR_IRQS		if	the		CONFIG_SPARSE_IRQ		is	not	set	and		NR_IRQS	+	8196		in	other	way.	In	the	next
step	we	are	going	over	all	interrupt	descriptors	which	need	to	be	allocated	in	the	loop	and	allocate	space	for	the	descriptor	and	insert	to
the		irq_desc_tree		radix	tree:

for	(i	=	0;	i	<	initcnt;	i++)	{

				desc	=	alloc_desc(i,	node,	NULL);

				set_bit(i,	allocated_irqs);

				irq_insert_desc(i,	desc);

}

In	the	end	of	the		early_irq_init		function	we	return	the	value	of	the	call	of	the		arch_early_irq_init		function	as	we	did	it	already
in	the	previous	variant	when	the		CONFIG_SPARSE_IRQ		option	was	not	set:

return	arch_early_irq_init();

That's	all.

Conclusion

197

https://en.wikipedia.org/wiki/Dmesg
http://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html


It	is	the	end	of	the	seventh	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	started	to	dive	into	external	hardware	interrupts
in	this	part.	We	saw	early	initialization	of	the		irq_desc		structure	which	represents	description	of	an	external	interrupt	and	contains
information	about	it	like	list	of	irq	actions,	information	about	interrupt	handler,	interrupt's	owner,	count	of	the	unhandled	interrupt	and
etc.	In	the	next	part	we	will	continue	to	research	external	interrupts.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links
IRQ
numa
Enum	type
cpumask
percpu
spinlock
critical	section
Lock	validator
MSI
I/O	APIC
Local	APIC
Intel	8259
PIC
MultiProcessor	Configuration	Table
radix	tree
dmesg

198

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Enumerated_type
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Critical_section
https://lwn.net/Articles/185666/
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/MultiProcessor_Specification
http://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html
https://en.wikipedia.org/wiki/Dmesg


Interrupts	and	Interrupt	Handling.	Part	8.

Non-early	initialization	of	the	IRQs

This	is	the	eighth	part	of	the	Interrupts	and	Interrupt	Handling	in	the	Linux	kernel	chapter	and	in	the	previous	part	we	started	to	dive
into	the	external	hardware	interrupts.	We	looked	on	the	implementation	of	the		early_irq_init		function	from	the	kernel/irq/irqdesc.c
source	code	file	and	saw	the	initialization	of	the		irq_desc		structure	in	this	function.	Remind	that		irq_desc		structure	(defined	in	the
include/linux/irqdesc.h	is	the	foundation	of	interrupt	management	code	in	the	Linux	kernel	and	represents	an	interrupt	descriptor.	In	this
part	we	will	continue	to	dive	into	the	initialization	stuff	which	is	related	to	the	external	hardware	interrupts.

Right	after	the	call	of	the		early_irq_init		function	in	the	init/main.c	we	can	see	the	call	of	the		init_IRQ		function.	This	function	is
architecture-specific	and	defined	in	the	arch/x86/kernel/irqinit.c.	The		init_IRQ		function	makes	initialization	of	the		vector_irq	
percpu	variable	that	defined	in	the	same	arch/x86/kernel/irqinit.c	source	code	file:

...

DEFINE_PER_CPU(vector_irq_t,	vector_irq)	=	{

									[0	...	NR_VECTORS	-	1]	=	-1,

};

...

and	represents		percpu		array	of	the	interrupt	vector	numbers.	The		vector_irq_t		defined	in	the	arch/x86/include/asm/hw_irq.h	and
expands	to	the:

typedef	int	vector_irq_t[NR_VECTORS];

where		NR_VECTORS		is	count	of	the	vector	number	and	as	you	can	remember	from	the	first	part	of	this	chapter	it	is		256		for	the	x86_64:

#define	NR_VECTORS																							256

So,	in	the	start	of	the		init_IRQ		function	we	fill	the		vector_irq		percpu	array	with	the	vector	number	of	the		legacy		interrupts:

void	__init	init_IRQ(void)

{

				int	i;

				for	(i	=	0;	i	<	nr_legacy_irqs();	i++)

								per_cpu(vector_irq,	0)[IRQ0_VECTOR	+	i]	=	i;

...

...

...

}

This		vector_irq		will	be	used	during	the	first	steps	of	an	external	hardware	interrupt	handling	in	the		do_IRQ		function	from	the
arch/x86/kernel/irq.c:

__visible	unsigned	int	__irq_entry	do_IRQ(struct	pt_regs	*regs)

{

				...

				...

				...

				irq	=	__this_cpu_read(vector_irq[vector]);

				if	(!handle_irq(irq,	regs))	{

								...

								...

								...

				}

IRQs

199

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irqdesc.h#L46
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/hw_irq.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/X86-64
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/irq.c


				exiting_irq();

				...

				...

				return	1;

}

Why	is		legacy		here?	Actually	all	interrupts	are	handled	by	the	modern	IO-APIC	controller.	But	these	interrupts	(from		0x30		to
	0x3f	)	by	legacy	interrupt-controllers	like	Programmable	Interrupt	Controller.	If	these	interrupts	are	handled	by	the		I/O	APIC		then
this	vector	space	will	be	freed	and	re-used.	Let's	look	on	this	code	closer.	First	of	all	the		nr_legacy_irqs		defined	in	the
arch/x86/include/asm/i8259.h	and	just	returns	the		nr_legacy_irqs		field	from	the		legacy_pic		structure:

static	inline	int	nr_legacy_irqs(void)

{

								return	legacy_pic->nr_legacy_irqs;

}

This	structure	defined	in	the	same	header	file	and	represents	non-modern	programmable	interrupts	controller:

struct	legacy_pic	{

								int	nr_legacy_irqs;

								struct	irq_chip	*chip;

								void	(*mask)(unsigned	int	irq);

								void	(*unmask)(unsigned	int	irq);

								void	(*mask_all)(void);

								void	(*restore_mask)(void);

								void	(*init)(int	auto_eoi);

								int	(*irq_pending)(unsigned	int	irq);

								void	(*make_irq)(unsigned	int	irq);

};

Actual	default	maximum	number	of	the	legacy	interrupts	represented	by	the		NR_IRQ_LEGACY		macro	from	the
arch/x86/include/asm/irq_vectors.h:

#define	NR_IRQS_LEGACY																				16

In	the	loop	we	are	accessing	the		vecto_irq		per-cpu	array	with	the		per_cpu		macro	by	the		IRQ0_VECTOR	+	i		index	and	write	the
legacy	vector	number	there.	The		IRQ0_VECTOR		macro	defined	in	the	arch/x86/include/asm/irq_vectors.h	header	file	and	expands	to	the
	0x30	:

#define	FIRST_EXTERNAL_VECTOR											0x20

#define	IRQ0_VECTOR																					((FIRST_EXTERNAL_VECTOR	+	16)	&	~15)

Why	is		0x30		here?	You	can	remember	from	the	first	part	of	this	chapter	that	first	32	vector	numbers	from		0		to		31		are	reserved	by
the	processor	and	used	for	the	processing	of	architecture-defined	exceptions	and	interrupts.	Vector	numbers	from		0x30		to		0x3f		are
reserved	for	the	ISA.	So,	it	means	that	we	fill	the		vector_irq		from	the		IRQ0_VECTOR		which	is	equal	to	the		32		to	the		IRQ0_VECTOR	+
16		(before	the		0x30	).

In	the	end	of	the		init_IRQ		function	we	can	see	the	call	of	the	following	function:

x86_init.irqs.intr_init();

from	the	arch/x86/kernel/x86_init.c	source	code	file.	If	you	have	read	chapter	about	the	Linux	kernel	initialization	process,	you	can
remember	the		x86_init		structure.	This	structure	contains	a	couple	of	files	which	are	points	to	the	function	related	to	the	platform
setup	(	x86_64		in	our	case),	for	example		resources		-	related	with	the	memory	resources,		mpparse		-	related	with	the	parsing	of	the
MultiProcessor	Configuration	Table	table	and	etc.).	As	we	can	see	the		x86_init		also	contains	the		irqs		field	which	contains	three
following	fields:

IRQs

200

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/i8259.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/irq_vectors.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/irq_vectors.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/x86_init.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://en.wikipedia.org/wiki/MultiProcessor_Specification


struct	x86_init_ops	x86_init	__initdata	

{

				...

				...

				...

				.irqs	=	{

																.pre_vector_init								=	init_ISA_irqs,

																.intr_init														=	native_init_IRQ,

																.trap_init														=	x86_init_noop,

				},

				...

				...

				...

}

Now,	we	are	interesting	in	the		native_init_IRQ	.	As	we	can	note,	the	name	of	the		native_init_IRQ		function	contains	the		native_	
prefix	which	means	that	this	function	is	architecture-specific.	It	defined	in	the	arch/x86/kernel/irqinit.c	and	executes	general
initialization	of	the	Local	APIC	and	initialization	of	the	ISA	irqs.	Let's	look	on	the	implementation	of	the		native_init_IRQ		function
and	will	try	to	understand	what	occurs	there.	The		native_init_IRQ		function	starts	from	the	execution	of	the	following	function:

x86_init.irqs.pre_vector_init();

As	we	can	see	above,	the		pre_vector_init		points	to	the		init_ISA_irqs		function	that	defined	in	the	same	source	code	file	and	as	we
can	understand	from	the	function's	name,	it	makes	initialization	of	the		ISA		related	interrupts.	The		init_ISA_irqs		function	starts
from	the	definition	of	the		chip		variable	which	has	a		irq_chip		type:

void	__init	init_ISA_irqs(void)

{

				struct	irq_chip	*chip	=	legacy_pic->chip;

				...

				...

				...

The		irq_chip		structure	defined	in	the	include/linux/irq.h	header	file	and	represents	hardware	interrupt	chip	descriptor.	It	contains:

	name		-	name	of	a	device.	Used	in	the		/proc/interrupts	:

$	cat	/proc/interrupts

											CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							CPU6							CPU7							

		0:									16										0										0										0										0										0										0										0			IO-APIC			2-edge						

timer

		1:										2										0										0										0										0										0										0										0			IO-APIC			1-edge						

i8042

		8:										1										0										0										0										0										0										0										0			IO-APIC			8-edge						

rtc0

look	on	the	last	column;

	(*irq_mask)(struct	irq_data	*data)		-	mask	an	interrupt	source;
	(*irq_ack)(struct	irq_data	*data)		-	start	of	a	new	interrupt;
	(*irq_startup)(struct	irq_data	*data)		-	start	up	the	interrupt;
	(*irq_shutdown)(struct	irq_data	*data)		-	shutdown	the	interrupt
and	etc.

fields.	Note	that	the		irq_data		structure	represents	set	of	the	per	irq	chip	data	passed	down	to	chip	functions.	It	contains		mask		-
precomputed	bitmask	for	accessing	the	chip	registers,		irq		-	interrupt	number,		hwirq		-	hardware	interrupt	number,	local	to	the
interrupt	domain	chip	low	level	interrupt	hardware	access	and	etc.

After	this	depends	on	the		CONFIG_X86_64		and		CONFIG_X86_LOCAL_APIC		kernel	configuration	option	call	the		init_bsp_APIC		function
from	the	arch/x86/kernel/apic/apic.c:

IRQs

201

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irq.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/apic/apic.c


#if	defined(CONFIG_X86_64)	||	defined(CONFIG_X86_LOCAL_APIC)

				init_bsp_APIC();

#endif

This	function	makes	initialization	of	the	APIC	of		bootstrap	processor		(or	processor	which	starts	first).	It	starts	from	the	check	that
we	found	SMP	config	(read	more	about	it	in	the	sixth	part	of	the	Linux	kernel	initialization	process	chapter)	and	the	processor	has
	APIC	:

if	(smp_found_config	||	!cpu_has_apic)

				return;

In	other	way	we	return	from	this	function.	In	the	next	step	we	call	the		clear_local_APIC		function	from	the	same	source	code	file	that
shutdowns	the	local		APIC		(more	about	it	will	be	in	the	chapter	about	the		Advanced	Programmable	Interrupt	Controller	)	and	enable
	APIC		of	the	first	processor	by	the	setting		unsigned	int	value		to	the		APIC_SPIV_APIC_ENABLED	:

value	=	apic_read(APIC_SPIV);

value	&=	~APIC_VECTOR_MASK;

value	|=	APIC_SPIV_APIC_ENABLED;

and	writing	it	with	the	help	of	the		apic_write		function:

apic_write(APIC_SPIV,	value);

After	we	have	enabled		APIC		for	the	bootstrap	processor,	we	return	to	the		init_ISA_irqs		function	and	in	the	next	step	we	initialize
legacy		Programmable	Interrupt	Controller		and	set	the	legacy	chip	and	handler	for	the	each	legacy	irq:

legacy_pic->init(0);

for	(i	=	0;	i	<	nr_legacy_irqs();	i++)

				irq_set_chip_and_handler(i,	chip,	handle_level_irq);

Where	can	we	find		init		function?	The		legacy_pic		defined	in	the	arch/x86/kernel/i8259.c	and	it	is:

struct	legacy_pic	*legacy_pic	=	&default_legacy_pic;

Where	the		default_legacy_pic		is:

struct	legacy_pic	default_legacy_pic	=	{

				...

				...

				...

				.init	=	init_8259A,

				...

				...

				...

}

The		init_8259A		function	defined	in	the	same	source	code	file	and	executes	initialization	of	the	Intel	8259	 	̀ Programmable	Interrupt

Controller		(more	about	it	will	be	in	the	separate	chapter	about		Programmable	Interrupt	Controllers		and		APIC	).

Now	we	can	return	to	the		native_init_IRQ		function,	after	the		init_ISA_irqs		function	finished	its	work.	The	next	step	is	the	call	of
the		apic_intr_init		function	that	allocates	special	interrupt	gates	which	are	used	by	the	SMP	architecture	for	the	Inter-processor
interrupt.	The		alloc_intr_gate		macro	from	the	arch/x86/include/asm/desc.h	used	for	the	interrupt	descriptor	allocation:

#define	alloc_intr_gate(n,	addr)																								\

do	{																																																				\

								alloc_system_vector(n);																									\

								set_intr_gate(n,	addr);																									\

IRQs

202

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/i8259.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h


}	while	(0)

As	we	can	see,	first	of	all	it	expands	to	the	call	of	the		alloc_system_vector		function	that	checks	the	given	vector	number	in	the
	used_vectors		bitmap	(read	previous	part	about	it)	and	if	it	is	not	set	in	the		used_vectors		bitmap	we	set	it.	After	this	we	test	that	the
	first_system_vector		is	greater	than	given	interrupt	vector	number	and	if	it	is	greater	we	assign	it:

if	(!test_bit(vector,	used_vectors))	{

				set_bit(vector,	used_vectors);

				if	(first_system_vector	>	vector)

								first_system_vector	=	vector;

}	else	{

				BUG();

}

We	already	saw	the		set_bit		macro,	now	let's	look	on	the		test_bit		and	the		first_system_vector	.	The	first		test_bit		macro
defined	in	the	arch/x86/include/asm/bitops.h	and	looks	like	this:

#define	test_bit(nr,	addr)																						\

								(__builtin_constant_p((nr))													\

									?	constant_test_bit((nr),	(addr))						\

									:	variable_test_bit((nr),	(addr)))

We	can	see	the	ternary	operator	here	make	a	test	with	the	gcc	built-in	function		__builtin_constant_p		tests	that	given	vector	number
(	nr	)	is	known	at	compile	time.	If	you're	feeling	misunderstanding	of	the		__builtin_constant_p	,	we	can	make	simple	test:

#include	<stdio.h>

#define	PREDEFINED_VAL	1

int	main()	{

				int	i	=	5;

				printf("__builtin_constant_p(i)	is	%d\n",	__builtin_constant_p(i));

				printf("__builtin_constant_p(PREDEFINED_VAL)	is	%d\n",	__builtin_constant_p(PREDEFINED_VAL));

				printf("__builtin_constant_p(100)	is	%d\n",	__builtin_constant_p(100));

				return	0;

}

and	look	on	the	result:

$	gcc	test.c	-o	test

$	./test

__builtin_constant_p(i)	is	0

__builtin_constant_p(PREDEFINED_VAL)	is	1

__builtin_constant_p(100)	is	1

Now	I	think	it	must	be	clear	for	you.	Let's	get	back	to	the		test_bit		macro.	If	the		__builtin_constant_p		will	return	non-zero,	we
call		constant_test_bit		function:

static	inline	int	constant_test_bit(int	nr,	const	void	*addr)

{

				const	u32	*p	=	(const	u32	*)addr;

				return	((1UL	<<	(nr	&	31))	&	(p[nr	>>	5]))	!=	0;

}

and	the		variable_test_bit		in	other	way:

static	inline	int	variable_test_bit(int	nr,	const	void	*addr)

{

								u8	v;

IRQs

203

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/bitops.h
https://en.wikipedia.org/wiki/Ternary_operation
https://en.wikipedia.org/wiki/GNU_Compiler_Collection


								const	u32	*p	=	(const	u32	*)addr;

								asm("btl	%2,%1;	setc	%0"	:	"=qm"	(v)	:	"m"	(*p),	"Ir"	(nr));

								return	v;

}

What's	the	difference	between	two	these	functions	and	why	do	we	need	in	two	different	functions	for	the	same	purpose?	As	you	already
can	guess	main	purpose	is	optimization.	If	we	will	write	simple	example	with	these	functions:

#define	CONST	25

int	main()	{

				int	nr	=	24;

				variable_test_bit(nr,	(int*)0x10000000);

				constant_test_bit(CONST,	(int*)0x10000000)

				return	0;

}

and	will	look	on	the	assembly	output	of	our	example	we	will	see	following	assembly	code:

pushq				%rbp

movq				%rsp,	%rbp

movl				$268435456,	%esi

movl				$25,	%edi

call				constant_test_bit

for	the		constant_test_bit	,	and:

pushq				%rbp

movq				%rsp,	%rbp

subq				$16,	%rsp

movl				$24,	-4(%rbp)

movl				-4(%rbp),	%eax

movl				$268435456,	%esi

movl				%eax,	%edi

call				variable_test_bit

for	the		variable_test_bit	.	These	two	code	listings	starts	with	the	same	part,	first	of	all	we	save	base	of	the	current	stack	frame	in	the
	%rbp		register.	But	after	this	code	for	both	examples	is	different.	In	the	first	example	we	put		$268435456		(here	the		$268435456		is	our
second	parameter	-		0x10000000	)	to	the		esi		and		$25		(our	first	parameter)	to	the		edi		register	and	call		constant_test_bit	.	We
put	function	parameters	to	the		esi		and		edi		registers	because	as	we	are	learning	Linux	kernel	for	the		x86_64		architecture	we	use
	System	V	AMD64	ABI		calling	convention.	All	is	pretty	simple.	When	we	are	using	predefined	constant,	the	compiler	can	just	substitute
its	value.	Now	let's	look	on	the	second	part.	As	you	can	see	here,	the	compiler	can	not	substitute	value	from	the		nr		variable.	In	this
case	compiler	must	calculate	its	offset	on	the	program's	stack	frame.	We	subtract		16		from	the		rsp		register	to	allocate	stack	for	the
local	variables	data	and	put	the		$24		(value	of	the		nr		variable)	to	the		rbp		with	offset		-4	.	Our	stack	frame	will	be	like	this:

									<-	stack	grows	

														%[rbp]

																	|

+----------+	+---------+	+---------+	+--------+

|										|	|									|	|	return		|	|								|

|				nr				|-|									|-|									|-|		argc		|

|										|	|									|	|	address	|	|								|

+----------+	+---------+	+---------+	+--------+

																	|

														%[rsp]

IRQs

204

https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/Call_stack


After	this	we	put	this	value	to	the		eax	,	so		eax		register	now	contains	value	of	the		nr	.	In	the	end	we	do	the	same	that	in	the	first
example,	we	put	the		$268435456		(the	first	parameter	of	the		variable_test_bit		function)	and	the	value	of	the		eax		(value	of		nr	)
to	the		edi		register	(the	second	parameter	of	the		variable_test_bit	function	).

The	next	step	after	the		apic_intr_init		function	will	finish	its	work	is	the	setting	interrupt	gates	from	the		FIRST_EXTERNAL_VECTOR		or
	0x20		to	the		0x256	:

i	=	FIRST_EXTERNAL_VECTOR;

#ifndef	CONFIG_X86_LOCAL_APIC

#define	first_system_vector	NR_VECTORS

#endif

for_each_clear_bit_from(i,	used_vectors,	first_system_vector)	{

				set_intr_gate(i,	irq_entries_start	+	8	*	(i	-	FIRST_EXTERNAL_VECTOR));

}

But	as	we	are	using	the		for_each_clear_bit_from		helper,	we	set	only	non-initialized	interrupt	gates.	After	this	we	use	the	same
	for_each_clear_bit_from		helper	to	fill	the	non-filled	interrupt	gates	in	the	interrupt	table	with	the		spurious_interrupt	:

#ifdef	CONFIG_X86_LOCAL_APIC

for_each_clear_bit_from(i,	used_vectors,	NR_VECTORS)

				set_intr_gate(i,	spurious_interrupt);

#endif

Where	the		spurious_interrupt		function	represent	interrupt	handler	for	the		spurious		interrupt.	Here	the		used_vectors		is	the
	unsigned	long		that	contains	already	initialized	interrupt	gates.	We	already	filled	first		32		interrupt	vectors	in	the		trap_init	
function	from	the	arch/x86/kernel/setup.c	source	code	file:

for	(i	=	0;	i	<	FIRST_EXTERNAL_VECTOR;	i++)

				set_bit(i,	used_vectors);

You	can	remember	how	we	did	it	in	the	sixth	part	of	this	chapter.

In	the	end	of	the		native_init_IRQ		function	we	can	see	the	following	check:

if	(!acpi_ioapic	&&	!of_ioapic	&&	nr_legacy_irqs())

				setup_irq(2,	&irq2);

First	of	all	let's	deal	with	the	condition.	The		acpi_ioapic		variable	represents	existence	of	I/O	APIC.	It	defined	in	the
arch/x86/kernel/acpi/boot.c.	This	variable	set	in	the		acpi_set_irq_model_ioapic		function	that	called	during	the	processing		Multiple
APIC	Description	Table	.	This	occurs	during	initialization	of	the	architecture-specific	stuff	in	the	arch/x86/kernel/setup.c	(more	about
it	we	will	know	in	the	other	chapter	about	APIC).	Note	that	the	value	of	the		acpi_ioapic		variable	depends	on	the		CONFIG_ACPI		and
	CONFIG_X86_LOCAL_APIC		Linux	kernel	configuration	options.	If	these	options	did	not	set,	this	variable	will	be	just	zero:

#define	acpi_ioapic	0

The	second	condition	-		!of_ioapic	&&	nr_legacy_irqs()		checks	that	we	do	not	use	Open	Firmware		I/O	APIC		and	legacy	interrupt
controller.	We	already	know	about	the		nr_legacy_irqs	.	The	second	is		of_ioapic		variable	defined	in	the
arch/x86/kernel/devicetree.c	and	initialized	in	the		dtb_ioapic_setup		function	that	build	information	about		APICs		in	the	devicetree.
Note	that		of_ioapic		variable	depends	on	the		CONFIG_OF		Linux	kernel	configuration	option.	If	this	option	is	not	set,	the	value	of	the
	of_ioapic		will	be	zero	too:

#ifdef	CONFIG_OF

extern	int	of_ioapic;

...

...

...

#else

IRQs

205

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-6.html
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/acpi/boot.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Open_Firmware
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/devicetree.c
https://en.wikipedia.org/wiki/Device_tree


#define	of_ioapic	0

...

...

...

#endif

If	the	condition	will	return	non-zero	value	we	call	the:

setup_irq(2,	&irq2);

function.	First	of	all	about	the		irq2	.	The		irq2		is	the		irqaction		structure	that	defined	in	the	arch/x86/kernel/irqinit.c	source	code
file	and	represents		IRQ	2		line	that	is	used	to	query	devices	connected	cascade:

static	struct	irqaction	irq2	=	{

				.handler	=	no_action,

				.name	=	"cascade",

				.flags	=	IRQF_NO_THREAD,

};

Some	time	ago	interrupt	controller	consisted	of	two	chips	and	one	was	connected	to	second.	The	second	chip	that	was	connected	to	the
first	chip	via	this		IRQ	2		line.	This	chip	serviced	lines	from		8		to		15		and	after	this	lines	of	the	first	chip.	So,	for	example	Intel	8259A
has	following	lines:

	IRQ	0		-	system	time;
	IRQ	1		-	keyboard;
	IRQ	2		-	used	for	devices	which	are	cascade	connected;
	IRQ	8		-	RTC;
	IRQ	9		-	reserved;
	IRQ	10		-	reserved;
	IRQ	11		-	reserved;
	IRQ	12		-		ps/2		mouse;
	IRQ	13		-	coprocessor;
	IRQ	14		-	hard	drive	controller;
	IRQ	1		-	reserved;
	IRQ	3		-		COM2		and		COM4	;
	IRQ	4		-		COM1		and		COM3	;
	IRQ	5		-		LPT2	;
	IRQ	6		-	drive	controller;
	IRQ	7		-		LPT1	.

The		setup_irq		function	defined	in	the	kernel/irq/manage.c	and	takes	two	parameters:

vector	number	of	an	interrupt;
	irqaction		structure	related	with	an	interrupt.

This	function	initializes	interrupt	descriptor	from	the	given	vector	number	at	the	beginning:

struct	irq_desc	*desc	=	irq_to_desc(irq);

And	call	the		__setup_irq		function	that	setups	given	interrupt:

chip_bus_lock(desc);

retval	=	__setup_irq(irq,	desc,	act);

chip_bus_sync_unlock(desc);

return	retval;

IRQs

206

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/irqinit.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Real-time_clock
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/manage.c


Note	that	the	interrupt	descriptor	is	locked	during		__setup_irq		function	will	work.	The		__setup_irq		function	makes	many	different
things:	It	creates	a	handler	thread	when	a	thread	function	is	supplied	and	the	interrupt	does	not	nest	into	another	interrupt	thread,	sets	the
flags	of	the	chip,	fills	the		irqaction		structure	and	many	many	more.

All	of	the	above	it	creates		/prov/vector_number		directory	and	fills	it,	but	if	you	are	using	modern	computer	all	values	will	be	zero
there:

$	cat	/proc/irq/2/node

0

$cat	/proc/irq/2/affinity_hint	

00

cat	/proc/irq/2/spurious	

count	0

unhandled	0

last_unhandled	0	ms

because	probably		APIC		handles	interrupts	on	the	our	machine.

That's	all.

Conclusion

It	is	the	end	of	the	eighth	part	of	the	Interrupts	and	Interrupt	Handling	chapter	and	we	continued	to	dive	into	external	hardware
interrupts	in	this	part.	In	the	previous	part	we	started	to	do	it	and	saw	early	initialization	of	the		IRQs	.	In	this	part	we	already	saw	non-
early	interrupts	initialization	in	the		init_IRQ		function.	We	saw	initialization	of	the		vector_irq		per-cpu	array	which	is	store	vector
numbers	of	the	interrupts	and	will	be	used	during	interrupt	handling	and	initialization	of	other	stuff	which	is	related	to	the	external
hardware	interrupts.

In	the	next	part	we	will	continue	to	learn	interrupts	handling	related	stuff	and	will	see	initialization	of	the		softirqs	.

If	you	have	any	questions	or	suggestions	write	me	a	comment	or	ping	me	at	twitter.

Please	note	that	English	is	not	my	first	language,	And	I	am	really	sorry	for	any	inconvenience.	If	you	find	any	mistakes	please
send	me	PR	to	linux-insides.

Links
IRQ
percpu
x86_64
Intel	8259
Programmable	Interrupt	Controller
ISA
MultiProcessor	Configuration	Table
Local	APIC
I/O	APIC
SMP
Inter-processor	interrupt
ternary	operator
gcc
calling	convention
PDF.	System	V	Application	Binary	Interface	AMD64
Call	stack
Open	Firmware

IRQs

207

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://en.wikipedia.org/wiki/MultiProcessor_Specification
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://en.wikipedia.org/wiki/Ternary_operation
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/X86_calling_conventions
http://x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Open_Firmware


devicetree
RTC
Previous	part

IRQs

208

https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Real-time_clock
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html


()

(Tasklets	)

	Linux	 	 arch/x86/kernel/irqinit.c		 	init_IRQ		

				Linux	

		

	tasklets	

		

	 	ksoftirqd		()	 	ksoftirqd/n	n	 	systemd-cgls		

$	systemd-cgls	-k	|	grep	ksoft

├─			3	[ksoftirqd/0]

├─		13	[ksoftirqd/1]

├─		18	[ksoftirqd/2]

├─		23	[ksoftirqd/3]

├─		28	[ksoftirqd/4]

├─		33	[ksoftirqd/5]

├─		38	[ksoftirqd/6]

├─		43	[ksoftirqd/7]

	 	spawn_ksoftirqd			 initcall	

early_initcall(spawn_ksoftirqd);

	Linux	 	open_softirq			 	softirq			 kernel/softirq.c	

void	open_softirq(int	nr,	void	(*action)(struct	softirq_action	*))

{

				softirq_vec[nr].action	=	action;

}

	softirq_vec		

	 	softirq_vec		

Softirq,	Tasklets	and	Workqueues

209

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irqinit.c
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/index.html
https://github.com/torvalds/linux/blob/master/kernel/softirq.c


static	struct	softirq_action	softirq_vec[NR_SOFTIRQS]	__cacheline_aligned_in_smp;

	softirq_vec			 	NR_SOFTIRQS		(10)	 	softirq			 	softirq_action		Linux		tasklet		RCU	

enum

{

								HI_SOFTIRQ=0,

								TIMER_SOFTIRQ,

								NET_TX_SOFTIRQ,

								NET_RX_SOFTIRQ,

								BLOCK_SOFTIRQ,

								BLOCK_IOPOLL_SOFTIRQ,

								TASKLET_SOFTIRQ,

								SCHED_SOFTIRQ,

								HRTIMER_SOFTIRQ,

								RCU_SOFTIRQ,

								NR_SOFTIRQS

};

const	char	*	const	softirq_to_name[NR_SOFTIRQS]	=	{

								"HI",	"TIMER",	"NET_TX",	"NET_RX",	"BLOCK",	"BLOCK_IOPOLL",

								"TASKLET",	"SCHED",	"HRTIMER",	"RCU"

};

	 	/proc/softirqs		

~$	cat	/proc/softirqs

																				CPU0							CPU1							CPU2							CPU3							CPU4							CPU5							CPU6							CPU7

										HI:										5										0										0										0										0										0										0										0

							TIMER:					332519					310498					289555					272913					282535					279467					282895					270979

						NET_TX:							2320										0										0										2										1										1										0										0

						NET_RX:					270221								225								338								281								311								262								430								265

							BLOCK:					134282									32									40									10									12										7										8										8

BLOCK_IOPOLL:										0										0										0										0										0										0										0										0

					TASKLET:					196835										2										3										0										0										0										0										0

							SCHED:					161852					146745					129539					126064					127998					128014					120243					117391

					HRTIMER:										0										0										0										0										0										0										0										0

									RCU:					337707					289397					251874					239796					254377					254898					267497					256624

	 	softirq_vec			 	softirq_action	

struct	softirq_action

{

									void				(*action)(struct	softirq_action	*);

};

	 	open_softirq			 	softirq_action			 	softirq_vec			 	open_softirq			 	raise_softirq			--		 	nr	

void	raise_softirq(unsigned	int	nr)

{

								unsigned	long	flags;

								local_irq_save(flags);

								raise_softirq_irqoff(nr);

								local_irq_restore(flags);

}

	 	local_irq_save			 	local_irq_restore			 	raise_softirq_irqoff		 	local_irq_save			 include/linux/irqflags.h	
eflags		 IF	 	local_irq_restore			 	softirq		

Softirq,	Tasklets	and	Workqueues

210

https://github.com/torvalds/linux/blob/master/include/linux/irqflags.h
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Interrupt_flag


	raise_softirq_irqoff		nr(	__softirq_pending	)

__raise_softirq_irqoff(nr);

	 	in_interrupt			 	irq_count		 	cpu		 	raise_softirq_irqoff			 	IF			 	wakeup_softirqd		

if	(!in_interrupt())

				wakeup_softirqd();

	wakeup_softirqd			 	ksoftirqd		

static	void	wakeup_softirqd(void)

{

				struct	task_struct	*tsk	=	__this_cpu_read(ksoftirqd);

				if	(tsk	&&	tsk->state	!=	TASK_RUNNING)

								wake_up_process(tsk);

}

	 	ksoftirqd			 	run_ksoftirqd			 	__do_softirq		 	__do_softirq			 	__softirq_pending		
	__do_softirq		

unsigned	long	end	=	jiffies	+	MAX_SOFTIRQ_TIME;

...

...

...

restart:

while	((softirq_bit	=	ffs(pending)))	{

				...

				h->action(h);

				...

}

...

...

...

pending	=	local_softirq_pending();

if	(pending)	{

				if	(time_before(jiffies,	end)	&&	!need_resched()	&&

								--max_restart)

												goto	restart;

}

...

	 arch/x86/kernel/irq.c		 	do_IRQ			Linux		 arch/x86/include/asm/apic.h		 	exiting_irq		 	exiting_irq	

	 	irq_exit		irq_exit			 	invoke_softirq	

if	(!in_interrupt()	&&	local_softirq_pending())

				invoke_softirq();

	 	__do_softirq		 	softirq			 	open_softirq			 	raise_softirq			Linux	

	 	tasklets		

Tasklets
	Linux		 	tasklets	 	tasklets			 	softirq		

	TASKLET_SOFTIRQ	;
	HI_SOFTIRQ	.

Softirq,	Tasklets	and	Workqueues

211

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/apic.h


	tasklets			 	tasklets			 	softirq_init			 kernel/softirq.c	

void	__init	softirq_init(void)

{

								int	cpu;

								for_each_possible_cpu(cpu)	{

																per_cpu(tasklet_vec,	cpu).tail	=

																								&per_cpu(tasklet_vec,	cpu).head;

																per_cpu(tasklet_hi_vec,	cpu).tail	=

																								&per_cpu(tasklet_hi_vec,	cpu).head;

								}

								open_softirq(TASKLET_SOFTIRQ,	tasklet_action);

								open_softirq(HI_SOFTIRQ,	tasklet_hi_action);

}

	cpu		integer		 	for_each_possible_cpu			 	possible_cpu			 CPU	masks	 	possible_cpu		
	possible	processor			 	cpu_possible_bits			 kernel/cpu.c	

static	DECLARE_BITMAP(cpu_possible_bits,	CONFIG_NR_CPUS)	__read_mostly;

...

...

...

const	struct	cpumask	*const	cpu_possible_mask	=	to_cpumask(cpu_possible_bits);

	integer		 	cpu			 	for_each_possible_cpu			 	per-cpu		

	tasklet_vec	;
	tasklet_hi_vec	;

	 	per-cpu			 	softirq_init			 	tasklet_head		

static	DEFINE_PER_CPU(struct	tasklet_head,	tasklet_vec);

static	DEFINE_PER_CPU(struct	tasklet_head,	tasklet_hi_vec);

	tasklet_head			 	Tasklets	head		tail

struct	tasklet_head	{

								struct	tasklet_struct	*head;

								struct	tasklet_struct	**tail;

};

	tasklet_struct			 include/linux/interrupt.h		 	Tasklet		 	Tasklet		 	Tasklet			 	tasklet_struct		

struct	tasklet_struct

{

								struct	tasklet_struct	*next;

								unsigned	long	state;

								atomic_t	count;

								void	(*func)(unsigned	long);

								unsigned	long	data;

};

5

	 	Tasklet	

	 	Tasklet		
	 	Tasklet		
	Tasklet		

Softirq,	Tasklets	and	Workqueues

212

https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/kernel/cpu.c
https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h


	 	softirq_init			tasklets	 	tasklet_vec			 	tasklet_hi_vec	Tasklets		Tasklets		 kernel/softirq.c	
	softirq_init			 	open_softirq	

open_softirq(TASKLET_SOFTIRQ,	tasklet_action);

open_softirq(HI_SOFTIRQ,	tasklet_hi_action);

	open_softirq			Tasklets		 	tasklet_action			 	tasklet_hi_action		 	tasklet_hi_action			 	HI_SOFTIRQ		
	tasklet_action			 	TASKLET_SOFTIRQ		

Linux		API		Tasklets		 	tasklet_init			 	task_struct			 	task_struct		

void	tasklet_init(struct	tasklet_struct	*t,

																		void	(*func)(unsigned	long),	unsigned	long	data)

{

				t->next	=	NULL;

				t->state	=	0;

				atomic_set(&t->count,	0);

				t->func	=	func;

				t->data	=	data;

}

	tasklet

DECLARE_TASKLET(name,	func,	data);

DECLARE_TASKLET_DISABLED(name,	func,	data);

Linux		tasklet	

void	tasklet_schedule(struct	tasklet_struct	*t);

void	tasklet_hi_schedule(struct	tasklet_struct	*t);

void	tasklet_hi_schedule_first(struct	tasklet_struct	*t);

	tasklet	 	tasklet_schedule		

static	inline	void	tasklet_schedule(struct	tasklet_struct	*t)

{

				if	(!test_and_set_bit(TASKLET_STATE_SCHED,	&t->state))

								__tasklet_schedule(t);

}

void	__tasklet_schedule(struct	tasklet_struct	*t)

{

								unsigned	long	flags;

								local_irq_save(flags);

								t->next	=	NULL;

								*__this_cpu_read(tasklet_vec.tail)	=	t;

								__this_cpu_write(tasklet_vec.tail,	&(t->next));

								raise_softirq_irqoff(TASKLET_SOFTIRQ);

								local_irq_restore(flags);

}

	tasklet		 	TASKLET_STATE_SCHED			tasklet		 	__tasklet_schedule		 	__tasklet_schedule			 	raise_softirq		
	tasklet		 	tasklet_vec		 	raise_softirq_irqoff			Linux	 	tasklet_action			 	TASKLET_SOFTIRQ		

	tasklet_hi_action			 	HI_SOFTIRQ			---	 	tasklet_action			
	tasklet_hi_vec	

	 	tasklet_action		

static	void	tasklet_action(struct	softirq_action	*a)

Softirq,	Tasklets	and	Workqueues

213

https://github.com/torvalds/linux/blob/master/kernel/softirq.c


{

				local_irq_disable();

				list	=	__this_cpu_read(tasklet_vec.head);

				__this_cpu_write(tasklet_vec.head,	NULL);

				__this_cpu_write(tasklet_vec.tail,	this_cpu_ptr(&tasklet_vec.head));

				local_irq_enable();

				while	(list)	{

								if	(tasklet_trylock(t))	{

												t->func(t->data);

												tasklet_unlock(t);

								}

								...

								...

								...

				}

}

	 	tasklet_action			 	local_irq_disable		( )	tasklet		 	NULL			tasklet		tasklet		tasklet	
	tasklet_trylock			 	TASKLET_STATE_RUN	

static	inline	int	tasklet_trylock(struct	tasklet_struct	*t)

{

				return	!test_and_set_bit(TASKLET_STATE_RUN,	&(t)->state);

}

	tasklet	(	 	tasklet_init		)	 	tasklet_unlock			 	TASKLET_STATE_RUN		

	 	tasklet			 	tasklets	

	tasklets			Linux	 	--	

			 	tasklets			 	tasklets		 			 	tasklets		Tasklets	 			Linux		 kernel/workqueue.c	

struct	worker_pool	{

				spinlock_t														lock;

				int																					cpu;

				int																					node;

				int																					id;

				unsigned	int												flags;

				struct	list_head								worklist;

				int																					nr_workers;

...

...

...

	 	worker	thread		 include/linux/workqueue.h		 	work_struct		

struct	work_struct	{

				atomic_long_t	data;

				struct	list_head	entry;

				work_func_t	func;

#ifdef	CONFIG_LOCKDEP

				struct	lockdep_map	lockdep_map;

#endif

};

	func		--		 	data		--Linux		 	kworker			cpu	

Softirq,	Tasklets	and	Workqueues

214

http://lxr.free-electrons.com/ident?i=tasklet_init
https://github.com/torvalds/linux/blob/master/kernel/workqueue.c
https://github.com/torvalds/linux/blob/master/include/linux/workqueue.h


systemd-cgls	-k	|	grep	kworker

├─				5	[kworker/0:0H]

├─			15	[kworker/1:0H]

├─			20	[kworker/2:0H]

├─			25	[kworker/3:0H]

├─			30	[kworker/4:0H]

...

...

...

(	 	ksoftirqd				) 		Linux	

#define	DECLARE_WORK(n,	f)	\

				struct	work_struct	n	=	__WORK_INITIALIZER(n,	f)

#define	INIT_WORK(_work,	_func)							\

				__INIT_WORK((_work),	(_func),	0)

#define	__INIT_WORK(_work,	_func,	_onstack)																					\

				do	{																																																								\

												__init_work((_work),	_onstack);																					\

												(_work)->data	=	(atomic_long_t)	WORK_DATA_INIT();			\

												INIT_LIST_HEAD(&(_work)->entry);																				\

													(_work)->func	=	(_func);																											\

				}	while	(0)

	 	work_struct			 	work		 			 	queue_work			 	queue_delayed_work		

static	inline	bool	queue_work(struct	workqueue_struct	*wq,

																														struct	work_struct	*work)

{

				return	queue_work_on(WORK_CPU_UNBOUND,	wq,	work);

}

	queue_work			 	queue_work_on			 	queue_work_on			 	WORK_CPU_UNBOUND		
include/linux/workqueue.h	queue_work_on					 	WORK_STRUCT_PENDING_BIT			 	__queue_work		

bool	queue_work_on(int	cpu,	struct	workqueue_struct	*wq,

											struct	work_struct	*work)

{

				bool	ret	=	false;

				...

				if	(!test_and_set_bit(WORK_STRUCT_PENDING_BIT,	work_data_bits(work)))	{

								__queue_work(cpu,	wq,	work);

								ret	=	true;

				}

				...

				return	ret;

}

	__queue_work			 	work	poll		 	work	poll			 	workqueue		 	works			 	workqueue			Linux		 	worker_pool	

	 	work	poll	 	workqueue_struct			 	pwqs			 	worker_pool			 	workqueue		 	worker_pool		 	worker_pool		
	pool_workqueue		 	workqueue			 	worker_pool			 	__queue_work			 	raw_smp_processor_id			cpu	 )
	work_struct			 	pool_workqueue			 	work			 	workqueue	

static	void	__queue_work(int	cpu,	struct	workqueue_struct	*wq,

																									struct	work_struct	*work)

{

...

...

...

Softirq,	Tasklets	and	Workqueues

215

https://github.com/torvalds/linux/blob/master/include/linux/workqueue.h


if	(req_cpu	==	WORK_CPU_UNBOUND)

				cpu	=	raw_smp_processor_id();

if	(!(wq->flags	&	WQ_UNBOUND))

				pwq	=	per_cpu_ptr(wq->cpu_pwqs,	cpu);

else

				pwq	=	unbound_pwq_by_node(wq,	cpu_to_node(cpu));

...

...

...

insert_work(pwq,	work,	worklist,	work_flags);

	 	works			 	workqueue		 	works			 	workqueue			 	works		 	worker_thread		
	work_struct			 	works			 	workqueue		

	 	IRQs			 	irq_desc		 			tasklet				

	 			

	 Twitter

	PR		 linux-insides(	PR		 linux-insides-zh)

initcall
IF
eflags
CPU	masks
per-cpu
Workqueue
Previous	part

Softirq,	Tasklets	and	Workqueues

216

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/index.html
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/Documentation/workqueue.txt


()

	Linux	 	 	softirq		tasklet		workqueue	

	 StringARM**	SA-100/21285		 IRQ		 drivers/tty/serial/21285.c	

Linux	

	module_init	

	module_exit	

:

module_init(serial21285_init);

module_exit(serial21285_exit);

	Linux		 	module_init			 	module_exit			 include/linux/init.h	:

#define	module_init(initfn)																																					\

								static	inline	initcall_t	__inittest(void)															\

								{	return	initfn;	}																																						\

								int	init_module(void)	__attribute__((alias(#initfn)));

#define	module_exit(exitfn)																																					\

								static	inline	exitcall_t	__exittest(void)															\

								{	return	exitfn;	}																																						\

								void	cleanup_module(void)	__attribute__((alias(#exitfn)));

	 initcall	

	early_initcall	

	pure_initcall	

	core_initcall	

	postcore_initcall	

	arch_initcall	

	subsys_initcall	

	fs_initcall	

	rootfs_initcall	

	device_initcall	

	late_initcall	

	 init/main.c		 	do_initcalls			Linux	

#define	module_init(x)		__initcall(x);

#define	module_exit(x)		__exitcall(x);

	 kernel/module.c		 	do_init_module			Linux	 	module_init			-		 	serial21285_init	

static	int	__init	serial21285_init(void)

{

				int	ret;

217

http://netwinder.osuosl.org/pub/netwinder/docs/intel/datashts/27813501.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/21285.c
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://github.com/torvalds/linux/blob/master/include/linux/init.h
http://kernelnewbies.org/Documents/InitcallMechanism
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/module.c


				printk(KERN_INFO	"Serial:	21285	driver\n");

				serial21285_setup_ports();

				ret	=	uart_register_driver(&serial21285_reg);

				if	(ret	==	0)

								uart_add_one_port(&serial21285_reg,	&serial21285_port);

				return	ret;

}

	 	serial21285_setup_ports			 	serial21285_port			 uart	

unsigned	int	mem_fclk_21285	=	50000000;

static	void	serial21285_setup_ports(void)

{

				serial21285_port.uartclk	=	mem_fclk_21285	/	4;

}

	 	serial21285			 	uart		

static	struct	uart_driver	serial21285_reg	=	{

				.owner												=	THIS_MODULE,

				.driver_name				=	"ttyFB",

				.dev_name								=	"ttyFB",

				.major												=	SERIAL_21285_MAJOR,

				.minor												=	SERIAL_21285_MINOR,

				.nr																=	1,

				.cons												=	SERIAL_21285_CONSOLE,

};

	 drivers/tty/serial/serial_core.c		 	uart_add_one_port			 	serial21285_port			 	serial21285_init		

if	(ret	==	0)

				uart_add_one_port(&serial21285_reg,	&serial21285_port);

return	ret;

	 	uart			 drivers/tty/serial/serial_core.c		 	uart_open			 	uart_startup			 	startup			 	uart_ops		
	 	uart		

static	struct	uart_ops	serial21285_ops	=	{

				...

				.startup				=	serial21285_startup,

				...

}

	.startup			 	serial21285_startup		

	 	serial21285_startup		

static	int	serial21285_startup(struct	uart_port	*port)

{

				int	ret;

				tx_enabled(port)	=	1;

				rx_enabled(port)	=	1;

218

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/serial_core.c
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/serial_core.c


				ret	=	request_irq(IRQ_CONRX,	serial21285_rx_chars,	0,

														serial21285_name,	port);

				if	(ret	==	0)	{

								ret	=	request_irq(IRQ_CONTX,	serial21285_tx_chars,	0,

																		serial21285_name,	port);

								if	(ret)

												free_irq(IRQ_CONRX,	port);

				}

				return	ret;

}

	TX		RX		-	 	RX			-	 	TX		 	tx_enabled			 	rx_enalbed			 	request_irq		
include/linux/interrupt.h	

static	inline	int	__must_check

request_irq(unsigned	int	irq,	irq_handler_t	handler,	unsigned	long	flags,

												const	char	*name,	void	*dev)

{

								return	request_threaded_irq(irq,	handler,	NULL,	flags,	name,	dev);

}

	request_irq		

	irq		-	
	handler		-	
	flags		-	
	name		-	
	dev		-	

	 	request_irq			 	IRQ_CONRX		 	CONRX			 arch/arm/mach-footbridge/include/mach/irqs.h		 	21285		
	 	request_irq			 	IRQ_CONTX			 	RX			 	TX		

#define	IRQ_CONRX															_DC21285_IRQ(0)

#define	IRQ_CONTX															_DC21285_IRQ(1)

...

...

...

#define	_DC21285_IRQ(x)									(16	+	(x))

	 ISA		0		15	 	16			 	17		 	request_irq			 	serial21285_rx_chars			 	serial21285_tx_chars			 	RX		
	TX			 	flags		request_irq			 	flags			 include/linux/interrupt.h		 	IRQF_*		

	IRQF_SHARED		-	
	IRQF_PERCPU		-	cpu(per	cpu)
	IRQF_NO_THREAD		-	
	IRQF_NOBALANCING		-	irq
	IRQF_IRQPOLL		-	

	 	0		 	IRQF_TRIGGER_NONE	( 	name	)	 	serial21285_name		

static	const	char	serial21285_name[]	=	"Footbridge	UART";

	 	/proc/interrupts			 	uart_port			 	request_irq		 	request_irq			 kernel/irq/manage.c	
	request_threaded_irq			 	irqaction			 	irq_desc		

int	request_threaded_irq(unsigned	int	irq,	irq_handler_t	handler,

																									irq_handler_t	thread_fn,	unsigned	long	irqflags,

																									const	char	*devname,	void	*dev_id)

{

219

https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
https://github.com/torvalds/linux/blob/master/arch/arm/mach-footbridge/include/mach/irqs.h
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
https://github.com/torvalds/linux/blob/master/kernel/irq/manage.c


								struct	irqaction	*action;

								struct	irq_desc	*desc;

								int	retval;

								...

								...

								...

}

	 	irqaction			 	irq_desc			 	irqaction		 	request_threaded_irq			 	request_irq		
	irq_handler_t	thread_fn		 	NULL		 	irq			 	irq		

if	(((irqflags	&	IRQF_SHARED)	&&	!dev_id)	||

												(!(irqflags	&	IRQF_SHARED)	&&	(irqflags	&	IRQF_COND_SUSPEND))	||

												((irqflags	&	IRQF_NO_SUSPEND)	&&	(irqflags	&	IRQF_COND_SUSPEND)))

															return	-EINVAL;

	 	dev_id	()	 	IRQF_COND_SUSPEND			 	-EINVAL			 kernel/irq/irqdesc.c		 	irq_to_desc		
	irq			 	irq			 	-EINVAL		

desc	=	irq_to_desc(irq);

if	(!desc)

				return	-EINVAL;

	irq_to_desc			 	irq		 	irq			 	irq_desc		

struct	irq_desc	*irq_to_desc(unsigned	int	irq)

{

								return	(irq	<	NR_IRQS)	?	irq_desc	+	irq	:	NULL;

}

	 	irq			 	irq		

if	(!irq_settings_can_request(desc)	||	WARN_ON(irq_settings_is_per_cpu_devid(desc)))

				return	-EINVAL;

	 	-EINVAL		(	 	handler		)	 	request_irq			 	thread_fn		 	NULL			 	-EINVAL		 	request_irq		
	thread_fn			 	handler			 	irq_default_primary_handler	

if	(!handler)	{

				if	(!thread_fn)

								return	-EINVAL;

				handler	=	irq_default_primary_handler;

}

	 	kzalloc			 	irqaction		

action	=	kzalloc(sizeof(struct	irqaction),	GFP_KERNEL);

if	(!action)

				return	-ENOMEM;

	 	kzalloc			Linux	 	 	irqaction		

action->handler	=	handler;

action->thread_fn	=	thread_fn;

action->flags	=	irqflags;

action->name	=	devname;

action->dev_id	=	dev_id;

	 	request_threaded_irq			 kernel/irq/manage.c		 	__setup_irq			 	irqaction		 	irqaction		

220

https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/master/kernel/irq/manage.c


chip_bus_lock(desc);

retval	=	__setup_irq(irq,	desc,	action);

chip_bus_sync_unlock(desc);

if	(retval)

				kfree(action);

return	retval;

	__setup_irq			 	chip_bus_lock			 	chip_bus_sync_unlock		(	 i2c)	 	__setup_irq		 	__setup_irq		
	NULL		irqchip			 	NULL		 	NULL		 	irq_nested_primary_handler			 	irq_default_priamry_handler	

	 	thread_fn			 	kthread_create		

if	(new->thread_fn	&&	!nested)	{

				struct	task_struct	*t;

				t	=	kthread_create(irq_thread,	new,	"irq/%d-%s",	irq,	new->name);

				...

}

	 	16			 	17		 	serial21285_rx_chars			serial21285_tx_chars		

	 	irqaction		 	 	native_init_IRQ			 APIC

for_each_clear_bit_from(i,	used_vectors,	first_system_vector)	{

				set_intr_gate(i,	irq_entries_start	+

								8	*	(i	-	FIRST_EXTERNAL_VECTOR));

}

	 	first_system_vector			 	used_vectors		

int	first_system_vector	=	FIRST_SYSTEM_VECTOR;	//	0xef

	i		 	irq_entries_start	+	8	*	(i	-	FIRST_EXTERNAL_VECTOR)			-	 	irq_entries_start		 arch/x86/entry/entry_64.S	
	 	irq		

				.align	8

ENTRY(irq_entries_start)

				vector=FIRST_EXTERNAL_VECTOR

				.rept	(FIRST_SYSTEM_VECTOR	-	FIRST_EXTERNAL_VECTOR)

				pushq				$(~vector+0x80)

				vector=vector+1

				jmp				common_interrupt

				.align				8

				.endr

END(irq_entries_start)

	 GNU		 	.rept			 	.endr			 	FIRST_SYSTEM_VECTOR	-	FIRST_EXTERNAL_VECTOR			 	FIRST_SYSTEM_VECTOR			 	0xef	

	 	FIRST_EXTERNAL_VECTOR			 	0x20	

>>>	0xef	-	0x20

207

	 	.rept		( )	 	vector			1	 	common_interrupt			 	common_interrupt			 	interrupt		
	 	do_IRQ	

221

https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/master/arch/x86/entry_entry_64.S
https://en.wikipedia.org/wiki/GNU_Assembler
https://en.wikipedia.org/wiki/System_call


common_interrupt:

				addq				$-0x80,	(%rsp)

				interrupt	do_IRQ

	interrupt		 	 	SWAPGS			 	gs			 per-cpu		 	irq_count			 	do_IRQ			 arch/x86/kernel/irq.c	
	do_IRQ			-	 	pt_regs		

__visible	unsigned	int	__irq_entry	do_IRQ(struct	pt_regs	*regs)

{

				struct	pt_regs	*old_regs	=	set_irq_regs(regs);

				unsigned	vector	=	~regs->orig_ax;

				unsigned	irq;

				irq_enter();

				exit_idle();

				...

				...

				...

}

	 	set_irq_regs			 	per-cpu			 	irq_enter			 	exit_idle			 	irq_enter			 	__preempt_count		
	exit_idle			 pid		 	0			 	idle			 	IDLE_END			 	idle_notifier	

	cpu		 	irq			 	handle_irq		

irq	=	__this_cpu_read(vector_irq[vector]);

if	(!handle_irq(irq,	regs))	{

				...

				...

				...

}

...

...

...

	handle_irq			 arch/x86/kernel/irq_64.c		 	generic_handle_irq_desc		

desc	=	irq_to_desc(irq);

				if	(unlikely(!desc))

								return	false;

generic_handle_irq_desc(irq,	desc);

static	inline	void	generic_handle_irq_desc(unsigned	int	irq,	struct	irq_desc	*desc)

{

							desc->handle_irq(irq,	desc);

}

…… 	handle_irq			 	irqaction		 	irq_desc->handle_irq			API 		 APIC		 	irq->actions(s)		
	serial21285_tx_chars			 	serial21285_rx_chars		

	 	do_IRQ			 	irq_exit			 	set_irq_regs		

irq_exit();

set_irq_regs(old_regs);

return	1;

	 	IRQ		

222

https://en.wikipedia.org/wiki/Processor_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://en.wikipedia.org/wiki/Process_identifier
https://github.com/torvalds/linux/blob/arch/x86/kernel/irq_64.c
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller


	 	do_IRQ			 arch/x86/entry/entry_64.S		 	ret_from_intr			 	DISABLE_INTERRUPTS			 	cli		
	 per-cpu		 	irq_count			1	 	1	

DISABLE_INTERRUPTS(CLBR_NONE)

TRACE_IRQS_OFF

decl				PER_CPU_VAR(irq_count)

()

INTERRUPT_RETURN

	 	INTERRUPT_RETURN		

#define	INTERRUPT_RETURN				jmp	native_iret

ENTRY(native_iret)

.global	native_irq_return_iret

native_irq_return_iret:

				iretq

		Linux	

	 twitter	

	 linux-insides		PR(	PR		 linux-insides-zh)

StrongARM**	SA-110/21285	
IRQ

initcall
uart
ISA

i2c
APIC
GNU	

per-cpu
pid

223

https://github.com/torvalds/linux/blob/master/arch/x86/entry_entry_64.S
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
https://www.kernel.org/doc/Documentation/serial/driver
http://netwinder.osuosl.org/pub/netwinder/docs/intel/datashts/27813501.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Loadable_kernel_module
http://kernelnewbies.org/Documents/InitcallMechanism
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/GNU_Assembler
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/System_call


224



	Linux	

	-		Linux	
Linux		-		Linux	
vsyscall	and	vDSO	-		 	vsyscall			 	vDSO		
Linux		-	
open		-		open	
Linux		-		 	getrlimit/setrlimit		

225



Linux		

	 linux	,	Linux		 System	Call	 Linux VDSO		 vsyscall	

	Linux	

?
socket	[C]	( https://en.wikipedia.org/wiki/C_%28programming_language%29)	

Linux	CPU	 x86_64		 322	 x86		 358				 	Hello	world		:

.data

msg:

				.ascii	"Hello,	world!\n"

				len	=	.	-	msg

.text

				.global	_start

_start:

				movq		$1,	%rax

				movq		$1,	%rdi

				movq		$msg,	%rsi

				movq		$len,	%rdx

				syscall

				movq		$60,	%rax

				xorq		%rdi,	%rdi

				syscall

:

$	gcc	-c	test.S

$	ld	-o	test	test.o

:

./test

Hello,	world!

	Linux	 	x86_64			 	Hello	world		:

	.data	

	.text	

	-	 	.data			( 	Hello	world		)	-	 	.text		:		 	syscall			 	syscall			 	syscall		 64-ia-32-
architectures-software-developer-vol-2b-manual:

#

SYSCALL	0IA32_LSTAR	MSRRIP(RCX	SYSCALL	)

(WRMSR	IA32_LSTAR	MSR)

...

...

226

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/VDSO
https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_32.tbl
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


...

SYSCALL		IA32_STAR	MSR		4732		CS		SS	CS		SS	(	GDT		LDT	)

	SYSCALL	

arch/x86/entry/entry_64.S	 	entry_SYSCALL_64			 	syscalls			 	SYSCALL		arch/x86/kernel/cpu/common.c		 	IA32_STAR	

Model	specific	register:

wrmsrl(MSR_LSTAR,	entry_SYSCALL_64);

	syscall		 ,		-	 	write			write	. write		-	 	1		rax	:	 	%rdi	,		%rsi			 	%rdx		
	write			

	(	1		stdout)
	
	

,		 	C			write		[fs/read_write.c]	( https://github.com/torvalds/linux/blob/master/fs/read_write.c)	:

SYSCALL_DEFINE3(write,	unsigned	int,	fd,	const	char	__user	*,	buf,

								size_t,	count)

{

				...

				...

				...

}

:

ssize_t	write(int	fd,	const	void	*buf,	size_t	nbytes);

	 	SYSCALL_DEFINE3		,

,	 exit:

Return	value

strace	:

$	strace	test

execve("./test",	["./test"],	[/*	62	vars	*/])	=	0

write(1,	"Hello,	world!\n",	14Hello,	world!

)									=	14

_exit(0)																																=	?

+++	exited	with	0	+++

	strace		,	 execve	:	 	write			 	exit	-	[x86-64	calling	conventions]
(https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions) 		x86_64			-	 System	V	Application	Binary
Interface.	PDF:

	rdi	

	rsi	

	rdx	

	rcx	

	r8	

	r9	

227

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c
https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Processor_register
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L10
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L69
https://en.wikipedia.org/wiki/Strace
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L68
https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions)中定义。
http://www.x86-64.org/documentation/abi.pdf


:

#include	<stdio.h>

int	main(int	argc,	char	**argv)

{

			FILE	*fp;

			char	buff[255];

			fp	=	fopen("test.txt",	"r");

			fgets(buff,	255,	fp);

			printf("%s\n",	buff);

			fclose(fp);

			return	0;

}

Linux	 	fopen	,		fgets	,		printf			 	fclose			 	open	,		read			write			 	close		fopen	,		fgets	,		printf			 	fclose		
	C		standard	library :	

$	gcc	test.c	-o	test

ltrace:

$	ltrace	./test

__libc_start_main([	"./test"	]	<unfinished	...>

fopen("test.txt",	"r")																																													=	0x602010

fgets("Hello	World!\n",	255,	0x602010)																													=	0x7ffd2745e700

puts("Hello	World!\n"Hello	World!

)																																																																		=	14

fclose(0x602010)																																																			=	0

+++	exited	(status	0)	+++

	ltrace		 	fopen		,	 	fgets			 	buf		 	puts			 	stdout			 	fclose			 	puts			 	write		
	ltrace			 	-S	:

write@SYS(1,	"Hello	World!\n\n",	14)	=	14

// proc	:	 	/proc/${pid}/syscall	,	1	 systemd:

$	sudo	cat	/proc/1/comm

systemd

$	sudo	cat	/proc/1/syscall

232	0x4	0x7ffdf82e11b0	0x1f	0xffffffff	0x100	0x7ffdf82e11bf	0x7ffdf82e11a0	0x7f9114681193

	 	232			 epoll_wait	 epoll	I/O.		 	emacs		:

$	ps	ax	|	grep	emacs

2093	?								Sl					2:40	emacs

$	sudo	cat	/proc/2093/comm

emacs

$	sudo	cat	/proc/2093/syscall

270	0xf	0x7fff068a5a90	0x7fff068a5b10	0x0	0x7fff068a59c0	0x7fff068a59d0	0x7fff068a59b0	0x7f777dd8813c

	 	270			 sys_pselect6		 	emacs		

	 	write		

228

https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Wrapper_function
https://en.wikipedia.org/wiki/Ltrace
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Systemd
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L241
https://en.wikipedia.org/wiki/Epoll
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L279


write

Linux fs/read_write.c		 	write		

SYSCALL_DEFINE3(write,	unsigned	int,	fd,	const	char	__user	*,	buf,

								size_t,	count)

{

				struct	fd	f	=	fdget_pos(fd);

				ssize_t	ret	=	-EBADF;

				if	(f.file)	{

								loff_t	pos	=	file_pos_read(f.file);

								ret	=	vfs_write(f.file,	buf,	count,	&pos);

								if	(ret	>=	0)

												file_pos_write(f.file,	pos);

								fdput_pos(f);

				}

				return	ret;

}

	 	SYSCALL_DEFINE3			 include/linux/syscalls.h		 	sys_name(...)		:

#define	SYSCALL_DEFINE3(name,	...)	SYSCALL_DEFINEx(3,	_##name,	__VA_ARGS__)

#define	SYSCALL_DEFINEx(x,	sname,	...)																\

								SYSCALL_METADATA(sname,	x,	__VA_ARGS__)							\

								__SYSCALL_DEFINEx(x,	sname,	__VA_ARGS__)

	 	SYSCALL_DEFINE3			 	name				 	SYSCALL_DEFINEx			 	_##name			(	 	##	documentation	of	gcc)
	SYSCALL_DEFINEx		:

	SYSCALL_METADATA	;
	__SYSCALL_DEFINEx	.

	 	SYSCALL_METADATA			CONFIG_FTRACE_SYSCALLS			tracer		 	SYSCALL_METADATA		 include/trace/syscall.h
	syscall_metadata		,	 :

#define	SYSCALL_METADATA(sname,	nb,	...)																													\

				...																																																														\

				...																																																														\

				...																																																														\

				struct	syscall_metadata	__used																																			\

														__syscall_meta_##sname	=	{																													\

																				.name											=	"sys"#sname,																			\

																				.syscall_nr					=	-1,																												\

																				.nb_args								=	nb,																												\

																				.types										=	nb	?	types_##sname	:	NULL,					\

																				.args											=	nb	?	args_##sname	:	NULL,						\

																				.enter_event				=	&event_enter_##sname,										\

																				.exit_event					=	&event_exit_##sname,											\

																				.enter_fields			=	LIST_HEAD_INIT(__syscall_meta_##sname.enter_fields),	\

													};																																																																												\

				static	struct	syscall_metadata	__used																											\

														__attribute__((section("__syscalls_metadata")))							\

													*__p_syscall_meta_##sname	=	&__syscall_meta_##sname;

	 	CONFIG_FTRACE_SYSCALLS			 	SYSCALL_METADATA	:

#define	SYSCALL_METADATA(sname,	nb,	...)

	 	__SYSCALL_DEFINEx		:

229

https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://github.com/torvalds/linux/blob/master/include/linux/syscalls.h
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/master/include/trace/syscall.h
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl


#define	__SYSCALL_DEFINEx(x,	name,	...)																																	\

								asmlinkage	long	sys##name(__MAP(x,__SC_DECL,__VA_ARGS__))							\

																__attribute__((alias(__stringify(SyS##name))));									\

																																																																								\

								static	inline	long	SYSC##name(__MAP(x,__SC_DECL,__VA_ARGS__));		\

																																																																								\

								asmlinkage	long	SyS##name(__MAP(x,__SC_LONG,__VA_ARGS__));						\

																																																																								\

								asmlinkage	long	SyS##name(__MAP(x,__SC_LONG,__VA_ARGS__))							\

								{																																																															\

																long	ret	=	SYSC##name(__MAP(x,__SC_CAST,__VA_ARGS__));		\

																__MAP(x,__SC_TEST,__VA_ARGS__);																									\

																__PROTECT(x,	ret,__MAP(x,__SC_ARGS,__VA_ARGS__));							\

																return	ret;																																													\

								}																																																															\

																																																																								\

								static	inline	long	SYSC##name(__MAP(x,__SC_DECL,__VA_ARGS__))

	 	sys##name			 	sys_system_call_name				 	__SC_DECL			 	__VA_ARGS__			 	__MAP			 	__SC_DECL		
	__VA_ARGS__			 	__SYSCALL_DEFINEx	 CVE-2009-0029	write:

asmlinkage	long	sys_write(unsigned	int	fd,	const	char	__user	*	buf,	size_t	count);

	 	write		:

SYSCALL_DEFINE3(write,	unsigned	int,	fd,	const	char	__user	*,	buf,

								size_t,	count)

{

				struct	fd	f	=	fdget_pos(fd);

				ssize_t	ret	=	-EBADF;

				if	(f.file)	{

								loff_t	pos	=	file_pos_read(f.file);

								ret	=	vfs_write(f.file,	buf,	count,	&pos);

								if	(ret	>=	0)

												file_pos_write(f.file,	pos);

								fdput_pos(f);

				}

				return	ret;

}

:

	fd		-	
	buf		-	
	count		-	

	 	buf	,		 	__user			 sparse		Linux	sparse		[include/linux/compiler.h]
(https://github.com/torvalds/linux/blob/master/include/linux/compiler.h)		Linux		 	__CHECKER__			 	sys_write		
	 	f		 	f			 	fd		 	fd		Linux		 	fdget_pos		 	fdget_pos			 	__to_fd		:

static	inline	struct	fd	fdget_pos(int	fd)

{

								return	__to_fd(__fdget_pos(fd));

}

	fdget_pos			 	fd				 	fdget_pos		,	 	current->files	,		 	fd		,		 	file_pos_read			 	f_pos		
:

static	inline	loff_t	file_pos_read(struct	file	*file)

{

								return	file->f_pos;

230

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0029
https://en.wikipedia.org/wiki/Sparse
https://github.com/torvalds/linux/blob/master/include/linux/compiler.h
https://github.com/torvalds/linux/blob/master/fs/read_write.c


}

	 	vfs_write			 	vfs_write			 fs/read_write.c		-		 	vfs_write		 		 	vfs_write		,	
	file_pos_write		:

if	(ret	>=	0)

				file_pos_write(f.file,	pos);

	 	f_pos	:

static	inline	void	file_pos_write(struct	file	*file,	loff_t	pos)

{

								file->f_pos	=	pos;

}

	 	write		,	:

fdput_pos(f);

	 	f_pos_lock	

Linux	 	write		,	 .

LinuxLinux

,	twitter	@ 0xAX,	email		 issue.

	PR		 linux-insides.

system	call
vdso
vsyscall
general	purpose	registers
socket
C	programming	language
x86
x86_64
x86-64	calling	conventions
System	V	Application	Binary	Interface.	PDF
GCC
Intel	manual.	PDF
system	call	table
GCC	macro	documentation
file	descriptor
stdout
strace
standard	library
wrapper	functions
ltrace
sparse

231

https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Virtual_file_system
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/VDSO
https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions
http://www.x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://en.wikipedia.org/wiki/Strace
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Wrapper_function
https://en.wikipedia.org/wiki/Ltrace
https://en.wikipedia.org/wiki/Sparse


proc	file	system
Virtual	file	system
systemd
epoll
Previous	chapter

232

https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Epoll


Linux		

Linux	

		Linux	 system	call				 write		Linux	

		 	Hello	World	

int	main(int	argc,	char	**argv)

{

				...

				...

				...

				sys_write(fd1,	buf,	strlen(buf));

				...

				...

}

	 C	standard	library	:

#include	<unistd.h>

int	main(int	argc,	char	**argv)

{

				...

				...

				...

				write(fd1,	buf,	strlen(buf));

				...

				...

}

	write				 	syscall				Linux		 	syscall		

			 	syscall				(	 C	)			Linux		Linux	 	system	call	table		Linux
arch/x86/entry/syscall_64.c		 	sys_call_table			:

asmlinkage	const	sys_call_ptr_t	sys_call_table[__NR_syscall_max+1]	=	{

				[0	...	__NR_syscall_max]	=	&sys_ni_syscall,

				#include	<asm/syscalls_64.h>

};

	sys_call_table			 	__NR_syscall_max	+	1		__NR_syscall_max				 x86_64	,		 	__NR_syscall_max			 	547	(
Linux		 	5.0.0-rc7	)			 Kbuild		-	include/generated/asm-offsets.h`:

#define	__NR_syscall_max	547

	 	x86_64	arch/x86/entry/syscalls/syscall_64.tbl		;	 	sys_call_table			 	sys_call_ptr_t

typedef	void	(*sys_call_ptr_t)(void);

Linux	

233

https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/write.2.html
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_64.c
https://en.wikipedia.org/wiki/List_of_CPU_architectures
https://en.wikipedia.org/wiki/X86-64
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L331


	 	sys_call_table				 	sys_ni_syscall			 	sys_ni_syscall			“not-implemented”		 	sys_call_table	

	“not-implemented”			 	sys_ni_syscall

asmlinkage	long	sys_ni_syscall(void)

{

				return	-ENOSYS;

}

The		-ENOSYS		error	tells	us	that:

ENOSYS										Function	not	implemented	(POSIX.1)

	 	sys_call_table			 	...			 GCC		-	 Designated	Initializers				 	asm/syscalls_64.h			
arch/x86/entry/syscalls/syscalltbl.sh		 syscall	table		 	asm/syscalls_64.h		:

__SYSCALL_COMMON(0,	sys_read,	sys_read)

__SYSCALL_COMMON(1,	sys_write,	sys_write)

__SYSCALL_COMMON(2,	sys_open,	sys_open)

__SYSCALL_COMMON(3,	sys_close,	sys_close)

__SYSCALL_COMMON(5,	sys_newfstat,	sys_newfstat)

...

...

...

	 	__SYSCALL_COMMON		 	 	__SYSCALL_64		:

#define	__SYSCALL_COMMON(nr,	sym,	compat)	__SYSCALL_64(nr,	sym,	compat)

#define	__SYSCALL_64(nr,	sym,	compat)	[nr]	=	sym,

	sys_call_table		:

asmlinkage	const	sys_call_ptr_t	sys_call_table[__NR_syscall_max+1]	=	{

				[0	...	__NR_syscall_max]	=	&sys_ni_syscall,

				[0]	=	sys_read,

				[1]	=	sys_write,

				[2]	=	sys_open,

				...

				...

				...

};

	“non-implemented”		 	sys_ni_syscall			 	-ENOSYS			 	sys_syscall_name		

	Linux			Linux		 	sys_syscall_name			 		Linux				Linux		Linux
		Linux	

?		Intel		-	 64-ia-32-architectures-software-developer-vol-2b-manual:

SYSCALL		0	IA32_LSTAR	MSR		RIP	

	 	IA32_LSTAR		model	specific	register		Linux			Linux	 Linux		 	trap_init				 arch/x86/kernel/setup.c	
	 	non-early		 				 	non-early			 arch/x86/kernel/cpu/common.c		 	cpu_init			
	 	per-cpu		

	

Linux	

234

https://en.wikipedia.org/wiki/Typedef
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscalltbl.sh
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_64.c
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Coprocessor
https://github.com/torvalds/linux/blob/master/blob/arch/x86/kernel/cpu/common.c


wrmsrl(MSR_STAR,		((u64)__USER32_CS)<<48		|	((u64)__KERNEL_CS)<<32);

wrmsrl(MSR_LSTAR,	entry_SYSCALL_64);

-	 	MSR_STAR			 	63:48				 	CS			 	SS			 	sysret			 	MSR_STAR			 	47:32			 	CS		and		SS			
	 	entry_SYSCALL_64			 	MSR_LSTAR			 	entry_SYSCALL_64			 arch/x86/entry/entry_64.S	()		 	entry_SYSCALL_64	

	MSR_CSTAR		-	target		rip		for	the	compability	mode	callers;
	MSR_IA32_SYSENTER_CS		-	target		cs		for	the		sysenter		instruction;
	MSR_IA32_SYSENTER_ESP		-	target		esp		for	the		sysenter		instruction;
	MSR_IA32_SYSENTER_EIP		-	target		eip		for	the		sysenter		instruction.

	 	CONFIG_IA32_EMULATION				64		32			 	CONFIG_IA32_EMULATION		

wrmsrl(MSR_CSTAR,	entry_SYSCALL_compat);

	entry_SYSENTER_compat		:

wrmsrl_safe(MSR_IA32_SYSENTER_CS,	(u64)__KERNEL_CS);

wrmsrl_safe(MSR_IA32_SYSENTER_ESP,	0ULL);

wrmsrl_safe(MSR_IA32_SYSENTER_EIP,	(u64)entry_SYSENTER_compat);

	 	CONFIG_IA32_EMULATION			 	ignore_sysret			 	MSR_CSTAR	:

wrmsrl(MSR_CSTAR,	ignore_sysret);

	 arch/x86/entry/entry_64.S		 	-ENOSYS		:

ENTRY(ignore_sysret)

				mov				$-ENOSYS,	%eax

				sysret

END(ignore_sysret)

	 	CONFIG_IA32_EMULATION			 	MSR_IA32_SYSENTER_CS		MSR_IA32_SYSENTER_ESP		MSR_IA32_SYSENTER_EIP			
	CONFIG_IA32_EMULATION			 	MSR_IA32_SYSENTER_ESP			 	MSR_IA32_SYSENTER_EIP		 Global	Descriptor	Table	
	MSR_IA32_SYSENTER_CS		:

wrmsrl_safe(MSR_IA32_SYSENTER_CS,	(u64)GDT_ENTRY_INVALID_SEG);

wrmsrl_safe(MSR_IA32_SYSENTER_ESP,	0ULL);

wrmsrl_safe(MSR_IA32_SYSENTER_EIP,	0ULL);

	Linux	 	 	Global	Descriptor	Table		

	 	syscall_init			 	MSR_SYSCALL_MASK		

wrmsrl(MSR_SYSCALL_MASK,

							X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|

							X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);

	syscall		 	syscall_init					 	syscall		

	Linux			 	idtentry			 	interrupt		 	entry_SYSCALL_64		

Linux	

235

http://man7.org/linux/man-pages/man3/errno.3.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Program_counter
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/FLAGS_register


	entry_SYSCALL_64			 arch/x86/entry/entry_64.S	:

SWAPGS_UNSAFE_STACK

	 arch/x86/include/asm/irqflags.h		 	swapgs		:

#define	SWAPGS_UNSAFE_STACK				swapgs

	GS		 	MSR_KERNEL_GS_BASE					 	rsp_scratch		per-cpu	

movq				%rsp,	PER_CPU_VAR(rsp_scratch)

movq				PER_CPU_VAR(cpu_current_top_of_stack),	%rsp

pushq				$__USER_DS

pushq				PER_CPU_VAR(rsp_scratch)

	(	 	bp		bx			 	r12			 	r15	)“non-implemented”		 	-ENOSYS		:

ENABLE_INTERRUPTS(CLBR_NONE)

pushq				%r11

pushq				$__USER_CS

pushq				%rcx

pushq				%rax

pushq				%rdi

pushq				%rsi

pushq				%rdx

pushq				%rcx

pushq				$-ENOSYS

pushq				%r8

pushq				%r9

pushq				%r10

pushq				%r11

sub				$(6*8),	%rsp

:

	rax		-	
	rcx		-	contains	return	address	to	the	user	space;
	r11		-	
	rdi		-		system	call	handler	
	rsi		-		system	call	handler	
	rdx		-		system	call	handler	
	r10		-		system	call	handler	
	r8		-		system	call	handler	
	r9		-		system	call	handler	

	(	 	rbp		rbx			 	r12			 	r15	)		 C	ABI	)		“non-implemented”	dump	

	 	thread_info			 	_TIF_WORK_SYSCALL_ENTRY	

testl				$_TIF_WORK_SYSCALL_ENTRY,	ASM_THREAD_INFO(TI_flags,	%rsp,	SIZEOF_PTREGS)

jnz				tracesys

	 	_TIF_WORK_SYSCALL_ENTRY			 arch/x86/include/asm/thread_info.h	

#define	_TIF_WORK_SYSCALL_ENTRY	\

Linux	

236

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irqflags.h
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/thread_info.h


				(_TIF_SYSCALL_TRACE	|	_TIF_SYSCALL_EMU	|	_TIF_SYSCALL_AUDIT	|			\

				_TIF_SECCOMP	|	_TIF_SINGLESTEP	|	_TIF_SYSCALL_TRACEPOINT	|					\

				_TIF_NOHZ)

/	Linux			 	tracesys			 	entry_SYSCALL_64_fastpath			 	entry_SYSCALL_64_fastpath		
arch/x86/include/asm/unistd.h		 	__SYSCALL_MASK	

#	ifdef	CONFIG_X86_X32_ABI

#		define	__SYSCALL_MASK	(~(__X32_SYSCALL_BIT))

#	else

#		define	__SYSCALL_MASK	(~0)

#	endif

	 	__X32_SYSCALL_BIT		

#define	__X32_SYSCALL_BIT				0x40000000

	__SYSCALL_MASK			 	CONFIG_X86_X32_ABI			64		32		 ABI	

	 	__SYSCALL_MASK		 	CONFIG_X86_X32_ABI			 	rax		(	__NR_syscall_max	)		 	CNOFIG_X86_X32_ABI			 	eax		
	X32_SYSCALL_BIT		

#if	__SYSCALL_MASK	==	~0

				cmpq				$__NR_syscall_max,	%rax

#else

				andl				$__SYSCALL_MASK,	%eax

				cmpl				$__NR_syscall_max,	%eax

#endif

	ja			 	CF			 	ZF			0	:

ja				1f

	 	r10			 	rcx		 x86_64	C	ABI		 	call		

movq				%r10,	%rcx

call				*sys_call_table(,	%rax,	8)

	 	sys_call_table			 	rax			 	sys_call_table			8			 	*sys_call_table(,	%rax,	8)		
	sys_call_table		

			Linux		 	SYSCALL_DEFINE[N]			 	sys_read		sys_write		

	 arch/x86/entry/entry_64.S:

call				*sys_call_table(,	%rax,	8)

		 	rax			 	RAX		

movq				%rax,	RAX(%rsp)

	 arch/x86/include/asm/irqflags.h		 	LOCKDEP_SYS_EXIT		:

LOCKDEP_SYS_EXIT

Linux	

237

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/unistd.h
https://en.wikipedia.org/wiki/Application_binary_interface
http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irqflags.h


	 	CONFIG_DEBUG_LOCK_ALLOC					 	entry_SYSCALL_64			 	rxc			 	r11			 	rcx		 	r11		
flags	register		 	rcx		 	r11		 	rsp		:

RESTORE_C_REGS_EXCEPT_RCX_R11

movq				RIP(%rsp),	%rcx

movq				EFLAGS(%rsp),	%r11

movq				RSP(%rsp),	%rsp

USERGS_SYSRET64

	 	USERGS_SYSRET64		 	swapgs			 	GS			 	GS		sysretq		

#define	USERGS_SYSRET64																\

				swapgs;																															\

				sysretq;

	

;
		-	 	entry_SYSCALL_64	;
	entry_SYSCALL_64		;
	entry_SYSCALL_64			 	rax			 	sys_call_table		;
;
	 	sysretq			entry_SYSCALL_64	

	Linux		 		Linux	

	twitter	@ 0xAX	 email		 issue

	PR		 linux-insides

Links
system	call
write
C	standard	library
list	of	cpu	architectures
x86_64
kbuild
typedef
errno
gcc
model	specific	register
intel	2b	manual
coprocessor
instruction	pointer
flags	register
Global	Descriptor	Table
per-cpu
general	purpose	registers
ABI
x86_64	C	ABI

Linux	

238

https://en.wikipedia.org/wiki/FLAGS_register
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/write.2.html
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/List_of_CPU_architectures
https://en.wikipedia.org/wiki/X86-64
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://en.wikipedia.org/wiki/Typedef
http://man7.org/linux/man-pages/man3/errno.3.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Model-specific_register
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Application_binary_interface
http://www.x86-64.org/documentation/abi.pdf


previous	chapter

Linux	

239



Linux		

vsyscalls		vDSO

	Linux	 	vsyscall			 	vdso	

			Linux		Linux		

vsyscalls	
	vsyscall			 	virtual	system	call			 	vsyscall		Linux			 X86_64		Linux		[]
(https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt)	

ffffffffff600000	-	ffffffffffdfffff	(=8	MB)	vsyscalls

:

~$	sudo	cat	/proc/1/maps	|	grep	vsyscall

ffffffffff600000-ffffffffff601000	r-xp	00000000	00:00	0																		[vsyscall]

,		 	 	vsyscall			 arch/x86/entry/vsyscall/vsyscall_64.c		 	map_vsyscall			Linux		 arch/x86/kernel/setup.c	
	setup_arch		( 	Linux	)

	 	map_vsyscall			 	CONFIG_X86_VSYSCALL_EMULATION		:

#ifdef	CONFIG_X86_VSYSCALL_EMULATION

extern	void	map_vsyscall(void);

#else

static	inline	void	map_vsyscall(void)	{}

#endif

,	 	CONFIG_X86_VSYSCALL_EMULATION		:	 		vsyscall	 	.		 	vsyscall	?	,	 	vsyscall			 ABI	,		 	vsyscall		
	map_vsyscall		:

void	__init	map_vsyscall(void)

{

				extern	char	__vsyscall_page;

				unsigned	long	physaddr_vsyscall	=	__pa_symbol(&__vsyscall_page);

				...

