Published
with GitBook

no

N\

e
LINUX [
INSIDE

By OxAX

.

64

- start_kernel

RCU

Linux

IRQs

Softirq, Tasklets and Workqueues

Linux

vsyscall and vDSO
Linux

open

Linux

Table of Contents

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9
1.4.10
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.6
1.6.1

1.6.2

The tick broadcast framework and dyntick

Clockevents
x86

Linux

RCU

Lockdep

ioremap

kmemcheck

SMP

CPU
CPU
initcall
Linux

Linux

ELF

CPUID
MSR
Initial ram disk

initrd

Linux

1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6
1.7.7
1.7.8
1.8
1.8.1
1.8.2
1.8.3
1.9
1.9.1
1.10
111
1.11.1
1.11.2
1.11.3
1.11.4
1.12
1.12.1
1.12.2
1.12.3
1.13
1.13.1
1.13.2
1.13.3
1.13.4
1.13.5
1.14
1.14.1
1.15
1.15.1
1.15.2

1.15.3

1.154
1.15.5
1.16
1.16.1
1.17
1.18

Linux

Linux
- Linux Linux

/ : issue - linux-insides issue - linux-insides-zh issue

issues PRs linux-insides-zh

.
TRANSLATION_STATUS.md

CONTRIBUTING.md TRANSLATION_NOTES.md issue

@mudongliang

@xingiu

CONTRIBUTORS.md

@0xAX

BY-NC-SA Creative Commons

Ul

https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
https://github.com/mudongliang
https://github.com/xinqiu
https://twitter.com/0xAX
http://creativecommons.org/licenses/by-nc-sa/4.0/

Linux

e -]

e - EDDIST ..
° -

e 64 -64

° -

e - Linux

Linux x86_64

o AT&T

Linux 3.18

Linux CPU CPU

80386 CPUs CPU

IP oxfffo
CS selector 0xf000
CS base Oxffffeeoo

8086 Intel 64 CPU x868086 200 220
KB 16 64KB 16

PhysicalAddress = Segment * 16 + Offset

CS:IP 0x2000:0x0010 ,
>>> hex((<< 4) +)
'0x20010"'

162 oxffff:oxffff

>>> hex((<< 4) +)

'ox10ffef!’
1MB 65519 CPU 1MB ox1effef A20
cs cs IP

OxfFfFffeee0:oxfffo

EIP

>>> +
'oxfffffffo’

Linux

oxeoffef

1MB 1

http://0xax.blogspot.com/search/label/asm
https://en.wikipedia.org/wiki/Power_supply
https://en.wikipedia.org/wiki/Power_good_signal
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/A20_line

oxfffffffo 4GB - 16 (Reset vector) CPU jump BIOS
.section ".reset", "ax", %progbits
.codel6
.globl _start
start:
.byte 0xe9
.int _startiébit - (. + 2)
opcode - 0xe9 _starti6bit - (. + 2) reset 16
CPU
SECTIONS {
/* Trigger an error if I have an unuseable start address */
_bogus = ASSERT(_starti6bit >= oxffffeeee, "_starti6bit too low.
_ROMTOP = oxfffffffo;
. = _ROMTOP;
.reset . : {
*(.reset);
. = 15;
BYTE(0x00);
}
}
BIOS BIOS, BIOS BIOS
2
; Note: this example is written in Intel Assembly syntax
[BITS 16]

[ORG 0x7c00]

boot:
mov al, '!'
Ox0e
0x00
0x07

mov ah,

mov bh,
mov bl,
int 0x10
jmp $

times 510-($-$$) db o

db 0x55
db Oxaa

nasm -f bin boot.nasm && gemu-system-x86_64 boot

QEMU boot (

ox7c00 , Magic Bytes) QEMU(MBR)

coreboot

Please report.");

oxfffffffo (src/cpu/x86/16bit/

http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/JMP_%28x86_instruction%29
http://www.coreboot.org/
http://ref.x86asm.net/coder32.html#xE9
http://qemu.org

SeaBI0S (version 1.7.5-20140531_171129-lamiak)

iPXE (http:rripxe.org) 00:03.0 CI980 PCIZ.10 PnP PMM+OYFI0BAO+O7EFOBAD CI80

Booting from Hard Disk...

160x7c00 0x10 1 0510Magic Bytes oxaa 0x55

objdump

nasm -f bin boot.nasm
objdump -D -b binary -mi386 -Maddri16,datal6,intel boot

BIOS

NOTE: CPU

PhysicalAddress = Segment * 16 + Offset

CPU 1616 OxfFff

>>> hex((*) +)

'ox10ffef!'

8086 oxoffef , 8086 cpu 20 2n20 = 1vB 1IMB CPU
1MB

0x00000000 - Ox000003FF - Real Mode Interrupt Vector Table
0x00000400 - Ox000004FF - BIOS Data Area
0x00000500 - Ox00007BFF - Unused

0x00007CO0 - Ox00B007DFF - Our Bootloader
OX00007EOO - OXOOO09FFFF - Unused

OxX000A0000 - OXO0OBFFFF - Vvideo RAM (VRAM) Memory
0x000BOOOO - OXxOOEOB7777 - Monochrome Video Memory
0x000B80OO - OXOOOBFFFF - Color Vvideo Memory
0x000CO000 - OxO0OC7FFF - Video ROM BIOS
0x000C8000 - OXOOOEFFFF - BIOS Shadow Area
Ox000FOO00 - OXOOOFFFFF - System BIOS

CPU OXFFFFFFFO oxFFFFF (1IMB) CPU coreboot :

OXFFFE_0000 - OXFFFF_FFFF: 128 kilobyte ROM mapped into address space

http://www.ctyme.com/intr/rb-0106.htm
https://en.wikipedia.org/wiki/Intel_8086
http://www.coreboot.org/Developer_Manual/Memory_map

oxFFFFFFF6 ROM CPU ROM RAM

Linux

BIOS

GRUB 2

syslinuxLinux Boot protocol GRUB 2

boot.img GRUB 2's core image Core image

image core image GRUB 2

grub_main

core/normal/main.c)

root grub GRUB normal

grub_menu_execute_entry GRUB

kernel boot protocol kernel setup header kernel setup code

arch/x86/boot/header.S

.globl hdr

bootloader Linux boot protocol

.byte

.word ROOT_RDONLY

.long
.word
.word SVGA_MODE
.word
.word

kernel boot protocol

100000

0AB000

X+10000

X+08000

001000

000800

000600

000000

Protected-mode kernel

Reserved for BIOS

Command line

Kernel setup
Kernel boot sector

bootloader kernelkernel

write

type_of loader kernel setup header

The kernel real-mode code.
The kernel legacy boot sector.

0x1000 + X + sizeof(KernelBootSector) + 1

X + sizeof(KernelBootSector) + 1 X

x kernel bootsector X

0x10000 memory dump

diskboot.img core image core

grub_main

grub_normal_execute (fronl grub-

boot

0x01f1 kernel setup header

boot protocol

Leave as much as possible unused

(Can also be below the X+10000 mark)

For use by the kernel real-mode code.

<- Boot sector entry point 0x7C00

https://www.gnu.org/software/grub/
http://www.syslinux.org/wiki/index.php/The_Syslinux_Project
http://lxr.free-electrons.com/source/Documentation/x86/boot.txt?v=3.18
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/boot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/boot/i386/pc/diskboot.S;hb=HEAD
http://git.savannah.gnu.org/gitweb/?p=grub.git;a=blob;f=grub-core/kern/main.c
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18
http://lxr.free-electrons.com/source/Documentation/x86/boot.txt?v=3.18#L354
http://lxr.free-electrons.com/source/Documentation/x86/boot.txt?v=3.18#L156

00010000:
00010010:
00010020:
00010030:
00010040: Direct floppy bo
00010050: ot is not suppor

00010060: ted. Use a boot
00010070: loader program i
00010080: nstead. . ..Remove
00010090: disk and press
000100a0: any key to reboo

Linux kernel kernel setup code

arch/x86/boot/header.S _start _start

_start kernel bootloader bootloader Linux Linux bootloader Linux Linux

gemu-system-x86_64 vmlinuz-3.18-generic

SeaBI0S (wversion 1.7.5-20140531_171129-1lamiak)

iPXE (http:rripxe.org) GO:03.0 CI980 PCIZ.10 PnP PMM+O7F30BAO+OFEFOBA® CIBO

Booting from Hard Disk...
e a boot loader.

Remowve disk and press any key to reboot...

bootloader , header.s [MZ] MZ, PE PE

#ifdef CONFIG_EFI_STUB
"MZ", MS-DOS header
.byte

.byte

#endif

.ascii "PE"

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L293
https://en.wikipedia.org/wiki/DOS_MZ_executable
https://en.wikipedia.org/wiki/Portable_Executable

.word

UEFI

bootloader _start

// header.S line 292
.globl _start

_start:
bootloader (grub2 and others) _start Mz 0x200 bootloader

//

// arch/x86/boot/setup.1ld

//

. = 0; // current position

.bstext : { *(.bstext) } // put .bstext section to position 0
.bsdata : { *(.bsdata) }

.globl _start

.byte
.byte start_of_setup-1f

//

// rest of the header

//
_start jmp jmp OpCOde Oxeb start_of_setup - 1f
1 setup header 1 start_of_setup .entrytext
GRUB2 _start Linux _start ox200 GRUB2

state.gs = state.fs = state.es = state.ds = state.ss = segment;

state.cs = segment + ;

0x10000 cs = 0x1020 CS << 4 + 0 = 0x10200 0x10000

fs = es = ds = ss = 0x1000
cs = 0x1020

start_of_setup

° bss

° main.c

ds es cld
movw %ds, %ax

movw %ax, %es

cld

_start grub2 cs 0x1020 cs

.bstext

Nf N

0x200

_start

https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/.bss
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18

pushw %ds

pushw $6f
lretw
cs ds 6 lretw 6 ip instruction pointer ds cs
ds cs
setup C ds es step ss
movw %Ss, %dx
cmpw %ax, %dx
movw %sp, %dx
je 2f
ss

e ss 0x10000 (cs

e ss 0x10000 CAN_USE_HEAP
e ss 0x10000 CAN_USE_HEAP
e ss 0x10000 2
2: andw $~3, %dx

jnz 3f

movw $oxfffc, %dx
3: movw %ax, %Ss

movzwl %dx, %esp

sti

dx sp 4000 dx oxfffc 64KB40 ax 0x10000 ss
dx sp

esp
_end
Kernel setup
Kernel legacy boot sector (4d 5a) %ss - 0x10000
° ss != ds setup code _end dx loadflags CAN_USE_HEAP kernel boot protocol
loadflags Bit 7 CAN_USE_HEAP
Field name: loadflags