				...

				...

}

	 	map_vsyscall			 	__pa_symbol			 	vsyscall		( 	of	the	Linux	kernel	initialization	process) 	__vsyscall_page		
arch/x86/entry/vsyscall/vsyscall_emu_64.S			 :

ffffffff81881000	D	__vsyscall_page

	 	.data..page_aligned,	aw				:

	gettimeofday	;
	time	;
	getcpu	.

vsyscall	and	vDSO

240

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_64.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Application_binary_interface
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_emu_64.S
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Memory_segmentation


:

__vsyscall_page:

				mov	$__NR_gettimeofday,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_time,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_getcpu,	%rax

				syscall

				ret

	 	map_vsyscall			 	__vsyscall_page			 	__vsyscall_page			 	__set_fixmap			 	vsyscall				 fix-mapped
	vsyscall_mode	:

if	(vsyscall_mode	!=	NONE)

				__set_fixmap(VSYSCALL_PAGE,	physaddr_vsyscall,

																	vsyscall_mode	==	NATIVE

																													?	PAGE_KERNEL_VSYSCALL

																													:	PAGE_KERNEL_VVAR);

The		__set_fixmap		takes	three	arguments:	The	first	is	index	of	the		fixed_addresses		enum.	In	our	case		VSYSCALL_PAGE		is	the	first
element	of	the		fixed_addresses		enum	for	the		x86_64		architecture:

enum	fixed_addresses	{

...

...

...

#ifdef	CONFIG_X86_VSYSCALL_EMULATION

				VSYSCALL_PAGE	=	(FIXADDR_TOP	-	VSYSCALL_ADDR)	>>	PAGE_SHIFT,

#endif

...

...

...

	 	511		 	VSYSCALL_PAGE			 	vsyscall_mode			 	vsyscall_mode			 	NATIVE			 	 	PAGE_KERNEL_VSYSCALL	

	PAGE_KERNEL_VVAR			(	 	PAGE_KERNEL_VSYSCALL			 	PAGE_KERNEL_VVAR	)	:

#define	__PAGE_KERNEL_VSYSCALL										(__PAGE_KERNEL_RX	|	_PAGE_USER)

#define	__PAGE_KERNEL_VVAR														(__PAGE_KERNEL_RO	|	_PAGE_USER)

	 	vsyscall			 	_PAGE_USER				 	vsyscall_mode			 (	__PAGE_KERNEL_VSYSCALL	)		 	vsyscall_mode		
	NATIVE			 	syscall			 	vsyscall_mode			 	emulate			vsyscall	 	 	PAGE_KERNEL_VVAR		
	vsyscall_setup		

static	int	__init	vsyscall_setup(char	*str)

{

				if	(str)	{

								if	(!strcmp("emulate",	str))

												vsyscall_mode	=	EMULATE;

								else	if	(!strcmp("native",	str))

												vsyscall_mode	=	NATIVE;

								else	if	(!strcmp("none",	str))

												vsyscall_mode	=	NONE;

								else

												return	-EINVAL;

								return	0;

vsyscall	and	vDSO

241

https://en.wikipedia.org/wiki/Enumerated_type


				}

				return	-EINVAL;

}

early_param("vsyscall",	vsyscall_setup);

	 	early_param			Linux	

	 	vsyscall_map			 BUILD_BUG_ON		 	vsyscall			 	VSYSCALL_ADDR		:

BUILD_BUG_ON((unsigned	long)__fix_to_virt(VSYSCALL_PAGE)	!=

													(unsigned	long)VSYSCALL_ADDR);

	vsyscall				 	vsyscall=native			 arch/x86/entry/vsyscall/vsyscall_emu_64.S		 				 glibc		 	1024

(	 	0x400	)	

__vsyscall_page:

				mov	$__NR_gettimeofday,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_time,	%rax

				syscall

				ret

				.balign	1024,	0xcc

				mov	$__NR_getcpu,	%rax

				syscall

				ret

	vsyscall			 	ffffffffff600000		,	 glibc		 	glibc		

#define	VSYSCALL_ADDR_vgettimeofday			0xffffffffff600000

#define	VSYSCALL_ADDR_vtime											0xffffffffff600400

#define	VSYSCALL_ADDR_vgetcpu										0xffffffffff600800

	 	__vsyscall_page		+		VSYSCALL_ADDR_vsyscall_name		,	 	x86_64	 		

,		 	vsyscall=emulate		,		 page	fault		,	 	vsyscall				 	__PAGE_KERNEL_VVAR			 	do_page_fault		
	#PF			page	fault		page	fault		 	vsyscall			 	emulate			 	vsyscall			 arch/x86/entry/vsyscall/vsyscall_64.c
	 	emulate_vsyscall		

The		emulate_vsyscall		function	gets	the	number	of	a	virtual	system	call,	checks	it,	prints	error	and	sends	segementation	fault	single:

...

...

...

vsyscall_nr	=	addr_to_vsyscall_nr(address);

if	(vsyscall_nr	<	0)	{

				warn_bad_vsyscall(KERN_WARNING,	regs,	"misaligned	vsyscall...);

				goto	sigsegv;

}

...

...

...

sigsegv:

				force_sig(SIGSEGV,	current);

				reutrn	true;

vsyscall	and	vDSO

242

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_emu_64.S
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_64.c
https://en.wikipedia.org/wiki/Segmentation_fault


As	it	checked	number	of	a	virtual	system	call,	it	does	some	yet	another	checks	like		access_ok		violations	and	execute	system	call
function	depends	on	the	number	of	a	virtual	system	call:

switch	(vsyscall_nr)	{

				case	0:

								ret	=	sys_gettimeofday(

												(struct	timeval	__user	*)regs->di,

												(struct	timezone	__user	*)regs->si);

								break;

				...

				...

				...

}

In	the	end	we	put	the	result	of	the		sys_gettimeofday		or	another	virtual	system	call	handler	to	the		ax		general	purpose	register,	as	we
did	it	with	the	normal	system	calls	and	restore	the	instruction	pointer	register	and	add		8		bytes	to	the	stack	pointer	register.	This
operation	emulates		ret		instruction.

				regs->ax	=	ret;

do_ret:

				regs->ip	=	caller;

				regs->sp	+=	8;

				return	true;

That's	all.	Now	let's	look	on	the	modern	concept	-		vDSO	.

Introduction	to	vDSO

As	I	already	wrote	above,		vsyscall		is	an	obsolete	concept	and	replaced	by	the		vDSO		or		virtual	dynamic	shared	object	.	The
main	difference	between	the		vsyscall		and		vDSO		mechanisms	is	that		vDSO		maps	memory	pages	into	each	process	in	a	shared	object
form,	but		vsyscall		is	static	in	memory	and	has	the	same	address	every	time.	For	the		x86_64		architecture	it	is	called	-	linux-
vdso.so.1	.	All	userspace	applications	linked	with	this	shared	library	via	the		glibc	.	For	example:

~$	ldd	/bin/uname

				linux-vdso.so.1	(0x00007ffe014b7000)

				libc.so.6	=>	/lib64/libc.so.6	(0x00007fbfee2fe000)

				/lib64/ld-linux-x86-64.so.2	(0x00005559aab7c000)

Or:

~$	sudo	cat	/proc/1/maps	|	grep	vdso

7fff39f73000-7fff39f75000	r-xp	00000000	00:00	0							[vdso]

Here	we	can	see	that	uname	util	was	linked	with	the	three	libraries:

	linux-vdso.so.1	;
	libc.so.6	;
	ld-linux-x86-64.so.2	.

The	first	provides		vDSO		functionality,	the	second	is		C		standard	library	and	the	third	is	the	program	interpreter	(more	about	this	you
can	read	in	the	part	that	describes	linkers).	So,	the		vDSO		solves	limitations	of	the		vsyscall	.	Implementation	of	the		vDSO		is	similar
to		vsyscall	.

Initialization	of	the		vDSO		occurs	in	the		init_vdso		function	that	defined	in	the	arch/x86/entry/vdso/vma.c	source	code	file.	This
function	starts	from	the	initialization	of	the		vDSO		images	for	32-bits	and	64-bits	depends	on	the		CONFIG_X86_X32_ABI		kernel
configuration	option:

vsyscall	and	vDSO

243

https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/Library_%28computing%29#Shared_libraries
https://en.wikipedia.org/wiki/Uname
https://en.wikipedia.org/wiki/C_standard_library
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vma.c


static	int	__init	init_vdso(void)

{

				init_vdso_image(&vdso_image_64);

#ifdef	CONFIG_X86_X32_ABI

				init_vdso_image(&vdso_image_x32);

#endif

Both	function	initialize	the		vdso_image		structure.	This	structure	is	defined	in	the	two	generated	source	code	files:	the
arch/x86/entry/vdso/vdso-image-64.c	and	the	arch/x86/entry/vdso/vdso-image-64.c.	These	source	code	files	generated	by	the	vdso2c
program	from	the	different	source	code	files,	represent	different	approaches	to	call	a	system	call	like		int	0x80	,		sysenter		and	etc.
The	full	set	of	the	images	depends	on	the	kernel	configuration.

For	example	for	the		x86_64		Linux	kernel	it	will	contain		vdso_image_64	:

#ifdef	CONFIG_X86_64

extern	const	struct	vdso_image	vdso_image_64;

#endif

But	for	the		x86		-		vdso_image_32	:

#ifdef	CONFIG_X86_X32

extern	const	struct	vdso_image	vdso_image_x32;

#endif

If	our	kernel	is	configured	for	the		x86		architecture	or	for	the		x86_64		and	compability	mode,	we	will	have	ability	to	call	a	system	call
with	the		int	0x80		interrupt,	if	compability	mode	is	enabled,	we	will	be	able	to	call	a	system	call	with	the	native		syscall
instruction		or		sysenter		instruction	in	other	way:

#if	defined	CONFIG_X86_32	||	defined	CONFIG_COMPAT

		extern	const	struct	vdso_image	vdso_image_32_int80;

#ifdef	CONFIG_COMPAT

		extern	const	struct	vdso_image	vdso_image_32_syscall;

#endif

	extern	const	struct	vdso_image	vdso_image_32_sysenter;

#endif

As	we	can	understand	from	the	name	of	the		vdso_image		structure,	it	represents	image	of	the		vDSO		for	the	certain	mode	of	the	system
call	entry.	This	structure	contains	information	about	size	in	bytes	of	the		vDSO		area	that	always	a	multiple	of		PAGE_SIZE		(	4096	
bytes),	pointer	to	the	text	mapping,	start	and	end	address	of	the		alternatives		(set	of	instructions	with	better	alternatives	for	the
certain	type	of	the	processor)	and	etc.	For	example		vdso_image_64		looks	like	this:

const	struct	vdso_image	vdso_image_64	=	{

				.data	=	raw_data,

				.size	=	8192,

				.text_mapping	=	{

								.name	=	"[vdso]",

								.pages	=	pages,

				},

				.alt	=	3145,

				.alt_len	=	26,

				.sym_vvar_start	=	-8192,

				.sym_vvar_page	=	-8192,

				.sym_hpet_page	=	-4096,

};

Where	the		raw_data		contains	raw	binary	code	of	the	64-bit		vDSO		system	calls	which	are		2		page	size:

static	struct	page	*pages[2];

vsyscall	and	vDSO

244

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso-image-64.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso-image-64.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso2c.c


or	8	Kilobytes.

The		init_vdso_image		function	is	defined	in	the	same	source	code	file	and	just	initializes	the		vdso_image.text_mapping.pages	.	First
of	all	this	function	calculates	the	number	of	pages	and	initializes	each		vdso_image.text_mapping.pages[number_of_page]		with	the
	virt_to_page		macro	that	converts	given	address	to	the		page		structure:

void	__init	init_vdso_image(const	struct	vdso_image	*image)

{

				int	i;

				int	npages	=	(image->size)	/	PAGE_SIZE;

				for	(i	=	0;	i	<	npages;	i++)

								image->text_mapping.pages[i]	=

												virt_to_page(image->data	+	i*PAGE_SIZE);

				...

				...

				...

}

The		init_vdso		function	passed	to	the		subsys_initcall		macro	adds	the	given	function	to	the		initcalls		list.	All	functions	from
this	list	will	be	called	in	the		do_initcalls		function	from	the	init/main.c	source	code	file:

subsys_initcall(init_vdso);

Ok,	we	just	saw	initialization	of	the		vDSO		and	initialization	of		page		structures	that	are	related	to	the	memory	pages	that	contain
	vDSO		system	calls.	But	to	where	do	their	pages	map?	Actually	they	are	mapped	by	the	kernel,	when	it	loads	binary	to	the	memory.	The
Linux	kernel	calls	the		arch_setup_additional_pages		function	from	the	arch/x86/entry/vdso/vma.c	source	code	file	that	checks	that
	vDSO		enabled	for	the		x86_64		and	calls	the		map_vdso		function:

int	arch_setup_additional_pages(struct	linux_binprm	*bprm,	int	uses_interp)

{

				if	(!vdso64_enabled)

								return	0;

				return	map_vdso(&vdso_image_64,	true);

}

The		map_vdso		function	is	defined	in	the	same	source	code	file	and	maps	pages	for	the		vDSO		and	for	the	shared		vDSO		variables.
That's	all.	The	main	differences	between	the		vsyscall		and	the		vDSO		concepts	is	that		vsyscal		has	a	static	address	of
	ffffffffff600000		and	implements		3		system	calls,	whereas	the		vDSO		loads	dynamically	and	implements	four	system	calls:

	__vdso_clock_gettime	;
	__vdso_getcpu	;
	__vdso_gettimeofday	;
	__vdso_time	.

That's	all.

Conclusion

This	is	the	end	of	the	third	part	about	the	system	calls	concept	in	the	Linux	kernel.	In	the	previous	part	we	discussed	the	implementation
of	the	preparation	from	the	Linux	kernel	side,	before	a	system	call	will	be	handled	and	implementation	of	the		exit		process	from	a
system	call	handler.	In	this	part	we	continued	to	dive	into	the	stuff	which	is	related	to	the	system	call	concept	and	learned	two	new
concepts	that	are	very	similar	to	the	system	call	-	the		vsyscall		and	the		vDSO	.

After	all	of	these	three	parts,	we	know	almost	all	things	that	are	related	to	system	calls,	we	know	what	system	call	is	and	why	user
applications	need	them.	We	also	know	what	occurs	when	a	user	application	calls	a	system	call	and	how	the	kernel	handles	system	calls.

The	next	part	will	be	the	last	part	in	this	chapter	and	we	will	see	what	occurs	when	a	user	runs	the	program.

vsyscall	and	vDSO

245

https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vma.c


If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links

x86_64	memory	map
x86_64
context	switching
ABI
virtual	address
Segmentation
enum
fix-mapped	addresses
glibc
BUILD_BUG_ON
Processor	register
Page	fault
segementation	fault
instruction	pointer
stack	pointer
uname
Linkers
Previous	part

vsyscall	and	vDSO

246

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Enumerated_type
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/Uname


System	calls	in	the	Linux	kernel.	Part	4.

How	does	the	Linux	kernel	run	a	program

This	is	the	fourth	part	of	the	chapter	that	describes	system	calls	in	the	Linux	kernel	and	as	I	wrote	in	the	conclusion	of	the	previous	-	this
part	will	be	last	in	this	chapter.	In	the	previous	part	we	stopped	at	the	two	new	concepts:

	vsyscall	;
	vDSO	;

that	are	related	and	very	similar	on	system	call	concept.

This	part	will	be	last	part	in	this	chapter	and	as	you	can	understand	from	the	part's	title	-	we	will	see	what	does	occur	in	the	Linux	kernel
when	we	run	our	programs.	So,	let's	start.

how	do	we	launch	our	programs?

There	are	many	different	ways	to	launch	an	application	from	an	user	perspective.	For	example	we	can	run	a	program	from	the	shell	or
double-click	on	the	application	icon.	It	does	not	matter.	The	Linux	kernel	handles	application	launch	regardless	how	we	do	launch	this
application.

In	this	part	we	will	consider	the	way	when	we	just	launch	an	application	from	the	shell.	As	you	know,	the	standard	way	to	launch	an
application	from	shell	is	the	following:	We	just	launch	a	terminal	emulator	application	and	just	write	the	name	of	the	program	and	pass
or	not	arguments	to	our	program,	for	example:

Let's	consider	what	does	occur	when	we	launch	an	application	from	the	shell,	what	does	shell	do	when	we	write	program	name,	what
does	Linux	kernel	do	etc.	But	before	we	will	start	to	consider	these	interesting	things,	I	want	to	warn	that	this	book	is	about	the	Linux
kernel.	That's	why	we	will	see	Linux	kernel	insides	related	stuff	mostly	in	this	part.	We	will	not	consider	in	details	what	does	shell	do,
we	will	not	consider	complex	cases,	for	example	subshells	etc.

My	default	shell	is	-	bash,	so	I	will	consider	how	do	bash	shell	launches	a	program.	So	let's	start.	The		bash		shell	as	well	as	any
program	that	written	with	C	programming	language	starts	from	the	main	function.	If	you	will	look	on	the	source	code	of	the		bash	
shell,	you	will	find	the		main		function	in	the	shell.c	source	code	file.	This	function	makes	many	different	things	before	the	main	thread
loop	of	the		bash		started	to	work.	For	example	this	function:

checks	and	tries	to	open		/dev/tty	;
check	that	shell	running	in	debug	mode;
parses	command	line	arguments;
reads	shell	environment;
loads		.bashrc	,		.profile		and	other	configuration	files;
and	many	many	more.

After	all	of	these	operations	we	can	see	the	call	of	the		reader_loop		function.	This	function	defined	in	the	eval.c	source	code	file	and
represents	main	thread	loop	or	in	other	words	it	reads	and	executes	commands.	As	the		reader_loop		function	made	all	checks	and	read
the	given	program	name	and	arguments,	it	calls	the		execute_command		function	from	the	execute_cmd.c	source	code	file.	The
	execute_command		function	through	the	chain	of	the	functions	calls:

Linux	

247

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Entry_point
https://github.com/bminor/bash/blob/master/shell.c#L357
https://github.com/bminor/bash/blob/master/eval.c#L67
https://github.com/bminor/bash/blob/master/execute_cmd.c#L378


execute_command

-->	execute_command_internal

---->	execute_simple_command

------>	execute_disk_command

-------->	shell_execve

makes	different	checks	like	do	we	need	to	start		subshell	,	was	it	builtin		bash		function	or	not	etc.	As	I	already	wrote	above,	we	will
not	consider	all	details	about	things	that	are	not	related	to	the	Linux	kernel.	In	the	end	of	this	process,	the		shell_execve		function	calls
the		execve		system	call:

execve	(command,	args,	env);

The		execve		system	call	has	the	following	signature:

int	execve(const	char	*filename,	char	*const	argv	[],	char	*const	envp[]);

and	executes	a	program	by	the	given	filename,	with	the	given	arguments	and	environment	variables.	This	system	call	is	the	first	in	our
case	and	only,	for	example:

$	strace	ls

execve("/bin/ls",	["ls"],	[/*	62	vars	*/])	=	0

$	strace	echo

execve("/bin/echo",	["echo"],	[/*	62	vars	*/])	=	0

$	strace	uname

execve("/bin/uname",	["uname"],	[/*	62	vars	*/])	=	0

So,	an	user	application	(	bash		in	our	case)	calls	the	system	call	and	as	we	already	know	the	next	step	is	Linux	kernel.

execve	system	call

We	saw	preparation	before	a	system	call	called	by	an	user	application	and	after	a	system	call	handler	finished	its	work	in	the	second	part
of	this	chapter.	We	stopped	at	the	call	of	the		execve		system	call	in	the	previous	paragraph.	This	system	call	defined	in	the	fs/exec.c
source	code	file	and	as	we	already	know	it	takes	three	arguments:

SYSCALL_DEFINE3(execve,

								const	char	__user	*,	filename,

								const	char	__user	*const	__user	*,	argv,

								const	char	__user	*const	__user	*,	envp)

{

				return	do_execve(getname(filename),	argv,	envp);

}

Implementation	of	the		execve		is	pretty	simple	here,	as	we	can	see	it	just	returns	the	result	of	the		do_execve		function.	The
	do_execve		function	defined	in	the	same	source	code	file	and	do	the	following	things:

Initialize	two	pointers	on	a	userspace	data	with	the	given	arguments	and	environment	variables;
return	the	result	of	the		do_execveat_common	.

We	can	see	its	implementation:

struct	user_arg_ptr	argv	=	{	.ptr.native	=	__argv	};

struct	user_arg_ptr	envp	=	{	.ptr.native	=	__envp	};

return	do_execveat_common(AT_FDCWD,	filename,	argv,	envp,	0);

Linux	

248

https://en.wikipedia.org/wiki/Environment_variable
https://github.com/torvalds/linux/blob/master/fs/exec.c


The		do_execveat_common		function	does	main	work	-	it	executes	a	new	program.	This	function	takes	similar	set	of	arguments,	but	as
you	can	see	it	takes	five	arguments	instead	of	three.	The	first	argument	is	the	file	descriptor	that	represent	directory	with	our	application,
in	our	case	the		AT_FDCWD		means	that	the	given	pathname	is	interpreted	relative	to	the	current	working	directory	of	the	calling	process.
The	fifth	argument	is	flags.	In	our	case	we	passed		0		to	the		do_execveat_common	.	We	will	check	in	a	next	step,	so	will	see	it	latter.

First	of	all	the		do_execveat_common		function	checks	the		filename		pointer	and	returns	if	it	is		NULL	.	After	this	we	check	flags	of	the
current	process	that	limit	of	running	processes	is	not	exceed:

if	(IS_ERR(filename))

				return	PTR_ERR(filename);

if	((current->flags	&	PF_NPROC_EXCEEDED)	&&

				atomic_read(&current_user()->processes)	>	rlimit(RLIMIT_NPROC))	{

				retval	=	-EAGAIN;

				goto	out_ret;

}

current->flags	&=	~PF_NPROC_EXCEEDED;

If	these	two	checks	were	successful	we	unset		PF_NPROC_EXCEEDED		flag	in	the	flags	of	the	current	process	to	prevent	fail	of	the
	execve	.	You	can	see	that	in	the	next	step	we	call	the		unshare_files		function	that	defined	in	the	kernel/fork.c	and	unshares	the	files
of	the	current	task	and	check	the	result	of	this	function:

retval	=	unshare_files(&displaced);

if	(retval)

				goto	out_ret;

We	need	to	call	this	function	to	eliminate	potential	leak	of	the	execve'd	binary's	file	descriptor.	In	the	next	step	we	start	preparation	of
the		bprm		that	represented	by	the		struct	linux_binprm		structure	(defined	in	the	include/linux/binfmts.h	header	file).	The
	linux_binprm		structure	is	used	to	hold	the	arguments	that	are	used	when	loading	binaries.	For	example	it	contains		vma		field	which
has		vm_area_struct		type	and	represents	single	memory	area	over	a	contiguous	interval	in	a	given	address	space	where	our	application
will	be	loaded,		mm		field	which	is	memory	descriptor	of	the	binary,	pointer	to	the	top	of	memory	and	many	other	different	fields.

First	of	all	we	allocate	memory	for	this	structure	with	the		kzalloc		function	and	check	the	result	of	the	allocation:

bprm	=	kzalloc(sizeof(*bprm),	GFP_KERNEL);

if	(!bprm)

				goto	out_files;

After	this	we	start	to	prepare	the		binprm		credentials	with	the	call	of	the		prepare_bprm_creds		function:

retval	=	prepare_bprm_creds(bprm);

				if	(retval)

								goto	out_free;

check_unsafe_exec(bprm);

current->in_execve	=	1;

Initialization	of	the		binprm		credentials	in	other	words	is	initialization	of	the		cred		structure	that	stored	inside	of	the		linux_binprm	
structure.	The		cred		structure	contains	the	security	context	of	a	task	for	example	real	uid	of	the	task,	real	guid	of	the	task,		uid		and
	guid		for	the	virtual	file	system	operations	etc.	In	the	next	step	as	we	executed	preparation	of	the		bprm		credentials	we	check	that	now
we	can	safely	execute	a	program	with	the	call	of	the		check_unsafe_exec		function	and	set	the	current	process	to	the		in_execve		state.

After	all	of	these	operations	we	call	the		do_open_execat		function	that	checks	the	flags	that	we	passed	to	the		do_execveat_common	
function	(remember	that	we	have		0		in	the		flags	)	and	searches	and	opens	executable	file	on	disk,	checks	that	our	we	will	load	a
binary	file	from		noexec		mount	points	(we	need	to	avoid	execute	a	binary	from	filesystems	that	do	not	contain	executable	binaries	like
proc	or	sysfs),	intializes		file		structure	and	returns	pointer	on	this	structure.	Next	we	can	see	the	call	the		sched_exec		after	this:

file	=	do_open_execat(fd,	filename,	flags);

Linux	

249

https://github.com/torvalds/linux/blob/master/kernel/fork.c
https://en.wikipedia.org/wiki/File_descriptor
https://github.com/torvalds/linux/blob/master/linux/binfmts.h
https://en.wikipedia.org/wiki/User_identifier#Real_user_ID
https://en.wikipedia.org/wiki/Globally_unique_identifier
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs


retval	=	PTR_ERR(file);

if	(IS_ERR(file))

				goto	out_unmark;

sched_exec();

The		sched_exec		function	is	used	to	determine	the	least	loaded	processor	that	can	execute	the	new	program	and	to	migrate	the	current
process	to	it.

After	this	we	need	to	check	file	descriptor	of	the	give	executable	binary.	We	try	to	check	does	the	name	of	the	our	binary	file	starts	from
the		/		symbol	or	does	the	path	of	the	given	executable	binary	is	interpreted	relative	to	the	current	working	directory	of	the	calling
process	or	in	other	words	file	descriptor	is		AT_FDCWD		(read	above	about	this).

If	one	of	these	checks	is	successfull	we	set	the	binary	parameter	filename:

bprm->file	=	file;

if	(fd	==	AT_FDCWD	||	filename->name[0]	==	'/')	{

				bprm->filename	=	filename->name;

}

Otherwise	if	the	filename	is	empty	we	set	the	binary	parameter	filename	to	the		/dev/fd/%d		or		/dev/fd/%d/%s		depends	on	the
filename	of	the	given	executable	binary	which	means	that	we	will	execute	the	file	to	which	the	file	descriptor	refers:

}	else	{

				if	(filename->name[0]	==	'\0')

								pathbuf	=	kasprintf(GFP_TEMPORARY,	"/dev/fd/%d",	fd);

				else

								pathbuf	=	kasprintf(GFP_TEMPORARY,	"/dev/fd/%d/%s",

																												fd,	filename->name);

				if	(!pathbuf)	{

								retval	=	-ENOMEM;

								goto	out_unmark;

				}

				bprm->filename	=	pathbuf;

}

bprm->interp	=	bprm->filename;

Note	that	we	set	not	only	the		bprm->filename		but	also		bprm->interp		that	will	contain	name	of	the	program	interpreter.	For	now	we
just	write	the	same	name	there,	but	later	it	will	be	updated	with	the	real	name	of	the	program	interpreter	depends	on	binary	format	of	a
program.	You	can	read	above	that	we	already	prepared		cred		for	the		linux_binprm	.	The	next	step	is	initalization	of	other	fields	of	the
	linux_binprm	.	First	of	all	we	call	the		bprm_mm_init		function	and	pass	the		bprm		to	it:

retval	=	bprm_mm_init(bprm);

if	(retval)

				goto	out_unmark;

The		bprm_mm_init		defined	in	the	same	source	code	file	and	as	we	can	understand	from	the	function's	name,	it	makes	initialization	of
the	memory	descriptor	or	in	other	words	the		bprm_mm_init		function	initializes		mm_struct		structure.	This	structure	defined	in	the
include/linux/mm_types.h	header	file	and	represents	address	space	of	a	process.	We	will	not	consider	implementation	of	the
	bprm_mm_init		function	because	we	do	not	know	many	important	stuff	related	to	the	Linux	kernel	memory	manager,	but	we	just	need
to	know	that	this	function	initializes		mm_struct		and	populate	it	with	a	temporary	stack		vm_area_struct	.

After	this	we	calculate	the	count	of	the	command	line	arguments	which	are	were	passed	to	the	our	executable	binary,	the	count	of	the
environment	variables	and	set	it	to	the		bprm->argc		and		bprm->envc		respectively:

bprm->argc	=	count(argv,	MAX_ARG_STRINGS);

if	((retval	=	bprm->argc)	<	0)

				goto	out;

Linux	

250

https://en.wikipedia.org/wiki/File_descriptor
https://github.com/torvalds/linux/blob/master/include/mm_types.h


bprm->envc	=	count(envp,	MAX_ARG_STRINGS);

if	((retval	=	bprm->envc)	<	0)

				goto	out;

As	you	can	see	we	do	this	operations	with	the	help	of	the		count		function	that	defined	in	the	same	source	code	file	and	calculates	the
count	of	strings	in	the		argv		array.	The		MAX_ARG_STRINGS		macro	defined	in	the	include/uapi/linux/binfmts.h	header	file	and	as	we	can
understand	from	the	macro's	name,	it	represents	maximum	number	of	strings	that	were	passed	to	the		execve		system	call.	The	value	of
the		MAX_ARG_STRINGS	:

#define	MAX_ARG_STRINGS	0x7FFFFFFF

After	we	calculated	the	number	of	the	command	line	arguments	and	environment	variables,	we	call	the		prepare_binprm		function.	We
already	call	the	function	with	the	similar	name	before	this	moment.	This	function	is	called		prepare_binprm_cred		and	we	remember
that	this	function	initializes		cred		structure	in	the		linux_bprm	.	Now	the		prepare_binprm		function:

retval	=	prepare_binprm(bprm);

if	(retval	<	0)

				goto	out;

fills	the		linux_binprm		structure	with	the		uid		from	inode	and	read		128		bytes	from	the	binary	executable	file.	We	read	only	first
	128		from	the	executable	file	because	we	need	to	check	a	type	of	our	executable.	We	will	read	the	rest	of	the	executable	file	in	the	later
step.	After	the	preparation	of	the		linux_bprm		structure	we	copy	the	filename	of	the	executable	binary	file,	command	line	arguments
and	enviroment	variables	to	the		linux_bprm		with	the	call	of	the		copy_strings_kernel		function:

retval	=	copy_strings_kernel(1,	&bprm->filename,	bprm);

if	(retval	<	0)

				goto	out;

retval	=	copy_strings(bprm->envc,	envp,	bprm);

if	(retval	<	0)

				goto	out;

retval	=	copy_strings(bprm->argc,	argv,	bprm);

if	(retval	<	0)

				goto	out;

And	set	the	pointer	to	the	top	of	new	program's	stack	that	we	set	in	the		bprm_mm_init		function:

bprm->exec	=	bprm->p;

The	top	of	the	stack	will	contain	the	program	filename	and	we	store	this	fileneme	tothe		exec		field	of	the		linux_bprm		structure.

Now	we	have	filled		linux_bprm		structure,	we	call	the		exec_binprm		function:

retval	=	exec_binprm(bprm);

if	(retval	<	0)

				goto	out;

First	of	all	we	store	the	pid	and		pid		that	seen	from	the	namespace	of	the	current	task	in	the		exec_binprm	:

old_pid	=	current->pid;

rcu_read_lock();

old_vpid	=	task_pid_nr_ns(current,	task_active_pid_ns(current->parent));

rcu_read_unlock();

and	call	the:

Linux	

251

https://github.com/torvalds/linux/blob/master/fs/exec.c
https://github.com/torvalds/linux/blob/master/include/uapi/linux/binfmts.h
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Cgroups


search_binary_handler(bprm);

function.	This	function	goes	through	the	list	of	handlers	that	contains	different	binary	formats.	Currently	the	Linux	kernel	supports
following	binary	formats:

	binfmt_script		-	support	for	interpreted	scripts	that	are	starts	from	the	#!	line;
	binfmt_misc		-	support	differnt	binary	formats,	according	to	runtime	configuration	of	the	Linux	kernel;
	binfmt_elf		-	support	elf	format;
	binfmt_aout		-	support	a.out	format;
	binfmt_flat		-	support	for	flat	format;
	binfmt_elf_fdpic		-	Support	for	elf	FDPIC	binaries;
	binfmt_em86		-	support	for	Intel	elf	binaries	running	on	Alpha	machines.

So,	the	search-binary_handler	tries	to	call	the		load_binary		function	and	pass		linux_binprm		to	it.	If	the	binary	handler	supports	the
given	executable	file	format,	it	starts	to	prepare	the	executable	binary	for	execution:

int	search_binary_handler(struct	linux_binprm	*bprm)

{

				...

				...

				...

				list_for_each_entry(fmt,	&formats,	lh)	{

								retval	=	fmt->load_binary(bprm);

								if	(retval	<	0	&&	!bprm->mm)	{

												force_sigsegv(SIGSEGV,	current);

												return	retval;

								}

				}

				return	retval;

Where	the		load_binary		for	example	for	the	elf	checks	the	magic	number	(each		elf		binary	file	contains	magic	number	in	the	header)
in	the		linux_bprm		buffer	(remember	that	we	read	first		128		bytes	from	the	executable	binary	file):	and	exit	if	it	is	not		elf		binary:

static	int	load_elf_binary(struct	linux_binprm	*bprm)

{

				...

				...

				...

				loc->elf_ex	=	*((struct	elfhdr	*)bprm->buf);

				if	(memcmp(elf_ex.e_ident,	ELFMAG,	SELFMAG)	!=	0)

								goto	out;

If	the	given	executable	file	is	in		elf		format,	the		load_elf_binary		continues	to	execute.	The		load_elf_binary		does	many	different
things	to	prepare	on	execution	executable	file.	For	example	it	checks	the	architecture	and	type	of	the	executable	file:

if	(loc->elf_ex.e_type	!=	ET_EXEC	&&	loc->elf_ex.e_type	!=	ET_DYN)

				goto	out;

if	(!elf_check_arch(&loc->elf_ex))

				goto	out;

and	exit	if	there	is	wrong	architecture	and	executable	file	non	executable	non	shared.	Tries	to	load	the		program	header	table	:

elf_phdata	=	load_elf_phdrs(&loc->elf_ex,	bprm->file);

if	(!elf_phdata)

				goto	out;

Linux	

252

https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Binary_file#Structure
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://elinux.org/UClinux_Shared_Library#FDPIC_ELF
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format


that	describes	segments.	Read	the		program	interpreter		and	libraries	that	linked	with	the	our	executable	binary	file	from	disk	and
load	it	to	memory.	The		program	interpreter		specified	in	the		.interp		section	of	the	executable	file	and	as	you	can	read	in	the	part
that	describes	Linkers	it	is	-		/lib64/ld-linux-x86-64.so.2		for	the		x86_64	.	It	setups	the	stack	and	map		elf		binary	into	the	correct
location	in	memory.	It	maps	the	bss	and	the	brk	sections	and	does	many	many	other	different	things	to	prepare	executable	file	to
execute.

In	the	end	of	the	execution	of	the		load_elf_binary		we	call	the		start_thread		function	and	pass	three	arguments	to	it:

				start_thread(regs,	elf_entry,	bprm->p);

				retval	=	0;

out:

				kfree(loc);

out_ret:

				return	retval;

These	arguments	are:

Set	of	registers	for	the	new	task;
Address	of	the	entry	point	of	the	new	task;
Address	of	the	top	of	the	stack	for	the	new	task.

As	we	can	understand	from	the	function's	name,	it	starts	new	thread,	but	it	is	not	so.	The		start_thread		function	just	prepares	new
task's	registers	to	be	ready	to	run.	Let's	look	on	the	implementation	of	this	function:

void

start_thread(struct	pt_regs	*regs,	unsigned	long	new_ip,	unsigned	long	new_sp)

{

								start_thread_common(regs,	new_ip,	new_sp,

																												__USER_CS,	__USER_DS,	0);

}

As	we	can	see	the		start_thread		function	just	makes	a	call	of	the		start_thread_common		function	that	will	do	all	for	us:

static	void

start_thread_common(struct	pt_regs	*regs,	unsigned	long	new_ip,

																				unsigned	long	new_sp,

																				unsigned	int	_cs,	unsigned	int	_ss,	unsigned	int	_ds)

{

								loadsegment(fs,	0);

								loadsegment(es,	_ds);

								loadsegment(ds,	_ds);

								load_gs_index(0);

								regs->ip																=	new_ip;

								regs->sp																=	new_sp;

								regs->cs																=	_cs;

								regs->ss																=	_ss;

								regs->flags													=	X86_EFLAGS_IF;

								force_iret();

}

The		start_thread_common		function	fills		fs		segment	register	with	zero	and		es		and		ds		with	the	value	of	the	data	segment	register.
After	this	we	set	new	values	to	the	instruction	pointer,		cs		segments	etc.	In	the	end	of	the		start_thread_common		function	we	can	see
the		force_iret		macro	that	force	a	system	call	return	via		iret		instruction.	Ok,	we	prepared	new	thread	to	run	in	userspace	and	now
we	can	return	from	the		exec_binprm		and	now	we	are	in	the		do_execveat_common		again.	After	the		exec_binprm		will	finish	its
execution	we	release	memory	for	structures	that	was	allocated	before	and	return.

After	we	returned	from	the		execve		system	call	handler,	execution	of	our	program	will	be	started.	We	can	do	it,	because	all	context
related	information	already	configured	for	this	purpose.	As	we	saw	the		execve		system	call	does	not	return	control	to	a	process,	but
code,	data	and	other	segments	of	the	caller	process	are	just	overwritten	of	the	program	segments.	The	exit	from	our	application	will	be
implemented	through	the		exit		system	call.

That's	all.	From	this	point	our	programm	will	be	executed.

Linux	

253

https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/.bss
http://man7.org/linux/man-pages/man2/sbrk.2.html
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Program_counter


Conclusion

This	is	the	end	of	the	fourth	and	last	part	of	the	about	the	system	calls	concept	in	the	Linux	kernel.	We	saw	almost	all	related	stuff	to	the
	system	call		concept	in	these	four	parts.	We	started	from	the	understanding	of	the		system	call		concept,	we	have	learned	what	is	it
and	why	do	users	applications	need	in	this	concept.	Next	we	saw	how	does	the	Linux	handle	a	system	call	from	an	user	application.	We
met	two	similar	concepts	to	the		system	call		concept,	they	are		vsyscall		and		vDSO		and	finally	we	saw	how	does	Linux	kernel	run
an	user	program.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links

System	call
shell
bash
entry	point
C
environment	variables
file	descriptor
real	uid
virtual	file	system
procfs
sysfs
inode
pid
namespace
#!
elf
a.out
flat
Alpha
FDPIC
segments
Linkers
Processor	register
instruction	pointer
Previous	part

Linux	

254

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Entry_point
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/User_identifier#Real_user_ID
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Binary_file#Structure
https://en.wikipedia.org/wiki/DEC_Alpha
http://elinux.org/UClinux_Shared_Library#FDPIC_ELF
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Program_counter


	open		

	Linux		 		Linux		Linux		Linux		Linux		sector,tracks	

	 	read	,	write	,	open	,	close	,	dup		

	 open		C		 	open		

#include	<fcntl.h>

#include	<stdio.h>

#include	<stdlib.h>

#include	<unistd.h>

#include	<sys/stat.h>

#include	<sys/types.h>

int	main(int	argc,	char	*argv)	{

								int	fd	=	open("test",	O_RDONLY);

								if	fd	<	0	{

																perror("Opening	of	the	file	is	failed\n");

								}

								else	{

																printf("file	sucessfully	opened\n");

								}

								close(fd);	

								return	0;

}

	open		 	open			 	 	open			 proc	

$	sudo	ls	/proc/1/fd/

0		10		12		14		16		2			21		23		25		27		29		30		32		34		36		38		4			41		43		45		47		49		50		53		55		58		6			61		63		67

		8

1		11		13		15		19		20		22		24		26		28		3			31		33		35		37		39		40		42		44		46		48		5			51		54		57		59		60		62		65		7	

		9

	 	open			 	open			 man	

	open		

SYSCALL_DEFINE3(open,	const	char	__user	*,	filename,	int,	flags,	umode_t,	mode)

{

				if	(force_o_largefile())

								flags	|=	O_LARGEFILE;

				return	do_sys_open(AT_FDCWD,	filename,	flags,	mode);

}

	 	SYSCALL_DEFINE		 	open		

	open			 fs/open.c	

SYSCALL_DEFINE3(open,	const	char	__user	*,	filename,	int,	flags,	umode_t,	mode)

open	

255

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/open.2.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Procfs
http://man7.org/linux/man-pages/man2/open.2.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c


{

				if	(force_o_largefile())

								flags	|=	O_LARGEFILE;

				return	do_sys_open(AT_FDCWD,	filename,	flags,	mode);

}

	 	do_sys_open			 	open			 	if		

if	(force_o_largefile())

				flags	|=	O_LARGEFILE;

	 	force_o_largefile()			true	 	open			flags		 	O_LARGEFILE		 	O_LARGEFILE			 	open(2)		man		

O_LARGEFILE

(LFS)	Allow	files	whose	sizes	cannot	be	represented	in	an	off_t	(but	can	be	represented	in	an	off64_t)	to	be	opened.

	 GNU	C	

off_t

This	is	a	signed	integer	type	used	to	represent	file	sizes.	In	the	GNU	C	Library,	this	type	is	no	narrower	than	int.	If	the	source	is
compiled	with	_FILE_OFFSET_BITS	==	64	this	type	is	transparently	replaced	by	off64_t.

off64_t

This	type	is	used	similar	to	off_t.	The	difference	is	that	even	on	32	bit	machines,	where	the	off_t	type	would	have	32	bits,	off64_t
has	64	bits	and	so	is	able	to	address	files	up	to	2^63	bytes	in	length.	When	compiling	with	_FILE_OFFSET_BITS	==	64	this
type	is	available	under	the	name	off_t.

	 	off_t	,	off64_t			 	O_LARGEFILE			Linux	32		 	O_LARGEFILE			64		 	open		
include/linux/fcntl.h	linux		 	force_o_largefile		

#ifndef	force_o_largefile

#define	force_o_largefile()	(BITS_PER_LONG	!=	32)

#endif

	CPU		 x86_64		 	force_o_largefile			 include/linux/fcntl.h

	 	force_o_largefile			 x86_64		"true"		64		 	force_o_largefile			true		 	O_LARGEFILE			 	open	

	flags	

	 	O_LARGEFILE			 	force_o_largefile			 	do_sys_open		

long	do_sys_open(int	dfd,	const	char	__user	*filename,	int	flags,	umode_t	mode)

{

				struct	open_flags	op;

				int	fd	=	build_open_flags(flags,	mode,	&op);

				struct	filename	*tmp;

				if	(fd)

								return	fd;

				tmp	=	getname(filename);

				if	(IS_ERR(tmp))

								return	PTR_ERR(tmp);

				fd	=	get_unused_fd_flags(flags);

				if	(fd	>=	0)	{

								struct	file	*f	=	do_filp_open(dfd,	tmp,	&op);

								if	(IS_ERR(f))	{

												put_unused_fd(fd);

open	

256

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c
http://man7.org/linux/man-pages/man2/open.2.html
https://www.gnu.org/software/libc/manual/html_mono/libc.html#File-Position-Primitive
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fcntl.h#L7
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fcntl.h#L7
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c


												fd	=	PTR_ERR(f);

								}	else	{

												fsnotify_open(f);

												fd_install(fd,	f);

								}

				}

				putname(tmp);

				return	fd;

}

	 	do_sys_open		

open(2)	flags	

	 	open			flags		 	mode		 	do_sys_open			 	build_open_flags			flags		flags		mode	

	 	build_open_flags		

flags	-	
mode	-	

	-	 	op			 	open_flags		

struct	open_flags	{

								int	open_flag;

								umode_t	mode;

								int	acc_mode;

								int	intent;

								int	lookup_flags;

};

	 fs/internal.h		flags			 	build_open_flags			 	open_flags		

	build_open_flags		

int	acc_mode	=	ACC_MODE(flags);

	 	ACC_MODE			 include/linux/fs.h,

#define	ACC_MODE(x)	("\004\002\006\006"[(x)&O_ACCMODE])

#define	O_ACCMODE			00000003

	"\004\002\006\006"		

"\004\002\006\006"	==	{'\004',	'\002',	'\006',	'\006'}

	ACC_MODE			 	[(x)	&	O_ACCMODE]		 	O_ACCMODE		==	00000003.	 	x	&	O_ACCMODE		 	read	,	write			 	read/weite		

#define	O_RDONLY								00000000

#define	O_WRONLY								00000001

#define	O_RDWR										00000002

	ACC_MODE			 	MAY_WRITE	,	MAY_READ		

if	(flags	&	(O_CREAT	|	__O_TMPFILE))

				op->mode	=	(mode	&	S_IALLUGO)	|	S_IFREG;

else

open	

257

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/internal.h#L99
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fs.h


				op->mode	=	0;

	 	open_flags		

if	neither	O_CREAT	nor	O_TMPFILE	is	specified,	then	mode	is	ignored.

	 	O_CREAT			 	O_TMPFILE			 	opendir	(http://man7.org/linux/man-pages/man3/opendir.3.html)	

	 fanotify	 	O_CLOSEXEC		

flags	&=	~FMODE_NONOTIFY	&	~O_CLOEXEC;

	 	 	execve			 	open			 	O_CLOSEXEC			 	O_CLOSEXEC			 fork)	+	execve)	

	flags		 	O_SYNC			 	O_DSYNC		

if	(flags	&	__O_SYNC)

				flags	|=	O_DSYNC;

	O_SYNC		 	O_DSYNC			 	O_SYNC			( 	O_DSYNC	)		 	atime	,	mtime			Linux		 	O_DSYNC		+		__O_SYNC	,
	__O_SYNC|O_DSYNC	

flags		 	O_TMPFILE_MASK			 	O_CREAT		|		O_TMPFILE			 	O_CREAT		&		O_TMPFILE		

if	(flags	&	__O_TMPFILE)	{

				if	((flags	&	O_TMPFILE_MASK)	!=	O_TMPFILE)

								return	-EINVAL;

				if	(!(acc_mode	&	MAY_WRITE))

								return	-EINVAL;

}	else	if	(flags	&	O_PATH)	{

											flags	&=	O_DIRECTORY	|	O_NOFOLLOW	|	O_PATH;

								acc_mode	=	0;

}

	man	

O_TMPFILE	must	be	specified	with	one	of	O_RDWR	or	O_WRONLY

	 	O_TMPFILE			 	O_PATH		 	O_PATH		

()

	 	dup	,		fcntl			 	read	,		write			 	O_DIRECTORY	|	O_NOFOLLOW	|	O_PATH			 	build_open_flags		
	 	open_flags->open_flag		

op->open_flag	=	flags;

	 	open_flag			flags		 	umask			 	mode			 	open_flags		 	op->acc_mode			 	build_open_flags		
	acc_mode			flag

if	(flags	&	O_TRUNC)

								acc_mode	|=	MAY_WRITE;

if	(flags	&	O_APPEND)

				acc_mode	|=	MAY_APPEND;

op->acc_mode	=	acc_mode;

	O_TRUNC			0	 	O_APPEND			append	mode	()	

	open_flags			-	 	intent		flags		 	O_PATH		 	open_flags			0	

open	

258

http://man7.org/linux/man-pages/man3/opendir.3.html
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Fork_\(system_call\
https://en.wikipedia.org/wiki/Exec_\(system_call\


op->intent	=	flags	&	O_PATH	?	0	:	LOOKUP_OPEN;

	 	open_flags			 	LOOKUP_OPEN		 	LOOKUP_CREATE		 	O_EXEC		

if	(flags	&	O_CREAT)	{

				op->intent	|=	LOOKUP_CREATE;

				if	(flags	&	O_EXCL)

								op->intent	|=	LOOKUP_EXCL;

}

	open_flags			 	lookup_flags	:

if	(flags	&	O_DIRECTORY)

				lookup_flags	|=	LOOKUP_DIRECTORY;

if	(!(flags	&	O_NOFOLLOW))

				lookup_flags	|=	LOOKUP_FOLLOW;

op->lookup_flags	=	lookup_flags;

return	0;

	 	LOOKUP_DIRECTORY		 	LOOKUP_FOLLOW		 	build_open_flags		 	open_flags			modes		flags		 	do_sys_open		

	 	build_open_flags			flags		modes		 	getname			 	filename			 	open		

tmp	=	getname(filename);

if	(IS_ERR(tmp))

				return	PTR_ERR(tmp);

getname		 fs/namei.c	

struct	filename	*

getname(const	char	__user	*	filename)

{

								return	getname_flags(filename,	0,	NULL);

}

	 	getname_flags		 	getname_flags		 	filename			 include/linux/fs.h	

name	-	
uptr	-	
aname	-		audit	
refcnt	-	
iname	-		 	PATH_MAX	

	getname_flags			 	strncpy_from_user			 	open		

fd	=	get_unused_fd_flags(flags);

	get_unused_fd_flags			minimum	( 	0	)		maximum	( 	RLIMIT_NOFILE	)		 	open		
	get_unused_fd_flags			 	O_CLOEXEC			flags	

	do_sys_open			 	do_filp_open	function	:

struct	file	*f	=	do_filp_open(dfd,	tmp,	&op);

open	

259

https://en.wikipedia.org/wiki/Symbolic_link
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fs.h


if	(IS_ERR(f))	{

				put_unused_fd(fd);

				fd	=	PTR_ERR(f);

}	else	{

				fsnotify_open(f);

				fd_install(fd,	f);

}

	do_filp_open()			 	file		 	file			 	do_filp_open			 	put_unused_fd			 	do_filp_open()			 	file	

	 	file		

	 	do_filp_open()			 fs/namei.c	Linux		 	nameidata			 inode	 	do_filp_open()			 	open			 	inode	

	 	nameidata		 	path_openat		

filp	=	path_openat(&nd,	op,	flags	|	LOOKUP_RCU);

if	(unlikely(filp	==	ERR_PTR(-ECHILD)))

				filp	=	path_openat(&nd,	op,	flags);

if	(unlikely(filp	==	ERR_PTR(-ESTALE)))

				filp	=	path_openat(&nd,	op,	flags	|	LOOKUP_REVAL);

	 	path_openat		Linux		 RCU		 nfs	 	path_openat			 	path	lookup		 	dentry		(
Linux	)

	path_openat			 	get_empty_flip()		 	get_empty_flip()			 	file			 	file			 	open			 	O_TMPFILE		|
	O_CREATE			 	O_PATH			 	do_tmpfile			 	do_o_path		

	 	path_init			 	inode			dentry	inode			 	AT_CWD			 	do_sys_open		

	path_init			 looploop		 	link_path_walk			 	do_last			link_path_walk			 	walk_component		
	dcache		 	link_path_walk		 	do_last			 	link_path_walk			 	file		 	do_last			 	vfs_open		

	vfs_open			 fs/open.c	Linux	

	 	open		 		open			 	file_operations.open			 filesystem	

Linux	,		twitter	 @0xAX/email,		 issue.	,		Linux		 read	

	 linux-insides		PR	

system	call
open
file	descriptor
proc
GNU	C	Library	Reference	Manual
IA-64
x86_64
opendir
fanotify
fork)
execve)
symlink
audit

open	

260

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c
https://en.wikipedia.org/wiki/Inode
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://en.wikipedia.org/wiki/Network_File_System
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c#L3457
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c
https://github.com/torvalds/linux/tree/master/fs
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals/issues/new
http://man7.org/linux/man-pages/man2/read.2.html
https://github.com/0xAX/linux-internals
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/open.2.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Procfs
https://www.gnu.org/software/libc/manual/html_mono/libc.html#File-Position-Primitive
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/X86-64
http://man7.org/linux/man-pages/man3/opendir.3.html
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://en.wikipedia.org/wiki/Fork_\(system_call\
https://en.wikipedia.org/wiki/Exec_\(system_call\
https://en.wikipedia.org/wiki/Symbolic_link
https://linux.die.net/man/8/auditd


inode
RCU
read
previous	part

open	

261

https://en.wikipedia.org/wiki/Inode
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
http://man7.org/linux/man-pages/man2/read.2.html


	Linux	

	-		Linux	
	-	this	part	describes		clocksource		framework	in	the	Linux	kernel.
The	tick	broadcast	framework	and	dyntick	-		tick	broadcast	framework	and	dyntick	
	-		Linux	
Clockevents		-		:	 	clockevents	.
x86		-		 	x86_64		
Linux		-	

262



Timers	and	time	management	in	the	Linux	kernel.	Part	1.

Introduction

This	is	yet	another	post	that	opens	new	chapter	in	the	linux-insides	book.	The	previous	part	was	a	list	part	of	the	chapter	that	describes
system	call	concept	and	now	time	is	to	start	new	chapter.	As	you	can	understand	from	the	post's	title,	this	chapter	will	be	devoted	to	the
	timers		and		time	management		in	the	Linux	kernel.	The	choice	of	topic	for	the	current	chapter	is	not	accidental.	Timers	and	generally
time	management	are	very	important	and	widely	used	in	the	Linux	kernel.	The	Linux	kernel	uses	timers	for	various	tasks,	different
timeouts	for	example	in	TCP	implementation,	the	kernel	must	know	current	time,	scheduling	asynchronous	functions,	next	event
interrupt	scheduling	and	many	many	more.

So,	we	will	start	to	learn	implementation	of	the	different	time	management	related	stuff	in	this	part.	We	will	see	different	types	of	timers
and	how	do	different	Linux	kernel	subsystems	use	them.	As	always	we	will	start	from	the	earliest	part	of	the	Linux	kernel	and	will	go
through	initialization	process	of	the	Linux	kernel.	We	already	did	it	in	the	special	chapter	which	describes	initialization	process	of	the
Linux	kernel,	but	as	you	may	remember	we	missed	some	things	there.	And	one	of	them	is	the	initialization	of	timers.

Let's	start.

Initialization	of	non-standard	PC	hardware	clock

After	the	Linux	kernel	was	decompressed	(more	about	this	you	can	read	in	the	Kernel	decompression	part)	the	architecture	non-specific
code	starts	to	work	in	the	init/main.c	source	code	file.	After	initialization	of	the	lock	validator,	initialization	of	cgroups	and	setting
canary	value	we	can	see	the	call	of	the		setup_arch		function.

As	you	may	remember	this	function	defined	in	the	arch/x86/kernel/setup.c	source	code	file	and	prepares/initializes	architecture-specific
stuff	(for	example	it	reserves	place	for	bss	section,	reserves	place	for	initrd,	parses	kernel	command	line	and	many	many	other	things).
Besides	this,	we	can	find	some	time	management	related	functions	there.

The	first	is:

x86_init.timers.wallclock_init();

We	already	saw		x86_init		structure	in	the	chapter	that	describes	initialization	of	the	Linux	kernel.	This	structure	contains	pointers	to
the	default	setup	functions	for	the	different	platforms	like	Intel	MID,	Intel	CE4100	and	etc.	The		x86_init		structure	defined	in	the
arch/x86/kernel/x86_init.c	and	as	you	can	see	it	determines	standard	PC	hardware	by	default.

As	we	can	see,	the		x86_init		structure	has		x86_init_ops		type	that	provides	a	set	of	functions	for	platform	specific	setup	like
reserving	standard	resources,	platform	specific	memory	setup,	initialization	of	interrupt	handlers	and	etc.	This	structure	looks	like:

struct	x86_init_ops	{

				struct	x86_init_resources							resources;

				struct	x86_init_mpparse									mpparse;

				struct	x86_init_irqs												irqs;

				struct	x86_init_oem													oem;

				struct	x86_init_paging										paging;

				struct	x86_init_timers										timers;

				struct	x86_init_iommu											iommu;

				struct	x86_init_pci													pci;

};

We	can	note		timers		field	that	has		x86_init_timers		type	and	as	we	can	understand	by	its	name	-	this	field	is	related	to	time
management	and	timers.	The		x86_init_timers		contains	four	fields	which	are	all	functions	that	returns	pointer	on	void:

	setup_percpu_clockev		-	set	up	the	per	cpu	clock	event	device	for	the	boot	cpu;
	tsc_pre_init		-	platform	function	called	before	TSC	init;

263

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://github.com/torvalds/linux/blob/master/init/main.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Buffer_overflow_protection
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://en.wikipedia.org/wiki/.bss
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
http://www.wpgholdings.com/epaper/US/newsRelease_20091215/255874.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c#L36
https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Time_Stamp_Counter


	timer_init		-	initialize	the	platform	timer;
	wallclock_init		-	initialize	the	wallclock	device.

So,	as	we	already	know,	in	our	case	the		wallclock_init		executes	initialization	of	the	wallclock	device.	If	we	will	look	on	the
	x86_init		structure,	we	will	see	that		wallclock_init		points	to	the		x86_init_noop	:

struct	x86_init_ops	x86_init	__initdata	=	{

				...

				...

				...

				.timers	=	{

								.wallclock_init												=	x86_init_noop,

				},

				...

				...

				...

}

Where	the		x86_init_noop		is	just	a	function	that	does	nothing:

void	__cpuinit	x86_init_noop(void)	{	}

for	the	standard	PC	hardware.	Actually,	the		wallclock_init		function	is	used	in	the	Intel	MID	platform.	Initialization	of	the
	x86_init.timers.wallclock_init		located	in	the	arch/x86/platform/intel-mid/intel-mid.c	source	code	file	in	the
	x86_intel_mid_early_setup		function:

void	__init	x86_intel_mid_early_setup(void)

{

				...

				...

				...

				x86_init.timers.wallclock_init	=	intel_mid_rtc_init;

				...

				...

				...

}

Implementation	of	the		intel_mid_rtc_init		function	is	in	the	arch/x86/platform/intel-mid/intel_mid_vrtc.c	source	code	file	and	looks
pretty	easy.	First	of	all,	this	function	parses	Simple	Firmware	Interface	M-Real-Time-Clock	table	for	the	getting	such	devices	to	the
	sfi_mrtc_array		array	and	initialization	of	the		set_time		and		get_time		functions:

void	__init	intel_mid_rtc_init(void)

{

				unsigned	long	vrtc_paddr;

				sfi_table_parse(SFI_SIG_MRTC,	NULL,	NULL,	sfi_parse_mrtc);

				vrtc_paddr	=	sfi_mrtc_array[0].phys_addr;

				if	(!sfi_mrtc_num	||	!vrtc_paddr)

								return;

				vrtc_virt_base	=	(void	__iomem	*)set_fixmap_offset_nocache(FIX_LNW_VRTC,

																																vrtc_paddr);

				x86_platform.get_wallclock	=	vrtc_get_time;

				x86_platform.set_wallclock	=	vrtc_set_mmss;

}

That's	all,	after	this	a	device	based	on		Intel	MID		will	be	able	to	get	time	from	hardware	clock.	As	I	already	wrote,	the	standard	PC
x86_64	architecture	does	not	support		x86_init_noop		and	just	do	nothing	during	call	of	this	function.	We	just	saw	initialization	of	the
real	time	clock	for	the	Intel	MID	architecture	and	now	times	to	return	to	the	general		x86_64		architecture	and	will	look	on	the	time
management	related	stuff	there.

264

https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
https://github.com/torvalds/linux/blob/master/arch/x86/platform/intel-mid/intel-mid.c
https://github.com/torvalds/linux/blob/master/arch/x86/platform/intel-mid/intel_mid_vrtc.c
https://en.wikipedia.org/wiki/Simple_Firmware_Interface
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms


Acquainted	with	jiffies

If	we	will	return	to	the		setup_arch		function	which	is	located	as	you	remember	in	the	arch/x86/kernel/setup.c	source	code	file,	we	will
see	the	next	call	of	the	time	management	related	function:

register_refined_jiffies(CLOCK_TICK_RATE);

Before	we	will	look	on	the	implementation	of	this	function,	we	must	know	about	jiffy.	As	we	can	read	on	wikipedia:

Jiffy	is	an	informal	term	for	any	unspecified	short	period	of	time

This	definition	is	very	similar	to	the		jiffy		in	the	Linux	kernel.	There	is	global	variable	with	the		jiffies		which	holds	the	number	of
ticks	that	have	occurred	since	the	system	booted.	The	Linux	kernel	sets	this	variable	to	zero:

extern	unsigned	long	volatile	__jiffy_data	jiffies;

during	initialization	process.	This	global	variable	will	be	increased	each	time	during	timer	interrupt.	Besides	this,	near	the		jiffies	
variable	we	can	see	definition	of	the	similar	variable

extern	u64	jiffies_64;

Actually	only	one	of	these	variables	is	in	use	in	the	Linux	kernel.	And	it	depends	on	the	processor	type.	For	the	x86_64	it	will	be		u64	
use	and	for	the	x86	is		unsigned	long	.	We	will	see	this	if	we	will	look	on	the	arch/x86/kernel/vmlinux.lds.S	linker	script:

#ifdef	CONFIG_X86_32

...

jiffies	=	jiffies_64;

...

#else

...

jiffies_64	=	jiffies;

...

#endif

In	the	case	of		x86_32		the		jiffies		will	be	lower		32		bits	of	the		jiffies_64		variable.	Schematically,	we	can	imagine	it	as	follows

																				jiffies_64

+-----------------------------------------------------+

|																							|																													|

|																							|																													|

|																							|							jiffies	on	`x86_32`			|

|																							|																													|

|																							|																													|

+-----------------------------------------------------+

63																					31																													0

Now	we	know	a	little	theory	about		jiffies		and	we	can	return	to	the	our	function.	There	is	no	architecture-specific	implementation	for
our	function	-	the		register_refined_jiffies	.	This	function	located	in	the	generic	kernel	code	-	kernel/time/jiffies.c	source	code	file.
Main	point	of	the		register_refined_jiffies		is	registration	of	the	jiffy		clocksource	.	Before	we	will	look	on	the	implementation	of
the		register_refined_jiffies		function,	we	must	know	what	is	it		clocksource	.	As	we	can	read	in	the	comments:

The	`clocksource`	is	hardware	abstraction	for	a	free-running	counter.

I'm	not	sure	about	you,	but	that	description	didn't	give	a	good	understanding	about	the		clocksource		concept.	Let's	try	to	understand
what	is	it,	but	we	will	not	go	deeper	because	this	topic	will	be	described	in	a	separate	part	in	much	more	detail.	The	main	point	of	the
	clocksource		is	timekeeping	abstraction	or	in	very	simple	words	-	it	provides	a	time	value	to	the	kernel.	We	already	know	about

265

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://en.wikipedia.org/wiki/Jiffy_%28time%29
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c


	jiffies		interface	that	represents	number	of	ticks	that	have	occurred	since	the	system	booted.	It	represented	by	the	global	variable	in
the	Linux	kernel	and	increased	each	timer	interrupt.	The	Linux	kernel	can	use		jiffies		for	time	measurement.	So	why	do	we	need	in
separate	context	like	the		clocksource	?	Actually	different	hardware	devices	provide	different	clock	sources	that	are	widely	in	their
capabilities.	The	availability	of	more	precise	techniques	for	time	intervals	measurement	is	hardware-dependent.

For	example		x86		has	on-chip	a	64-bit	counter	that	is	called	Time	Stamp	Counter	and	its	frequency	can	be	equal	to	processor
frequency.	Or	for	example	High	Precision	Event	Timer	that	consists	of	a		64-bit		counter	of	at	least		10	MHz		frequency.	Two	different
timers	and	they	are	both	for		x86	.	If	we	will	add	timers	from	other	architectures,	this	only	makes	this	problem	more	complex.	The
Linux	kernel	provides		clocksource		concept	to	solve	the	problem.

The	clocksource	concept	represented	by	the		clocksource		structure	in	the	Linux	kernel.	This	structure	defined	in	the
include/linux/clocksource.h	header	file	and	contains	a	couple	of	fields	that	describe	a	time	counter.	For	example	it	contains	-		name	
field	which	is	the	name	of	a	counter,		flags		field	that	describes	different	properties	of	a	counter,	pointers	to	the		suspend		and
	resume		functions,	and	many	more.

Let's	look	on	the		clocksource		structure	for	jiffies	that	defined	in	the	kernel/time/jiffies.c	source	code	file:

static	struct	clocksource	clocksource_jiffies	=	{

				.name								=	"jiffies",

				.rating								=	1,

				.read								=	jiffies_read,

				.mask								=	0xffffffff,

				.mult								=	NSEC_PER_JIFFY	<<	JIFFIES_SHIFT,

				.shift								=	JIFFIES_SHIFT,

				.max_cycles				=	10,

};

We	can	see	definition	of	the	default	name	here	-		jiffies	,	the	next	is		rating		field	allows	the	best	registered	clock	source	to	be
chosen	by	the	clock	source	management	code	available	for	the	specified	hardware.	The		rating		may	have	following	value:

	1-99		-	Only	available	for	bootup	and	testing	purposes;
	100-199		-	Functional	for	real	use,	but	not	desired.
	200-299		-	A	correct	and	usable	clocksource.
	300-399		-	A	reasonably	fast	and	accurate	clocksource.
	400-499		-	The	ideal	clocksource.	A	must-use	where	available;

For	example	rating	of	the	time	stamp	counter	is		300	,	but	rating	of	the	high	precision	event	timer	is		250	.	The	next	field	is		read		-	is
pointer	to	the	function	that	allows	to	read	clocksource's	cycle	value	or	in	other	words	it	just	returns		jiffies		variable	with		cycle_t	
type:

static	cycle_t	jiffies_read(struct	clocksource	*cs)

{

								return	(cycle_t)	jiffies;

}

that	is	just	64-bit	unsigned	type:

typedef	u64	cycle_t;

The	next	field	is	the		mask		value	ensures	that	subtraction	between	counters	values	from	non		64	bit		counters	do	not	need	special
overflow	logic.	In	our	case	the	mask	is		0xffffffff		and	it	is		32		bits.	This	means	that		jiffy		wraps	around	to	zero	after		42	
seconds:

>>>	0xffffffff

4294967295

#	42	nanoseconds

>>>	42	*	pow(10,	-9)

4.2000000000000006e-08

#	43	nanoseconds

>>>	43	*	pow(10,	-9)

266

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer


4.3e-08

The	next	two	fields		mult		and		shift		are	used	to	convert	the	clocksource's	period	to	nanoseconds	per	cycle.	When	the	kernel	calls	the
	clocksource.read		function,	this	function	returns	value	in		machine		time	units	represented	with		cycle_t		data	type	that	we	saw	just
now.	To	convert	this	return	value	to	the	nanoseconds	we	need	in	these	two	fields:		mult		and		shift	.	The		clocksource		provides
	clocksource_cyc2ns		function	that	will	do	it	for	us	with	the	following	expression:

((u64)	cycles	*	mult)	>>	shift;

As	we	can	see	the		mult		field	is	equal:

NSEC_PER_JIFFY	<<	JIFFIES_SHIFT

#define	NSEC_PER_JIFFY		((NSEC_PER_SEC+HZ/2)/HZ)

#define	NSEC_PER_SEC				1000000000L

by	default,	and	the		shift		is

#if	HZ	<	34

		#define	JIFFIES_SHIFT			6

#elif	HZ	<	67

		#define	JIFFIES_SHIFT			7

#else

		#define	JIFFIES_SHIFT			8

#endif

The		jiffies		clock	source	uses	the		NSEC_PER_JIFFY		multiplier	conversion	to	specify	the	nanosecond	over	cycle	ratio.	Note	that
values	of	the		JIFFIES_SHIFT		and		NSEC_PER_JIFFY		depend	on		HZ		value.	The		HZ		represents	the	frequency	of	the	system	timer.	This
macro	defined	in	the	include/asm-generic/param.h	and	depends	on	the		CONFIG_HZ		kernel	configuration	option.	The	value	of		HZ	
differs	for	each	supported	architecture,	but	for		x86		it's	defined	like:

#define	HZ								CONFIG_HZ

Where		CONFIG_HZ		can	be	one	of	the	following	values:

267

https://en.wikipedia.org/wiki/Nanosecond
https://github.com/torvalds/linux/blob/master/include/asm-generic/param.h


This	means	that	in	our	case	the	timer	interrupt	frequency	is		250	HZ		or	occurs		250		times	per	second	or	one	timer	interrupt	each		4ms	.

The	last	field	that	we	can	see	in	the	definition	of	the		clocksource_jiffies		structure	is	the	-		max_cycles		that	holds	the	maximum
cycle	value	that	can	safely	be	multiplied	without	potentially	causing	an	overflow.

Ok,	we	just	saw	definition	of	the	`clocksource_jiffies`	structure,	also	we	know	a	little	about	`jiffies`	and	`clockso

urce`,	now	is	time	to	get	back	to	the	implementation	of	the	our	function.	In	the	beginning	of	this	part	we	have	stopp

ed	on	the	call	of	the:

register_refined_jiffies(CLOCK_TICK_RATE);

function	from	the	arch/x86/kernel/setup.c	source	code	file.

As	I	already	wrote,	the	main	purpose	of	the		register_refined_jiffies		function	is	to	register		refined_jiffies		clocksource.	We
already	saw	the		clocksource_jiffies		structure	represents	standard		jiffies		clock	source.	Now,	if	you	look	in	the
kernel/time/jiffies.c	source	code	file,	you	will	find	yet	another	clock	source	definition:

struct	clocksource	refined_jiffies;

There	is	one	different	between		refined_jiffies		and		clocksource_jiffies	:	The	standard		jiffies		based	clock	source	is	the	lowest
common	denominator	clock	source	which	should	function	on	all	systems.	As	we	already	know,	the		jiffies		global	variable	will	be
increased	during	each	timer	interrupt.	This	means	that	standard		jiffies		based	clock	source	has	the	same	resolution	as	the	timer
interrupt	frequency.	From	this	we	can	understand	that	standard		jiffies		based	clock	source	may	suffer	from	inaccuracies.	The
	refined_jiffies		uses		CLOCK_TICK_RATE		as	the	base	of		jiffies		shift.

Let's	look	on	the	implementation	of	this	function.	First	of	all	we	can	see	that	the		refined_jiffies		clock	source	based	on	the
	clocksource_jiffies		structure:

int	register_refined_jiffies(long	cycles_per_second)

{

				u64	nsec_per_tick,	shift_hz;

				long	cycles_per_tick;

				refined_jiffies	=	clocksource_jiffies;

				refined_jiffies.name	=	"refined-jiffies";

				refined_jiffies.rating++;

				...

				...

				...

Here	we	can	see	that	we	update	the	name	of	the		refined_jiffies		to		refined-jiffies		and	increase	the	rating	of	this	structure.	As
you	remember,	the		clocksource_jiffies		has	rating	-		1	,	so	our		refined_jiffies		clocksource	will	have	rating	-		2	.	This	means
that	the		refined_jiffies		will	be	best	selection	for	clock	source	management	code.

In	the	next	step	we	need	to	calculate	number	of	cycles	per	one	tick:

cycles_per_tick	=	(cycles_per_second	+	HZ/2)/HZ;

Note	that	we	have	used		NSEC_PER_SEC		macro	as	the	base	of	the	standard		jiffies		multiplier.	Here	we	are	using	the
	cycles_per_second		which	is	the	first	parameter	of	the		register_refined_jiffies		function.	We've	passed	the		CLOCK_TICK_RATE	
macro	to	the		register_refined_jiffies		function.	This	macro	definied	in	the	arch/x86/include/asm/timex.h	header	file	and	expands	to
the:

#define	CLOCK_TICK_RATE									PIT_TICK_RATE

where	the		PIT_TICK_RATE		macro	expands	to	the	frequency	of	the	Intel	8253:

268

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/timex.h


#define	PIT_TICK_RATE	1193182ul

After	this	we	calculate		shift_hz		for	the		register_refined_jiffies		that	will	store		hz	<<	8		or	in	other	words	frequency	of	the
system	timer.	We	shift	left	the		cycles_per_second		or	frequency	of	the	programmable	interval	timer	on		8		in	order	to	get	extra
accuracy:

shift_hz	=	(u64)cycles_per_second	<<	8;

shift_hz	+=	cycles_per_tick/2;

do_div(shift_hz,	cycles_per_tick);

In	the	next	step	we	calculate	the	number	of	seconds	per	one	tick	by	shifting	left	the		NSEC_PER_SEC		on		8		too	as	we	did	it	with	the
	shift_hz		and	do	the	same	calculation	as	before:

nsec_per_tick	=	(u64)NSEC_PER_SEC	<<	8;

nsec_per_tick	+=	(u32)shift_hz/2;

do_div(nsec_per_tick,	(u32)shift_hz);

refined_jiffies.mult	=	((u32)nsec_per_tick)	<<	JIFFIES_SHIFT;

In	the	end	of	the		register_refined_jiffies		function	we	register	new	clock	source	with	the		__clocksource_register		function	that
defined	in	the	include/linux/clocksource.h	header	file	and	return:

__clocksource_register(&refined_jiffies);

return	0;

The	clock	source	management	code	provides	the	API	for	clock	source	registration	and	selection.	As	we	can	see,	clock	sources	are
registered	by	calling	the		__clocksource_register		function	during	kernel	initialization	or	from	a	kernel	module.	During	registration,
the	clock	source	management	code	will	choose	the	best	clock	source	available	in	the	system	using	the		clocksource.rating		field
which	we	already	saw	when	we	initialized		clocksource		structure	for		jiffies	.

Using	the	jiffies

We	just	saw	initialization	of	two		jiffies		based	clock	sources	in	the	previous	paragraph:

standard		jiffies		based	clock	source;
refined		jiffies		based	clock	source;

Don't	worry	if	you	don't	understand	the	calculations	here.	They	look	frightening	at	first.	Soon,	step	by	step	we	will	learn	these	things.
So,	we	just	saw	initialization	of		jffies		based	clock	sources	and	also	we	know	that	the	Linux	kernel	has	the	global	variable		jiffies	
that	holds	the	number	of	ticks	that	have	occurred	since	the	kernel	started	to	work.	Now,	let's	look	how	to	use	it.	To	use		jiffies		we
just	can	use		jiffies		global	variable	by	its	name	or	with	the	call	of	the		get_jiffies_64		function.	This	function	defined	in	the
kernel/time/jiffies.c	source	code	file	and	just	returns	full		64-bit		value	of	the		jiffies	:

u64	get_jiffies_64(void)

{

				unsigned	long	seq;

				u64	ret;

				do	{

								seq	=	read_seqbegin(&jiffies_lock);

								ret	=	jiffies_64;

				}	while	(read_seqretry(&jiffies_lock,	seq));

				return	ret;

}

EXPORT_SYMBOL(get_jiffies_64);

269

https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c


Note	that	the		get_jiffies_64		function	does	not	implemented	as		jiffies_read		for	example:

static	cycle_t	jiffies_read(struct	clocksource	*cs)

{

				return	(cycle_t)	jiffies;

}

We	can	see	that	implementation	of	the		get_jiffies_64		is	more	complex.	The	reading	of	the		jiffies_64		variable	is	implemented
using	seqlocks.	Actually	this	is	done	for	machines	that	cannot	atomically	read	the	full	64-bit	values.

If	we	can	access	the		jiffies		or	the		jiffies_64		variable	we	can	convert	it	to		human		time	units.	To	get	one	second	we	can	use
following	expression:

jiffies	/	HZ

So,	if	we	know	this,	we	can	get	any	time	units.	For	example:

/*	Thirty	seconds	from	now	*/

jiffies	+	30*HZ

/*	Two	minutes	from	now	*/

jiffies	+	120*HZ

/*	One	millisecond	from	now	*/

jiffies	+	HZ	/	1000

That's	all.

Conclusion

This	concludes	the	first	part	covering	time	and	time	management	related	concepts	in	the	Linux	kernel.	We	met	first	two	concepts	and	its
initialization	in	this	part:		jiffies		and		clocksource	.	In	the	next	part	we	will	continue	to	dive	into	this	interesting	theme	and	as	I
already	wrote	in	this	part	we	will	acquainted	and	try	to	understand	insides	of	these	and	other	time	management	concepts	in	the	Linux
kernel.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links

system	call
TCP
lock	validator
cgroups
bss
initrd
Intel	MID
TSC
void
Simple	Firmware	Interface
x86_64
real	time	clock
Jiffy

270

https://en.wikipedia.org/wiki/Seqlock
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/.bss
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Simple_Firmware_Interface
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Jiffy_%28time%29


high	precision	event	timer
nanoseconds
Intel	8253
seqlocks
cloksource	documentation
Previous	chapter

271

https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Seqlock
https://www.kernel.org/doc/Documentation/timers/timekeeping.txt


Timers	and	time	management	in	the	Linux	kernel.	Part	2.

Introduction	to	the		clocksource		framework

The	previous	part	was	the	first	part	in	the	current	chapter	that	describes	timers	and	time	management	related	stuff	in	the	Linux	kernel.
We	got	acquainted	with	two	concepts	in	the	previous	part:

	jiffies	

	clocksource	

The	first	is	the	global	variable	that	is	defined	in	the	include/linux/jiffies.h	header	file	and	represents	the	counter	that	is	increased	during
each	timer	interrupt.	So	if	we	can	access	this	global	variable	and	we	know	the	timer	interrupt	rate	we	can	convert		jiffies		to	the
human	time	units.	As	we	already	know	the	timer	interrupt	rate	represented	by	the	compile-time	constant	that	is	called		HZ		in	the	Linux
kernel.	The	value	of		HZ		is	equal	to	the	value	of	the		CONFIG_HZ		kernel	configuration	option	and	if	we	will	look	into	the
arch/x86/configs/x86_64_defconfig	kernel	configuration	file,	we	will	see	that:

CONFIG_HZ_1000=y

kernel	configuration	option	is	set.	This	means	that	value	of		CONFIG_HZ		will	be		1000		by	default	for	the	x86_64	architecture.	So,	if	we
divide	the	value	of		jiffies		by	the	value	of		HZ	:

jiffies	/	HZ

we	will	get	the	amount	of	seconds	that	elapsed	since	the	beginning	of	the	moment	the	Linux	kernel	started	to	work	or	in	other	words	we
will	get	the	system	uptime.	Since		HZ		represents	the	amount	of	timer	interrupts	in	a	second,	we	can	set	a	value	for	some	time	in	the
future.	For	example:

/*	one	minute	from	now	*/

unsigned	long	later	=	jiffies	+	60*HZ;

/*	five	minutes	from	now	*/

unsigned	long	later	=	jiffies	+	5*60*HZ;

This	is	a	very	common	practice	in	the	Linux	kernel.	For	example,	if	you	will	look	into	the	arch/x86/kernel/smpboot.c	source	code	file,
you	will	find	the		do_boot_cpu		function.	This	function	boots	all	processors	besides	bootstrap	processor.	You	can	find	a	snippet	that
waits	ten	seconds	for	a	response	from	the	application	processor:

if	(!boot_error)	{

				timeout	=	jiffies	+	10*HZ;

				while	(time_before(jiffies,	timeout))	{

								...

								...

								...

								udelay(100);

				}

				...

				...

				...

}

We	assign		jiffies	+	10*HZ		value	to	the		timeout		variable	here.	As	I	think	you	already	understood,	this	means	a	ten	seconds	timeout.
After	this	we	are	entering	a	loop	where	we	use	the		time_before		macro	to	compare	the	current		jiffies		value	and	our	timeout.

272

https://github.com/torvalds/linux/blob/master/include/linux/jiffies.h
https://github.com/torvalds/linux/blob/master/arch/x86/configs/x86_64_defconfig
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Uptime
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/smpboot.c


Or	for	example	if	we	look	into	the	sound/isa/sscape.c	source	code	file	which	represents	the	driver	for	the	Ensoniq	Soundscape	Elite
sound	card,	we	will	see	the		obp_startup_ack		function	that	waits	upto	a	given	timeout	for	the	On-Board	Processor	to	return	its	start-up
acknowledgement	sequence:

static	int	obp_startup_ack(struct	soundscape	*s,	unsigned	timeout)

{

				unsigned	long	end_time	=	jiffies	+	msecs_to_jiffies(timeout);

				do	{

								...

								...

								...

								x	=	host_read_unsafe(s->io_base);

								...

								...

								...

								if	(x	==	0xfe	||	x	==	0xff)

												return	1;

								msleep(10);

				}	while	(time_before(jiffies,	end_time));

				return	0;

}

As	you	can	see,	the		jiffies		variable	is	very	widely	used	in	the	Linux	kernel	code.	As	I	already	wrote,	we	met	yet	another	new	time
management	related	concept	in	the	previous	part	-		clocksource	.	We	have	only	seen	a	short	description	of	this	concept	and	the	API	for
a	clock	source	registration.	Let's	take	a	closer	look	in	this	part.

Introduction	to		clocksource	
The		clocksource		concept	represents	the	generic	API	for	clock	sources	management	in	the	Linux	kernel.	Why	do	we	need	a	separate
framework	for	this?	Let's	go	back	to	the	beginning.	The		time		concept	is	the	fundamental	concept	in	the	Linux	kernel	and	other
operating	system	kernels.	And	the	timekeeping	is	one	of	the	necessities	to	use	this	concept.	For	example	Linux	kernel	must	know	and
update	the	time	elapsed	since	system	startup,	it	must	determine	how	long	the	current	process	has	been	running	for	every	processor	and
many	many	more.	Where	the	Linux	kernel	can	get	information	about	time?	First	of	all	it	is	Real	Time	Clock	or	RTC	that	represents	by
the	a	nonvolatile	device.	You	can	find	a	set	of	architecture-independent	real	time	clock	drivers	in	the	Linux	kernel	in	the	drivers/rtc
directory.	Besides	this,	each	architecture	can	provide	a	driver	for	the	architecture-dependent	real	time	clock,	for	example	-		CMOS/RTC		-
arch/x86/kernel/rtc.c	for	the	x86	architecture.	The	second	is	system	timer	-	timer	that	excites	interrupts	with	a	periodic	rate.	For
example,	for	IBM	PC	compatibles	it	was	-	programmable	interval	timer.

We	already	know	that	for	timekeeping	purposes	we	can	use		jiffies		in	the	Linux	kernel.	The		jiffies		can	be	considered	as	read
only	global	variable	which	is	updated	with		HZ		frequency.	We	know	that	the		HZ		is	a	compile-time	kernel	parameter	whose	reasonable
range	is	from		100		to		1000		Hz.	So,	it	is	guaranteed	to	have	an	interface	for	time	measurement	with		1		-		10		milliseconds	resolution.
Besides	standard		jiffies	,	we	saw	the		refined_jiffies		clock	source	in	the	previous	part	that	is	based	on	the		i8253/i8254	
programmable	interval	timer	tick	rate	which	is	almost		1193182		hertz.	So	we	can	get	something	about		1		microsecond	resolution	with
the		refined_jiffies	.	In	this	time,	nanoseconds	are	the	favorite	choice	for	the	time	value	units	of	the	given	clock	source.

The	availability	of	more	precise	techniques	for	time	intervals	measurement	is	hardware-dependent.	We	just	knew	a	little	about		x86	
dependent	timers	hardware.	But	each	architecture	provides	own	timers	hardware.	Earlier	each	architecture	had	own	implementation	for
this	purpose.	Solution	of	this	problem	is	an	abstraction	layer	and	associated	API	in	a	common	code	framework	for	managing	various
clock	sources	and	independent	of	the	timer	interrupt.	This	common	code	framework	became	-		clocksource		framework.

Generic	timeofday	and	clock	source	management	framework	moved	a	lot	of	timekeeping	code	into	the	architecture	independent	portion
of	the	code,	with	the	architecture-dependent	portion	reduced	to	defining	and	managing	low-level	hardware	pieces	of	clocksources.	It
takes	a	large	amount	of	funds	to	measure	the	time	interval	on	different	architectures	with	different	hardware,	and	it	is	very	complex.
Implementation	of	the	each	clock	related	service	is	strongly	associated	with	an	individual	hardware	device	and	as	you	can	understand,	it
results	in	similar	implementations	for	different	architectures.

273

https://github.com/torvalds/linux/blob/master/sound/isa/sscape
https://en.wikipedia.org/wiki/Ensoniq_Soundscape_Elite
http://lxr.free-electrons.com/ident?i=jiffies
https://en.wikipedia.org/wiki/Real-time_clock
https://github.com/torvalds/linux/tree/master/drivers/rtc
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/rtc.c
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Nanosecond


Within	this	framework,	each	clock	source	is	required	to	maintain	a	representation	of	time	as	a	monotonically	increasing	value.	As	we
can	see	in	the	Linux	kernel	code,	nanoseconds	are	the	favorite	choice	for	the	time	value	units	of	a	clock	source	in	this	time.	One	of	the
main	point	of	the	clock	source	framework	is	to	allow	an	user	to	select	clock	source	among	a	range	of	available	hardware	devices
supporting	clock	functions	when	configuring	the	system	and	selecting,	accessing	and	scaling	different	clock	sources.

The	clocksource	structure

The	fundamental	of	the		clocksource		framework	is	the		clocksource		structure	that	defined	in	the	include/linux/clocksource.h	header
file.	We	already	saw	some	fields	that	are	provided	by	the		clocksource		structure	in	the	previous	part.	Let's	look	on	the	full	definition	of
this	structure	and	try	to	describe	all	of	its	fields:

struct	clocksource	{

				cycle_t	(*read)(struct	clocksource	*cs);

				cycle_t	mask;

				u32	mult;

				u32	shift;

				u64	max_idle_ns;

				u32	maxadj;

#ifdef	CONFIG_ARCH_CLOCKSOURCE_DATA

				struct	arch_clocksource_data	archdata;

#endif

				u64	max_cycles;

				const	char	*name;

				struct	list_head	list;

				int	rating;

				int	(*enable)(struct	clocksource	*cs);

				void	(*disable)(struct	clocksource	*cs);

				unsigned	long	flags;

				void	(*suspend)(struct	clocksource	*cs);

				void	(*resume)(struct	clocksource	*cs);

#ifdef	CONFIG_CLOCKSOURCE_WATCHDOG

				struct	list_head	wd_list;

				cycle_t	cs_last;

				cycle_t	wd_last;

#endif

				struct	module	*owner;

}	____cacheline_aligned;

We	already	saw	the	first	field	of	the		clocksource		structure	in	the	previous	part	-	it	is	pointer	to	the		read		function	that	returns	best
counter	selected	by	the	clocksource	framework.	For	example	we	use		jiffies_read		function	to	read		jiffies		value:

static	struct	clocksource	clocksource_jiffies	=	{

				...

				.read								=	jiffies_read,

				...

}

where		jiffies_read		just	returns:

static	cycle_t	jiffies_read(struct	clocksource	*cs)

{

				return	(cycle_t)	jiffies;

}

Or	the		read_tsc		function:

static	struct	clocksource	clocksource_tsc	=	{

				...

				.read																			=	read_tsc,

				...

};

274

https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h


for	the	time	stamp	counter	reading.

The	next	field	is		mask		that	allows	to	ensure	that	subtraction	between	counters	values	from	non		64	bit		counters	do	not	need	special
overflow	logic.	After	the		mask		field,	we	can	see	two	fields:		mult		and		shift	.	These	are	the	fields	that	are	base	of	mathematical
functions	that	are	provide	ability	to	convert	time	values	specific	to	each	clock	source.	In	other	words	these	two	fields	help	us	to	convert
an	abstract	machine	time	units	of	a	counter	to	nanoseconds.

After	these	two	fields	we	can	see	the		64		bits		max_idle_ns		field	represents	max	idle	time	permitted	by	the	clocksource	in
nanoseconds.	We	need	in	this	field	for	the	Linux	kernel	with	enabled		CONFIG_NO_HZ		kernel	configuration	option.	This	kernel
configuration	option	enables	the	Linux	kernel	to	run	without	a	regular	timer	tick	(we	will	see	full	explanation	of	this	in	other	part).	The
problem	that	dynamic	tick	allows	the	kernel	to	sleep	for	periods	longer	than	a	single	tick,	moreover	sleep	time	could	be	unlimited.	The
	max_idle_ns		field	represents	this	sleeping	limit.

The	next	field	after	the		max_idle_ns		is	the		maxadj		field	which	is	the	maximum	adjustment	value	to		mult	.	The	main	formula	by
which	we	convert	cycles	to	the	nanoseconds:

((u64)	cycles	*	mult)	>>	shift;

is	not		100%		accurate.	Instead	the	number	is	taken	as	close	as	possible	to	a	nanosecond	and		maxadj		helps	to	correct	this	and	allows
clocksource	API	to	avoid		mult		values	that	might	overflow	when	adjusted.	The	next	four	fields	are	pointers	to	the	function:

	enable		-	optional	function	to	enable	clocksource;
	disable		-	optional	function	to	disable	clocksource;
	suspend		-	suspend	function	for	the	clocksource;
	resume		-	resume	function	for	the	clocksource;

The	next	field	is	the		max_cycles		and	as	we	can	understand	from	its	name,	this	field	represents	maximum	cycle	value	before	potential
overflow.	And	the	last	field	is		owner		represents	reference	to	a	kernel	module	that	is	owner	of	a	clocksource.	This	is	all.	We	just	went
through	all	the	standard	fields	of	the		clocksource		structure.	But	you	can	noted	that	we	missed	some	fields	of	the		clocksource	
structure.	We	can	divide	all	of	missed	field	on	two	types:	Fields	of	the	first	type	are	already	known	for	us.	For	example,	they	are		name	
field	that	represents	name	of	a		clocksource	,	the		rating		field	that	helps	to	the	Linux	kernel	to	select	the	best	clocksource	and	etc.
The	second	type,	fields	which	are	dependent	from	the	different	Linux	kernel	configuration	options.	Let's	look	on	these	fields.

The	first	field	is	the		archdata	.	This	field	has		arch_clocksource_data		type	and	depends	on	the		CONFIG_ARCH_CLOCKSOURCE_DATA	
kernel	configuration	option.	This	field	is	actual	only	for	the	x86	and	IA64	architectures	for	this	moment.	And	again,	as	we	can
understand	from	the	field's	name,	it	represents	architecture-specific	data	for	a	clock	source.	For	example,	it	represents		vDSO		clock
mode:

struct	arch_clocksource_data	{

				int	vclock_mode;

};

for	the		x86		architectures.	Where	the		vDSO		clock	mode	can	be	one	of	the:

#define	VCLOCK_NONE	0

#define	VCLOCK_TSC		1

#define	VCLOCK_HPET	2

#define	VCLOCK_PVCLOCK	3

The	last	three	fields	are		wd_list	,		cs_last		and	the		wd_last		depends	on	the		CONFIG_CLOCKSOURCE_WATCHDOG		kernel	configuration
option.	First	of	all	let's	try	to	understand	what	is	it		watchdog	.	In	a	simple	words,	watchdog	is	a	timer	that	is	used	for	detection	of	the
computer	malfunctions	and	recovering	from	it.	All	of	these	three	fields	contain	watchdog	related	data	that	is	used	by	the		clocksource	
framework.	If	we	will	grep	the	Linux	kernel	source	code,	we	will	see	that	only	arch/x86/KConfig	kernel	configuration	file	contains	the
	CONFIG_CLOCKSOURCE_WATCHDOG		kernel	configuration	option.	So,	why	do		x86		and		x86_64		need	in	watchdog?	You	already	may	know
that	all		x86		processors	has	special	64-bit	register	-	time	stamp	counter.	This	register	contains	number	of	cycles	since	the	reset.
Sometimes	the	time	stamp	counter	needs	to	be	verified	against	another	clock	source.	We	will	not	see	initialization	of	the		watchdog	
timer	in	this	part,	before	this	we	must	learn	more	about	timers.

275

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/IA-64
https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig#L54
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Clock_rate


That's	all.	From	this	moment	we	know	all	fields	of	the		clocksource		structure.	This	knowledge	will	help	us	to	learn	insides	of	the
	clocksource		framework.

New	clock	source	registration

We	saw	only	one	function	from	the		clocksource		framework	in	the	previous	part.	This	function	was	-		__clocksource_register	.	This
function	defined	in	the	include/linux/clocksource.h	header	file	and	as	we	can	understand	from	the	function's	name,	main	point	of	this
function	is	to	register	new	clocksource.	If	we	will	look	on	the	implementation	of	the		__clocksource_register		function,	we	will	see
that	it	just	makes	call	of	the		__clocksource_register_scale		function	and	returns	its	result:

static	inline	int	__clocksource_register(struct	clocksource	*cs)

{

				return	__clocksource_register_scale(cs,	1,	0);

}

Before	we	will	see	implementation	of	the		__clocksource_register_scale		function,	we	can	see	that		clocksource		provides	additional
API	for	a	new	clock	source	registration:

static	inline	int	clocksource_register_hz(struct	clocksource	*cs,	u32	hz)

{

								return	__clocksource_register_scale(cs,	1,	hz);

}

static	inline	int	clocksource_register_khz(struct	clocksource	*cs,	u32	khz)

{

								return	__clocksource_register_scale(cs,	1000,	khz);

}

And	all	of	these	functions	do	the	same.	They	return	value	of	the		__clocksource_register_scale		function	but	with	different	set	of
parameters.	The		__clocksource_register_scale		function	defined	in	the	kernel/time/clocksource.c	source	code	file.	To	understand
difference	between	these	functions,	let's	look	on	the	parameters	of	the		clocksource_register_khz		function.	As	we	can	see,	this
function	takes	three	parameters:

	cs		-	clocksource	to	be	installed;
	scale		-	scale	factor	of	a	clock	source.	In	other	words,	if	we	will	multiply	value	of	this	parameter	on	frequency,	we	will	get		hz	
of	a	clocksource;
	freq		-	clock	source	frequency	divided	by	scale.

Now	let's	look	on	the	implementation	of	the		__clocksource_register_scale		function:

int	__clocksource_register_scale(struct	clocksource	*cs,	u32	scale,	u32	freq)

{

								__clocksource_update_freq_scale(cs,	scale,	freq);

								mutex_lock(&clocksource_mutex);

								clocksource_enqueue(cs);

								clocksource_enqueue_watchdog(cs);

								clocksource_select();

								mutex_unlock(&clocksource_mutex);

								return	0;

}

First	of	all	we	can	see	that	the		__clocksource_register_scale		function	starts	from	the	call	of	the
	__clocksource_update_freq_scale		function	that	defined	in	the	same	source	code	file	and	updates	given	clock	source	with	the	new
frequency.	Let's	look	on	the	implementation	of	this	function.	In	the	first	step	we	need	to	check	given	frequency	and	if	it	was	not	passed
as		zero	,	we	need	to	calculate		mult		and		shift		parameters	for	the	given	clock	source.	Why	do	we	need	to	check	value	of	the
	frequency	?	Actually	it	can	be	zero.	if	you	attentively	looked	on	the	implementation	of	the		__clocksource_register		function,	you

276

https://github.com/torvalds/linux/tree/master/include/linux/clocksource.h
https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c


may	have	noticed	that	we	passed		frequency		as		0	.	We	will	do	it	only	for	some	clock	sources	that	have	self	defined		mult		and
	shift		parameters.	Look	in	the	previous	part	and	you	will	see	that	we	saw	calculation	of	the		mult		and		shift		for		jiffies	.	The
	__clocksource_update_freq_scale		function	will	do	it	for	us	for	other	clock	sources.

So	in	the	start	of	the		__clocksource_update_freq_scale		function	we	check	the	value	of	the		frequency		parameter	and	if	is	not	zero
we	need	to	calculate		mult		and		shift		for	the	given	clock	source.	Let's	look	on	the		mult		and		shift		calculation:

void	__clocksource_update_freq_scale(struct	clocksource	*cs,	u32	scale,	u32	freq)

{

								u64	sec;

								if	(freq)	{

													sec	=	cs->mask;

													do_div(sec,	freq);

													do_div(sec,	scale);

													if	(!sec)

																			sec	=	1;

													else	if	(sec	>	600	&&	cs->mask	>	UINT_MAX)

																			sec	=	600;

													clocks_calc_mult_shift(&cs->mult,	&cs->shift,	freq,

																																				NSEC_PER_SEC	/	scale,	sec	*	scale);

								}

								...

								...

								...

}

Here	we	can	see	calculation	of	the	maximum	number	of	seconds	which	we	can	run	before	a	clock	source	counter	will	overflow.	First	of
all	we	fill	the		sec		variable	with	the	value	of	a	clock	source	mask.	Remember	that	a	clock	source's	mask	represents	maximum	amount
of	bits	that	are	valid	for	the	given	clock	source.	After	this,	we	can	see	two	division	operations.	At	first	we	divide	our		sec		variable	on	a
clock	source	frequency	and	then	on	scale	factor.	The		freq		parameter	shows	us	how	many	timer	interrupts	will	be	occurred	in	one
second.	So,	we	divide		mask		value	that	represents	maximum	number	of	a	counter	(for	example		jiffy	)	on	the	frequency	of	a	timer
and	will	get	the	maximum	number	of	seconds	for	the	certain	clock	source.	The	second	division	operation	will	give	us	maximum	number
of	seconds	for	the	certain	clock	source	depends	on	its	scale	factor	which	can	be		1		hertz	or		1		kilohertz	(10^	Hz).

After	we	have	got	maximum	number	of	seconds,	we	check	this	value	and	set	it	to		1		or		600		depends	on	the	result	at	the	next	step.
These	values	is	maximum	sleeping	time	for	a	clocksource	in	seconds.	In	the	next	step	we	can	see	call	of	the		clocks_calc_mult_shift	.
Main	point	of	this	function	is	calculation	of	the		mult		and		shift		values	for	a	given	clock	source.	In	the	end	of	the
	__clocksource_update_freq_scale		function	we	check	that	just	calculated		mult		value	of	a	given	clock	source	will	not	cause
overflow	after	adjustment,	update	the		max_idle_ns		and		max_cycles		values	of	a	given	clock	source	with	the	maximum	nanoseconds
that	can	be	converted	to	a	clock	source	counter	and	print	result	to	the	kernel	buffer:

pr_info("%s:	mask:	0x%llx	max_cycles:	0x%llx,	max_idle_ns:	%lld	ns\n",

				cs->name,	cs->mask,	cs->max_cycles,	cs->max_idle_ns);

that	we	can	see	in	the	dmesg	output:

$	dmesg	|	grep	"clocksource:"

[				0.000000]	clocksource:	refined-jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns:	1910969940391419	n

s

[				0.000000]	clocksource:	hpet:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns:	133484882848	ns

[				0.094084]	clocksource:	jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns:	1911260446275000	ns

[				0.205302]	clocksource:	acpi_pm:	mask:	0xffffff	max_cycles:	0xffffff,	max_idle_ns:	2085701024	ns

[				1.452979]	clocksource:	tsc:	mask:	0xffffffffffffffff	max_cycles:	0x7350b459580,	max_idle_ns:	881591204237	ns

After	the		__clocksource_update_freq_scale		function	will	finish	its	work,	we	can	return	back	to	the		__clocksource_register_scale	
function	that	will	register	new	clock	source.	We	can	see	the	call	of	the	following	three	functions:

mutex_lock(&clocksource_mutex);

277

https://en.wikipedia.org/wiki/Dmesg


clocksource_enqueue(cs);

clocksource_enqueue_watchdog(cs);

clocksource_select();

mutex_unlock(&clocksource_mutex);

Note	that	before	the	first	will	be	called,	we	lock	the		clocksource_mutex		mutex.	The	point	of	the		clocksource_mutex		mutex	is	to
protect		curr_clocksource		variable	which	represents	currently	selected		clocksource		and		clocksource_list		variable	which
represents	list	that	contains	registered		clocksources	.	Now,	let's	look	on	these	three	functions.

The	first		clocksource_enqueue		function	and	other	two	defined	in	the	same	source	code	file.	We	go	through	all	already	registered
	clocksources		or	in	other	words	we	go	through	all	elements	of	the		clocksource_list		and	tries	to	find	best	place	for	a	given
	clocksource	:

static	void	clocksource_enqueue(struct	clocksource	*cs)

{

				struct	list_head	*entry	=	&clocksource_list;

				struct	clocksource	*tmp;

				list_for_each_entry(tmp,	&clocksource_list,	list)

								if	(tmp->rating	>=	cs->rating)

												entry	=	&tmp->list;

				list_add(&cs->list,	entry);

}

In	the	end	we	just	insert	new	clocksource	to	the		clocksource_list	.	The	second	function	-		clocksource_enqueue_watchdog		does
almost	the	same	that	previous	function,	but	it	inserts	new	clock	source	to	the		wd_list		depends	on	flags	of	a	clock	source	and	starts
new	watchdog	timer.	As	I	already	wrote,	we	will	not	consider		watchdog		related	stuff	in	this	part	but	will	do	it	in	next	parts.

The	last	function	is	the		clocksource_select	.	As	we	can	understand	from	the	function's	name,	main	point	of	this	function	-	select	the
best		clocksource		from	registered	clocksources.	This	function	consists	only	from	the	call	of	the	function	helper:

static	void	clocksource_select(void)

{

				return	__clocksource_select(false);

}

Note	that	the		__clocksource_select		function	takes	one	parameter	(	false		in	our	case).	This	bool	parameter	shows	how	to	traverse
the		clocksource_list	.	In	our	case	we	pass		false		that	is	meant	that	we	will	go	through	all	entries	of	the		clocksource_list	.	We
already	know	that		clocksource		with	the	best	rating	will	the	first	in	the		clocksource_list		after	the	call	of	the
	clocksource_enqueue		function,	so	we	can	easily	get	it	from	this	list.	After	we	found	a	clock	source	with	the	best	rating,	we	switch	to
it:

if	(curr_clocksource	!=	best	&&	!timekeeping_notify(best))	{

				pr_info("Switched	to	clocksource	%s\n",	best->name);

				curr_clocksource	=	best;

}

The	result	of	this	operation	we	can	see	in	the		dmesg		output:

$	dmesg	|	grep	Switched

[				0.199688]	clocksource:	Switched	to	clocksource	hpet

[				2.452966]	clocksource:	Switched	to	clocksource	tsc

Note	that	we	can	see	two	clock	sources	in	the		dmesg		output	(	hpet		and		tsc		in	our	case).	Yes,	actually	there	can	be	many	different
clock	sources	on	a	particular	hardware.	So	the	Linux	kernel	knows	about	all	registered	clock	sources	and	switches	to	a	clock	source
with	a	better	rating	each	time	after	registration	of	a	new	clock	source.

278

https://en.wikipedia.org/wiki/Mutual_exclusion
https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Boolean_data_type


If	we	will	look	on	the	bottom	of	the	kernel/time/clocksource.c	source	code	file,	we	will	see	that	it	has	sysfs	interface.	Main	initialization
occurs	in	the		init_clocksource_sysfs		function	which	will	be	called	during	device		initcalls	.	Let's	look	on	the	implementation	of
the		init_clocksource_sysfs		function:

static	struct	bus_type	clocksource_subsys	=	{

				.name	=	"clocksource",

				.dev_name	=	"clocksource",

};

static	int	__init	init_clocksource_sysfs(void)

{

				int	error	=	subsys_system_register(&clocksource_subsys,	NULL);

				if	(!error)

								error	=	device_register(&device_clocksource);

				if	(!error)

								error	=	device_create_file(

																&device_clocksource,

																&dev_attr_current_clocksource);

				if	(!error)

								error	=	device_create_file(&device_clocksource,

																							&dev_attr_unbind_clocksource);

				if	(!error)

								error	=	device_create_file(

																&device_clocksource,

																&dev_attr_available_clocksource);

				return	error;

}

device_initcall(init_clocksource_sysfs);

First	of	all	we	can	see	that	it	registers	a		clocksource		subsystem	with	the	call	of	the		subsys_system_register		function.	In	other
words,	after	the	call	of	this	function,	we	will	have	following	directory:

$	pwd

/sys/devices/system/clocksource

After	this	step,	we	can	see	registration	of	the		device_clocksource		device	which	is	represented	by	the	following	structure:

static	struct	device	device_clocksource	=	{

				.id				=	0,

				.bus				=	&clocksource_subsys,

};

and	creation	of	three	files:

	dev_attr_current_clocksource	;
	dev_attr_unbind_clocksource	;
	dev_attr_available_clocksource	.

These	files	will	provide	information	about	current	clock	source	in	the	system,	available	clock	sources	in	the	system	and	interface	which
allows	to	unbind	the	clock	source.

After	the		init_clocksource_sysfs		function	will	be	executed,	we	will	be	able	find	some	information	about	available	clock	sources	in
the:

$	cat	/sys/devices/system/clocksource/clocksource0/available_clocksource	

tsc	hpet	acpi_pm

Or	for	example	information	about	current	clock	source	in	the	system:

$	cat	/sys/devices/system/clocksource/clocksource0/current_clocksource	

tsc

279

https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c
https://en.wikipedia.org/wiki/Sysfs


In	the	previous	part,	we	saw	API	for	the	registration	of	the		jiffies		clock	source,	but	didn't	dive	into	details	about	the		clocksource	
framework.	In	this	part	we	did	it	and	saw	implementation	of	the	new	clock	source	registration	and	selection	of	a	clock	source	with	the
best	rating	value	in	the	system.	Of	course,	this	is	not	all	API	that		clocksource		framework	provides.	There	a	couple	additional
functions	like		clocksource_unregister		for	removing	given	clock	source	from	the		clocksource_list		and	etc.	But	I	will	not	describe
this	functions	in	this	part,	because	they	are	not	important	for	us	right	now.	Anyway	if	you	are	interesting	in	it,	you	can	find	it	in	the
kernel/time/clocksource.c.

That's	all.

Conclusion

This	is	the	end	of	the	second	part	of	the	chapter	that	describes	timers	and	timer	management	related	stuff	in	the	Linux	kernel.	In	the
previous	part	got	acquainted	with	the	following	two	concepts:		jiffies		and		clocksource	.	In	this	part	we	saw	some	examples	of	the
	jiffies		usage	and	knew	more	details	about	the		clocksource		concept.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links

x86
x86_64
uptime
Ensoniq	Soundscape	Elite
RTC
interrupts
IBM	PC
programmable	interval	timer
Hz
nanoseconds
dmesg
time	stamp	counter
loadable	kernel	module
IA64
watchdog
clock	rate
mutex
sysfs
previous	part

280

https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Uptime
https://en.wikipedia.org/wiki/Ensoniq_Soundscape_Elite
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Sysfs


Timers	and	time	management	in	the	Linux	kernel.	Part	3.

The	tick	broadcast	framework	and	dyntick

This	is	third	part	of	the	chapter	which	describes	timers	and	time	management	related	stuff	in	the	Linux	kernel	and	we	stopped	on	the
	clocksource		framework	in	the	previous	part.	We	have	started	to	consider	this	framework	because	it	is	closely	related	to	the	special
counters	which	are	provided	by	the	Linux	kernel.	One	of	these	counters	which	we	already	saw	in	the	first	part	of	this	chapter	is	-
	jiffies	.	As	I	already	wrote	in	the	first	part	of	this	chapter,	we	will	consider	time	management	related	stuff	step	by	step	during	the
Linux	kernel	initialization.	Previous	step	was	call	of	the:

register_refined_jiffies(CLOCK_TICK_RATE);

function	which	defined	in	the	kernel/time/jiffies.c	source	code	file	and	executes	initialization	of	the		refined_jiffies		clock	source	for
us.	Recall	that	this	function	is	called	from	the		setup_arch		function	that	defined	in	the
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c	source	code	and	executes	architecture-specific	(x86_64	in	our
case)	initialization.	Look	on	the	implementation	of	the		setup_arch		and	you	will	note	that	the	call	of	the		register_refined_jiffies	
is	the	last	step	before	the		setup_arch		function	will	finish	its	work.

There	are	many	different		x86_64		specific	things	already	configured	after	the	end	of	the		setup_arch		execution.	For	example	some
early	interrupt	handlers	already	able	to	handle	interrupts,	memory	space	reserved	for	the	initrd,	DMI	scanned,	the	Linux	kernel	log
buffer	is	already	set	and	this	means	that	the	printk	function	is	able	to	work,	e820	parsed	and	the	Linux	kernel	already	knows	about
available	memory	and	and	many	many	other	architecture	specific	things	(if	you	are	interesting,	you	can	read	more	about	the
	setup_arch		function	and	Linux	kernel	initialization	process	in	the	second	chapter	of	this	book).

Now,	the		setup_arch		finished	its	work	and	we	can	back	to	the	generic	Linux	kernel	code.	Recall	that	the		setup_arch		function	was
called	from	the		start_kernel		function	which	is	defined	in	the	init/main.c	source	code	file.	So,	we	shall	return	to	this	function.	You
can	see	that	there	are	many	different	function	are	called	right	after		setup_arch		function	inside	of	the		start_kernel		function,	but
since	our	chapter	is	devoted	to	timers	and	time	management	related	stuff,	we	will	skip	all	code	which	is	not	related	to	this	topic.	The
first	function	which	is	related	to	the	time	management	in	the	Linux	kernel	is:

tick_init();

in	the		start_kernel	.	The		tick_init		function	defined	in	the	kernel/time/tick-common.c	source	code	file	and	does	two	things:

Initialization	of		tick	broadcast		framework	related	data	structures;
Initialization	of		full		tickless	mode	related	data	structures.

We	didn't	see	anything	related	to	the		tick	broadcast		framework	in	this	book	and	didn't	know	anything	about	tickless	mode	in	the
Linux	kernel.	So,	the	main	point	of	this	part	is	to	look	on	these	concepts	and	to	know	what	are	they.

The	idle	process

First	of	all,	let's	look	on	the	implementation	of	the		tick_init		function.	As	I	already	wrote,	this	function	defined	in	the
kernel/time/tick-common.c	source	code	file	and	consists	from	the	two	calls	of	following	functions:

void	__init	tick_init(void)

{

				tick_broadcast_init();

				tick_nohz_init();

}

The	tick	broadcast	framework	and	dyntick

281

https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/E820
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c


As	you	can	understand	from	the	paragraph's	title,	we	are	interesting	only	in	the		tick_broadcast_init		function	for	now.	This	function
defined	in	the	kernel/time/tick-broadcast.c	source	code	file	and	executes	initialization	of	the		tick	broadcast		framework	related	data
structures.	Before	we	will	look	on	the	implementation	of	the		tick_broadcast_init		function	and	will	try	to	understand	what	does	this
function	do,	we	need	to	know	about		tick	broadcast		framework.

Main	point	of	a	central	processor	is	to	execute	programs.	But	sometimes	a	processor	may	be	in	a	special	state	when	it	is	not	being	used
by	any	program.	This	special	state	is	called	-	idle.	When	the	processor	has	no	anything	to	execute,	the	Linux	kernel	launches		idle	
task.	We	already	saw	a	little	about	this	in	the	last	part	of	the	Linux	kernel	initialization	process.	When	the	Linux	kernel	will	finish	all
initialization	processes	in	the		start_kernel		function	from	the	init/main.c	source	code	file,	it	will	call	the		rest_init		function	from
the	same	source	code	file.	Main	point	of	this	function	is	to	launch	kernel		init		thread	and	the		kthreadd		thread,	to	call	the		schedule	
function	to	start	task	scheduling	and	to	go	to	sleep	by	calling	the		cpu_idle_loop		function	that	defined	in	the	kernel/sched/idle.c	source
code	file.

The		cpu_idle_loop		function	represents	infinite	loop	which	checks	the	need	for	rescheduling	on	each	iteration.	After	the	scheduler
finds	something	to	execute,	the		idle		process	will	finish	its	work	and	the	control	will	be	moved	to	a	new	runnable	task	with	the	call	of
the		schedule_preempt_disabled		function:

static	void	cpu_idle_loop(void)

{

				while	(1)	{

								while	(!need_resched())	{

								...

								...

								...

								/*	the	main	idle	function	*/

								cpuidle_idle_call();

				}

				...

				...

				...

				schedule_preempt_disabled();

}

Of	course,	we	will	not	consider	full	implementation	of	the		cpu_idle_loop		function	and	details	of	the		idle		state	in	this	part,	because
it	is	not	related	to	our	topic.	But	there	is	one	interesting	moment	for	us.	We	know	that	the	processor	can	execute	only	one	task	in	one
time.	How	does	the	Linux	kernel	decide	to	reschedule	and	stop		idle		process	if	the	processor	executes	infinite	loop	in	the
	cpu_idle_loop	?	The	answer	is	system	timer	interrupts.	When	an	interrupt	occurs,	the	processor	stops	the		idle		thread	and	transfers
control	to	an	interrupt	handler.	After	the	system	timer	interrupt	handler	will	be	handled,	the		need_resched		will	return	true	and	the
Linux	kernel	will	stop		idle		process	and	will	transfer	control	to	the	current	runnable	task.	But	handling	of	the	system	timer	interrupts
is	not	effective	for	power	management,	because	if	a	processor	is	in		idle		state,	there	is	little	point	in	sending	it	a	system	timer
interrupt.

By	default,	there	is	the		CONFIG_HZ_PERIODIC		kernel	configuration	option	which	is	enabled	in	the	Linux	kernel	and	tells	to	handle	each
interrupt	of	the	system	timer.	To	solve	this	problem,	the	Linux	kernel	provides	two	additional	ways	of	managing	scheduling-clock
interrupts:

The	first	is	to	omit	scheduling-clock	ticks	on	idle	processors.	To	enable	this	behaviour	in	the	Linux	kernel,	we	need	to	enable	the
	CONFIG_NO_HZ_IDLE		kernel	configuration	option.	This	option	allows	Linux	kernel	to	avoid	sending	timer	interrupts	to	idle	processors.
In	this	case	periodic	timer	interrupts	will	be	replaced	with	on-demand	interrupts.	This	mode	is	called	-		dyntick-idle		mode.	But	if	the
kernel	does	not	handle	interrupts	of	a	system	timer,	how	can	the	kernel	decide	if	the	system	has	nothing	to	do?

Whenever	the	idle	task	is	selected	to	run,	the	periodic	tick	is	disabled	with	the	call	of	the		tick_nohz_idle_enter		function	that	defined
in	the	kernel/time/tick-sched.c	source	code	file	and	enabled	with	the	call	of	the		tick_nohz_idle_exit		function.	There	is	special
concept	in	the	Linux	kernel	which	is	called	-		clock	event	devices		that	are	used	to	schedule	the	next	interrupt.	This	concept	provides
API	for	devices	which	can	deliver	interrupts	at	a	specific	time	in	the	future	and	represented	by	the		clock_event_device		structure	in
the	Linux	kernel.	We	will	not	dive	into	implementation	of	the		clock_event_device		structure	now.	We	will	see	it	in	the	next	prat	of	this
chapter.	But	there	is	one	interesting	moment	for	us	right	now.

The	tick	broadcast	framework	and	dyntick

282

https://github.com/torvalds/linux/blob/master/kernel/time/tick-broadcast.c
https://en.wikipedia.org/wiki/Idle_%28CPU%29
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/sched/idle.c
https://en.wikipedia.org/wiki/Power_management
https://github.com/torvalds/linux/blob/master/kernel/time/tich-sched.c


The	second	way	is	to	omit	scheduling-clock	ticks	on	processors	that	are	either	in		idle		state	or	that	have	only	one	runnable	task	or	in
other	words	busy	processor.	We	can	enable	this	feature	with	the		CONFIG_NO_HZ_FULL		kernel	configuration	option	and	it	allows	to
reduce	the	number	of	timer	interrupts	significantly.

Besides	the		cpu_idle_loop	,	idle	processor	can	be	in	a	sleeping	state.	The	Linux	kernel	provides	special		cpuidle		framework.	Main
point	of	this	framework	is	to	put	an	idle	processor	to	sleeping	states.	The	name	of	the	set	of	these	states	is	-		C-states	.	But	how	does	a
processor	will	be	woken	if	local	timer	is	disabled?	The	linux	kernel	provides		tick	broadcast		framework	for	this.	The	main	point	of
this	framework	is	assign	a	timer	which	is	not	affected	by	the		C-states	.	This	timer	will	wake	a	sleeping	processor.

Now,	after	some	theory	we	can	return	to	the	implementation	of	our	function.	Let's	recall	that	the		tick_init		function	just	calls	two
following	functions:

void	__init	tick_init(void)

{

				tick_broadcast_init();

				tick_nohz_init();

}

Let's	consider	the	first	function.	The	first		tick_broadcast_init		function	defined	in	the	kernel/time/tick-broadcast.c	source	code	file
and	executes	initialization	of	the		tick	broadcast		framework	related	data	structures.	Let's	look	on	the	implementation	of	the
	tick_broadcast_init		function:

void	__init	tick_broadcast_init(void)

{

								zalloc_cpumask_var(&tick_broadcast_mask,	GFP_NOWAIT);

								zalloc_cpumask_var(&tick_broadcast_on,	GFP_NOWAIT);

								zalloc_cpumask_var(&tmpmask,	GFP_NOWAIT);

#ifdef	CONFIG_TICK_ONESHOT

									zalloc_cpumask_var(&tick_broadcast_oneshot_mask,	GFP_NOWAIT);

									zalloc_cpumask_var(&tick_broadcast_pending_mask,	GFP_NOWAIT);

									zalloc_cpumask_var(&tick_broadcast_force_mask,	GFP_NOWAIT);

#endif

}

As	we	can	see,	the		tick_broadcast_init		function	allocates	different	cpumasks	with	the	help	of	the		zalloc_cpumask_var		function.
The		zalloc_cpumask_var		function	defined	in	the	lib/cpumask.c	source	code	file	and	expands	to	the	call	of	the	following	function:

bool	zalloc_cpumask_var(cpumask_var_t	*mask,	gfp_t	flags)

{

								return	alloc_cpumask_var(mask,	flags	|	__GFP_ZERO);

}

Ultimately,	the	memory	space	will	be	allocated	for	the	given		cpumask		with	the	certain	flags	with	the	help	of	the		kmalloc_node	
function:

*mask	=	kmalloc_node(cpumask_size(),	flags,	node);

Now	let's	look	on	the		cpumasks		that	will	be	initialized	in	the		tick_broadcast_init		function.	As	we	can	see,	the
	tick_broadcast_init		function	will	initialize	six		cpumasks	,	and	moreover,	initialization	of	the	last	three		cpumasks		will	be	depended
on	the		CONFIG_TICK_ONESHOT		kernel	configuration	option.

The	first	three		cpumasks		are:

	tick_broadcast_mask		-	the	bitmap	which	represents	list	of	processors	that	are	in	a	sleeping	mode;
	tick_broadcast_on		-	the	bitmap	that	stores	numbers	of	processors	which	are	in	a	periodic	broadcast	state;
	tmpmask		-	this	bitmap	for	temporary	usage.

As	we	already	know,	the	next	three		cpumasks		depends	on	the		CONFIG_TICK_ONESHOT		kernel	configuration	option.	Actually	each	clock
event	devices	can	be	in	one	of	two	modes:

The	tick	broadcast	framework	and	dyntick

283

https://github.com/torvalds/linux/blob/master/kernel/time/tick-broadcast.c
https://github.com/torvalds/linux/blob/master/lib/cpumask.c


	periodic		-	clock	events	devices	that	support	periodic	events;
	oneshot		-	clock	events	devices	that	capable	of	issuing	events	that	happen	only	once.

The	linux	kernel	defines	two	mask	for	such	clock	events	devices	in	the	include/linux/clockchips.h	header	file:

#define	CLOCK_EVT_FEAT_PERIODIC								0x000001

#define	CLOCK_EVT_FEAT_ONESHOT									0x000002

So,	the	last	three		cpumasks		are:

	tick_broadcast_oneshot_mask		-	stores	numbers	of	processors	that	must	be	notified;
	tick_broadcast_pending_mask		-	stores	numbers	of	processors	that	pending	broadcast;
	tick_broadcast_force_mask		-	stores	numbers	of	processors	with	enforced	broadcast.

We	have	initialized	six		cpumasks		in	the		tick	broadcast		framework,	and	now	we	can	proceed	to	implementation	of	this	framework.

The		tick	broadcast		framework
Hardware	may	provide	some	clock	source	devices.	When	a	processor	sleeps	and	its	local	timer	stopped,	there	must	be	additional	clock
source	device	that	will	handle	awakening	of	a	processor.	The	Linux	kernel	uses	these		special		clock	source	devices	which	can	raise	an
interrupt	at	a	specified	time.	We	already	know	that	such	timers	called		clock	events		devices	in	the	Linux	kernel.	Besides		clock
events		devices.	Actually,	each	processor	in	the	system	has	its	own	local	timer	which	is	programmed	to	issue	interrupt	at	the	time	of	the
next	deferred	task.	Also	these	timers	can	be	programmed	to	do	a	periodical	job,	like	updating		jiffies		and	etc.	These	timers
represented	by	the		tick_device		structure	in	the	Linux	kernel.	This	structure	defined	in	the	kernel/time/tick-sched.h	header	file	and
looks:

struct	tick_device	{

								struct	clock_event_device	*evtdev;

								enum	tick_device_mode	mode;

};

Note,	that	the		tick_device		structure	contains	two	fields.	The	first	field	-		evtdev		represents	pointer	to	the		clock_event_device	
structure	that	defined	in	the	include/linux/clockchips.h	header	file	and	represents	descriptor	of	a	clock	event	device.	A		clock	event	
device	allows	to	register	an	event	that	will	happen	in	the	future.	As	I	already	wrote,	we	will	not	consider		clock_event_device	
structure	and	related	API	in	this	part,	but	will	see	it	in	the	next	part.

The	second	field	of	the		tick_device		structure	represents	mode	of	the		tick_device	.	As	we	already	know,	the	mode	can	be	one	of
the:

num	tick_device_mode	{

								TICKDEV_MODE_PERIODIC,

								TICKDEV_MODE_ONESHOT,

};

Each		clock	events		device	in	the	system	registers	itself	by	the	call	of	the		clockevents_register_device		function	or
	clockevents_config_and_register		function	during	initialization	process	of	the	Linux	kernel.	During	the	registration	of	a	new		clock
events		device,	the	Linux	kernel	calls	the		tick_check_new_device		function	that	defined	in	the	kernel/time/tick-common.c	source	code
file	and	checks	the	given		clock	events		device	should	be	used	by	the	Linux	kernel.	After	all	checks,	the		tick_check_new_device	
function	executes	a	call	of	the:

tick_install_broadcast_device(newdev);

function	that	checks	that	the	given		clock	event		device	can	be	broadcast	device	and	install	it,	if	the	given	device	can	be	broadcast
device.	Let's	look	on	the	implementation	of	the		tick_install_broadcast_device		function:

void	tick_install_broadcast_device(struct	clock_event_device	*dev)

The	tick	broadcast	framework	and	dyntick

284

https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/time/tick-sched.h
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/tick-common.c


{

				struct	clock_event_device	*cur	=	tick_broadcast_device.evtdev;

				if	(!tick_check_broadcast_device(cur,	dev))

								return;

				if	(!try_module_get(dev->owner))

								return;

				clockevents_exchange_device(cur,	dev);

				if	(cur)

								cur->event_handler	=	clockevents_handle_noop;

				tick_broadcast_device.evtdev	=	dev;

				if	(!cpumask_empty(tick_broadcast_mask))

								tick_broadcast_start_periodic(dev);

				if	(dev->features	&	CLOCK_EVT_FEAT_ONESHOT)

								tick_clock_notify();

}

First	of	all	we	get	the	current		clock	event		device	from	the		tick_broadcast_device	.	The		tick_broadcast_device		defined	in	the
kernel/time/tick-common.c	source	code	file:

static	struct	tick_device	tick_broadcast_device;

and	represents	external	clock	device	that	keeps	track	of	events	for	a	processor.	The	first	step	after	we	got	the	current	clock	device	is	the
call	of	the		tick_check_broadcast_device		function	which	checks	that	a	given	clock	events	device	can	be	utilized	as	broadcast	device.
The	main	point	of	the		tick_check_broadcast_device		function	is	to	check	value	of	the		features		field	of	the	given		clock	events	
device.	As	we	can	understand	from	the	name	of	this	field,	the		features		field	contains	a	clock	event	device	features.	Available	values
defined	in	the	include/linux/clockchips.h	header	file	and	can	be	one	of	the		CLOCK_EVT_FEAT_PERIODIC		-	which	represents	a	clock	events
device	which	supports	periodic	events	and	etc.	So,	the		tick_check_broadcast_device		function	check		features		flags	for
	CLOCK_EVT_FEAT_ONESHOT	,		CLOCK_EVT_FEAT_DUMMY		and	other	flags	and	returns		false		if	the	given	clock	events	device	has	one	of
these	features.	In	other	way	the		tick_check_broadcast_device		function	compares		ratings		of	the	given	clock	event	device	and
current	clock	event	device	and	returns	the	best.

After	the		tick_check_broadcast_device		function,	we	can	see	the	call	of	the		try_module_get		function	that	checks	module	owner	of
the	clock	events.	We	need	to	do	it	to	be	sure	that	the	given		clock	events		device	was	correctly	initialized.	The	next	step	is	the	call	of
the		clockevents_exchange_device		function	that	defined	in	the	kernel/time/clockevents.c	source	code	file	and	will	release	old	clock
events	device	and	replace	the	previous	functional	handler	with	a	dummy	handler.

In	the	last	step	of	the		tick_install_broadcast_device		function	we	check	that	the		tick_broadcast_mask		is	not	empty	and	start	the
given		clock	events		device	in	periodic	mode	with	the	call	of	the		tick_broadcast_start_periodic		function:

if	(!cpumask_empty(tick_broadcast_mask))

				tick_broadcast_start_periodic(dev);

if	(dev->features	&	CLOCK_EVT_FEAT_ONESHOT)

				tick_clock_notify();

The		tick_broadcast_mask		filled	in	the		tick_device_uses_broadcast		function	that	checks	a		clock	events		device	during
registration	of	this		clock	events		device:

int	cpu	=	smp_processor_id();

int	tick_device_uses_broadcast(struct	clock_event_device	*dev,	int	cpu)

{

				...

				...

				...

The	tick	broadcast	framework	and	dyntick

285

https://github.com/torvalds/linux/blob/master/kernel/tick-common.c
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c


				if	(!tick_device_is_functional(dev))	{

								...

								cpumask_set_cpu(cpu,	tick_broadcast_mask);

								...

				}

				...

				...

				...

}

More	about	the		smp_processor_id		macro	you	can	read	in	the	fourth	part	of	the	Linux	kernel	initialization	process	chapter.

The		tick_broadcast_start_periodic		function	check	the	given		clock	event		device	and	call	the		tick_setup_periodic		function:

static	void	tick_broadcast_start_periodic(struct	clock_event_device	*bc)

{

				if	(bc)

								tick_setup_periodic(bc,	1);

}

that	defined	in	the	kernel/time/tick-common.c	source	code	file	and	sets	broadcast	handler	for	the	given		clock	event		device	by	the	call
of	the	following	function:

tick_set_periodic_handler(dev,	broadcast);

This	function	checks	the	second	parameter	which	represents	broadcast	state	(	on		or		off	)	and	sets	the	broadcast	handler	depends	on
its	value:

void	tick_set_periodic_handler(struct	clock_event_device	*dev,	int	broadcast)

{

				if	(!broadcast)

								dev->event_handler	=	tick_handle_periodic;

				else

								dev->event_handler	=	tick_handle_periodic_broadcast;

}

When	an		clock	event		device	will	issue	an	interrupt,	the		dev->event_handler		will	be	called.	For	example,	let's	look	on	the	interrupt
handler	of	the	high	precision	event	timer	which	is	located	in	the	arch/x86/kernel/hpet.c	source	code	file:

static	irqreturn_t	hpet_interrupt_handler(int	irq,	void	*data)

{

				struct	hpet_dev	*dev	=	(struct	hpet_dev	*)data;

				struct	clock_event_device	*hevt	=	&dev->evt;

				if	(!hevt->event_handler)	{

								printk(KERN_INFO	"Spurious	HPET	timer	interrupt	on	HPET	timer	%d\n",

																dev->num);

								return	IRQ_HANDLED;

				}

				hevt->event_handler(hevt);

				return	IRQ_HANDLED;

}

The		hpet_interrupt_handler		gets	the	irq	specific	data	and	check	the	event	handler	of	the		clock	event		device.	Recall	that	we	just
set	in	the		tick_set_periodic_handler		function.	So	the		tick_handler_periodic_broadcast		function	will	be	called	in	the	end	of	the
high	precision	event	timer	interrupt	handler.

The		tick_handler_periodic_broadcast		function	calls	the

bc_local	=	tick_do_periodic_broadcast();

The	tick	broadcast	framework	and	dyntick

286

https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/hpet.c
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29


function	which	stores	numbers	of	processors	which	have	asked	to	be	woken	up	in	the	temporary		cpumask		and	call	the
	tick_do_broadcast		function:

cpumask_and(tmpmask,	cpu_online_mask,	tick_broadcast_mask);

return	tick_do_broadcast(tmpmask);

The		tick_do_broadcast		calls	the		broadcast		function	of	the	given	clock	events	which	sends	IPI	interrupt	to	the	set	of	the	processors.
In	the	end	we	can	call	the	event	handler	of	the	given		tick_device	:

if	(bc_local)

				td->evtdev->event_handler(td->evtdev);

which	actually	represents	interrupt	handler	of	the	local	timer	of	a	processor.	After	this	a	processor	will	wake	up.	That	is	all	about		tick
broadcast		framework	in	the	Linux	kernel.	We	have	missed	some	aspects	of	this	framework,	for	example	reprogramming	of	a		clock
event		device	and	broadcast	with	the	oneshot	timer	and	etc.	But	the	Linux	kernel	is	very	big,	it	is	not	real	to	cover	all	aspects	of	it.	I
think	it	will	be	interesting	to	dive	into	with	yourself.

If	you	remember,	we	have	started	this	part	with	the	call	of	the		tick_init		function.	We	just	consider	the		tick_broadcast_init	
function	and	releated	theory,	but	the		tick_init		function	contains	another	call	of	a	function	and	this	function	is	-		tick_nohz_init	.
Let's	look	on	the	implementation	of	this	function.

Initialization	of	dyntick	related	data	structures
We	already	saw	some	information	about		dyntick		concept	in	this	part	and	we	know	that	this	concept	allows	kernel	to	disable	system
timer	interrupts	in	the		idle		state.	The		tick_nohz_init		function	makes	initialization	of	the	different	data	structures	which	are	related
to	this	concept.	This	function	defined	in	the	kernel/time/tick-sched.c	source	code	file	and	starts	from	the	check	of	the	value	of	the
	tick_nohz_full_running		variable	which	represents	state	of	the	tick-less	mode	for	the		idle		state	and	the	state	when	system	timer
interrups	are	disabled	during	a	processor	has	only	one	runnable	task:

if	(!tick_nohz_full_running)	{

				if	(tick_nohz_init_all()	<	0)

				return;

}

If	this	mode	is	not	running	we	call	the		tick_nohz_init_all		function	that	defined	in	the	same	source	code	file	and	check	its	result.	The
	tick_nohz_init_all		function	tries	to	allocate	the		tick_nohz_full_mask		with	the	call	of	the		alloc_cpumask_var		that	will	allocate
space	for	a		tick_nohz_full_mask	.	The		tck_nohz_full_mask		will	store	numbers	of	processors	that	have	enabled	full		NO_HZ	.	After
successful	allocation	of	the		tick_nohz_full_mask		we	set	all	bits	in	the		tick_nogz_full_mask	,	set	the		tick_nohz_full_running		and
return	result	to	the		tick_nohz_init		function:

static	int	tick_nohz_init_all(void)

{

								int	err	=	-1;

#ifdef	CONFIG_NO_HZ_FULL_ALL

								if	(!alloc_cpumask_var(&tick_nohz_full_mask,	GFP_KERNEL))	{

																WARN(1,	"NO_HZ:	Can't	allocate	full	dynticks	cpumask\n");

																return	err;

								}

								err	=	0;

								cpumask_setall(tick_nohz_full_mask);

								tick_nohz_full_running	=	true;

#endif

								return	err;

}

In	the	next	step	we	try	to	allocate	a	memory	space	for	the		housekeeping_mask	:

The	tick	broadcast	framework	and	dyntick

287

https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://github.com/torvalds/linux/blob/master/kernel/time/tich-sched.c


if	(!alloc_cpumask_var(&housekeeping_mask,	GFP_KERNEL))	{

				WARN(1,	"NO_HZ:	Can't	allocate	not-full	dynticks	cpumask\n");

				cpumask_clear(tick_nohz_full_mask);

				tick_nohz_full_running	=	false;

				return;

}

This		cpumask		will	store	number	of	processor	for		housekeeping		or	in	other	words	we	need	at	least	in	one	processor	that	will	not	be	in
	NO_HZ		mode,	because	it	will	do	timekeeping	and	etc.	After	this	we	check	the	result	of	the	architecture-specific
	arch_irq_work_has_interrupt		function.	This	function	checks	ability	to	send	inter-processor	interrupt	for	the	certain	architecture.	We
need	to	check	this,	because	system	timer	of	a	processor	will	be	disabled	during		NO_HZ		mode,	so	there	must	be	at	least	one	online
processor	which	can	send	inter-processor	interrupt	to	awake	offline	processor.	This	function	defined	in	the
arch/x86/include/asm/irq_work.h	header	file	for	the	x86_64	and	just	checks	that	a	processor	has	APIC	from	the	CPUID:

static	inline	bool	arch_irq_work_has_interrupt(void)

{

				return	cpu_has_apic;

}

If	a	processor	has	not		APIC	,	the	Linux	kernel	prints	warning	message,	clears	the		tick_nohz_full_mask		cpumask,	copies	numbers	of
all	possible	processors	in	the	system	to	the		housekeeping_mask		and	resets	the	value	of	the		tick_nohz_full_running		variable:

if	(!arch_irq_work_has_interrupt())	{

				pr_warning("NO_HZ:	Can't	run	full	dynticks	because	arch	doesn't	"

											"support	irq	work	self-IPIs\n");

				cpumask_clear(tick_nohz_full_mask);

				cpumask_copy(housekeeping_mask,	cpu_possible_mask);

				tick_nohz_full_running	=	false;

				return;

}

After	this	step,	we	get	the	number	of	the	current	processor	by	the	call	of	the		smp_processor_id		and	check	this	processor	in	the
	tick_nohz_full_mask	.	If	the		tick_nohz_full_mask		contains	a	given	processor	we	clear	appropriate	bit	in	the
	tick_nohz_full_mask	:

cpu	=	smp_processor_id();

if	(cpumask_test_cpu(cpu,	tick_nohz_full_mask))	{

				pr_warning("NO_HZ:	Clearing	%d	from	nohz_full	range	for	timekeeping\n",	cpu);

				cpumask_clear_cpu(cpu,	tick_nohz_full_mask);

}

Because	this	processor	will	be	used	for	timekeeping.	After	this	step	we	put	all	numbers	of	processors	that	are	in	the
	cpu_possible_mask		and	not	in	the		tick_nohz_full_mask	:

cpumask_andnot(housekeeping_mask,

											cpu_possible_mask,	tick_nohz_full_mask);

After	this	operation,	the		housekeeping_mask		will	contain	all	processors	of	the	system	except	a	processor	for	timekeeping.	In	the	last
step	of	the		tick_nohz_init_all		function,	we	are	going	through	all	processors	that	are	defined	in	the		tick_nohz_full_mask		and	call
the	following	function	for	an	each	processor:

for_each_cpu(cpu,	tick_nohz_full_mask)

				context_tracking_cpu_set(cpu);

The		context_tracking_cpu_set		function	defined	in	the	kernel/context_tracking.c	source	code	file	and	main	point	of	this	function	is	to
set	the		context_tracking.active		percpu	variable	to		true	.	When	the		active		field	will	be	set	to		true		for	the	certain	processor,	all
context	switches	will	be	ignored	by	the	Linux	kernel	context	tracking	subsystem	for	this	processor.

The	tick	broadcast	framework	and	dyntick

288

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irq_work.h
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/CPUID
https://github.com/torvalds/linux/blob/master/kernel/context_tracking.c
https://en.wikipedia.org/wiki/Context_switch


That's	all.	This	is	the	end	of	the		tick_nohz_init		function.	After	this		NO_HZ		related	data	structures	will	be	initialzed.	We	didn't	see
API	of	the		NO_HZ		mode,	but	will	see	it	soon.

Conclusion

This	is	the	end	of	the	third	part	of	the	chapter	that	describes	timers	and	timer	management	related	stuff	in	the	Linux	kernel.	In	the
previous	part	got	acquainted	with	the		clocksource		concept	in	the	Linux	kernel	which	represents	framework	for	managing	different
clock	source	in	a	interrupt	and	hardware	characteristics	independent	way.	We	continued	to	look	on	the	Linux	kernel	initialization
process	in	a	time	management	context	in	this	part	and	got	acquainted	with	two	new	concepts	for	us:	the		tick	broadcast		framework
and		tick-less		mode.	The	first	concept	helps	the	Linux	kernel	to	deal	with	processors	which	are	in	deep	sleep	and	the	second	concept
represents	the	mode	in	which	kernel	may	work	to	improve	power	management	of		idle		processors.

In	the	next	part	we	will	continue	to	dive	into	timer	management	related	things	in	the	Linux	kernel	and	will	see	new	concept	for	us	-
	timers	.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links

x86_64
initrd
interrupt
DMI
printk
CPU	idle
power	management
NO_HZ	documentation
cpumasks
high	precision	event	timer
irq
IPI
CPUID
APIC
percpu
context	switches
Previous	part

The	tick	broadcast	framework	and	dyntick

289

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/Idle_%28CPU%29
https://en.wikipedia.org/wiki/Power_management
https://github.com/torvalds/linux/blob/master/Documentation/timers/NO_HZ.txt
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://en.wikipedia.org/wiki/CPUID
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Context_switch


Timers	and	time	management	in	the	Linux	kernel.	Part	4.

Timers

This	is	fourth	part	of	the	chapter	which	describes	timers	and	time	management	related	stuff	in	the	Linux	kernel	and	in	the	previous	part
we	knew	about	the		tick	broadcast		framework	and		NO_HZ		mode	in	the	Linux	kernel.	We	will	continue	to	dive	into	the	time
management	related	stuff	in	the	Linux	kernel	in	this	part	and	will	be	acquainted	with	yet	another	concept	in	the	Linux	kernel	-		timers	.
Before	we	will	look	at	timers	in	the	Linux	kernel,	we	have	to	learn	some	theory	about	this	concept.	Note	that	we	will	consider	software
timers	in	this	part.

The	Linux	kernel	provides	a		software	timer		concept	to	allow	to	kernel	functions	could	be	invoked	at	future	moment.	Timers	are
widely	used	in	the	Linux	kernel.	For	example,	look	in	the	net/netfilter/ipset/ip_set_list_set.c	source	code	file.	This	source	code	file
provides	implementation	of	the	framework	for	the	managing	of	groups	of	IP	addresses.

We	can	find	the		list_set		structure	that	contains		gc		filed	in	this	source	code	file:

struct	list_set	{

				...

				struct	timer_list	gc;

				...

};

Not	that	the		gc		filed	has		timer_list		type.	This	structure	defined	in	the	include/linux/timer.h	header	file	and	main	point	of	this
structure	is	to	store		dynamic		timers	in	the	Linux	kernel.	Actually,	the	Linux	kernel	provides	two	types	of	timers	called	dynamic	timers
and	interval	timers.	First	type	of	timers	is	used	by	the	kernel,	and	the	second	can	be	used	by	user	mode.	The		timer_list		structure
contains	actual		dynamic		timers.	The		list_set		contains		gc		timer	in	our	example	represents	timer	for	garbage	collection.	This	timer
will	be	initialized	in	the		list_set_gc_init		function:

static	void

list_set_gc_init(struct	ip_set	*set,	void	(*gc)(unsigned	long	ul_set))

{

				struct	list_set	*map	=	set->data;

				...

				...

				...

				map->gc.function	=	gc;

				map->gc.expires	=	jiffies	+	IPSET_GC_PERIOD(set->timeout)	*	HZ;

				...

				...

				...

}

A	function	that	is	pointed	by	the		gc		pointer,	will	be	called	after	timeout	which	is	equal	to	the		map->gc.expires	.

Ok,	we	will	not	dive	into	this	example	with	the	netfilter,	because	this	chapter	is	not	about	network	related	stuff.	But	we	saw	that	timers
are	widely	used	in	the	Linux	kernel	and	learned	that	they	represent	concept	which	allows	to	functions	to	be	called	in	future.

Now	let's	continue	to	research	source	code	of	Linux	kernel	which	is	related	to	the	timers	and	time	management	stuff	as	we	did	it	in	all
previous	chapters.

Introduction	to	dynamic	timers	in	the	Linux	kernel

As	I	already	wrote,	we	knew	about	the		tick	broadcast		framework	and		NO_HZ		mode	in	the	previous	part.	They	will	be	initialized	in
the	init/main.c	source	code	file	by	the	call	of	the		tick_init		function.	If	we	will	look	at	this	source	code	file,	we	will	see	that	the	next
time	management	related	function	is:

290

https://github.com/torvalds/linux/blob/master/net/netfilter/ipset/ip_set_list_set.c
https://en.wikipedia.org/wiki/Internet_Protocol
https://github.com/torvalds/linux/blob/master/include/linux/timer.h
https://en.wikipedia.org/wiki/Netfilter
https://en.wikipedia.org/wiki/Computer_network
https://github.com/torvalds/linux/blob/master/init/main.c


init_timers();

This	function	defined	in	the	kernel/time/timer.c	source	code	file	and	contains	calls	of	four	functions:

void	__init	init_timers(void)

{

				init_timer_cpus();

				init_timer_stats();

				timer_register_cpu_notifier();

				open_softirq(TIMER_SOFTIRQ,	run_timer_softirq);

}

Let's	look	on	implementation	of	each	function.	The	first	function	is		init_timer_cpus		defined	in	the	same	source	code	file	and	just
calls	the		init_timer_cpu		function	for	each	possible	processor	in	the	system:

static	void	__init	init_timer_cpus(void)

{

				int	cpu;

				for_each_possible_cpu(cpu)

								init_timer_cpu(cpu);

}

If	you	do	not	know	or	do	not	remember	what	is	it	a		possible		cpu,	you	can	read	the	special	part	of	this	book	which	describes
	cpumask		concept	in	the	Linux	kernel.	In	short	words,	a		possible		processor	is	a	processor	which	can	be	plugged	in	anytime	during
the	life	of	the	system.

The		init_timer_cpu		function	does	main	work	for	us,	namely	it	executes	initialization	of	the		tvec_base		structure	for	each	processor.
This	structure	defined	in	the	kernel/time/timer.c	source	code	file	and	stores	data	related	to	a		dynamic		timer	for	a	certain	processor.
Let's	look	on	the	definition	of	this	structure:

struct	tvec_base	{

				spinlock_t	lock;

				struct	timer_list	*running_timer;

				unsigned	long	timer_jiffies;

				unsigned	long	next_timer;

				unsigned	long	active_timers;

				unsigned	long	all_timers;

				int	cpu;

				bool	migration_enabled;

				bool	nohz_active;

				struct	tvec_root	tv1;

				struct	tvec	tv2;

				struct	tvec	tv3;

				struct	tvec	tv4;

				struct	tvec	tv5;

}	____cacheline_aligned;

The		thec_base		structure	contains	following	fields:	The		lock		for		tvec_base		protection,	the	next		running_timer		field	points	to	the
currently	running	timer	for	the	certain	processor,	the		timer_jiffies		fields	represents	the	earliest	expiration	time	(it	will	be	used	by	the
Linux	kernel	to	find	already	expired	timers).	The	next	field	-		next_timer		contains	the	next	pending	timer	for	a	next	timer	interrupt	in	a
case	when	a	processor	goes	to	sleep	and	the		NO_HZ		mode	is	enabled	in	the	Linux	kernel.	The		active_timers		field	provides
accounting	of	non-deferrable	timers	or	in	other	words	all	timers	that	will	not	be	stopped	during	a	processor	will	go	to	sleep.	The
	all_timers		field	tracks	total	number	of	timers	or		active_timers		+	deferrable	timers.	The		cpu		field	represents	number	of	a
processor	which	owns	timers.	The		migration_enabled		and		nohz_active		fields	are	represent	opportunity	of	timers	migration	to
another	processor	and	status	of	the		NO_HZ		mode	respectively.

The	last	five	fields	of	the		tvec_base		structure	represent	lists	of	dynamic	timers.	The	first		tv1		field	has:

#define	TVR_SIZE	(1	<<	TVR_BITS)

#define	TVR_BITS	(CONFIG_BASE_SMALL	?	6	:	8)

291

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://en.wikipedia.org/wiki/Interrupt


...

...

...

struct	tvec_root	{

				struct	hlist_head	vec[TVR_SIZE];

};

type.	Note	that	the	value	of	the		TVR_SIZE		depends	on	the		CONFIG_BASE_SMALL		kernel	configuration	option:

that	reduces	size	of	the	kernel	data	structures	if	disabled.	The		v1		is	array	that	may	contain		64		or		256		elements	where	an	each
element	represents	a	dynamic	timer	that	will	decay	within	the	next		255		system	timer	interrupts.	Next	three	fields:		tv2	,		tv3		and
	tv4		are	lists	with	dynamic	timers	too,	but	they	store	dynamic	timers	which	will	decay	the	next		2^14	-	1	,		2^20	-	1		and		2^26	
respectively.	The	last		tv5		field	represents	list	which	stores	dynamic	timers	with	a	large	expiring	period.

So,	now	we	saw	the		tvec_base		structure	and	description	of	its	fields	and	we	can	look	on	the	implementation	of	the		init_timer_cpu	
function.	As	I	already	wrote,	this	function	defined	in	the	kernel/time/timer.c	source	code	file	and	executes	initialization	of	the
	tvec_bases	:

static	void	__init	init_timer_cpu(int	cpu)

{

				struct	tvec_base	*base	=	per_cpu_ptr(&tvec_bases,	cpu);

				base->cpu	=	cpu;

				spin_lock_init(&base->lock);

				base->timer_jiffies	=	jiffies;

				base->next_timer	=	base->timer_jiffies;

}

The		tvec_bases		represents	per-cpu	variable	which	represents	main	data	structure	for	a	dynamic	timer	for	a	given	processor.	This
	per-cpu		variable	defined	in	the	same	source	code	file:

static	DEFINE_PER_CPU(struct	tvec_base,	tvec_bases);

292

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c


First	of	all	we're	getting	the	address	of	the		tvec_bases		for	the	given	processor	to		base		variable	and	as	we	got	it,	we	are	starting	to
initialize	some	of	the		tvec_base		fields	in	the		init_timer_cpu		function.	After	initialization	of	the		per-cpu		dynamic	timers	with	the
jiffies	and	the	number	of	a	possible	processor,	we	need	to	initialize	a		tstats_lookup_lock		spinlock	in	the		init_timer_stats	
function:

void	__init	init_timer_stats(void)

{

				int	cpu;

				for_each_possible_cpu(cpu)

								raw_spin_lock_init(&per_cpu(tstats_lookup_lock,	cpu));

}

The		tstats_lookcup_lock		variable	represents		per-cpu		raw	spinlock:

static	DEFINE_PER_CPU(raw_spinlock_t,	tstats_lookup_lock);

which	will	be	used	for	protection	of	operation	with	statistics	of	timers	that	can	be	accessed	through	the	procfs:

static	int	__init	init_tstats_procfs(void)

{

				struct	proc_dir_entry	*pe;

				pe	=	proc_create("timer_stats",	0644,	NULL,	&tstats_fops);

				if	(!pe)

								return	-ENOMEM;

				return	0;

}

For	example:

$	cat	/proc/timer_stats

Timerstats	sample	period:	3.888770	s

		12,					0	swapper										hrtimer_stop_sched_tick	(hrtimer_sched_tick)

		15,					1	swapper										hcd_submit_urb	(rh_timer_func)

			4,			959	kedac												schedule_timeout	(process_timeout)

			1,					0	swapper										page_writeback_init	(wb_timer_fn)

		28,					0	swapper										hrtimer_stop_sched_tick	(hrtimer_sched_tick)

		22,		2948	IRQ	4												tty_flip_buffer_push	(delayed_work_timer_fn)

		...

		...

		...

The	next	step	after	initialization	of	the		tstats_lookup_lock		spinlock	is	the	call	of	the		timer_register_cpu_notifier		function.	This
function	depends	on	the		CONFIG_HOTPLUG_CPU		kernel	configuration	option	which	enables	support	for	hotplug	processors	in	the	Linux
kernel.

When	a	processor	will	be	logically	offlined,	a	notification	will	be	sent	to	the	Linux	kernel	with	the		CPU_DEAD		or	the		CPU_DEAD_FROZEN	
event	by	the	call	of	the		cpu_notifier		macro:

#ifdef	CONFIG_HOTPLUG_CPU

...

...

static	inline	void	timer_register_cpu_notifier(void)

{

				cpu_notifier(timer_cpu_notify,	0);

}

...

...

#else

...

...

static	inline	void	timer_register_cpu_notifier(void)	{	}

293

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Hot_swapping


...

...

#endif	/*	CONFIG_HOTPLUG_CPU	*/

In	this	case	the		timer_cpu_notify		will	be	called	which	checks	an	event	type	and	will	call	the		migrate_timers		function:

static	int	timer_cpu_notify(struct	notifier_block	*self,

																												unsigned	long	action,	void	*hcpu)

{

				switch	(action)	{

				case	CPU_DEAD:

				case	CPU_DEAD_FROZEN:

								migrate_timers((long)hcpu);

								break;

				default:

								break;

				}

				return	NOTIFY_OK;

}

This	chapter	will	not	describe		hotplug		related	events	in	the	Linux	kernel	source	code,	but	if	you	are	interesting	in	such	things,	you	can
find	implementation	of	the		migrate_timers		function	in	the	kernel/time/timer.c	source	code	file.

The	last	step	in	the		init_timers		function	is	the	call	of	the:

open_softirq(TIMER_SOFTIRQ,	run_timer_softirq);

function.	The		open_softirq		function	may	be	already	familar	to	you	if	you	have	read	the	ninth	part	about	the	interrupts	and	interrupt
handling	in	the	Linux	kernel.	In	short	words,	the		open_softirq		function	defined	in	the	kernel/softirq.c	source	code	file	and	executes
initialization	of	the	deferred	interrupt	handler.

In	our	case	the	deferred	function	is	the		run_timer_softirq		function	that	is	will	be	called	after	a	hardware	interrupt	in	the		do_IRQ	
function	which	defined	in	the	arch/x86/kernel/irq.c	source	code	file.	The	main	point	of	this	function	is	to	handle	a	software	dynamic
timer.	The	Linux	kernel	does	not	do	this	thing	during	the	hardware	timer	interrupt	handling	because	this	is	time	consuming	operation.

Let's	look	on	the	implementation	of	the		run_timer_softirq		function:

static	void	run_timer_softirq(struct	softirq_action	*h)

{

				struct	tvec_base	*base	=	this_cpu_ptr(&tvec_bases);

				if	(time_after_eq(jiffies,	base->timer_jiffies))

								__run_timers(base);

}

At	the	beginning	of	the		run_timer_softirq		function	we	get	a		dynamic		timer	for	a	current	processor	and	compares	the	current	value
of	the	jiffies	with	the	value	of	the		timer_jiffies		for	the	current	structure	by	the	call	of	the		time_after_eq		macro	which	is	defined
in	the	include/linux/jiffies.h	header	file:

#define	time_after_eq(a,b)										\

				(typecheck(unsigned	long,	a)	&&	\

					typecheck(unsigned	long,	b)	&&	\

				((long)((a)	-	(b))	>=	0))

Reclaim	that	the		timer_jiffies		field	of	the		tvec_base		structure	represents	the	relative	time	when	functions	delayed	by	the	given
timer	will	be	executed.	So	we	compare	these	two	values	and	if	the	current	time	represented	by	the		jiffies		is	greater	than		base-
>timer_jiffies	,	we	call	the		__run_timers		function	that	defined	in	the	same	source	code	file.	Let's	look	on	the	implementation	of	this
function.

294

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://github.com/torvalds/linux/blob/master/include/linux/jiffies.h


As	I	just	wrote,	the		__run_timers		function	runs	all	expired	timers	for	a	given	processor.	This	function	starts	from	the	acquiring	of	the
	tvec_base's		lock	to	protect	the		tvec_base		structure

static	inline	void	__run_timers(struct	tvec_base	*base)

{

				struct	timer_list	*timer;

				spin_lock_irq(&base->lock);

				...

				...

				...

				spin_unlock_irq(&base->lock);

}

After	this	it	starts	the	loop	while	the		timer_jiffies		will	not	be	greater	than	the		jiffies	:

while	(time_after_eq(jiffies,	base->timer_jiffies))	{

				...

				...

				...

}

We	can	find	many	different	manipulations	in	the	our	loop,	but	the	main	point	is	to	find	expired	timers	and	call	delayed	functions.	First
of	all	we	need	to	calculate	the		index		of	the		base->tv1		list	that	stores	the	next	timer	to	be	handled	with	the	following	expression:

index	=	base->timer_jiffies	&	TVR_MASK;

where	the		TVR_MASK		is	a	mask	for	the	getting	of	the		tvec_root->vec		elements.	As	we	got	the	index	with	the	next	timer	which	must
be	handled	we	check	its	value.	If	the	index	is	zero,	we	go	through	all	lists	in	our	cascade	table		tv2	,		tv3		and	etc.,	and	rehashing	it
with	the	call	of	the		cascade		function:

if	(!index	&&

				(!cascade(base,	&base->tv2,	INDEX(0)))	&&

								(!cascade(base,	&base->tv3,	INDEX(1)))	&&

																!cascade(base,	&base->tv4,	INDEX(2)))

								cascade(base,	&base->tv5,	INDEX(3));

After	this	we	increase	the	value	of	the		base->timer_jiffies	:

++base->timer_jiffies;

In	the	last	step	we	are	executing	a	corresponding	function	for	each	timer	from	the	list	in	a	following	loop:

hlist_move_list(base->tv1.vec	+	index,	head);

while	(!hlist_empty(head))	{

				...