This field is a bitmask.
Bit 7 (write): CAN_USE_HEAP

Set this bit to 1 to indicate that the value entered in the
heap_end_ptr is valid. If this field is clear, some setup code

13

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L494
https://en.wikipedia.org/wiki/Program_counter
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L467
http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L52
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L321

functionality will be disabled.

loadflags
#define LOADED_HIGH (1<<0)
#define QUIET_FLAG (1<<5)

#define KEEP_SEGMENTS (1<<6)
#define CAN_USE_HEAP (1<<7)

CAN_USE_HEAP heap_end_ptr dx STACK_SI1zE 512 bytesCF flag

esp - 0xfffc

_end

Kernel setup

Kernel legacy boot sector (4d 5a) %ss, %ds ... - 0x10000

[} CAN_USE_HEAP dx STACK_SIZE 2

esp: _end+ STACK_SIZE

_end

Kernel setup

Kernel legacy boot sector (4d 5a) Uss - 0x10000

BSS

Cc21 BSS 2 magic magic setup_sig setup_bad

cmpl $0x5abaaab5, setup_sig
jne setup_bad

magic Bss C
BSS Linux
movw $_ bss_start, %di
movw $_end+3, %cx
xorl %eax, %eax

subw %di, %Cx

14

https://en.wikipedia.org/wiki/.bss
http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L39

shrw $2, %CXx
rep; stosl

_ bss_start di _end + 3 4 cx xor ax BSS cx - di
cx 4 rep; stosl ax 0 BSS BSS:

_end
BSS section
__bss_start
Kernel setup
Kernel legacy boot sector (4d 5a) %ss - 0x10000
main
BSS main() C
call main
main() arch/x86/boot/main.c
Linux C main() memset , memcpy , earlyprintk
twitter
PR linux-insides-zh

e Intel 80386 programmer's reference manual 1986
e Minimal Boot Loader for Intel® Architecture

e 8086

e 80386

e Reset vector

e Real mode

e Linux kernel boot protocol

e CoreBoot developer manual

e Ralf Brown's Interrupt List

e Power supply

e Power good signal

http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L47
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://css.csail.mit.edu/6.858/2014/readings/i386.pdf
https://www.cs.cmu.edu/~410/doc/minimal_boot.pdf
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/Reset_vector
http://en.wikipedia.org/wiki/Real_mode
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://www.coreboot.org/Developer_Manual
http://www.ctyme.com/intr/int.htm
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_good_signal

16

main main C main arch/x86/boot/main.c

e cpu

Intel 64CPUCPU

1982Intel CPUIntel 64Intel CPU

1M640K

20324GB

PhysicalAddress = Segment * 16 + Offset

64K (GDT)
GDTR Linux GDTR
lgdt gdt
lgdt GDTR GDTR 482:
e (16
o (32)
64
31 24 19 16 7 0

I | 1Bl [A] [| [e[E[W][A] I

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18
http://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Protected_mode
http://wiki.osdev.org/Real_Mode
http://en.wikipedia.org/wiki/Paging

| BASE 31:24 |G|/|L|V| LIMIT |P|DPL|S| TYPE | BASE 23:16 | 4
| | ID| IL| 19:16 | | | |1|C|R|A] |

LIMIT 15:0 015015 LIMITE 19:16 1619161920
1. Limit[20] 0-1516-19 6 20

o 6 =0,Limit=01 byte

o G =1, Limit =0, 4K bytes

o 6 =0Limit = Oxfffff1M bytes
o 6 = 1Limit = Oxfffff4G bytes

[e]

G =0, 1 byte (Limit11 byte)1M bytes
o G =1, 4K bytes (Limit14K bytes)4G bytes;
o base_seg length * (LIMIT + 1)

2. Base[32-bits] 0-15 32-3956-63Base

3. Type/Attribute (40-47 bits)

o s 44 s =0 s =1

s =14343=0

| Type Field | Descriptor Type | Description

[ommmm s omm o ommmmm e

| Decimal | |

| 0 E W A | |

| © 0 0 0 0 | Data | Read-Only

| 1 0 0 0 1 | Data | Read-Only, accessed

| 2 0 0 1 0 | Data | Read/Write

| 3 0 0 1 1 | Data | Read/Write, accessed

| 4 0 1 0 0 | Data | Read-0Only, expand-down

| 5 0 1 0 1 | Data | Read-Only, expand-down, accessed

| 6 o] 1 1 0 | Data | Read/Write, expand-down

| 7 0 1 1 1 | Data | Read/Write, expand-down, accessed

| C R A I

| 8 1 0 0 0 | Code | Execute-Only

| 9 1 (0] 0 1 | Code | Execute-Only, accessed

| 10 1 0 1 0 | Code | Execute/Read

| 11 1 0 1 1 | Code | Execute/Read, accessed

| 12 1 1 0 @ | Code | Execute-Only, conforming

| 14 1 1 0 1 | Code | Execute-Only, conforming, accessed

| 13 1 1 1 0 | Code | Execute/Read, conforming

| 15 1 1 1 1 | Code | Execute/Read, conforming, accessed
43 0 1 424140(E W A424140(C R A

e E =0

o w =1

e ACPU

e c =1 c =0

e R =1

1. DPL2-bits, bit 45 460-3

2. P(bitd7)- P =0

http://www.sudleyplace.com/dpmione/expanddown.html

3. AVL (bit 52) - Linux
4. L(bit53)- L =164
5. D/B flag(bit 54) - 321160

o D323280161680x660x67
o SSBBigPUSHPOPCALL32ESP016SPB
o BOxFFFFFFFFAGBOXFFFF64KB

16

e Index GDT
e TIGDTLDT
e RPL

cpu

)
e CPU GDT

° limit + 1 +

GDTR

selector offset
— target
segment
- descriptor
GDT
[)
° 1gdt GDT GDTR
¢ CROPE1CPU
[)
Linux
C arch/x86/boot/main.c...
1] 1]
Zeropage
main copy_boot_params(void)
boot_params arch/x86/include/uapi/asm/bootparam.h boot_params

boot_params struct setup_header hdr

1. header.S hdr boot_params

hdr memcpy C

GLOBAL (memcpy)
pushw %S 1
pushw %d 1

copy.S

;push si to stack
;push di to stack

linux boot protocolboot loader

struct setup_header hdr

copy_boot_params

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L30
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/bootparam.h?v=3.18#L113
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L281
http://lxr.free-electrons.com/source/arch/x86/boot/copy.S?v=3.18

movw %ax, %di ;move &boot_param.hdr to di

movw %dx, %si ;move &hdr to si
pushw %CX ;push cx to stack (sizeof(hdr))
shrw $2, %Ccx
rep; movsl ;copy based on 4 bytes
popw %CX ;pop cx
andw $3, %Ccx JCX = CX % 4
rep; movsb ;copy based on one byte
popw %di
popw %S1
retl
ENDPROC (memcpy)
copy.S GLOBAL ENDPROC

arch/x86/include/asm/linkage.h GLOBAL

#define GLOBAL(name) \
.globl name; \
name :

include/linux/linkage.h ~ ENDPROC END(name)

#define ENDPROC(name) \
.type name, @function ASM_NL \
END(name)

memcpy si di si di memcpy COPY.S fastcall

memcpy

memcpy (&boot_params.hdr, &hdr, sizeof hdr);

® ax boot_param.hdr

® dx hdr

® cCX hdr
memcpy si di boot_param.hdr di hdr si hdr 4
4 hdr cX cx 4 cX si di
hdr boot_params.hdr arch/x86/boot/early_serial_console.c console_init
earlyprintk earlyprintk

e serial,0x3f8,115200
e serial,ttyS0,115200
e (tyS0,115200

debug

if (cmdline_find_option_bool("debug™))
puts("early console in setup code\n");

puts fty.c putchar putchar

void __attribute_ ((section(".inittext"))) putchar(int ch)

{

ax ,

si

dx ,

CX

di

si

di

http://lxr.free-electrons.com/source/arch/x86/include/asm/linkage.h?v=3.18
http://lxr.free-electrons.com/source/include/linux/linkage.h?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/early_serial_console.c?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/tty.c?v=3.18

if (ch == '\n'")
putchar('\r");

bios_putchar(ch);

if (early_serial_base !=
serial_putchar(ch);

__attribute__ ((section(".inittext")))

\n putchar \r

)

.inittext .inittext

bios_putchar bios int10

setup.ld

static void __attribute__((section(".inittext"))) bios_putchar(int ch)

{

struct 2

initregs(&ireqg);
ireg.bx = g
ireg.cx = g
ireg.ah = g
ireg.al = ch;

intcall(, &ireg,

initreg biosregs

memset(reg,

memset

biosregs 0

, sizeof *reg);

reg->eflags |= X86_EFLAGS_CF;

reg->ds = ds();
reg->es = ds();
reg->fs = fs();
reg->gs = gs();

memset :

GLOBAL (memset)

pushw %di

movw %ax, %di

movzbl %dl, %eax
X01010101, %eax
pushw %cx

imull

shrw , %CX
rep; stosl
popw %CX
andw , %CX
rep; stosb
popw %di
retl

ENDPROC (memset)

memset memcpy

memcpy memset di

imull eax

0x07070707 4 ox7

bisoregs initregs

bssheader.S (part)

fastcall

0x01010101 4

imull rep; stosl eax

bios_putchar

ax dx cX

biosregs ax di movzbl

0x7 imull eax

es:di

0x10 putchar

init_heap

dl ax

0x7 imull

serial_putchar

ax

eax

di

http://lxr.free-electrons.com/source/arch/x86/boot/setup.ld?v=3.18#L19
http://lxr.free-electrons.com/source/arch/x86/boot/copy.S?v=3.18#L36
http://www.ctyme.com/intr/rb-0106.htm
http://lxr.free-electrons.com/source/arch/x86/boot/tty.c?v=3.18#L30
http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L116

loadflags CAN_USE_HEAP

char *stack_end;
//%P1 is (-STACK_SIZE)
if (boot_params.hdr.loadflags & CAN_USE_HEAP) {

asm("leal %P1(%%esp),%0"
"=r" (stack_end) : "i" (-STACK_SIZE));

stack_end = esp - STACK_SIZE .