				...

				...

				timer	=	hlist_entry(head->first,	struct	timer_list,	entry);

				fn	=	timer->function;

				data	=	timer->data;

				spin_unlock(&base->lock);

				call_timer_fn(timer,	fn,	data);

				spin_lock(&base->lock);

				...

				...

				...

}

295



where	the		call_timer_fn		just	call	the	given	function:

static	void	call_timer_fn(struct	timer_list	*timer,	void	(*fn)(unsigned	long),

																										unsigned	long	data)

{

				...

				...

				...

				fn(data);

				...

				...

				...

}

That's	all.	The	Linux	kernel	has	infrastructure	for		dynamic	timers		from	this	moment.	We	will	not	dive	into	this	interesting	theme.	As	I
already	wrote	the		timers		is	a	widely	used	concept	in	the	Linux	kernel	and	nor	one	part,	nor	two	parts	will	not	cover	understanding	of
such	things	how	it	implemented	and	how	it	works.	But	now	we	know	about	this	concept,	why	does	the	Linux	kernel	needs	in	it	and
some	data	structures	around	it.

Now	let's	look	usage	of		dynamic	timers		in	the	Linux	kernel.

Usage	of	dynamic	timers

As	you	already	can	noted,	if	the	Linux	kernel	provides	a	concept,	it	also	provides	API	for	managing	of	this	concept	and	the		dynamic
timers		concept	is	not	exception	here.	To	use	a	timer	in	the	Linux	kernel	code,	we	must	define	a	variable	with	a		timer_list		type.	We
can	initialize	our		timer_list		structure	in	two	ways.	The	first	is	to	use	the		init_timer		macro	that	defined	in	the	include/linux/timer.h
header	file:

#define	init_timer(timer)				\

				__init_timer((timer),	0)

#define	__init_timer(_timer,	_flags)			\

									init_timer_key((_timer),	(_flags),	NULL,	NULL)

where	the		init_timer_key		function	just	calls	the:

do_init_timer(timer,	flags,	name,	key);

function	which	fields	the	given		timer		with	default	values.	The	second	way	is	to	use	the:

#define	TIMER_INITIALIZER(_function,	_expires,	_data)								\

				__TIMER_INITIALIZER((_function),	(_expires),	(_data),	0)

macro	which	will	initilize	the	given		timer_list		structure	too.

After	a		dynamic	timer		is	initialzed	we	can	start	this		timer		with	the	call	of	the:

void	add_timer(struct	timer_list	*	timer);

function	and	stop	it	with	the:

int	del_timer(struct	timer_list	*	timer);

function.

That's	all.

296

http://lxr.free-electrons.com/ident?i=timer_list
https://github.com/torvalds/linux/blob/master/include/linux/timer.h


Conclusion

This	is	the	end	of	the	fourth	part	of	the	chapter	that	describes	timers	and	timer	management	related	stuff	in	the	Linux	kernel.	In	the
previous	part	we	got	acquainted	with	the	two	new	concepts:	the		tick	broadcast		framework	and	the		NO_HZ		mode.	In	this	part	we
continued	to	dive	into	time	managemented	related	stuff	and	got	acquainted	with	the	new	concept	-		dynamic	timer		or	software	timer.
We	didn't	saw	implementation	of	a		dynamic	timers		management	code	in	details	in	this	part	but	saw	data	structures	and	API	around
this	concept.

In	the	next	part	we	will	continue	to	dive	into	timer	management	related	things	in	the	Linux	kernel	and	will	see	new	concept	for	us	-
	timers	.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links
IP
netfilter
network
cpumask
interrupt
jiffies
per-cpu
spinlock
procfs
previous	part

297

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Netfilter
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Procfs


Timers	and	time	management	in	the	Linux	kernel.	Part	5.

Introduction	to	the		clockevents		framework

This	is	fifth	part	of	the	chapter	which	describes	timers	and	time	management	related	stuff	in	the	Linux	kernel.	As	you	might	noted	from
the	title	of	this	part,	the		clockevents		framework	will	be	discussed.	We	already	saw	one	framework	in	the	second	part	of	this	chapter.	It
was		clocksource		framework.	Both	of	these	frameworks	represent	timekeeping	abstractions	in	the	Linux	kernel.

At	first	let's	refresh	your	memory	and	try	to	remember	what	is	it		clocksource		framework	and	and	what	its	purpose.	The	main	goal	of
the		clocksource		framework	is	to	provide		timeline	.	As	described	in	the	documentation:

For	example	issuing	the	command	'date'	on	a	Linux	system	will	eventually	read	the	clock	source	to	determine	exactly	what	time
it	is.

The	Linux	kernel	supports	many	different	clock	sources.	You	can	find	some	of	them	in	the	drivers/closksource.	For	example	old	good
Intel	8253	-	programmable	interval	timer	with		1193182		Hz	frequency,	yet	another	one	-	ACPI	PM	timer	with		3579545		Hz	frequency.
Besides	the	drivers/closksource	directory,	each	architecture	may	provide	own	architecture-specific	clock	sources.	For	example	x86
architecture	provides	High	Precision	Event	Timer,	or	for	example	powerpc	provides	access	to	the	processor	timer	through		timebase	
register.

Each	clock	source	provides	monotonic	atomic	counter.	As	I	already	wrote,	the	Linux	kernel	supports	a	huge	set	of	different	clock	source
and	each	clock	source	has	own	parameters	like	frequency.	The	main	goal	of	the		clocksource		framework	is	to	provide	API	to	select
best	available	clock	source	in	the	system	i.e.	a	clock	source	with	the	highest	frequency.	Additional	goal	of	the		clocksource		framework
is	to	represent	an	atomic	counter	provided	by	a	clock	source	in	human	units.	In	this	time,	nanoseconds	are	the	favorite	choice	for	the
time	value	units	of	the	given	clock	source	in	the	Linux	kernel.

The		clocksource		framework	represented	by	the		clocksource		structure	which	is	defined	in	the	include/linux/clocksource.h	header
code	file	which	contains		name		of	a	clock	source,	rating	of	certain	clock	source	in	the	system	(a	clock	source	with	the	higher	frequency
has	the	biggest	rating	in	the	system),		list		of	all	registered	clock	source	in	the	system,		enable		and		disable		fields	to	enable	and
disable	a	clock	source,	pointer	to	the		read		function	which	must	return	an	atomic	counter	of	a	clock	source	and	etc.

Additionally	the		clocksource		structure	provides	two	fields:		mult		and		shift		which	are	needed	for	translation	of	an	atomic	counter
which	is	provided	by	a	certain	clock	source	to	the	human	units,	i.e.	nanoseconds.	Translation	occurs	via	following	formula:

ns	~=	(clocksource	*	mult)	>>	shift

As	we	already	know,	besides	the		clocksource		structure,	the		clocksource		framework	provides	an	API	for	registration	of	clock
source	with	different	frequency	scale	factor:

static	inline	int	clocksource_register_hz(struct	clocksource	*cs,	u32	hz)

static	inline	int	clocksource_register_khz(struct	clocksource	*cs,	u32	khz)

A	clock	source	unregistration:

int	clocksource_unregister(struct	clocksource	*cs)

and	etc.

Additionally	to	the		clocksource		framework,	the	Linux	kernel	provides		clockevents		framework.	As	described	in	the	documentation:

Clock	events	are	the	conceptual	reverse	of	clock	sources

Main	goal	of	the	is	to	manage	clock	event	devices	or	in	other	words	-	to	manage	devices	that	allow	to	register	an	event	or	in	other	words
interrupt	that	is	going	to	happen	at	a	defined	point	of	time	in	the	future.

Clockevents	

298

https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://github.com/torvalds/linux/tree/master/drivers/clocksource
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Programmable_interval_timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://github.com/torvalds/linux/tree/master/drivers/clocksource
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://en.wikipedia.org/wiki/Nanosecond
https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://en.wikipedia.org/wiki/Interrupt


Now	we	know	a	little	about	the		clockevents		framework	in	the	Linux	kernel,	and	now	time	is	to	see	on	it	API.

API	of		clockevents		framework

The	main	structure	which	described	a	clock	event	device	is		clock_event_device		structure.	This	structure	is	defined	in	the
include/linux/clockchips.h	header	file	and	contains	a	huge	set	of	fields.	as	well	as	the		clocksource		structure	it	has		name		fields	which
contains	human	readable	name	of	a	clock	event	device,	for	example	local	APIC	timer:

static	struct	clock_event_device	lapic_clockevent	=	{

				.name																			=	"lapic",

				...

				...

				...

}

Addresses	of	the		event_handler	,		set_next_event	,		next_event		functions	for	a	certain	clock	event	device	which	are	an	interrupt
handler,	setter	of	next	event	and	local	storage	for	next	event	respectively.	Yet	another	field	of	the		clock_event_device		structure	is	-
	features		field.	Its	value	maybe	on	of	the	following	generic	features:

#define	CLOCK_EVT_FEAT_PERIODIC				0x000001

#define	CLOCK_EVT_FEAT_ONESHOT								0x000002

Where	the		CLOCK_EVT_FEAT_PERIODIC		represents	device	which	may	be	programmed	to	generate	events	periodically.	The
	CLOCK_EVT_FEAT_ONESHOT		represents	device	which	may	generate	an	event	only	once.	Besides	these	two	features,	there	are	also
architecture-specific	features.	For	example	x86_64	supports	two	additional	features:

#define	CLOCK_EVT_FEAT_C3STOP								0x000008

The	first		CLOCK_EVT_FEAT_C3STOP		means	that	a	clock	event	device	will	be	stopped	in	the	C3	state.	Additionally	the
	clock_event_device		structure	has		mult		and		shift		fields	as	well	as		clocksource		structure.	The		clocksource		structure	also
contains	other	fields,	but	we	will	consider	it	later.

After	we	considered	part	of	the		clock_event_device		structure,	time	is	to	look	at	the		API		of	the		clockevents		framework.	To	work
with	a	clock	event	device,	first	of	all	we	need	to	initialize		clock_event_device		structure	and	register	a	clock	events	device.	The
	clockevents		framework	provides	following		API		for	registration	of	clock	event	devices:

void	clockevents_register_device(struct	clock_event_device	*dev)

{

			...

			...

			...

}

This	function	defined	in	the	kernel/time/clockevents.c	source	code	file	and	as	we	may	see,	the		clockevents_register_device		function
takes	only	one	parameter:

address	of	a		clock_event_device		structure	which	represents	a	clock	event	device.

So,	to	register	a	clock	event	device,	at	first	we	need	to	initialize		clock_event_device		structure	with	parameters	of	a	certain	clock	event
device.	Let's	take	a	look	at	one	random	clock	event	device	in	the	Linux	kernel	source	code.	We	can	find	one	in	the	drivers/closksource
directory	or	try	to	take	a	look	at	an	architecture-specific	clock	event	device.	Let's	take	for	example	-	Periodic	Interval	Timer	(PIT)	for
at91sam926x.	You	can	find	its	implementation	in	the	drivers/closksource.

First	of	all	let's	look	at	initialization	of	the		clock_event_device		structure.	This	occurs	in	the		at91sam926x_pit_common_init		function:

struct	pit_data	{

				...

				...

Clockevents	

299

https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface#Device_states
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c
https://github.com/torvalds/linux/tree/master/drivers/clocksource
http://www.atmel.com/Images/doc6062.pdf
https://github.com/torvalds/linux/tree/master/drivers/clocksource/timer-atmel-pit.c


				struct	clock_event_device							clkevt;

				...

				...

};

static	void	__init	at91sam926x_pit_common_init(struct	pit_data	*data)

{

				...

				...

				...

				data->clkevt.name	=	"pit";

				data->clkevt.features	=	CLOCK_EVT_FEAT_PERIODIC;

				data->clkevt.shift	=	32;

				data->clkevt.mult	=	div_sc(pit_rate,	NSEC_PER_SEC,	data->clkevt.shift);

				data->clkevt.rating	=	100;

				data->clkevt.cpumask	=	cpumask_of(0);

				data->clkevt.set_state_shutdown	=	pit_clkevt_shutdown;

				data->clkevt.set_state_periodic	=	pit_clkevt_set_periodic;

				data->clkevt.resume	=	at91sam926x_pit_resume;

				data->clkevt.suspend	=	at91sam926x_pit_suspend;

				...

}

Here	we	can	see	that		at91sam926x_pit_common_init		takes	one	parameter	-	pointer	to	the		pit_data		structure	which	contains
	clock_event_device		structure	which	will	contain	clock	event	related	information	of	the		at91sam926x		periodic	Interval	Timer.	At	the
start	we	fill		name		of	the	timer	device	and	its		features	.	In	our	case	we	deal	with	periodic	timer	which	as	we	already	know	may	be
programmed	to	generate	events	periodically.

The	next	two	fields		shift		and		mult		are	familiar	to	us.	They	will	be	used	to	translate	counter	of	our	timer	to	nanoseconds.	After	this
we	set	rating	of	the	timer	to		100	.	This	means	if	there	will	not	be	timers	with	higher	rating	in	the	system,	this	timer	will	be	used	for
timekeeping.	The	next	field	-		cpumask		indicates	for	which	processors	in	the	system	the	device	will	work.	In	our	case,	the	device	will
work	for	the	first	processor.	The		cpumask_of		macro	defined	in	the	include/linux/cpumask.h	header	file	and	just	expands	to	the	call	of
the:

#define	cpumask_of(cpu)	(get_cpu_mask(cpu))

Where	the		get_cpu_mask		returns	the	cpumask	containing	just	a	given		cpu		number.	More	about		cpumasks		concept	you	may	read	in
the	CPU	masks	in	the	Linux	kernel	part.	In	the	last	four	lines	of	code	we	set	callbacks	for	the	clock	event	device	suspend/resume,	device
shutdown	and	update	of	the	clock	event	device	state.

After	we	finished	with	the	initialization	of	the		at91sam926x		periodic	timer,	we	can	register	it	by	the	call	of	the	following	functions:

clockevents_register_device(&data->clkevt);

Now	we	can	consider	implementation	of	the		clockevent_register_device		function.	As	I	already	wrote	above,	this	function	is	defined
in	the	kernel/time/clockevents.c	source	code	file	and	starts	from	the	initialization	of	the	initial	event	device	state:

clockevent_set_state(dev,	CLOCK_EVT_STATE_DETACHED);

Actually,	an	event	device	may	be	in	one	of	this	states:

enum	clock_event_state	{

				CLOCK_EVT_STATE_DETACHED,

				CLOCK_EVT_STATE_SHUTDOWN,

				CLOCK_EVT_STATE_PERIODIC,

				CLOCK_EVT_STATE_ONESHOT,

				CLOCK_EVT_STATE_ONESHOT_STOPPED,

};

Where:

Clockevents	

300

https://en.wikipedia.org/wiki/Programmable_interval_timer
https://github.com/torvalds/linux/tree/master/include/linux/cpumask.h
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c


	CLOCK_EVT_STATE_DETACHED		-	a	clock	event	device	is	not	not	used	by		clockevents		framework.	Actually	it	is	initial	state	of	all
clock	event	devices;
	CLOCK_EVT_STATE_SHUTDOWN		-	a	clock	event	device	is	powered-off;
	CLOCK_EVT_STATE_PERIODIC		-	a	clock	event	device	may	be	programmed	to	generate	event	periodically;
	CLOCK_EVT_STATE_ONESHOT		-	a	clock	event	device	may	be	programmed	to	generate	event	only	once;
	CLOCK_EVT_STATE_ONESHOT_STOPPED		-	a	clock	event	device	was	programmed	to	generate	event	only	once	and	now	it	is	temporary
stopped.

The	implementation	of	the		clock_event_set_state		function	is	pretty	easy:

static	inline	void	clockevent_set_state(struct	clock_event_device	*dev,

																				enum	clock_event_state	state)

{

				dev->state_use_accessors	=	state;

}

As	we	can	see,	it	just	fills	the		state_use_accessors		field	of	the	given		clock_event_device		structure	with	the	given	value	which	is	in
our	case	is		CLOCK_EVT_STATE_DETACHED	.	Actually	all	clock	event	devices	has	this	initial	state	during	registration.	The
	state_use_accessors		field	of	the		clock_event_device		structure	provides		current		state	of	the	clock	event	device.

After	we	have	set	initial	state	of	the	given		clock_event_device		structure	we	check	that	the		cpumask		of	the	given	clock	event	device
is	not	zero:

if	(!dev->cpumask)	{

				WARN_ON(num_possible_cpus()	>	1);

				dev->cpumask	=	cpumask_of(smp_processor_id());

}

Remember	that	we	have	set	the		cpumask		of	the		at91sam926x		periodic	timer	to	first	processor.	If	the		cpumask		field	is	zero,	we	check
the	number	of	possible	processors	in	the	system	and	print	warning	message	if	it	is	less	than	on.	Additionally	we	set	the		cpumask		of	the
given	clock	event	device	to	the	current	processor.	If	you	are	interested	in	how	the		smp_processor_id		macro	is	implemented,	you	can
read	more	about	it	in	the	fourth	part	of	the	Linux	kernel	initialization	process	chapter.

After	this	check	we	lock	the	actual	code	of	the	clock	event	device	registration	by	the	call	following	macros:

raw_spin_lock_irqsave(&clockevents_lock,	flags);

...

...

...

raw_spin_unlock_irqrestore(&clockevents_lock,	flags);

Additionally	the		raw_spin_lock_irqsave		and	the		raw_spin_unlock_irqrestore		macros	disable	local	interrupts,	however	interrupts
on	other	processors	still	may	occur.	We	need	to	do	it	to	prevent	potential	deadlock	if	we	adding	new	clock	event	device	to	the	list	of
clock	event	devices	and	an	interrupt	occurs	from	other	clock	event	device.

We	can	see	following	code	of	clock	event	device	registration	between	the		raw_spin_lock_irqsave		and		raw_spin_unlock_irqrestore	
macros:

list_add(&dev->list,	&clockevent_devices);

tick_check_new_device(dev);

clockevents_notify_released();

First	of	all	we	add	the	given	clock	event	device	to	the	list	of	clock	event	devices	which	is	represented	by	the		clockevent_devices	:

static	LIST_HEAD(clockevent_devices);

Clockevents	

301

https://en.wikipedia.org/wiki/Deadlock


At	the	next	step	we	call	the		tick_check_new_device		function	which	is	defined	in	the	kernel/time/tick-common.c	source	code	file	and
checks	do	the	new	registered	clock	event	device	should	be	used	or	not.	The		tick_check_new_device		function	checks	the	given
	clock_event_device		gets	the	current	registered	tick	device	which	is	represented	by	the		tick_device		structure	and	compares	their
ratings	and	features.	Actually		CLOCK_EVT_STATE_ONESHOT		is	preferred:

static	bool	tick_check_preferred(struct	clock_event_device	*curdev,

																	struct	clock_event_device	*newdev)

{

				if	(!(newdev->features	&	CLOCK_EVT_FEAT_ONESHOT))	{

								if	(curdev	&&	(curdev->features	&	CLOCK_EVT_FEAT_ONESHOT))

												return	false;

								if	(tick_oneshot_mode_active())

												return	false;

				}

				return	!curdev	||

								newdev->rating	>	curdev->rating	||

											!cpumask_equal(curdev->cpumask,	newdev->cpumask);

}

If	the	new	registered	clock	event	device	is	more	preferred	than	old	tick	device,	we	exchange	old	and	new	registered	devices	and	install
new	device:

clockevents_exchange_device(curdev,	newdev);

tick_setup_device(td,	newdev,	cpu,	cpumask_of(cpu));

The		clockevents_exchange_device		function	releases	or	in	other	words	deleted	the	old	clock	event	device	from	the
	clockevent_devices		list.	The	next	function	-		tick_setup_device		as	we	may	understand	from	its	name,	setups	new	tick	device.	This
function	check	the	mode	of	the	new	registered	clock	event	device	and	call	the		tick_setup_periodic		function	or	the
	tick_setup_oneshot		depends	on	the	tick	device	mode:

if	(td->mode	==	TICKDEV_MODE_PERIODIC)

				tick_setup_periodic(newdev,	0);

else

				tick_setup_oneshot(newdev,	handler,	next_event);

Both	of	this	functions	calls	the		clockevents_switch_state		to	change	state	of	the	clock	event	device	and	the
	clockevents_program_event		function	to	set	next	event	of	clock	event	device	based	on	delta	between	the	maximum	and	minimum
difference	current	time	and	time	for	the	next	event.	The		tick_setup_periodic	:

clockevents_switch_state(dev,	CLOCK_EVT_STATE_PERIODIC);

clockevents_program_event(dev,	next,	false))

and	the		tick_setup_oneshot_periodic	:

clockevents_switch_state(newdev,	CLOCK_EVT_STATE_ONESHOT);

clockevents_program_event(newdev,	next_event,	true);

The		clockevents_switch_state		function	checks	that	the	clock	event	device	is	not	in	the	given	state	and	calls	the
	__clockevents_switch_state		function	from	the	same	source	code	file:

if	(clockevent_get_state(dev)	!=	state)	{

				if	(__clockevents_switch_state(dev,	state))

								return;

The		__clockevents_switch_state		function	just	makes	a	call	of	the	certain	callback	depends	on	the	given	state:

static	int	__clockevents_switch_state(struct	clock_event_device	*dev,

																						enum	clock_event_state	state)

Clockevents	

302

https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c


{

				if	(dev->features	&	CLOCK_EVT_FEAT_DUMMY)

								return	0;

				switch	(state)	{

				case	CLOCK_EVT_STATE_DETACHED:

				case	CLOCK_EVT_STATE_SHUTDOWN:

								if	(dev->set_state_shutdown)

												return	dev->set_state_shutdown(dev);

								return	0;

				case	CLOCK_EVT_STATE_PERIODIC:

								if	(!(dev->features	&	CLOCK_EVT_FEAT_PERIODIC))

												return	-ENOSYS;

								if	(dev->set_state_periodic)

												return	dev->set_state_periodic(dev);

								return	0;

				...

				...

				...

In	our	case	for		at91sam926x		periodic	timer,	the	state	is	the		CLOCK_EVT_FEAT_PERIODIC	:

data->clkevt.features	=	CLOCK_EVT_FEAT_PERIODIC;

data->clkevt.set_state_periodic	=	pit_clkevt_set_periodic;

So,	for	the		pit_clkevt_set_periodic		callback	will	be	called.	If	we	will	read	the	documentation	of	the	Periodic	Interval	Timer	(PIT)
for	at91sam926x,	we	will	see	that	there	is		Periodic	Interval	Timer	Mode	Register		which	allows	us	to	control	of	periodic	interval
timer.

It	looks	like:

31																																																			25								24

+---------------------------------------------------------------+

|																																										|		PITIEN		|		PITEN		|

+---------------------------------------------------------------+

23																												19																															16

+---------------------------------------------------------------+

|																													|															PIV															|

+---------------------------------------------------------------+

15																																																														8

+---------------------------------------------------------------+

|																												PIV																																|

+---------------------------------------------------------------+

7																																																															0

+---------------------------------------------------------------+

|																												PIV																																|

+---------------------------------------------------------------+

Where		PIV		or		Periodic	Interval	Value		-	defines	the	value	compared	with	the	primary		20-bit		counter	of	the	Periodic	Interval
Timer.	The		PITEN		or		Period	Interval	Timer	Enabled		if	the	bit	is		1		and	the		PITIEN		or		Periodic	Interval	Timer	Interrupt
Enable		if	the	bit	is		1	.	So,	to	set	periodic	mode,	we	need	to	set		24	,		25		bits	in	the		Periodic	Interval	Timer	Mode	Register	.	And
we	are	doing	it	in	the		pit_clkevt_set_periodic		function:

static	int	pit_clkevt_set_periodic(struct	clock_event_device	*dev)

{

								struct	pit_data	*data	=	clkevt_to_pit_data(dev);

								...

								...

								...

								pit_write(data->base,	AT91_PIT_MR,

																		(data->cycle	-	1)	|	AT91_PIT_PITEN	|	AT91_PIT_PITIEN);

								return	0;

}

Clockevents	

303

http://www.atmel.com/Images/doc6062.pdf


Where	the		AT91_PT_MR	,		AT91_PT_PITEN		and	the		AT91_PIT_PITIEN		are	declared	as:

#define	AT91_PIT_MR													0x00

#define	AT91_PIT_PITIEN							BIT(25)

#define	AT91_PIT_PITEN								BIT(24)

After	the	setup	of	the	new	clock	event	device	is	finished,	we	can	return	to	the		clockevents_register_device		function.	The	last
function	in	the		clockevents_register_device		function	is:

clockevents_notify_released();

This	function	checks	the		clockevents_released		list	which	contains	released	clock	event	devices	(remember	that	they	may	occur	after
the	call	of	the		clockevents_exchange_device		function).	If	this	list	is	not	empty,	we	go	through	clock	event	devices	from	the
	clock_events_released		list	and	delete	it	from	the		clockevent_devices	:

static	void	clockevents_notify_released(void)

{

				struct	clock_event_device	*dev;

				while	(!list_empty(&clockevents_released))	{

								dev	=	list_entry(clockevents_released.next,

																	struct	clock_event_device,	list);

								list_del(&dev->list);

								list_add(&dev->list,	&clockevent_devices);

								tick_check_new_device(dev);

				}

}

That's	all.	From	this	moment	we	have	registered	new	clock	event	device.	So	the	usage	of	the		clockevents		framework	is	simple	and
clear.	Architectures	registered	their	clock	event	devices,	in	the	clock	events	core.	Users	of	the	clockevents	core	can	get	clock	event
devices	for	their	use.	The		clockevents		framework	provides	notification	mechanisms	for	various	clock	related	management	events	like
a	clock	event	device	registered	or	unregistered,	a	processor	is	offlined	in	system	which	supports	CPU	hotplug	and	etc.

We	saw	implementation	only	of	the		clockevents_register_device		function.	But	generally,	the	clock	event	layer	API	is	small.	Besides
the		API		for	clock	event	device	registration,	the		clockevents		framework	provides	functions	to	schedule	the	next	event	interrupt,
clock	event	device	notification	service	and	support	for	suspend	and	resume	for	clock	event	devices.

If	you	want	to	know	more	about		clockevents		API	you	can	start	to	research	following	source	code	and	header	files:	kernel/time/tick-
common.c,	kernel/time/clockevents.c	and	include/linux/clockchips.h.

That's	all.

Conclusion

This	is	the	end	of	the	fifth	part	of	the	chapter	that	describes	timers	and	timer	management	related	stuff	in	the	Linux	kernel.	In	the
previous	part	got	acquainted	with	the		timers		concept.	In	this	part	we	continued	to	learn	time	management	related	stuff	in	the	Linux
kernel	and	saw	a	little	about	yet	another	framework	-		clockevents	.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links

timekeeping	documentation
Intel	8253

Clockevents	

304

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://en.wikipedia.org/wiki/Intel_8253


programmable	interval	timer
ACPI	pdf
x86
High	Precision	Event	Timer
powerpc
frequency
API
nanoseconds
interrupt
interrupt	handler
local	APIC
C3	state
Periodic	Interval	Timer	(PIT)	for	at91sam926x
CPU	masks	in	the	Linux	kernel
deadlock
CPU	hotplug
previous	part

Clockevents	

305

https://en.wikipedia.org/wiki/Programmable_interval_timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface#Device_states
http://www.atmel.com/Images/doc6062.pdf
https://en.wikipedia.org/wiki/Deadlock
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt


Linux	6

x86_64

LinuxclockeventsLinuxx86

x86 sysfs	/sys/devices/system/clocksource/clocksource0/available_clocksource	
	/sys/devices/system/clocksource/clocksourceN	

	available_clocksource		-	
	current_clocksource		-	

$	cat	/sys/devices/system/clocksource/clocksource0/available_clocksource	

tsc	hpet	acpi_pm

	tsc		-	Time	Stamp	Counter;
	hpet		-	High	Precision	Event	Timer;
	acpi_pm		-	ACPI	Power	Management	Timer.

:

$	cat	/sys/devices/system/clocksource/clocksource0/current_clocksource	

tsc

Time	Stamp	Counter

ACPI3.579545MHz High	Precision	Event	Timer() 10MHz Time	Stamp	Counter() 	TSC	

	/proc/cpuinfo	

$	cat	/proc/cpuinfo

...

model	name				:	Intel(R)	Core(TM)	i7-4790K	CPU	@	4.00GHz

...

	TSC	TSC 	ACPI	PM		HPET	

	/sys/devices/system/clocksource/clocksource0/available_clocksource	 	jiffy		refined_jiffies	

CLOCK_SOURCE_VALID_FOR_HRES

	hpet	

	acpi_pm	

	tsc	

dmesg

$	dmesg	|	grep	clocksource

[				0.000000]	clocksource:	refined-jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns:	1910969940391419	n

s

[				0.000000]	clocksource:	hpet:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns:	133484882848	ns

[				0.094369]	clocksource:	jiffies:	mask:	0xffffffff	max_cycles:	0xffffffff,	max_idle_ns:	1911260446275000	ns

[				0.186498]	clocksource:	Switched	to	clocksource	hpet

[				0.196827]	clocksource:	acpi_pm:	mask:	0xffffff	max_cycles:	0xffffff,	max_idle_ns:	2085701024	ns

x86	

306

https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/clocksource.h#L113


[				1.413685]	tsc:	Refined	TSC	clocksource	calibration:	3999.981	MHz

[				1.413688]	clocksource:	tsc:	mask:	0xffffffffffffffff	max_cycles:	0x73509721780,	max_idle_ns:	881591102108	ns

[				2.413748]	clocksource:	Switched	to	clocksource	tsc

	 High	Precision	Event	Timer

High	Precision	Event	Timer

x86HPETarch/x86/kernel/hpet.c 	hpet_enable	Linux init/main.c	start_kernel	'''early	console'

if	(late_time_init)

				late_time_init();

jiffy 	x86		late_time_init	arch/x86/kernel/time.c	

static	__init	void	x86_late_time_init(void)

{

				x86_init.timers.timer_init();

				tsc_init();

}

	x86		TSC	 	x86_init.timers.timer_init		timer_init		hpet_time_init		 	x86_init		 arch/x86/kernel/x86_init.c:

struct	x86_init_ops	x86_init	__initdata	=	{

			...

			...

			...

			.timers	=	{

								.setup_percpu_clockev				=	setup_boot_APIC_clock,

								.timer_init								=	hpet_time_init,

								.wallclock_init								=	x86_init_noop,

			},

			...

			...

			...

	HPET	 	hpet_time_init		programmable	interval	timerIRQ:

void	__init	hpet_time_init(void)

{

				if	(!hpet_enable())

								setup_pit_timer();

				setup_default_timer_irq();

}

	hpet_enable		is_hpet_capable' 	HPET`

int	__init	hpet_enable(void)

{

				if	(!is_hpet_capable())

								return	0;

				hpet_set_mapping();

}

	is_hpet_capable		hpet=disable		hpet_address	ACPI	HPET	hpet_set_mapping	

hpet_virt_address	=	ioremap_nocache(hpet_address,	HPET_MMAP_SIZE);

x86	

307

https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/hpet.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/time.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface


IA-PC	HPET	(High	Precision	Event	Timers)	Specification	

1024

	HPET_MMAP_SIZE			 	1024	

#define	HPET_MMAP_SIZE								1024

	HPET	 	HPET_ID	:

id	=	hpet_readl(HPET_ID);

last	=	(id	&	HPET_ID_NUMBER)	>>	HPET_ID_NUMBER_SHIFT;

	HPET		 			

cfg	=	hpet_readl(HPET_CFG);

hpet_boot_cfg	=	kmalloc((last	+	2)	*	sizeof(*hpet_boot_cfg),	GFP_KERNEL);

	 	HPET	 	HPET_CFG_ENABLE	 	HPET_CFG_ENABLE	 	hpet_clocksource_register	

if	(hpet_clocksource_register())

				goto	out_nohpet;

clocksource_register_hz(&clocksource_hpet,	(u32)hpet_freq);

	clocksource_hpet		clocksource	 	rating		250	 	refined_jiffies		rating		2	 	hpet		read_hpet		HPET	

static	struct	clocksource	clocksource_hpet	=	{

				.name								=	"hpet",

				.rating								=	250,

				.read								=	read_hpet,

				.mask								=	HPET_MASK,

				.flags								=	CLOCK_SOURCE_IS_CONTINUOUS,

				.resume								=	hpet_resume_counter,

				.archdata				=	{	.vclock_mode	=	VCLOCK_HPET	},

};

	clocksource_hpet	 arch/x86/kernel/time.c	hpet_time_init()	

setup_default_timer_irq();

	setup_default_timer_irq		legacy	IRQ i8259 IRQ0

High	Precision	Event	TimerLinux 	read_hpet	

static	cycle_t	read_hpet(struct	clocksource	*cs)

{

				return	(cycle_t)hpet_readl(HPET_COUNTER);

}

	Main	Counter	Register	

ACPI	PM	timer

x86	

308

http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/time.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29#Master_PIC
https://en.wikipedia.org/wiki/High_Precision_Event_Timer


ACPI	Power	Management	Timerdrivers/clocksource/acpi_pm.c 	fs	initcall	init_acpi_pm_clocksource		
	init_acpi_pm_clocksource		 	pmtmr_ioport	

static	int	__init	init_acpi_pm_clocksource(void)

{

				...

				...

				...

				if	(!pmtmr_ioport)

								return	-ENODEV;

				...

				...

				...

	pmtmr_ioport		Power	Management	Timer	Control	Register	Block	 arch/x86/kernel/acpi/boot.c		acpi_parse_fadt		 	FADT	

	 	Fixed	ACPI	Description	Table		ACPI		 	X_PM_TMR_BLK			Power	Management	Timer	Control	Register	Blcok	,		Generic
Address	Structure	

static	int	__init	acpi_parse_fadt(struct	acpi_table_header	*table)

{

#ifdef	CONFIG_X86_PM_TIMER

								...

								...

								...

								pmtmr_ioport	=	acpi_gbl_FADT.xpm_timer_block.address;

								...

								...

								...

#endif

				return	0;

}

	CONFIG_X86_PM_TIMER	 	acpi_parse_fadt	 	Power	Management	Timer	 	init_acpi_pm_clocksource	

	pmtmr_ioport	0

clocksource_register_hz(&clocksource_acpi_pm,	PMTMR_TICKS_PER_SEC);

	clocksource_register_hs	 	acpi_pm			clocksource		:

static	struct	clocksource	clocksource_acpi_pm	=	{

				.name								=	"acpi_pm",

				.rating								=	200,

				.read								=	acpi_pm_read,

				.mask								=	(cycle_t)ACPI_PM_MASK,

				.flags								=	CLOCK_SOURCE_IS_CONTINUOUS,

};

	rating			 	200		acpi_pm_read		apci_pm		 	acpi_pm_read		read_pmtmr	:

static	cycle_t	acpi_pm_read(struct	clocksource	*cs)

{

				return	(cycle_t)read_pmtmr();

}

	Power	Management	Timer	

+-------------------------------+----------------------------------+

|																															|																																		|

|		upper	eight	bits	of	a								|						running	count	of	the								|

|	32-bit	power	management	timer	|					power	management	timer							|

|																															|																																		|

+-------------------------------+----------------------------------+

x86	

309

http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/drivers/clocksource_acpi_pm.c
https://kernelnewbies.org/Documents/InitcallMechanism
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/acpi/boot.c
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface


31										E_TMR_VAL											24															TMR_VAL											0

	Fixed	ACPI	Description	Table		ACPI	 	pmtmr_ioport	 	read_pmtmr	

static	inline	u32	read_pmtmr(void)

{

				return	inl(pmtmr_ioport)	&	ACPI_PM_MASK;

}

	Power	Management	Timer	 	24	

	Time	Stamp	Counter	

Time	Stamp	Counter

Time	Stamp	Counterarch/x86/kernel/tsc.c	x86_late_time_init	Time	Stamp	Counter 	tsc_init()		

	tsc_init	 	Time	Stamp	Counter	:

void	__init	tsc_init(void)

{

				u64	lpj;

				int	cpu;

				if	(!cpu_has_tsc)	{

								setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);

								return;

				}

				...

				...

				...

	cpu_has_tsc	 	cpu_has		macro:

#define	cpu_has_tsc								boot_cpu_has(X86_FEATURE_TSC)

#define	boot_cpu_has(bit)				cpu_has(&boot_cpu_data,	bit)

#define	cpu_has(c,	bit)																												\

				(__builtin_constant_p(bit)	&&	REQUIRED_MASK_BIT_SET(bit)	?	1	:				\

					test_cpu_cap(c,	bit))

	boot_cpu_data	 	X86_FEATURE_TSC_DEADLINE_TIMER		Time	Stamp	Counter		calibrate_tsc		TSC	 MSRprogrammable
interval	timer

tsc_khz	=	x86_platform.calibrate_tsc();

cpu_khz	=	tsc_khz;

for_each_possible_cpu(cpu)	{

				cyc2ns_init(cpu);

				set_cyc2ns_scale(cpu_khz,	cpu);

}

	 	tsc_init	 	TSC	

if	(tsc_disabled	>	0)

				return;

...

...

...

check_system_tsc_reliable();

x86	

310

https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc.c
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Programmable_interval_timer


	check_system_tsc_reliable	bootstrap	X86_FEATURE_TSC_RELIABLE	 	tsc_clocksource_reliable	 	tsc_init	 	TSC	:

static	int	__init	init_tsc_clocksource(void)

{

				if	(!cpu_has_tsc	||	tsc_disabled	>	0	||	!tsc_khz)

								return	0;

				...

				...

				...

				if	(boot_cpu_has(X86_FEATURE_TSC_RELIABLE))	{

								clocksource_register_khz(&clocksource_tsc,	tsc_khz);

								return	0;

				}

	device	initcall 	TSC		HPET		 	clocksource	 	TSC	

static	struct	clocksource	clocksource_tsc	=	{

				.name																			=	"tsc",

				.rating																	=	300,

				.read																			=	read_tsc,

				.mask																			=	CLOCKSOURCE_MASK(64),

				.flags																		=	CLOCK_SOURCE_IS_CONTINUOUS	|	CLOCK_SOURCE_MUST_VERIFY,

				.archdata															=	{	.vclock_mode	=	VCLOCK_TSC	},

};

Conclusion
Linux 	clockevents	Linux x86 Linux	twitter 0xAX emailissue	PR linux-
insides

x86
sysfs
Time	Stamp	Counter
High	Precision	Event	Timer
ACPI	Power	Management	Timer	(PDF)
frequency.
dmesg
programmable	interval	timer
IRQ
IA-PC	HPET	(High	Precision	Event	Timers)	Specification
IRQ0
i8259
initcall
previous	part

x86	

311

https://kernelnewbies.org/Documents/InitcallMechanism
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/System_call
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29#Master_PIC
https://en.wikipedia.org/wiki/Intel_8259
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html


Timers	and	time	management	in	the	Linux	kernel.	Part	7.

Time	related	system	calls	in	the	Linux	kernel

This	is	the	seventh	and	last	part	chapter	which	describes	timers	and	time	management	related	stuff	in	the	Linux	kernel.	In	the	previous
part	we	saw	some	x86_64	like	High	Precision	Event	Timer	and	Time	Stamp	Counter.	Internal	time	management	is	interesting	part	of	the
Linux	kernel,	but	of	course	not	only	the	kernel	needs	in	the		time		concept.	Our	programs	need	to	know	time	too.	In	this	part,	we	will
consider	implementation	of	some	time	management	related	system	calls.	These	system	calls	are:

	clock_gettime	;
	gettimeofday	;
	nanosleep	.

We	will	start	from	simple	userspace	C	program	and	see	all	way	from	the	call	of	the	standard	library	function	to	the	implementation	of
certain	system	call.	As	each	architecture	provides	its	own	implementation	of	certain	system	call,	we	will	consider	only	x86_64	specific
implementations	of	system	calls,	as	this	book	is	related	to	this	architecture.

Additionally	we	will	not	consider	concept	of	system	calls	in	this	part,	but	only	implementations	of	these	three	system	calls	in	the	Linux
kernel.	If	you	are	interested	in	what	is	it	a		system	call	,	there	is	special	chapter	about	this.

So,	let's	from	the		gettimeofday		system	call.

Implementation	of	the		gettimeofday		system	call
As	we	can	understand	from	the	name	of	the		gettimeofday	,	this	function	returns	current	time.	First	of	all,	let's	look	on	the	following
simple	example:

#include	<time.h>

#include	<sys/time.h>

#include	<stdio.h>

int	main(int	argc,	char	**argv)

{

				char	buffer[40];

				struct	timeval	time;

				gettimeofday(&time,	NULL);

				strftime(buffer,	40,	"Current	date/time:	%m-%d-%Y/%T",	localtime(&time.tv_sec));

				printf("%s\n",buffer);

				return	0;

}

As	you	can	see,	here	we	call	the		gettimeofday		function	which	takes	two	parameters:	pointer	to	the		timeval		structure	which
represents	an	elapsed	tim:

struct	timeval	{

				time_t						tv_sec;					/*	seconds	*/

				suseconds_t	tv_usec;				/*	microseconds	*/

};

The	second	parameter	of	the		gettimeofday		function	is	pointer	to	the		timezone		structure	which	represents	a	timezone.	In	our
example,	we	pass	address	of	the		timeval	time		to	the		gettimeofday		function,	the	Linux	kernel	fills	the	given		timeval		structure	and
returns	it	back	to	us.	Additionally,	we	format	the	time	with	the		strftime		function	to	get	something	more	human	readable	than	elapsed
microseconds.	Let's	see	on	result:

Linux	

312

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Standard_library
https://github.com/torvalds/linux/tree/master/arch
https://en.wikipedia.org/wiki/X86-64


~$	gcc	date.c	-o	date

~$	./date

Current	date/time:	03-26-2016/16:42:02

As	you	already	may	know,	an	userspace	application	does	not	call	a	system	call	directly	from	the	kernel	space.	Before	the	actual	system
call	entry	will	be	called,	we	call	a	function	from	the	standard	library.	In	my	case	it	is	glibc,	so	I	will	consider	this	case.	The
implementation	of	the		gettimeofday		function	is	located	in	the	sysdeps/unix/sysv/linux/x86/gettimeofday.c	source	code	file.	As	you
already	may	know,	the		gettimeofday		is	not	usual	system	call.	It	is	located	in	the	special	area	which	is	called		vDSO		(you	can	read
more	about	it	in	the	part	which	describes	this	concept).

The		glibc		implementation	of	the		gettimeofday		tries	to	resolve	the	given	symbol,	in	our	case	this	symbol	is		__vdso_gettimeofday	
by	the	call	of	the		_dl_vdso_vsym		internal	function.	If	the	symbol	will	not	be	resolved,	it	returns		NULL		and	we	fallback	to	the	call	of
the	usual	system	call:

return	(_dl_vdso_vsym	("__vdso_gettimeofday",	&linux26)

		?:	(void*)	(&__gettimeofday_syscall));

The		gettimeofday		entry	is	located	in	the	arch/x86/entry/vdso/vclock_gettime.c	source	code	file.	As	we	can	see	the		gettimeofday		is
weak	alias	of	the		__vdso_gettimeofday	:

int	gettimeofday(struct	timeval	*,	struct	timezone	*)

				__attribute__((weak,	alias("__vdso_gettimeofday")));

The		__vdso_gettimeofday		is	defined	in	the	same	source	code	file	and	calls	the		do_realtime		function	if	the	given		timeval		is	not
null:

notrace	int	__vdso_gettimeofday(struct	timeval	*tv,	struct	timezone	*tz)

{

				if	(likely(tv	!=	NULL))	{

								if	(unlikely(do_realtime((struct	timespec	*)tv)	==	VCLOCK_NONE))

												return	vdso_fallback_gtod(tv,	tz);

								tv->tv_usec	/=	1000;

				}

				if	(unlikely(tz	!=	NULL))	{

								tz->tz_minuteswest	=	gtod->tz_minuteswest;

								tz->tz_dsttime	=	gtod->tz_dsttime;

				}

				return	0;

}

If	the		do_realtime		will	fail,	we	fallback	to	the	real	system	call	via	call	the		syscall		instruction	and	passing	the		__NR_gettimeofday	
system	call	number	and	the	given		timeval		and		timezone	:

notrace	static	long	vdso_fallback_gtod(struct	timeval	*tv,	struct	timezone	*tz)

{

				long	ret;

				asm("syscall"	:	"=a"	(ret)	:

								"0"	(__NR_gettimeofday),	"D"	(tv),	"S"	(tz)	:	"memory");

				return	ret;

}

The		do_realtime		function	gets	the	time	data	from	the		vsyscall_gtod_data		structure	which	is	defined	in	the
arch/x86/include/asm/vgtod.h	header	file	and	contains	mapping	of	the		timespec		structure	and	a	couple	of	fields	which	are	related	to
the	current	clock	source	in	the	system.	This	function	fills	the	given		timeval		structure	with	values	from	the		vsyscall_gtod_data	
which	contains	a	time	related	data	which	is	updated	via	timer	interrupt.

First	of	all	we	try	to	access	the		gtod		or		global	time	of	day		the		vsyscall_gtod_data		structure	via	the	call	of	the
	gtod_read_begin		and	will	continue	to	do	it	until	it	will	be	successful:

Linux	

313

https://en.wikipedia.org/wiki/GNU_C_Library
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86/gettimeofday.c;h=36f7c26ffb0e818709d032c605fec8c4bd22a14e;hb=HEAD
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vclock_gettime.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/vgtod.h#L16


do	{

				seq	=	gtod_read_begin(gtod);

				mode	=	gtod->vclock_mode;

				ts->tv_sec	=	gtod->wall_time_sec;

				ns	=	gtod->wall_time_snsec;

				ns	+=	vgetsns(&mode);

				ns	>>=	gtod->shift;

}	while	(unlikely(gtod_read_retry(gtod,	seq)));

ts->tv_sec	+=	__iter_div_u64_rem(ns,	NSEC_PER_SEC,	&ns);

ts->tv_nsec	=	ns;

As	we	got	access	to	the		gtod	,	we	fill	the		ts->tv_sec		with	the		gtod->wall_time_sec		which	stores	current	time	in	seconds	gotten
from	the	real	time	clock	during	initialization	of	the	timekeeping	subsystem	in	the	Linux	kernel	and	the	same	value	but	in	nanoseconds.
In	the	end	of	this	code	we	just	fill	the	given		timespec		structure	with	the	resulted	values.

That's	all	about	the		gettimeofday		system	call.	The	next	system	call	in	our	list	is	the		clock_gettime	.

Implementation	of	the	clock_gettime	system	call
The		clock_gettime		function	gets	the	time	which	is	specified	by	the	second	parameter.	Generally	the		clock_gettime		function	takes
two	parameters:

	clk_id		-	clock	identifier;
	timespec		-	address	of	the		timespec		structure	which	represent	elapsed	time.

Let's	look	on	the	following	simple	example:

#include	<time.h>

#include	<sys/time.h>

#include	<stdio.h>

int	main(int	argc,	char	**argv)

{

				struct	timespec	elapsed_from_boot;

				clock_gettime(CLOCK_BOOTTIME,	&elapsed_from_boot);

				printf("%d	-	seconds	elapsed	from	boot\n",	elapsed_from_boot.tv_sec);

				return	0;

}

which	prints		uptime		information:

~$	gcc	uptime.c	-o	uptime

~$	./uptime

14180	-	seconds	elapsed	from	boot

We	can	easily	check	the	result	with	the	help	of	the	uptime	util:

~$	uptime

up		3:56

The		elapsed_from_boot.tv_sec		represents	elapsed	time	in	seconds,	so:

>>>	14180	/	60

236

>>>	14180	/	60	/	60

3

>>>	14180	/	60	%	60

Linux	

314

https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Uptime#Using_uptime


56

The		clock_id		maybe	one	of	the	following:

	CLOCK_REALTIME		-	system	wide	clock	which	measures	real	or	wall-clock	time;
	CLOCK_REALTIME_COARSE		-	faster	version	of	the		CLOCK_REALTIME	;
	CLOCK_MONOTONIC		-	represents	monotonic	time	since	some	unspecified	starting	point;
	CLOCK_MONOTONIC_COARSE		-	faster	version	of	the		CLOCK_MONOTONIC	;
	CLOCK_MONOTONIC_RAW		-	the	same	as	the		CLOCK_MONOTONIC		but	provides	non	NTP	adjusted	time.
	CLOCK_BOOTTIME		-	the	same	as	the		CLOCK_MONOTONIC		but	plus	time	that	the	system	was	suspended;
	CLOCK_PROCESS_CPUTIME_ID		-	per-process	time	consumed	by	all	threads	in	the	process;
	CLOCK_THREAD_CPUTIME_ID		-	thread-specific	clock.

The		clock_gettime		is	not	usual	syscall	too,	but	as	the		gettimeofday	,	this	system	call	is	placed	in	the		vDSO		area.	Entry	of	this
system	call	is	located	in	the	same	source	code	file	-	arch/x86/entry/vdso/vclock_gettime.c)	as	for		gettimeofday	.

The	Implementation	of	the		clock_gettime		depends	on	the	clock	id.	If	we	have	passed	the		CLOCK_REALTIME		clock	id,	the
	do_realtime		function	will	be	called:

notrace	int	__vdso_clock_gettime(clockid_t	clock,	struct	timespec	*ts)

{

				switch	(clock)	{

				case	CLOCK_REALTIME:

								if	(do_realtime(ts)	==	VCLOCK_NONE)

												goto	fallback;

								break;

				...

				...

				...

fallback:

				return	vdso_fallback_gettime(clock,	ts);

}

In	other	cases,	the		do_{name_of_clock_id}		function	is	called.	Implementations	of	some	of	them	is	similar.	For	example	if	we	will	pass
the		CLOCK_MONOTONIC		clock	id:

...

...

...

case	CLOCK_MONOTONIC:

				if	(do_monotonic(ts)	==	VCLOCK_NONE)

								goto	fallback;

				break;

...

...

...

the		do_monotonic		function	will	be	called	which	is	very	similar	on	the	implementation	of	the		do_realtime	:

notrace	static	int	__always_inline	do_monotonic(struct	timespec	*ts)

{

				do	{

								seq	=	gtod_read_begin(gtod);

								mode	=	gtod->vclock_mode;

								ts->tv_sec	=	gtod->monotonic_time_sec;

								ns	=	gtod->monotonic_time_snsec;

								ns	+=	vgetsns(&mode);

								ns	>>=	gtod->shift;

				}	while	(unlikely(gtod_read_retry(gtod,	seq)));

				ts->tv_sec	+=	__iter_div_u64_rem(ns,	NSEC_PER_SEC,	&ns);

				ts->tv_nsec	=	ns;

				return	mode;

Linux	

315

https://en.wikipedia.org/wiki/Network_Time_Protocol
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vclock_gettime.c


}

We	already	saw	a	little	about	the	implementation	of	this	function	in	the	previous	paragraph	about	the		gettimeofday	.	There	is	only	one
difference	here,	that	the		sec		and		nsec		of	our		timespec		value	will	be	based	on	the		gtod->monotonic_time_sec		instead	of		gtod-
>wall_time_sec		which	maps	the	value	of	the		tk->tkr_mono.xtime_nsec		or	number	of	nanoseconds	elapsed.

That's	all.

Implementation	of	the		nanosleep		system	call
The	last	system	call	in	our	list	is	the		nanosleep	.	As	you	can	understand	from	its	name,	this	function	provides		sleeping		ability.	Let's
look	on	the	following	simple	example:

#include	<time.h>

#include	<stdlib.h>

#include	<stdio.h>

int	main	(void)

{				

			struct	timespec	ts	=	{5,0};

			printf("sleep	five	seconds\n");

			nanosleep(&ts,	NULL);

			printf("end	of	sleep\n");

			return	0;

}

If	we	will	compile	and	run	it,	we	will	see	the	first	line

~$	gcc	sleep_test.c	-o	sleep

~$	./sleep

sleep	five	seconds

end	of	sleep

and	the	second	line	after	five	seconds.

The		nanosleep		is	not	located	in	the		vDSO		area	like	the		gettimeofday		and	the		clock_gettime		functions.	So,	let's	look	how	the
	real		system	call	which	is	located	in	the	kernel	space	will	be	called	by	the	standard	library.	The	implementation	of	the		nanosleep	
system	call	will	be	called	with	the	help	of	the	syscall	instruction.	Before	the	execution	of	the		syscall		instruction,	parameters	of	the
system	call	must	be	put	in	processor	registers	according	to	order	which	is	described	in	the	System	V	Application	Binary	Interface	or	in
other	words:

	rdi		-	first	parameter;
	rsi		-	second	parameter;
	rdx		-	third	parameter;
	r10		-	fourth	parameter;
	r8		-	fifth	parameter;
	r9		-	sixth	parameter.

The		nanosleep		system	call	has	two	parameters	-	two	pointers	to	the		timespec		structures.	The	system	call	suspends	the	calling	thread
until	the	given	timeout	has	elapsed.	Additionally	it	will	finish	if	a	signal	interrupts	its	execution.	It	takes	two	parameters,	the	first	is
	timespec		which	represents	timeout	for	the	sleep.	The	second	parameter	is	the	pointer	to	the		timespec		structure	too	and	it	contains
remainder	of	time	if	the	call	of	the		nanosleep		was	interrupted.

As		nanosleep		has	two	parameters:

int	nanosleep(const	struct	timespec	*req,	struct	timespec	*rem);

Linux	

316

https://en.wikipedia.org/wiki/Nanosecond
http://www.felixcloutier.com/x86/SYSCALL.html
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf


To	call	system	call,	we	need	put	the		req		to	the		rdi		register,	and	the		rem		parameter	to	the		rsi		register.	The	glibc	does	these	job	in
the		INTERNAL_SYSCALL		macro	which	is	located	in	the	sysdeps/unix/sysv/linux/x86_64/sysdep.h	header	file.

#	define	INTERNAL_SYSCALL(name,	err,	nr,	args...)	\

		INTERNAL_SYSCALL_NCS	(__NR_##name,	err,	nr,	##args)

which	takes	the	name	of	the	system	call,	storage	for	possible	error	during	execution	of	system	call,	number	of	the	system	call	(all
	x86_64		system	calls	you	can	find	in	the	system	calls	table)	and	arguments	of	certain	system	call.	The		INTERNAL_SYSCALL		macro	just
expands	to	the	call	of	the		INTERNAL_SYSCALL_NCS		macro,	which	prepares	arguments	of	system	call	(puts	them	into	the	processor
registers	in	correct	order),	executes		syscall		instruction	and	returns	the	result:

#	define	INTERNAL_SYSCALL_NCS(name,	err,	nr,	args...)						\

		({																																																																										\

				unsigned	long	int	resultvar;																																														\

				LOAD_ARGS_##nr	(args)																																																						\

				LOAD_REGS_##nr																																																														\

				asm	volatile	(																																																														\

				"syscall\n\t"																																																														\

				:	"=a"	(resultvar)																																																										\

				:	"0"	(name)	ASM_ARGS_##nr	:	"memory",	REGISTERS_CLOBBERED_BY_SYSCALL);			\

				(long	int)	resultvar;	})

The		LOAD_ARGS_##nr		macro	calls	the		LOAD_ARGS_N		macro	where	the		N		is	number	of	arguments	of	the	system	call.	In	our	case,	it	will
be	the		LOAD_ARGS_2		macro.	Ultimately	all	of	these	macros	will	be	expanded	to	the	following:

#	define	LOAD_REGS_TYPES_1(t1,	a1)																							\

		register	t1	_a1	asm	("rdi")	=	__arg1;																							\

		LOAD_REGS_0

#	define	LOAD_REGS_TYPES_2(t1,	a1,	t2,	a2)																			\

		register	t2	_a2	asm	("rsi")	=	__arg2;																							\

		LOAD_REGS_TYPES_1(t1,	a1)

...

...

...

After	the		syscall		instruction	will	be	executed,	the	context	switch	will	occur	and	the	kernel	will	transfer	execution	to	the	system	call
handler.	The	system	call	handler	for	the		nanosleep		system	call	is	located	in	the	kernel/time/hrtimer.c	source	code	file	and	defined	with
the		SYSCALL_DEFINE2		macro	helper:

SYSCALL_DEFINE2(nanosleep,	struct	timespec	__user	*,	rqtp,

								struct	timespec	__user	*,	rmtp)

{

				struct	timespec	tu;

				if	(copy_from_user(&tu,	rqtp,	sizeof(tu)))

								return	-EFAULT;

				if	(!timespec_valid(&tu))

								return	-EINVAL;

				return	hrtimer_nanosleep(&tu,	rmtp,	HRTIMER_MODE_REL,	CLOCK_MONOTONIC);

}

More	about	the		SYSCALL_DEFINE2		macro	you	may	read	in	the	chapter	about	system	calls.	If	we	look	at	the	implementation	of	the
	nanosleep		system	call,	first	of	all	we	will	see	that	it	starts	from	the	call	of	the		copy_from_user		function.	This	function	copies	the
given	data	from	the	userspace	to	kernelspace.	In	our	case	we	copy	timeout	value	to	sleep	to	the	kernelspace		timespec		structure	and
check	that	the	given		timespec		is	valid	by	the	call	of	the		timesc_valid		function:

static	inline	bool	timespec_valid(const	struct	timespec	*ts)

{

				if	(ts->tv_sec	<	0)

Linux	

317

https://en.wikipedia.org/wiki/GNU_C_Library
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86_64/sysdep.h;h=d023d68174d3dfb4e698160b31ae31ad291802e1;hb=HEAD
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/kernel/time/hrtimer.c


								return	false;

				if	((unsigned	long)ts->tv_nsec	>=	NSEC_PER_SEC)

								return	false;

				return	true;

}

which	just	checks	that	the	given		timespec		does	not	represent	date	before		1970		and	nanoseconds	does	not	overflow		1		second.	The
	nanosleep		function	ends	with	the	call	of	the		hrtimer_nanosleep		function	from	the	same	source	code	file.	The		hrtimer_nanosleep	
function	creates	a	timer	and	calls	the		do_nanosleep		function.	The		do_nanosleep		does	main	job	for	us.	This	function	provides	loop:

do	{

				set_current_state(TASK_INTERRUPTIBLE);

				hrtimer_start_expires(&t->timer,	mode);

				if	(likely(t->task))

								freezable_schedule();

}	while	(t->task	&&	!signal_pending(current));

__set_current_state(TASK_RUNNING);

return	t->task	==	NULL;

Which	freezes	current	task	during	sleep.	After	we	set		TASK_INTERRUPTIBLE		flag	for	the	current	task,	the		hrtimer_start_expires	
function	starts	the	give	high-resolution	timer	on	the	current	processor.	As	the	given	high	resolution	timer	will	expire,	the	task	will	be
again	running.

That's	all.

Conclusion

This	is	the	end	of	the	seventh	part	of	the	chapter	that	describes	timers	and	timer	management	related	stuff	in	the	Linux	kernel.	In	the
previous	part	we	saw	x86_64	specific	clock	sources.	As	I	wrote	in	the	beginning,	this	part	is	the	last	part	of	this	chapter.	We	saw
important	time	management	related	concepts	like		clocksource		and		clockevents		frameworks,		jiffies		counter	and	etc.,	in	this
chpater.	Of	course	this	does	not	cover	all	of	the	time	management	in	the	Linux	kernel.	Many	parts	of	this	mostly	related	to	the
scheduling	which	we	will	see	in	other	chapter.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links

system	call
C	programming	language
standard	library
glibc
real	time	clock
NTP
nanoseconds
register
System	V	Application	Binary	Interface
context	switch
Introduction	to	timers	in	the	Linux	kernel
uptime
system	calls	table	for	x86_64
High	Precision	Event	Timer

Linux	

318

https://en.wikipedia.org/wiki/X86-64
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Uptime#Using_uptime
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/High_Precision_Event_Timer


Time	Stamp	Counter
x86_64
previous	part

Linux	

319

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/X86-64


Linux	

	-		Linux	
	-		-	
	-	this	part	describes	impmentation	of		semaphore		synchronization	primitive	in	the	Linux	kernel.		Linux		 	semaphore		

	-		Linux		 	mutex		
/ 	-		-	 	reader/writer		
	-		Linux	.

320



Linux	.	.

Introduction

	 linux-insides	 	Linux	

		

mutex_lock(&clocksource_mutex);

...

...

...

clocksource_enqueue(cs);

clocksource_enqueue_watchdog(cs);

clocksource_select();

...

...

...

mutex_unlock(&clocksource_mutex);

	 kernel/time/clocksource.c		 	__clocksource_register_scale			 clocksource		 	clocksource_enqueue		
——	clocksource_list		 	mutex_lock			 	mutex_unlock	——	 	clocksource_mutex	

	(mutex) 		 	mutex_lock			 	mute_unlock			 	clocksource_list	 			
	clocksource_enqueue			 	clocksource_list		

static	void	clocksource_enqueue(struct	clocksource	*cs)

{

				struct	list_head	*entry	=	&clocksource_list;

				struct	clocksource	*tmp;

				list_for_each_entry(tmp,	&clocksource_list,	list)

								if	(tmp->rating	>=	cs->rating)

												entry	=	&tmp->list;

				list_add(&cs->list,	entry);

}

	 		(entry) 			(race	condition) 		 	list_add		

	Linux	[]	(/Timers/)		Linux		 	mutex			Linux	Linux	

	mutex	;
	semaphores	;
	seqlocks	;
	atomic	operations	;

		(spinlock) 		

Linux	

	acquired	;
	released	.

		 		(spinlock	acquire) 	 		(spinlock	released) 	 			 	(atomic) 			Linux		 	spinlock_t		
Linux	 	(widely) 	 	spinlock_t		

321

https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Parallel_computing
https://github.com/torvalds/linux/master/kernel/time/clocksource.c
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Race_condition
http://lxr.free-electrons.com/ident?i=spinlock_t


typedef	struct	spinlock	{

								union	{

														struct	raw_spinlock	rlock;

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

#	define	LOCK_PADSIZE	(offsetof(struct	raw_spinlock,	dep_map))

																struct	{

																								u8	__padding[LOCK_PADSIZE];

																								struct	lockdep_map	dep_map;

																};

#endif

								};

}	spinlock_t;

	 include/linux/spinlock_types.h		 	CONFIG_DEBUG_LOCK_ALLOC			 	CONFIG_DEBUG_LOCK_ALLOC		
	spinlock_t			(union) ——	raw_spinlock	

typedef	struct	spinlock	{

								union	{

														struct	raw_spinlock	rlock;

								};

}	spinlock_t;

	raw_spinlock				(normal) 			 	raw_spinlock	

typedef	struct	raw_spinlock	{

								arch_spinlock_t	raw_lock;

#ifdef	CONFIG_GENERIC_LOCKBREAK

								unsigned	int	break_lock;

#endif

}	raw_spinlock_t;

	 	arch_spinlock_t					 	break_lock		——		1	 	(SMP) 		 x86_64		 	arch_spinlock_t		
arch/x86/include/asm/spinlock_types.h	

#ifdef	CONFIG_QUEUED_SPINLOCKS

#include	<asm-generic/qspinlock_types.h>

#else

typedef	struct	arch_spinlock	{

								union	{

																__ticketpair_t	head_tail;

																struct	__raw_tickets	{

																								__ticket_t	head,	tail;

																}	tickets;

								};

}	arch_spinlock_t;

	arch_spinlock			 	CONFIG_QUEUED_SPINLOCKS			Linux	 					 	acquired			 	released		 				

	CONFIG_QUEUED_SPINLOCKS			 	arch_spinlock_t		

typedef	struct	qspinlock	{

				atomic_t				val;

}	arch_spinlock_t;

	 include/asm-generic/qspinlock_types.h	

	 	arch_spinlock			 	qspinlock			Linux 		

	spin_lock_init		——		

	spin_lock		——		

	spin_lock_bh		——		

	spin_lock_irqsave			 	spin_lock_irq	—— 		(flag) 	

322

https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Union_type#C.2FC.2B.2B
https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/master/arch/x86/include/asm/spinlock_types.h
https://en.wikipedia.org/wiki/Linearizability
https://github.com/torvalds/linux/master/include/asm-generic/qspinlock_types.h
https://en.wikipedia.org/wiki/Interrupt


	spin_unlock		——		;
	spin_unlock_bh		——		

	spin_is_locked		-			

	 	spin_lock_init			 include/linux/spinlock.h		 	spin_lock_init		

#define	spin_lock_init(_lock)								\

do	{																																												\

				spinlock_check(_lock);																								\

				raw_spin_lock_init(&(_lock)->rlock);								\

}	while	(0)

	spin_lock_init				 			 	raw_spin_lock_init		spinlock_check	 			 	raw_spinlock_t			(normal) 		

static	__always_inline	raw_spinlock_t	*spinlock_check(spinlock_t	*lock)

{

				return	&lock->rlock;

}

	raw_spin_lock_init		:

#	define	raw_spin_lock_init(lock)								\

do	{																																																		\

				*(lock)	=	__RAW_SPIN_LOCK_UNLOCKED(lock);									\

}	while	(0)																																											\

	 	__RAW_SPIN_LOCK_UNLOCKED					 	raw_spinlock_t		 	__RAW_SPIN_LOCK_UNLOCKED		 		 		(released) 		
include/linux/spinlock_types.h	

#define	__RAW_SPIN_LOCK_UNLOCKED(lockname)						\

									(raw_spinlock_t)	__RAW_SPIN_LOCK_INITIALIZER(lockname)

#define	__RAW_SPIN_LOCK_INITIALIZER(lockname)			\

									{																																																						\

													.raw_lock	=	__ARCH_SPIN_LOCK_UNLOCKED,													\

													SPIN_DEBUG_INIT(lockname)																										\

													SPIN_DEP_MAP_INIT(lockname)																								\

									}

	 	SPIN_DEBUG_INIT			 	SPIN_DEP_MAP_INIT			 	__RAW_SPINLOCK_UNLOCKED		

*(&(_lock)->rlock)	=	__ARCH_SPIN_LOCK_UNLOCKED;

	 	__ARCH_SPIN_LOCK_UNLOCKED		:

#define	__ARCH_SPIN_LOCK_UNLOCKED							{	{	0	}	}

:

#define	__ARCH_SPIN_LOCK_UNLOCKED							{	ATOMIC_INIT(0)	}

	[x86_64]		 	CONFIG_QUEUED_SPINLOCKS			 	spin_lock_init		 		——		(unlocked) 	

			Linux	 			 API

static	__always_inline	void	spin_lock(spinlock_t	*lock)

{

				raw_spin_lock(&lock->rlock);

323

https://github.com/torvalds/linux/master/include/linux/spinlock.h
https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Application_programming_interface


}

		 	raw_spin_lock			 	_raw_spin_lock		

#define	raw_spin_lock(lock)				_raw_spin_lock(lock)

	 include/linux/spinlock.h	 	_raw_spin_lock			 	CONFIG_SMP		

#if	defined(CONFIG_SMP)	||	defined(CONFIG_DEBUG_SPINLOCK)

#	include	<linux/spinlock_api_smp.h>

#else

#	include	<linux/spinlock_api_up.h>

#endif

	Linux	 SMP		 	_raw_spin_lock			 arch/x86/include/asm/spinlock.h	

#define	_raw_spin_lock(lock)	__raw_spin_lock(lock)

	__raw_spin_lock		:

static	inline	void	__raw_spin_lock(raw_spinlock_t	*lock)

{

								preempt_disable();

								spin_acquire(&lock->dep_map,	0,	0,	_RET_IP_);

								LOCK_CONTENDED(lock,	do_raw_spin_trylock,	do_raw_spin_lock);

}

	 	 include/linux/preempt.h	(	Linux	 )	 	preempt_disable		 		

static	inline	void	__raw_spin_unlock(raw_spinlock_t	*lock)

{

								...

								...

								...

								preempt_enable();

}

	spin_acquire		

#define	spin_acquire(l,	s,	t,	i)																lock_acquire_exclusive(l,	s,	t,	NULL,	i)

#define	lock_acquire_exclusive(l,	s,	t,	n,	i)											lock_acquire(l,	s,	t,	0,	1,	n,	i)

	lock_acquire		:

void	lock_acquire(struct	lockdep_map	*lock,	unsigned	int	subclass,

																		int	trylock,	int	read,	int	check,

																		struct	lockdep_map	*nest_lock,	unsigned	long	ip)

{

									unsigned	long	flags;

									if	(unlikely(current->lockdep_recursion))

																return;

									raw_local_irq_save(flags);

									check_flags(flags);

									current->lockdep_recursion	=	1;

									trace_lock_acquire(lock,	subclass,	trylock,	read,	check,	nest_lock,	ip);

									__lock_acquire(lock,	subclass,	trylock,	read,	check,

																								irqs_disabled_flags(flags),	nest_lock,	ip,	0,	0);

									current->lockdep_recursion	=	0;

324

https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://github.com/torvalds/linux/blob/master/include/linux/preempt.h


									raw_local_irq_restore(flags);

}

	lock_acquire			 	raw_local_irq_save			 	lock_acquire			 	raw_local_irq_restore		
	__lock_acquire			 kernel/locking/lockdep.c	

	__lock_acquire			Linux 	(lock	validator) 		 	__raw_spin_lock		

LOCK_CONTENDED(lock,	do_raw_spin_trylock,	do_raw_spin_lock);

	LOCK_CONTENDED			 include/linux/lockdep.h	 		:

#define	LOCK_CONTENDED(_lock,	try,	lock)	\

									lock(_lock)

	lock			 include/linux/spinlock.h		 	do_raw_spin_lock		_lock			 	raw_spinlock_t	

static	inline	void	do_raw_spin_lock(raw_spinlock_t	*lock)	__acquires(lock)

{

								__acquire(lock);

									arch_spin_lock(&lock->raw_lock);

}

	 	__acquire		[(sparse)] 	arch_spin_lock		 	(queued	spinlocks)		 	x86_64			 	arch_spin_lock		
include/asm-generic/qspinlock.h	

#define	arch_spin_lock(l)															queued_spin_lock(l)

	 		 	arch_spin_lock			 arch/x86/include/asm/spinlock.h	 					 	arch_spinlock			 	arch_spin_lock		

typedef	struct	arch_spinlock	{

									union	{

																__ticketpair_t	head_tail;

																struct	__raw_tickets	{

																								__ticket_t	head,	tail;

																}	tickets;

								};

}	arch_spinlock_t;

		——		(ticket	spinlock) 		 			(tail)	1 					 	arch_spin_lock	

static	__always_inline	void	arch_spin_lock(arch_spinlock_t	*lock)

{

								register	struct	__raw_tickets	inc	=	{	.tail	=	TICKET_LOCK_INC	};

								inc	=	xadd(&lock->tickets,	inc);

								if	(likely(inc.head	==	inc.tail))

																goto	out;

								for	(;;)	{

																	unsigned	count	=	SPIN_THRESHOLD;

																	do	{

																							inc.head	=	READ_ONCE(lock->tickets.head);

																							if	(__tickets_equal(inc.head,	inc.tail))

																																goto	clear_slowpath;

																								cpu_relax();

																	}	while	(--count);

																	__ticket_lock_spinning(lock,	inc.tail);

									}

clear_slowpath:

325

https://github.com/torvalds/linux/blob/master/kernel/locking/lockdep.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/lockdep.h
https://github.com/torvalds/linux/blob/master/include/linux/spnlock.h
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlocks.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h


								__ticket_check_and_clear_slowpath(lock,	inc.head);

out:

								barrier();

}

	arch_spin_lock				——		1			 	__raw_tickets		

#define	__TICKET_LOCK_INC							1

	inc			 	lock->tickets			 xadd		 	inc			(tickets) 			 	tickets.tail			 	inc			 	1				 	1		 				

	 	out			 	arch_spin_lock			 	barrier			 		(barrier	instruction) 	( 	(documentation)

	 	arch_spin_lock			 			̀ `						1	 				 	cpu_relax			 NOP	

#define	cpu_relax()					asm	volatile("rep;	nop")

	spin_unlock			 	spin_lock			 	unlock		 	arch_spin_unlock			 	arch_spin_lock			 	lock	tickets	

		

__add(&lock->tickets.head,	TICKET_LOCK_INC,	UNLOCK_LOCK_PREFIX);

	 	spin_lock			 	spin_unlock		 		 		

					+-------+							+-------+

					|							|							|							|

head	|			7			|	-	-	-	|			7			|	tail

					|							|							|							|

					+-------+							+-------+

																									|

																					+-------+

																					|							|

																					|			8			|

																					|							|

																					+-------+

																									|

																					+-------+

																					|							|

																					|			9			|

																					|							|

																					+-------+

			API

	Linux		Linux	 		 		

twitter	 0xAX		 email		 issue

PR	 linux-insides

Concurrent	computing
Synchronization
Clocksource	framework

326

http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://en.wikipedia.org/wiki/NOP
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29


Mutex
Race	condition
Atomic	operations
SMP
x86_64
Interrupts
Preemption
Linux	kernel	lock	validator
Sparse
xadd	instruction
NOP
Memory	barriers
Previous	chapter

327

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Sparse
http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://en.wikipedia.org/wiki/NOP
https://www.kernel.org/doc/Documentation/memory-barriers.txt


Linux	.	.

	Linux	 	Linux	 			-	 			

			 API:

	spin_lock_init		-			
	spin_lock		-			
	spin_lock_bh		-			
	spin_lock_irqsave			 	spin_lock_irq		-	/ 		

	spin_unlock		-			
	spin_unlock_bh		-			
	spin_is_locked		-			

	 include/linux/spinlock.h		 x86_64		 arch/x86/include/asm/spinlock.h		 	arch_spin_.*		
(	arch_spin_is_locked		 	arch_spin_lock		 	arch_spin_unlock		)	 	CONFIG_QUEUED_SPINLOCKS		

#ifdef	CONFIG_QUEUED_SPINLOCKS

#include	<asm/qspinlock.h>

#else

static	__always_inline	void	arch_spin_lock(arch_spinlock_t	*lock)

{

				...

				...

				...

}

...

...

...

#endif

	 arch/x86/include/asm/qspinlock.h		 include/asm-generic/qspinlock.h

#define	arch_spin_is_locked(l)										queued_spin_is_locked(l)

#define	arch_spin_is_contended(l)							queued_spin_is_contended(l)

#define	arch_spin_value_unlocked(l)					queued_spin_value_unlocked(l)

#define	arch_spin_lock(l)															queued_spin_lock(l)

#define	arch_spin_trylock(l)												queued_spin_trylock(l)

#define	arch_spin_unlock(l)													queued_spin_unlock(l)

#define	arch_spin_lock_flags(l,	f)						queued_spin_lock(l)

#define	arch_spin_unlock_wait(l)								queued_spin_unlock_wait(l)

	 API

	Linux	 			 x86_64		-	 kernel/Kconfig.locks

config	ARCH_USE_QUEUED_SPINLOCKS

				bool

config	QUEUED_SPINLOCKS

				def_bool	y	if	ARCH_USE_QUEUED_SPINLOCKS

				depends	on	SMP

328

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/qspinlock.h
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h#L126
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/kernel/Kconfig.locks


	 	ARCH_USE_QUEUED_SPINLOCKS			 	CONFIG_QUEUED_SPINLOCKS				 	ARCH_USE_QUEUED_SPINLOCKS			 	x86_64			-
arch/x86/Kconfig	

config	X86

				...

				...

				...

				select	ARCH_USE_QUEUED_SPINLOCKS

				...

				...

				...

		 		 			 test	and	set	

int	lock(lock)

{

				while	(test_and_set(lock)	==	1)

								;

				return	0;

}

int	unlock(lock)

{

				lock=0;

				return	lock;

}

	 	test_and_set			 	lock			 	1		 	lock			 	while			 	unlock			 	lock			 	0		 	lock	

	test_and_set					 	lock=1		 	lock		1	

		-	 	(ticket	spinlock)	

	 		 			 MCS	 			 	MCS		

	MCS		Linux		 per-cpu	

		 		 			 	next			 	next		 		

+---------+

|									|

|		Queue		|

|									|

+---------+

+---------+					+----------------------------+

|									|					|																												|

|		Queue		|---->|	First	thread	acquired	lock	|

|									|					|																												|

+---------+					+----------------------------+

:

+---------+					+----------------------------------------+					+-------------------------+

|									|					|																																								|					|																									|

|		Queue		|---->|		Second	thread	waits	for	first	thread		|<----|	First	thread	holds	lock	|

|									|					|																																								|					|																									|

+---------+					+----------------------------------------+					+-------------------------+

329

https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig
https://en.wikipedia.org/wiki/Test-and-set
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf


void	lock(...)

{

				lock.next	=	NULL;

				ancestor	=	put_lock_to_queue_and_return_ancestor(queue,	lock);

				//	if	we	have	ancestor,	the	lock	already	acquired	and	we

				//	need	to	wait	until	it	will	be	released

				if	(ancestor)

				{

								lock.locked	=	1;

								ancestor.next	=	lock;

								while	(lock.is_locked	==	true)

												;

				}

				//	in	other	way	we	are	owner	of	the	lock	and	may	exit

}

void	unlock(...)

{

				//	do	we	need	to	notify	somebody	or	we	are	alonw	in	the

				//	queue?

				if	(lock.next	!=	NULL)	{

								//	the	while	loop	from	the	lock()	function	will	be

								//	finished

								lock.next.is_locked	=	false;

								//	delete	ourself	from	the	queue	and	exit

								...

								...

								...

								return;

				}

				//	So,	we	have	no	next	threads	in	the	queue	to	notify	about

				//	lock	releasing	event.	Let's	just	put	`0`	to	the	lock,	will

				//	delete	ourself	from	the	queue	and	exit.

}

		 			Linux	 		 			32(32-bit)		 (word)	MCS		 	spinlock_t			Linux	 (widely)	Linux	
	Linux	 		 	32	

			Linux	 				

API
			Linux		 include/asm-generic/qspinlock.h		API	

#define	arch_spin_is_locked(l)										queued_spin_is_locked(l)

#define	arch_spin_is_contended(l)							queued_spin_is_contended(l)

#define	arch_spin_value_unlocked(l)					queued_spin_value_unlocked(l)

#define	arch_spin_lock(l)															queued_spin_lock(l)

#define	arch_spin_trylock(l)												queued_spin_trylock(l)

#define	arch_spin_unlock(l)													queued_spin_unlock(l)

#define	arch_spin_lock_flags(l,	f)						queued_spin_lock(l)

#define	arch_spin_unlock_wait(l)								queued_spin_unlock_wait(l)

	 include/asm-generic/qspinlock_types.h		 	qspinlock			Linux	

typedef	struct	qspinlock	{

				atomic_t				val;

}	arch_spinlock_t;

330

https://en.wikipedia.org/wiki/Word_%28computer_architecture%29
http://lxr.free-electrons.com/ident?i=spinlock_t
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h#L126
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock_types.h


	qspinlock			-	 	val			 	4			4	

	0-7		-	(locked	byte);
	8		-	(pending	bit);
	16-17		-		 	MCS			 	per_cpu		()
	18-31		-	

	9-15		

struct	mcs_spinlock	{

							struct	mcs_spinlock	*next;

							int	locked;

							int	count;

};

	 kernel/locking/mcs_spinlock.h	 		 			 	1			 			 	0			 	mcs_spinlock				(nested	locks) 	
	 	mcs_spinlock		

static	DEFINE_PER_CPU_ALIGNED(struct	mcs_spinlock,	mcs_nodes[4]);

(This	array	allows	to	make	four	attempts	of	a	lock	acquisition	for	the	four	events	in	following	contexts:	)

	 	qspinlock					 	API		 			 	API			 	qspinlock			 	val			-	 	atomic_t	(one	operation	at	a	time	variable)
	 	val		API	

static	__always_inline	int	queued_spin_is_locked(struct	qspinlock	*lock)

{

				return	atomic_read(&lock->val);

}

Ok	Linux	 		API	main 	

#define	arch_spin_lock(l)															queued_spin_lock(l)

	-	 	queued_spin_lock		 include/asm-generic/qspinlock_types.h	

static	__always_inline	void	queued_spin_lock(struct	qspinlock	*lock)

{

								u32	val;

								val	=	atomic_cmpxchg_acquire(&lock->val,	0,	_Q_LOCKED_VAL);

								if	(likely(val	==	0))

																	return;

								queued_spin_lock_slowpath(lock,	val);

}

	 	queued_spin_lock_slowpath			 			 			 	queued_spin_lock			 	atomic_cmpxchg_acquire		
CMPXCHG		 	_Q_LOCKED_VAL			 	&lock->val		

	atomic_cmpxchg_acquire			 include/linux/atomic.h		 	atomic_cmpxchg		

#define		atomic_cmpxchg_acquire									atomic_cmpxchg

331

https://github.com/torvalds/linux/blob/master/kernel/locking/mcs_spinlock.h
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock_types.h
http://x86.renejeschke.de/html/file_module_x86_id_41.html
https://github.com/torvalds/linux/blob/master/include/linux/atomic.h


	 x86_64		 arch/x86/include/asm/atomic.h		atomic_cmpxchg			 	cmpxchg		

static	__always_inline	int	atomic_cmpxchg(atomic_t	*v,	int	old,	int	new)

{

								return	cmpxchg(&v->counter,	old,	new);

}

arch/x86/include/asm/cmpxchg.h

#define	cmpxchg(ptr,	old,	new)	\

				__cmpxchg(ptr,	old,	new,	sizeof(*(ptr)))

#define	__cmpxchg(ptr,	old,	new,	size)	\

				__raw_cmpxchg((ptr),	(old),	(new),	(size),	LOCK_PREFIX)

	cmpxchg			 	__cpmxchg		 	__cpmxchg			 	LOCK_PREFIX		 	__raw_cmpxchg			 	LOCK_PREFIX		 LOCK
	__raw_cmpxchg		

#define	__raw_cmpxchg(ptr,	old,	new,	size,	lock)	\

({

				...

				...

				...

				volatile	u32	*__ptr	=	(volatile	u32	*)(ptr);												\

				asm	volatile(lock	"cmpxchgl	%2,%1"																						\

																	:	"=a"	(__ret),	"+m"	(*__ptr)														\

																	:	"r"	(__new),	""	(__old)																		\

																	:	"memory");																															\

				...

				...

				...

})

	 	atomic_cmpxchg_acquire			 	val			 	queued_spin_lock		

val	=	atomic_cmpxchg_acquire(&lock->val,	0,	_Q_LOCKED_VAL);

if	(likely(val	==	0))

				return;

	 	MCS		 		 				Linux		 	MCS		

	 	queued_spin_lock			 	lock->val			 	1			 	_Q_LOCKED_VAL		 	queued_spin_lock_slowpath		
	queued_spin_lock_slowpath		 kernel/locking/qspinlock.c	

void	queued_spin_lock_slowpath(struct	qspinlock	*lock,	u32	val)

{

				if	(pv_enabled())

								goto	queue;

				if	(virt_spin_lock(lock))

								return;

				...

				...

				...

}

	 	pvqspinlock		 	pvqspinlock		paravirtualized 			Linux		 	_Q_PENDING_VAL		After	these	checks
we	compare	our	value	which	represents	lock	with	the	value	of	the		_Q_PENDING_VAL		macro	and	do	nothing	while	this	is	true

if	(val	==	_Q_PENDING_VAL)	{

				while	((val	=	atomic_read(&lock->val))	==	_Q_PENDING_VAL)

332

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/atomic.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/cmpxchg.h
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/kernel/locking/qspinlock.c
https://en.wikipedia.org/wiki/Paravirtualization


								cpu_relax();

}

	 	cpu_relax			 NOP		-	 	pending		 		 	pending				(touched)	 	mcs_spinlock		This
is	done	for	optimization,	because	there	are	no	need	in	unnecessary	latency	which	will	be	caused	by	the	cache	invalidation	in	a	touching
of	own		mcs_spinlock		array.

for	(;;)	{

				if	(val	&	~_Q_LOCKED_MASK)

								goto	queue;

				new	=	_Q_LOCKED_VAL;

				if	(val	==	new)

								new	|=	_Q_PENDING_VAL;

				old	=	atomic_cmpxchg_acquire(&lock->val,	val,	new);

				if	(old	==	val)

								break;

				val	=	old;

}

	 	if			( 	val	)	(pending) 	val			 	&lock->val			 	atomic_cmpxchg_acquire		
	1		 	new			 	val			 	&lock->val		 			 	val			 	atomic_cmpxchg_acquire			 	lock->val			 	1	

smp_cond_acquire(!(atomic_read(&lock->val)	&	_Q_LOCKED_MASK));

clear_pending_set_locked(lock);

return;

			 	lock->val			 	_Q_LOCKED_VAL	|	_Q_PENDING_VAL					 	mcs_nodes				

node	=	this_cpu_ptr(&mcs_nodes[0]);

idx	=	node->count++;

tail	=	encode_tail(smp_processor_id(),	idx);

	 			 	mcs_nodes					tail			 	node			 	mcs_nodes			 	locked			 	next			 	NULL				

node	+=	idx;

node->locked	=	0;

node->next	=	NULL;

		cpuper-cpu 			 	queued_spin_trylock		

if	(queued_spin_trylock(lock))

								goto	release;

	queued_spin_trylock			 include/asm-generic/qspinlock.h		 	queued_spin_lock		

static	__always_inline	int	queued_spin_trylock(struct	qspinlock	*lock)

{

				if	(!atomic_read(&lock->val)	&&

							(atomic_cmpxchg_acquire(&lock->val,	0,	_Q_LOCKED_VAL)	==	0))

								return	1;

				return	0;

}

				

333

https://en.wikipedia.org/wiki/NOP
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h


release:

				this_cpu_dec(mcs_nodes[0].count);

	 	queued_spin_trylock		

old	=	xchg_tail(lock,	tail);

		

if	(old	&	_Q_TAIL_MASK)	{

				prev	=	decode_tail(old);

				WRITE_ONCE(prev->next,	node);

				arch_mcs_spin_lock_contended(&node->locked);

}

next	=	READ_ONCE(node->next);

if	(next)

				prefetchw(next);

	 PREFETCHW	cache	line	 	MCS		

		 		

smp_cond_acquire(!((val	=	atomic_read(&lock->val))	&	_Q_LOCKED_PENDING_MASK));

		 		

	Linux	 			Linux		 	ticket	spinlock 				-	 			Linux	

twitter	 0xAX		 email		 issue.

PR	 linux-insides

spinlock
interrupt
interrupt	handler
API
Test	and	Set
MCS
per-cpu	variables
atomic	instruction
CMPXCHG	instruction
LOCK	instruction
NOP	instruction
PREFETCHW	instruction
x86_64

334

http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Test-and-set
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://en.wikipedia.org/wiki/NOP
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/wiki/X86-64


Previous	part

335



.	.

	 chapter,	 	-					 		 			

	 				 	 	 			Linux

Linux

	 				-	 			Linux	-	 				 			,	 			

					 		

	 		 		

				 	0			 	1		 		

		;
		.

	 				 	1			 	0		 				 				 	1			 			 	1			 				 					 	

	API

	 		Linux	 				 API		 include/linux/semaphore.h	

	 			

struct	semaphore	{

				raw_spinlock_t								lock;

				unsigned	int								count;

				struct	list_head				wait_list;

};

	 			

	lock		-		 				 		;
	count		-	;
	wait_list		-	.

Linux	 			API		 			Linux	 				 			

		;
		.

	 			 	DEFINE_SEMAPHORE			 			

#define	DEFINE_SEMAPHORE(name)		\

									struct	semaphore	name	=	__SEMAPHORE_INITIALIZER(name,	1)

	DEFINE_SEMAPHORE			 				 	DEFINE_SEMAPHORE			 				 	__SEMAPHORE_INITIALIZER		

#define	__SEMAPHORE_INITIALIZER(name,	n)														\

336

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h
https://en.wikipedia.org/wiki/Application_programming_interface


{																																																																							\

								.lock											=	__RAW_SPIN_LOCK_UNLOCKED((name).lock),								\

								.count										=	n,																																												\

								.wait_list						=	LIST_HEAD_INIT((name).wait_list),													\

}

	__SEMAPHORE_INITIALIZER			 				 	__RAW_SPIN_LOCK_UNLOCKED			 				 			 	 	__RAW_SPIN_LOCK_UNLOCKED		
include/linux/spinlock_types.h		 	__ARCH_SPIN_LOCK_UNLOCKED			 	__ARCH_SPIN_LOCK_UNLOCKED		

#define	__ARCH_SPIN_LOCK_UNLOCKED							{	{	0	}	}

				 	count			 	wait_list			 		 				 				 	sema_init				 include/linux/semaphore.h	

static	inline	void	sema_init(struct	semaphore	*sem,	int	val)

{

							static	struct	lock_class_key	__key;

							*sem	=	(struct	semaphore)	__SEMAPHORE_INITIALIZER(*sem,	val);

							lockdep_init_map(&sem->lock.dep_map,	"semaphore->lock",	&__key,	0);

}

	 	__SEMAPHORE_INITIALIZER			 				 	Linux	 			 		Linux	 				 API

void	down(struct	semaphore	*sem);

void	up(struct	semaphore	*sem);

int		down_interruptible(struct	semaphore	*sem);

int		down_killable(struct	semaphore	*sem);

int		down_trylock(struct	semaphore	*sem);

int		down_timeout(struct	semaphore	*sem,	long	jiffies);

	 	down			 	up			 			 	down_interruptible		 		 				 	TASK_INTERRUPTIBLE		 	TASK_INTERRUPTIBLE			 	

	down_killable			 	down_interruptible			 	TASK_KILLABLE		

	down_trylock			 	spin_trylock			 	down_timeout		 jiffies

	 			API	 	down			 kernel/locking/semaphore.c	

void	down(struct	semaphore	*sem)

{

								unsigned	long	flags;

								raw_spin_lock_irqsave(&sem->lock,	flags);

								if	(likely(sem->count	>	0))

																sem->count--;

								else

																__down(sem);

								raw_spin_unlock_irqrestore(&sem->lock,	flags);

}

EXPORT_SYMBOL(down);

	 	down			 	flags			 	raw_spin_lock_irqsave			 	raw_spin_lock_irqrestore			 include/linux/spinlock.h	 			
	 	spin_lock			 	spin_unlock		/	

	 	down			 	raw_spin_lock_irqsave			 	raw_spin_unlock_irqrestore			 				 	__down		
	 	__down			 )

static	noinline	void	__sched	__down(struct	semaphore	*sem)

{

								__down_common(sem,	TASK_UNINTERRUPTIBLE,	MAX_SCHEDULE_TIMEOUT);

}

337

https://github.com/torvalds/linux/blob/master/include/linux/spinlock_types.h
https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c


	__down			 	__down_common		

	semaphore	;
	flag		-	;
	timeout		-		 			.

	 	__down_common			 	down_trylock	,		down_timeout			 	down_killable			 	__down_common		

static	noinline	int	__sched	__down_interruptible(struct	semaphore	*sem)

{

								return	__down_common(sem,	TASK_INTERRUPTIBLE,	MAX_SCHEDULE_TIMEOUT);

}

	__down_killable		

static	noinline	int	__sched	__down_killable(struct	semaphore	*sem)

{

								return	__down_common(sem,	TASK_KILLABLE,	MAX_SCHEDULE_TIMEOUT);

}

	__down_timeout		:

static	noinline	int	__sched	__down_timeout(struct	semaphore	*sem,	long	timeout)

{

								return	__down_common(sem,	TASK_UNINTERRUPTIBLE,	timeout);

}

	 	__down_common			 kernel/locking/semaphore.c

struct	task_struct	*task	=	current;

struct	semaphore_waiter	waiter;

	 	current			 arch/x86/include/asm/current.h	

#define	current	get_current()

	get_current			 	current_task		per-cpu	

DECLARE_PER_CPU(struct	task_struct	*,	current_task);

static	__always_inline	struct	task_struct	*get_current(void)

{

								return	this_cpu_read_stable(current_task);

}

	 	waiter			 	semaphore.wait_list		

struct	semaphore_waiter	{

								struct	list_head	list;

								struct	task_struct	*task;

								bool	up;

};

	 	wait_list			 	waiter		

list_add_tail(&waiter.list,	&sem->wait_list);

waiter.task	=	task;

waiter.up	=	false;

338

https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/current.h


for	(;;)	{

								if	(signal_pending_state(state,	task))

												goto	interrupted;

								if	(unlikely(timeout	<=	0))

												goto	timed_out;

								__set_task_state(task,	state);

								raw_spin_unlock_irq(&sem->lock);

								timeout	=	schedule_timeout(timeout);

								raw_spin_lock_irq(&sem->lock);

								if	(waiter.up)

												return	0;

}

	 	waiter.up			 	false		 	up			 	true			 	pending			 	TASK_INTERRUPTIBLE			 	TASK_WAKEKILL			
(https://en.wikipedia.org/wiki/Unix_signal)	 	signal_pending_state			 include/linux/sched.h

static	inline	int	signal_pending_state(long	state,	struct	task_struct	*p)

{

									if	(!(state	&	(TASK_INTERRUPTIBLE	|	TASK_WAKEKILL)))

																	return	0;

									if	(!signal_pending(p))

																	return	0;

									return	(state	&	TASK_INTERRUPTIBLE)	||	__fatal_signal_pending(p);

}

	 	state				 	TASK_INTERRUPTIBLE			 	TASK_WAKEKILL			 	state			 	TASK_INTERRUPTIBLE		
	interrupted		

interrupted:

				list_del(&waiter.list);

				return	-EINTR;

	 	-EINTR			

if	(unlikely(timeout	<=	0))

				goto	timed_out;

	 	timed_out		

timed_out:

				list_del(&waiter.list);

				return	-ETIME;

	 	interrupted			 	-ETIME			 	state	

__set_task_state(task,	state);

	 	schedule_timeout		

raw_spin_unlock_irq(&sem->lock);

timeout	=	schedule_timeout(timeout);

raw_spin_lock_irq(&sem->lock);

339

https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/master/include/linux/sched.h
https://en.wikipedia.org/wiki/Mask_%28computing%29
https://en.wikipedia.org/wiki/Errno.h


	 kernel/time/timer.c	 	schedule_timeout		

	 	__down_common			 	up		

	up			 	down			

void	up(struct	semaphore	*sem)

{

								unsigned	long	flags;

								raw_spin_lock_irqsave(&sem->lock,	flags);

								if	(likely(list_empty(&sem->wait_list)))

																sem->count++;

								else

																__up(sem);

								raw_spin_unlock_irqrestore(&sem->lock,	flags);

}

EXPORT_SYMBOL(up);

	 	down			 	semaphore			 	__up		

static	noinline	void	__sched	__up(struct	semaphore	*sem)

{

								struct	semaphore_waiter	*waiter	=	list_first_entry(&sem->wait_list,

																																																struct	semaphore_waiter,	list);

								list_del(&waiter->list);

								waiter->up	=	true;

								wake_up_process(waiter->task);

}

	 	waiter-up			 	__down_common			 	wake_up_process			 	__up			 	__down_common		
	schedule_timeout			 	schedule_timeout		 	schedule_timeout			 kernel/sched/core.c		 	wake_up_process		

Linux	 	Linux	 			 	ticket	spinlock				 	 	Linux		

twitter	 0xAX	 email	 issue

spinlocks
synchronization	primitive
semaphore
context	switch
preemption
deadlocks
scheduler
Doubly	linked	list	in	the	Linux	kernel
jiffies
interrupts
per-cpu
bitmask
SIGKILL
errno
API

340

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Mutual_exclusion
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Mask_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal#SIGKILL
https://en.wikipedia.org/wiki/Errno.h
https://en.wikipedia.org/wiki/Application_programming_interface


mutex
Previous	part

341

https://en.wikipedia.org/wiki/Mutual_exclusion


.	.

	 chapter		 		 		 	 	(mutex) 		 	MUTual	EXclusion	

	 	Linux	 				 API

			

	 	

struct	semaphore	{

				raw_spinlock_t								lock;

				unsigned	int								count;

				struct	list_head				wait_list;

};

	 		 	count		 	semaphore		 		 	 				 				 				 			 				 		 				 				 				 API	
				()	 		API 			 	

			Linux

struct	mutex	{

								atomic_t																count;

								spinlock_t														wait_lock;

								struct	list_head								wait_list;

#if	defined(CONFIG_DEBUG_MUTEXES)	||	defined(CONFIG_MUTEX_SPIN_ON_OWNER)

								struct	task_struct						*owner;

#endif

#ifdef	CONFIG_MUTEX_SPIN_ON_OWNER

								struct	optimistic_spin_queue	osq;

#endif

#ifdef	CONFIG_DEBUG_MUTEXES

								void																				*magic;

#endif

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

								struct	lockdep_map						dep_map;

#endif

};

	 include/linux/mutex.h		 			 				-	 	count		 				 	count			 	1			 				 				 	count			 			 			
	 			 	count			 				 				 			

				-	 	wait_lock			 	wait_list			 				 	 			 				 				 			Linux

	-	 	owner			 	 	mutex			 	CONFIG_DEBUG_MUTEXES			 	CONFIG_MUTEX_SPIN_ON_OWNER			 	osq				(optimistic
spinning)			-	 	magic			 	dep_map			 	 	magic			 				-	 	lockdep_map		Linux	 	(lock	validator) 	

	 			Linux	 	mutex->count		Linux

	 				mutex	

	fastpath	;
	midpath	;
	slowpath	.

342

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Debugging
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt


	 	fastpath			 				 	mutex			count		 				 				 	count			 	

	 				-	 	midpath		midpath			 				 MCS	lock		 		 				 .

	 	fastpath			 	midpath			-	 	slowpath		 		 		

struct	mutex_waiter	{

								struct	list_head								list;

								struct	task_struct						*task;

#ifdef	CONFIG_DEBUG_MUTEXES

								void																				*magic;

#endif

};

include/linux/mutex.h	Linux	 				 API		 	mutex_waiter			 	 	mutex_waiter			 kernel/locking/semaphore.c	
	 	semaphore_waiter		

struct	semaphore_waiter	{

								struct	list_head	list;

								struct	task_struct	*task;

								bool	up;

};

	 	list			 	task			 	mutex_waiter			 	up		 	CONFIG_DEBUG_MUTEXES			 	magic		 			

	 			LinuxLinux	 				 API	

	API
	 			Linux	 				 				 API		 			API		 include/linux/mutex.h		 			

	 			Linux

#define	DEFINE_MUTEX(mutexname)	\

								struct	mutex	mutexname	=	__MUTEX_INITIALIZER(mutexname)

	DEFINE_MUTEX			 				 				 	mutex			 	__MUTEX_INITIALIZER			 	__MUTEX_INITIALIZER	

#define	__MUTEX_INITIALIZER(lockname)									\

{																																																													\

							.count	=	ATOMIC_INIT(1),																															\

							.wait_lock	=	__SPIN_LOCK_UNLOCKED(lockname.wait_lock),	\

							.wait_list	=	LIST_HEAD_INIT(lockname.wait_list)								\

}

	 		 	mutex		 	count			 	1			 				wait_lock				 	wait_list			

	 			 kernel/locking/mutex.c		 	__mutex_init			 	__mutex_init			 	mutex_init		:

#	define	mutex_init(mutex)																\

do	{																																																				\

								static	struct	lock_class_key	__key;													\

																																																								\

								__mutex_init((mutex),	#mutex,	&__key);										\

}	while	(0)

	 	mutex_init			 	lock_class_key			 	__mutex_init		:

void

__mutex_init(struct	mutex	*lock,	const	char	*name,	struct	lock_class_key	*key)

{

343

https://en.wikipedia.org/wiki/Linearizability
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Spinlock
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c


								atomic_set(&lock->count,	1);

								spin_lock_init(&lock->wait_lock);

								INIT_LIST_HEAD(&lock->wait_list);

								mutex_clear_owner(lock);

#ifdef	CONFIG_MUTEX_SPIN_ON_OWNER

								osq_lock_init(&lock->osq);

#endif

								debug_mutex_init(lock,	name,	key);

}

	__mutex_init		:

	lock		-	;
	name		-	;
	key		-	key.

	 	__mutex_init			 				 	atomic_set			 				 			 				 						 				 				 				 include/linux/osq_lock.h
	 	osq_lock_init		(optimistic	queue)	tail:

static	inline	bool	osq_is_locked(struct	optimistic_spin_queue	*lock)

{

								return	atomic_read(&lock->tail)	!=	OSQ_UNLOCKED_VAL;

}

	 	__mutex_init			 	debug_mutex_init			 	

	 				 				 				 			API 	mutex_lock			 	mutex_unlock			 kernel/locking/mutex.c		 	mutex_lock		:

void	__sched	mutex_lock(struct	mutex	*lock)

{

								might_sleep();

								__mutex_fastpath_lock(&lock->count,	__mutex_lock_slowpath);

								mutex_set_owner(lock);

}

	 include/linux/kernel.h		 	mutex_lock			 	might_sleep			 	CONFIG_DEBUG_ATOMIC_SLEEP			 	

	 	might_sleep			 	__mutex_fastpath_lock			 x86_64		\	 	__mutex_fastpath_lock		
arch/x86/include/asm/mutex_64.h	 	__mutex_fastpath_lock			fast	path		 	count		

	__mutex_fastpath_lock			 	:

asm_volatile_goto(LOCK_PREFIX	"			decl	%0\n"

																														"			jns	%l[exit]\n"

																														:	:	"m"	(v->counter)

																														:	"memory",	"cc"

																														:	exit);

	 	asm_volatile_goto		 include/linux/compiler-gcc.h	

#define	asm_volatile_goto(x...)	do	{	asm	goto(x);	asm	("");	}	while	(0)

	 	goto			 	(barrier) 	 	LOCK			 lock	

#define	LOCK_PREFIX	LOCK_PREFIX_HERE	"\n\tlock;	"

	 			 	mutex->counter			 	mutex->counter			 jns		 	exit		 	exit		
	__mutex_fastpath_lock		

exit:

								return;

344

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/osq_lock.h
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c
https://github.com/torvalds/linux/blob/master/include/linux/kernel.h
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h
https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://en.wikipedia.org/wiki/Memory_barrier
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://en.wikipedia.org/wiki/Linearizability
http://unixwiz.net/techtips/x86-jumps.html


	 	__mutex_fastpath_lock			 	mutex->counter		

fail_fn(v);

	fail_fn			__mutex_fastpath_lock			 	midpath/slowpath		 	fail_fn			 	__mutex_lock_slowpath		
	__mutex_lock_slowpath			 	mutex_lock			 	__mutex_fastpath_lock			mutex_lock	

mutex_set_owner(lock);

	mutex_set_owner			 kernel/locking/mutex.h	

static	inline	void	mutex_set_owner(struct	mutex	*lock)

{

								lock->owner	=	current;

}

	 	__mutex_lock_slowpath			 kernel/locking/mutex.c		 	container_of			 	__mutex_fastpath_lock	

__visible	void	__sched

__mutex_lock_slowpath(atomic_t	*lock_count)

{

								struct	mutex	*lock	=	container_of(lock_count,	struct	mutex,	count);

								__mutex_lock_common(lock,	TASK_UNINTERRUPTIBLE,	0,

																												NULL,	_RET_IP_,	NULL,	0);

}

	 				 	__mutex_lock_common			 	__mutex_lock_common			 	

preempt_disable();

	CONFIG_MUTEX_SPIN_ON_OWNER			-		 				 	slowpath	

if	(mutex_optimistic_spin(lock,	ww_ctx,	use_ww_ctx))	{

								preempt_enable();

								return	0;

}

	 	mutex_optimistic_spin				(spinner)		 	MCS		

osq_lock(&lock->osq)

:

while	(true)	{

				owner	=	READ_ONCE(lock->owner);

				if	(owner	&&	!mutex_spin_on_owner(lock,	owner))

								break;

				if	(mutex_try_to_acquire(lock))	{

								lock_acquired(&lock->dep_map,	ip);

								mutex_set_owner(lock);

								osq_unlock(&lock->osq);

								return	true;

				}

345

https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c
https://en.wikipedia.org/wiki/Preemption_%28computing%29


}

	()	 	mutex_spin_on_owner			 	mutex_try_to_acquired		 	MCS		
	mutex_optimistic_spin			 		 	__mutex_lock_common		

if	(mutex_optimistic_spin(lock,	ww_ctx,	use_ww_ctx))	{

				preempt_enable();

				return	0;

}

	 	mutex_optimistic_spin			 	mutex_optimistic_spin		 	CONFIG_MUTEX_SPIN_ON_OWNER		
	mutex_optimistic_spin		

#ifndef	CONFIG_MUTEX_SPIN_ON_OWNER

static	bool	mutex_optimistic_spin(struct	mutex	*lock,

																																		struct	ww_acquire_ctx	*ww_ctx,	const	bool	use_ww_ctx)

{

				return	false;

}

#endif

	__mutex_lock_common			 		

if	(!mutex_is_locked(lock)	&&

			(atomic_xchg_acquire(&lock->count,	0)	==	1))

						goto	skip_wait;

list_add_tail(&waiter.list,	&lock->wait_list);

waiter.task	=	task;

	__mutex_lock_common		

skip_wait:

								mutex_set_owner(lock);

								preempt_enable();

								return	0;

for	(;;)	{

				if	(atomic_read(&lock->count)	>=	0	&&	(atomic_xchg_acquire(&lock->count,	-1)	==	1))

								break;

				if	(unlikely(signal_pending_state(state,	task)))	{

								ret	=	-EINTR;

								goto	err;

				}

				__set_task_state(task,	state);

					schedule_preempt_disabled();

}

	pending	 	 				 	TASK_UNINTERRUPTIBLE			 	schedule_preempt_disabled		

346

https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal


	 	mutex_unlock			 	mutex_unlock		 	__mutex_fastpath_unlock			 arch/x86/include/asm/mutex_64.h	

void	__sched	mutex_unlock(struct	mutex	*lock)

{

				__mutex_fastpath_unlock(&lock->count,	__mutex_unlock_slowpath);

}

	__mutex_fastpath_unlock			__mutex_fastpath_lock		

static	inline	void	__mutex_fastpath_unlock(atomic_t	*v,

																																											void	(*fail_fn)(atomic_t	*))

{

							asm_volatile_goto(LOCK_PREFIX	"			incl	%0\n"

																									"			jg	%l[exit]\n"

																									:	:	"m"	(v->counter)

																									:	"memory",	"cc"

																									:	exit);

							fail_fn(v);

exit:

							return;

}

,		 	mutex->count			 				 			 	fail_fn		
	__mutex_unlock_slowpath		__mutex_unlock_slowpath			mutex->count			 	mutex			 	__mutex_unlock_common_slowpath		

__mutex_unlock_slowpath(atomic_t	*lock_count)

{

						struct	mutex	*lock	=	container_of(lock_count,	struct	mutex,	count);

						__mutex_unlock_common_slowpath(lock,	1);

}

	 	__mutex_unlock_common_slowpath		

if	(!list_empty(&lock->wait_list))	{

				struct	mutex_waiter	*waiter	=

											list_entry(lock->wait_list.next,	struct	mutex_waiter,	list);

																wake_up_process(waiter->task);

}

.		 				API	 	mutex_lock			 	mutex_unlock	Linux	API

	mutex_lock_interruptible	;
	mutex_lock_killable	;
	mutex_trylock	.

	 	unlock		.		 	API		,		 				 	API			 	

Linux	 		-	 			 	 			Linux	 			Linux

twitter	 0xAX	 email	 issue

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

347

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://twitter.com/0xAX
mailto:anotherworldofworld@gmail.com
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/0xAX/linux-insides


Mutex
Spinlock
Semaphore
Synchronization	primitives
API
Locking	mechanism
Context	switches
lock	validator
Atomic
MCS	lock
Doubly	linked	list
x86_64
Inline	assembly
Memory	barrier
Lock	instruction
JNS	instruction
preemption
Unix	signals
Previous	part

348

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Context_switch
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Linearizability
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Memory_barrier
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://unixwiz.net/techtips/x86-jumps.html
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal


Synchronization	primitives	in	the	Linux	kernel.	Part	5.

Introduction

This	is	the	fifth	part	of	the	chapter	which	describes	synchronization	primitives	in	the	Linux	kernel	and	in	the	previous	parts	we	finished
to	consider	different	types	spinlocks,	semaphore	and	mutex	synchronization	primitives.	We	will	continue	to	learn	synchronization
primitives	in	this	part	and	start	to	consider	special	type	of	synchronization	primitives	-	readers–writer	lock.

The	first	synchronization	primitive	of	this	type	will	be	already	familiar	for	us	-	semaphore.	As	in	all	previous	parts	of	this	book,	before
we	will	consider	implementation	of	the		reader/writer	semaphores		in	the	Linux	kernel,	we	will	start	from	the	theoretical	side	and	will
try	to	understand	what	is	the	difference	between		reader/writer	semaphores		and		normal	semaphores	.

So,	let's	start.

Reader/Writer	semaphore

Actually	there	are	two	types	of	operations	may	be	performed	on	the	data.	We	may	read	data	and	make	changes	in	data.	Two
fundamental	operations	-		read		and		write	.	Usually	(but	not	always),		read		operation	is	performed	more	often	than		write	
operation.	In	this	case,	it	would	be	logical	to	we	may	lock	data	in	such	way,	that	some	processes	may	read	locked	data	in	one	time,	on
condition	that	no	one	will	not	change	the	data.	The	readers/writer	lock	allows	us	to	get	this	lock.

When	a	process	which	wants	to	write	something	into	data,	all	other		writer		and		reader		processes	will	be	blocked	until	the	process
which	acquired	a	lock,	will	not	release	it.	When	a	process	reads	data,	other	processes	which	want	to	read	the	same	data	too,	will	not	be
locked	and	will	be	able	to	do	this.	As	you	may	guess,	implementation	of	the		reader/writer	semaphore		is	based	on	the	implementation
of	the		normal	semaphore	.	We	already	familiar	with	the	semaphore	synchronization	primitive	from	the	third	part	of	this	chapter.	From
the	theoretical	side	everything	looks	pretty	simple.	Let's	look	how		reader/writer	semaphore		is	represented	in	the	Linux	kernel.

The		semaphore		is	represented	by	the:

struct	semaphore	{

				raw_spinlock_t								lock;

				unsigned	int								count;

				struct	list_head				wait_list;

};

structure.	If	you	will	look	in	the	include/linux/rwsem.h	header	file,	you	will	find	definition	of	the		rw_semaphore		structure	which
represents		reader/writer	semaphore		in	the	Linux	kernel.	Let's	look	at	the	definition	of	this	structure:

#ifdef	CONFIG_RWSEM_GENERIC_SPINLOCK

#include	<linux/rwsem-spinlock.h>

#else

struct	rw_semaphore	{

								long	count;

								struct	list_head	wait_list;

								raw_spinlock_t	wait_lock;

#ifdef	CONFIG_RWSEM_SPIN_ON_OWNER

								struct	optimistic_spin_queue	osq;

								struct	task_struct	*owner;

#endif

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

								struct	lockdep_map						dep_map;

#endif

};

/

349

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h


Before	we	will	consider	fields	of	the		rw_semaphore		structure,	we	may	notice,	that	declaration	of	the		rw_semaphore		structure	depends
on	the		CONFIG_RWSEM_GENERIC_SPINLOCK		kernel	configuration	option.	This	option	is	disabled	for	the	x86_64	architecture	by	default.	We
can	be	sure	in	this	by	looking	at	the	corresponding	kernel	configuration	file.	In	our	case,	this	configuration	file	is	-
arch/x86/um/Kconfig:

config	RWSEM_XCHGADD_ALGORITHM

				def_bool	64BIT

config	RWSEM_GENERIC_SPINLOCK

				def_bool	!RWSEM_XCHGADD_ALGORITHM

So,	as	this	book	describes	only	x86_64	architecture	related	stuff,	we	will	skip	the	case	when	the		CONFIG_RWSEM_GENERIC_SPINLOCK	
kernel	configuration	is	enabled	and	consider	definition	of	the		rw_semaphore		structure	only	from	the	include/linux/rwsem.h	header	file.

If	we	will	take	a	look	at	the	definition	of	the		rw_semaphore		structure,	we	will	notice	that	first	three	fields	are	the	same	that	in	the
	semaphore		structure.	It	contains		count		field	which	represents	amount	of	available	resources,	the		wait_list		field	which	represents
doubly	linked	list	of	processes	which	are	waiting	to	acquire	a	lock	and		wait_lock		spinlock	for	protection	of	this	list.	Notice	that
	rw_semaphore.count		field	is		long		type	unlike	the	same	field	in	the		semaphore		structure.

The		count		field	of	a		rw_semaphore		structure	may	have	following	values:

	0x0000000000000000		-		reader/writer	semaphore		is	in	unlocked	state	and	no	one	is	waiting	for	a	lock;
	0x000000000000000X		-		X		readers	are	active	or	attempting	to	acquire	a	lock	and	no	writer	waiting;
	0xffffffff0000000X		-	may	represent	different	cases.	The	first	is	-		X		readers	are	active	or	attempting	to	acquire	a	lock	with
waiters	for	the	lock.	The	second	is	-	one	writer	attempting	a	lock,	no	waiters	for	the	lock.	And	the	last	-	one	writer	is	active	and	no
waiters	for	the	lock;
	0xffffffff00000001		-	may	represented	two	different	cases.	The	first	is	-	one	reader	is	active	or	attempting	to	acquire	a	lock	and
exist	waiters	for	the	lock.	The	second	case	is	one	writer	is	active	or	attempting	to	acquire	a	lock	and	no	waiters	for	the	lock;
	0xffffffff00000000		-	represents	situation	when	there	are	readers	or	writers	are	queued,	but	no	one	is	active	or	is	in	the	process
of	acquire	of	a	lock;
	0xfffffffe00000001		-	a	writer	is	active	or	attempting	to	acquire	a	lock	and	waiters	are	in	queue.

So,	besides	the		count		field,	all	of	these	fields	are	similar	to	fields	of	the		semaphore		structure.	Last	three	fields	depend	on	the	two
configuration	options	of	the	Linux	kernel:	the		CONFIG_RWSEM_SPIN_ON_OWNER		and		CONFIG_DEBUG_LOCK_ALLOC	.	The	first	two	fields	may
be	familiar	us	by	declaration	of	the	mutex	structure	from	the	previous	part.	The	first		osq		field	represents	MCS	lock	spinner	for
	optimistic	spinning		and	the	second	represents	process	which	is	current	owner	of	a	lock.

The	last	field	of	the		rw_semaphore		structure	is	-		dep_map		-	debugging	related,	and	as	I	already	wrote	in	previous	parts,	we	will	skip
debugging	related	stuff	in	this	chapter.

That's	all.	Now	we	know	a	little	about	what	is	it		reader/writer	lock		in	general	and		reader/writer	semaphore		in	particular.
Additionally	we	saw	how	a		reader/writer	semaphore		is	represented	in	the	Linux	kernel.	In	this	case,	we	may	go	ahead	and	start	to
look	at	the	API	which	the	Linux	kernel	provides	for	manipulation	of		reader/writer	semaphores	.

Reader/Writer	semaphore	API

So,	we	know	a	little	about		reader/writer	semaphores		from	theoretical	side,	let's	look	on	its	implementation	in	the	Linux	kernel.	All
	reader/writer	semaphores		related	API	is	located	in	the	include/linux/rwsem.h	header	file.

As	always	Before	we	will	consider	an	API	of	the		reader/writer	semaphore		mechanism	in	the	Linux	kernel,	we	need	to	know	how	to
initialize	the		rw_semaphore		structure.	As	we	already	saw	in	previous	parts	of	this	chapter,	all	synchronization	primitives	may	be
initialized	in	two	ways:

	statically	;
	dynamically	.

/

350

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/um/Kconfig
https://0xax.gitbooks.io/linux-insides/content
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Mutual_exclusion
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://en.wikipedia.org/wiki/Application_programming_interface
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29


And		reader/writer	semaphore		is	not	an	exception.	First	of	all,	let's	take	a	look	at	the	first	approach.	We	may	initialize
	rw_semaphore		structure	with	the	help	of	the		DECLARE_RWSEM		macro	in	compile	time.	This	macro	is	defined	in	the
include/linux/rwsem.h	header	file	and	looks:

#define	DECLARE_RWSEM(name)	\

								struct	rw_semaphore	name	=	__RWSEM_INITIALIZER(name)

As	we	may	see,	the		DECLARE_RWSEM		macro	just	expands	to	the	definition	of	the		rw_semaphore		structure	with	the	given	name.
Additionally	new		rw_semaphore		structure	is	initialized	with	the	value	of	the		__RWSEM_INITIALIZER		macro:

#define	__RWSEM_INITIALIZER(name)														\

{																																																														\

								.count	=	RWSEM_UNLOCKED_VALUE,																									\

								.wait_list	=	LIST_HEAD_INIT((name).wait_list),									\

								.wait_lock	=	__RAW_SPIN_LOCK_UNLOCKED(name.wait_lock)		\

									__RWSEM_OPT_INIT(name)																																\

									__RWSEM_DEP_MAP_INIT(name)

}

and	expands	to	the	initialization	of	fields	of		rw_semaphore		structure.	First	of	all	we	initialize		count		field	of	the		rw_semaphore	
structure	to	the		unlocked		state	with		RWSEM_UNLOCKED_VALUE		macro	from	the	arch/x86/include/asm/rwsem.h	architecture	specific
header	file:

#define	RWSEM_UNLOCKED_VALUE												0x00000000L

After	this	we	initialize	list	of	a	lock	waiters	with	the	empty	linked	list	and	spinlock	for	protection	of	this	list	with	the		unlocked		state
too.	The		__RWSEM_OPT_INIT		macro	depends	on	the	state	of	the		CONFIG_RWSEM_SPIN_ON_OWNER		kernel	configuration	option	and	if	this
option	is	enabled	it	expands	to	the	initialization	of	the		osq		and		owner		fields	of	the		rw_semaphore		structure.	As	we	already	saw
above,	the		CONFIG_RWSEM_SPIN_ON_OWNER		kernel	configuration	option	is	enabled	by	default	for	x86_64	architecture,	so	let's	take	a	look
at	the	definition	of	the		__RWSEM_OPT_INIT		macro:

#ifdef	CONFIG_RWSEM_SPIN_ON_OWNER

				#define	__RWSEM_OPT_INIT(lockname)	,	.osq	=	OSQ_LOCK_UNLOCKED,	.owner	=	NULL

#else

				#define	__RWSEM_OPT_INIT(lockname)

#endif

As	we	may	see,	the		__RWSEM_OPT_INIT		macro	initializes	the	MCS	lock	lock	with		unlocked		state	and	initial		owner		of	a	lock	with
	NULL	.	From	this	moment,	a		rw_semaphore		structure	will	be	initialized	in	a	compile	time	and	may	be	used	for	data	protection.

The	second	way	to	initialize	a		rw_semaphore		structure	is		dynamically		or	use	the		init_rwsem		macro	from	the
include/linux/rwsem.h	header	file.	This	macro	declares	an	instance	of	the		lock_class_key		which	is	related	to	the	lock	validator	of	the
Linux	kernel	and	to	the	call	of	the		__init_rwsem		function	with	the	given		reader/writer	semaphore	:

#define	init_rwsem(sem)																									\

do	{																																																												\

								static	struct	lock_class_key	__key;																					\

																																																																\

								__init_rwsem((sem),	#sem,	&__key);																						\

}	while	(0)

If	you	will	start	definition	of	the		__init_rwsem		function,	you	will	notice	that	there	are	couple	of	source	code	files	which	contain	it.	As
you	may	guess,	sometimes	we	need	to	initialize	additional	fields	of	the		rw_semaphore		structure,	like	the		osq		and		owner	.	But
sometimes	not.	All	of	this	depends	on	some	kernel	configuration	options.	If	we	will	look	at	the	kernel/locking/Makefile	makefile,	we
will	see	following	lines:

obj-$(CONFIG_RWSEM_GENERIC_SPINLOCK)	+=	rwsem-spinlock.o

obj-$(CONFIG_RWSEM_XCHGADD_ALGORITHM)	+=	rwsem-xadd.o

/

351

https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/X86-64
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/kernel/locking/Makefile


As	we	already	know,	the	Linux	kernel	for		x86_64		architecture	has	enabled		CONFIG_RWSEM_XCHGADD_ALGORITHM		kernel	configuration
option	by	default:

config	RWSEM_XCHGADD_ALGORITHM

				def_bool	64BIT

in	the	arch/x86/um/Kconfig	kernel	configuration	file.	In	this	case,	implementation	of	the		__init_rwsem		function	will	be	located	in	the
kernel/locking/rwsem-xadd.c	source	code	file	for	us.	Let's	take	a	look	at	this	function:

void	__init_rwsem(struct	rw_semaphore	*sem,	const	char	*name,

																				struct	lock_class_key	*key)

{

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

								debug_check_no_locks_freed((void	*)sem,	sizeof(*sem));

								lockdep_init_map(&sem->dep_map,	name,	key,	0);

#endif

								sem->count	=	RWSEM_UNLOCKED_VALUE;

								raw_spin_lock_init(&sem->wait_lock);

								INIT_LIST_HEAD(&sem->wait_list);

#ifdef	CONFIG_RWSEM_SPIN_ON_OWNER

								sem->owner	=	NULL;

								osq_lock_init(&sem->osq);

#endif

}

We	may	see	here	almost	the	same	as	in		__RWSEM_INITIALIZER		macro	with	difference	that	all	of	this	will	be	executed	in	runtime.

So,	from	now	we	are	able	to	initialize	a		reader/writer	semaphore		let's	look	at	the		lock		and		unlock		API.	The	Linux	kernel
provides	following	primary	API	to	manipulate		reader/writer	semaphores	:

	void	down_read(struct	rw_semaphore	*sem)		-	lock	for	reading;
	int	down_read_trylock(struct	rw_semaphore	*sem)		-	try	lock	for	reading;
	void	down_write(struct	rw_semaphore	*sem)		-	lock	for	writing;
	int	down_write_trylock(struct	rw_semaphore	*sem)		-	try	lock	for	writing;
	void	up_read(struct	rw_semaphore	*sem)		-	release	a	read	lock;
	void	up_write(struct	rw_semaphore	*sem)		-	release	a	write	lock;

Let's	start	as	always	from	the	locking.	First	of	all	let's	consider	implementation	of	the		down_write		function	which	executes	a	try	of
acquiring	of	a	lock	for		write	.	This	function	is	kernel/locking/rwsem.c	source	code	file	and	starts	from	the	call	of	the	macro	from	the
include/linux/kernel.h	header	file:

void	__sched	down_write(struct	rw_semaphore	*sem)

{

								might_sleep();

								rwsem_acquire(&sem->dep_map,	0,	0,	_RET_IP_);

								LOCK_CONTENDED(sem,	__down_write_trylock,	__down_write);

								rwsem_set_owner(sem);

}

We	already	met	the		might_sleep		macro	in	the	previous	part.	In	short	words,	Implementation	of	the		might_sleep		macro	depends	on
the		CONFIG_DEBUG_ATOMIC_SLEEP		kernel	configuration	option	and	if	this	option	is	enabled,	this	macro	just	prints	a	stack	trace	if	it	was
executed	in	atomic	context.	As	this	macro	is	mostly	for	debugging	purpose	we	will	skip	it	and	will	go	ahead.	Additionally	we	will	skip
the	next	macro	from	the		down_read		function	-		rwsem_acquire		which	is	related	to	the	lock	validator	of	the	Linux	kernel,	because	this
is	topic	of	other	part.

The	only	two	things	that	remained	in	the		down_write		function	is	the	call	of	the		LOCK_CONTENDED		macro	which	is	defined	in	the
include/linux/lockdep.h	header	file	and	setting	of	owner	of	a	lock	with	the		rwsem_set_owner		function	which	sets	owner	to	currently
running	process:

/

352

https://github.com/torvalds/linux/blob/master/arch/x86/um/Kconfig
https://github.com/torvalds/linux/blob/master/locking/rwsem-xadd.c
https://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/rwsem.c
https://github.com/torvalds/linux/blob/master/include/linux/kernel.h
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
https://en.wikipedia.org/wiki/Linearizability
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/lockdep.h


static	inline	void	rwsem_set_owner(struct	rw_semaphore	*sem)

{

								sem->owner	=	current;

}

As	you	already	may	guess,	the		LOCK_CONTENDED		macro	does	all	job	for	us.	Let's	look	at	the	implementation	of	the		LOCK_CONTENDED	
macro:

#define	LOCK_CONTENDED(_lock,	try,	lock)	\

								lock(_lock)

As	we	may	see	it	just	calls	the		lock		function	which	is	third	parameter	of	the		LOCK_CONTENDED		macro	with	the	given		rw_semaphore	.
In	our	case	the	third	parameter	of	the		LOCK_CONTENDED		macro	is	the		__down_write		function	which	is	architecture	specific	function
and	located	in	the	arch/x86/include/asm/rwsem.h	header	file.	Let's	look	at	the	implementation	of	the		__down_write		function:

static	inline	void	__down_write(struct	rw_semaphore	*sem)

{

								__down_write_nested(sem,	0);

}

which	just	executes	a	call	of	the		__down_write_nested		function	from	the	same	source	code	file.	Let's	take	a	look	at	the	implementation
of	the		__down_write_nested		function:

static	inline	void	__down_write_nested(struct	rw_semaphore	*sem,	int	subclass)

{

								long	tmp;

								asm	volatile("#	beginning	down_write\n\t"

																					LOCK_PREFIX	"		xadd						%1,(%2)\n\t"

																					"		test	"	__ASM_SEL(%w1,%k1)	","	__ASM_SEL(%w1,%k1)	"\n\t"

																					"		jz								1f\n"

																					"		call	call_rwsem_down_write_failed\n"

																					"1:\n"

																					"#	ending	down_write"

																					:	"+m"	(sem->count),	"=d"	(tmp)

																					:	"a"	(sem),	"1"	(RWSEM_ACTIVE_WRITE_BIAS)

																					:	"memory",	"cc");

}

As	for	other	synchronization	primitives	which	we	saw	in	this	chapter,	usually		lock/unlock		functions	consists	only	from	an	inline
assembly	statement.	As	we	may	see,	in	our	case	the	same	for		__down_write_nested		function.	Let's	try	to	understand	what	does	this
function	do.	The	first	line	of	our	assembly	statement	is	just	a	comment,	let's	skip	it.	The	second	like	contains		LOCK_PREFIX		which	will
be	expanded	to	the	LOCK	instruction	as	we	already	know.	The	next	xadd	instruction	executes		add		and		exchange		operations.	In	other
words,		xadd		instruction	adds	value	of	the		RWSEM_ACTIVE_WRITE_BIAS	:

#define	RWSEM_ACTIVE_WRITE_BIAS									(RWSEM_WAITING_BIAS	+	RWSEM_ACTIVE_BIAS)

#define	RWSEM_WAITING_BIAS														(-RWSEM_ACTIVE_MASK-1)

#define	RWSEM_ACTIVE_BIAS															0x00000001L

or		0xffffffff00000001		to	the		count		of	the	given		reader/writer	semaphore		and	returns	previous	value	of	it.	After	this	we	check
the	active	mask	in	the		rw_semaphore->count	.	If	it	was	zero	before,	this	means	that	there	were	no-one	writer	before,	so	we	acquired	a
lock.	In	other	way	we	call	the		call_rwsem_down_write_failed		function	from	the	arch/x86/lib/rwsem.S	assembly	file.	The	the
	call_rwsem_down_write_failed		function	just	calls	the		rwsem_down_write_failed		function	from	the	kernel/locking/rwsem-xadd.c
source	code	file	anticipatorily	save	general	purpose	registers:

ENTRY(call_rwsem_down_write_failed)

				FRAME_BEGIN

				save_common_regs

/

353

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://github.com/torvalds/linux/blob/master/arch/x86/lib/rwsem.S
https://github.com/torvalds/linux/blob/master/locking/rwsem-xadd.c


				movq	%rax,%rdi

				call	rwsem_down_write_failed

				restore_common_regs

				FRAME_END

				ret

				ENDPROC(call_rwsem_down_write_failed)

The		rwsem_down_write_failed		function	starts	from	the	atomic	update	of	the		count		value:

	__visible

struct	rw_semaphore	__sched	*rwsem_down_write_failed(struct	rw_semaphore	*sem)

{

				count	=	rwsem_atomic_update(-RWSEM_ACTIVE_WRITE_BIAS,	sem);

				...

				...

				...

}

with	the		-RWSEM_ACTIVE_WRITE_BIAS		value.	The		rwsem_atomic_update		function	is	defined	in	the	arch/x86/include/asm/rwsem.h
header	file	and	implement	exchange	and	add	logic:

static	inline	long	rwsem_atomic_update(long	delta,	struct	rw_semaphore	*sem)

{

								return	delta	+	xadd(&sem->count,	delta);

}

This	function	atomically	adds	the	given	delta	to	the		count		and	returns	old	value	of	the	count.	After	this	it	just	returns	sum	of	the	given
	delta		and	old	value	of	the		count		field.	In	our	case	we	undo	write	bias	from	the		count		as	we	didn't	acquire	a	lock.	After	this	step
we	try	to	do		optimistic	spinning		by	the	call	of	the		rwsem_optimistic_spin		function:

if	(rwsem_optimistic_spin(sem))

						return	sem;

We	will	skip	implementation	of	the		rwsem_optimistic_spin		function,	as	it	is	similar	on	the		mutex_optimistic_spin		function	which
we	saw	in	the	previous	part.	In	short	words	we	check	existence	other	tasks	ready	to	run	that	have	higher	priority	in	the
	rwsem_optimistic_spin		function.	If	there	are	such	tasks,	the	process	will	be	added	to	the	MCS		waitqueue		and	start	to	spin	in	the
loop	until	a	lock	will	be	able	to	be	acquired.	If		optimistic	spinning		is	disabled,	a	process	will	be	added	to	the	and	marked	as	waiting
for	write:

waiter.task	=	current;

waiter.type	=	RWSEM_WAITING_FOR_WRITE;

if	(list_empty(&sem->wait_list))

				waiting	=	false;

list_add_tail(&waiter.list,	&sem->wait_list);

waiters	list	and	start	to	wait	until	it	will	successfully	acquire	the	lock.	After	we	have	added	a	process	to	the	waiters	list	which	was	empty
before	this	moment,	we	update	the	value	of	the		rw_semaphore->count		with	the		RWSEM_WAITING_BIAS	:

count	=	rwsem_atomic_update(RWSEM_WAITING_BIAS,	sem);

with	this	we	mark		rw_semaphore->counter		that	it	is	already	locked	and	exists/waits	one		writer		which	wants	to	acquire	the	lock.	In
other	way	we	try	to	wake		reader		processes	from	the		wait	queue		that	were	queued	before	this		writer		process	and	there	are	no
active	readers.	In	the	end	of	the		rwsem_down_write_failed		a		writer		process	will	go	to	sleep	which	didn't	acquire	a	lock	in	the
following	loop:

while	(true)	{

				if	(rwsem_try_write_lock(count,	sem))

/

354

https://en.wikipedia.org/wiki/Linearizability
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf


								break;

				raw_spin_unlock_irq(&sem->wait_lock);

				do	{

								schedule();

								set_current_state(TASK_UNINTERRUPTIBLE);

				}	while	((count	=	sem->count)	&	RWSEM_ACTIVE_MASK);

				raw_spin_lock_irq(&sem->wait_lock);

}

I	will	skip	explanation	of	this	loop	as	we	already	met	similar	functional	in	the	previous	part.

That's	all.	From	this	moment,	our		writer		process	will	acquire	or	not	acquire	a	lock	depends	on	the	value	of	the		rw_semaphore-
>count		field.	Now	if	we	will	look	at	the	implementation	of	the		down_read		function	which	executes	a	try	of	acquiring	of	a	lock.	We
will	see	similar	actions	which	we	saw	in	the		down_write		function.	This	function	calls	different	debugging	and	lock	validator	related
functions/macros:

void	__sched	down_read(struct	rw_semaphore	*sem)

{

								might_sleep();

								rwsem_acquire_read(&sem->dep_map,	0,	0,	_RET_IP_);

								LOCK_CONTENDED(sem,	__down_read_trylock,	__down_read);

}

and	does	all	job	in	the		__down_read		function.	The		__down_read		consists	of	inline	assembly	statement:

static	inline	void	__down_read(struct	rw_semaphore	*sem)

{

									asm	volatile("#	beginning	down_read\n\t"

																					LOCK_PREFIX	_ASM_INC	"(%1)\n\t"

																					"		jns								1f\n"

																					"		call	call_rwsem_down_read_failed\n"

																					"1:\n\t"

																					"#	ending	down_read\n\t"

																					:	"+m"	(sem->count)

																					:	"a"	(sem)

																					:	"memory",	"cc");

}

which	increments	value	of	the	given		rw_semaphore->count		and	call	the		call_rwsem_down_read_failed		if	this	value	is	negative.	In
other	way	we	jump	at	the	label		1:		and	exit.	After	this		read		lock	will	be	successfully	acquired.	Notice	that	we	check	a	sign	of	the
	count		value	as	it	may	be	negative,	because	as	you	may	remember	most	significant	word	of	the		rw_semaphore->count		contains
negated	number	of	active	writers.

Let's	consider	case	when	a	process	wants	to	acquire	a	lock	for		read		operation,	but	it	is	already	locked.	In	this	case	the
	call_rwsem_down_read_failed		function	from	the	arch/x86/lib/rwsem.S	assembly	file	will	be	called.	If	you	will	look	at	the
implementation	of	this	function,	you	will	notice	that	it	does	the	same	that		call_rwsem_down_read_failed		function	does.	Except	it	calls
the		rwsem_down_read_failed		function	instead	of		rwsem_dow_write_failed	.	Now	let's	consider	implementation	of	the
	rwsem_down_read_failed		function.	It	starts	from	the	adding	a	process	to	the		wait	queue		and	updating	of	value	of	the		rw_semaphore-
>counter	:

long	adjustment	=	-RWSEM_ACTIVE_READ_BIAS;

waiter.task	=	tsk;

waiter.type	=	RWSEM_WAITING_FOR_READ;

if	(list_empty(&sem->wait_list))

				adjustment	+=	RWSEM_WAITING_BIAS;

list_add_tail(&waiter.list,	&sem->wait_list);

count	=	rwsem_atomic_update(adjustment,	sem);

/

355

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
https://en.wikipedia.org/wiki/Word_%28computer_architecture%29
https://github.com/torvalds/linux/blob/master/arch/x86/lib/rwsem.S


Notice	that	if	the		wait	queue		was	empty	before	we	clear	the		rw_semaphore->counter		and	undo		read		bias	in	other	way.	At	the	next
step	we	check	that	there	are	no	active	locks	and	we	are	first	in	the		wait	queue		we	need	to	join	currently	active		reader		processes.	In
other	way	we	go	to	sleep	until	a	lock	will	not	be	able	to	acquired.

That's	all.	Now	we	know	how		reader		and		writer		processes	will	behave	in	different	cases	during	a	lock	acquisition.	Now	let's	take	a
short	look	at		unlock		operations.	The		up_read		and		up_write		functions	allows	us	to	unlock	a		reader		or		writer		lock.	First	of	all
let's	take	a	look	at	the	implementation	of	the		up_write		function	which	is	defined	in	the	kernel/locking/rwsem.c	source	code	file:

void	up_write(struct	rw_semaphore	*sem)

{

								rwsem_release(&sem->dep_map,	1,	_RET_IP_);

								rwsem_clear_owner(sem);

								__up_write(sem);

}

First	of	all	it	calls	the		rwsem_release		macro	which	is	related	to	the	lock	validator	of	the	Linux	kernel,	so	we	will	skip	it	now.	And	at
the	next	line	the		rwsem_clear_owner		function	which	as	you	may	understand	from	the	name	of	this	function,	just	clears	the		owner	
field	of	the	given		rw_semaphore	:

static	inline	void	rwsem_clear_owner(struct	rw_semaphore	*sem)

{

				sem->owner	=	NULL;

}

The		__up_write		function	does	all	job	of	unlocking	of	the	lock.	The		_up_write		is	architecture-specific	function,	so	for	our	case	it	will
be	located	in	the	arch/x86/include/asm/rwsem.h	source	code	file.	If	we	will	take	a	look	at	the	implementation	of	this	function,	we	will
see	that	it	does	almost	the	same	that		__down_write		function,	but	conversely.	Instead	of	adding	of	the		RWSEM_ACTIVE_WRITE_BIAS		to
the		count	,	we	subtract	the	same	value	and	check	the		sign		of	the	previous	value.

If	the	previous	value	of	the		rw_semaphore->count		is	not	negative,	a	writer	process	released	a	lock	and	now	it	may	be	acquired	by
someone	else.	In	other	case,	the		rw_semaphore->count		will	contain	negative	values.	This	means	that	there	is	at	least	one		writer		in	a
wait	queue.	In	this	case	the		call_rwsem_wake		function	will	be	called.	This	function	acts	like	similar	functions	which	we	already	saw
above.	It	store	general	purpose	registers	at	the	stack	for	preserving	and	call	the		rwsem_wake		function.

First	of	all	the		rwsem_wake		function	checks	if	a	spinner	is	present.	In	this	case	it	will	just	acquire	a	lock	which	is	just	released	by	lock
owner.	In	other	case	there	must	be	someone	in	the		wait	queue		and	we	need	to	wake	or	writer	process	if	it	exists	at	the	top	of	the		wait
queue		or	all		reader		processes.	The		up_read		function	which	release	a		reader		lock	acts	in	similar	way	like		up_write	,	but	with	a
little	difference.	Instead	of	subtracting	of		RWSEM_ACTIVE_WRITE_BIAS		from	the		rw_semaphore->count	,	it	subtracts		1		from	it,	because
less	significant	word	of	the		count		contains	number	active	locks.	After	this	it	checks		sign		of	the		count		and	calls	the		rwsem_wake	
like		__up_write		if	the		count		is	negative	or	in	other	way	lock	will	be	successfully	released.

That's	all.	We	have	considered	API	for	manipulation	with		reader/writer	semaphore	:		up_read/up_write		and
	down_read/down_write	.	We	saw	that	the	Linux	kernel	provides	additional	API,	besides	this	functions,	like	the		,		and	etc.	But	I	will
not	consider	implementation	of	these	function	in	this	part	because	it	must	be	similar	on	that	we	have	seen	in	this	part	of	except	few
subtleties.

Conclusion

This	is	the	end	of	the	fifth	part	of	the	synchronization	primitives	chapter	in	the	Linux	kernel.	In	this	part	we	met	with	special	type	of
	semaphore		-		readers/writer		semaphore	which	provides	access	to	data	for	multiply	process	to	read	or	for	one	process	to	writer.	In
the	next	part	we	will	continue	to	dive	into	synchronization	primitives	in	the	Linux	kernel.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

/

356

https://github.com/torvalds/linux/blob/master/kernel/locking/rwsem.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides


Links

Synchronization	primitives
Readers/Writer	lock
Spinlocks
Semaphore
Mutex
x86_64	architecture
Doubly	linked	list
MCS	lock
API
Linux	kernel	lock	validator
Atomic	operations
Inline	assembly
XADD	instruction
LOCK	instruction
Previous	part

/

357

https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/X86-64
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Application_programming_interface
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_327.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html


Synchronization	primitives	in	the	Linux	kernel.	Part	6.

Introduction

This	is	the	sixth	part	of	the	chapter	which	describes	synchronization	primitives)	in	the	Linux	kernel	and	in	the	previous	parts	we
finished	to	consider	different	readers-writer	lock	synchronization	primitives.	We	will	continue	to	learn	synchronization	primitives	in	this
part	and	start	to	consider	a	similar	synchronization	primitive	which	can	be	used	to	avoid	the		writer	starvation		problem.	The	name
of	this	synchronization	primitive	is	-		seqlock		or		sequential	locks	.

We	know	from	the	previous	part	that	readers-writer	lock	is	a	special	lock	mechanism	which	allows	concurrent	access	for	read-only
operations,	but	an	exclusive	lock	is	needed	for	writing	or	modifying	data.	As	we	may	guess,	it	may	lead	to	a	problem	which	is	called
	writer	starvation	.	In	other	words,	a	writer	process	can't	acquire	a	lock	as	long	as	at	least	one	reader	process	which	aqcuired	a	lock
holds	it.	So,	in	the	situation	when	contention	is	high,	it	will	lead	to	situation	when	a	writer	process	which	wants	to	acquire	a	lock	will
wait	for	it	for	a	long	time.

The		seqlock		synchronization	primitive	can	help	solve	this	problem.

As	in	all	previous	parts	of	this	book,	we	will	try	to	consider	this	synchronization	primitive	from	the	theoretical	side	and	only	than	we
will	consider	API	provided	by	the	Linux	kernel	to	manipulate	with		seqlocks	.

So,	let's	start.

Sequential	lock
So,	what	is	a		seqlock		synchronization	primitive	and	how	does	it	work?	Let's	try	to	answer	on	these	questions	in	this	paragraph.
Actually		sequential	locks		were	introduced	in	the	Linux	kernel	2.6.x.	Main	point	of	this	synchronization	primitive	is	to	provide	fast
and	lock-free	access	to	shared	resources.	Since	the	heart	of		sequential	lock		synchronization	primitive	is	spinlock	synchronization
primitive,		sequential	locks		work	in	situations	where	the	protected	resources	are	small	and	simple.	Additionally	write	access	must	be
rare	and	also	should	be	fast.

Work	of	this	synchronization	primitive	is	based	on	the	sequence	of	events	counter.	Actually	a		sequential	lock		allows	free	access	to	a
resource	for	readers,	but	each	reader	must	check	existence	of	conflicts	with	a	writer.	This	synchronization	primitive	introduces	a	special
counter.	The	main	algorithm	of	work	of		sequential	locks		is	simple:	Each	writer	which	acquired	a	sequential	lock	increments	this
counter	and	additionally	acquires	a	spinlock.	When	this	writer	finishes,	it	will	release	the	acquired	spinlock	to	give	access	to	other
writers	and	increment	the	counter	of	a	sequential	lock	again.

Read	only	access	works	on	the	following	principle,	it	gets	the	value	of	a		sequential	lock		counter	before	it	will	enter	into	critical
section	and	compares	it	with	the	value	of	the	same		sequential	lock		counter	at	the	exit	of	critical	section.	If	their	values	are	equal,	this
means	that	there	weren't	writers	for	this	period.	If	their	values	are	not	equal,	this	means	that	a	writer	has	incremented	the	counter	during
the	critical	section.	This	conflict	means	that	reading	of	protected	data	must	be	repeated.

That's	all.	As	we	may	see	principle	of	work	of		sequential	locks		is	simple.

unsigned	int	seq_counter_value;

do	{

				seq_counter_value	=	get_seq_counter_val(&the_lock);

				//

				//	do	as	we	want	here

				//

}	while	(__retry__);

Actually	the	Linux	kernel	does	not	provide		get_seq_counter_val()		function.	Here	it	is	just	a	stub.	Like	a		__retry__		too.	As	I
already	wrote	above,	we	will	see	actual	the	API	for	this	in	the	next	paragraph	of	this	part.

358

https://en.wikipedia.org/wiki/Synchronization_(computer_science
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Application_programming_interface


Ok,	now	we	know	what	a		seqlock		synchronization	primitive	is	and	how	it	is	represented	in	the	Linux	kernel.	In	this	case,	we	may	go
ahead	and	start	to	look	at	the	API	which	the	Linux	kernel	provides	for	manipulation	of	synchronization	primitives	of	this	type.

Sequential	lock	API

So,	now	we	know	a	little	about		sequentional	lock		synchronization	primitive	from	theoretical	side,	let's	look	at	its	implementation	in
the	Linux	kernel.	All		sequentional	locks		API	are	located	in	the	include/linux/seqlock.h	header	file.

First	of	all	we	may	see	that	the	a		sequential	lock		machanism	is	represented	by	the	following	type:

typedef	struct	{

				struct	seqcount	seqcount;

				spinlock_t	lock;

}	seqlock_t;

As	we	may	see	the		seqlock_t		provides	two	fields.	These	fields	represent	a	sequential	lock	counter,	description	of	which	we	saw	above
and	also	a	spinlock	which	will	protect	data	from	other	writers.	Note	that	the		seqcount		counter	represented	as		seqcount		type.	The
	seqcount		is	structure:

typedef	struct	seqcount	{

				unsigned	sequence;

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

				struct	lockdep_map	dep_map;

#endif

}	seqcount_t;

which	holds	counter	of	a	sequential	lock	and	lock	validator	related	field.

As	always	in	previous	parts	of	this	chapter,	before	we	will	consider	an	API	of		sequential	lock		mechanism	in	the	Linux	kernel,	we
need	to	know	how	to	initialize	an	instance	of		seqlock_t	.

We	saw	in	the	previous	parts	that	often	the	Linux	kernel	provides	two	approaches	to	execute	initialization	of	the	given	synchronization
primitive.	The	same	situation	with	the		seqlock_t		structure.	These	approaches	allows	to	initialize	a		seqlock_t		in	two	following:

	statically	;
	dynamically	.

ways.	Let's	look	at	the	first	approach.	We	are	able	to	intialize	a		seqlock_t		statically	with	the		DEFINE_SEQLOCK		macro:

#define	DEFINE_SEQLOCK(x)	\

								seqlock_t	x	=	__SEQLOCK_UNLOCKED(x)

which	is	defined	in	the	include/linux/seqlock.h	header	file.	As	we	may	see,	the		DEFINE_SEQLOCK		macro	takes	one	argument	and
expands	to	the	definition	and	initialization	of	the		seqlock_t		structure.	Initialization	occurs	with	the	help	of	the		__SEQLOCK_UNLOCKED	
macro	which	is	defined	in	the	same	source	code	file.	Let's	look	at	the	implementation	of	this	macro:

#define	__SEQLOCK_UNLOCKED(lockname)												\

				{																								\

								.seqcount	=	SEQCNT_ZERO(lockname),				\

								.lock	=				__SPIN_LOCK_UNLOCKED(lockname)				\

				}

As	we	may	see	the,		__SEQLOCK_UNLOCKED		macro	executes	initialization	of	fields	of	the	given		seqlock_t		structure.	The	first	field	is
	seqcount		initialized	with	the		SEQCNT_ZERO		macro	which	expands	to	the:

#define	SEQCNT_ZERO(lockname)	{	.sequence	=	0,	SEQCOUNT_DEP_MAP_INIT(lockname)}

359

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h


So	we	just	initialize	counter	of	the	given	sequential	lock	to	zero	and	additionally	we	can	see	lock	validator	related	initialization	which
depends	on	the	state	of	the		CONFIG_DEBUG_LOCK_ALLOC		kernel	configuration	option:

#ifdef	CONFIG_DEBUG_LOCK_ALLOC

#	define	SEQCOUNT_DEP_MAP_INIT(lockname)	\

				.dep_map	=	{	.name	=	#lockname	}	\

				...

				...

				...

#else

#	define	SEQCOUNT_DEP_MAP_INIT(lockname)

				...

				...

				...

#endif

As	I	already	wrote	in	previous	parts	of	this	chapter	we	will	not	consider	debugging	and	lock	validator	related	stuff	in	this	part.	So	for
now	we	just	skip	the		SEQCOUNT_DEP_MAP_INIT		macro.	The	second	field	of	the	given		seqlock_t		is		lock		initialized	with	the
	__SPIN_LOCK_UNLOCKED		macro	which	is	defined	in	the	include/linux/spinlock_types.h	header	file.	We	will	not	consider	implementation
of	this	macro	here	as	it	just	initialize	rawspinlock	with	architecture-specific	methods	(More	abot	spinlocks	you	may	read	in	first	parts	of
this	chapter).

We	have	considered	the	first	way	to	initialize	a	sequential	lock.	Let's	consider	second	way	to	do	the	same,	but	do	it	dynamically.	We	can
initialize	a	sequentional	lock	with	the		seqlock_init		macro	which	is	defined	in	the	same	include/linux/seqlock.h	header	file.

Let's	look	at	the	implementation	of	this	macro:

#define	seqlock_init(x)																				\

				do	{																								\

								seqcount_init(&(x)->seqcount);								\

								spin_lock_init(&(x)->lock);								\

				}	while	(0)

As	we	may	see,	the		seqlock_init		expands	into	two	macros.	The	first	macro		seqcount_init		takes	counter	of	the	given	sequential
lock	and	expands	to	the	call	of	the		__seqcount_init		function:

#	define	seqcount_init(s)																\

				do	{																								\

								static	struct	lock_class_key	__key;				\

								__seqcount_init((s),	#s,	&__key);				\

				}	while	(0)

from	the	same	header	file.	This	function

static	inline	void	__seqcount_init(seqcount_t	*s,	const	char	*name,

																						struct	lock_class_key	*key)

{

				lockdep_init_map(&s->dep_map,	name,	key,	0);

				s->sequence	=	0;

}

just	initializes	counter	of	the	given		seqcount_t		with	zero.	The	second	call	from	the		seqlock_init		macro	is	the	call	of	the
	spin_lock_init		macro	which	we	saw	in	the	first	part	of	this	chapter.

So,	now	we	know	how	to	initialize	a		sequential	lock	,	now	let's	look	at	how	to	use	it.	The	Linux	kernel	provides	following	API	to
manipulate		sequential	locks	:

static	inline	unsigned	read_seqbegin(const	seqlock_t	*sl);

static	inline	unsigned	read_seqretry(const	seqlock_t	*sl,	unsigned	start);

static	inline	void	write_seqlock(seqlock_t	*sl);

static	inline	void	write_sequnlock(seqlock_t	*sl);

static	inline	void	write_seqlock_irq(seqlock_t	*sl);

360

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Debugging
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/spinlock_types.h
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://en.wikipedia.org/wiki/Application_programming_interface


static	inline	void	write_sequnlock_irq(seqlock_t	*sl);

static	inline	void	read_seqlock_excl(seqlock_t	*sl)

static	inline	void	read_sequnlock_excl(seqlock_t	*sl)

and	others.	Before	we	move	on	to	considering	the	implementation	of	this	API,	we	must	know	that	actually	there	are	two	types	of
readers.	The	first	type	of	reader	never	blocks	a	writer	process.	In	this	case	writer	will	not	wait	for	readers.	The	second	type	of	reader
which	can	lock.	In	this	case,	the	locking	reader	will	block	the	writer	as	it	will	wait	while	reader	will	not	release	its	lock.

First	of	all	let's	consider	the	first	type	of	readers.	The		read_seqbegin		function	begins	a	seq-read	critical	section.

As	we	may	see	this	function	just	returns	value	of	the		read_seqcount_begin		function:

static	inline	unsigned	read_seqbegin(const	seqlock_t	*sl)

{

				return	read_seqcount_begin(&sl->seqcount);

}

In	its	turn	the		read_seqcount_begin		function	calls	the		raw_read_seqcount_begin		function:

static	inline	unsigned	read_seqcount_begin(const	seqcount_t	*s)

{

				return	raw_read_seqcount_begin(s);

}

which	just	returns	value	of	the		sequential	lock		counter:

static	inline	unsigned	raw_read_seqcount(const	seqcount_t	*s)

{

				unsigned	ret	=	READ_ONCE(s->sequence);

				smp_rmb();

				return	ret;

}

After	we	have	the	initial	value	of	the	given		sequential	lock		counter	and	did	some	stuff,	we	know	from	the	previous	paragraph	of	this
function,	that	we	need	to	compare	it	with	the	current	value	of	the	counter	the	same		sequential	lock		before	we	will	exit	from	the
critical	section.	We	can	achieve	this	by	the	call	of	the		read_seqretry		function.	This	function	takes	a		sequential	lock	,	start	value	of
the	counter	and	through	a	chain	of	functions:

static	inline	unsigned	read_seqretry(const	seqlock_t	*sl,	unsigned	start)

{

				return	read_seqcount_retry(&sl->seqcount,	start);

}

static	inline	int	read_seqcount_retry(const	seqcount_t	*s,	unsigned	start)

{

				smp_rmb();

				return	__read_seqcount_retry(s,	start);

}

it	calls	the		__read_seqcount_retry		function:

static	inline	int	__read_seqcount_retry(const	seqcount_t	*s,	unsigned	start)

{

				return	unlikely(s->sequence	!=	start);

}

which	just	compares	value	of	the	counter	of	the	given		sequential	lock		with	the	initial	value	of	this	counter.	If	the	initial	value	of	the
counter	which	is	obtained	from		read_seqbegin()		function	is	odd,	this	means	that	a	writer	was	in	the	middle	of	updating	the	data	when
our	reader	began	to	act.	In	this	case	the	value	of	the	data	can	be	in	inconsistent	state,	so	we	need	to	try	to	read	it	again.

361

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Critical_section


This	is	a	common	pattern	in	the	Linux	kernel.	For	example,	you	may	remember	the		jiffies		concept	from	the	first	part	of	the	timers
and	time	management	in	the	Linux	kernel	chapter.	The	sequential	lock	is	used	to	obtain	value	of		jiffies		at	x86_64	architecture:

u64	get_jiffies_64(void)

{

				unsigned	long	seq;

				u64	ret;

				do	{

								seq	=	read_seqbegin(&jiffies_lock);

								ret	=	jiffies_64;

				}	while	(read_seqretry(&jiffies_lock,	seq));

				return	ret;

}

Here	we	just	read	the	value	of	the	counter	of	the		jiffies_lock		sequential	lock	and	then	we	write	value	of	the		jiffies_64		system
variable	to	the		ret	.	As	here	we	may	see		do/while		loop,	the	body	of	the	loop	will	be	executed	at	least	one	time.	So,	as	the	body	of
loop	was	executed,	we	read	and	compare	the	current	value	of	the	counter	of	the		jiffies_lock		with	the	initial	value.	If	these	values	are
not	equal,	execution	of	the	loop	will	be	repeated,	else		get_jiffies_64		will	return	its	value	in		ret	.

We	just	saw	the	first	type	of	readers	which	do	not	block	writer	and	other	readers.	Let's	consider	second	type.	It	does	not	update	value	of
a		sequential	lock		counter,	but	just	locks		spinlock	:

static	inline	void	read_seqlock_excl(seqlock_t	*sl)

{

				spin_lock(&sl->lock);

}

So,	no	one	reader	or	writer	can't	access	protected	data.	When	a	reader	finishes,	the	lock	must	be	unlocked	with	the:

static	inline	void	read_sequnlock_excl(seqlock_t	*sl)

{

				spin_unlock(&sl->lock);

}

function.

Now	we	know	how		sequential	lock		work	for	readers.	Let's	consider	how	does	writer	act	when	it	wants	to	acquire	a		sequential
lock		to	modify	data.	To	acquire	a		sequential	lock	,	writer	should	use		write_seqlock		function.	If	we	look	at	the	implementation	of
this	function:

static	inline	void	write_seqlock(seqlock_t	*sl)

{

				spin_lock(&sl->lock);

				write_seqcount_begin(&sl->seqcount);

}

We	will	see	that	it	acquires		spinlock		to	prevent	access	from	other	writers	and	calls	the		write_seqcount_begin		function.	This
function	just	increments	value	of	the		sequential	lock		counter:

static	inline	void	raw_write_seqcount_begin(seqcount_t	*s)

{

				s->sequence++;

				smp_wmb();

}

When	a	writer	process	will	finish	to	modify	data,	the		write_sequnlock		function	must	be	called	to	release	a	lock	and	give	access	to
other	writers	or	readers.	Let's	consider	at	the	implementation	of	the		write_sequnlock		function.	It	looks	pretty	simple:

static	inline	void	write_sequnlock(seqlock_t	*sl)

362

https://en.wikipedia.org/wiki/X86-64


{

				write_seqcount_end(&sl->seqcount);

				spin_unlock(&sl->lock);

}

First	of	all	it	just	calls		write_seqcount_end		function	to	increase	value	of	the	counter	of	the		sequential		lock	again:

static	inline	void	raw_write_seqcount_end(seqcount_t	*s)

{

				smp_wmb();

				s->sequence++;

}

and	in	the	end	we	just	call	the		spin_unlock		macro	to	give	access	for	other	readers	or	writers.

That's	all	about		sequential	lock		mechanism	in	the	Linux	kernel.	Of	course	we	did	not	consider	full	API	of	this	mechanism	in	this
part.	But	all	other	functions	are	based	on	these	which	we	described	here.	For	example,	Linux	kernel	also	provides	some	safe
macros/functions	to	use		sequential	lock		mechanism	in	interrupt	handlers	of	softirq:		write_seqclock_irq		and
	write_sequnlock_irq	:

static	inline	void	write_seqlock_irq(seqlock_t	*sl)

{

				spin_lock_irq(&sl->lock);

				write_seqcount_begin(&sl->seqcount);

}

static	inline	void	write_sequnlock_irq(seqlock_t	*sl)

{

				write_seqcount_end(&sl->seqcount);

				spin_unlock_irq(&sl->lock);

}

As	we	may	see,	these	functions	differ	only	in	the	initialization	of	spinlock.	They	call		spin_lock_irq		and		spin_unlock_irq		instead	of
	spin_lock		and		spin_unlock	.

Or	for	example		write_seqlock_irqsave		and		write_sequnlock_irqrestore		functions	which	are	the	same	but	used
	spin_lock_irqsave		and		spin_unlock_irqsave		macro	to	use	in	IRQ)	handlers.

That's	all.