//heap_end = heap_end_ptr + 512
heap_end = (char *)((size_t)boot_params.hdr.heap_end_ptr + 0x200);
heap_end stack_end stack_end heap_end

GET_HEAP

CPU

arch/x86/boot/cpu.c validate_cpu CPUCPU

validate_cpu check cpu CPUCPU

/*from cpu.c*/

check_cpu(&cpu_level, &req_level, &err_flags);

/*after check_cpu call, req_level = req_level defined in cpucheck.c*/

if (cpu_level < req_level) {
printf("This kernel requires an %s CPU, ", cpu_name(req_level));
printf("but only detected an %s CPU.\n", cpu_name(cpu_level));
return -1,

check_cpu lcpucpu64cpu long mode, 2) CPUCPUAMDcpu

detect_memory 0xe820 0xe801 0x88

detect_memory_e820

initregs biosregs 0xe820
initregs(&ireg);
ireg.ax = 0xe820;
ireg.cx = sizeof buf;

ireg.edx = SMAP;
ireg.di = (size_t)&buf;

® ax 0xe820

® cx

® edx SMAP 0x534d4150
® es:di

e ebx 0.

0x15 ebx biosregs 0x15 ox15 eflags

SSE+SSE2

arch/x86/boot/memory.c

X86_EFLAGS_CF :

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18#L321
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/bootparam.h?v=3.18#L21
http://lxr.free-electrons.com/source/arch/x86/boot/cpu.c?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/cpucheck.c?v=3.18#L102
http://en.wikipedia.org/wiki/Long_mode
http://lxr.free-electrons.com/source/arch/x86/boot/memory.c?v=3.18

intcall(, &lreg, &oreg);
ireg.ebx = oreg.ebx;

e820entry 3:

e reserved, usable)

dmesg

[0.000000] e820: BIOS-provided physical RAM map:

[0.000000] BIOS-e820: [mem Ox0000000000000000-0x000000000009Fbff]
[0.000000] BIOS-e820: [mem Ox000000000009fcOO-O0XO00000000009Ffff]
[0.000000] BIOS-e820: [mem Ox00000000000T0000-0Xx00000000000fFfff]
[0.000000] BIOS-e820: [mem Ox0000000000100000-0x000000003Ffdffff]
[0.000000] BIOS-e820: [mem Ox000000003ffe0000-0x000000003Fffffff]
[0.000000] BIOS-e820: [mem Ox00000000fffcOOO0-0Xx00000000FFffffff]

keyboard_init() initregs 0x16

initregs(&ireg);

ireg.ah =
intcall(

boot_params.kbd_status

0x16

ireg.ax =
intcall(

’

Get

keyboard status */

, &lireg, &oreg);
= oreg.al;

’

, &ireg,

query_mca 0x15BIOS

int query_mca(void)

{
struct
ulé len;

initregs(&ireg);

ireg.ah =
intcall(

’

/* Set keyboard repeat rate */

)i

, &lreg, &oreg);

if (oreg.eflags & X86_EFLAGS_CF)
; /* No MCA present */

return

set_fs(oreg.es);

len = rdfsi16(oreg.bx);

if (len > sizeof(boot_params.sys_desc_table))
len = sizeof(boot_params.sys_desc_table);

copy_from_fs(&boot_params.sys_desc_table, oreg.bx, len);

return 0;

usable
reserved
reserved
usable
reserved
reserved

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L65
http://www.ctyme.com/intr/rb-1756.htm
http://www.ctyme.com/intr/rb-1757.htm
http://lxr.free-electrons.com/source/arch/x86/boot/mca.c?v=3.18#L18
http://www.ctyme.com/intr/rb-1594.htm

ah 0xc@ ex15 BIOS carry flagBIOS ~ MCACFO0 ES:BX

offset Size Description

00h WORD number of bytes following

02h BYTE model (see #00515)

03h BYTE submodel (see #00515)

04h BYTE BIOS revision: 0@ for first release, 1 for 2nd, etc.
05h BYTE feature byte 1 (see #00510)
06h BYTE feature byte 2 (see #00511)
07h BYTE feature byte 3 (see #00512)
08h BYTE feature byte 4 (see #00513)

09h BYTE feature byte 5 (see #00514)

---AWARD BIOS---

QAh N BYTEs AWARD copyright notice

---Phoenix BIOS---

0Ah BYTE 22?7 (06h)

0Bh BYTE major version

oCh BYTE minor version (BCD)

ODh 4 BYTEs ASCIZ string "PTL" (Phoenix Technologies Ltd)
---Quadram Quad386-- -

QAh 17 BYTEs ASCII signature string "Quadram Quad386XT"
---Toshiba (Satellite Pro 435CDS at least)---

OAh 7 BYTEs signature "TOSHIBA"

11h BYTE 2?2? (8h)

12h BYTE ??? (E7h) product ID??? (guess)

13h 3 BYTEs "JPN"

set_fs es fs

static inline void set_fs(ulé seg)

{
asm volatile("movw %0,%%fs" : : "rm" (seg));
3
boot.h set_fs , set_gs
query_mca es:bx boot_params.sys_desc_table
query_ist Intel SpeedStepCPU 0x15 boot_params
query_apm_bios BIOS query_apm_bios 0x15 ax 0x5300 APM bx
bx ox504d (PM) cx oxe2 (0x0232)
ax = 0x5304 0x15 APM ax = 0x5303 ox15 32 APM ax = 0x5300
APM boot_params.apm_bios_info
CONFIG_APM CONFIG_APM_MODULE query_apm_bios

#if defined (CONFIG_APM) || defined(CONFIG_APM_MODULE)
query_apm_bios();

#endif
query_edd , BIOS Enhanced Disk Drive query_edd
edd edd off query_edd

EDD query_edd BIOSEDD

for (devno = ; devno < +EDD_MBR_SIG_MAX; devno++) {
if (!get_edd_info(devno, &ei) && boot_params.eddbuf_entries < EDDMAXNR) {
memcpy(edp, &ei, sizeof ei);
edp++;
boot_params.eddbuf_entries++;

CX

0x15

http://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Micro_Channel_architecture
http://lxr.free-electrons.com/source/arch/x86/boot/boot.h?v=3.18
http://en.wikipedia.org/wiki/SpeedStep
http://lxr.free-electrons.com/source/arch/x86/boot/apm.c?v=3.18#L21
http://en.wikipedia.org/wiki/Advanced_Power_Management
http://lxr.free-electrons.com/source/arch/x86/boot/edd.c?v=3.18#L122
http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt?v=3.18#L1023

0x80 EDD_MBR_SIG_MAX 16 edd_info get_edd_info 0x13
0x13 ah = 0x48 si EDD si
twitter.
PR linux-insides-zh

e Protected mode

e Protected mode

e Long mode

e Nice explanation of CPU Modes with code

e How to Use Expand Down Segments on Intel 386 and Later CPUs
e cearlyprintk documentation

e Kernel Parameters

e Serial console

e Intel SpeedStep

e APM

e EDD specification

e TLDP documentation for Linux Boot Process (old)
e Previous Part

e BIOS Interrupt

ah = ex41) EDDEDD

26

http://lxr.free-electrons.com/source/include/uapi/linux/edd.h?v=3.18#L172
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Protected_mode
http://wiki.osdev.org/Protected_Mode
http://en.wikipedia.org/wiki/Long_mode
http://www.codeproject.com/Articles/45788/The-Real-Protected-Long-mode-assembly-tutorial-for
http://www.sudleyplace.com/dpmione/expanddown.html
http://lxr.free-electrons.com/source/Documentation/x86/earlyprintk.txt?v=3.18
http://lxr.free-electrons.com/source/Documentation/kernel-parameters.txt?v=3.18
http://lxr.free-electrons.com/source/Documentation/serial-console.txt?v=3.18
http://en.wikipedia.org/wiki/SpeedStep
https://en.wikipedia.org/wiki/Advanced_Power_Management
http://www.t13.org/documents/UploadedDocuments/docs2004/d1572r3-EDD3.pdf
http://www.tldp.org/HOWTO/Linux-i386-Boot-Code-HOWTO/setup.html
http://wiki.osdev.org/BIOS

set_video main.c

set_video arch/x86/boot/video.c boot_params.hdr

ul6é mode = boot_params.hdr.vid_mode;

boot_params.hdr copy_boot_params boot_params.hdr vid_mode kernel boot protocol
vid_mode

offset Proto Name Meaning

/Size

01FA/2 ALL vid_mode Video mode control

linux kernel boot protocol vid_mode

**** SPECIAL COMMAND LINE OPTIONS

vga=<mode>
<mode> here is either an integer (in C notation, either
decimal, octal, or hexadecimal) or one of the strings
"normal" (meaning OXFFFF), "ext" (meaning OXFFFE) or "ask"
(meaning OXFFFD). This value should be entered into the
vid_mode field, as it is used by the kernel before the command
line is parsed.

vga grub OXFFFD ask2

http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L181
http://lxr.free-electrons.com/source/arch/x86/boot/video.c?v=3.18#L315

SeaBl05 (version 1.7.5-20140531_171129-lamiak)

iPXE (http:r/ripxe.org) 00:03.0 CI80 PCIZ.10 PnP PMM+3FFI0A40+3FEFOA40 CI80

Booting from ROM...
early console in setup code
Press {ENTER> to =ee wvideo modes awvailable, <SPACE> to continue, or wait 30 =ec
Mode: Resolution: Type:
B Foo 8OxZ5 UGA
Fo1 80x50 UGA
Foz 80x43 UGA
Fo3 80xZ8 UGA
Fos5 80x30 UGaA
Foo 80x34 UGA