Conclusion

This	is	the	end	of	the	sixth	part	of	the	synchronization	primitives	chapter	in	the	Linux	kernel.	In	this	part	we	met	with	new
synchronization	primitive	which	is	called	-		sequential	lock	.	From	the	theoretical	side,	this	synchronization	primitive	very	similar	on
a	readers-writer	lock	synchronization	primitive,	but	allows	to	avoid		writer-starving		issue.

If	you	have	questions	or	suggestions,	feel	free	to	ping	me	in	twitter	0xAX,	drop	me	email	or	just	create	issue.

Please	note	that	English	is	not	my	first	language	and	I	am	really	sorry	for	any	inconvenience.	If	you	found	any	mistakes	please
send	me	PR	to	linux-insides.

Links
synchronization	primitives)
readers-writer	lock
spinlock
critical	section
lock	validator

363

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Synchronization_(computer_science
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Critical_section
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt


debugging
API
x86_64
Timers	and	time	management	in	the	Linux	kernel
interrupt	handlers
softirq
IRQ)
Previous	part

364

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture


Linux	
	Linux		Linux	

	-		 	memblock		
	ioremap 	-		 	ioremap		
kmemcheck	-		 	kmemcheck		

365



.	.

() 	 	start_kernel		 	start_kernel			 	init		()	 	start_kernel			API	
	 	memblock		

	 			 Yinghai	Lu		 	memblock			x86_64		

	 	memblock			 include/linux/memblock.h	

	 	memblock	

struct	memblock	{

									bool	bottom_up;

									phys_addr_t	current_limit;

									struct	memblock_type	memory;			-->	array	of	memblock_region

									struct	memblock_type	reserved;	-->	array	of	memblock_region

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

									struct	memblock_type	physmem;

#endif

};

	 	bottom_up			 	true			 	current_limit		(	 	CONFIG_HAVE_MEMBLOCK_PHYS_MAP		)-
	memblock_type		

struct	memblock_type	{

				unsigned	long	cnt;

				unsigned	long	max;

				phys_addr_t	total_size;

				struct	memblock_region	*regions;

};

	 	memblock_region		 	memblock_region		

struct	memblock_region	{

								phys_addr_t	base;

								phys_addr_t	size;

								unsigned	long	flags;

#ifdef	CONFIG_HAVE_MEMBLOCK_NODE_MAP

								int	nid;

#endif

};

	memblock_region		 	flags		

#define	MEMBLOCK_ALLOC_ANYWHERE				(~(phys_addr_t)0)

#define	MEMBLOCK_ALLOC_ACCESSIBLE				0

#define	MEMBLOCK_HOTPLUG				0x1

	 	CONFIG_HAVE_MEMBLOCK_NODE_MAP			 	memblock_region			-	 numa	

+---------------------------+			+---------------------------+

366

https://lkml.org/lkml/2010/7/13/68
https://github.com/torvalds/linux/blob/master/include/linux/memblock.h
http://en.wikipedia.org/wiki/Non-uniform_memory_access


|									memblock										|			|																											|

|		_______________________		|			|																											|

|	|								memory									|	|			|							Array	of	the								|

|	|						memblock_type				|-|-->|						membock_region							|

|	|_______________________|	|			|																											|

|																											|			+---------------------------+

|		_______________________		|			+---------------------------+

|	|							reserved								|	|			|																											|

|	|						memblock_type				|-|-->|							Array	of	the								|

|	|_______________________|	|			|						memblock_region						|

|																											|			|																											|

+---------------------------+			+---------------------------+

	 	memblock		 	memblock_type			 	memblock_region			 	Memblock			 	Memblock			

	 	memblock			API		 include/linux/memblock.h	,		 mm/memblock.c		 	memblock		

struct	memblock	memblock	__initdata_memblock	=	{

				.memory.regions								=	memblock_memory_init_regions,

				.memory.cnt												=	1,

				.memory.max												=	INIT_MEMBLOCK_REGIONS,

				.reserved.regions				=	memblock_reserved_init_regions,

				.reserved.cnt								=	1,

				.reserved.max								=	INIT_MEMBLOCK_REGIONS,

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

				.physmem.regions				=	memblock_physmem_init_regions,

				.physmem.cnt								=	1,

				.physmem.max								=	INIT_PHYSMEM_REGIONS,

#endif

				.bottom_up												=	false,

				.current_limit								=	MEMBLOCK_ALLOC_ANYWHERE,

};

	 	memblock			 	__initdata_memblock		

#ifdef	CONFIG_ARCH_DISCARD_MEMBLOCK

				#define	__init_memblock	__meminit

				#define	__initdata_memblock	__meminitdata

#else

				#define	__init_memblock

				#define	__initdata_memblock

#endif

	 	CONFIG_ARCH_DISCARD_MEMBLOCK			 	.init		

	 	memblock_type	memory			 	memblock_type	reserved			 	memblock_type	physmem			 	memblock_type.regions		
	memblock_type			 	memblock_region		

static	struct	memblock_region	memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS]	__initdata_memblock;

static	struct	memblock_region	memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS]	__initdata_memblock;

#ifdef	CONFIG_HAVE_MEMBLOCK_PHYS_MAP

static	struct	memblock_region	memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]	__initdata_memblock;

#endif

	128		 	INIT_MEMBLOCK_REGIONS		

#define	INIT_MEMBLOCK_REGIONS			128

367

https://github.com/torvalds/linux/blob/master/include/linux/memblock.h
https://github.com/torvalds/linux/blob/master/mm/memblock.c


	 	memblock			 	__initdata_memblock		()

	 	bottom_up		

#define	MEMBLOCK_ALLOC_ANYWHERE	(~(phys_addr_t)0)

	 	0xffffffffffffffff	.

On	this	step	the	initialization	of	the		memblock		structure	has	been	finished	and	we	can	look	on	the	Memblock	API.		 	memblock		
	API	

	 	memblock			API		 	memblock			 mm/memblock.c		 	memblock		 	 arch/x86/kernel/e820.c
	 	memblock_x86_fill			 e820		 	memblock_add			 	memblock			 	memblock_add		

	 	memblock		 	memblock_add		

memblock_add_range(&memblock.memory,	base,	size,	MAX_NUMNODES,	0);

	-	 	memory		 	CONFIG_NODES_SHIFT			1	 	1	<<	CONFIG_NODES_SHIFT		memblock_add_range			0	
	 	memblock_type			 	memblock			 	memory_region		( )	 	memblock_type			 	memblock_type		
	memblock		

phys_addr_t	end	=	base	+	memblock_cap_size(base,	&size);

	memblock_cap_size			 	size			 	base	+	size		

static	inline	phys_addr_t	memblock_cap_size(phys_addr_t	base,	phys_addr_t	*size)

{

				return	*size	=	min(*size,	(phys_addr_t)ULLONG_MAX	-	base);

}

	memblock_cap_size			 	ULLONG_MAX	-	base		

	memblock_add_range			 	memblock		

				for	(i	=	0;	i	<	type->cnt;	i++)	{

								struct	memblock_region	*rgn	=	&type->regions[i];

								phys_addr_t	rbase	=	rgn->base;

								phys_addr_t	rend	=	rbase	+	rgn->size;

								if	(rbase	>=	end)

												break;

								if	(rend	<=	base)

												continue;

								...

								...

								...

				}

	 	memblock_double_array		

368

https://github.com/torvalds/linux/blob/master/mm/memblock.c
http://lxr.free-electrons.com/ident?i=memblock
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c#L1061
http://en.wikipedia.org/wiki/E820


while	(type->cnt	+	nr_new	>	type->max)

				if	(memblock_double_array(type,	obase,	size)	<	0)

								return	-ENOMEM;

				insert	=	true;

				goto	repeat;

	memblock_double_array			 	insert			 	true		 	repeat			 	repeat			 	memblock_insert_region		

				if	(base	<	end)	{

								nr_new++;

								if	(insert)

												memblock_insert_region(type,	i,	base,	end	-	base,

																											nid,	flags);

				}

	 	insert			 	true		 	memblock_insert_region		 	memblock_insert_region			 	memblock_type		()

struct	memblock_region	*rgn	=	&type->regions[idx];

	 	memmove		

memmove(rgn	+	1,	rgn,	(type->cnt	-	idx)	*	sizeof(*rgn));

	 	memblock_region			 	memblock_type		 	memblock_add_range			 	memblock_merge_regions		

	 	memblock			 	region1		:

0																				0x1000

+-----------------------+

|																							|

|																							|

|								region1								|

|																							|

|																							|

+-----------------------+

	 	memblock			 	region2		

0x100																	0x2000

+-----------------------+

|																							|

|																							|

|								region2								|

|																							|

|																							|

+-----------------------+

base	=	min(rend,	end);

	 	0x1000		

if	(base	<	end)	{

				nr_new++;

				if	(insert)

								memblock_insert_region(type,	i,	base,	end	-	base,	nid,	flags);

}

369



	 	overlapping	portion		()	 	memblock_merge_regions			 	memblock_type			-	 	type->regions[i]		
	type->regions[i	+	1]	

while	(i	<	type->cnt	-	1)	{

				struct	memblock_region	*this	=	&type->regions[i];

				struct	memblock_region	*next	=	&type->regions[i	+	1];

				if	(this->base	+	this->size	!=	next->base	||

								memblock_get_region_node(this)	!=

								memblock_get_region_node(next)	||

								this->flags	!=	next->flags)	{

								BUG_ON(this->base	+	this->size	>	next->base);

								i++;

								continue;

				}

this->size	+=	next->size;

	 	memmove		

memmove(next,	next	+	1,	(type->cnt	-	(i	+	2))	*	sizeof(*next));

	 	memblock_type		

type->cnt--;

0																																													0x2000

+------------------------------------------------+

|																																																|

|																																																|

|																			region1																						|

|																																																|

|																																																|

+------------------------------------------------+

	 	memblock_add_range		

	 	memblock_reserve			 	memblock_add			 	memblock_reserve			 	memblock_type.reserved			 	memblock_type.memory	

	API	 	memory			 	reserved		

memblock_remove	-	
memblock_find_in_range	-	
memblock_free	-	
for_each_mem_range	-	

......

	 	memblock			API

get_allocated_memblock_memory_regions_info	-	
get_allocated_memblock_reserved_regions_info	-	

370



	 	get_allocated_memblock_reserved_regions_info		

phys_addr_t	__init_memblock	get_allocated_memblock_reserved_regions_info(

																				phys_addr_t	*addr)

{

				if	(memblock.reserved.regions	==	memblock_reserved_init_regions)

								return	0;

				*addr	=	__pa(memblock.reserved.regions);

				return	PAGE_ALIGN(sizeof(struct	memblock_region)	*

														memblock.reserved.max);

}

	 	memblock			0		 	PAGE_ALIGN		

#define	PAGE_ALIGN(addr)	ALIGN(addr,	PAGE_SIZE)

	get_allocated_memblock_memory_regions_info		 	get_allocated_memblock_memory_regions_info		
	memblock_type.memory			 	memblock_type.reserved		

	 	memblock_dbg			 	memblock=debug			 	memblock_dbg			 	printk		

#define	memblock_dbg(fmt,	...)	\

									if	(memblock_debug)	printk(KERN_INFO	pr_fmt(fmt),	##__VA_ARGS__)

	 	memblock_reserve		

memblock_dbg("memblock_reserve:	[%#016llx-%#016llx]	flags	%#02lx	%pF\n",

													(unsigned	long	long)base,

													(unsigned	long	long)base	+	size	-	1,

													flags,	(void	*)_RET_IP_);

	 debugfs		 	X86		

/sys/kernel/debug/memblock/memory
/sys/kernel/debug/memblock/reserved
/sys/kernel/debug/memblock/physmem

	 	memblock		

twitter	 issue

PR linux-insides.

371

http://en.wikipedia.org/wiki/Debugfs
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh


e820
numa
debugfs

372

http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Debugfs


.	.

	 	__START_KERNEL_map		“” 	 	level2_fixmap_pgt		

NEXT_PAGE(level2_fixmap_pgt)

				.fill				506,8,0

				.quad				level1_fixmap_pgt	-	__START_KERNEL_map	+	_PAGE_TABLE

				.fill				5,8,0

NEXT_PAGE(level1_fixmap_pgt)

				.fill				512,8,0

	 	level2_fixmap_pgt			 	level2_kernel_pgt			code+data+bss		 arch/x86/include/asm/fixmap.h	
	fixed_addresses		 	VSYSCALL_PAGE			-		vsyscall		 apic		 	FIX_APIC_BASE		

							+-----------+-----------------+---------------+------------------+

							|											|																	|															|																		|

							|kernel	text|						kernel					|															|				vsyscalls					|

							|	mapping			|							text						|				Modules				|				fix-mapped				|

							|from	phys	0|							data						|															|				addresses					|

							|											|																	|															|																		|

							+-----------+-----------------+---------------+------------------+

__START_KERNEL_map			__START_KERNEL				MODULES_VADDR												0xffffffffffffffff

#define	FIXADDR_SIZE				(__end_of_permanent_fixed_addresses	<<	PAGE_SHIFT)

#define	FIXADDR_START								(FIXADDR_TOP	-	FIXADDR_SIZE)

	 	__end_of_permanent_fixed_addresses			 	fixed_addresses			 	fixed_addresses		 	PAGE_SHIFT			 	1	<<

PAGE_SHIFT			 	__end_of_permanent_fixed_addresses			 	536		KB

The	second		FIXADDR_START		macro	just	substracts	fix-mapped	area	size	from	the	last	address	of	the	fix-mapped	area	to	get	its	base
virtual	address.		FIXADDR_TOP		is	a	rounded	up	address	from	the	base	address	of	the	vsyscall	space:		 	FIXADDR_START		
	FIXADDR_TOP			 vsyscall	

#define	FIXADDR_TOP					(round_up(VSYSCALL_ADDR	+	PAGE_SIZE,	1<<PMD_SHIFT)	-	PAGE_SIZE)

	fixed_addresses			 	fix_to_virt		

static	__always_inline	unsigned	long	fix_to_virt(const	unsigned	int	idx)

{

								BUILD_BUG_ON(idx	>=	__end_of_fixed_addresses);

								return	__fix_to_virt(idx);

}

	 	BUILD_BUG_ON			 	fixed_addresses			 	__end_of_fixed_addresses		 	__fix_to_virt		

#define	__fix_to_virt(x)								(FIXADDR_TOP	-	((x)	<<	PAGE_SHIFT))

	 	PAGE_SHIFT			 	FIXADDR_TOP		 	FIXADDR_TOP		

static	inline	unsigned	long	virt_to_fix(const	unsigned	long	vaddr)

{

	ioremap

373

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/fixmap.h
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://lwn.net/Articles/446528/
https://lwn.net/Articles/446528/


								BUG_ON(vaddr	>=	FIXADDR_TOP	||	vaddr	<	FIXADDR_START);

								return	__virt_to_fix(vaddr);

}

	virt_to_fix			 	FIXADDR_START			 	FIXADDR_TOP			 	__virt_to_fix		

#define	__virt_to_fix(x)								((FIXADDR_TOP	-	((x)&PAGE_MASK))	>>	PAGE_SHIFT)

	PFN		PFN		(page_phys_addr	>>	PAGE_SHIFT)

	__virt_to_fix			12	( 	FIXADDR_TOP	)	 	PAGE_SHIFT			12		 	x	&	PAGE_MASK			12		 	FIXADDR_TOP		
	FIXADDR_TOP			12		12		 	PAGE_SHIFT			 	Page	frame	number			12	 	 	IDT		 	UUID	
	FIX_TBOOT_BASE			 Xen	 	 	ioremap	

	 	I/O		

	I/O	

	 	in			 	out			 	/proc/ioports			I/O	

$	cat	/proc/ioports

0000-0cf7	:	PCI	Bus	0000:00

		0000-001f	:	dma1

		0020-0021	:	pic1

		0040-0043	:	timer0

		0050-0053	:	timer1

		0060-0060	:	keyboard

		0064-0064	:	keyboard

		0070-0077	:	rtc0

		0080-008f	:	dma	page	reg

		00a0-00a1	:	pic2

		00c0-00df	:	dma2

		00f0-00ff	:	fpu

				00f0-00f0	:	PNP0C04:00

		03c0-03df	:	vesafb

		03f8-03ff	:	serial

		04d0-04d1	:	pnp	00:06

		0800-087f	:	pnp	00:01

		0a00-0a0f	:	pnp	00:04

		0a20-0a2f	:	pnp	00:04

		0a30-0a3f	:	pnp	00:04

0cf8-0cff	:	PCI	conf1

0d00-ffff	:	PCI	Bus	0000:00

...

...

...

	/proc/ioports			I/O		 	0000-0cf7			 include/linux/ioport.h		 	request_region			 	request_region		

#define	request_region(start,n,name)			__request_region(&ioport_resource,	(start),	(n),	(name),	0)

	start		-	;
	n		-	;
	name		-	

	ioremap

374

http://lxr.free-electrons.com/ident?i=fix_to_virt
http://en.wikipedia.org/wiki/Trusted_Execution_Technology
http://en.wikipedia.org/wiki/Xen
https://github.com/torvalds/linux/blob/master/include/linux/ioport.h


	request_region			I/O		 	request_region			 	check_region			 	release_region		 	request_region		
	resource			 	resource		

struct	resource	{

								resource_size_t	start;

								resource_size_t	end;

								const	char	*name;

								unsigned	long	flags;

								struct	resource	*parent,	*sibling,	*child;

};

	 	resource			 	parent		slibling			 	child			I/O		 	ioport_resource		

struct	resource	ioport_resource	=	{

									.name			=	"PCI	IO",

									.start		=	0,

									.end				=	IO_SPACE_LIMIT,

								.flags		=	IORESOURCE_IO,

};

EXPORT_SYMBOL(ioport_resource);

	 	iomem			 	iomem_resource		

struct	resource	iomem_resource	=	{

								.name			=	"PCI	mem",

								.start		=	0,

								.end				=	-1,

								.flags		=	IORESOURCE_MEM,

};

	request_region			I/O	 	 drivers/char/rtc.c	 	rtc			 	module_init		

module_init(rtc_init);

	 	rtc_init			 	rtc			 	rtc.c			 	rtc_init			 	rtc_request_region			 	request_region		

r	=	rtc_request_region(RTC_IO_EXTENT);

	rtc_request_region		:

r	=	request_region(RTC_PORT(0),	size,	"rtc");

	 	RTC_TO_EXTENT			 	0x8		 	"rtc"		 	RTC_PORT		

#define	RTC_PORT(x)					(0x70	+	(x))

	 	request_region(RTC_PORT(0),	size,	"rtc")				 	0x70			 	0x8			 	/proc/ioports	:

~$	sudo	cat	/proc/ioports	|	grep	rtc

0070-0077	:	rtc0

	I/O	I/O		CPU		I/O		 	ioremap		 	ioremap			I/O	

I/O		API		I/O		API	

	request_mem_region	

	ioremap

375

http://lxr.free-electrons.com/ident?i=request_region
https://github.com/torvalds/linux/blob/master/char/rtc.c
http://en.wikipedia.org/wiki/Real-time_clock


	release_mem_region	

	check_mem_region	

~$	sudo	cat	/proc/iomem

...

...

...

be826000-be82cfff	:	ACPI	Non-volatile	Storage

be82d000-bf744fff	:	System	RAM

bf745000-bfff4fff	:	reserved

bfff5000-dc041fff	:	System	RAM

dc042000-dc0d2fff	:	reserved

dc0d3000-dc138fff	:	System	RAM

dc139000-dc27dfff	:	ACPI	Non-volatile	Storage

dc27e000-deffefff	:	reserved

defff000-deffffff	:	System	RAM

df000000-dfffffff	:	RAM	buffer

e0000000-feafffff	:	PCI	Bus	0000:00

		e0000000-efffffff	:	PCI	Bus	0000:01

				e0000000-efffffff	:	0000:01:00.0

		f7c00000-f7cfffff	:	PCI	Bus	0000:06

				f7c00000-f7c0ffff	:	0000:06:00.0

				f7c10000-f7c101ff	:	0000:06:00.0

						f7c10000-f7c101ff	:	ahci

		f7d00000-f7dfffff	:	PCI	Bus	0000:03

				f7d00000-f7d3ffff	:	0000:03:00.0

						f7d00000-f7d3ffff	:	alx

...

...

...

	 	e820_reserve_resources			 arch/x86/kernel/setup.c		 arch/x86/kernel/e820.c		 e820		 	iomen			 	e820	

	 	iomem		

static	inline	const	char	*e820_type_to_string(int	e820_type)

{

				switch	(e820_type)	{

				case	E820_RESERVED_KERN:

				case	E820_RAM:				return	"System	RAM";

				case	E820_ACPI:				return	"ACPI	Tables";

				case	E820_NVS:				return	"ACPI	Non-volatile	Storage";

				case	E820_UNUSABLE:				return	"Unusable	memory";

				default:				return	"reserved";

				}

}

	 	/proc/iomem		

	 	ioremap			 	ioremap		 	 arch/x86/mm/ioremap.c		 	early_ioremap_init			 	ioremap		
	ioremap			 	vmalloc			 	paging_init			 	ioremap			 	vmalloc			 	early_ioremap_init		

BUILD_BUG_ON((fix_to_virt(0)	+	PAGE_SIZE)	&	((1	<<	PMD_SHIFT)	-	1));

	 	BUILD_BUG_ON		 	BUILD_BUG_ON			 	early_ioremap_setup			 mm/early_ioremap.c		 	ioremap		
	early_ioremap_setup			 	slot_virt			 	__end_of_permanent_fixed_addresses			 	FIX_BITMAP_BEGIN		

	FIX_BITMAP_END			 	ioremap			 	512		

#define	NR_FIX_BTMAPS								64

#define	FIX_BTMAPS_SLOTS				8

#define	TOTAL_FIX_BTMAPS				(NR_FIX_BTMAPS	*	FIX_BTMAPS_SLOTS)

	early_ioremap_setup		

	ioremap

376

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c
http://en.wikipedia.org/wiki/E820
https://github.com/torvalds/linux/blob/master/arch/x86/mm/ioremap.c
https://github.com/torvalds/linux/blob/master/mm/early_ioremap.c


void	__init	early_ioremap_setup(void)

{

								int	i;

								for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

																if	(WARN_ON(prev_map[i]))

																								break;

								for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)

																slot_virt[i]	=	__fix_to_virt(FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*i);

}

	slot_virt		

static	void	__iomem	*prev_map[FIX_BTMAPS_SLOTS]	__initdata;

static	unsigned	long	prev_size[FIX_BTMAPS_SLOTS]	__initdata;

static	unsigned	long	slot_virt[FIX_BTMAPS_SLOTS]	__initdata;

	slot_virt		 	prev_map			 	ioremap		 		ioremap		512	 		 	__initdata			 	early_ioremap_setup		
	 	early_ioremap_pmd			 	ioremap		early_ioremap_pmd		

static	inline	pmd_t	*	__init	early_ioremap_pmd(unsigned	long	addr)

{

				pgd_t	*base	=	__va(read_cr3());

				pgd_t	*pgd	=	&base[pgd_index(addr)];

				pud_t	*pud	=	pud_offset(pgd,	addr);

				pmd_t	*pmd	=	pmd_offset(pud,	addr);

				return	pmd;

}

	0		 	bm_pte		(	 	ioremap		)	 	pmd_populate_kernel		

pmd	=	early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));

memset(bm_pte,	0,	sizeof(bm_pte));

pmd_populate_kernel(&init_mm,	pmd,	bm_pte);

	pmd_populate_kernel		:

	init_mm		-		init			( )
	pmd		-		ioremap		
	bm_pte		-		 	ioremap		

static	pte_t	bm_pte[PAGE_SIZE/sizeof(pte_t)]	__page_aligned_bss;

	pmd_popularte_kernel			 arch/x86/include/asm/pgalloc.h	( 	bm_pte	)(	pmd	):

static	inline	void	pmd_populate_kernel(struct	mm_struct	*mm,

																																							pmd_t	*pmd,	pte_t	*pte)

{

								paravirt_alloc_pte(mm,	__pa(pte)	>>	PAGE_SHIFT);

								set_pmd(pmd,	__pmd(__pa(pte)	|	_PAGE_TABLE));

}

	set_pmd		

#define	set_pmd(pmdp,	pmd)														native_set_pmd(pmdp,	pmd)

	native_set_pmd		

	ioremap

377

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgalloc.h


static	inline	void	native_set_pmd(pmd_t	*pmdp,	pmd_t	pmd)

{

								*pmdp	=	pmd;

}

		 	ioremap			 	early_ioremap_init			 	ioremap		

	 	ioremap		

early_ioremap
early_iounmap

	IO		/		 	CONFIG_MMU		 	 	cr3		(	pgd	)	 	CONFIG_MMU			 	n		early_ioremap		
	early_iounmap			 	y			early_ioremap			 	__early_ioremap	

	phys_addr		-		I/O	
	size		-	I/O	
	prot		-	

	 	__early_ioremap			 	ioremap			 	prev_map			 	slot		

slot	=	-1;

for	(i	=	0;	i	<	FIX_BTMAPS_SLOTS;	i++)	{

				if	(!prev_map[i])	{

								slot	=	i;

								break;

				}

}

...

...

...

prev_size[slot]	=	size;

last_addr	=	phys_addr	+	size	-	1;

offset	=	phys_addr	&	~PAGE_MASK;

phys_addr	&=	PAGE_MASK;

size	=	PAGE_ALIGN(last_addr	+	1)	-	phys_addr;

	 	PAGE_MASK			12		 	phys_addr		PAGE_MASK		

#define	PAGE_MASK							(~(PAGE_SIZE-1))

	4096		 	1000000000000			PAGE_SIZE	-	1			 	111111111111			 	~			 	000000000000			 	~PAGE_MASK		
	111111111111			12		 	ioremap		

nrpages	=	size	>>	PAGE_SHIFT;

idx	=	FIX_BTMAP_BEGIN	-	NR_FIX_BTMAPS*slot;

	 arch/x86/mm/ioremap.c		 	__early_set_fixmap			 	4096	

while	(nrpages	>	0)	{

				__early_set_fixmap(idx,	phys_addr,	prot);

				phys_addr	+=	PAGE_SIZE;

				--idx;

				--nrpages;

	ioremap

378

http://en.wikipedia.org/wiki/Memory_management_unit
https://github.com/torvalds/linux/blob/master/arch/x86/mm/ioremap.c


}

	__early_set_fixmap		(	 	bm_pte		)

pte	=	early_ioremap_pte(addr);

	 	early_ioremap_pte			 	pgprot_val			 	set_pte			 	pte_clear		

if	(pgprot_val(flags))

								set_pte(pte,	pfn_pte(phys	>>	PAGE_SHIFT,	flags));

				else

								pte_clear(&init_mm,	addr,	pte);

As	you	can	see	above,	we	passed		FIXMAP_PAGE_IO		as	flags	to	the		__early_ioremap	.		FIXMPA_PAGE_IO		expands	to	the:	
	FIXMAP_PAGE_IO			 	__early_ioremap		FIXMPA_PAGE_IO		

(__PAGE_KERNEL_EXEC	|	_PAGE_NX)

		 	set_pte			 	set_pmd			 	PTE	()	 	PTE		 	__flush_tlb_one		

__flush_tlb_one(addr);

	 arch/x86/include/asm/tlbflush.h	 	cpu_has_invlpg			 	__flush_tlb_single			 	__flush_tlb		

static	inline	void	__flush_tlb_one(unsigned	long	addr)

{

								if	(cpu_has_invlpg)

																__flush_tlb_single(addr);

								else

																__flush_tlb();

}

	__flush_tlb_one			 TLB		 	TLB			 	cr3			 	__flush_tlb		

native_write_cr3(native_read_cr3());

	 	invlpg			 	TLB			 	__flush_tlb_one			 	cpu_has_invlpg		

#if	defined(CONFIG_X86_INVLPG)	||	defined(CONFIG_X86_64)

#	define	cpu_has_invlpg									1

#else

#	define	cpu_has_invlpg									(boot_cpu_data.x86	>	3)

#endif

	CPU		 	invlpg			 	__flush_tlb_single			 	__native_flush_tlb_single	

static	inline	void	__native_flush_tlb_single(unsigned	long	addr)

{

								asm	volatile("invlpg	(%0)"	::"r"	(addr)	:	"memory");

}

	__flush_tlb			 	cr3			 	__early_set_fixmap			 	__early_ioremap			I/O		 	slot			 	prev_map		

prev_map[slot]	=	(void	__iomem	*)(offset	+	slot_virt[slot]);

	ioremap

379

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/tlbflush.h
http://en.wikipedia.org/wiki/Translation_lookaside_buffer


	 	early_iounmap			I/O		I/O		 	early_ioremap			 	after_paging_init		
	__late_clear_fixmap			 	__early_set_fixmap			0		 	__early_set_fixmap		I/O		 	NULL	

prev_map[slot]	=	NULL;

	 	fixmap			 	ioremap			 	ioremap			 	ioremap		 	ioremap		

twitter	 issue

PR linux-insides.

apic
vsyscall
Intel	Trusted	Execution	Technology
Xen
Real	Time	Clock
e820
Memory	management	unit
TLB
Paging

	ioremap

380

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://lwn.net/Articles/446528/
http://en.wikipedia.org/wiki/Trusted_Execution_Technology
http://en.wikipedia.org/wiki/Xen
http://en.wikipedia.org/wiki/Real-time_clock
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Translation_lookaside_buffer


Linux	

	kmemcheck	

LinuxLinux	

		;
		.

	 /

	/proc/iomem	

$	sudo	cat	/proc/iomem

00000000-00000fff	:	reserved

00001000-0009d7ff	:	System	RAM

0009d800-0009ffff	:	reserved

000a0000-000bffff	:	PCI	Bus	0000:00

000c0000-000cffff	:	Video	ROM

000d0000-000d3fff	:	PCI	Bus	0000:00

000d4000-000d7fff	:	PCI	Bus	0000:00

000d8000-000dbfff	:	PCI	Bus	0000:00

000dc000-000dffff	:	PCI	Bus	0000:00

000e0000-000fffff	:	reserved

...

...

...

	iomem		

$	sudo	cat	/proc/ioports

0000-0cf7	:	PCI	Bus	0000:00

		0000-001f	:	dma1

		0020-0021	:	pic1

		0040-0043	:	timer0

		0050-0053	:	timer1

		0060-0060	:	keyboard

		0064-0064	:	keyboard

		0070-0077	:	rtc0

		0080-008f	:	dma	page	reg

		00a0-00a1	:	pic2

		00c0-00df	:	dma2

		00f0-00ff	:	fpu

				00f0-00f0	:	PNP0C04:00

		03c0-03df	:	vga+

		03f8-03ff	:	serial

		04d0-04d1	:	pnp	00:06

		0800-087f	:	pnp	00:01

		0a00-0a0f	:	pnp	00:04

		0a20-0a2f	:	pnp	00:04

		0a30-0a3f	:	pnp	00:04

...

...

...

	ioports		I/O/ 	io	remap	 	 	io	remap			 	io	remap		

Linux Linux

kmemcheck 	 	kmemcheck		Linux

kmemcheck

381

https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Memory_leak
https://www.kernel.org/doc/Documentation/kmemcheck.txt


Linux	 	kmemcheck			 	kmemcheck		 	kmemcheck			 				 C	

#include	<stdlib.h>

#include	<stdio.h>

struct	A	{

								int	a;

};

int	main(int	argc,	char	**argv)	{

								struct	A	*a	=	malloc(sizeof(struct	A));

								printf("a->a	=	%d\n",	a->a);

								return	0;

}

	A	 	a	

gcc	test.c	-o	test

	 	a		 valgrind

~$			valgrind	--leak-check=yes	./test

==28469==	Memcheck,	a	memory	error	detector

==28469==	Copyright	(C)	2002-2015,	and	GNU	GPL'd,	by	Julian	Seward	et	al.

==28469==	Using	Valgrind-3.11.0	and	LibVEX;	rerun	with	-h	for	copyright	info

==28469==	Command:	./test

==28469==	

==28469==	Conditional	jump	or	move	depends	on	uninitialised	value(s)

==28469==				at	0x4E820EA:	vfprintf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4E88D48:	printf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4005B9:	main	(in	/home/alex/test)

==28469==	

==28469==	Use	of	uninitialised	value	of	size	8

==28469==				at	0x4E7E0BB:	_itoa_word	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4E8262F:	vfprintf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4E88D48:	printf	(in	/usr/lib64/libc-2.22.so)

==28469==				by	0x4005B9:	main	(in	/home/alex/test)

...

...

...

	 	kmemcheck			 	valgrind		

	 	CONFIG_KMEMCHECK		

Kernel	hacking

		->	Memory	Debugging

kmemcheck

382

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Valgrind


	kmemcheck		 	kmemcheck			 x86_64		 	x86			 arch/x86/Kconfig

config	X86

		...

		...

		...

		select	HAVE_ARCH_KMEMCHECK

		...

		...

		...

	 	kmemcheck		

	 	kmemcheck					 	kmemcheck		

struct	my_struct	*my_struct	=	kmalloc(sizeof(struct	my_struct),	GFP_KERNEL);

	 page		 	kmemcheck				Linux 			 	kmemcheck		 	kmemcheck		 	kmemcheck			 	present		
	kmemcheck			 	not	present	

	 	kmemcheck	Linux

	kmemcheck		Linux
	 	kmemcheck		LinuxLinux	 	kmemcheck			 mm/kmemcheck.c	 x86_64arch/x86/mm/kmemcheck

	 	kmemcheck		 	CONFIG_KMEMCHECK		command	line	 	kmemcheck		

kmemcheck=0	(disabled)
kmemcheck=1	(enabled)
kmemcheck=2	(one-shot	mode)

	 	kmemcheck			 	kmemcheck		

kmemcheck

383

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/tree/master/arch/x86/mm/kmemcheck


Linux	 part		 	do_initcall_level		,		do_early_param			command	line	 	kmemcheck

	 	param_kmemcheck		command	line:

static	int	__init	param_kmemcheck(char	*str)

{

				int	val;

				int	ret;

				if	(!str)

								return	-EINVAL;

				ret	=	kstrtoint(str,	0,	&val);

				if	(ret)

								return	ret;

				kmemcheck_enabled	=	val;

				return	0;

}

early_param("kmemcheck",	param_kmemcheck);

	 	param_kmemcheck		 	0		(),	 	1		()	or	 	2		()	 	param_kmemcheck		command	line	 	kmemcheck		
	kmemcheck_enabled		

	 initcalls		 	kmemcheck_init		:

int	__init	kmemcheck_init(void)

{

				...

				...

				...

}

early_initcall(kmemcheck_init);

	kmemcheck_init			 	kmemcheck_selftest		

if	(!kmemcheck_selftest())	{

				printk(KERN_INFO	"kmemcheck:	self-tests	failed;	disabling\n");

				kmemcheck_enabled	=	0;

				return	-EINVAL;

}

kmemcheck

384



printk(KERN_INFO	"kmemcheck:	Initialized\n");

	 	kmemcheck_init			 	EINVAL			 	kmemcheck_selftest			 	rep	movsb	,		movzwq	) 	kmemcheck_selftest		
	true		 	false	

:

struct	my_struct	*my_struct	=	kmalloc(sizeof(struct	my_struct),	GFP_KERNEL);

	kmem_getpages			 mm/slab.c	

if	(kmemcheck_enabled	&&	!(cachep->flags	&	SLAB_NOTRACK))	{

				kmemcheck_alloc_shadow(page,	cachep->gfporder,	flags,	nodeid);

				if	(cachep->ctor)

								kmemcheck_mark_uninitialized_pages(page,	nr_pages);

				else

								kmemcheck_mark_unallocated_pages(page,	nr_pages);

}

	 	kmemcheck			 	SLAB_NOTRACK			 	non-present		 	SLAB_NOTRACK		 	kmemcheck_alloc_shadow	

	 mm/kmemcheck.c	

void	kmemcheck_alloc_shadow(struct	page	*page,	int	order,	gfp_t	flags,	int	node)

{

				struct	page	*shadow;

							shadow	=	alloc_pages_node(node,	flags	|	__GFP_NOTRACK,	order);

							for(i	=	0;	i	<	pages;	++i)

								page[i].shadow	=	page_address(&shadow[i]);

							kmemcheck_hide_pages(page,	pages);

}

	shadow	bits		shadow		 	kmemcheck			 	kmemcheck_hide_pages			
arch/x86/mm/kmemcheck/kmemcheck.c		 	non-present		

void	kmemcheck_hide_pages(struct	page	*p,	unsigned	int	n)

{

				unsigned	int	i;

				for	(i	=	0;	i	<	n;	++i)	{

								unsigned	long	address;

								pte_t	*pte;

								unsigned	int	level;

								address	=	(unsigned	long)	page_address(&p[i]);

								pte	=	lookup_address(address,	&level);

								BUG_ON(!pte);

								BUG_ON(level	!=	PG_LEVEL_4K);

								set_pte(pte,	__pte(pte_val(*pte)	&	~_PAGE_PRESENT));

								set_pte(pte,	__pte(pte_val(*pte)	|	_PAGE_HIDDEN));

								__flush_tlb_one(address);

				}

}

	 			present		hidden		 TLB	,	 	kmemcheck			 	present			 	kmalloc		

Linux 			 arch/x86/mm/fault.c		 	do_page_fault		

kmemcheck

385

https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://en.wikipedia.org/wiki/Opcode
https://github.com/torvalds/linux/blob/master/mm/slab.c
https://en.wikipedia.org/wiki/Paging
https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://github.com/torvalds/linux/tree/master/arch/x86/mm/kmemcheck/kmemcheck.c
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/blob/master/arch/x86/mm/fault.c


static	noinline	void

__do_page_fault(struct	pt_regs	*regs,	unsigned	long	error_code,

								unsigned	long	address)

{

				...

				...

				...

				if	(kmemcheck_active(regs))

								kmemcheck_hide(regs);

				...

				...

				...

}

	kmemcheck_active			 	kmemcheck_context		per-cpu		 	balance		0

bool	kmemcheck_active(struct	pt_regs	*regs)

{

				struct	kmemcheck_context	*data	=	this_cpu_ptr(&kmemcheck_context);

				return	data->balance	>	0;

}

	kmemcheck_context			 	kmemcheck			 	balance			 	kmemcheck		 	balance			 	kmemcheck		
	data->balance		0	 	kmemcheck_hide			 	kmemecheck			 	present			 	kmemcheck_hide			 	present		
	kmemcheck			 	data->balance		0	 	kmemcheck_active		false	 	kmemcheck_hide			 	do_page_fault	

if	(kmemcheck_fault(regs,	address,	error_code))

								return;

	 	kmemcheck_fault		

if	(regs->flags	&	X86_VM_MASK)

								return	false;

if	(regs->cs	!=	__KERNEL_CS)

								return	false;

	 	kmemcheck		 	kmemcheck_fault		false 		false:

pte	=	kmemcheck_pte_lookup(address);

if	(!pte)

				return	false;

	kmemcheck_fault			 	kmemcheck_access		present	 	kmemcheck_access		

static	struct	kmemcheck_error	error_fifo[CONFIG_KMEMCHECK_QUEUE_SIZE];

	kmemcheck			 tasklet	:

static	DECLARE_TASKLET(kmemcheck_tasklet,	&do_wakeup,	0);

tasklet	 	do_wakeup			 arch/x86/mm/kmemcheck/error.c	

	do_wakeup			 	kmemcheck_error_recall			 	kmemcheck		

kmemcheck_show(regs);

kmemcheck

386

https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/arch/x86/mm/kmemcheck/error.c


	kmemcheck_fault			 	kmemcheck_show		present

if	(unlikely(data->balance	!=	0))	{

				kmemcheck_show_all();

				kmemcheck_error_save_bug(regs);

				data->balance	=	0;

				return;

}

	kmemcheck_show_all			 	kmemcheck_show_addr		

static	unsigned	int	kmemcheck_show_all(void)

{

				struct	kmemcheck_context	*data	=	this_cpu_ptr(&kmemcheck_context);

				unsigned	int	i;

				unsigned	int	n;

				n	=	0;

				for	(i	=	0;	i	<	data->n_addrs;	++i)

								n	+=	kmemcheck_show_addr(data->addr[i]);

				return	n;

}

	kmemcheck_show_addr		:

int	kmemcheck_show_addr(unsigned	long	address)

{

				pte_t	*pte;

				pte	=	kmemcheck_pte_lookup(address);

				if	(!pte)

								return	0;

				set_pte(pte,	__pte(pte_val(*pte)	|	_PAGE_PRESENT));

				__flush_tlb_one(address);

				return	1;

}

	 	kmemcheck_show			 TF	

if	(!(regs->flags	&	X86_EFLAGS_TF))

				data->flags	=	regs->flags;

	 	TF			 	debug		 	kmemcheck		/

	 	kmemcheck		

Linux 0xAX	 	 issue			-	 	kmemleak		

PR	 linux-insides.

Links

memory	management
debugging
memory	leaks
kmemcheck	documentation

kmemcheck

387

https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/Memory_management
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Memory_leak
https://www.kernel.org/doc/Documentation/kmemcheck.txt


valgrind
page	fault
initcalls
opcode
translation	lookaside	buffer
per-cpu	variables
flags	register
tasklet
Paging
Previous	part

kmemcheck

388

https://en.wikipedia.org/wiki/Valgrind
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/FLAGS_register


	Linux	

389



	 linux			-		Linux		 				 	cgroups		

	Cgroups			Linux		 	cgroup		 	Cgroups			 	cgroups		 	cgroups			 	cgroup		
	 	cgroup			 	cgroup			 	cgroup		""

	 	cgroup			 	cgroup			 pid	Linux		12		 	cgroup		

	cpuset		-		 	cgroup		
	cpu		-		 	cgroup			CPU	
	cpuacct		-		 	cgroup		
	io		-	;
	memory		-		 	cgroup		;
	devices		-		 	cgroup		
	freezer		-		 	cgroup		/
	net_cls		-		 	cgroup		
	net_prio		-		 	cgroup		
	perf_event		-		 	cgroup		);
	hugetlb		-		 	cgroup		;
	pid		-		 	cgroup		

	 	cgroup		 	cpuset			 	CONFIG_CPUSETS		 	io			 	CONFIG_BLK_CGROUP			 	General	setup	→	Control	Group

support		

	 proc		 	cgroup	

$	cat	/proc/cgroups	

#subsys_name				hierarchy				num_cgroups				enabled

cpuset				8				1				1

cpu				7				66				1

cpuacct				7				66				1

blkio				11				66				1

memory				9				94				1

devices				6				66				1

freezer				2				1				1

390

https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Device_file
https://en.wikipedia.org/wiki/Perf_\(Linux\
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://en.wikipedia.org/wiki/Procfs


net_cls				4				1				1

perf_event				3				1				1

net_prio				4				1				1

hugetlb				10				1				1

pids				5				69				1

	 sysfs	:

$	ls	-l	/sys/fs/cgroup/

total	0

dr-xr-xr-x	5	root	root		0	Dec		2	22:37	blkio

lrwxrwxrwx	1	root	root	11	Dec		2	22:37	cpu	->	cpu,cpuacct

lrwxrwxrwx	1	root	root	11	Dec		2	22:37	cpuacct	->	cpu,cpuacct

dr-xr-xr-x	5	root	root		0	Dec		2	22:37	cpu,cpuacct

dr-xr-xr-x	2	root	root		0	Dec		2	22:37	cpuset

dr-xr-xr-x	5	root	root		0	Dec		2	22:37	devices

dr-xr-xr-x	2	root	root		0	Dec		2	22:37	freezer

dr-xr-xr-x	2	root	root		0	Dec		2	22:37	hugetlb

dr-xr-xr-x	5	root	root		0	Dec		2	22:37	memory

lrwxrwxrwx	1	root	root	16	Dec		2	22:37	net_cls	->	net_cls,net_prio

dr-xr-xr-x	2	root	root		0	Dec		2	22:37	net_cls,net_prio

lrwxrwxrwx	1	root	root	16	Dec		2	22:37	net_prio	->	net_cls,net_prio

dr-xr-xr-x	2	root	root		0	Dec		2	22:37	perf_event

dr-xr-xr-x	5	root	root		0	Dec		2	22:37	pids

dr-xr-xr-x	5	root	root		0	Dec		2	22:37	systemd

	cgroup			Linux		 	cgroup		

	 	/sys/fs/cgroup			pid		 	tasks		

	 	libcgroup		//	 	cgroups	(	Fedora		 	libcgroup-tools	)

	 bash	

#!/bin/bash

while	:

do

				echo	"print	line"	>	/dev/tty

				sleep	5

done

$	sudo	chmod	+x	cgroup_test_script.sh

~$	./cgroup_test_script.sh	

print	line

print	line

print	line

...

...

...

	 	cgroupfs			 	/sys/fs/cgroup		

$	cd	/sys/fs/cgroup

	 	devices			 	cgroup		

#	cd	devices

	 	cgroup_test_group		

391

https://en.wikipedia.org/wiki/Sysfs
https://www.gnu.org/software/bash/


#	mkdir	cgroup_test_group

	 	cgroup_test_group		

/sys/fs/cgroup/devices/cgroup_test_group$	ls	-l

total	0

-rw-r--r--	1	root	root	0	Dec		3	22:55	cgroup.clone_children

-rw-r--r--	1	root	root	0	Dec		3	22:55	cgroup.procs

--w-------	1	root	root	0	Dec		3	22:55	devices.allow

--w-------	1	root	root	0	Dec		3	22:55	devices.deny

-r--r--r--	1	root	root	0	Dec		3	22:55	devices.list

-rw-r--r--	1	root	root	0	Dec		3	22:55	notify_on_release

-rw-r--r--	1	root	root	0	Dec		3	22:55	tasks

	 	tasks			 	devices.deny			 	tasks			 	cgroup_test_group			cgroup			pid	 	devices.deny			 	cgroup		(
	 	/dev/tty	)	 	devices.deny		

#	echo	"c	5:0	w"	>	devices.deny

	 	c			 	/dev/tty		“”	 	ls		

~$	ls	-l	/dev/tty

crw-rw-rw-	1	root	tty	5,	0	Dec		3	22:48	/dev/tty

	 	c		 	5:0			 	ls			 	w			 	cgroups			 	cgroup_test_script.sh		

~$	./cgroup_test_script.sh	

print	line

print	line

print	line

...

...

	pid		 	cgroup			 	devices/tasks		

#	echo	$(pidof	-x	cgroup_test_script.sh)	>	/sys/fs/cgroup/devices/cgroup_test_group/tasks

~$	./cgroup_test_script.sh	

print	line

print	line

print	line

print	line

print	line

print	line

./cgroup_test_script.sh:	line	5:	/dev/tty:	Operation	not	permitted

	 docker)	

~$	docker	ps

CONTAINER	ID								IMAGE															COMMAND																		CREATED													STATUS														PORTS							

													NAMES

fa2d2085cd1c								mariadb:10										"docker-entrypoint..."			12	days	ago									Up	4	minutes								0.0.0.0:3306

->3306/tcp			mysql-work

~$	cat	/sys/fs/cgroup/devices/docker/fa2d2085cd1c8d797002c77387d2061f56fefb470892f140d0dc511bd4d9bb61/tasks	|	head	-3

5501

5584

5585

392

https://en.wikipedia.org/wiki/Docker_\(software\


...

...

...

	 	docker		 	docker			 	cgroup	

$	docker	exec	-it	mysql-work	/bin/bash

$	top

	PID	USER						PR		NI				VIRT				RES				SHR	S		%CPU	%MEM					TIME+	COMMAND																																											

																																								1	mysql					20			0		963996	101268		15744	S			0.0		0.6			0:00.46	mysqld							

																																																																											71	root						20			0			20248			3028			2732	

S			0.0		0.0			0:00.01	bash																																																																																				77	roo

t						20			0			21948			2424			2056	R			0.0		0.0			0:00.00	top

	 	cgroup	

$	systemd-cgls

Control	group	/:

-.slice

├─docker

│	└─fa2d2085cd1c8d797002c77387d2061f56fefb470892f140d0dc511bd4d9bb61

│			├─5501	mysqld

│			└─6404	/bin/bash

	 	cgroup			Linux	

	cgroup		
	Linux		 	cgroup			Linux			 	cgroup			Linux	 	cgroups		“”“”

	Cgroups			Linux		 init/main.c	

cgroup_init_early();

	 kernel/cgroup.c	

int	__init	cgroup_init_early(void)

{

				static	struct	cgroup_sb_opts	__initdata	opts;

				struct	cgroup_subsys	*ss;

				...

				...

				...

}

	cgroup_sb_opts		

struct	cgroup_sb_opts	{

				u16	subsys_mask;

				unsigned	int	flags;

				char	*release_agent;

				bool	cpuset_clone_children;

				char	*name;

				bool	none;

};

	 	cgroupfs			 	name=			cgroup	(	 	my_cgrp		)

393

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/cgroup.c


$	mount	-t	cgroup	-oname=my_cgrp,none	/mnt/cgroups

	-	 	ss			 	cgroup_subsys			 include/linux/cgroup-defs.h		 	cgroup		

struct	cgroup_subsys	{

				int	(*css_online)(struct	cgroup_subsys_state	*css);

				void	(*css_offline)(struct	cgroup_subsys_state	*css);

				...

				...

				...

				bool	early_init:1;

				int	id;

				const	char	*name;

				struct	cgroup_root	*root;

				...

				...

				...

}

	css_online			 	css_offline			cgroup		cgroup	 	early_init		 	id			 	name			cgroup	”“	 	root	

	cgroup	

	cgroup_subsys			 	cgroups			 	cgroup_init_early		”“	 	cgroup_subsys->early_init	

	 	1	

init_cgroup_root(&cgrp_dfl_root,	&opts);

cgrp_dfl_root.cgrp.self.flags	|=	CSS_NO_REF;

	 	init_cgroup_root			 	cgroup			 	CSS_NO_REF			css	 	cgrp_dfl_root		

struct	cgroup_root	cgrp_dfl_root;

	 	cgrp			 	cgroup			 	cgroup		cgroup			 include/linux/cgroup-defs.h		Linux		 	task_struct		
	task_struct			 	cgroup			 	task_struct			 	css_set			 	css_set		

struct	css_set	{

				...

				...

				....

				struct	cgroup_subsys_state	*subsys[CGROUP_SUBSYS_COUNT];

				...

				...

				...

}

	 	cgroup_subsys_state			 	cgroup	

struct	cgroup_subsys_state	{

				...

				...

				...

				struct	cgroup	*cgroup;

				...

				...

				...

}

	cgroups		

394

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cgroup-defs.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cgroup-defs.h


+-------------+									+---------------------+				+------------->+---------------------+										+----------------+

|	task_struct	|									|							css_set							|				|														|	cgroup_subsys_state	|										|					cgroup					|

+-------------+									|																					|				|														+---------------------+										+----------------+

|													|									|																					|				|														|																					|										|					flags						|

|													|									|																					|				|														+---------------------+										|		cgroup.procs		|

|													|									|																					|				|														|								cgroup							|--------->|							id							|

|													|									|																					|				|														+---------------------+										|						....						|

	

|-------------+									|---------------------+----+																																															+----------------+

|			cgroups			|	------>	|	cgroup_subsys_state	|	array	of	cgroup_subsys_state

|-------------+									+---------------------+------------------>+---------------------+										+----------------+

|													|									|																					|																			|	cgroup_subsys_state	|										|						cgroup				|

+-------------+									+---------------------+																			+---------------------+										+----------------+

																																																																		|																					|										|						flags					|

																																																																		+---------------------+										|			cgroup.procs	|

																																																																		|								cgroup							|--------->|								id						|

																																																																		+---------------------+										|							....					|

																																																																		|				cgroup_subsys				|										+----------------+

																																																																		+---------------------+

																																																																													|

																																																																													|

																																																																													↓

																																																																		+---------------------+

																																																																		|				cgroup_subsys				|

																																																																		+---------------------+

																																																																		|									id										|

																																																																		|								name									|

																																																																		|						css_online					|

																																																																		|						css_ofline					|

																																																																		|								attach							|

																																																																		|									....								|

																																																																		+---------------------+

	init_cgroup_root			 	cgrp_dfl_root		 	css_set			 	init_task	

RCU_INIT_POINTER(init_task.cgroups,	&init_css_set);

	cgroup_init_early			 	early	cgroups			 	cgroup_init_subsys		

for_each_subsys(ss,	i)	{

								ss->id	=	i;

								ss->name	=	cgroup_subsys_name[i];

								if	(ss->early_init)

												cgroup_init_subsys(ss,	true);

}

	 	for_each_subsys			 kernel/cgroup.c		 	cgroup_subsys			for	

#define	SUBSYS(_x)	[_x	##	_cgrp_id]	=	&_x	##	_cgrp_subsys,

				static	struct	cgroup_subsys	*cgroup_subsys[]	=	{

								#include	<linux/cgroup_subsys.h>

};

#undef	SUBSYS

	 	SUBSYS		()	cgroup		 	cgroup_subsys		 linux/cgroup_subsys.h		 	SUBSYS		

#if	IS_ENABLED(CONFIG_CPUSETS)

SUBSYS(cpuset)

#endif

#if	IS_ENABLED(CONFIG_CGROUP_SCHED)

SUBSYS(cpu)

#endif

...

395

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/cgroup.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cgroup_subsys.h


...

...

	 	SUBSYS			 	#undef			 	&_x	##	_cgrp_subsys			 	C		 	##			 	cpuset		cpu			 	SUBSYS		
	cpuset_cgrp_subsys		cp_cgrp_subsys		 kernel/cpuset.c	

struct	cgroup_subsys	cpuset_cgrp_subsys	=	{

				...

				...

				...

				.early_init				=	true,

};

	cgroup_init_early			 	cgroup_init_subsys		

	cpuset	;
	cpu	;
	cpuacct	.

	cgroup_init_subsys			 	css_alloc		

	Linux		 	cgroup			 	cgroup			 	cgroup		

	 twitter	

	PR		 linux-insides.

control	groups
PID
cpuset
block	devices
huge	pages
sysfs
proc
cgroups	kernel	documentation
cgroups	v2
bash
docker)
perf	events)
Previous	chapter

396

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/cpuset.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Process_identifier
http://man7.org/linux/man-pages/man7/cpuset.7.html
https://en.wikipedia.org/wiki/Device_file
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Procfs
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.gnu.org/software/bash/
https://en.wikipedia.org/wiki/Docker_\(software\
https://en.wikipedia.org/wiki/Perf_\(Linux\


Linux	

	CPU	
CPU	
initcall	
Linux	

397



Per-cpu	
Per-cpu		CPU	

	per-cpu		API	-	 	DEFINE_PER_CPU		

#define	DEFINE_PER_CPU(type,	name)	\

								DEFINE_PER_CPU_SECTION(type,	name,	"")

	per-cpu		 include/linux/percpu-defs.h	

	 	DECLARE_PER_CPU			2	 	type			 	name		per-cpu	

DEFINE_PER_CPU(int,	per_cpu_n)

	DEFINE_PER_CPU			 	DEFINE_PER_CPU_SECTION		 	DEFINE_PER_CPU_SECTION		

#define	DEFINE_PER_CPU_SECTION(type,	name,	sec)				\

									__PCPU_ATTRS(sec)	PER_CPU_DEF_ATTRIBUTES		\

									__typeof__(type)	name

#define	__PCPU_ATTRS(sec)																																																\

									__percpu	__attribute__((section(PER_CPU_BASE_SECTION	sec)))					\

									PER_CPU_ATTRIBUTES

	 	section		:

#define	PER_CPU_BASE_SECTION	".data..percpu"

	per-cpu	

__attribute__((section(".data..percpu")))	int	per_cpu_n

	 	.data..percpu			 	per_cpu_n			 	vmlinux		

.data..percpu	00013a58		0000000000000000		0000000001a5c000		00e00000		2**12

														CONTENTS,	ALLOC,	LOAD,	DATA

	 	DEFINE_PER_CPU			 	.data..percpu			per-cpu		 	setup_per_cpu_areas			 	.data..percpu		
CPU	

	per-cpu		 init/main.c		 	setup_per_cpu_areas			 arch/x86/kernel/setup_percpu.c	

pr_info("NR_CPUS:%d	nr_cpumask_bits:%d	nr_cpu_ids:%d	nr_node_ids:%d\n",

								NR_CPUS,	nr_cpumask_bits,	nr_cpu_ids,	nr_node_ids);

	setup_per_cpu_areas			 	CONFIG_NR_CPUS			CPUs		CPU	 	nr_cpumask_bits		 	cpumask			 	NR_CPUS		
	 	NUMA		

	 	dmesg		

$	dmesg	|	grep	percpu

[				0.000000]	setup_percpu:	NR_CPUS:8	nr_cpumask_bits:8	nr_cpu_ids:8	nr_node_ids:1

	CPU	

398

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c


	 	per-cpu			per-cpu		per-cpu	Linux	 	percpu_alloc		

percpu_alloc=					per-cpu	

									"embed"		"page"

								

									mm/percpu.c	

								

mm/percpu.c	

early_param("percpu_alloc",	percpu_alloc_setup);

	 	percpu_alloc_setup			 	percpu_alloc			 	pcpu_chosen_fc			 	auto	

enum	pcpu_fc	pcpu_chosen_fc	__initdata	=	PCPU_FC_AUTO;

	 	percpu_alloc			 	embed			per-cpu		 memblock		bootmem	 	page			 	PAGE_SIZE		

	 	setup_per_cpu_areas			page	

if	(pcpu_chosen_fc	!=	PCPU_FC_PAGE)	{

				...

				...

				...

}

	 	PCPU_FC_PAGE		 	embed			 	pcpu_embed_first_chunk		

rc	=	pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,

																								dyn_size,	atom_size,

																								pcpu_cpu_distance,

																								pcpu_fc_alloc,	pcpu_fc_free);

	 	pcpu_embed_first_chunk			per-cpu		bootmen	 	pcpu_embed_first_chunk	

	PERCPU_FIRST_CHUNK_RESERVE		-		 	per-cpu		
	dyn_size		-	
	atom_size		-	
	pcpu_cpu_distance		-		cpus	
	pcpu_fc_alloc		-		 	percpu		
	pcpu_fc_free		-		 	percpu		

	 	pcpu_embed_first_chunk		

const	size_t	dyn_size	=	PERCPU_MODULE_RESERVE	+	PERCPU_DYNAMIC_RESERVE	-	PERCPU_FIRST_CHUNK_RESERVE;

size_t	atom_size;

#ifdef	CONFIG_X86_64

								atom_size	=	PMD_SIZE;

#else

								atom_size	=	PAGE_SIZE;

#endif

	 	PCPU_FC_PAGE		 	pcpu_page_first_chunk			 	pcpu_embed_first_chunk		 	per-cpu			 	setup_percpu_segment			 	per-

cpu			 	x86			 	per-cpu			x86_cpu_to_apicid	,		irq_stack_ptr		N	 	.data..percpu			N		CPU	
bootstrap		 	DEFINE_PER_CPU		

	per-cpu	API

get_cpu_var(var)

	CPU	

399

https://github.com/torvalds/linux/blob/master/mm/percpu.c


put_cpu_var(var)

	 	get_cpu_var		

#define	get_cpu_var(var)					\

(*({																									\

									preempt_disable();		\

									this_cpu_ptr(&var);	\

}))

Linux		per-cpu		per-cpu		CPU	 	preempt_disable			 	this_cpu_ptr		

#define	this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)

#define	raw_cpu_ptr(ptr)								per_cpu_ptr(ptr,	0)

	per_cpu_ptr			CPU	2		per-cpu		per-cpu		 	put_cpu_var			 	preempt_enable			per-cpu	

get_cpu_var(var);

...

//	'var'	

...

put_cpu_var(var);

	 	per_cpu_ptr		

#define	per_cpu_ptr(ptr,	cpu)																													\

({																																																								\

								__verify_pcpu_ptr(ptr);																											\

									SHIFT_PERCPU_PTR((ptr),	per_cpu_offset((cpu)));		\

})

	cpu		per-cpu		 	__verify_pcpu_ptr	

#define	__verify_pcpu_ptr(ptr)

do	{

				const	void	__percpu	*__vpp_verify	=	(typeof((ptr)	+	0))NULL;

				(void)__vpp_verify;

}	while	(0)

	 	ptr			 	const	void	__percpu	*	

	 	SHIFT_PERCPU_PTR			 	per_cpu_offset		CPU

#define	per_cpu_offset(x)	(__per_cpu_offset[x])

	 	x			 	__per_cpu_offset		

extern	unsigned	long	__per_cpu_offset[NR_CPUS];

	 	NR_CPUS			CPU	 	__per_cpu_offset			CPU		per-cpu		 	X			 	__per_cpu_offset[Y]			 	X*Y	

	SHIFT_PERCPU_PTR		

#define	SHIFT_PERCPU_PTR(__p,	__offset)																																	\

									RELOC_HIDE((typeof(*(__p))	__kernel	__force	*)(__p),	(__offset))

	CPU	

400



	RELOC_HIDE			 	(typeof(ptr))	(__ptr	+	(off))	

	API	per-cpu		 include/linux/percpu-defs.h	

	per-cpu	

	 	.data..percpu			per-cpu	
	 	DEFINE_PER_CPU			CPU0
	__per_cpu_offset			( 	BOOT_PERCPU_OFFSET	)		 	.data..percpu		
	 	per_cpu_ptr			per-cpu		CPU		 	__per_cpu_offset			CPU

	CPU	

401

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h


CPU	masks

	Cpumasks		LinuxCPU	 	Cpumasks			API	

include/linux/cpumask.h
lib/cpumask.c
kernel/cpu.c

	 include/linux/cpumask.h	Cpumasks		CPU		CPU		 Kernel	entry	point		 	boot_cpu_init		
cpumask	cpu	……

set_cpu_online(cpu,	true);

set_cpu_active(cpu,	true);

set_cpu_present(cpu,	true);

set_cpu_possible(cpu,	true);

	set_cpu_possible			cpu	ID	 	cpu_present			CPUs 	cpu_online			 	cpu_present			CPUs
	CONFIG_HOTPLUG_CPU			 	possible	==	present			 	active	==	online			 	true		 	cpumask_set_cpu		
	cpumask_clear_cpu	

	 	cpumask		 	cpumask_t	

typedef	struct	cpumask	{	DECLARE_BITMAP(bits,	NR_CPUS);	}	cpumask_t;

	 	cpumask			 	bits		 	DECLARE_BITMAP		

bitmap	name;
number	of	bits.

	 	unsigned	long		

#define	DECLARE_BITMAP(name,bits)	\

								unsigned	long	name[BITS_TO_LONGS(bits)]

	 	BITS_TO_LONGS	

#define	BITS_TO_LONGS(nr)							DIV_ROUND_UP(nr,	BITS_PER_BYTE	*	sizeof(long))

#define	DIV_ROUND_UP(n,d)	(((n)	+	(d)	-	1)	/	(d))

	 	x86_64		 	unsigned	long		8

(((8)	+	(8)	-	1)	/	(8))	=	1

	NR_CPUS			CPU		 include/linux/threads.h		 	CONFIG_NR_CPUS		

#ifndef	CONFIG_NR_CPUS

								#define	CONFIG_NR_CPUS		1

#endif

#define	NR_CPUS									CONFIG_NR_CPUS

	cpumask		 	DECLARE_BITMAP			 	to_cpumask			 	struct	cpumask	*	

CPU	

402

https://github.com/torvalds/linux/blob/master/include/linux/cpumask.h
https://github.com/torvalds/linux/blob/master/lib/cpumask.c
https://github.com/torvalds/linux/blob/master/kernel/cpu.c
https://github.com/torvalds/linux/blob/master/include/linux/cpumask.h
https://github.com/torvalds/linux/blob/master/include/linux/threads.h


#define	to_cpumask(bitmap)																																														\

								((struct	cpumask	*)(1	?	(bitmap)																																\

																												:	(void	*)sizeof(__check_is_bitmap(bitmap))))

	 	true		__check_is_bitmap		

static	inline	int	__check_is_bitmap(const	unsigned	long	*bitmap)

{

								return	1;

}

	 	1		 	bitmap			 	bitmap			 	unsigned	long	*			 	cpu_possible_bits			 	to_cpumask			 	unsigned

long			 	struct	cpumask	*	

cpumask	API
	cpumaskLinux		API		cpumask	 	set_cpu_online	

CPU	;
CPU	;

void	set_cpu_online(unsigned	int	cpu,	bool	online)

{

				if	(online)	{

								cpumask_set_cpu(cpu,	to_cpumask(cpu_online_bits));

								cpumask_set_cpu(cpu,	to_cpumask(cpu_active_bits));

				}	else	{

								cpumask_clear_cpu(cpu,	to_cpumask(cpu_online_bits));

				}

}

	 	state			 	cpumask_set_cpu			 	cpumask_clear_cpu		 	cpumask_set_cpu			 	struct	cpumask	*		 	cpu_online_bits	

static	DECLARE_BITMAP(cpu_online_bits,	CONFIG_NR_CPUS)	__read_mostly;

	 	cpumask_set_cpu			 	set_bit		

static	inline	void	cpumask_set_cpu(unsigned	int	cpu,	struct	cpumask	*dstp)

{

								set_bit(cpumask_check(cpu),	cpumask_bits(dstp));

}

	set_bit			 	cpu_online_bits			 	set_bit		

cpumask_check;
cpumask_bits.

	 	cpumask_check			 	cpumask_bits			 	struct	cpumask	*			 	bits		

#define	cpumask_bits(maskp)	((maskp)->bits)

	 	set_bit		

	static	__always_inline	void

	set_bit(long	nr,	volatile	unsigned	long	*addr)

	{

									if	(IS_IMMEDIATE(nr))	{

CPU	

403



																asm	volatile(LOCK_PREFIX	"orb	%1,%0"

																								:	CONST_MASK_ADDR(nr,	addr)

																								:	"iq"	((u8)CONST_MASK(nr))

																								:	"memory");

								}	else	{

																asm	volatile(LOCK_PREFIX	"bts	%1,%0"

																								:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

								}

	}

	 	nr			 	IS_IMMEDIATE			GCC		 	__builtin_constant_p	

#define	IS_IMMEDIATE(nr)				(__builtin_constant_p(nr))

	__builtin_constant_p			 	cpu			 	else		

asm	volatile(LOCK_PREFIX	"bts	%1,%0"	:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

	LOCK_PREFIX			x86	 	lock			CPU		CPU		-		DMA	cell

	BITOP_ADDR			 	(*(volatile	long	*)			 	+m		 	+		 	m		 	BITOP_ADDR		

#define	BITOP_ADDR(x)	"+m"	(*(volatile	long	*)	(x))

	 	memory	

	Ir		-	

	bts			 	CF			cpu		0	 	set_bit			 	cpu_online_bits		cpumask		0		cpu	

	 	set_cpu_*		API	cpumask		cpumasks		API

	cpumask	API

cpumaks		CPUs	

#define	num_online_cpus()				cpumask_weight(cpu_online_mask)

	 	online		CPUs		 	cpu_online_mask			 	cpumask_weight		 	cpumask_weight			 	bitmap_weight		

cpumask	bitmap;
	nr_cpumask_bits		-		 	NR_CPUS	

static	inline	unsigned	int	cpumask_weight(const	struct	cpumask	*srcp)

{

				return	bitmap_weight(cpumask_bits(srcp),	nr_cpumask_bits);

}

	 	num_online_cpus	cpumask	CPU	

num_possible_cpus;
num_active_cpus;
cpu_online;
cpu_possible.

CPU	

404



	Linux		 	cpumask			API

	for_each_cpu		-	mask	cpu;
	for_each_cpu_not		-		cpu;
	cpumask_clear_cpu		-		cpumask		cpu;
	cpumask_test_cpu		-		mask		cpu;
	cpumask_setall		-		mask		cpu;
	cpumask_size		-		'struct	cpumask'	;

cpumask	documentation

CPU	

405

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt


initcall	

	Linux		 	initcall		Linux	

early_param("debug",	debug_kernel);

arch_initcall(init_pit_clocksource);

	Linux		 		Linux		 	initcall		

static	int	__init	nmi_warning_debugfs(void)

{

				debugfs_create_u64("nmi_longest_ns",	0644,

																							arch_debugfs_dir,	&nmi_longest_ns);

				return	0;

}

	 arch/x86/kernel/nmi.c	 	arch_debugfs_dir			 	nmi_longest_ns		debugfs		 	arch_debugfs_dir			 	debugfs	

	Linux		 arch/x86/kernel/kdebugfs.c		 	arch_kdebugfs_init			

arch_initcall(arch_kdebugfs_init);

Linux		 	fs			 	initcalls			 	initcalls		 	arch_kdebugfs_dir			 	nmi_longest_ns	Linux		 	initcalls	

	early	;
	core	;
	postcore	;
	arch	;
	susys	;
	fs	;
	device	;
	late	.

	 	initcall_level_names			 init/main.c	

static	char	*initcall_level_names[]	__initdata	=	{

				"early",

				"core",

				"postcore",

				"arch",

				"subsys",

				"fs",

				"device",

				"late",

};

	 	initcall		 	early	initcalls			 	core	initcalls		 	initcall			Linux	

initcall		Linux	

initcall	

406

https://en.wikipedia.org/wiki/Callback_%28computer_programming%29
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/nmi.c
https://en.wikipedia.org/wiki/Debugfs
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/kdebugfs.c
https://github.com/torvalds/linux/blob/master/init/main.c


Linux		 include/linux/init.h		 	initcall	

#define	early_initcall(fn)								__define_initcall(fn,	early)

#define	core_initcall(fn)								__define_initcall(fn,	1)

#define	postcore_initcall(fn)								__define_initcall(fn,	2)

#define	arch_initcall(fn)								__define_initcall(fn,	3)

#define	subsys_initcall(fn)								__define_initcall(fn,	4)

#define	fs_initcall(fn)												__define_initcall(fn,	5)

#define	device_initcall(fn)								__define_initcall(fn,	6)

#define	late_initcall(fn)								__define_initcall(fn,	7)

	 	__define_initcall		 	__define_initcall		

	fn		-		 	initcalls		
	id		-		 	initcall			 	initcalls		

	__define_initcall		

#define	__define_initcall(fn,	id)	\

				static	initcall_t	__initcall_##fn##id	__used	\

				__attribute__((__section__(".initcall"	#id	".init")))	=	fn;	\

				LTO_REFERENCE_INITCALL(__initcall_##fn##id)

	 	__define_initcall			 	initcall_t			 		 	 	initcall		

typedef	int	(*initcall_t)(void);

	 	_-define_initcall		 ##	 	__define_initcall			 	.initcall	id	.init		ELF			 gcc	
	__initcall_function_name_id			 	__used		 include/asm-generic/vmlinux.lds.h		 	initcalls			 	.data		

#define	INIT_CALLS																				\

								VMLINUX_SYMBOL(__initcall_start)	=	.;				\

								*(.initcallearly.init)																				\

								INIT_CALLS_LEVEL(0)																								\

								INIT_CALLS_LEVEL(1)																								\

								INIT_CALLS_LEVEL(2)																								\

								INIT_CALLS_LEVEL(3)																								\

								INIT_CALLS_LEVEL(4)																								\

								INIT_CALLS_LEVEL(5)																								\

								INIT_CALLS_LEVEL(rootfs)																\

								INIT_CALLS_LEVEL(6)																								\

								INIT_CALLS_LEVEL(7)																								\

								VMLINUX_SYMBOL(__initcall_end)	=	.;

#define	INIT_DATA_SECTION(initsetup_align)				\

				.init.data	:	AT(ADDR(.init.data)	-	LOAD_OFFSET)	{							\

								...																																																\

								INIT_CALLS																																											\

								...																																																\

				}

	-	 	__used		 include/linux/compiler-gcc.h		 	gcc		

#define	__used			__attribute__((__used__))

	 				 	__define_initcall		

LTO_REFERENCE_INITCALL(__initcall_##fn##id)

	 	CONFIG_LTO		

initcall	

407

https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://en.wikipedia.org/wiki/Integer
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
http://www.skyfree.org/linux/references/ELF_Format.pdf
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/master/include/asm-generic/vmlinux.lds.h
https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://gcc.gnu.org/wiki/LinkTimeOptimization


#ifdef	CONFIG_LTO

#define	LTO_REFERENCE_INITCALL(x)	\

								static	__used	__exit	void	*reference_##x(void)		\

								{																																															\

																return	&x;																														\

								}

#else

#define	LTO_REFERENCE_INITCALL(x)

#endif

	 	__define_initcall			 	*_initcall		Linux	 	initcalls			 	.data		Linux		 	initcall		

	Linux		 	initcalls		Linux		 init/main.c		 	do_basic_setup		

static	void	__init	do_basic_setup(void)

{

				...

				...

				...

							do_initcalls();

				...

				...

				...

}

	Linux	 	CPU		 	do_initcalls			 	initcall			 	do_initcall_level		

static	void	__init	do_initcalls(void)

{

				int	level;

				for	(level	=	0;	level	<	ARRAY_SIZE(initcall_levels)	-	1;	level++)

								do_initcall_level(level);

}

	initcall_levels			 	__define_initcall		

static	initcall_t	*initcall_levels[]	__initdata	=	{

				__initcall0_start,

				__initcall1_start,

				__initcall2_start,

				__initcall3_start,

				__initcall4_start,

				__initcall5_start,

				__initcall6_start,

				__initcall7_start,

				__initcall_end,

};

	Linux		 	arch/x86/kernel/vmlinux.lds		

.init.data	:	AT(ADDR(.init.data)	-	0xffffffff80000000)	{

				...

				...

				...

				...

				__initcall_start	=	.;

				*(.initcallearly.init)

				__initcall0_start	=	.;

				*(.initcall0.init)

				*(.initcall0s.init)

				__initcall1_start	=	.;

				...

				...

initcall	

408

https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/init/main.c


}

	do_initcall_level			-	 	initcall			 	initcall_command_line		 kernel/params.c	 	parse_args		
	do_on_initcall		

for	(fn	=	initcall_levels[level];	fn	<	initcall_levels[level+1];	fn++)

								do_one_initcall(*fn);

	do_on_initcall			 	initcall		

int	__init_or_module	do_one_initcall(initcall_t	fn)

{

				int	count	=	preempt_count();

				int	ret;

				char	msgbuf[64];

				if	(initcall_blacklisted(fn))

								return	-EPERM;

				if	(initcall_debug)

								ret	=	do_one_initcall_debug(fn);

				else

								ret	=	fn();

				msgbuf[0]	=	0;

				if	(preempt_count()	!=	count)	{

								sprintf(msgbuf,	"preemption	imbalance	");

								preempt_count_set(count);

				}

				if	(irqs_disabled())	{

								strlcat(msgbuf,	"disabled	interrupts	",	sizeof(msgbuf));

								local_irq_enable();

				}

				WARN(msgbuf[0],	"initcall	%pF	returned	with	%s\n",	fn,	msgbuf);

				return	ret;

}

	 	do_on_initcall			 preemption		 	initcall_backlist			 	initcalls			 	blacklisted_initcalls	

	 	initcall		

list_for_each_entry(entry,	&blacklisted_initcalls,	next)	{

				if	(!strcmp(fn_name,	entry->buf))	{

								pr_debug("initcall	%s	blacklisted\n",	fn_name);

								kfree(fn_name);

								return	true;

				}

}

	 	initcalls			 	blacklisted_initcalls			Linux		Linux	

	 	initcalls		 	initcall	

if	(initcall_debug)

				ret	=	do_one_initcall_debug(fn);

else

				ret	=	fn();

	 	initcall_debug		 	do_one_initcall_debug			 	initcall		 	fn()		initcall_debug		

bool	initcall_debug;

initcall	

409

https://en.wikipedia.org/wiki/Linker_%28computing%29
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/kernel/params.c
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://github.com/torvalds/linux/blob/master/init/main.c


	 	initcall_debug		Linux

initcall_debug				[KNL]	Trace	initcalls	as	they	are	executed.		Useful

																						for	working	out	where	the	kernel	is	dying	during

																						startup.

	 	do_one_initcall_debug			 	do_one_initcall		 	do_one_initcall_debug			 	initcall		 	initcall		
pid	initcall		

static	int	__init_or_module	do_one_initcall_debug(initcall_t	fn)

{

				ktime_t	calltime,	delta,	rettime;

				unsigned	long	long	duration;

				int	ret;

				printk(KERN_DEBUG	"calling		%pF	@	%i\n",	fn,	task_pid_nr(current));

				calltime	=	ktime_get();

				ret	=	fn();

				rettime	=	ktime_get();

				delta	=	ktime_sub(rettime,	calltime);

				duration	=	(unsigned	long	long)	ktime_to_ns(delta)	>>	10;

				printk(KERN_DEBUG	"initcall	%pF	returned	%d	after	%lld	usecs\n",

									fn,	ret,	duration);

				return	ret;

}

	 	initcall			 	do_one_initcall			 	do_one_initcall_debug			 	do_one_initcall		initcall	 	__preempt_count_add		
	__preempt_count_sub			 	preemption	imbalance		

if	(preempt_count()	!=	count)	{

				sprintf(msgbuf,	"preemption	imbalance	");

				preempt_count_set(count);

}

	 IRQs		 	disabled	interrupts			 	IRQs		 	IRQs			 	initcall		

if	(irqs_disabled())	{

				strlcat(msgbuf,	"disabled	interrupts	",	sizeof(msgbuf));

				local_irq_enable();

}

Linux		Linux		 	initcall			 	initcall		

	 	initcalls		 	rootfs	initcalls		 include/linux/init.h		 	rootfs_initcall		

#define	rootfs_initcall(fn)								__define_initcall(fn,	rootfs)

	 rootfs		 init/initramfs.c		 	populate_rootfs			 initramfs

rootfs_initcall(populate_rootfs);

[				0.199960]	Unpacking	initramfs...

	 	rootfs_initcall			 	console_initcall		 	security_initcall			 	initcall			 	*_initcall_sync		
	*_initcall			 	_sync		

initcall	

410

https://en.wikipedia.org/wiki/Dmesg
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://en.wikipedia.org/wiki/Initramfs
https://github.com/torvalds/linux/blob/master/init/initramfs.c
https://en.wikipedia.org/wiki/Initramfs


#define	core_initcall_sync(fn)								__define_initcall(fn,	1s)

#define	postcore_initcall_sync(fn)				__define_initcall(fn,	2s)

#define	arch_initcall_sync(fn)								__define_initcall(fn,	3s)

#define	subsys_initcall_sync(fn)				__define_initcall(fn,	4s)

#define	fs_initcall_sync(fn)								__define_initcall(fn,	5s)

#define	device_initcall_sync(fn)				__define_initcall(fn,	6s)

#define	late_initcall_sync(fn)								__define_initcall(fn,	7s)

	Linux		Linux	

	twitter	 0xAX		 email	 issue

	PR	 linux-insides.

callback
debugfs
integer	type
symbols	concatenation
GCC
Link	time	optimization
Introduction	to	linkers
Linux	kernel	command	line
Process	identifier
IRQs
rootfs
previous	part

initcall	

411

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Callback_%28computer_programming%29
https://en.wikipedia.org/wiki/Debugfs
https://en.wikipedia.org/wiki/Integer
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Initramfs


Notification	Chains	in	Linux	Kernel

Introduction

The	Linux	kernel	is	huge	piece	of	C)	code	which	consists	from	many	different	subsystems.	Each	subsystem	has	its	own	purpose	which
is	independent	of	other	subsystems.	But	often	one	subsystem	wants	to	know	something	from	other	subsystem(s).	There	is	special
mechanism	in	the	Linux	kernel	which	allows	to	solve	this	problem	partly.	The	name	of	this	mechanism	is	-		notification	chains		and
its	main	purpose	to	provide	a	way	for	different	subsystems	to	subscribe	on	asynchronous	events	from	other	subsystems.	Note	that	this
mechanism	is	only	for	communication	inside	kernel,	but	there	are	other	mechanisms	for	communication	between	kernel	and	userspace.

Before	we	will	consider		notification	chains		API	and	implementation	of	this	API,	let's	look	at		Notification	chains		mechanism
from	theoretical	side	as	we	did	it	in	other	parts	of	this	book.	Everything	which	is	related	to		notification	chains		mechanism	is
located	in	the	include/linux/notifier.h	header	file	and	kernel/notifier.c	source	code	file.	So	let's	open	them	and	start	to	dive.

Notification	Chains	related	data	structures
Let's	start	to	consider		notification	chains		mechanism	from	related	data	structures.	As	I	wrote	above,	main	data	structures	should	be
located	in	the	include/linux/notifier.h	header	file,	so	the	Linux	kernel	provides	generic	API	which	does	not	depend	on	certain
architecture.	In	general,	the		notification	chains		mechanism	represents	a	list	(that's	why	it	named		chains	)	of	callback)	functions
which	are	will	be	executed	when	an	event	will	be	occurred.

All	of	these	callback	functions	are	represented	as		notifier_fn_t		type	in	the	Linux	kernel:

typedef				int	(*notifier_fn_t)(struct	notifier_block	*nb,	unsigned	long	action,	void	*data);

So	we	may	see	that	it	takes	three	following	arguments:

	nb		-	is	linked	list	of	function	pointers	(will	see	it	now);
	action		-	is	type	of	an	event.	A	notification	chain	may	support	multiple	events,	so	we	need	this	parameter	to	distinguish	an	event
from	other	events;
	data		-	is	storage	for	private	information.	Actually	it	allows	to	provide	additional	data	information	about	an	event.

Additionally	we	may	see	that		notifier_fn_t		returns	an	integer	value.	This	integer	value	maybe	one	of:

	NOTIFY_DONE		-	subscriber	does	not	interested	in	notification;
	NOTIFY_OK		-	notification	was	processed	correctly;
	NOTIFY_BAD		-	something	went	wrong;
	NOTIFY_STOP		-	notification	is	done,	but	no	further	callbacks	should	be	called	for	this	event.

All	of	these	results	defined	as	macros	in	the	include/linux/notifier.h	header	file:

#define	NOTIFY_DONE								0x0000

#define	NOTIFY_OK								0x0001

#define	NOTIFY_BAD								(NOTIFY_STOP_MASK|0x0002)

#define	NOTIFY_STOP								(NOTIFY_OK|NOTIFY_STOP_MASK)

Where		NOTIFY_STOP_MASK		represented	by	the:

#define	NOTIFY_STOP_MASK				0x8000

macro	and	means	that	callbacks	will	not	be	called	during	next	notifications.

Each	part	of	the	Linux	kernel	which	wants	to	be	notified	on	a	certain	event	will	should	provide	own		notifier_fn_t		callback	function.
Main	role	of	the		notification	chains		mechanism	is	to	call	certain	callbacks	when	an	asynchronous	event	occurred.

Linux	

412

https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://github.com/torvalds/linux/blob/master/kernel/notifier.c
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://en.wikipedia.org/wiki/Callback_(computer_programming
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h


The	main	building	block	of	the		notification	chains		mechanism	is	the		notifier_block		structure:

struct	notifier_block	{

				notifier_fn_t	notifier_call;

				struct	notifier_block	__rcu	*next;

				int	priority;

};

which	is	defined	in	the	include/linux/notifier.h	file.	This	struct	contains	pointer	to	callback	function	-		notifier_call	,	link	to	the	next
notification	callback	and		priority		of	a	callback	function	as	functions	with	higher	priority	are	executed	first.

The	Linux	kernel	provides	notification	chains	of	four	following	types:

Blocking	notifier	chains;
SRCU	notifier	chains;
Atomic	notifier	chains;
Raw	notifier	chains.

Let's	consider	all	of	these	types	of	notification	chains	by	order:

In	the	first	case	for	the		blocking	notifier	chains	,	callbacks	will	be	called/executed	in	process	context.	This	means	that	the	calls	in	a
notification	chain	may	be	blocked.

The	second		SRCU	notifier	chains		represent	alternative	form	of		blocking	notifier	chains	.	In	the	first	case,	blocking	notifier
chains	uses		rw_semaphore		synchronization	primitive	to	protect	chain	links.		SRCU		notifier	chains	run	in	process	context	too,	but	uses
special	form	of	RCU	mechanism	which	is	permissible	to	block	in	an	read-side	critical	section.

In	the	third	case	for	the		atomic	notifier	chains		runs	in	interrupt	or	atomic	context	and	protected	by	spinlock	synchronization
primitive.	The	last		raw	notifier	chains		provides	special	type	of	notifier	chains	without	any	locking	restrictions	on	callbacks.	This
means	that	protection	rests	on	the	shoulders	of	caller	side.	It	is	very	useful	when	we	want	to	protect	our	chain	with	very	specific	locking
mechanism.

If	we	will	look	at	the	implementation	of	the		notifier_block		structure,	we	will	see	that	it	contains	pointer	to	the		next		element	from	a
notification	chain	list,	but	we	have	no	head.	Actually	a	head	of	such	list	is	in	separate	structure	depends	on	type	of	a	notification	chain.
For	example	for	the		blocking	notifier	chains	:

struct	blocking_notifier_head	{

				struct	rw_semaphore	rwsem;

				struct	notifier_block	__rcu	*head;

};

or	for		atomic	notification	chains	:

struct	atomic_notifier_head	{

				spinlock_t	lock;

				struct	notifier_block	__rcu	*head;

};

Now	as	we	know	a	little	about		notification	chains		mechanism	let's	consider	implementation	of	its	API.

Notification	Chains
Usually	there	are	two	sides	in	a	publish/subscriber	mechanisms.	One	side	who	wants	to	get	notifications	and	other	side(s)	who	generates
these	notifications.	We	will	consider	notification	chains	mechanism	from	both	sides.	We	will	consider		blocking	notification	chains	
in	this	part,	because	of	other	types	of	notification	chains	are	similar	to	it	and	differs	mostly	in	protection	mechanisms.

Before	a	notification	producer	is	able	to	produce	notification,	first	of	all	it	should	initialize	head	of	a	notification	chain.	For	example
let's	consider	notification	chains	related	to	kernel	loadable	modules.	If	we	will	look	in	the	kernel/module.c	source	code	file,	we	will	see
following	definition:

Linux	

413

https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://github.com/torvalds/linux/blob/master/kernel/module.c


static	BLOCKING_NOTIFIER_HEAD(module_notify_list);

which	defines	head	for	loadable	modules	blocking	notifier	chain.	The		BLOCKING_NOTIFIER_HEAD		macro	is	defined	in	the
include/linux/notifier.h	header	file	and	expands	to	the	following	code:

#define	BLOCKING_INIT_NOTIFIER_HEAD(name)	do	{				\

								init_rwsem(&(name)->rwsem);																																\

								(name)->head	=	NULL;																																				\

				}	while	(0)

So	we	may	see	that	it	takes	name	of	a	name	of	a	head	of	a	blocking	notifier	chain	and	initializes	read/write	semaphore	and	set	head	to
	NULL	.	Besides	the		BLOCKING_INIT_NOTIFIER_HEAD		macro,	the	Linux	kernel	additionally	provides		ATOMIC_INIT_NOTIFIER_HEAD	,
	RAW_INIT_NOTIFIER_HEAD		macros	and		srcu_init_notifier		function	for	initialization	atomic	and	other	types	of	notification	chains.

After	initialization	of	a	head	of	a	notification	chain,	a	subsystem	which	wants	to	receive	notification	from	the	given	notification	chain	it
should	register	with	certain	function	which	is	depends	on	type	of	notification.	If	you	will	look	in	the	include/linux/notifier.h	header	file,
you	will	see	following	four	function	for	this:

extern	int	atomic_notifier_chain_register(struct	atomic_notifier_head	*nh,

								struct	notifier_block	*nb);

extern	int	blocking_notifier_chain_register(struct	blocking_notifier_head	*nh,

								struct	notifier_block	*nb);

extern	int	raw_notifier_chain_register(struct	raw_notifier_head	*nh,

								struct	notifier_block	*nb);

extern	int	srcu_notifier_chain_register(struct	srcu_notifier_head	*nh,

								struct	notifier_block	*nb);

As	I	already	wrote	above,	we	will	cover	only	blocking	notification	chains	in	the	part,	so	let's	consider	implementation	of	the
	blocking_notifier_chain_register		function.	Implementation	of	this	function	is	located	in	the	kernel/notifier.c	source	code	file	and	as
we	may	see	the		blocking_notifier_chain_register		takes	two	parameters:

	nh		-	head	of	a	notification	chain;
	nb		-	notification	descriptor.

Now	let's	look	at	the	implementation	of	the		blocking_notifier_chain_register		function:

int	raw_notifier_chain_register(struct	raw_notifier_head	*nh,

								struct	notifier_block	*n)

{

				return	notifier_chain_register(&nh->head,	n);

}

As	we	may	see	it	just	returns	result	of	the		notifier_chain_register		function	from	the	same	source	code	file	and	as	we	may
understand	this	function	does	all	job	for	us.	Definition	of	the		notifier_chain_register		function	looks:

int	blocking_notifier_chain_register(struct	blocking_notifier_head	*nh,

								struct	notifier_block	*n)

{

				int	ret;

				if	(unlikely(system_state	==	SYSTEM_BOOTING))

								return	notifier_chain_register(&nh->head,	n);

				down_write(&nh->rwsem);

				ret	=	notifier_chain_register(&nh->head,	n);

				up_write(&nh->rwsem);

				return	ret;

}

Linux	

414

https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://github.com/torvalds/linux/blob/master/kernel/notifier.c


As	we	may	see	implementation	of	the		blocking_notifier_chain_register		is	pretty	simple.	First	of	all	there	is	check	which	check
current	system	state	and	if	a	system	in	rebooting	state	we	just	call	the		notifier_chain_register	.	In	other	way	we	do	the	same	call	of
the		notifier_chain_register		but	as	you	may	see	this	call	is	protected	with	read/write	semaphores.	Now	let's	look	at	the
implementation	of	the		notifier_chain_register		function:

static	int	notifier_chain_register(struct	notifier_block	**nl,

								struct	notifier_block	*n)

{

				while	((*nl)	!=	NULL)	{

								if	(n->priority	>	(*nl)->priority)

												break;

								nl	=	&((*nl)->next);

				}

				n->next	=	*nl;

				rcu_assign_pointer(*nl,	n);

				return	0;

}

This	function	just	inserts	new		notifier_block		(given	by	a	subsystem	which	wants	to	get	notifications)	to	the	notification	chain	list.
Besides	subscribing	on	an	event,	subscriber	may	unsubscribe	from	a	certain	events	with	the	set	of		unsubscribe		functions:

extern	int	atomic_notifier_chain_unregister(struct	atomic_notifier_head	*nh,

								struct	notifier_block	*nb);

extern	int	blocking_notifier_chain_unregister(struct	blocking_notifier_head	*nh,

								struct	notifier_block	*nb);

extern	int	raw_notifier_chain_unregister(struct	raw_notifier_head	*nh,

								struct	notifier_block	*nb);

extern	int	srcu_notifier_chain_unregister(struct	srcu_notifier_head	*nh,

								struct	notifier_block	*nb);

When	a	producer	of	notifications	wants	to	notify	subscribers	about	an	event,	the		*.notifier_call_chain		function	will	be	called.	As
you	already	may	guess	each	type	of	notification	chains	provides	own	function	to	produce	notification:

extern	int	atomic_notifier_call_chain(struct	atomic_notifier_head	*nh,

								unsigned	long	val,	void	*v);

extern	int	blocking_notifier_call_chain(struct	blocking_notifier_head	*nh,

								unsigned	long	val,	void	*v);

extern	int	raw_notifier_call_chain(struct	raw_notifier_head	*nh,

								unsigned	long	val,	void	*v);

extern	int	srcu_notifier_call_chain(struct	srcu_notifier_head	*nh,

								unsigned	long	val,	void	*v);

Let's	consider	implementation	of	the		blocking_notifier_call_chain		function.	This	function	is	defined	in	the	kernel/notifier.c	source
code	file:

int	blocking_notifier_call_chain(struct	blocking_notifier_head	*nh,

								unsigned	long	val,	void	*v)

{

				return	__blocking_notifier_call_chain(nh,	val,	v,	-1,	NULL);

}

and	as	we	may	see	it	just	returns	result	of	the		__blocking_notifier_call_chain		function.	As	we	may	see,	the
	blocking_notifer_call_chain		takes	three	parameters:

	nh		-	head	of	notification	chain	list;
	val		-	type	of	a	notification;

Linux	

415

https://github.com/torvalds/linux/blob/master/kernel/notifier.c


	v		-	input	parameter	which	may	be	used	by	handlers.

But	the		__blocking_notifier_call_chain		function	takes	five	parameters:

int	__blocking_notifier_call_chain(struct	blocking_notifier_head	*nh,

																			unsigned	long	val,	void	*v,

																			int	nr_to_call,	int	*nr_calls)

{

				...

				...

				...

}

Where		nr_to_call		and		nr_calls		are	number	of	notifier	functions	to	be	called	and	number	of	sent	notifications.	As	you	may	guess
the	main	goal	of	the		__blocking_notifer_call_chain		function	and	other	functions	for	other	notification	types	is	to	call	callback
function	when	an	event	occurred.	Implementation	of	the		__blocking_notifier_call_chain		is	pretty	simple,	it	just	calls	the
	notifier_call_chain		function	from	the	same	source	code	file	protected	with	read/write	semaphore:

int	__blocking_notifier_call_chain(struct	blocking_notifier_head	*nh,

																			unsigned	long	val,	void	*v,

																			int	nr_to_call,	int	*nr_calls)

{

				int	ret	=	NOTIFY_DONE;

				if	(rcu_access_pointer(nh->head))	{

								down_read(&nh->rwsem);

								ret	=	notifier_call_chain(&nh->head,	val,	v,	nr_to_call,

																				nr_calls);

								up_read(&nh->rwsem);

				}

				return	ret;

}

and	returns	its	result.	In	this	case	all	job	is	done	by	the		notifier_call_chain		function.	Main	purpose	of	this	function	informs
registered	notifiers	about	an	asynchronous	event:

static	int	notifier_call_chain(struct	notifier_block	**nl,

																			unsigned	long	val,	void	*v,

																			int	nr_to_call,	int	*nr_calls)

{

				...

				...

				...

				ret	=	nb->notifier_call(nb,	val,	v);

				...

				...

				...

				return	ret;

}

That's	all.	In	generall	all	looks	pretty	simple.

Now	let's	consider	on	a	simple	example	related	to	loadable	modules.	If	we	will	look	in	the	kernel/module.c.	As	we	already	saw	in	this
part,	there	is:

static	BLOCKING_NOTIFIER_HEAD(module_notify_list);

definition	of	the		module_notify_list		in	the	kernel/module.c	source	code	file.	This	definition	determines	head	of	list	of	blocking
notifier	chains	related	to	kernel	modules.	There	are	at	least	three	following	events:

MODULE_STATE_LIVE
MODULE_STATE_COMING
MODULE_STATE_GOING

Linux	

416

https://en.wikipedia.org/wiki/Loadable_kernel_module
https://github.com/torvalds/linux/blob/master/kernel/module.c
https://github.com/torvalds/linux/blob/master/kernel/module.c


in	which	maybe	interested	some	subsystems	of	the	Linux	kernel.	For	example	tracing	of	kernel	modules	states.	Instead	of	direct	call	of
the		atomic_notifier_chain_register	,		blocking_notifier_chain_register		and	etc.,	most	notification	chains	come	with	a	set	of
wrappers	used	to	register	to	them.	Registatrion	on	these	modules	events	is	going	with	the	help	of	such	wrapper:

int	register_module_notifier(struct	notifier_block	*nb)

{

				return	blocking_notifier_chain_register(&module_notify_list,	nb);

}

If	we	will	look	in	the	kernel/tracepoint.c	source	code	file,	we	will	see	such	registration	during	initialization	of	tracepoints:

static	__init	int	init_tracepoints(void)

{

				int	ret;

				ret	=	register_module_notifier(&tracepoint_module_nb);

				if	(ret)

								pr_warn("Failed	to	register	tracepoint	module	enter	notifier\n");

				return	ret;

}

Where		tracepoint_module_nb		provides	callback	function:

static	struct	notifier_block	tracepoint_module_nb	=	{

				.notifier_call	=	tracepoint_module_notify,

				.priority	=	0,

};

When	one	of	the		MODULE_STATE_LIVE	,		MODULE_STATE_COMING		or		MODULE_STATE_GOING		events	occurred.	For	example	the
	MODULE_STATE_LIVE		the		MODULE_STATE_COMING		notifications	will	be	sent	during	execution	of	the	init_module	system	call.	Or	for
example		MODULE_STATE_GOING		will	be	sent	during	execution	of	the	delete_module		system	call	:

SYSCALL_DEFINE2(delete_module,	const	char	__user	*,	name_user,

								unsigned	int,	flags)

{

				...

				...

				...

				blocking_notifier_call_chain(&module_notify_list,

																					MODULE_STATE_GOING,	mod);

				...

				...

				...

}

Thus	when	one	of	these	system	call	will	be	called	from	userspace,	the	Linux	kernel	will	send	certain	notification	depends	on	a	system
call	and	the		tracepoint_module_notify		callback	function	will	be	called.

That's	all.

Links

C	programming	langauge)
API
callback)
RCU
spinlock
loadable	modules

Linux	

417

https://github.com/torvalds/linux/blob/master/kernel/tracepoint.c
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
http://man7.org/linux/man-pages/man2/init_module.2.html
http://man7.org/linux/man-pages/man2/delete_module.2.html
https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Callback_(computer_programming
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Loadable_kernel_module


semaphore
tracepoints
system	call
init_module	system	call
delete_module
previous	part

Linux	

418

https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
http://man7.org/linux/man-pages/man2/init_module.2.html
http://man7.org/linux/man-pages/man2/delete_module.2.html


Linux
LinuxB+

Linux	

419



Linux	——

Linux		 include/linux/list.h	 			 free-electrons.com	

	 include/linux/types.h	

struct	list_head	{

				struct	list_head	*next,	*prev;

};

	 glib	

struct	GList	{

		gpointer	data;

		GList	*next;

		GList	*prev;

};

	 			-

struct	nmi_desc	{

				spinlock_t	lock;

				struct	list_head	head;

};

	 	list_head			 drivers/char/misc.c	API	

#define	MISC_MAJOR														10

ls	-l	/dev	|		grep	10

crw-------			1	root	root					10,	235	Mar	21	12:01	autofs

drwxr-xr-x		10	root	root									200	Mar	21	12:01	cpu

crw-------			1	root	root					10,		62	Mar	21	12:01	cpu_dma_latency

crw-------			1	root	root					10,	203	Mar	21	12:01	cuse

drwxr-xr-x			2	root	root									100	Mar	21	12:01	dri

crw-rw-rw-			1	root	root					10,	229	Mar	21	12:01	fuse

crw-------			1	root	root					10,	228	Mar	21	12:01	hpet

crw-------			1	root	root					10,	183	Mar	21	12:01	hwrng

crw-rw----+		1	root	kvm						10,	232	Mar	21	12:01	kvm

crw-rw----			1	root	disk					10,	237	Mar	21	12:01	loop-control

crw-------			1	root	root					10,	227	Mar	21	12:01	mcelog

crw-------			1	root	root					10,		59	Mar	21	12:01	memory_bandwidth

crw-------			1	root	root					10,		61	Mar	21	12:01	network_latency

crw-------			1	root	root					10,		60	Mar	21	12:01	network_throughput

crw-r-----			1	root	kmem					10,	144	Mar	21	12:01	nvram

brw-rw----			1	root	disk						1,		10	Mar	21	12:01	ram10

crw--w----			1	root	tty							4,		10	Mar	21	12:01	tty10

crw-rw----			1	root	dialout			4,		74	Mar	21	12:01	ttyS10

crw-------			1	root	root					10,		63	Mar	21	12:01	vga_arbiter

crw-------			1	root	root					10,	137	Mar	21	12:01	vhci

	 	miscdevice		

420

https://github.com/torvalds/linux/blob/master/include/linux/list.h
https://elixir.bootlin.com/linux/latest/A/ident/list_head
https://github.com/torvalds/linux/blob/master/include/linux/types.h
http://www.gnu.org/software/libc/
https://github.com/torvalds/linux/blob/master/drivers/char/misc.c


struct	miscdevice

{

						int	minor;

						const	char	*name;

						const	struct	file_operations	*fops;

						struct	list_head	list;

						struct	device	*parent;

						struct	device	*this_device;

						const	char	*nodename;

						mode_t	mode;

};

	 	list		

static	LIST_HEAD(misc_list);

	 	list_head		

#define	LIST_HEAD(name)	\

				struct	list_head	name	=	LIST_HEAD_INIT(name)

	 	LIST_HEAD_INIT			 	name			 	prev			 	next		

#define	LIST_HEAD_INIT(name)	{	&(name),	&(name)	}

	 	misc_register			 	INIT_LIST_HEAD			miscdevice->list	

INIT_LIST_HEAD(&misc->list);

	 	LIST_HEAD_INIT	

static	inline	void	INIT_LIST_HEAD(struct	list_head	*list)

{

				list->next	=	list;

				list->prev	=	list;

}

	 	device_create		

list_add(&misc->list,	&misc_list);

	 	list.h		

static	inline	void	list_add(struct	list_head	*new,	struct	list_head	*head)

{

				__list_add(new,	head,	head->next);

}

3	 	__list_add	

new	-	
head	-		head		.
head->next	-		head		

	__list_add	

static	inline	void	__list_add(struct	list_head	*new,

																		struct	list_head	*prev,

																		struct	list_head	*next)

421



{

				next->prev	=	new;

				new->next	=	next;

				new->prev	=	prev;

				prev->next	=	new;

}

	 	prev			 	next			 	LIST_HEAD_INIT			 	misc			 	miscdevice->list		

#define	list_entry(ptr,	type,	member)	\

				container_of(ptr,	type,	member)

ptr	-	
type	-	;
member	-		 	list_head		

const	struct	miscdevice	*p	=	list_entry(v,	struct	miscdevice,	list)

	 	p->minor			 	p->name		 	miscdevice		 	list_entry		

#define	list_entry(ptr,	type,	member)	\

				container_of(ptr,	type,	member)

	 	container_of	

#define	container_of(ptr,	type,	member)	({																						\

				const	typeof(	((type	*)0)->member	)	*__mptr	=	(ptr);				\

				(type	*)(	(char	*)__mptr	-	offsetof(type,member)	);})

#include	<stdio.h>

int	main()	{

				int	i	=	0;

				printf("i	=	%d\n",	({++i;	++i;}));

				return	0;

}

	 	2	

	 	typeof	,	 	container_of			 	container_of			0		 	0		

#include	<stdio.h>

struct	s	{

								int	field1;

								char	field2;

				char	field3;

};

int	main()	{

				printf("%p\n",	&((struct	s*)0)->field3);

				return	0;

422



}

	 	0x5	

	 	offsetof		

#define	offsetof(TYPE,	MEMBER)	((size_t)	&((TYPE	*)0)->MEMBER)

	container_of		type		 	list_head			member		ptr	) 	__mptr	 	ptr	 	list_head		 	type	

	member	

	ptr		struct	list_head	*	 	imcompatible	pointer	types	warning 	((type	*)0)->member		type		member	

	 	offsetof		

	list_add			 	list_entry			 	<linux/list.h>		API

list_add
list_add_tail
list_del
list_replace
list_move
list_is_last
list_empty
list_cut_position
list_splice
list_for_each
list_for_each_entry

	API

423



Linux

	Linux			 Radix	treeLinux		 	radix	tree		API

include/linux/radix-tree.h
lib/radix-tree.c

	 	radix	tree		Radix	tree		 		trie 		 trie	associative	array	 	-key-value 		

trie		 	n-tree		

               +-----------+
               |           |
               |    "	"    |
															|											|

        +------+-----------+------+
        |                         |
        |                         |
   +----v------+            +-----v-----+
   |           |            |           |
   |    g      |            |     c     |
			|											|												|											|

   +-----------+            +-----------+
        |                         |
        |                         |
   +----v------+            +-----v-----+
   |           |            |           |
   |    o      |            |     a     |
			|											|												|											|

   +-----------+            +-----------+
                                  |
                                  |
                            +-----v-----+
                            |           |
                            |     t     |
																												|											|

                            +-----------+

	 	trie			 	go			 	cat		trie		 	radix	tree			 	trie		

Linux		Radix	Radix		 include/linux/radix-tree.h		:

struct	radix_tree_root	{

									unsigned	int												height;

									gfp_t																			gfp_mask;

									struct	radix_tree_node		__rcu	*rnode;

};

	radix		root	

	height		-	
	gfp_mask		-	
	rnode		-	

	 	gfp_mask		:

Linux	flag	-	 	gfp_mask			 	GFP_		 	GFP_NOIO		IO 	__GFP_HIGHMEM		 	GFP_ATOMIC		

	rnode	

424

http://en.wikipedia.org/wiki/Radix_tree
https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h
https://github.com/torvalds/linux/blob/master/lib/radix-tree.c
http://en.wikipedia.org/wiki/Trie
https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h


struct	radix_tree_node	{

								unsigned	int				path;

								unsigned	int				count;

								union	{

																struct	{

																								struct	radix_tree_node	*parent;

																								void	*private_data;

																};

																struct	rcu_head	rcu_head;

								};

								/*	For	tree	user	*/

								struct	list_head	private_list;

								void	__rcu						*slots[RADIX_TREE_MAP_SIZE];

								unsigned	long			tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];

};

	path		-	
	count		-	
	parent		-	
	private_data		-	
	rcu_head		-	RCU
	private_list		-	

	 	radix_tree_node			 	tags			 	slots			Radix		slots		slots		NULL	Linux		Radix		 	tags		
Radix	

	radix		radix		API

Linux		API

radix	

	 	RADIX_TREE		

RADIX_TREE(name,	gfp_mask);

`

	 	name			 	RADIX_TREE			radix	 	RADIX_TREE		

#define	RADIX_TREE(name,	mask)	\

									struct	radix_tree_root	name	=	RADIX_TREE_INIT(mask)

#define	RADIX_TREE_INIT(mask)			{	\

								.height	=	0,														\

								.gfp_mask	=	(mask),							\

								.rnode	=	NULL,												\

}

	RADIX_TREE			 	name			 	radix_tree_root			 	RADIX_TREE_INIT			 	mask			 	RADIX_TREE_INIT			 	radix_tree_root	

	gfp_mask		 	mask				 	radix_tree_root			 	mask			 	INIT_RADIX_TREE		

struct	radix_tree_root	my_radix_tree;

INIT_RADIX_TREE(my_tree,	gfp_mask_for_my_radix_tree);

	INIT_RADIX_TREE		

#define	INIT_RADIX_TREE(root,	mask)		\

do	{																																	\

425



								(root)->height	=	0;										\

								(root)->gfp_mask	=	(mask);			\

								(root)->rnode	=	NULL;								\

}	while	(0)

	 	INIT_RADIX_TREE			 	RADIX_TREE_INIT		

	radix	

	radix_tree_insert	;
	radix_tree_delete	.

	 	radix_tree_insert		

radix		root	

	 	radix_tree_delete			 	radix_tree_insert		

radix	The	search	in	a	radix	tree	implemented	in	two	ways:

	radix_tree_lookup	;
	radix_tree_gang_lookup	;
	radix_tree_lookup_slot	.

	 	radix_tree_lookup		

radix		root	

	radix	

	 	radix_tree_gang_lookup		

unsigned	int	radix_tree_gang_lookup(struct	radix_tree_root	*root,

																																				void	**results,

																																				unsigned	long	first_index,

																																				unsigned	int	max_items);

	 	max_items		

	 	radix_tree_lookup_slot			slot	

Radix	tree
Trie

426

http://en.wikipedia.org/wiki/Radix_tree
http://en.wikipedia.org/wiki/Trie


Linux	——

Linux	

Linux	 bitmap	 API	Linux		 	API	

lib/bitmap.c
include/linux/bitmap.h

	 x86_64	

arch/x86/include/asm/bitops.h

			Linux	 		/ 	CPU	 cpumasks		bit	array	Linux	

bit	array	Linux	

			 	API			Linux		 	unsigned	long		

unsigned	long	my_bitmap[8]

	 	DECLARE_BITMAP			 include/linux/types.h	

#define	DECLARE_BITMAP(name,bits)	\

				unsigned	long	name[BITS_TO_LONGS(bits)]

	 	DECLARE_BITMAP		

	name		-	;
	bits		-	;

	 	BITS_TO_LONGS(bits)			 	unsigned	long			 	BITS_TO_LONGS			 	long			 	bits			 	8		

#define	BITS_PER_BYTE											8

#define	DIV_ROUND_UP(n,d)	(((n)	+	(d)	-	1)	/	(d))

#define	BITS_TO_LONGS(nr)							DIV_ROUND_UP(nr,	BITS_PER_BYTE	*	sizeof(long))

	 	DECLARE_BITMAP(my_bitmap,	64)		

>>>	(((64)	+	(64)	-	1)	/	(64))

1

unsigned	long	my_bitmap[1];

427

https://en.wikipedia.org/wiki/Linked_data_structure
https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/lib/bitmap.c
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/types.h


	 API	API		 arch/x86/include/asm/bitops.h

	set_bit	;
	clear_bit	.

	 arch/x86/include/asm/bitops.h	 atomic

	x86			 xchgcmpxchg		 lock		 	set_bit			 	clear_bit		

non-atomic	 	set_bit			 	clear_bit			 arch/x86/include/asm/bitops.h		 	__set_bit	:

static	inline	void	__set_bit(long	nr,	volatile	unsigned	long	*addr)

{

				asm	volatile("bts	%1,%0"	:	ADDR	:	"Ir"	(nr)	:	"memory");

}

	nr		-	LCTT		0
	addr		-	

	addr			 	volatile			 	__set_bit		 	 bts		 	nr		 CF	LCTT		 	nr			1

	 	nr			 	addr			 	ADDR		 	ADDR			 	+m		

#define	ADDR																BITOP_ADDR(addr)

#define	BITOP_ADDR(x)	"+m"	(*(volatile	long	*)	(x))

	 	+m			 	__set_bit		

	+m		-		 	+		
	I		-	
	r		-	

	 	memory		atomicnon-atomic

static	__always_inline	void

set_bit(long	nr,	volatile	unsigned	long	*addr)

{

				if	(IS_IMMEDIATE(nr))	{

								asm	volatile(LOCK_PREFIX	"orb	%1,%0"

												:	CONST_MASK_ADDR(nr,	addr)

												:	"iq"	((u8)CONST_MASK(nr))

												:	"memory");

				}	else	{

								asm	volatile(LOCK_PREFIX	"bts	%1,%0"

												:	BITOP_ADDR(addr)	:	"Ir"	(nr)	:	"memory");

				}

}

LCTT	BITOP_ADDR	 	#define	BITOP_ADDR(x)	"=m"	(*(volatile	long	*)	(x))	ORB	

	 	__set_bit			 	__always_inline			 	__always_inline			 include/linux/compiler-gcc.h		 	always_inline		

#define	__always_inline	inline	__attribute__((always_inline))

	Linux		 	set_bit			 	set_bit		 	IS_IMMEDIATE			 gcc	

#define	IS_IMMEDIATE(nr)								(__builtin_constant_p(nr))

428

https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_328.html
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/Inline_assembler
http://x86.renejeschke.de/html/file_module_x86_id_25.html
https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/GNU_Compiler_Collection


	__builtin_constant_p			 	1		 	0		 	bts			 		 	1		0		 	__set_bit		
	CONST_MASK_ADDR		

#define	CONST_MASK_ADDR(nr,	addr)				BITOP_ADDR((void	*)(addr)	+	((nr)>>3))

	 	0x1000			 	0x9		 	0x9			 		+	 		 	addr	+	1	:

>>>	hex(0x1000	+	(0x9	>>	3))

'0x1001'

	CONST_MASK			 	1		 	0	

#define	CONST_MASK(nr)												(1	<<	((nr)	&	7))

>>>	bin(1	<<	(0x9	&	7))

'0b10'

	 				 	0x4097			 	9			1

>>>	bin(0x4097)

'0b100000010010111'

>>>	bin((0x4097	>>	0x9)	|	(1	<<	(0x9	&	7)))

'0b100010'

		9	 		LCTT		9		0	0010	1		1	

	 	LOCK_PREFIX			 lock	

	 	set_bit			 	__set_bit		Linux		 	clear_bit			 	__clear_bit			
	 	__clear_bit		

static	inline	void	__clear_bit(long	nr,	volatile	unsigned	long	*addr)

{

				asm	volatile("btr	%1,%0"	:	ADDR	:	"Ir"	(nr));

}

	__clear_bit			 btr		 	bts	 	btr			 	bts	LCTT		btr	bts	 	CF		

	__clear_bit			 	clear_bit	

static	__always_inline	void

clear_bit(long	nr,	volatile	unsigned	long	*addr)

{

				if	(IS_IMMEDIATE(nr))	{

								asm	volatile(LOCK_PREFIX	"andb	%1,%0"

												:	CONST_MASK_ADDR(nr,	addr)

												:	"iq"	((u8)~CONST_MASK(nr)));

				}	else	{

								asm	volatile(LOCK_PREFIX	"btr	%1,%0"

												:	BITOP_ADDR(addr)

												:	"Ir"	(nr));

				}

}

	 	set_bit			 	clear_bit			 	btr			 	set_bit			 	bts			 	clear_bit			 				 	set_bit		
			

429

https://en.wikipedia.org/wiki/Bitwise_operation#OR
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
http://x86.renejeschke.de/html/file_module_x86_id_24.html


	Linux	Linux		 	test_bit			 arch/x86/include/asm/bitops.h		 	constant_test_bit		
	variable_test_bit		

#define	test_bit(nr,	addr)												\

				(__builtin_constant_p((nr))																	\

					?	constant_test_bit((nr),	(addr))												\

					:	variable_test_bit((nr),	(addr)))

	 	nr		 	test_bit			 	constant_test_bit			 	variable_test_bit		 	variable_test_bit		

static	inline	int	variable_test_bit(long	nr,	volatile	const	unsigned	long	*addr)

{

				int	oldbit;

				asm	volatile("bt	%2,%1\n\t"

													"sbb	%0,%0"

													:	"=r"	(oldbit)

													:	"m"	(*(unsigned	long	*)addr),	"Ir"	(nr));

				return	oldbit;

}

	variable_test_bit			 	set_bit			 bt		 sbb	 	bt			 	bit	test		 CF		 	sbb			 	CF		
	CF			 	sbb			 	00000000	-	CF		 	oldbit		

	constant_test_bit			 	set_bit		

static	__always_inline	int	constant_test_bit(long	nr,	const	volatile	unsigned	long	*addr)

{

				return	((1UL	<<	(nr	&	(BITS_PER_LONG-1)))	&

								(addr[nr	>>	_BITOPS_LONG_SHIFT]))	!=	0;

}

	 	1		 	0			 	CONST_MASK			 	

Linux	

	__change_bit	;
	change_bit	.

	 	set_bit			 	__set_bit			 	__change_bit		

static	inline	void	__change_bit(long	nr,	volatile	unsigned	long	*addr)

{

				asm	volatile("btc	%1,%0"	:	ADDR	:	"Ir"	(nr));

}

	 	__change_bit			 	__set_bit			 btc		 	bts				 	CF			 	1			 	0	

>>>	int(not	1)

0

>>>	int(not	0)

1

	__change_bit			 	change_bit		

static	inline	void	change_bit(long	nr,	volatile	unsigned	long	*addr)

{

				if	(IS_IMMEDIATE(nr))	{

								asm	volatile(LOCK_PREFIX	"xorb	%1,%0"

												:	CONST_MASK_ADDR(nr,	addr)

												:	"iq"	((u8)CONST_MASK(nr)));

430

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
http://x86.renejeschke.de/html/file_module_x86_id_22.html
http://x86.renejeschke.de/html/file_module_x86_id_286.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Bitwise_operation#AND
http://x86.renejeschke.de/html/file_module_x86_id_23.html


				}	else	{

								asm	volatile(LOCK_PREFIX	"btc	%1,%0"

												:	BITOP_ADDR(addr)

												:	"Ir"	(nr));

				}

}

	 	set_bit			 	xor			 	or		 	btc		LCTT		 	bts			 	bts	

	API	

	 arch/x86/include/asm/bitops.h		API	Linux		API	 include/linux/bitmap.h		 lib/bitmap.c	
include/linux/bitops.h	

	4		

	for_each_set_bit	

	for_each_set_bit_from	

	for_each_clear_bit	

	for_each_clear_bit_from	

	 	for_each_set_bit		

#define	for_each_set_bit(bit,	addr,	size)	\

				for	((bit)	=	find_first_bit((addr),	(size));								\

									(bit)	<	(size);																				\

									(bit)	=	find_next_bit((addr),	(size),	(bit)	+	1))

	 	find_first_bit		

	 arch/x86/include/asm/bitops.h		 	64-bit			 	32-bit			API	

	 		API

	bitmap_zero	;
	bitmap_fill	.

	 	1			 	bitmap_zero		

static	inline	void	bitmap_zero(unsigned	long	*dst,	unsigned	int	nbits)

{

				if	(small_const_nbits(nbits))

								*dst	=	0UL;

				else	{

								unsigned	int	len	=	BITS_TO_LONGS(nbits)	*	sizeof(unsigned	long);

								memset(dst,	0,	len);

				}

}

	 	nbits			 	small_const_nbits			

#define	small_const_nbits(nbits)	\

				(__builtin_constant_p(nbits)	&&	(nbits)	<=	BITS_PER_LONG)

	 	nbits			 	BITS_PER_LONG			 	64		 	long			0	 	long			 memset	

	bitmap_fill			 	biramp_zero			 	0xff			 	0b11111111	

static	inline	void	bitmap_fill(unsigned	long	*dst,	unsigned	int	nbits)

431

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://github.com/torvalds/linux/blob/master/lib/bitmap.c
https://github.com/torvalds/linux/blob/master/include/linux/bitops.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
http://man7.org/linux/man-pages/man3/memset.3.html


{

				unsigned	int	nlongs	=	BITS_TO_LONGS(nbits);

				if	(!small_const_nbits(nbits))	{

								unsigned	int	len	=	(nlongs	-	1)	*	sizeof(unsigned	long);

								memset(dst,	0xff,		len);

				}

				dst[nlongs	-	1]	=	BITMAP_LAST_WORD_MASK(nbits);

}

	 	bitmap_fill			 	bitmap_zero	include/linux/bitmap.h		 	bitmap_zero			 	bitmap_copy		 memcpy		 memset	
	bitmap_and	,		bitmap_or	,		bitamp_xor		 include/linux/bitmap.h	

		 LCTT	 Linux	

bitmap
linked	data	structures
tree	data	structures
hot-plug
cpumasks
IRQs
API
atomic	operations
xchg	instruction
cmpxchg	instruction
lock	instruction
bts	instruction
btr	instruction
bt	instruction
sbb	instruction
btc	instruction
man	memcpy
man	memset
CF
inline	assembler
gcc

432

https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man3/memset.3.html
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://github.com/LCTT/TranslateProject
https://linux.cn/
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Linked_data_structure
https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_328.html
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://x86.renejeschke.de/html/file_module_x86_id_25.html
http://x86.renejeschke.de/html/file_module_x86_id_24.html
http://x86.renejeschke.de/html/file_module_x86_id_22.html
http://x86.renejeschke.de/html/file_module_x86_id_286.html
http://x86.renejeschke.de/html/file_module_x86_id_23.html
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man3/memset.3.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Inline_assembler
https://en.wikipedia.org/wiki/GNU_Compiler_Collection


Elf64	

433



	Linux	 	init		 	initrd			lockdep	

	Linux	

	64	

	Intel	

...	64	Linux	

32	
PAE	
IA-32e	

	 	IA-32e		

	 	CR0.PG		
	 	CR4.PAE		
	 	IA32_EFER.LME		

	 arch/x86/boot/compressed/head_64.S	

movl				$(X86_CR0_PG	|	X86_CR0_PE),	%eax

movl				%eax,	%cr0

and

movl				$MSR_EFER,	%ecx

rdmsr

btsl				$_EFER_LME,	%eax

wrmsr

	 	x86_64			 	4096			 	4096			 	512			 	PAE			 	IA32_EFER.LME			Linux		 	x86_64		
4CPU	

leal				pgtable(%ebx),	%eax

movl				%eax,	%cr3

	 	cr3			 	cr3			Linux		 	PML4			 	Page	Global	Directory			 	cr3		64

63																		52	51																																																								32

434

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S


	--------------------------------------------------------------------------------

|																					|																																																										|

|				Reserved	MBZ					|												Address	of	the	top	level	structure												|

|																					|																																																										|

	--------------------------------------------------------------------------------

31																																		12	11												5					4					3	2													0

	--------------------------------------------------------------------------------

|																																					|															|		P		|		P		|														|

|		Address	of	the	top	level	structure	|			Reserved				|		C		|		W		|				Reserved		|

|																																					|															|		D		|		T		|														|

	--------------------------------------------------------------------------------

	0		2		-	
	12		51		-	
	3			4		-	PWT		Page-Level	Writethrough		PCD		Page-level	Cache	Disable	
	-		0	
	52		63		-		0	

	 MMU	
64	48		 	2^48			256TB	
	cr3		
	39		47		4		30		38	3	29		21		2		12		20		1		0		11	

	 	CPL	(Current	Privilege	Level)			 	CPL	<	3		

63		62																		52	51																																																				32

	--------------------------------------------------------------------------------

|	N	|																					|																																																					|

|			|					Available							|					Address	of	the	paging	structure	on	lower	level		|

|	X	|																					|																																																					|

	--------------------------------------------------------------------------------

31																																														12	11		9	8	7	6	5			4			3	2	1					0

435

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
http://en.wikipedia.org/wiki/Memory_management_unit


	--------------------------------------------------------------------------------

|																																																|					|	M	|I|	|	P	|	P	|U|W|				|

|	Address	of	the	paging	structure	on	lower	level	|	AVL	|	B	|G|A|	C	|	W	|	|	|		P	|

|																																																|					|	Z	|N|	|	D	|	T	|S|R|				|

	--------------------------------------------------------------------------------

	63		-	N/X	
	52		62		-	CPU
	12		51		-	
	9		11		-		CPU	
MBZ	-		0	

A	-	
PWT		PCD	
U/S	-	/
R/W	-	
P	-	

	Linux		4	

Linux	

	 	x86_64	Linux	4

	Linux		 	System.map	

$	grep	"start_kernel"	System.map

ffffffff81efe497	T	x86_64_start_kernel

ffffffff81efeaa2	T	start_kernel

	 	0xffffffff81efe497			 	start_kernel			 	x86_64_start_kernel			 	x86_64			 	2^64			48	
	48		64		

0xffffffffffffffff		+-----------+

																				|											|

																				|											|	Kernelspace

																				|											|

	0xffff800000000000	+-----------+

																				|											|

																				|											|

																				|			hole				|

																				|											|

																				|											|

0x00007fffffffffff		+-----------+

																				|											|

																				|											|		Userspace

																				|											|

0x0000000000000000  +-----------+

	 	sign	extension			48		48		63		0		1	

436



	 	0x000000000000000			 	0x00007fffffffffff			 	0xffff8000000000			 	0xffffffffffffffff			48		63		0	
	1		48		

0000000000000000	-	00007fffffffffff	(=47	bits)	user	space,	different	per	mm

hole	caused	by	[48:63]	sign	extension

ffff800000000000	-	ffff87ffffffffff	(=43	bits)	guard	hole,	reserved	for	hypervisor

ffff880000000000	-	ffffc7ffffffffff	(=64	TB)	direct	mapping	of	all	phys.	memory

ffffc80000000000	-	ffffc8ffffffffff	(=40	bits)	hole

ffffc90000000000	-	ffffe8ffffffffff	(=45	bits)	vmalloc/ioremap	space

ffffe90000000000	-	ffffe9ffffffffff	(=40	bits)	hole

ffffea0000000000	-	ffffeaffffffffff	(=40	bits)	virtual	memory	map	(1TB)

...	unused	hole	...

ffffec0000000000	-	fffffc0000000000	(=44	bits)	kasan	shadow	memory	(16TB)

...	unused	hole	...

ffffff0000000000	-	ffffff7fffffffff	(=39	bits)	%esp	fixup	stacks

...	unused	hole	...

ffffffff80000000	-	ffffffffa0000000	(=512	MB)		kernel	text	mapping,	from	phys	0

ffffffffa0000000	-	ffffffffff5fffff	(=1525	MB)	module	mapping	space

ffffffffff600000	-	ffffffffffdfffff	(=8	MB)	vsyscalls

ffffffffffe00000	-	ffffffffffffffff	(=2	MB)	unused	hole

	(hypervisor)		(guard	hole)		 arch/x86/include/asm/page_64_types.h	

#define	__PAGE_OFFSET	_AC(0xffff880000000000,	UL)

	 	__PAGE_OFFSET			 	0xffff800000000000			 	0xffff80ffffffffff			3	

	-	 	ffff880000000000			vmalloc		1TB		 	ksan			(shadow	memory)		 commit	
	esp			-	 	0			 	__PAGE_OFFSET		

#define	__START_KERNEL_map						_AC(0xffffffff80000000,	UL)

	 	.text			 	CONFIG_PHYSICAL_START			 ELF64	

readelf	-s	vmlinux	|	grep	ffffffff81000000

					1:	ffffffff81000000					0	SECTION	LOCAL		DEFAULT				1	

	65099:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	_text

	90766:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	startup_64

	 	CONFIG_PHYSICAL_START			 	0x1000000			 	vmlinux			-	 	0xffffffff80000000				-	 	0x1000000		
	0xffffffff80000000	+	1000000	=	0xffffffff81000000		

	 	vsyscalls			2M	

0xffffffff81000000

1111111111111111	111111111	111111110	000001000	000000000	000000000000

						63:48								47:39					38:30					29:21					20:12						11:0

	48-63		-	
	37-49		-		4	
	30-38		-		3	
	21-29		-		2	
	12-20		-		1	

437

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_64_types.h
https://github.com/torvalds/linux/commit/ef7f0d6a6ca8c9e4b27d78895af86c2fbfaeedb2
https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Theory/ELF.md


	0-11		-	

	Linux	

Paging	on	Wikipedia
Intel	64	and	IA-32	architectures	software	developer's	manual	volume	3A
MMU
ELF64
Documentation/x86/x86_64/mm.txt
Last	part	-	Kernel	booting	process

438

https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
http://en.wikipedia.org/wiki/Paging
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://en.wikipedia.org/wiki/Memory_management_unit
https://github.com/0xAX/linux-insides/blob/master/Theory/ELF.md
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt


ELF
ELF	(Executable	and	Linkable	Format)(core	dumps)	LinuxUnix	64ELF

ELF

ELF(ELF	header)	-	CPU

(Program	header	table)	-	(segments)	

(Section	header	table)	-	(sections)

ELF(ELF	header)

ELF(ELF	header)		

ELF	-	ELF
	-		,...

ELF

ELF(ELF	header)

...

ELF64	header	 	elf64_hdr	

typedef	struct	elf64_hdr	{

				unsigned	char				e_ident[EI_NIDENT];

				Elf64_Half	e_type;

				Elf64_Half	e_machine;

				Elf64_Word	e_version;

				Elf64_Addr	e_entry;

				Elf64_Off	e_phoff;

				Elf64_Off	e_shoff;

				Elf64_Word	e_flags;

				Elf64_Half	e_ehsize;

				Elf64_Half	e_phentsize;

				Elf64_Half	e_phnum;

				Elf64_Half	e_shentsize;

				Elf64_Half	e_shnum;

				Elf64_Half	e_shstrndx;

}	Elf64_Ehdr;

	 elf.h

(sections)

ELF(sections)	(index)(sections)	

ELF	

439

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L220


linux	 	elf64_shdr		:

typedef	struct	elf64_shdr	{

				Elf64_Word	sh_name;

				Elf64_Word	sh_type;

				Elf64_Xword	sh_flags;

				Elf64_Addr	sh_addr;

				Elf64_Off	sh_offset;

				Elf64_Xword	sh_size;

				Elf64_Word	sh_link;

				Elf64_Word	sh_info;

				Elf64_Xword	sh_addralign;

				Elf64_Xword	sh_entsize;

}	Elf64_Shdr;

elf.h

(Program	header	table)

(sections)(segments)	(segments)	

typedef	struct	elf64_phdr	{

				Elf64_Word	p_type;

				Elf64_Word	p_flags;

				Elf64_Off	p_offset;

				Elf64_Addr	p_vaddr;

				Elf64_Addr	p_paddr;

				Elf64_Xword	p_filesz;

				Elf64_Xword	p_memsz;

				Elf64_Xword	p_align;

}	Elf64_Phdr;

	elf64_phdr			 elf.h	.

EFL		 Documentation			 	vmlinux		ELF

vmlinux

	vmlinux		ELF		 	readelf			

$	readelf	-h		vmlinux

ELF	Header:

		Magic:			7f	45	4c	46	02	01	01	00	00	00	00	00	00	00	00	00	

		Class:																													ELF64

		Data:																														2's	complement,	little	endian

		Version:																											1	(current)

		OS/ABI:																												UNIX	-	System	V

		ABI	Version:																							0

		Type:																														EXEC	(Executable	file)

		Machine:																											Advanced	Micro	Devices	X86-64

		Version:																											0x1

		Entry	point	address:															0x1000000

		Start	of	program	headers:										64	(bytes	into	file)

		Start	of	section	headers:										381608416	(bytes	into	file)

		Flags:																													0x0

		Size	of	this	header:															64	(bytes)

		Size	of	program	headers:											56	(bytes)

		Number	of	program	headers:									5

		Size	of	section	headers:											64	(bytes)

ELF	

440

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L312
https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L254
http://www.uclibc.org/docs/elf-64-gen.pdf


		Number	of	section	headers:									73

		Section	header	string	table	index:	70

	 	vmlinux		64		 Documentation/x86/x86_64/mm.txt	:

ffffffff80000000	-	ffffffffa0000000	(=512	MB)		kernel	text	mapping,	from	phys	0

	 	vmlinux		ELF

$	readelf	-s	vmlinux	|	grep	ffffffff81000000

					1:	ffffffff81000000					0	SECTION	LOCAL		DEFAULT				1	

	65099:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	_text

	90766:	ffffffff81000000					0	NOTYPE		GLOBAL	DEFAULT				1	startup_64

	startup_64			 	ffffffff80000000	,		 	ffffffff81000000		

	 arch/x86/kernel/vmlinux.lds.S		:

				.	=	__START_KERNEL;

				...

				...

				..

				/*	Text	and	read-only	data	*/

				.text	:		AT(ADDR(.text)	-	LOAD_OFFSET)	{

								_text	=	.;

								...

								...

								...

				}

	__START_KERNEL		:

#define	__START_KERNEL								(__START_KERNEL_map	+	__PHYSICAL_START)

	__START_KERNEL_map			 	ffffffff80000000			 	__PHYSICAL_START			 	0x1000000			 	startup_64	

	ffffffff81000000	

readelf	-l	vmlinux

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x1000000

There	are	5	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		LOAD											0x0000000000200000	0xffffffff81000000	0x0000000001000000

																	0x0000000000cfd000	0x0000000000cfd000		R	E				200000

		LOAD											0x0000000001000000	0xffffffff81e00000	0x0000000001e00000

																	0x0000000000100000	0x0000000000100000		RW					200000

		LOAD											0x0000000001200000	0x0000000000000000	0x0000000001f00000

																	0x0000000000014d98	0x0000000000014d98		RW					200000

		LOAD											0x0000000001315000	0xffffffff81f15000	0x0000000001f15000

																	0x000000000011d000	0x0000000000279000		RWE				200000

		NOTE											0x0000000000b17284	0xffffffff81917284	0x0000000001917284

																	0x0000000000000024	0x0000000000000024									4

	Section	to	Segment	mapping:

		Segment	Sections...

			00					.text	.notes	__ex_table	.rodata	__bug_table	.pci_fixup	.builtin_fw

										.tracedata	__ksymtab	__ksymtab_gpl	__kcrctab	__kcrctab_gpl

										__ksymtab_strings	__param	__modver	

ELF	

441

https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt#L19
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S


			01					.data	.vvar	

			02					.data..percpu	

			03					.init.text	.init.data	.x86_cpu_dev.init	.altinstructions

										.altinstr_replacement	.iommu_table	.apicdrivers	.exit.text

										.smp_locks	.data_nosave	.bss	.brk

(sections)(segments)		-	 	arch/x86/kernel/vmlinux.lds		(sections)

	ELF(Executable	and	Linkable	Format)	-	

ELF	

442

http://www.uclibc.org/docs/elf-64-gen.pdf


Inline	assembly

Introduction

While	reading	source	code	in	the	Linux	kernel,	I	often	see	statements	like	this:

__asm__("andq	%%rsp,%0;	":"=r"	(ti)	:	"0"	(CURRENT_MASK));

Yes,	this	is	inline	assembly	or	in	other	words	assembler	code	which	is	integrated	in	a	high	level	programming	language.	In	this	case	the
high	level	programming	language	is	C.	Yes,	the		C		programming	language	is	not	very	high-level,	but	still.

If	you	are	familiar	with	the	assembly	programming	language,	you	may	notice	that		inline	assembly		is	not	very	different	from	normal
assembler.	Moreover,	the	special	form	of	inline	assembly	which	is	called		basic	form		is	exactly	the	same.	For	example:

__asm__("movq	%rax,	%rsp");

or:

__asm__("hlt");

The	same	code	(of	course	without		__asm__		prefix)	you	might	see	in	plain	assembly	code.	Yes,	this	is	very	similar,	but	not	so	simple	as
it	might	seem	at	first	glance.	Actually,	the	GCC	supports	two	forms	of	inline	assembly	statements:

	basic	;
	extended	.

The	basic	form	consists	of	only	two	things:	the		__asm__		keyword	and	the	string	with	valid	assembler	instructions.	For	example	it	may
look	something	like	this:

__asm__("movq				$3,	%rax\t\n"

								"movq				%rsi,	%rdi");

The		asm		keyword	may	be	used	in	place	of		__asm__	,	however		__asm__		is	portable	whereas	the		asm		keyword	is	a		GNU		extension.
In	further	examples	I	will	only	use	the		__asm__		variant.

If	you	know	assembly	programming	language	this	looks	pretty	familiar.	The	main	problem	is	in	the	second	form	of	inline	assembly
statements	-		extended	.	This	form	allows	us	to	pass	parameters	to	an	assembly	statement,	perform	jumps	etc.	Does	not	sound	difficult,
but	requires	knowledge	of	special	rules	in	addition	to	knowledge	of	the	assembly	language.	Every	time	I	see	yet	another	piece	of	inline
assembly	code	in	the	Linux	kernel,	I	need	to	refer	to	the	official	documentation	of		GCC		to	remember	how	a	particular		qualifier	
behaves	or	what	the	meaning	of		=&r		is	for	example.

I've	decided	to	write	this	part	to	consolidate	my	knowledge	related	to	the	inline	assembly,	as	inline	assembly	statements	are	quite
common	in	the	Linux	kernel	and	we	may	see	them	in	linux-insides	parts	sometimes.	I	thought	that	it	would	be	useful	if	we	have	a
special	part	which	contains	information	on	more	important	aspects	of	the	inline	assembly.	Of	course	you	may	find	comprehensive
information	about	inline	assembly	in	the	official	documentation,	but	I	like	to	put	everything	in	one	place.

Note:	This	part	will	not	provide	guide	for	assembly	programming.	It	is	not	intended	to	teach	you	to	write	programs	with
assembler	or	to	know	what	one	or	another	assembler	instruction	means.	Just	a	little	memo	for	extended	asm.

Introduction	to	extended	inline	assembly

443

https://github.com/torvalds/linux
https://en.wikipedia.org/wiki/Inline_assembler
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://en.wikipedia.org/wiki/Branch_%28computer_science%29
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C


So,	let's	start.	As	I	already	mentioned	above,	the		basic		assembly	statement	consists	of	the		asm		or		__asm__		keyword	and	set	of
assembly	instructions.	This	form	is	in	no	way	different	from	"normal"	assembly.	The	most	interesting	part	is	inline	assembler	with
operands,	or		extended		assembler.	An	extended	assembly	statement	looks	more	complicated	and	consists	of	more	than	two	parts:

__asm__	[volatile]	[goto]	(AssemblerTemplate

																											[	:	OutputOperands	]

																											[	:	InputOperands		]

																											[	:	Clobbers							]

																											[	:	GotoLabels					]);

All	parameters	which	are	marked	with	squared	brackets	are	optional.	You	may	notice	that	if	we	skip	the	optional	parameters	and	the
modifiers		volatile		and		goto		we	obtain	the		basic		form.

Let's	start	to	consider	this	in	order.	The	first	optional		qualifier		is		volatile	.	This	specifier	tells	the	compiler	that	an	assembly
statement	may	produce		side	effects	.	In	this	case	we	need	to	prevent	compiler	optimizations	related	to	the	given	assembly	statement.
In	simple	terms	the		volatile		specifier	instructs	the	compiler	not	to	modify	the	statement	and	place	it	exactly	where	it	was	in	the
original	code.	As	an	example	let's	look	at	the	following	function	from	the	Linux	kernel:

static	inline	void	native_load_gdt(const	struct	desc_ptr	*dtr)

{

				asm	volatile("lgdt	%0"::"m"	(*dtr));

}

Here	we	see	the		native_load_gdt		function	which	loads	a	base	address	from	the	Global	Descriptor	Table	to	the		GDTR		register	with	the
	lgdt		instruction.	This	assembly	statement	is	marked	with		volatile		qualifier.	It	is	very	important	that	the	compiler	does	not	change
the	original	place	of	this	assembly	statement	in	the	resulting	code.	Otherwise	the		GDTR		register	may	contain	wrong	address	for	the
	Global	Descriptor	Table		or	the	address	may	be	correct,	but	the	structure	has	not	been	filled	yet.	This	can	lead	to	an	exception	being
generated,	preventing	the	kernel	from	booting	correctly.

The	second	optional		qualifier		is	the		goto	.	This	qualifier	tells	the	compiler	that	the	given	assembly	statement	may	perform	a	jump
to	one	of	the	labels	which	are	listed	in	the		GotoLabels	.	For	example:

__asm__	goto("jmp	%l[label]"	:	:	:	:	label);

Since	we	finished	with	these	two	qualifiers,	let's	look	at	the	main	part	of	an	assembly	statement	body.	As	we	have	seen	above,	the	main
part	of	an	assembly	statement	consists	of	the	following	four	parts:

set	of	assembly	instructions;
output	parameters;
input	parameters;
clobbers.

The	first	represents	a	string	which	contains	a	set	of	valid	assembly	instructions	which	may	be	separated	by	the		\t\n		sequence.	Names
of	processor	registers	must	be	prefixed	with	the		%%		sequence	in		extended		form	and	other	symbols	like	immediates	must	start	with
the		$		symbol.	The		OutputOperands		and		InputOperands		are	comma-separated	lists	of	C	variables	which	may	be	provided	with
"constraints"	and	the		Clobbers		is	a	list	of	registers	or	other	values	which	are	modified	by	the	assembler	instructions	from	the
	AssemblerTemplate		beyond	those	listed	in	the		OutputOperands	.	Before	we	dive	into	the	examples	we	have	to	know	a	little	bit	about
	constraints	.	A	constraint	is	a	string	which	specifies	placement	of	an	operand.	For	example	the	value	of	an	operand	may	be	written	to
a	processor	register	or	read	from	memory	etc.

Consider	the	following	simple	example:

#include	<stdio.h>

int	main(void)

{

								unsigned	long	a	=	5;

								unsigned	long	b	=	10;

								unsigned	long	sum	=	0;

444

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/C_%28programming_language%29


								__asm__("addq	%1,%2"	:	"=r"	(sum)	:	"r"	(a),	"0"	(b));

								printf("a	+	b	=	%lu\n",	sum);

								return	0;

}

Let's	compile	and	run	it	to	be	sure	that	it	works	as	expected:

$	gcc	test.c	-o	test

./test

a	+	b	=	15

Ok,	great.	It	works.	Now	let's	look	at	this	example	in	detail.	Here	we	see	a	simple		C		program	which	calculates	the	sum	of	two
variables	placing	the	result	into	the		sum		variable	and	in	the	end	we	print	the	result.	This	example	consists	of	three	parts.	The	first	is	the
assembly	statement	with	the	add	instruction.	It	adds	the	value	of	the	source	operand	together	with	the	value	of	the	destination	operand
and	stores	the	result	in	the	destination	operand.	In	our	case:

addq	%1,	%2

will	be	expanded	to	the:

addq	a,	b

Variables	and	expressions	which	are	listed	in	the		OutputOperands		and		InputOperands		may	be	matched	in	the		AssemblerTemplate	.
An	input/output	operand	is	designated	as		%N		where	the		N		is	the	number	of	operand	from	left	to	right	beginning	from		zero	.	The
second	part	of	the	our	assembly	statement	is	located	after	the	first		:		symbol	and	contains	the	definition	of	the	output	value:

"=r"	(sum)

Notice	that	the		sum		is	marked	with	two	special	symbols:		=r	.	This	is	the	first	constraint	that	we	have	encountered.	The	actual
constraint	here	is	only		r		itself.	The		=		symbol	is		modifier		which	denotes	output	value.	This	tells	to	compiler	that	the	previous
value	will	be	discarded	and	replaced	by	the	new	data.	Besides	the		=		modifier,		GCC		provides	support	for	following	three	modifiers:

	+		-	an	operand	is	read	and	written	by	an	instruction;
	&		-	output	register	shouldn't	overlap	an	input	register	and	should	be	used	only	for	output;
	%		-	tells	the	compiler	that	operands	may	be	commutative.

Now	let's	go	back	to	the		r		qualifier.	As	I	mentioned	above,	a	qualifier	denotes	the	placement	of	an	operand.	The		r		symbol	means	a
value	will	be	stored	in	one	of	the	general	purpose	register.	The	last	part	of	our	assembly	statement:

"r"	(a),	"0"	(b)

These	are	input	operands	-	variables		a		and		b	.	We	already	know	what	the		r		qualifier	does.	Now	we	can	have	a	look	at	the
constraint	for	the	variable		b	.	The		0		or	any	other	digit	from		1		to		9		is	called	"matching	constraint".	With	this	a	single	operand	can
be	used	for	multiple	roles.	The	value	of	the	constraint	is	the	source	operand	index.	In	our	case		0		will	match		sum	.	If	we	look	at
assembly	output	of	our	program:

0000000000400400	<main>:

		...

		...

		...

		4004fe:							48	c7	45	f8	05	00	00				movq			$0x5,-0x8(%rbp)

		400506:							48	c7	45	f0	0a	00	00				movq			$0xa,-0x10(%rbp)

		400516:							48	8b	55	f8													mov				-0x8(%rbp),%rdx

		40051a:							48	8b	45	f0													mov				-0x10(%rbp),%rax

		40051e:							48	01	d0																add				%rdx,%rax

445

http://x86.renejeschke.de/html/file_module_x86_id_5.html
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Processor_register


First	of	all	our	values		5		and		10		will	be	put	at	the	stack	and	then	these	values	will	be	moved	to	the	two	general	purpose	registers:
	%rdx		and		%rax	.

This	way	the		%rax		register	is	used	for	storing	the	value	of	the		b		as	well	as	storing	the	result	of	the	calculation.	NOTE	that	I've	used
	gcc	6.3.1		version,	so	the	resulted	code	of	your	compiler	may	differ.

We	have	looked	at	input	and	output	parameters	of	an	inline	assembly	statement.	Before	we	move	on	to	other	constraints	supported	by
	gcc	,	there	is	one	remaining	part	of	the	inline	assembly	statement	we	have	not	discussed	yet	-		clobbers	.

Clobbers
As	mentioned	above,	the	"clobbered"	part	should	contain	a	comma-separated	list	of	registers	whose	content	will	be	modified	by	the
assembler	code.	This	is	useful	if	our	assembly	expression	needs	additional	registers	for	calculation.	If	we	add	clobbered	registers	to	the
inline	assembly	statement,	the	compiler	take	this	into	account	and	the	register	in	question	will	not	simultaneously	be	used	by	the
compiler.

Consider	the	example	from	before,	but	we	will	add	an	additional,	simple	assembler	instruction:

__asm__("movq	$100,	%%rdx\t\n"

								"addq	%1,%2"	:	"=r"	(sum)	:	"r"	(a),	"0"	(b));

If	we	look	at	the	assembly	output:

0000000000400400	<main>:

		...

		...

		...

		4004fe:							48	c7	45	f8	05	00	00				movq			$0x5,-0x8(%rbp)

		400506:							48	c7	45	f0	0a	00	00				movq			$0xa,-0x10(%rbp)

		400516:							48	8b	55	f8													mov				-0x8(%rbp),%rdx

		40051a:							48	8b	45	f0													mov				-0x10(%rbp),%rax

		40051e:							48	c7	c2	64	00	00	00				mov				$0x64,%rdx

		400525:							48	01	d0																add				%rdx,%rax

we	will	see	that	the		%rdx		register	is	overwritten	with		0x64		or		100		and	the	result	will	be		110		instead	of		10	.	Now	if	we	add	the
	%rdx		register	to	the	list	of		clobbered		registers:

__asm__("movq	$100,	%%rdx\t\n"

								"addq	%1,%2"	:	"=r"	(sum)	:	"r"	(a),	"0"	(b)	:	"%rdx");

and	look	at	the	assembler	output	again:

0000000000400400	<main>:

		4004fe:							48	c7	45	f8	05	00	00				movq			$0x5,-0x8(%rbp)

		400506:							48	c7	45	f0	0a	00	00				movq			$0xa,-0x10(%rbp)

		400516:							48	8b	4d	f8													mov				-0x8(%rbp),%rcx

		40051a:							48	8b	45	f0													mov				-0x10(%rbp),%rax

		40051e:							48	c7	c2	64	00	00	00				mov				$0x64,%rdx

		400525:							48	01	c8																add				%rcx,%rax

the		%rcx		register	will	be	used	for		sum		calculation,	preserving	the	intended	semantics	of	the	program.	Besides	general	purpose
registers,	we	may	pass	two	special	specifiers.	They	are:

	cc	;
	memory	.

446



The	first	-		cc		indicates	that	an	assembler	code	modifies	flags	register.	This	is	typically	used	if	the	assembly	within	contains	arithmetic
or	logic	instructions:

__asm__("incq	%0"	::""(variable):	"cc");

The	second		memory		specifier	tells	the	compiler	that	the	given	inline	assembly	statement	executes	read/write	operations	on	memory	not
specified	by	operands	in	the	output	list.	This	prevents	the	compiler	from	keeping	memory	values	loaded	and	cached	in	registers.	Let's
take	a	look	at	the	following	example:

#include	<stdio.h>

int	main(void)

{

								unsigned	long	a[3]	=	{10000000000,	0,	1};

								unsigned	long	b	=	5;

								__asm__	volatile("incq	%0"	::	"m"	(a[0]));

								printf("a[0]	-	b	=	%lu\n",	a[0]	-	b);

								return	0;

}

This	example	may	be	artificial,	but	it	illustrates	the	main	idea.	Here	we	have	an	array	of	integers	and	one	integer	variable.	The	example
is	pretty	simple,	we	take	the	first	element	of		a		and	increment	its	value.	After	this	we	subtract	the	value	of		b		from	the	first	element	of
	a	.	In	the	end	we	print	the	result.	If	we	compile	and	run	this	simple	example	the	result	may	surprise	you:

~$	gcc	-O3		test.c	-o	test

~$	./test

a[0]	-	b	=	9999999995

The	result	is		a[0]	-	b	=	9999999995		here,	but	why?	We	incremented		a[0]		and	subtracted		b	,	so	the	result	should	be		a[0]	-	b	=
9999999996		here.

If	we	have	a	look	at	the	assembler	output	for	this	example:

00000000004004f6	<main>:

		4004b4:							48	b8	00	e4	0b	54	02				movabs	$0x2540be400,%rax

		4004be:							48	89	04	24													mov				%rax,(%rsp)

		...

		...

		...

		40050e:							ff	44	24	f0													incq			(%rsp)

		4004d8:							48	be	fb	e3	0b	54	02				movabs	$0x2540be3fb,%rsi

we	will	see	that	the	first	element	of	the		a		contains	the	value		0x2540be400		(	10000000000	).	The	last	two	lines	of	code	are	the	actual
calculations.

We	see	our	increment	instruction	with		incq		but	then	just	a	move	of		0x2540be3fb		(	9999999995	)	to	the		%rsi		register.	This	looks
strange.

The	problem	is	we	have	passed	the		-O3		flag	to		gcc	,	so	the	compiler	did	some	constant	folding	and	propagation	to	determine	the
result	of		a[0]	-	5		at	compile	time	and	reduced	it	to	a		movabs		with	a	constant		0x2540be3fb		or		9999999995		in	runtime.

Let's	now	add		memory		to	the	clobbers	list:

__asm__	volatile("incq	%0"	::	"m"	(a[0])	:	"memory");

and	the	new	result	of	running	this	is:

447

https://en.wikipedia.org/wiki/FLAGS_register


~$	gcc	-O3		test.c	-o	test

~$	./test

a[0]	-	b	=	9999999996

Now	the	result	is	correct.	If	we	look	at	the	assembly	output	again:

00000000004004f6	<main>:

		400404:							48	b8	00	e4	0b	54	02				movabs	$0x2540be400,%rax

		40040b:							00	00	00	

		40040e:							48	89	04	24													mov				%rax,(%rsp)

		400412:							48	c7	44	24	08	00	00				movq			$0x0,0x8(%rsp)

		400419:							00	00	

		40041b:							48	c7	44	24	10	01	00				movq			$0x1,0x10(%rsp)

		400422:							00	00	

		400424:							48	ff	04	24													incq			(%rsp)

		400428:							48	8b	04	24													mov				(%rsp),%rax

		400431:							48	8d	70	fb													lea				-0x5(%rax),%rsi

we	will	see	one	difference	here	which	is	in	the	last	two	lines:

		400428:							48	8b	04	24													mov				(%rsp),%rax

		400431:							48	8d	70	fb													lea				-0x5(%rax),%rsi

Instead	of	constant	folding,		GCC		now	preserves	calculations	in	the	assembly	and	places	the	value	of		a[0]		in	the		%rax		register
afterwards.	In	the	end	it	just	subtracts	the	constant	value	of		b		from	the		%rax		register	and	puts	result	to	the		%rsi	.

Besides	the		memory		specifier,	we	also	see	a	new	constraint	here	-		m	.	This	constraint	tells	the	compiler	to	use	the	address	of		a[0]	,
instead	of	its	value.	So,	now	we	are	finished	with		clobbers		and	we	may	continue	by	looking	at	other	constraints	supported	by		GCC	
besides		r		and		m		which	we	have	already	seen.

Constraints

Now	that	we	are	finished	with	all	three	parts	of	an	inline	assembly	statement,	let's	return	to	constraints.	We	already	saw	some
constraints	in	the	previous	parts,	like		r		which	represents	a		register		operand,		m		which	represents	a	memory	operand	and		0-9	
which	represent	an	reused,	indexed	operand.	Besides	these		GCC		provides	support	for	other	constraints.	For	example	the		i		constraint
represents	an		immediate		integer	operand	with	know	value:

#include	<stdio.h>

int	main(void)

{

								int	a	=	0;

								__asm__("movl	%1,	%0"	:	"=r"(a)	:	"i"(100));

								printf("a	=	%d\n",	a);

								return	0;

}

The	result	is:

~$	gcc	test.c	-o	test

~$	./test

a	=	100

Or	for	example		I		which	represents	an	immediate	32-bit	integer.	The	difference	between		i		and		I		is	that		i		is	general,	whereas		I	
is	strictly	specified	to	32-bit	integer	data.	For	example	if	you	try	to	compile	the	following	code:

unsigned	long	test_asm(int	nr)

{

448



								unsigned	long	a	=	0;

								__asm__("movq	%1,	%0"	:	"=r"(a)	:	"I"(0xffffffffffff));

								return	a;

}

you	will	get	an	error:

$	gcc	-O3	test.c	-o	test

test.c:	In	function	‘test_asm’:

test.c:7:9:	warning:	asm	operand	1	probably	doesn’t	match	constraints

									__asm__("movq	%1,	%0"	:	"=r"(a)	:	"I"(0xffffffffffff));

									^

test.c:7:9:	error:	impossible	constraint	in	‘asm’

when	at	the	same	time:

unsigned	long	test_asm(int	nr)

{

								unsigned	long	a	=	0;

								__asm__("movq	%1,	%0"	:	"=r"(a)	:	"i"(0xffffffffffff));

								return	a;

}

works	perfectly:

~$	gcc	-O3	test.c	-o	test

~$	echo	$?

0

	GCC		also	supports		J	,		K	,		N		constraints	for	integer	constants	in	the	range	of	0-63	bits,	signed	8-bit	integer	constants	and	unsigned
8-bit	integer	constants	respectively.	The		o		constraint	represents	a	memory	operand	with	an		offsetable		memory	address.	For
example:

#include	<stdio.h>

int	main(void)

{

								static	unsigned	long	arr[3]	=	{0,	1,	2};

								static	unsigned	long	element;

								__asm__	volatile("movq	16+%1,	%0"	:	"=r"(element)	:	"o"(arr));

								printf("%lu\n",	element);

								return	0;

}

The	result,	as	expected:

~$	gcc	-O3	test.c	-o	test

~$	./test

2

All	of	these	constraints	may	be	combined	(so	long	as	they	do	not	conflict).	In	this	case	the	compiler	will	choose	the	best	one	for	a
certain	situation.	For	example:

unsigned	long	a	=	10;

unsigned	long	b	=	20;

void	main(void)

{

				__asm__	("movq	%1,%0"	:	"=mr"(b)	:	"rm"(a));

449



}

will	use	a	memory	operand:

main:

								movq	a(%rip),b(%rip)

								ret

b:

								.quad			20

a:

								.quad			10

instead	of	direct	usage	of	general	purpose	registers.

That's	about	all	of	the	commonly	used	constraints	in	inline	assembly	statements.	You	can	find	more	in	the	official	documentation.

Architecture	specific	constraints

Before	we	finish,	let's	look	at	the	set	of	special	constraints.	These	constrains	are	architecture	specific	and	as	this	book	is	specific	to	the
x86_64	architecture,	we	will	look	at	constraints	related	to	it.	First	of	all	the	set	of		a		...		d		and	also		S		and		D		constraints	represent
generic	purpose	registers.	In	this	case	the		a		constraint	corresponds	to		%al	,		%ax	,		%eax		or		%rax		register	depending	on	instruction
size.	The		S		and		D		constraints	are		%si		and		%di		registers	respectively.	For	example	let's	take	our	previous	example.	We	can	see	in
its	assembly	output	that	value	of	the		a		variable	is	stored	in	the		%eax		register.	Now	let's	look	at	the	assembly	output	of	the	same
assembly,	but	with	other	constraint:

#include	<stdio.h>

int	a	=	1;

int	main(void)

{

								int	b;

								__asm__	("movq	%1,%0"	:	"=r"(b)	:	"d"(a));

								return	b;

}

Now	we	see	that	value	of	the		a		variable	will	be	stored	in	the		%rax		register:

0000000000400400	<main>:

		4004aa:							48	8b	05	6f	0b	20	00				mov				0x200b6f(%rip),%rax								#	601020	<a>

The		f		and		t		constraints	represent	any	floating	point	stack	register	-		%st		and	the	top	of	the	floating	point	stack	respectively.	The
	u		constraint	represents	the	second	value	from	the	top	of	the	floating	point	stack.

That's	all.	You	may	find	more	details	about	x86_64	and	general	constraints	in	the	official	documentation.

Links

Linux	kernel	source	code
assembly	programming	language
GCC
GNU	extension
Global	Descriptor	Table
Processor	registers
add	instruction
flags	register
x86_64

450

https://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html#Simple-Constraints
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/X86-64
https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html#Machine-Constraints
https://github.com/torvalds/linux
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
http://x86.renejeschke.de/html/file_module_x86_id_5.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/X86-64


constraints

451

https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html#Machine-Constraints


452



Linux	

	 	x86_64			 	Hello	World		

	 	syscall			 	printf		 	Linux		Linux	 	Linux	

	Linux	 	Linux	Linux		 linux-insides		 	9096		

	Linux		 	linux-insides			Linux	Linux	

	Linux		Linux		Linux		Linux		Linux	

	Linux	

	Linux	

	Linux	
	Linux	

	Linux		Linux		 Linux	

	Linux		 Ubuntu	(Vivid	Vervet)		Linux		 	4.1		

$	sudo	add-apt-repository	ppa:kernel-ppa/ppa

$	sudo	apt-get	update

$	apt-cache	showpkg	linux-headers

	Linux		 	${version}		

$	sudo	apt-get	install	linux-headers-${version}	linux-headers-${version}-generic	linux-image-${version}-generic	--fix

-missing

Linux	

453

https://0xax.github.io/categories/assembler/
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Package_manager
http://releases.ubuntu.com/15.04/


	 grub	

	Linux		Linux		 kernel.org		Linux	Linux		 	git			 	git			 	kernel.org		

$	git	clone	git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

	 	github			Linux	

$	git	clone	git@github.com:torvalds/linux.git

	 fork	

$	git	checkout	master

$	git	pull	upstream	master

	 	upstream		Linux	

git	remote	add	upstream	git@github.com:torvalds/linux.git

~/dev/linux	(master)	$	git	remote	-v

origin				git@github.com:0xAX/linux.git	(fetch)

origin				git@github.com:0xAX/linux.git	(push)

upstream				https://github.com/torvalds/linux.git	(fetch)

upstream				https://github.com/torvalds/linux.git	(push)

	fork		( 	origin	)	( 	upstream	)

	Linux	Linux		 	/boot		

$	sudo	cp	/boot/config-$(uname	-r)	~/dev/linux/.config

	 	/proc/config.gz		

$	cat	/proc/config.gz	|	gunzip	>	~/dev/linux/.config

	Linux	Linux		 Makefile		 	menuconfig		

Linux	

454

https://en.wikipedia.org/wiki/GNU_GRUB
https://kernel.org/
https://en.wikipedia.org/wiki/Version_control
https://github.com/torvalds/linux
https://github.com/0xAX/linux
https://github.com/torvalds/linux/blob/master/Makefile


	defconfig			 x86_64	defconfig	 	ARCH			 	make		 	defconfig		

$	make	ARCH=arm64	defconfig

	allnoconfig		 	allyesconfig			 	allmodconfig		 	nconfig			 	ncurses			Linux	

	randconfig			Linux		Linux	

	Linux		Linux		Linux	

Linux	

455

https://github.com/torvalds/linux/blob/master/arch/x86/configs/x86_64_defconfig


$	make

scripts/kconfig/conf		--silentoldconfig	Kconfig

#

#	configuration	written	to	.config

#

		CHK					include/config/kernel.release

		UPD					include/config/kernel.release

		CHK					include/generated/uapi/linux/version.h

		CHK					include/generated/utsrelease.h

		...