200 10x25 UESHA
201 10x25 VESA
202 8025 VEShA
203 8OxZ5 UESHA
207 B0xZ5 UESA

1
2
3
4
o
6 FOv 80xb0 UGA
7
(]
9
a
b
E

nter a video mode or "scan” to scan for additional modes:

ulé

Type char short int long u8 ul6 u32 u64

Size 1 2 4 8 1 2 4 8

API

set_video vid_mod RESET_HEAP HEAP _end RESET_HEAP boot.h
#define RESET_HEAP() ((void *)(HEAP = _end))
init_heap HEAP boot.h HEAP
#define RESET_HEAP() ((void *)(HEAP = _end))
HEAP _end _end boot.h extern char _end[];
GET_HEAP

#define GET_HEAP(type, n) \

((type *)__get_heap(sizeof(type),__alignof__(type),(n)))

__get_heap __get_heap 3

e _ alignof_ (type) (gcc

http://lxr.free-electrons.com/source/arch/x86/boot/boot.h?v=3.18#L199
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L116

__get_heap

static inline char *__get_heap(size_t s, size_t a, size_t n)

{
char *tmp;
HEAP = (char *)(((size_t)HEAP+(a-1)) & ~(a-1));
tmp = HEAP;
HEAP += s*n;
return tmp;
}
a HEAP HEAP tmp n tmp
HEAP

static inline bool heap_free(size_t n)

{
return (int)(heap_end - HEAP) >= (int)n;

heap_end - HEAP

HEAP

HEAP RESET_HEAP() set_video store_mode_params boot_params.screen_info

include/uapi/linux/screen_info.h

store_mode_params store_cursor_position store_cursor_poistion
biosregs AH 0x3 ox10 BIOS DL DH 2 boot_params.screen_info orig_x
orig_y
store_cursor_position store_mode_params store_video_mode boot_params.screen_info.orig_video_mode
store_mode_params video_segment BIOS
OxBOOO : Ox0000 32 Kb Monochrome Text Video Memory
0xB800:0x0000 32 Kb Color Text Video Memory
MDA, HGC VGA video_sgement 0xB0OOO video_segment 0XxB800O store_mode_params

boot_params.screen_info.orig_video_points

//
set_fs(0);
font_size = rdfsi16()8

boot_params.screen_info.orig_video_points = font_size;

set_fs boot.h 0 FS 0x485 boot_params.screen_info.orig_video_points

X = rdfs16(0x44a);
y = (adapter == ADAPTER_CGA) ? 25 : rdfs8(0x484)+1;

Ox44a 0x484 boot_params.screen_info.orig_video_cols boot_params.screen_info.orig_video_lines

store_mode_params

https://github.com/0xAX/linux/blob/master/include/uapi/linux/screen_info.h
https://github.com/0xAX/linux/blob/master/arch/x86/boot/boot.h

set_video save_screen HEAP saved_screen

static struct {
int x, y;
int curx, cury;
ulé *data;

} saved;

HEAP

if (!'heap_free(saved.x*saved.y*sizeof (ul6)+))

return;
HEAP HEAP saved_screen HEAP
set_video probe_cards(0) arch/x86/boot/video-mode.c

for (card = video_cards; card < video_cards_end; card++) {
if (card->unsafe == unsafe) {
if (card->probe)
card->nmodes = card->probe();

else
card->nmodes = 0;
}
}
video_cards arch/x86/boot/setup.ld .videocards
.videocards {

video_cards = .;
*(.videocards)
video_cards_end = .;

static __videocard video_vga = {

.card_name = "VGA",
.probe = vga_probe,
.set_mode = vga_set_mode,
}
__videocard

#define _ videocard struct card_info __attribute_ ((used, section("

__videocard card_info

struct {
const char *card_name;
int (*set_mode)(struct mode_info *mode);
int (*probe)(void);
struct * ;
int nmodes;
int unsafe;
ul6é xmode_first;
ul6é xmode_n;

.videocards card_info probe_cards video_cards

.videocards")))

card_info

https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L33
https://github.com/0xAX/linux/blob/master/arch/x86/boot/setup.ld

probe_cards set_video vid_mode=ask vid_mod set_mode

for (7;) {
if (mode == ASK_VGA)
mode = mode_menu();

if (!set_mode(mode))
break;

printf("Undefined video mode number: %x\n", mode);
mode = ASK_VGA;

video-mode.c set_mode

set_mode mode raw_set_mode card_info card_info set_mode video_vga

card_info set_mode vga_set_mode vga_set_mode vga

static int vga_set_mode(struct mode_info *mode)

{

vga_set_basic_mode();

force_x = mode->x;
force_y = mode->y;

switch (mode->mode) {

case VIDEO_80x25:
break;

case VIDEO_8POINT:
vga_set_8font();
break;

case VIDEO_80x43:
vga_set_80x43();
break;

case VIDEO_80x28:
vga_set_14font();
break;

case VIDEO_80x30:
vga_set_80x30();
break;

case VIDEO_80x34:
vga_set_80x34();
break;

case VIDEO_80x60:
vga_set_80x60();
break;

}

return 0;

vga_set*** ox1e0 BIOS
boot_params.hdr.vid_mode

set_video vesa_store_edid EDID (Extended Display Identification Data) set_video

do_restore

main.c go_to_protected_mode

go_to_protected_mode arch/x86/boot/pm.c

https://github.com/0xAX/linux/blob/master/arch/x86/boot/video-mode.c#L147
https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
http://lxr.free-electrons.com/source/arch/x86/boot/main.c?v=3.18#L184
http://lxr.free-electrons.com/source/arch/x86/boot/pm.c?v=3.18#L104

go_to_protected_mode realmode_switch_hook realmode_switch hook NMI NMI bootloader

DOS hook

/*
* Invoke the realmode switch hook if prese
* disable all interrupts.

*/
static void realmode_switch_hook(void)
{
if (boot_params.hdr.realmode_swtch) {
asm volatile("lcallw *%0"
"m" (boot_params.hdr.r
"eax", "ebx", "ecx", "ed
} else {
asm volatile("cli");
outb(0x80, 0x70); /* Disable NMI */
io_delay();

realmode_switch 16 16 NMI
NMI

asm volatile('"cli"),;

outb(0x80, 0x70); /* Disable NMI */
io_delay();

cli IF NMI

CPU CPU NMI NMI

NMI oxgso CMOS 0x70

static inline void io_delay(void)

{
const ul6é DELAY_PORT = 0x80;

boot protocol (see ADVANCED BOOT LOADER HOOKS) hook

nt; otherwise

ealmode_swtch)

x");

realmode_swtch hook lcallw hook else

io_delay 1/O io_delay

asm volatile("outb %%al,%0" : : "dN" (DELAY_PORT));
}
1/0 ox80 1 ms al io_delay realmode_switch_hook
enable_a20 AZ20 line arch/x86/boot/a20.c A20 a20_test_short a20_test A20
static int a20_test(int loops)
{
int ok = 0;
int saved, ctr;
set_fs(0x0000);
set_gs(oOxffff);
saved = ctr = rdfs32(A20_TEST_ADDR);
while (loops--) {
wrfs32(++ctr, A20_TEST_ADDR);
io_delay(); /* Serialize and make delay constant */
ok = rdgs32(A20_TEST_ADDR+0x10) A ctr;
if (ok)
break;

wrfs32(saved, A20_TEST_ADDR);
return ok;

http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://en.wikipedia.org/wiki/A20_line
http://lxr.free-electrons.com/source/arch/x86/boot/a20.c?v=3.18

0x0000 FS oxffff GS rdfs32 A20_TEST_ADDR saved ctr

wrfs32 ctr fs:gs 1ms GS:A20_TEST_ADDR+0x10 0 A20 A20 A20 BIOS
ox15 A20
enabled_a20 die die arch/x86/boot/header.S:
die:
hlt
jmp die
.size die, .-die
A20 reset_coprocessor

outb(0, 0xf0);
outb(0, 0xf1);

e IO oxfo oxfi

mask_all_interrupts

outb(oxff, Oxal); /* Mask all interrupts on the secondary PIC */
outb(0xfb, 0x21); /* Mask all but cascade on the primary PIC */

(Programmable Interrupt Controller) IRQ2IRQ2 CPU

setup_idt IDT

static void setup_idt(void)

{
static const struct = {0, 0};
asm volatile("lidtl %0" : : "m" (null_idt));
}
lidtl null_idt IDT null_idt O null_idt gdt_ptr
struct {
ulé len;
u32 ptr;

} __attribute_ ((packed));

16 bit 32 bit __attribute_ ((packed)) 48 bit 6bTR GDTR 48 bit

setup_gdt setup_gdt boot_gdt GDTR

//GDT_ENTRY_BOOT_CS http://1xr.free-electrons.com/source/arch/x86/include/asm/segment.h#L19 = 2
static const u64 boot_gdt[] __attribute__((aligned(16))) = {

[GDT_ENTRY_BOOT_CS] = GDT_ENTRY(0xc09b, 0, Oxfffff),

[GDT_ENTRY_BOOT_DS] = GDT_ENTRY(0xc093, 0, Oxfffff),

[GDT_ENTRY_BOOT_TSS] = GDT_ENTRY(0x0089, 4096, 103),
Y

http://lxr.free-electrons.com/source/arch/x86/boot/header.S?v=3.18

boot_gdt TSS (Task State Segment,)

boot_gdt __attribute_ ((aligned(16)))

#include <stdio.h>

struct {
int a;
}__attribute_ ((aligned(16)));
struct {
int b;
3

int main(void)

{
struct 2
struct 2
printf("Not aligned - %zu \n", sizeof(na));
printf("Aligned - %zu \n", sizeof(a));
return 0;

}

16 int 16

$ gcc test.c -0 test && test
Not aligned - 4
Aligned - 16

boot_gdt GDT_ENTRY_BOOT_CS = 2 2

GDT_ENTRY 3

° -0
o - Oxfffff
e - 0xc09
0 oxfffff 1 MB

1100 0000 1001 1011

e 1-(G 1

e 1-(D)32

e 0-(L) long mode
e 0-(AVL) Linux

e 0000 -4

e 1-(P)

e 00-(DPL)-0

e 1-(S)

e 101-/

o 1-

GDT_ENTRY_BOOT_CS

oxfffff * 4kb

null_idt
16 16

align 16 8*5=40

GDT_ENTRY

= 4GB

Intel® 64 and IA-32 Architectures Software Developer's Manuals 3A

GDT

gdt.len = sizeof(boot_gdt)-1;

TSS TSS Intel

3

align 16 48

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

GDT gdt.ptr

gdt.ptr = (u32)&boot_gdt + (ds() << 4);
ds << 4+

lgdtl GDT GDTR

asm volatile("lgdtl %0" : : "m" (gdt));

go_to_protected_mode IDT, GDT NMI protected_mode_jump

protected_mode_jump(boot_params.hdr.code32_start, (u32)&boot_params + (ds() << 4));

protected_mode_jump arch/x86/boot/pmjump.S2:

® boot_params
eax edx

boot_params esi cs bx bx << 4 + 2 bx 2 cx TSS

movw $__BOOT_DS, %cx
movw $__BOOT_TSS, %di
GDT_ENTRY_BOOT_CS 2 8 cx 2*g = 16 di 4*g =32

cro CPU

mov1l %Ccro, %edx
orb $X86_CRO_PE, %dl
movl %edx, %cro

32
.byte ,
.long in_pm32
.word __BOOT_CS ; (GDT_ENTRY_BOOT_CS*8) = 16

e ox66 16 32
® Oxea -
® in_pm32

® _ BOOT_CS

.code32
.section ".text32","ax"

Cs

GLOBAL(in_pm32)

http://lxr.free-electrons.com/source/arch/x86/boot/pmjump.S?v=3.18#L26

movl %ecx, %ds

movl %ecx, %es

movl %ecx, %fs

movl %ecx, %gs

movl %ecx, %ss

$__BOOT_DS cX cs
xorl %ecx, %ecx

xorl %edx, %edx
xorl %ebx, %ebx
xorl %ebp, %ebp
xorl %edi, %edi

32
jmpl *%eax ;?jmpl cs:eax?
32
32
twitter.
PR linux-insides-zh
e VGA

e VESA BIOS Extensions
e Data structure alignment
e Non-maskable interrupt

o A20

o GCC designated inits

e GCC type attributes

e Previous part

long mode

http://en.wikipedia.org/wiki/Long_mode
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://en.wikipedia.org/wiki/VESA_BIOS_Extensions
http://en.wikipedia.org/wiki/Data_structure_alignment
http://en.wikipedia.org/wiki/Non-maskable_interrupt
http://en.wikipedia.org/wiki/A20_line
https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Designated-Inits.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html

. Part 4.

64

CPU SSE

arch/x86/boot/pmjump.S 32

jmpl *%eax

eax 32 x86 linux

When using bzImage, the protected-mode kernel was relocated to 0x100000

bzImage 0x100000

32
eax 0x100000 1048576
ecx 0x0 [}
edx 0x0 0
ebx 0x0 0
esp ox1ffsc Ox1ff5c
ebp 0x0 0x0
esi 0x14470 83056
edi 0x0 0
eip 0x100000 0x100000
eflags 0x46 [PF ZF]
cs 0x10 16
Ss 0x18 24
ds 0x18 24
es 0x18 24
fs 0x18 24
gs 0x18 24
cs - 0x10 eip 0x100000 0 0:0x100000 0x100000 32

32

arch/x86/boot/compressed/head_64.S 32

__HEAD
.code32
ENTRY(startup_32)

ENDPROC(startup_32)

(compressed) bzimage vmlinux + + gZip head_64.S

arch/x86/boot/compressed

e head 32.S

https://zh.wikipedia.org/wiki/%E4%BF%9D%E8%AD%B7%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/SSE
https://zh.wikipedia.org/wiki/%E5%88%86%E9%A0%81
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
http://lxr.free-electrons.com/source/arch/x86/boot/pmjump.S?v=3.18
https://www.kernel.org/doc/Documentation/x86/boot.txt
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_32.S?v=3.18

e head_64.S

x86_64 head_64.s head_32.s arch/x86/boot/compressed/Makefile

vmlinux-objs-y := $(obj)/vmlinux.lds $(obj)/head_$(BITS).o0 $(obj)/misc.o \

$(obj)/string.o $(obj)/cmdline.o \
$(obj)/piggy.o $(obj)/cpuflags.o

$(obj)/head_$(BITS).o $(BITS) head_32.0 head_64.0 $(BITS)

ifeq ($(CONFIG_X86_32),y)

BITS := 32
else
BITS := 64
endif
arch/x86/boot/compressed/head_64.S startup_32
__HEAD
.code32

ENTRY(startup_32)

__HEAD include/linux/init.h

#define __ HEAD .section ".head.text", "ax"
.head. text ax arch/x86/boot/compressed/vmlinux.lds.S
SECTIONS
{
. = 0;
.head.text : {
_head = . ;
HEAD_TEXT
_ehead = . ;
}
GNU LD . -0 0

Be careful parts of head_64.S assume startup_32 is at address 0.

head_64.S startup_32 0

startup_32

startup_32 cld DF stos scas esi edi

DF loadflags KEEP_SEGMENTS loadflags CAN_USE_HEAP

arch/x86/Makefile .config

KEEP_SEGMENTS linux

http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/Makefile?v=3.18
http://lxr.free-electrons.com/source/arch/x86/Makefile?v=3.18
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://lxr.free-electrons.com/source/include/linux/init.h?v=3.18
https://en.wikipedia.org/wiki/Executable
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/vmlinux.lds.S?v=3.18
https://sourceware.org/binutils/docs/ld/Scripts.html#Scripts
http://baike.baidu.com/view/1845107.htm
http://x86.renejeschke.de/html/file_module_x86_id_306.html
http://x86.renejeschke.de/html/file_module_x86_id_287.html
https://www.kernel.org/doc/Documentation/x86/boot.txt

Bit 6 (write): KEEP_SEGMENTS
Protocol: 2.07+
- If 0, reload the segment registers in the 32bit entry point.
- If 1, do not reload the segment registers in the 32bit entry point.
Assume that %cs %ds %ss %es are all set to flat segments with
a base of © (or the equivalent for their environment).

6 (): KEEP_SEGMENTS
2.07+
- 032
132 %cs %ds %ss %es 0O

KEEP_SEGMENTS loadflags ds , ss es [¢]

testb $(1 << 6), BP_loadflags(%esi)

jnz

cli

mov1l $(__BOOT_DS), %eax

movl %eax, %ds

movl %eax, %es

movl %eax, %Ss
__BOOT_DS 0x18 KEEP_SEGMENTS 1f 1f __BOOT_DS

arch/x86/boot/pmjump.S Linux 3232 startup_32 startup_32

KEEP_SEGMENTS setup.1ld.S .head. text . =0 [¢] objdump
arch/x86/boot/compressed/vmlinux: file format elf64-x86-64

Disassembly of section .head.text:

0000000000000000 <startup_32>:
0: fc cld
a3 f6 86 11 02 00 00 40 testb $0x40,0x211(%rsi)

objdump startup_32 [¢] rip startup_32

pop %reg

Linux startup_32

leal (BP_scratch+4)(%esi), %esp

call 1f
popl %ebp
subl , %ebp
esi bOOLﬁparanWS bootparams scratch oxled4 4 call
BP_scratch 4 Xx86_64 1f
startup_32

startup_32 (0x0) oo +

ebp

scratch 4

call

esp

1f

https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://lxr.free-electrons.com/source/arch/x86/boot/pmjump.S?v=3.18
https://zh.wikipedia.org/wiki/%E4%BF%9D%E8%AD%B7%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/%E4%BF%9D%E8%AD%B7%E6%A8%A1%E5%BC%8F
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/bootparam.h?v=3.18#L113

| |
1f (0x0 + 1f offset) +----------------------- + %ebp -

rocoocoooonoccoo000co00o0 +
startup_32 0x0 1f 0x0 + 1f 0x22 ebp 1f
Linux 0x100000 gdb 1f 0x100022 ebp

$ gdb

(gdb)$ target remote :1234
Remote debugging using :1234
0x0000FffO in 2?7 ()

(gdb)$ br *0x100022
Breakpoint 1 at 0x100022
(gdb)$ c

Continuing.

Breakpoint 1, 0x00100022 in ?? ()

(gdb)$ i r
eax 0x18 0x18
ecx 0x0 0x0
edx 0x0 0x0
ebx 0x0 0x0
esp 0x144a8 0x144a8
ebp 0x100021 0x100021
esi 0x142c0 0x142c0
edi 0x0 0x0
eip 0x100022 0x100022
eflags 0x46 [PF ZF]
cs 0x10 0x10
Ss 0x18 0x18
ds 0x18 0x18
es 0x18 0x18
fs 0x18 0x18
gs 0x18 0x18
subl $1b, %ebp
nexti
ebp 0x100000 0x100000
startup_32 0x100000 startup_32 CPU SSE
startup_32 esp
movl $boot_stack_end, %eax
addl %ebp, %eax
movl %eax, %esp
boots_stack_end arch/x86/boot/compressed/head_64.S .bss

.bss
.balign

.fill BOOT_HEAP_SIZE, 1,

.fill BOOT_STACK_SIZE, 1,

ebp

0x100022

1f

startup_32

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://zh.wikipedia.org/wiki/GNU%E4%BE%A6%E9%94%99%E5%99%A8
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://zh.wikipedia.org/wiki/SSE
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
https://en.wikipedia.org/wiki/.bss

boot_stack_end eax eax boot_stack_end 0x0 + boot_stack_end
startup_32 ebp eax boot_stack_end
CPU CPU SSE verify_cpu
call verify_cpu
testl %eax, %eax
jnz no_longmode
arch/x86/kernel/verify_cpu.S cpuid SSE eax 01
eax 0 no_longmode hit CPU
hlt
jmp
eax 0
Linux 32 0x100000 32 CONFIG_PHYSICAL_START 0x1000000 16 MB
Linux - CONFIG_RELOCATABLE

This builds a kernel image that retains relocation information
so it can be loaded someplace besides the default 1MB.

Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address

it has been loaded at and the compile time physical address
(CONFIG_PHYSICAL_START) is used as the minimum location.

1MB

CONFIG_RELOCATABLE=y (CONFIG_PHYSICAL_START)

Linux /arch/x86/boot/compressed/Makefile -fp1ic

KBUILD_CFLAGS += -fno-strict-aliasing -fPIC

startup_32 Linux CONFIG_RELOCATABLE

#ifdef CONFIG_RELOCATABLE
movl %ebp, %ebx

movl BP_kernel_alignment(%esi), %eax
decl %eax
addl %eax, %ebx
notl %eax
andl %eax, %ebx
cmpl $LOAD_PHYSICAL_ADDR, %ebx
jge 1f
#endif

movl $LOAD_PHYSICAL_ADDR, %ebx

addl $z_extract_offset, %ebx

ebp startup_32 CONFIG_RELOCATABLE ebx 2M

LOAD_PHYSICAL_ADDR arch/x86/include/asm/boot.h

LOAD_PHYSICAL_ADDR

boot_stack_end

kdump

http://lxr.free-electrons.com/source/arch/x86/kernel/verify_cpu.S?v=3.18
https://en.wikipedia.org/wiki/CPUID
https://www.kernel.org/doc/Documentation/kdump/kdump.txt
https://zh.wikipedia.org/wiki/%E5%9C%B0%E5%9D%80%E6%97%A0%E5%85%B3%E4%BB%A3%E7%A0%81
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/Makefile?v=3.18
http://lxr.free-electrons.com/source/arch/x86/include/asm/boot.h?v=3.18

#define LOAD_PHYSICAL_ADDR ((CONFIG_PHYSICAL_START \
+ (CONFIG_PHYSICAL_ALIGN - 1)) \
& ~(CONFIG_PHYSICAL_ALIGN - 1))

CONFIG_PHYSICAL_ALIGN LOAD_PHYSICAL_ADDR ebx startup_32 CONFIG_RELOCATABLE

z_extract_offset

ebp ebx

64
leal gdt (%ebp), %eax
movl %eax, gdt+2(%ebp)
lgdt gdt (%ebp)
ebp gdt eax ebp gdt+2 1lgdt gdt
.data
gdt:
.word gdt_end - gdt
.long gdt
.word 0
.quad 0Xx0000000000000000 /* NULL descriptor */
.quad 0x00af9a00eeeOffff /* __KERNEL_CS */
.quad 0x00cf92000000ffff /* __KERNEL_DS */
.quad 0x0080890000000000 /* TS descriptor */
.quad 0x0000000000000000 /* TS continued */
gdt_end:
.data 5 null CS.L =1 CS.D =0 64 gdt gdt_end - gdt
4 gdt 48 GDTR-
o (16
o (32)
gdt eax .long gdt gdt+2 GDTR 1lgdt
PAE cr4 eax 51 cra
movl %Cra, %eax
orl $X86_CR4_PAE, %eax
movl %eax, %cra
64
x86_64 X86_64 x86
64
° rg ris5 864

e 64- RIP ;
e -

o 64;
RIP ().

gdt

https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18
http://en.wikipedia.org/wiki/Physical_Address_Extension
https://zh.wikipedia.org/wiki/%E9%95%BF%E6%A8%A1%E5%BC%8F
https://en.wikipedia.org/wiki/X86-64

°
64
. PAE;
(] cr3
[} EFER.LME ;
o s
cra PAE PAE
64 4G

Linux 4 6

o 1 PML4 4 1

o 1 PDP 4
o 4 2048
4096 24 KB
leal pgtable(%ebx), %edi
xorl %eax, %eax
mov1l $((*6)/4), %ecx
rep stosl
ebx pgtable edi eax ecx 6144 rep stosl
ecx 4 ecx 0 6144 ecx

pgtable

arch/x86/boot/compressed/head_64.S

.section ".pgtable","a",@nobits

.balign
.fill 6* , 1,
.pgtable 24KB
pgtable - PML4
leal pgtable + 0(%ebx), %edi
leal (%edi), %eax
movl %eax, 0(%edi)
ebx startup_32 pgtable edi 0x1007 eax
7 PML4 PRESENT+RW+USER PDP PML4
PP 34 PRESENT+RW+USE Page Directory 2
leal pgtable + (%ebx), %edi
leal (%edi), %eax
movl , %ecx
movl %eax, (%edi)
addl X00001000, %eax

eax

0x1007

edi

PML4

edi 4

4096

7

https://en.wikipedia.org/wiki/Physical_Address_Extension
https://zh.wikipedia.org/wiki/%E5%88%86%E9%A0%81
http://lxr.free-electrons.com/source/arch/x86/boot/compressed/head_64.S?v=3.18

addl , %edi
decl %ecx
jnz
3 pgtable 4096 0x1000 edi 2 eax 4
ox7 8 eax edi 2048 2MB
leal pgtable + (%ebx), %edi
movl X00000183, %eax
movl , %ecx
movl %eax, 0(%edi)
addl X00200000, %eax
addl , %edi
decl %ecx
jnz
- $0x00000183 - PRESENT + WRITE + MBZ 2048 2MB
>>>
4G 4G PML4 cr3
leal pgtable(%ebx), %eax
movl %eax, %Ccr3
MSR EFER.LME 0XxCO000080
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr
MSR_EFER arch/x86/include/uapi/asm/msr-index.h ecx
edx:eax ecx btsl EFER_LME wrmsr eax
GDT startup_64 eax
pushl $___KERNEL_CS
leal startup_64(%ebp), %eax
cro PG PE
mov1l $(X86_CRO_PG | X86_CRO_PE), %eax
movl %eax, %Cro
lret
startup_64 lret CPU

64

ecx

rdmsr

MSR

MSR

edi

rdmsr

edi

http://en.wikipedia.org/wiki/Model-specific_register
http://lxr.free-electrons.com/source/arch/x86/include/uapi/asm/msr-index.h?v=3.18#L7
http://en.wikipedia.org/wiki/Model-specific_register

64

.code64
.org 0x200
ENTRY(startup_64)

linux 4 twitter issue

PR linux-insides-zh

e Protected mode

e Intel® 64 and IA-32 Architectures Software Developer’s Manual 3A
e GNU linker

e SSE

e Paging

e Model specific register
e fill instruction

e Previous part

e Paging on osdev.org

e Paging Systems

e x86 Paging Tutorial

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Protected_mode
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.eecs.umich.edu/courses/eecs373/readings/Linker.pdf
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Model-specific_register
http://www.chemie.fu-berlin.de/chemnet/use/info/gas/gas_7.html
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-3.md
http://wiki.osdev.org/Paging
https://www.cs.rutgers.edu/~pxk/416/notes/09a-paging.html
http://www.cirosantilli.com/x86-paging/

. Part 5.

64...

64 startup_64 arch/x86/boot/compressed/head_64.S
pushl $__KERNEL_CS
leal startup_64(%ebp), %eax
pushl %eax
1ret

CPU 64 startup_64
.code64
.org

ENTRY(startup_64)
xorl %eax, %eax
movl %eax, %ds
movl %eax, %es
movl %eax, %Ss
movl %eax, %fs
movl %eax, %gs

cs

#ifdef CONFIG_RELOCATABLE
leaq startup_32(%rip), %rbp
movl BP_kernel_alignment(%rsi), %eax
decl %eax
addq %rax, %rbp
notq %rax
andq %rax, %rbp
cmpg $LOAD_PHYSICAL_ADDR, %rbp
jge 1f

#endif
mov(q $LOAD_PHYSICAL_ADDR, %rbp

movl BP_init_size(%rsi), %ebx
subl $_end, %ebx
addq %rbp, %rbx

rbp rbx startup_32 64 startup_32

leaq boot_stack_end(%rbx), %rsp

startup_32 startup_64

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md#calculate-relocation-address

pushq $0
popfq
rbx boot_stack_entry rsp

.bss

.balign 4
boot_heap:

.fill BOOT_HEAP_SIZE, 1, 0
boot_stack:

.fill BOOT_STACK_SIZE, 1, ©

boot_stack_end:

arch/x86/boot/compressed/head_64.S boot_stack_end

arch/x86/boot/compressed/vmlinux.lds.S

boot_params rsi

.bss .pgtable
pushq %rsi
leaq (_bss-8)(%rip), %rsi
leaq (_bss-8)(%rbx), %rdi
movq $_bss, %rcx
shrq $3, %rex
std
rep movsq
cld
popq %rsi
rsi rsi boot_params
leaq _bss - 8 rip rbx rsi rdi

. =0;
.head.text : {
_head = . ;
HEAD_TEXT
_ehead = . ;
}
.rodata..compressed : {
*(.rodata..compressed)

}
.text {
_text = .; /* Text
*(.text)
(.text.)
_etext = . ;
}

.head.text startup_32

__HEAD
.code32
ENTRY(startup_32)

.text

.text
relocated:

/*

startup_32

*/

.bss

.pgtable

arch/x86/boot/compressed/vmlinux.lds.S

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/vmlinux.lds.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/vmlinux.lds.S

* Do the decompression, and jump to the new kernel..
*/

.rodata..compressed rsi _bss - 8 rdi _bss - 8
rsi rdi
std DF rsi rdi cld DF boot_params
.text

leaq relocated(%rbx), %rax

jmp *%rax
.text relocated .bss

xorl %eax, %eax

leaq _bss(%rip), %rdi

leaq _ebss(%rip), %rcx

subq %rdi, %rcx

shrq , %rex

rep stosq
.bss C eax _bss rdi _ebss rcx rep stosq

extract_kernel

pushq %rsi

movq %rsi, %rdi

leaq boot_heap(%rip), %rsi
leaq input_data(%rip), %rdx
movl $z_input_len, %ecx
movq %rbp, %rs8

movq $z_output_len, %r9
call extract_kernel

popq %rsi

_bss rcx vmlinux.lds.S /

rsi .

rdi boot_params rsi extract_kernel extract_kernel arch/x86/boot/compressed/misc.c
® rmode - boot_params boot_params

® heap - boot_heap

® input_data - arch/x86/boot/compressed/vmlinux.bin.bz2

® input_len -
® output -

® output_len -

System V Application Binary Interface

extract_kernel arch/x86/boot/compressed/misc.c /

free_mem_ptr = heap;
free_mem_end_ptr = heap + BOOT_HEAP_SIZE;

3264

movsq 8

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973//arch/x86/include/uapi/asm/bootparam.h#L114
http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c
https://en.wikipedia.org/wiki/Real_mode

heap arch/x86/boot/compressed/head 64.S extract_kernel

leaq boot_heap(%rip), %rsi

boot_heap

boot_heap:
.fill BOOT_HEAP_SIZE, 1, 0
BOOT_HEAP_SIZE 0x10000 (bzip2 0x400000)
arch/x86/boot/compressed/kaslr.c choose_random_location Linux
Linux

misc.c.

if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1))
error("Destination physical address inappropriately aligned");

if (virt_addr & (MIN_KERNEL_ALIGN - 1))
error("Destination virtual address inappropriately aligned");

if (heap > Ox3fffffffffffuL)
error("Destination address too large");

if (virt_addr + max(output_len, kernel_total size) > KERNEL_IMAGE_SIZE)
error("Destination virtual address is beyond the kernel mapping area");

if ((unsigned long)output != LOAD_PHYSICAL_ADDR)
error("Destination address does not match LOAD_PHYSICAL_ADDR")

if (virt_addr != LOAD_PHYSICAL_ADDR)
error("Destination virtual address changed when not relocatable");

Decompressing Linux...

__decompress

__decompress(input_data, input_len, NULL, NULL, output, output_len, NULL, error);

__decompress

#ifdef CONFIG_KERNEL_GZIP
#include "../../../../1lib/decompress_inflate.c"
#endif

#ifdef CONFIG_KERNEL_BZIP2
#include "../../../../1lib/decompress_bunzip2.c"
#endif

#ifdef CONFIG_KERNEL_LZMA
#include "../../../../1lib/decompress_unlzma.c"
#endif

#ifdef CONFIG_KERNEL_XZ
#include "../../../../1lib/decompress_unxz.c"
#endif

#ifdef CONFIG_KERNEL_LZO
#include "../../../../1lib/decompress_unlzo.c"

kASLR

49

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/kaslr.c#L425
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c#L404

#endif

#ifdef CONFIG_KERNEL_LZ4
#include "../../../../1lib/decompress_unlz4.c"

#endif

readelf

parse_elf handle_relocations . ELF parse_elf
readelf -1 vmlinux
E1f file type is EXEC (Executable file)
Entry point 0x1000000
There are 5 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000200000 OXFfffffff81000000 OX00O00O0001000000
0X0000000000893000 OXOOOOOOOOEE893000 R E 200000
LOAD 0x0000000000293000 OXFfffffff81893000 0X0000000001893000
0x000000000016d000 OxOOOOOOOOC016dOO0 RW 200000
LOAD 0Xx0000000000CcO0000 OX0O 00 0000 0x0 00001200000
0x00000000000152d8 OxOOOOOEOOE0152d8 RW 200000
LOAD 0x0000000000c16000 OXFfffffff81a16000 0X00O00O0001a16000
0x0000000000138000 OxOOOOOOOOCO29HOOE RWE 200000
parse_elf choose_random_location output ELF
E1f64_Ehdr ehdr;
E1f64_Phdr *phdrs, *phdr;
memcpy (&ehdr, output, sizeof(ehdr));
if (ehdr.e_ident[EI_MAGO] != ELFMAGO ||
ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
ehdr.e_ident[EI_MAG3] != ELFMAG3) {

error("Kernel is not a valid ELF file");

return;
}
ELF ELF
for (1 = 0; i < ehdr.e_phnum; i++) {

phdr = &phdrs[i];

switch (phdr->p_type) {
case PT_LOAD:
#ifdef CONFIG_RELOCATABLE
dest = output;
dest += (phdr->p_paddr - LOAD_PHYSICAL_ADDR);

#else
dest = (void *)(phdr->p_paddr);
#endif
memmove (dest, output + phdr->p_offset, phdr->p_filesz);
break;
default:
break;

https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

parse_elf handle_relocations CONFIG_X86_NEED_RELOCS CONFIG_RANDOMIZE_BASE handle_relocations

LOAD_PHYSICAL_ADDR

extract_kernel arch/x86/boot/compressed/head_64.S.
rax
jmp *%rax
twitter
PR linux-insides-zh

e address space layout randomization
e initrd

e long mode

e bzip2

e RDRand instruction

e Time Stamp Counter

e Programmable Interval Timers

e Previous part

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Long_mode
http://www.bzip.org/
https://en.wikipedia.org/wiki/RdRand
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Intel_8253
https://github.com/0xAX/linux-insides/blob/master/Booting/linux-bootstrap-4.md

e - start kernel
e - start_kernel
* -
* -
* -
* -
e RCU - RCU

e - Linux

TODO: Need proofreading

Linux Linux Linux —— PID 1 init

arch/x86/kernel/head_64.S start_kernel init/main.c

arch/x86/boot/compressed/head_64.S jmp

jmp *%rax
rax Linux decompress_kernel arch/x86/boot/compressed/misc.c Linux
OK decompress_kernel rax arch/x86/kernel/head_64.S

__HEAD
.code64
.globl startup_64

startup_64:

startup_64 __HEAD __HEAD .head. text
#define __ HEAD .section ".head. text", "ax"

arch/x86/kernel/vmlinux.lds.S

.text : AT(ADDR(.text) - LOAD_OFFSET) {
_text = .;

} :text = 0x9090

.text _text x86_64

. = __START_KERNEL;

__START_KERNEL arch/x86/include/asm/page_types.h

#define _START_KERNEL (__START_KERNEL_map + __ PHYSICAL_START)

#define _ PHYSICAL_START ALIGN(CONFIG_PHYSICAL_START, CONFIG_PHYSICAL_ALIGN)

e Linux - 0x1000000 ;
e Linux - oxffffffffg1000000 .

startup_64

https://en.wikipedia.org/wiki/Process_identifier
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c#L489
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S#L93
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_types.h

leaq _text(%rip), %rbp

subq $_text - __ START_KERNEL_map, %rbp
0x1000000 kASLR 0x1000000 RIP rip-relative
_text Oxffffffff81000000 0x1000000 __ START_KERNEL_map
rbp = 0x1000000 - (Oxffffffff81000000 - OXffffffff80000000)
rbp 0 o Linux kASLR
startup_64
testl $~PMD_PAGE_MASK, %ebp
jnz bad_address
rbp 32 PMD_PAGE_MASK PMD_PAGE_MASK Page middle directory
#define PMD_PAGE_MASK (~(PMD_PAGE_SIZE-1))
#define PMD_PAGE_SIZE (_AC(1, UL) << PMD_SHIFT)
#define PMD_SHIFT 21
PMD_PAGE_SIZE 2MB text 2MB bad_address
18
leaq _text(%rip), %rax
shrq $MAX_PHYSMEM_BITS, %rax
jnz bad_address
46 246
#define MAX_PHYSMEM_BITS 46
OK
Identity
addq %rbp, early_level4_pgt + (L4_START_KERNEL*8)(%rip)
addq %rbp, level3_kernel_pgt + (*8)(%rip)
addq %rbp, level3_kernel_pgt + (*8)(%rip)
addq %rbp, level2_fixmap_pgt + (*8)(%rip)
startup_64 0x1000000 early level4_pgt level3_kernel_pgt
early level4_pgt level3_kernel_pgt level2_fixmap_pgt

NEXT_PAGE(early_level4_pgt)
Lfill 08y
.quad level3_kernel_pgt - __ START_KERNEL_map + _PAGE_TABLE

NEXT_PAGE(level3_kernel_pgt)
.fill L3_START_KERNEL, &,
.quad level2_kernel_pgt - _ START_KERNEL_map + _KERNPG_TABLE
.quad level2_fixmap_pgt - __ START_KERNEL_map + _PAGE_TABLE

rbp

oxffffffff80000000

paging

rbp

$_text - _ START_KERNEL_map

https://en.wikipedia.org/wiki/Address_space_layout_randomization#Linux
https://en.wikipedia.org/wiki/Address_space_layout_randomization#Linux

NEXT_PAGE(level2_kernel_pgt)
PMDS (0, __ PAGE_KERNEL_LARGE_EXEC,
KERNEL_IMAGE_SIZE/PMD_SIZE)

NEXT_PAGE(level2_fixmap_pgt)

.fill ,8,
.quad levell fixmap_pgt - __ START_KERNEL_map + _PAGE_TABLE
.fill ,8,

NEXT_PAGE(levell_fixmap_pgt)

.Fill ,8,
early_levels_pgt (4096 - 8) 0 511 level3_kernel_pgt - _ START_KERNEL_map + _PAGE_TABLE
__START_KERNEL_map __START_KERNEL_map level3_kernel_pgt _PAGE_TABLE
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
PAGE_ACCESSED | _PAGE_DIRTY)
level3_kernel_pgt 510 L3_START_KERNEL] L3_START_KERNEL Page Upper Directory
__START_KERNEL_map 510 level2_kernel_pgt - _ START_KERNEL_map + _KERNPG_TABLE

#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \

_PAGE_DIRTY)
level2_fixmap_pgt level2_fixmap_pgt 10 MB VsyscaHS level2_kernel_pgt
__START_KERNEL_map .text 512 MB 512 MB
rbp startup_64 startup_64

addq %rbp, early_level4_pgt + (L4_START_KERNEL*S)(%rip)
addq %rbp, level3_kernel_pgt + (*8)(%rip)
addq %rbp, level3_kernel_pgt + (*8)(%rip)
addq %rbp, level2_fixmap_pgt + (*8)(%rip)

early_level4_pgt level3_kernel_pgt level3_kernel_pgt level2_kernel_pgt level2_fixmap_pgt

level2_fixmap_pgt 507 levell_ fixmap_pgt

early level4_pgt[511] -> level3_kernel_pgt[0]
level3_kernel_pgt[510] -> level2_kernel_pgt[0]
level3_kernel_pgt[511] -> level2_ fixmap_pgt[0]
level2_kernel_pgt[0] -> 512 MB kernel mapping
level2_fixmap_pgt[507] -> levell fixmap_pgt

Identity Map Paging

Identity Identity 1:1 _text _early_leveld pgt RIP rdi

leaq _text(%rip), %rdi
leaq early_level4_pgt(%rip), %rbx

rax _text _text _text PGDIR_SHIFT

level2_kernel_pgt

PDMS

rbx

https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Linker_%28computing%29

mov(q
shrq

leaq
mov(q
mov(q

PGDIR_SHIFT

#define PGDIR_SHIFT
#define PUD_SHIFT
#define PMD_SHIFT

level3_kernel_pgt

%rdi, %rax
$PGDIR_SHIFT, %rax

(+ _KERNPG_TABLE) (%rbx), %rdx
%rdx, 0(%rbx,%rax,8)
%rdx, 8(%rbx,%rax,8)

39 PGDIR_SHIFT mask

39
30
21

rdx _KERNPG_TABLE

level3_kernel_pgt

rdx 4096 early_level4_pgt rdi _text rax
addq , %rdx
movq %rdi, %rax
shrq $PUD_SHIFT, %rax
andl $(PTRS_PER_PUD-1), %eax
movq %rdx, (%rbx, %rax, 8)
incl %eax
andl $(PTRS_PER_PUD-1), %eax
mov(q %rdx, (%rbx, %rax, 8)
level2_kernel_pgt text data
leaq level2_kernel_pgt(%rip), %rdi
leaq (%rdi), %r8
testq , 0(%rdi)
jz 2f
addq %rbp, 0(%rdi)
addq , %rdi
cmp %rg8, %rdi
jne
level2_kernel pgt rdi rg level2_kernel pgt 0O rdi 8 r8
rbp _text phys_base early_level4_pgt rbp 1
addq %rbp, phys_base(%rip)
movq $(early_leveld_pgt - _ START_KERNEL_map), %rax
jmp 1f
phys_base level2_kernel_pgt 512 MB
1 PAE pGe Paging Global Extension phys_base rax cr3
movl $(X86_CR4_PAE | X86_CR4_PGE), %ecx
mov(q %rcx, %cr4a
addq phys_base(%rip), %rax
movq %rax, %cr3

CPU NX

early_level4 _pgt

level3_kernel_pgt

http://en.wikipedia.org/wiki/NX_bit

movl X80000001, %eax

cpuid
movl %edx, %edi
0x80000001 eax cpuid edx edi
MSR_EFER 0xc0000080 ecx rdmsr CPUModel Specific Register (MSR)

movl $MSR_EFER, %ecx

rdmsr

edx:eax EFER

63 32

| |

| Reserved MBZ |

| |

31 16 15 14 13 12 11 10 9 87 1 0

| | T | | | | I | | | |

| Reserved MBZ | C | FFXSR | LMSLE |SVME |NXE|LMA|MBZ|LME|RAZ|SCE|

| | E | | | | | I | | | |
MSR EFER edx:eax btsl _EFER_SCE 01 SCE SYSCALL SYSRET
edi cpuid 20 20 NX EFER_SCE MSR

btsl $_EFER_SCE, %eax

btl , %edi

jnc 1f

btsl $_EFER_NX, %eax

btsq $_PAGE_BIT_NX, early_pmd_flags(%rip)
wrmsr

NX _EFER_NX MSR NX cre control register

® X86_CRO_PE -;
o x86_CRo_MP - CROTS WAIT/FWAIT
® X86_CRO_ET - 3868028780387;

® X86_CRO_NE - x87PCx87

e x86_CRo_wp - CPUO;

e x86_CRO_AM - AMEFLGSACS3;

® X86_CRO_PG -.

#define CRO_STATE (X86_CRO_PE | X86_CRO_MP | X86_CRO_ET | \
X86_CRO_NE | X86_CRO_WP | X86_CRO_AM | \

X86_CRO_PG)
movl $CRO_STATE, %eax
movq %rax, %cro

C FLAGS

movq stack_start(%rip), %rsp
pushq
popfq

stack_start

https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S

GLOBAL(stack_start)
.quad init_thread_union+THREAD_SIZE-&

GLOABL arch/x86/include/asm/linkage.h

#define GLOBAL (name) \
.globl name; \
name:

THREAD_SIZE arch/x86/include/asm/page 64 types.h = KASAN_STACK_ORDER

#define THREAD_SIZE_ORDER (2 + KASAN_STACK_ORDER)
#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)

kasan PAGE_SIZE 4096 THREAD_SIZE 16 KB Linux thread_info union

union {
struct ;
unsigned long stack[THREAD_SIZE/sizeof(long)];

init_thread_union

union =
{ INIT_THREAD_INFO(init_task) };

INIT_THREAD_INFO task_struct

#define INIT_THREAD_INFO(tsk) \

{ \
.task = &tsk, \
.flags =0, \
.cpu =0, \
.addr_limit = KERNEL_DS, \

}

task_struct thread_union

Poscsoscscssacoscsasonos +

| |

| |

| |

| Kernel stack |

| |

| |

| |

|oesscosnesoossmrmaconos |

| |

| struct thread_info |

| |

Pocooooocoooaconooasoomm +

8

1lgdt

lgdt early_gdt_descr(%rip)

early_gdt_descr

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/linkage.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_64_types.h
http://lxr.free-electrons.com/source/Documentation/kasan.txt
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Parent_process
https://en.wikipedia.org/wiki/Child_process
https://en.wikipedia.org/wiki/Union_type#C.2FC.2B.2B
https://en.wikipedia.org/wiki/Global_Descriptor_Table

early_gdt_descr:

.word GDT_ENTRIES*8-1
early_gdt_descr_base:

.quad INIT_PER_CPU_VAR(gdt_page)

early_gdt_descr 32

#define GDT_ENTRIES 32

early_gdt_descr_base . gdt_page arch/x86/include/asm/desc.h:
struct {
struct [iF;

} __attribute_ ((aligned(PAGE_SIZE)));

desc_struct gdt desc_struct

struct {
union {
struct {
unsigned int a;
unsigned int b;
}
struct {
ul6é limite;
ulé base0;
unsigned basel: 8, type: 4, s: 1, dpl: 2, p: 1;
unsigned limit: 4, avl: 1, 1: 1, d: 1, g: 1, base2: 8;
}
}

} __attribute__((packed));

GDT gdt_page PAGE_SIZE (4096) gdt

INIT_PER_CPU_VAR arch/x86/include/asm/percpu.h init_per_cpu__

#define INIT_PER_CPU_VAR(var) init_per_cpu__##var

init_per_cpu__gdt_page linker script:

#define INIT_PER_CPU(x) init_per_cpu__##x = x + __per_cpu_load
INIT_PER_CPU(gdt_page);

INIT_PER_CPU init_per_cpu__gdt_page __per_cpu_load GDT
per-CPU2.6 per-cru CPU gdt_page per-CPUCPU GDT
per-CPU

xorl %eax,%eax
movl %eax,%ds
movl %eax,%ss
movl %eax,%es
movl %eax,%fs
movl %eax,%gs

gs irgstack

movl $MSR_GS_BASE, %ecx

Concepts/per-cpu

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/percpu.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://en.wikipedia.org/wiki/Interrupt

movl initial_gs(%rip), %eax

movl initial_gs+4(%rip), %edx
wrmsr
MSR_GS_BASE

#define MSR_GS_BASE 0Xc0000101
MSR_GS_BASE ecx wrmsr eax edx initial gs cs, fs, ds ss 64
gs fs gs cs Model Specific Registers 0xc0000101 gs.base MSR
MSR_GS_BASE
bootparam rdi (rsi)C
movq initial code(%rip), %rax
pushq
pushqg $_ KERNEL_CS
pushq %rax
lretq
initial_code rax __KERNEL_CS initial_code 1req initial_code
.balign

GLOBAL(initial_code)

.quad x86_64_start_kernel

initial_code

Xx86_64_start_kernel

arch/x86/kerne/head64.c

asmlinkage _ visible void __init x86_64_start_kernel(char * real_mode_data) {

real_mode_data rdi

start_kernel

s

init/main.cstart_kernel

x86_64_start_kernel

BUILD_BUG_ON(MODULES_VADDR < __ START_KERNEL_map);
BUILD_BUG_ON(MODULES_VADDR - __ START_KERNEL_map < KERNEL_IMAGE_SIZE);

BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE >

*PUD_SIZE);

BUILD_BUG_ON((__START KERNEL_map & ~PMD_MASK) != 0);
BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
BUILD_BUG_ON(! (MODULES_VADDR > _ START_KERNEL));

BUILD_BUG_ON(! (((MODULES_END -

) & PGDIR_MASK) == (__START_KERNEL & PGDIR_MASK)));

BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);

text __ START_KERNEL_map text

BUILD_BUG_ON

#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))

fs

https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/init/main.c#L489

MODULES_VADDR < __ START_KERNEL_map I'lconditions condition

11 (condition) 10 2*11(condition) 2)
°
°
C
start_kernel cr4_init_shadow CPU cra Shadow Copy cra CPU
reset_early_page_tables cr3
for (1 = 0; 1 < PTRS_PER_PGD-1; i++)

early level4 _pgt[i].pgd = 0;
next_early _pgt = 0;

write_cr3(__pa_nodebug(early_level4 pgt));

PTRS_PER_PGD 512 0 next_early_pgt 0

((unsigned long)(x) - __START_KERNEL_map + phys_base)
__bss_stop __bss_start _bss IDT

Linux

twitter 0xAX issue

e Model Specific Register

e Paging

e Previous part - Kernel decompression
o NX

e ASLR

0

MODULES_VADDR < __ START_KERNEL_map

cr4

early_level4 _pgt

cr3

__pa_nodebug

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Address_space_layout_randomization

Linux

for (i = 0; i < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early_idt_handler_array[i]);

arch/x86/kernel/head64.c

CPUCPU—— (Interrupt Handler)
e -CPU
* -
e -CPU
0 255 32 32 255 NUM_EXCEPTION_VECTORS

#define NUM_EXCEPTION_VECTORS 32

CPU APIC CPU 0-31

| Vector |Mnemonic |Description | Type |Error Code|Source

|0 | #DE |Divide Error | Fault |NO |DIV and IDIV |
[eccossscaconscaccasacasosssacossnacoosonacooo0aE0000000000080000000aC000a00000080C000a000000G
|1 | #DB |Reserved |F/T |NO |
[eccossscaconscaccasacasosssacossnacoosonacooo0aE0000000000080000000aC000a00000080C000a000000G
|12 | --- |NMI |INT |NO |external NMI |
I ___
|3 | #BP |Breakpoint | Trap |NO |INT 3 |
I ___
|14 | #OF |Overflow | Trap |NO |INTO instruction |
I ___
|5 | #BR |Bound Range Exceeded|Fault|NO |BOUND instruction |
I ___
|6 | #UD |Invalid Opcode | Fault |NO |UD2 instruction |
I ___
|7 | #NM |Device Not Available|Fault|NO |