		...

		...

		OBJCOPY	arch/x86/boot/vmlinux.bin

		AS						arch/x86/boot/header.o

		LD						arch/x86/boot/setup.elf

		OBJCOPY	arch/x86/boot/setup.bin

		BUILD			arch/x86/boot/bzImage

		Setup	is	15740	bytes	(padded	to	15872	bytes).

System	is	4342	kB

CRC	82703414

Kernel:	arch/x86/boot/bzImage	is	ready		(#73)

	 	make			 	-jN		 	N		

$	make	-j8

	ARCH		
	CROSS_COMPILER		

	 arm64		Linux	

$	make	-j4	ARCH=arm64	CROSS_COMPILER=aarch64-linux-gnu-	defconfig

$	make	-j4	ARCH=arm64	CROSS_COMPILER=aarch64-linux-gnu-

	-	 	arch/x86/boot/bzImage	

	Linux	

	Linux		Linux		Linux	

...

...

...

Kernel:	arch/x86/boot/bzImage	is	ready		(#73)

	 bzImage		Linux		 	headers			 	modules	

$	sudo	make	headers_install

$	sudo	make	modules_install

$	sudo	make	install

	Linux		 	bootloader			 	/boot/grub2/grub.cfg			Linux	Fedora		Ubuntu	 grub	

#!/bin/bash

Linux	

456

https://en.wikipedia.org/wiki/ARM_architecture#AArch64_features
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/GNU_GRUB


source	"term-colors"

DISTRIBUTIVE=$(cat	/etc/*-release	|	grep	NAME	|	head	-1	|	sed	-n	-e	's/NAME\=//p')

echo	-e	"Distributive:	${Green}${DISTRIBUTIVE}${Color_Off}"

if	[[	"$DISTRIBUTIVE"	==	"Fedora"	]]	;

then

				su	-c	'grub2-mkconfig	-o	/boot/grub2/grub.cfg'

else

				sudo	update-grub

fi

echo	"${Green}Done.${Color_Off}"

	Linux	

	Linux		 qemu	-	 initrd	initrd			Linux		 	initrd	

	 busybox	 	menuconfig		

$	mkdir	initrd

$	cd	initrd

$	curl	http://busybox.net/downloads/busybox-1.23.2.tar.bz2	|	tar	xjf	-

$	cd	busybox-1.23.2/

$	make	menuconfig

$	make	-j4

	busybox			-	 	/bin/busybox		 coreutils		 	busysbox			 	Build	BusyBox	as	a	static	binary	(no	shared	libs)		

Busybox	Settings

-->	Build	Options

Linux	

457

https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/BusyBox
https://en.wikipedia.org/wiki/GNU_Core_Utilities


	 	busysbox		

$	make	-j4

$	sudo	make	install

	 	busybox			 	initrd			 	initrd		

$	cd	..

$	mkdir	-p	initramfs

$	cd	initramfs

$	mkdir	-pv	{bin,sbin,etc,proc,sys,usr/{bin,sbin}}

$	cp	-av	../busybox-1.23.2/_install/*	.

	 	busybox			 	bin		 	sbin			 	init			 	init			 procfs		 sysfs		shell	

#!/bin/sh

mount	-t	proc	none	/proc

mount	-t	sysfs	none	/sys

exec	/bin/sh

	 	initrd		

$	find	.	-print0	|	cpio	--null	-ov	--format=newc	|	gzip	-9	>	~/dev/initrd_x86_64.gz

	 qemu		Linux	

$	qemu-system-x86_64	-snapshot	-m	8GB	-serial	stdio	-kernel	~/dev/linux/arch/x86_64/boot/bzImage	-initrd	~/dev/initrd

_x86_64.gz	-append	"root=/dev/sda1	ignore_loglevel"

	Linux	

Linux	

458

https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/QEMU


	 ivandaviov/minimal		 	initrd	

Linux	

	Linux		( 	to	do	)		( 	not	to	do	)	( 	to	do	)		( 	todo	)		Linux		Linux	

	Linus	

$	git	checkout	master

$	git	pull	upstream	master

	Linux	 	 	staging			 drivers/staging	 	staging			 Greg	Kroah-Hartman
Linux	

	 Digi	International	EPCA	PCI		295		 	dgap_sindex		

static	char	*dgap_sindex(char	*string,	char	*group)

{

				char	*ptr;

				if	(!string	||	!group)

								return	NULL;

				for	(;	*string;	string++)	{

								for	(ptr	=	group;	*ptr;	ptr++)	{

												if	(*ptr	==	*string)

																return	string;

								}

				}

				return	NULL;

}

	 	group			 	string			Linux		 lib/string.c		 	strpbrk			 	dgap_sinidex		
drivers/staging/dgap/dgap.c		 	dgap_sindex			 	strpbrk		

	 	git			Linux	

$	git	checkout	-b	"dgap-remove-dgap_sindex"

	 	dgap_sindex			 	strpbrk		Linux		 dgap	

Device	Drivers

-->	Staging	drivers

---->	Digi	EPCA	PCI	products

Linux	

459

https://github.com/ivandavidov/minimal
https://github.com/torvalds/linux
https://github.com/torvalds/linux/tree/master/drivers/staging
https://en.wikipedia.org/wiki/Greg_Kroah-Hartman
https://lkml.org/
https://github.com/torvalds/linux/tree/master/drivers/staging/dgap
https://github.com/torvalds/linux/blob/master/lib/string.c#L473
https://github.com/torvalds/linux/blob/master/drivers/staging/dgap/dgap.c
https://github.com/torvalds/linux/tree/master/drivers/staging/dgap


$	git	add	.

$	git	commit	-s	-v

	 	$GIT_EDITOR			 	$EDITOR			 	-s			 	Signed-off-by		-	 00cc1633 	-v			 	HEAD		

	 	[PATCH]			 	:		

[PATCH]	staging/dgap:	Use	strpbrk()	instead	of	dgap_sindex()

The	<linux/string.h>	provides	strpbrk()	function	that	does	the	same	that	the

dgap_sindex().	Let's	use	already	defined	function	instead	of	writing	custom.

	 	Sign-off-by			 	80			 	Custom	function	removed			 git	blame	

	 	format-patch		

$	git	format-patch	master

0001-staging-dgap-Use-strpbrk-instead-of-dgap_sindex.patch

	( 	master	)		 	format-patch			 	dgap-remove-dgap_sindex			 	master			 	format-patch			 	--

stdout		

$	git	format-patch	master	--stdout	>	dgap-patch-1.patch

	Linux		 	git		 	git	send-email		 	linux-kernel@vger.kernel.org		
	get_maintainer.pl		

$	./scripts/get_maintainer.pl	-f	drivers/staging/dgap/dgap.c

Linux	

460

https://github.com/torvalds/linux/commit/00cc1633816de8c95f337608a1ea64e228faf771
http://git-scm.com/docs/git-blame


Lidza	Louina	<lidza.louina@gmail.com>	(maintainer:DIGI	EPCA	PCI	PRODUCTS)

Mark	Hounschell	<markh@compro.net>	(maintainer:DIGI	EPCA	PCI	PRODUCTS)

Daeseok	Youn	<daeseok.youn@gmail.com>	(maintainer:DIGI	EPCA	PCI	PRODUCTS)

Greg	Kroah-Hartman	<gregkh@linuxfoundation.org>	(supporter:STAGING	SUBSYSTEM)

driverdev-devel@linuxdriverproject.org	(open	list:DIGI	EPCA	PCI	PRODUCTS)

devel@driverdev.osuosl.org	(open	list:STAGING	SUBSYSTEM)

linux-kernel@vger.kernel.org	(open	list)

$	git	send-email	--to	"Lidza	Louina	<lidza.louina@gmail.com>"	\

		--cc	"Mark	Hounschell	<markh@compro.net>"																			\

		--cc	"Daeseok	Youn	<daeseok.youn@gmail.com>"																\

		--cc	"Greg	Kroah-Hartman	<gregkh@linuxfoundation.org>"						\

		--cc	"driverdev-devel@linuxdriverproject.org"															\

		--cc	"devel@driverdev.osuosl.org"																											\

		--cc	"linux-kernel@vger.kernel.org"

	Linux		( )	Linus	

	Linux	

	Linux		-	

Linux		-	 scripts/checkpatch.pl

$	./scripts/checkpatch.pl	-f	drivers/staging/dgap/dgap.c

WARNING:	Block	comments	use	*	on	subsequent	lines

#94:	FILE:	drivers/staging/dgap/dgap.c:94:

+/*

+					SUPPORTED	PRODUCTS

CHECK:	spaces	preferred	around	that	'|'	(ctx:VxV)

#143:	FILE:	drivers/staging/dgap/dgap.c:143:

+				{	PPCM,								PCI_DEV_XEM_NAME,					64,	(T_PCXM|T_PCLITE|T_PCIBUS)	},

	 	git	diff		

Linus		github	pull	requests

Linux	

461

https://git.kernel.org/cgit/linux/kernel/git/gregkh/staging.git/commit/?h=staging-testing&id=b9f7f1d0846f15585b8af64435b6b706b25a5c0b
https://github.com/torvalds/linux/blob/master/Documentation/CodingStyle
https://github.com/torvalds/linux/blob/master/scripts/checkpatch.pl
https://github.com/torvalds/linux/pull/17#issuecomment-5654674


	git	format-patch			 	vN			 	N			 	git	format-patch			 	--cover-letter			 	git

send-email			 	--in-reply-to		

|-->	cover	letter

		|---->	patch_1

		|---->	patch_2

	 	message-id			 	--in-reply-to			 	git	send-email		

	send-email			 	format-patch		 git	send-email		 git	format-patch

scripts		Linux	 	checkpatch.pl			 	get_maintainer.pl		 stackusage	 extract-vmlinux	
	scripts		 	 Lorenzo	Stoakes	

	Linux	 	lkml			Linux		 	lkml		 	Linux	

	Linux		 	[PATCH	vN]	(	N		)	

[PATCH	v2]	staging/dgap:	Use	strpbrk()	instead	of	dgap_sindex()

	Linux	

Happy	Hacking!

	Linux		 	Twitter	

	PR	

blog	posts	about	assembly	programming	for	x86_64
Assembler
distro
package	manager
grub
kernel.org
version	control	system
arm64
bzImage
qemu
initrd
busybox
coreutils
procfs
sysfs
Linux	kernel	mail	listing	archive
Linux	kernel	coding	style	guide
How	to	Get	Your	Change	Into	the	Linux	Kernel
Linux	Kernel	Newbies
plain	text

Linux	

462

https://en.wikipedia.org/wiki/Plain_text
http://git-scm.com/docs/git-send-email
http://git-scm.com/docs/git-format-patch
https://github.com/torvalds/linux/tree/master/scripts
https://github.com/torvalds/linux/blob/master/scripts/stackusage
https://github.com/torvalds/linux/blob/master/scripts/extract-vmlinux
https://github.com/lorenzo-stoakes/kernel-scripts
https://twitter.com/ljsloz
http://vger.kernel.org/vger-lists.html
https://twitter.com/0xAX
http://0xax.github.io/categories/assembly/
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/GNU_GRUB
https://kernel.org/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/ARM_architecture#AArch64_features
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/BusyBox
https://en.wikipedia.org/wiki/GNU_Core_Utilities
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://lkml.org/
https://github.com/torvalds/linux/blob/master/Documentation/CodingStyle
https://github.com/torvalds/linux/blob/master/Documentation/SubmittingPatches
http://kernelnewbies.org/
https://en.wikipedia.org/wiki/Plain_text


Linux	

463



	Linux	

	Linux	 	 	make		

Makefile		:)	 Makefile		 	1591			 4.2.0		

	Makefile		Linux		Makefile		Makefile		 tags			 	make			 bzImage

	 make	

	make			 	Makefile		

	 	Makefile			 vmlinux		 Makefile	

VERSION	=	4

PATCHLEVEL	=	2

SUBLEVEL	=	0

EXTRAVERSION	=	-rc3

NAME	=	Hurr	durr	I'ma	sheep

	 	Makefile			 	KERNELVERSION		

KERNELVERSION	=	$(VERSION)$(if	$(PATCHLEVEL),.$(PATCHLEVEL)$(if	$(SUBLEVEL),.$(SUBLEVEL)))$(EXTRAVERSION)

	 	ifeq			 	make			 	Makefile			 	make	help			 	make		 	make	V=1			 	ifeq			 	make			 	V=n		

ifeq	("$(origin	V)",	"command	line")

		KBUILD_VERBOSE	=	$(V)

endif

ifndef	KBUILD_VERBOSE

		KBUILD_VERBOSE	=	0

endif

ifeq	($(KBUILD_VERBOSE),1)

		quiet	=

		Q	=

else

		quiet=quiet_

		Q	=	@

endif

export	quiet	Q	KBUILD_VERBOSE

	 	V=n			 	make			 	KBUILD_VERBOSE			 	V			 	KBUILD_VERBOSE			 	0			 	KBUILD_VERBOSE			 	quiet			 	Q	

	 	@			 	CC	scripts/mod/empty.o			 	Compiling	....	scripts/mod/empty.o	LCTT	CC		Makefile	

	 	ifeq			 	make			 	O=/dir		 	dir		

ifeq	($(KBUILD_SRC),)

ifeq	("$(origin	O)",	"command	line")

464

https://encrypted.google.com/search?q=building+linux+kernel#q=building+linux+kernel+from+source+code
https://github.com/torvalds/linux/blob/master/Makefile
https://en.wikipedia.org/wiki/Make_%28software%29
https://github.com/torvalds/linux/commit/52721d9d3334c1cb1f76219a161084094ec634dc
https://en.wikipedia.org/wiki/Ctags
https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/Make_%28software%29
https://en.wikipedia.org/wiki/Vmlinux
https://github.com/torvalds/linux/blob/master/Makefile


		KBUILD_OUTPUT	:=	$(O)

endif

ifneq	($(KBUILD_OUTPUT),)

saved-output	:=	$(KBUILD_OUTPUT)

KBUILD_OUTPUT	:=	$(shell	mkdir	-p	$(KBUILD_OUTPUT)	&&	cd	$(KBUILD_OUTPUT)	\

																																&&	/bin/pwd)

$(if	$(KBUILD_OUTPUT),,	\

					$(error	failed	to	create	output	directory	"$(saved-output)"))

sub-make:	FORCE

				$(Q)$(MAKE)	-C	$(KBUILD_OUTPUT)	KBUILD_SRC=$(CURDIR)	\

				-f	$(CURDIR)/Makefile	$(filter-out	_all	sub-make,$(MAKECMDGOALS))

skip-makefile	:=	1

endif	#	ifneq	($(KBUILD_OUTPUT),)

endif	#	ifeq	($(KBUILD_SRC),)

	 	KBUILD_SRC			makefile		 	KBUILD_OUTPUT			 	O			 	KBUILD_OUTPUT		

	 	KBUILD_OUTPUT			 	saved-output	

	 	make		 	-C	

	 	ifeq			make		 	C			 	M	

ifeq	("$(origin	C)",	"command	line")

		KBUILD_CHECKSRC	=	$(C)

endif

ifndef	KBUILD_CHECKSRC

		KBUILD_CHECKSRC	=	0

endif

ifeq	("$(origin	M)",	"command	line")

		KBUILD_EXTMOD	:=	$(M)

endif

	 	C			 	Makefile			 	$CHECK			 	c			 sparse		 	M		

	 	KBUILD_SRC		 	KBUILD_SRC			 	srctree			 	.	

ifeq	($(KBUILD_SRC),)

								srctree	:=	.

endif

objtree				:=	.

src								:=	$(srctree)

obj								:=	$(objtree)

export	srctree	objtree	VPATH

	 	Makefile			 	make			 	objtree			 	SUBARCH		LCTT	CPU	

SUBARCH	:=	$(shell	uname	-m	|	sed	-e	s/i.86/x86/	-e	s/x86_64/x86/	\

																		-e	s/sun4u/sparc64/	\

																		-e	s/arm.*/arm/	-e	s/sa110/arm/	\

																		-e	s/s390x/s390/	-e	s/parisc64/parisc/	\

																		-e	s/ppc.*/powerpc/	-e	s/mips.*/mips/	\

																		-e	s/sh[234].*/sh/	-e	s/aarch64.*/arm64/	)

	 uname		 	uname			 	SUBARCH			 	SUBARCH			SRCARCH			 	hfr-arch		SRCARCH		 	hfr-arch		

ifeq	($(ARCH),i386)

								SRCARCH	:=	x86

465

https://en.wikipedia.org/wiki/Sparse
https://en.wikipedia.org/wiki/Uname


endif

ifeq	($(ARCH),x86_64)

								SRCARCH	:=	x86

endif

hdr-arch		:=	$(SRCARCH)

	 	ARCH			 	SUBARCH			 	KCONFIG_CONFIG			 	.config		

KCONFIG_CONFIG				?=	.config

export	KCONFIG_CONFIG

	 shell

CONFIG_SHELL	:=	$(shell	if	[	-x	"$$BASH"	];	then	echo	$$BASH;	\

						else	if	[	-x	/bin/bash	];	then	echo	/bin/bash;	\

						else	echo	sh;	fi	;	fi)

	 	C			 	C++		

HOSTCC							=	gcc

HOSTCXX						=	g++

HOSTCFLAGS			=	-Wall	-Wmissing-prototypes	-Wstrict-prototypes	-O2	-fomit-frame-pointer	-std=gnu89

HOSTCXXFLAGS	=	-O2

	 	CC		 	HOST*			 	CC			 	HOSTCC			 	host		

	 	KBUILD_MODULES			 	KBUILD_BUILTIN		

KBUILD_MODULES	:=

KBUILD_BUILTIN	:=	1

ifeq	($(MAKECMDGOALS),modules)

		KBUILD_BUILTIN	:=	$(if	$(CONFIG_MODVERSIONS),1)

endif

	 	modules			 	make		 	KBUILD_BUILTIN			 	CONFIG_MODVERSIONS		

include	scripts/Kbuild.include

	 Kbuild		 	Kernel	Build	System		 	Kbuild			Makefile		 scripts/Kbuild.include		 	Kbuild			 	Kbuild		
	 binutils	

AS								=	$(CROSS_COMPILE)as

LD								=	$(CROSS_COMPILE)ld

CC								=	$(CROSS_COMPILE)gcc

CPP								=	$(CC)	-E

AR								=	$(CROSS_COMPILE)ar

NM								=	$(CROSS_COMPILE)nm

STRIP								=	$(CROSS_COMPILE)strip

OBJCOPY								=	$(CROSS_COMPILE)objcopy

OBJDUMP								=	$(CROSS_COMPILE)objdump

AWK								=	awk

...

...

...

	 	USERINCLUDE			 	LINUXINCLUDE		

466

https://en.wikipedia.org/wiki/Shell_%28computing%29
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/kbuild.txt
https://github.com/torvalds/linux/blob/master/scripts/Kbuild.include
http://www.gnu.org/software/binutils/


USERINCLUDE				:=	\

								-I$(srctree)/arch/$(hdr-arch)/include/uapi	\

								-Iarch/$(hdr-arch)/include/generated/uapi	\

								-I$(srctree)/include/uapi	\

								-Iinclude/generated/uapi	\

								-include	$(srctree)/include/linux/kconfig.h

LINUXINCLUDE				:=	\

								-I$(srctree)/arch/$(hdr-arch)/include	\

								...

	C	

KBUILD_CFLAGS			:=	-Wall	-Wundef	-Wstrict-prototypes	-Wno-trigraphs	\

											-fno-strict-aliasing	-fno-common	\

											-Werror-implicit-function-declaration	\

											-Wno-format-security	\

											-std=gnu89

	Makefile		 	arch/			Kbuild		Makefile	

	 	RCS_FIND_IGNORE			 	RCS_TAR_IGNORE		

export	RCS_FIND_IGNORE	:=	\(	-name	SCCS	-o	-name	BitKeeper	-o	-name	.svn	-o				\

														-name	CVS	-o	-name	.pc	-o	-name	.hg	-o	-name	.git	\)	\

														-prune	-o

export	RCS_TAR_IGNORE	:=	--exclude	SCCS	--exclude	BitKeeper	--exclude	.svn	\

													--exclude	CVS	--exclude	.pc	--exclude	.hg	--exclude	.git

	 	vmlinux		

	Makefile	Makefile		 	make			Makefile		 598		 	vmlinux		

all:	vmlinux

				include	arch/$(SRCARCH)/Makefile

	 	export	RCS_FIND_IGNORE.....			 	all:	vmlinux.....			Makefile	 	make	*.config	

	 	all:			Makefile	 arch/x86/Makefile		Makefile		 	all			Makefile		 	vmlinux		

vmlinux:	scripts/link-vmlinux.sh	$(vmlinux-deps)	FORCE

	vmlinux			linux		 scripts/link-vmlinux.sh		vmlinux	

	 	vmlinux-deps		

vmlinux-deps	:=	$(KBUILD_LDS)	$(KBUILD_VMLINUX_INIT)	$(KBUILD_VMLINUX_MAIN)

	 	built-in.o		 	Kbuild			 	$(obj-y)			 	$(LD)	-r			 	build-in.o			 	vmlinux-deps		 	vmlinux		
	vmlinux-deps		

arch/x86/kernel/vmlinux.lds	arch/x86/kernel/head_64.o

arch/x86/kernel/head64.o				arch/x86/kernel/head.o

init/built-in.o													usr/built-in.o

arch/x86/built-in.o									kernel/built-in.o

mm/built-in.o															fs/built-in.o

ipc/built-in.o														security/built-in.o

crypto/built-in.o											block/built-in.o

467

https://github.com/torvalds/linux/blob/master/Makefile#L598
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/scripts/link-vmlinux.sh


lib/lib.a																			arch/x86/lib/lib.a

lib/built-in.o														arch/x86/lib/built-in.o

drivers/built-in.o										sound/built-in.o

firmware/built-in.o									arch/x86/pci/built-in.o

arch/x86/power/built-in.o			arch/x86/video/built-in.o

net/built-in.o

$(sort	$(vmlinux-deps)):	$(vmlinux-dirs)	;

$(vmlinux-dirs):	prepare	scripts

				$(Q)$(MAKE)	$(build)=$@

	vmlinux-dir			 	prepare			 	scripts			 	prepare			 	Makefile		

prepare:	prepare0

prepare0:	archprepare	FORCE

				$(Q)$(MAKE)	$(build)=.

archprepare:	archheaders	archscripts	prepare1	scripts_basic

prepare1:	prepare2	$(version_h)	include/generated/utsrelease.h	\

																			include/config/auto.conf

				$(cmd_crmodverdir)

prepare2:	prepare3	outputmakefile	asm-generic

	 	prepare0			 	archprepare			 	archheader			 	archscripts			 	x86_64			 Makefile	 	x86_64			Makefile	
(defconfig)	 16-bit		 	BITS			 	32		 arch/x86/Makefile	 	i386		 	64			 	x86_84		

	Makefile	(syscall	table)	 	archheaders		

archheaders:

				$(Q)$(MAKE)	$(build)=arch/x86/entry/syscalls	all

	Makefile		 	archscripts		

archscripts:	scripts_basic

				$(Q)$(MAKE)	$(build)=arch/x86/tools	relocs

	 	archscripts			 Makefile		 	scripts_basic			 	scripts_basic			 scripts/basic		Makefile		make	

scripts_basic:

				$(Q)$(MAKE)	$(build)=scripts/basic

	scripts/basic/Makefile			 	fixdep			 	bin2		

hostprogs-y				:=	fixdep

hostprogs-$(CONFIG_BUILD_BIN2C)					+=	bin2c

always								:=	$(hostprogs-y)

$(addprefix	$(obj)/,$(filter-out	fixdep,$(always))):	$(obj)/fixdep

	 	fixdep			 gcc		 	make			 	bin2c			 	CONFIG_BUILD_BIN2C		LCTT		stdinstdout	C		C	
	 	hostprogs-y			 	Kbuild			 documentation		 	hostprogs-y			 	Kbuild			 	fixed			 	Makefile	

	 	fixdep.c		

	 	make			 	Kbuild		

$	make

		HOSTCC		scripts/basic/fixdep

468

https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/tree/master/arch/x86/configs
https://en.wikipedia.org/wiki/Real_mode
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/Makefile
https://github.com/torvalds/linux/blob/master/scripts/basic/Makefile
https://gcc.gnu.org/
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/makefiles.txt


	 	script_basic			 	archscripts			 	make		arch/x86/tools		Makefile		 	relocs		:

$(Q)$(MAKE)	$(build)=arch/x86/tools	relocs

	 	relocs_32.c			 	relocs_64.c			 	make		

		HOSTCC		arch/x86/tools/relocs_32.o

		HOSTCC		arch/x86/tools/relocs_64.o

		HOSTCC		arch/x86/tools/relocs_common.o

		HOSTLD		arch/x86/tools/relocs

	 	relocs.c			 	version.h		

$(version_h):	$(srctree)/Makefile	FORCE

				$(call	filechk,version.h)

				$(Q)rm	-f	$(old_version_h)

CHK					include/config/kernel.release

	Makefile		 	arch/x86/include/generated/asm			 	asm-generic			 	generic			 	asm-generic		 	archprepare		
	 	prepare0		

prepare0:	archprepare	FORCE

				$(Q)$(MAKE)	$(build)=.

	 	build			 scripts/Kbuild.include	

build	:=	-f	$(srctree)/scripts/Makefile.build	obj

-	 	.		

$(Q)$(MAKE)	-f	$(srctree)/scripts/Makefile.build	obj=.

	 scripts/Makefile.build		 	obj			 	Kbuild			 	Kbuild		

include	$(kbuild-file)

	 	.			 	kernel/bounds.s			 	arch/x86/kernel/asm-offsets.s			 Kbuild		 	prepare			 	vmlinux-dirs		
	scripts			 	filealias			 	mk_elfconfig			 	modpost			 	scripts/host-programs			 	vmlinux-dirs		

	 	vmlinux-dirs		

init	usr	arch/x86	kernel	mm	fs	ipc	security	crypto	block

drivers	sound	firmware	arch/x86/pci	arch/x86/power

arch/x86/video	net	lib	arch/x86/lib

	 Makefile		 	vmlinux-dirs		

vmlinux-dirs				:=	$(patsubst	%/,%,$(filter	%/,	$(init-y)	$(init-m)	\

													$(core-y)	$(core-m)	$(drivers-y)	$(drivers-m)	\

													$(net-y)	$(net-m)	$(libs-y)	$(libs-m)))

init-y								:=	init/

drivers-y				:=	drivers/	sound/	firmware/

net-y								:=	net/

469

https://github.com/torvalds/linux/blob/master/arch/x86/tools/Makefile
https://en.wikipedia.org/wiki/Relocation_%28computing%29
https://github.com/torvalds/linux/blob/master/scripts/Kbuild.include
https://github.com/torvalds/linux/blob/master/scripts/Makefile.build
https://github.com/torvalds/linux/blob/master/Kbuild
https://github.com/torvalds/linux/blob/master/Makefile


libs-y								:=	lib/

...

...

...

	 	patsubst			 	filter			 	/			 	vmlinux-dirs			 	vmlinux-dirs		

$(vmlinux-dirs):	prepare	scripts

				$(Q)$(MAKE)	$(build)=$@

	 	$@			 	vmlinux-dirs			 	vmlinux-dirs			 	make		

		CC						init/main.o

		CHK					include/generated/compile.h

		CC						init/version.o

		CC						init/do_mounts.o

		...

		CC						arch/x86/crypto/glue_helper.o

		AS						arch/x86/crypto/aes-x86_64-asm_64.o

		CC						arch/x86/crypto/aes_glue.o

		...

		AS						arch/x86/entry/entry_64.o

		AS						arch/x86/entry/thunk_64.o

		CC						arch/x86/entry/syscall_64.o

	 	built-io.o		

$	find	.	-name	built-in.o

./arch/x86/crypto/built-in.o

./arch/x86/crypto/sha-mb/built-in.o

./arch/x86/net/built-in.o

./init/built-in.o

./usr/built-in.o

...

...

	 	built-in.o			 	vmlinux			 	vmlinux			Makefile		 	vmlinux			 samples	,	Documentation	

vmlinux:	scripts/link-vmlinux.sh	$(vmlinux-deps)	FORCE

				...

				...

				+$(call	if_changed,link-vmlinux)

	 scripts/link-vmlinux.sh		 	built-in.o			 System.map	

		LINK				vmlinux

		LD						vmlinux.o

		MODPOST	vmlinux.o

		GEN					.version

		CHK					include/generated/compile.h

		UPD					include/generated/compile.h

		CC						init/version.o

		LD						init/built-in.o

		KSYM				.tmp_kallsyms1.o

		KSYM				.tmp_kallsyms2.o

		LD						vmlinux

		SORTEX		vmlinux

		SYSMAP		System.map

	vmlinux			 	System.map		

470

https://github.com/torvalds/linux/tree/master/samples
https://github.com/torvalds/linux/tree/master/Documentation
https://github.com/torvalds/linux/blob/master/scripts/link-vmlinux.sh
https://en.wikipedia.org/wiki/System.map


$	ls	vmlinux	System.map	

System.map		vmlinux

	vmlinux			 bzImage.

bzImage

	bzImage			linux		 	vmlinux			 	make	bzImage			 	bzImage		 	make			 	bzImage			 arch/x86/kernel/Makefile	

all:	bzImage

	 	bzImage			 arch/x86/kernel/Makefile	

bzImage:	vmlinux

				$(Q)$(MAKE)	$(build)=$(boot)	$(KBUILD_IMAGE)

				$(Q)mkdir	-p	$(objtree)/arch/$(UTS_MACHINE)/boot

				$(Q)ln	-fsn	../../x86/boot/bzImage	$(objtree)/arch/$(UTS_MACHINE)/boot/$@

	boot		 	make		

boot	:=	arch/x86/boot

	 	arch/x86/boot			 	arch/x86/boot/compressed			 	setup.bin			 	vmlinux.bin			 	bzImage		 arch/x86/boot/Makefile	
	$(obj)/setup.elf		

$(obj)/setup.elf:	$(src)/setup.ld	$(SETUP_OBJS)	FORCE

				$(call	if_changed,ld)

	 	arch/x86/boot			 	setup.ld			 	boot			 	SETUP_OBJS		

		AS						arch/x86/boot/bioscall.o

		CC						arch/x86/boot/cmdline.o

		AS						arch/x86/boot/copy.o

		HOSTCC		arch/x86/boot/mkcpustr

		CPUSTR		arch/x86/boot/cpustr.h

		CC						arch/x86/boot/cpu.o

		CC						arch/x86/boot/cpuflags.o

		CC						arch/x86/boot/cpucheck.o

		CC						arch/x86/boot/early_serial_console.o

		CC						arch/x86/boot/edd.o

	 arch/x86/boot/header.S	

$(obj)/header.o:	$(obj)/voffset.h	$(obj)/zoffset.h

	 	voffset.h			 	sed			 	nm			 	vmlinux		

#define	VO__end	0xffffffff82ab0000

#define	VO__text	0xffffffff81000000

	 	zoffset.h			 arch/x86/boot/compressed/Makefile		 	vmlinux		

$(obj)/zoffset.h:	$(obj)/compressed/vmlinux	FORCE

				$(call	if_changed,zoffset)

471

https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/boot/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/Makefile


	 	$(obj)/compressed/vmlinux			 	vmlinux-objs-y		——		 arch/x86/boot/compressed		 	vmlinux.bin			vmlinux.bin.bz2	
	 	mkpiggy		

		LDS					arch/x86/boot/compressed/vmlinux.lds

		AS						arch/x86/boot/compressed/head_64.o

		CC						arch/x86/boot/compressed/misc.o

		CC						arch/x86/boot/compressed/string.o

		CC						arch/x86/boot/compressed/cmdline.o

		OBJCOPY	arch/x86/boot/compressed/vmlinux.bin

		BZIP2			arch/x86/boot/compressed/vmlinux.bin.bz2

		HOSTCC		arch/x86/boot/compressed/mkpiggy

	vmlinux.bin			 	vmlinux			 	u32		LCTT	4-Byte	 	vmlinux.bin.all			 	vmlinux.bin.bz2		
	vmlinux.bin.all			 	vmlinux.bin			 	vmlinux.relocs	LCTT	vmlinux		 	vmlinux.relocs			 	vmlinux		
	relocs			 	vmlinux			 	piggy.S			 	mkpiggy		

		MKPIGGY	arch/x86/boot/compressed/piggy.S

		AS						arch/x86/boot/compressed/piggy.o

	 	zoffset		

		ZOFFSET	arch/x86/boot/zoffset.h

	 	zoffset.h			 	voffset.h			 arch/x86/boot	

		AS						arch/x86/boot/header.o

		CC						arch/x86/boot/main.o

		CC						arch/x86/boot/mca.o

		CC						arch/x86/boot/memory.o

		CC						arch/x86/boot/pm.o

		AS						arch/x86/boot/pmjump.o

		CC						arch/x86/boot/printf.o

		CC						arch/x86/boot/regs.o

		CC						arch/x86/boot/string.o

		CC						arch/x86/boot/tty.o

		CC						arch/x86/boot/video.o

		CC						arch/x86/boot/video-mode.o

		CC						arch/x86/boot/video-vga.o

		CC						arch/x86/boot/video-vesa.o

		CC						arch/x86/boot/video-bios.o

	 	setup.elf		

		LD						arch/x86/boot/setup.elf

ld	-m	elf_x86_64			-T	arch/x86/boot/setup.ld	arch/x86/boot/a20.o	arch/x86/boot/bioscall.o	arch/x86/boot/cmdline.o	arc

h/x86/boot/copy.o	arch/x86/boot/cpu.o	arch/x86/boot/cpuflags.o	arch/x86/boot/cpucheck.o	arch/x86/boot/early_serial_co

nsole.o	arch/x86/boot/edd.o	arch/x86/boot/header.o	arch/x86/boot/main.o	arch/x86/boot/mca.o	arch/x86/boot/memory.o	ar

ch/x86/boot/pm.o	arch/x86/boot/pmjump.o	arch/x86/boot/printf.o	arch/x86/boot/regs.o	arch/x86/boot/string.o	arch/x86/b

oot/tty.o	arch/x86/boot/video.o	arch/x86/boot/video-mode.o	arch/x86/boot/version.o	arch/x86/boot/video-vga.o	arch/x86

/boot/video-vesa.o	arch/x86/boot/video-bios.o	-o	arch/x86/boot/setup.elf

	 	arch/x86/boot/*			 	setup.bin		

objcopy		-O	binary	arch/x86/boot/setup.elf	arch/x86/boot/setup.bin

	 	vmlinux			 	vmlinux.bin		

472

https://github.com/torvalds/linux/tree/master/arch/x86/boot/compressed
https://github.com/torvalds/linux/tree/master/arch/x86/boot/


objcopy		-O	binary	-R	.note	-R	.comment	-S	arch/x86/boot/compressed/vmlinux	arch/x86/boot/vmlinux.bin

	 arch/x86/boot/tools/build.c		 	setup.bin			 	vmlinux.bin			 	bzImage		

arch/x86/boot/tools/build	arch/x86/boot/setup.bin	arch/x86/boot/vmlinux.bin	arch/x86/boot/zoffset.h	arch/x86/boot/bzI

mage

	 	bzImage			 	setup.bin			 	vmlinux.bin		

Setup	is	16268	bytes	(padded	to	16384	bytes).

System	is	4704	kB

CRC	94a88f9a

Kernel:	arch/x86/boot/bzImage	is	ready		(#5)

	 	make			 	bzImage		linux		Makefile		linux		linux	

		 LCTT	 Linux	

GNU	make	util
Linux	kernel	top	Makefile
cross-compilation
Ctags
sparse
bzImage
uname
shell
Kbuild
binutils
gcc
Documentation
System.map
Relocation

473

https://github.com/torvalds/linux/blob/master/arch/x86/boot/tools/build.c
https://github.com/LCTT/TranslateProject
https://linux.cn/
https://en.wikipedia.org/wiki/Make_%28software%29
https://github.com/torvalds/linux/blob/master/Makefile
https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Ctags
https://en.wikipedia.org/wiki/Sparse
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/Uname
https://en.wikipedia.org/wiki/Shell_%28computing%29
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/kbuild.txt
http://www.gnu.org/software/binutils/
https://gcc.gnu.org/
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/makefiles.txt
https://en.wikipedia.org/wiki/System.map
https://en.wikipedia.org/wiki/Relocation_%28computing%29


	 linux-insides	

	 			

Linker

	C		 	*.o		 /

*-linkers

*--main.c

*--lib.c

*--lib.h

	 	main.c		

#include	<stdio.h>

#include	"lib.h"

int	main(int	argc,	char	**argv)	{

				printf("factorial	of	5	is:	%d\n",	factorial(5));

				return	0;

}

	lib.c		

int	factorial(int	base)	{

				int	res,i	=	1;

				if	(base	==	0)	{

								return	1;

				}

				while	(i	<=	base)	{

								res	*=	i;

								i++;

				}

				return	res;

}

	lib.h		

#ifndef	LIB_H

#define	LIB_H

int	factorial(int	base);

#endif

	 	main.c		

$	gcc	-c	main.c

474

https://zh.wikipedia.org/wiki/%E9%93%BE%E6%8E%A5%E5%99%A8
https://en.wikipedia.org/wiki/Object_file


	 	nm		

$	nm	-A	main.o

main.o:																	U	factorial

main.o:0000000000000000	T	main

main.o:																	U	printf

	nm			 	U			 			 	T			 	.text			 	nm			 	main.c		

	factorial		-		 	lib.c			 	main.c		 	lib.c		
	main		-	;
	printf		-		 glibc		 	main.c		

	 	nm			 	main.o			 	0000000000000000			 	main			 	main.o		

$	objdump	-S	main.o

main.o:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000000000	<main>:

			0:				55																							push			%rbp

			1:				48	89	e5																	mov				%rsp,%rbp

			4:				48	83	ec	10														sub				$0x10,%rsp

			8:				89	7d	fc																	mov				%edi,-0x4(%rbp)

			b:				48	89	75	f0														mov				%rsi,-0x10(%rbp)

			f:				bf	05	00	00	00											mov				$0x5,%edi

		14:				e8	00	00	00	00											callq		19	<main+0x19>

		19:				89	c6																				mov				%eax,%esi

		1b:				bf	00	00	00	00											mov				$0x0,%edi

		20:				b8	00	00	00	00											mov				$0x0,%eax

		25:				e8	00	00	00	00											callq		2a	<main+0x2a>

		2a:				b8	00	00	00	00											mov				$0x0,%eax

		2f:				c9																							leaveq	

		30:				c3																							retq

	 	callq			 	callq			 			 	objdump		

$	objdump	-S	-r	main.o

...

		14:				e8	00	00	00	00											callq		19	<main+0x19>

		15:	R_X86_64_PC32																			factorial-0x4

		19:				89	c6																				mov				%eax,%esi

...

		25:				e8	00	00	00	00											callq		2a	<main+0x2a>

		26:			R_X86_64_PC32																			printf-0x4

		2a:				b8	00	00	00	00											mov				$0x0,%eax

...

	objdump			 	-r			 	--reloc			 			

	 	objdump		

		14:				e8	00	00	00	00											callq		19	<main+0x19>

		15:			R_X86_64_PC32																			factorial-0x4

		19:				89	c6																				mov				%eax,%esi

	 	e8	00	00	00	00			e8			 	call			 		 	e8	00	00	00			 	00	00	00	00			4		4			 	x86_64		64		8	
	 	-mcmodel=small			 	main.c			 	gcc		

475

https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Opcode


-mcmodel=small

:		2GB		64	

	 	gcc			 	gcc			2	GB		4		 	call			 	main.c		

$	gcc	main.c	lib.c	-o	factorial	|	objdump	-S	factorial	|	grep	factorial

factorial:					file	format	elf64-x86-64

...

...

0000000000400506	<main>:

				40051a:				e8	18	00	00	00											callq		400537	<factorial>

...

...

0000000000400537	<factorial>:

				400550:				75	07																				jne				400559	<factorial+0x22>

				400557:				eb	1b																				jmp				400574	<factorial+0x3d>

				400559:				eb	0e																				jmp				400569	<factorial+0x32>

				40056f:				7e	ea																				jle				40055b	<factorial+0x24>

...

...

	 	main			 	0x0000000000400506		 	0x0			C		 	glibc			C		 	-nostdlib			 	gcc			 	main		
	 	.init			objdump	

objdump	-S	factorial	|	less

factorial:					file	format	elf64-x86-64

Disassembly	of	section	.init:

00000000004003a8	<_init>:

		4003a8:							48	83	ec	08													sub				$0x8,%rsp

		4003ac:							48	8b	05	a5	05	20	00				mov				0x2005a5(%rip),%rax								#	600958	<_DYNAMIC+0x1d0>

	 	glibc			 	0x00000000004003a8			 	readelf			 ELF	

$	readelf	-d	factorial	|	grep	\(INIT\)

	0x000000000000000c	(INIT)															0x4003a8

	 	main			 	0000000000400506			 	.init		 	factorial			 	0x0000000000400537			 	factorial			 	e8	18	00	00

00		 	e8			 	call			 	18	00	00	00			 	x86_64		 	00	00	00	18			 	callq			 	factorial		

>>>	hex(0x40051a	+	0x18	+	0x5)	==	hex(0x400537)

True

	 	0x18		 	0x5			 	call			5	 	e8	18	00	00	00		 	0x18			 	factorial		

	 			

GNU	
	 GNU			 	ld			 	gcc			 	factorial		

$	gcc	main.c	lib.o	-o	factorial

476

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/GNU_linker


——	 	factorial	

./factorial	

factorial	of	5	is:	120

	 	gcc			 	GUN	ld		——		collect2	

~$	/usr/lib/gcc/x86_64-linux-gnu/4.9/collect2	--version

collect2	version	4.9.3

/usr/bin/ld	--version

GNU	ld	(GNU	Binutils	for	Debian)	2.25

...

...

...

	gcc		 	GUN	ld		

ld	main.o	lib.o	-o	factorial

$	ld	main.o	lib.o	-o	factorial

ld:	warning:	cannot	find	entry	symbol	_start;	defaulting	to	00000000004000b0

main.o:	In	function	`main':

main.c:(.text+0x26):	undefined	reference	to	`printf'

	 	_start		
	 	printf		

	 	_start			 	main			:)	 	_start			 	_start			 	crt1.0		

$	objdump	-S	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000000000	<_start>:

			0:				31	ed																				xor				%ebp,%ebp

			2:				49	89	d1																	mov				%rdx,%r9

			...

			...

			...

	 	ld		

ld	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

main.o	lib.o	-o	factorial

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o:	In	function	`_start':

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:115:	undefined	reference	to	`__libc_csu_fini'

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:116:	undefined	reference	to	`__libc_csu_init'

/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:122:	undefined	reference	to	`__libc_start_main'

main.o:	In	function	`main':

main.c:(.text+0x26):	undefined	reference	to	`printf'

	 	printf		

	__libc_csu_fini	

477



	__libc_csu_init	

	__libc_start_main	

	_start			 	glibc			 sysdeps/x86_64/start.S	

mov	$__libc_csu_fini,	%R8_LP

mov	$__libc_csu_init,	%RCX_LP

...

call	__libc_start_main

	 	.init			 	.fini			 	main			 csu/elf-init.c	

	crtn.o	;
	crti.o	.

	.init		.fini		 	_init			 	_fini		

	crtn.o			 	.init			 	.fini		

$	objdump	-S	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o

0000000000000000	<.init>:

			0:				48	83	c4	08														add				$0x8,%rsp

			4:				c3																							retq			

Disassembly	of	section	.fini:

0000000000000000	<.fini>:

			0:				48	83	c4	08														add				$0x8,%rsp

			4:				c3																							retq

	 	crti.o			 	_init			 	_fini	

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	\

-o	factorial

	 	-lc			 	ld			 	$LD_LIBRARY_PATH			 	-lc		

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	-lc	\

-o	factorial

$	./factorial	

bash:	./factorial:	No	such	file	or	directory

	 readelf	

$	readelf	-l	factorial	

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x4003c0

There	are	7	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

478

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=0d27a38e9c02835ce17d1c9287aa01be222e72eb;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/elf-init.c;hb=1d4bbc54bd4f7d85d774871341b49f4357af1fb7
https://sourceware.org/binutils/docs/binutils/readelf.html


		PHDR											0x0000000000000040	0x0000000000400040	0x0000000000400040

																	0x0000000000000188	0x0000000000000188		R	E				8

		INTERP									0x00000000000001c8	0x00000000004001c8	0x00000000004001c8

																	0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

		LOAD											0x0000000000000000	0x0000000000400000	0x0000000000400000

																	0x0000000000000610	0x0000000000000610		R	E				200000

		LOAD											0x0000000000000610	0x0000000000600610	0x0000000000600610

																	0x00000000000001cc	0x00000000000001cc		RW					200000

		DYNAMIC								0x0000000000000610	0x0000000000600610	0x0000000000600610

																	0x0000000000000190	0x0000000000000190		RW					8

		NOTE											0x00000000000001e4	0x00000000004001e4	0x00000000004001e4

																	0x0000000000000020	0x0000000000000020		R						4

		GNU_STACK						0x0000000000000000	0x0000000000000000	0x0000000000000000

																	0x0000000000000000	0x0000000000000000		RW					10

	Section	to	Segment	mapping:

		Segment	Sections...

			00					

			01					.interp	

			02					.interp	.note.ABI-tag	.hash	.dynsym	.dynstr	.gnu.version	.gnu.version_r	.rela.dyn	.rela.plt	.init	.plt	.tex

t	.fini	.rodata	.eh_frame	

			03					.dynamic	.got	.got.plt	.data	

			04					.dynamic	

			05					.note.ABI-tag	

			06

		INTERP									0x00000000000001c8	0x00000000004001c8	0x00000000004001c8

																	0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

	elf			 	.interp			 	.interp			 	ascii			Linux		 	readelf			 	x86_64			 	/lib64/ld-

linux-x86-64.so.2		 	ld-linux-x86-64.so.2			 	-dynamic-linker			 	ld		

$	gcc	-c	main.c	lib.c

$	ld	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o	\

/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o	main.o	lib.o	\

-dynamic-linker	/lib64/ld-linux-x86-64.so.2	\

-lc	-o	factorial

$	./factorial

factorial	of	5	is:	120

	 	main.c			 	lib.c			 	gcc			 	main.o			 	lib.o	

$	file	lib.o	main.o

lib.o:		ELF	64-bit	LSB	relocatable,	x86-64,	version	1	(SYSV),	not	stripped

main.o:	ELF	64-bit	LSB	relocatable,	x86-64,	version	1	(SYSV),	not	stripped

	 	gcc			 	GNU	ld			C		 	GNU	linker			 	-o		-dynamic-linker		 	GNU	ld		

	GNU	

479



	 	GNU	linker			 	-o	<output>		-		 	ld			 	output		 	-l<name>		-	 	-dynamic-linker			 	ld	

	 	@file			 	file			 	linker.ld		

$	ld	@linker.ld

	 	-b			 	--format		 	ELF	,		DJGPP/COFF			 	--oformat=output-format		

	 	--defsym			 	--defsym=symbol=expression			Linux		ARM		Makefile	-	 arch/arm/boot/compressed/Makefile

LDFLAGS_vmlinux	=	--defsym	_kernel_bss_size=$(KBSS_SZ)

	 	.bss			 	_kernel_bss_size			 	

ldr	r5,	=_kernel_bss_size

	 	-shared		 	-M			 	-map	<filename>		

$	ld	-M	@linker.ld

...

...

...

.text											0x00000000004003c0						0x112

	*(.text.unlikely	.text.*_unlikely	.text.unlikely.*)

	*(.text.exit	.text.exit.*)

	*(.text.startup	.text.startup.*)

	*(.text.hot	.text.hot.*)

	*(.text	.stub	.text.*	.gnu.linkonce.t.*)

	.text										0x00000000004003c0							0x2a	/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o

...

...

...

	.text										0x00000000004003ea							0x31	main.o

																0x00000000004003ea																main

	.text										0x000000000040041b							0x3f	lib.o

																0x000000000040041b																factorial

	GNU			 	--help			 	--version			 	ld			 	GNU				 	ld			 	ld		

	 	ld			AT&T	

...

	 	-T			 	ld			 	SECTIONS			 				 	.			hello	world	

.data

								msg:				.ascii		"hello,	world!\n"

.text

480

https://github.com/torvalds/linux/blob/master/arch/arm/boot/compressed/Makefile
https://github.com/torvalds/linux/blob/master/arch/arm/boot/compressed/head.S


.global	_start

_start:

								mov				$1,%rax

								mov				$1,%rdi

								mov				$msg,%rsi

								mov				$14,%rdx

								syscall

								mov				$60,%rax

								mov				$0,%rdi

								syscall

$	as	-o	hello.o	hello.asm

$	ld	-o	hello	hello.o

	 	.text			 	.data			 	hello.asm		

/*

	*	Linker	script	for	the	factorial

	*/

OUTPUT(hello)	

OUTPUT_FORMAT("elf64-x86-64")

INPUT(hello.o)

SECTIONS

{

				.	=	0x200000;

				.text	:	{

										*(.text)

				}

				.	=	0x400000;

				.data	:	{

										*(.data)

				}

}

	 	C			 	OUTPUT			 	OUTPUT_FORMAT		 	INPUT		 	ld			 	SECTIONS		 	SECTIONS		
	SECTIONS			 	.	=	0x200000		 	.			 	0x200000		.	=	0x400000		0x400000			.	=	0x200000		 	.text			 	*

(.text)			 	*		 	*(.text)			 	.text			 	hello.o(.text)			 	.	=	0x400000		

$	as	-o	hello.o	hello.S	&&	ld	-T	linker.script	&&	./hello

hello,	world!

	 	objdump			 	.text			 	0x200000			 	.data			 	0x400000		

$	objdump	-D	hello

Disassembly	of	section	.text:

0000000000200000	<_start>:

		200000:				48	c7	c0	01	00	00	00					mov				$0x1,%rax

		...

Disassembly	of	section	.data:

0000000000400000	<msg>:

		400000:				68	65	6c	6c	6f											pushq		$0x6f6c6c65

		...

481



	 	ASSERT(exp,	message)			 linux-insides		Linux		Linux		 	0x1f1		Linux	

.	=	ASSERT(hdr	==	0x1f1,	"The	setup	header	has	the	wrong	offset!");

	INCLUDE	filename			 	ld		

symbol	=	expression	;
symbol	+=	expression	;
symbol	-=	expression	;
symbol	*=	expression	;
symbol	/=	expression	;
symbol	<<=	expression	;
symbol	>>=	expression	;
symbol	&=	expression	;
symbol	|=	expression	;

	C	

START_ADDRESS	=	0x200000;

DATA_OFFSET			=	0x200000;

SECTIONS

{

				.	=	START_ADDRESS;

				.text	:	{

										*(.text)

				}

				.	=	START_ADDRESS	+	DATA_OFFSET;

				.data	:	{

										*(.data)

				}

}

	C	

	ABSOLUTE		-	
	ADDR		-	
	ALIGN		-		 	.		
	DEFINED		-		 	1		 	0	

	MAX		and		MIN		-	
	NEXT		-	
	SIZEOF		-	

...

	PR		 linux-insides-zh	

Book	about	Linux	kernel	insides
linker
object	files
glibc

482

https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/Linker_%28computing%29
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/GNU_C_Library


opcode
ELF
GNU	linker
My	posts	about	assembly	programming	for	x86_64
readelf

483

https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/GNU_linker
http://0xax.github.io/categories/assembly/
https://sourceware.org/binutils/docs/binutils/readelf.html


	linux-insides-zh	

	Linux		Linux	

	 	C			main	

int	main(int	argc,	char	*argv[])	{

				//	Entry	point	is	here

}

	 	main		

int	main(int	argc,	char	*argv[])	{

				return	0;

}

	 gdb	

$	gcc	-ggdb	program.c	-o	program

$	gdb	./program

The	target	architecture	is	assumed	to	be	i386:x86-64:intel

Reading	symbols	from	./program...done.

	gdb		 	info	files		

(gdb)	info	files

Symbols	from	"/home/alex/program".

Local	exec	file:

				`/home/alex/program',	file	type	elf64-x86-64.

				Entry	point:	0x400430

				0x0000000000400238	-	0x0000000000400254	is	.interp

				0x0000000000400254	-	0x0000000000400274	is	.note.ABI-tag

				0x0000000000400274	-	0x0000000000400298	is	.note.gnu.build-id

				0x0000000000400298	-	0x00000000004002b4	is	.gnu.hash

				0x00000000004002b8	-	0x0000000000400318	is	.dynsym

				0x0000000000400318	-	0x0000000000400357	is	.dynstr

				0x0000000000400358	-	0x0000000000400360	is	.gnu.version

				0x0000000000400360	-	0x0000000000400380	is	.gnu.version_r

				0x0000000000400380	-	0x0000000000400398	is	.rela.dyn

				0x0000000000400398	-	0x00000000004003c8	is	.rela.plt

				0x00000000004003c8	-	0x00000000004003e2	is	.init

				0x00000000004003f0	-	0x0000000000400420	is	.plt

				0x0000000000400420	-	0x0000000000400428	is	.plt.got

				0x0000000000400430	-	0x00000000004005e2	is	.text

				0x00000000004005e4	-	0x00000000004005ed	is	.fini

				0x00000000004005f0	-	0x0000000000400610	is	.rodata

				0x0000000000400610	-	0x0000000000400644	is	.eh_frame_hdr

				0x0000000000400648	-	0x000000000040073c	is	.eh_frame

				0x0000000000600e10	-	0x0000000000600e18	is	.init_array

				0x0000000000600e18	-	0x0000000000600e20	is	.fini_array

				0x0000000000600e20	-	0x0000000000600e28	is	.jcr

				0x0000000000600e28	-	0x0000000000600ff8	is	.dynamic

				0x0000000000600ff8	-	0x0000000000601000	is	.got

				0x0000000000601000	-	0x0000000000601028	is	.got.plt

				0x0000000000601028	-	0x0000000000601034	is	.data

				0x0000000000601034	-	0x0000000000601038	is	.bss

484

https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%BB%9F%E8%B0%83%E7%94%A8
https://www.gnu.org/software/gdb/


	 	Entry	point:	0x400430		

(gdb)	break	*0x400430

Breakpoint	1	at	0x400430

(gdb)	run

Starting	program:	/home/alex/program	

Breakpoint	1,	0x0000000000400430	in	_start	()

	 	main			 	_start			 	main		

	 	C		

//	program.c

#include	<stdlib.h>

#include	<stdio.h>

static	int	x	=	1;

int	y	=	2;

int	main(int	argc,	char	*argv[])	{

				int	z	=	3;

				printf("x	+	y	+	z	=	%d\n",	x	+	y	+	z);

				return	EXIT_SUCCESS;

}

$	gcc	-Wall	program.c	-o	sum

$	./sum

x	+	y	+	z	=	6

	-	 exec*	

The	exec()	family	of	functions	replaces	the	current	process	image	with	a	new	process	image.

	execve		 files/exec.c	

SYSCALL_DEFINE3(execve,

								const	char	__user	*,	filename,

								const	char	__user	*const	__user	*,	argv,

								const	char	__user	*const	__user	*,	envp)

{

				return	do_execve(getname(filename),	argv,	envp);

}

	 	do_execve		 	do_execve			 ELF	 	start_thread		
x86_64		 arch/x86/kernel/process_64.c	

	start_thread		 )

Linux		 	_start		

485

https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%BB%9F%E8%B0%83%E7%94%A8
http://man7.org/linux/man-pages/man3/execl.3.html
https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%BB%9F%E8%B0%83%E7%94%A8
https://github.com/torvalds/linux/blob/master/fs/exec.c#L1859
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/process_64.c#L231
https://en.wikipedia.org/wiki/X86_memory_segmentation


	 	_start		

$	gcc	-Wall	program.c	-o	sum

	 	_start			gcc		 	verbose	mode			 	-v		

	 	gcc		

$	gcc	-v	-ggdb	program.c	-o	sum

...

...

...

/usr/libexec/gcc/x86_64-redhat-linux/6.1.1/cc1	-quiet	-v	program.c	-quiet	-dumpbase	program.c	-mtune=generic	-march=x

86-64	-auxbase	test	-ggdb	-version	-o	/tmp/ccvUWZkF.s

...

...

...

	cc1			 	C			 	/tmp/ccvUWZkF.s			 	GNU	as		

$	gcc	-v	-ggdb	program.c	-o	sum

...

...

...

as	-v	--64	-o	/tmp/cc79wZSU.o	/tmp/ccvUWZkF.s

...

...

...

	 	collect2		

$	gcc	-v	-ggdb	program.c	-o	sum

...

...

...

/usr/libexec/gcc/x86_64-redhat-linux/6.1.1/collect2	-plugin	/usr/libexec/gcc/x86_64-redhat-linux/6.1.1/liblto_plugin.

so	-plugin-opt=/usr/libexec/gcc/x86_64-redhat-linux/6.1.1/lto-wrapper	-plugin-opt=-fresolution=/tmp/ccLEGYra.res	-plu

gin-opt=-pass-through=-lgcc	-plugin-opt=-pass-through=-lgcc_s	-plugin-opt=-pass-through=-lc	-plugin-opt=-pass-through

=-lgcc	-plugin-opt=-pass-through=-lgcc_s	--build-id	--no-add-needed	--eh-frame-hdr	--hash-style=gnu	-m	elf_x86_64	-dy

namic-linker	/lib64/ld-linux-x86-64.so.2	-o	test	/usr/lib/gcc/x86_64-redhat-linux/6.1.1/../../../../lib64/crt1.o	/usr

/lib/gcc/x86_64-redhat-linux/6.1.1/../../../../lib64/crti.o	/usr/lib/gcc/x86_64-redhat-linux/6.1.1/crtbegin.o	-L/usr/

lib/gcc/x86_64-redhat-linux/6.1.1	-L/usr/lib/gcc/x86_64-redhat-linux/6.1.1/../../../../lib64	-L/lib/../lib64	-L/usr/l

ib/../lib64	-L.	-L/usr/lib/gcc/x86_64-redhat-linux/6.1.1/../../..	/tmp/cc79wZSU.o	-lgcc	--as-needed	-lgcc_s	--no-as-n

eeded	-lc	-lgcc	--as-needed	-lgcc_s	--no-as-needed	/usr/lib/gcc/x86_64-redhat-linux/6.1.1/crtend.o	/usr/lib/gcc/x86_6

4-redhat-linux/6.1.1/../../../../lib64/crtn.o

...

...

...

$	ldd	program

				linux-vdso.so.1	(0x00007ffc9afd2000)

				libc.so.6	=>	/lib64/libc.so.6	(0x00007f56b389b000)

				/lib64/ld-linux-x86-64.so.2	(0x0000556198231000)

	 	printf			 	-nostdlib		

$	gcc	-nostdlib	program.c	-o	program

/usr/bin/ld:	warning:	cannot	find	entry	symbol	_start;	defaulting	to	000000000040017c

486

https://en.wikipedia.org/wiki/Standard_library


/tmp/cc02msGW.o:	In	function	`main':

/home/alex/program.c:11:	undefined	reference	to	`printf'

collect2:	error:	ld	returned	1	exit	status

	 	_start			 	_start		

$	gcc	-nostdlib	-lc	-ggdb	program.c	-o	program

/usr/bin/ld:	warning:	cannot	find	entry	symbol	_start;	defaulting	to	0000000000400350

	 	/usr/lib64/libc.so.6			 	_start			 	gcc			 	collect2			 	/lib64/crt1.o		
	objdump			 	_start		

$	objdump	-d	/lib64/crt1.o	

/lib64/crt1.o:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000000000	<_start>:

			0:				31	ed																				xor				%ebp,%ebp

			2:				49	89	d1																	mov				%rdx,%r9

			5:				5e																							pop				%rsi

			6:				48	89	e2																	mov				%rsp,%rdx

			9:				48	83	e4	f0														and				$0xfffffffffffffff0,%rsp

			d:				50																							push			%rax

			e:				54																							push			%rsp

			f:				49	c7	c0	00	00	00	00					mov				$0x0,%r8

		16:				48	c7	c1	00	00	00	00					mov				$0x0,%rcx

		1d:				48	c7	c7	00	00	00	00					mov				$0x0,%rdi

		24:				e8	00	00	00	00											callq		29	<_start+0x29>

		29:				f4																							hlt

	 	crt1.o			 	_start			 	_start			 sysdeps/x86_64/start.S	

	_start			 	ebp			 ABI)	

xorl	%ebp,	%ebp

	 	r9		

mov	%RDX_LP,	%R9_LP

	 ELF	

After	the	dynamic	linker	has	built	the	process	image	and	performed	the	relocations,	each	shared	object	gets	the	opportunity	to
execute	some	initialization	code.	...	Similarly,	shared	objects	may	have	termination	functions,	which	are	executed	with	the	atexit
(BA_OS)	mechanism	after	the	base	process	begins	its	termination	sequence.

	 	r9			 	__libc_start_main			 	rdx			 	%rdx			 	%rsp		 	_start			 	__libc_start_main	

	__libc_start_main			 csu/libc-start.c	

STATIC	int	LIBC_START_MAIN	(int	(*main)	(int,	char	**,	char	**),

																													int	argc,

																												char	**argv,

																													__typeof	(main)	init,

																												void	(*fini)	(void),

																												void	(*rtld_fini)	(void),

																												void	*stack_end)

487

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/libc-start.c;h=0fb98f1606bab475ab5ba2d0fe08c64f83cce9df;hb=HEAD


It	takes	address	of	the		main		function	of	a	program,		argc		and		argv	.		init		and		fini		functions	are	constructor	and	destructor	of
the	program.	The		rtld_fini		is	termination	function	which	will	be	called	after	the	program	will	be	exited	to	terminate	and	free
dynamic	section.	The	last	parameter	of	the		__libc_start_main		is	the	pointer	to	the	stack	of	the	program.	Before	we	can	call	the
	__libc_start_main		function,	all	of	these	parameters	must	be	prepared	and	passed	to	it.	Let's	return	to	the	sysdeps/x86_64/start.S
assembly	file	and	continue	to	see	what	happens	before	the		__libc_start_main		function	will	be	called	from	there.

	 	main		 	argc			 	argv		 	init			 	fini		 	rtld_fini		 	__libc_start_main			 	__libc_start_main	

	 sysdeps/x86_64/start.S		 	__libc_start_main		

	 	__libc_start_main			 	_start		

+-----------------+

|							NULL						|

+-----------------+	

|							envp						|

+-----------------+	

|							NULL						|

+------------------

|							argv						|	<-	rsp

+------------------

|							argc						|

+-----------------+

	 	ebp			 	r9			 	rsi			 	rsp			 	argv		 	rsi		

+-----------------+

|							NULL						|

+-----------------+	

|							envp						|

+-----------------+	

|							NULL						|

+------------------

|							argv						|	<-	rsp

+-----------------+

	 	argv			 	rdx		

popq	%rsi

mov	%RSP_LP,	%RDX_LP

	 	argc			 	argv		 ABI		 	16			 	rax		

and		$~15,	%RSP_LP

pushq	%rax

pushq	%rsp

mov	$__libc_csu_fini,	%R8_LP

mov	$__libc_csu_init,	%RCX_LP

mov	$main,	%RDI_LP

	 	r8			 	rcx			 	main			 	rdi			 csu/libc-start.c		 	__libc_start_main		

	 	__libc_start_main			 	/lib64/crt1.o		

$	gcc	-nostdlib	/lib64/crt1.o	-lc	-ggdb	program.c	-o	program

/lib64/crt1.o:	In	function	`_start':

(.text+0x12):	undefined	reference	to	`__libc_csu_fini'

/lib64/crt1.o:	In	function	`_start':

(.text+0x19):	undefined	reference	to	`__libc_csu_init'

collect2:	error:	ld	returned	1	exit	status

	-		 	__libc_csu_fini			 	__libc_csu_init			 	__libc_start_main			 	C			 ELF	

488

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/libc-start.c;h=0fb98f1606bab475ab5ba2d0fe08c64f83cce9df;hb=HEAD
http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf


After	the	dynamic	linker	has	built	the	process	image	and	performed	the	relocations,	each	shared	object	gets	the	opportunity	to
execute	some	initialization	code.	...	Similarly,	shared	objects	may	have	termination	functions,	which	are	executed	with	the	atexit
(BA_OS)	mechanism	after	the	base	process	begins	its	termination	sequence.

	 	.text	,		.data		

	.init	

	.fini	

We	can	find	it	with		readelf		util:

	 	readelf		

$	readelf	-e	test	|	grep	init

		[11]	.init													PROGBITS									00000000004003c8		000003c8

$	readelf	-e	test	|	grep	fini

		[15]	.fini													PROGBITS									0000000000400504		00000504

/	 errno	

	 	main		 	.init			 	.fini			 	/lib64/crti.o		

$	gcc	-nostdlib	/lib64/crt1.o	/lib64/crti.o		-lc	-ggdb	program.c	-o	program

$	./program

Segmentation	fault	(core	dumped)

	 	segmentation	fault			 	objdump			 	lib64/crti.o		

$	objdump	-D	/lib64/crti.o

/lib64/crti.o:					file	format	elf64-x86-64

Disassembly	of	section	.init:

0000000000000000	<_init>:

			0:				48	83	ec	08														sub				$0x8,%rsp

			4:				48	8b	05	00	00	00	00					mov				0x0(%rip),%rax								#	b	<_init+0xb>

			b:				48	85	c0																	test			%rax,%rax

			e:				74	05																				je					15	<_init+0x15>

		10:				e8	00	00	00	00											callq		15	<_init+0x15>

Disassembly	of	section	.fini:

0000000000000000	<_fini>:

			0:				48	83	ec	08														sub				$0x8,%rsp

	 	/lib64/crti.o			 	.init			 	.fini			 sysdeps/x86_64/crti.S	

				.section	.init,"ax",@progbits

				.p2align	2

				.globl	_init

				.type	_init,	@function

_init:

				subq	$8,	%rsp

				movq	PREINIT_FUNCTION@GOTPCREL(%rip),	%rax

				testq	%rax,	%rax

				je	.Lno_weak_fn

				call	*%rax

.Lno_weak_fn:

489

http://man7.org/linux/man-pages/man3/errno.3.html
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crti.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD


				call	PREINIT_FUNCTION

	 	.init			16		 	PREINIT_FUNCTION	

00000000004003c8	<_init>:

		4003c8:							48	83	ec	08													sub				$0x8,%rsp

		4003cc:							48	8b	05	25	0c	20	00				mov				0x200c25(%rip),%rax								#	600ff8	<_DYNAMIC+0x1d0>

		4003d3:							48	85	c0																test			%rax,%rax

		4003d6:							74	05																			je					4003dd	<_init+0x15>

		4003d8:							e8	43	00	00	00										callq		400420	<__libc_start_main@plt+0x10>

		4003dd:							48	83	c4	08													add				$0x8,%rsp

		4003e1:							c3																						retq

where	the		PREINIT_FUNCTION		is	the		__gmon_start__		which	does	setup	for	profiling.	You	may	note	that	we	have	no	return	instruction
in	the	sysdeps/x86_64/crti.S.	Actually	that's	why	we	got	segmentation	fault.	Prolog	of		_init		and		_fini		is	placed	in	the
sysdeps/x86_64/crtn.S	assembly	file:

	PREINIT_FUNCTION			 	__gmon_start__		 sysdeps/x86_64/crti.S	 	return			 	segmentation	fault		
	_init			 	_fini			 sysdeps/x86_64/crtn.S	

.section	.init,"ax",@progbits

addq	$8,	%rsp

ret

.section	.fini,"ax",@progbits

addq	$8,	%rsp

ret

$	gcc	-nostdlib	/lib64/crt1.o	/lib64/crti.o	/lib64/crtn.o		-lc	-ggdb	program.c	-o	program

$	./program

x	+	y	+	z	=	6

	 	_start			 	main		

	_start			 	ld			 	.text		

$	ld	--verbose	|	grep	ENTRY

ENTRY(_start)

	_start			 sysdeps/x86_64/start.S		 	__libc_start_main			 	argc/argv		 csu/libc-start.c		 	__libc_start_main	

	 	stack	canary		 	main			 	main		

result	=	main	(argc,	argv,	__environ	MAIN_AUXVEC_PARAM);

exit	(result);

system	call
gdb
execve

490

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crti.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crtn.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crti.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crtn.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/libc-start.c;h=0fb98f1606bab475ab5ba2d0fe08c64f83cce9df;hb=HEAD
https://en.wikipedia.org/wiki/System_call
https://www.gnu.org/software/gdb/
http://linux.die.net/man/2/execve


ELF
x86_64
segment	registers
context	switch
System	V	ABI

491

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/Context_switch
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf


Linux			
	 	linux-insides-zh			Linux	 			( 	Interrupt	Descriptor	Table	),		( 	Global	Descriptor	Table	)	

	 Intel		 AMD	

492

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/resources/developer-guides-manuals/


	IDT

	-	sync
	-	sync
	-	async

	-	 		 	%rip	

	-	 		 	%rip	

	-		

RFLAGS.IF	=	1 			RFLAGS.IF

		NMIrFLAGS.IF	NMINMIIRET

“”“”25632 arch	/	x86	/	include	/	asm	/	traps.h

/*	/	*/

enum	{

				X86_TRAP_DE	=	0,				/*		0,		*/

				X86_TRAP_DB,								/*		1,		*/

				X86_TRAP_NMI,								/*		2,		*/

				X86_TRAP_BP,								/*		3,		*/

				X86_TRAP_OF,								/*		4,		*/

				X86_TRAP_BR,								/*		5,		*/

				X86_TRAP_UD,								/*		6,		*/

				X86_TRAP_NM,								/*		7,		*/

				X86_TRAP_DF,								/*		8,		*/

				X86_TRAP_OLD_MF,				/*		9,		*/

				X86_TRAP_TS,								/*	10,		TSS	*/

				X86_TRAP_NP,								/*	11,		*/

				X86_TRAP_SS,								/*	12,		*/

				X86_TRAP_GP,								/*	13,		*/

				X86_TRAP_PF,								/*	14,		*/

				X86_TRAP_SPURIOUS,				/*	15,		*/

				X86_TRAP_MF,								/*	16,	x87		*/

				X86_TRAP_AC,								/*	17,		*/

				X86_TRAP_MC,								/*	18,		*/

				X86_TRAP_XF,								/*	19,	SIMD		*/

				X86_TRAP_IRET	=	32,				/*	32,	IRET		*/

};

Error	code

31																											16	15																																		3			2			1			0

+-------------------------------------------------------------------------------+

|																														|																																				|	T	|	I	|	E	|

|											Reserved											|													Selector	Index									|	-	|	D	|	X	|

|																														|																																				|	I	|	T	|	T	|

+-------------------------------------------------------------------------------+

493

http://lxr.free-electrons.com/source/arch/x86/include/asm/traps.h#L121


:

	EXT		-	1	0
	IDT		-	1“”	0“”“LDT”“TI”
	TI		-	1“LDT”	0“GDT”
	Selector	Index		-	“GDT‘“LDT”“IDT”“IDT”“TI”

31																																																														4			3			2			1			0

+-------------------------------------------------------------------------------+

|																																																									|					|	R	|	U	|	R	|	-	|

|																							Reserved																										|	I/D	|	S	|	-	|	-	|	P	|

|																																																									|					|	V	|	S	|	W	|	-	|

+-------------------------------------------------------------------------------+

:

	I/D		-	1
	RSV		-	11;
	U/S		-	0 	CPL	=	0,12		1CPL	=	3
	R/W		-	0	1
	P		-	0	1

Interrupt	Control	Transfers
IDT

	Task	Gate 		-	TSS
	Interrupt	Gate 		-	
	Trap	Gate 		-	

127																																																																													96

+-------------------------------------------------------------------------------+

|																																																																															|

|																																Reserved																																							|

|																																																																															|

+--------------------------------------------------------------------------------

95																																																																														64

+-------------------------------------------------------------------------------+

|																																																																															|

|																															Offset	63..32																																			|

|																																																																															|

+-------------------------------------------------------------------------------+

63																															48	47						46		44			42				39													34				32

+-------------------------------------------------------------------------------+

|																																		|							|		D		|			|					|						|			|			|					|

|							Offset	31..16														|			P			|		P		|	0	|Type	|0	0	0	|	0	|	0	|	IST	|

|																																		|							|		L		|			|					|						|			|			|					|

	-------------------------------------------------------------------------------+

31																																			16	15																																						0

+-------------------------------------------------------------------------------+

|																																						|																																								|

|										Segment	Selector												|																	Offset	15..0											|

|																																						|																																								|

+-------------------------------------------------------------------------------+

	Selector		-	

494



	Offset		-	
	DPL		-	
	P		-	
	IST		-	
	TYPE		-	LDTTSS

	IDT		Linux 	x86_64	

struct	gate_struct64	{

				u16	offset_low;

				u16	segment;

				unsigned	ist	:	3,	zero0	:	5,	type	:	5,	dpl	:	2,	p	:	1;

				u16	offset_middle;

				u32	offset_high;

				u32	zero1;

}	__attribute__((packed));

	 arch/x86/include/asm/desc_defs.h	

	IST	/

struct	ldttss_desc64	{

				u16	limit0;

				u16	base0;

				unsigned	base1	:	8,	type	:	5,	dpl	:	2,	p	:	1;

				unsigned	limit1	:	4,	zero0	:	3,	g	:	1,	base2	:	8;

				u32	base3;

				u32	zero1;

}	__attribute__((packed));

Exceptions	During	a	Task	Switch

TSSTSS

Nonmaskable	interrupt

API

Interrupt	Stack	Table

495

http://lxr.free-electrons.com/source/arch/x86/include/asm/desc_defs.h#L51


Linux	

Linux/x86	boot	protocol
Linux	kernel	parameters

64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

8250	UART	Programming
Serial	ports	on	OSDEV

VGA

Video	Graphics	Array	(VGA)

IO

IO	port	programming

GCC	and	GAS

GCC	type	attributes
Assembler	Directives

task_struct	definition

PowerPC	and	Linux	Kernel	Inside

Linux	x86	Program	Start	Up
Memory	Layout	in	Program	Execution	(32	bits)

496

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://en.wikibooks.org/wiki/Serial_Programming/8250_UART_Programming#UART_Registers
http://wiki.osdev.org/Serial_Ports
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://www.tldp.org/HOWTO/text/IO-Port-Programming
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
http://www.chemie.fu-berlin.de/chemnet/use/info/gas/gas_toc.html#TOC65
http://lxr.free-electrons.com/source/include/linux/sched.h#L1274
http://www.systemcomputing.org/ppc/
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://fgiasson.com/articles/memorylayout.txt


497



	()

@xinqiu

@lijiangsheng1

@littleneko

@qianmoke

@icecoobe

@choleraehyq

@mudongliang

@oska874

@cloudusers

@hailincai

@zmj1316

@zhangyangjing

@huxq

@worldwar

@keltoy

@a1ickgu0

@hao-lee

@woodpenker

@tjm-1990

@up2wing

@NeoCui

@narcijie

@biopuppet

@Albertchamberlain

@nannxnann

498

https://github.com/xinqiu
https://github.com/lijiangsheng1
https://github.com/littleneko
https://github.com/qianmoke
https://github.com/icecoobe
http://github.com/choleraehyq
https://github.com/mudongliang
https://github.com/oska874
https://github.com/cloudusers
https://github.com/hailincai
https://github.com/zmj1316
https://github.com/zhangyangjing
https://github.com/huxq
https://github.com/worldwar
https://github.com/keltoy
https://github.com/a1ickgu0
https://github.com/hao-lee
http://github.com/woodpenker
http://github.com/tjm-1990
https://github.com/up2wing
https://github.com/NeoCui
https://github.com/narcijie
https://github.com/biopuppet
https://github.com/Albertchamberlain
https://github.com/nannxnann

	简介
	引导
	从引导加载程序内核
	在内核安装代码的第一步
	视频模式初始化和转换到保护模式
	过渡到 64 位模式
	内核解压缩

	初始化
	内核解压之后的首要步骤
	早期的中断和异常控制
	在到达内核入口之前最后的准备
	内核入口 - start_kernel
	体系架构初始化
	进一步初始化指定体系架构
	最后对指定体系架构初始化
	调度器初始化
	RCU 初始化
	初始化结束

	中断
	中断和中断处理第一部分
	深入 Linux 内核中的中断
	初步中断处理
	中断处理
	异常处理的实现
	处理不可屏蔽中断
	深入外部硬件中断
	IRQs的非早期初始化
	Softirq, Tasklets and Workqueues
	最后一部分

	系统调用
	系统调用概念简介
	Linux 内核如何处理系统调用
	vsyscall and vDSO
	Linux 内核如何运行程序
	open 系统调用的实现

	定时器和时钟管理
	简介
	时钟源框架简介
	The tick broadcast framework and dyntick
	定时器介绍
	Clockevents 框架简介
	x86 相关的时钟源
	Linux 内核中与时钟相关的系统调用

	同步原语
	自旋锁简介
	队列自旋锁
	信号量
	互斥锁
	读者/写者信号量
	顺序锁

	内存管理
	内存块
	固定映射地址和 ioremap
	kmemcheck

	控制组
	控制组简介

	概念
	每个 CPU 的变量
	CPU 掩码
	initcall 机制
	Linux 内核的通知链

	Linux 内核中的数据结构
	双向链表
	基数树
	位数组

	理论
	分页
	ELF 文件格式
	內联汇编

	杂项
	Linux 内核开发
	内核编译方法
	链接器
	用户空间的程序启动过程

	内核数据结构
	中断描述符表

	有帮助的链接
	贡献者

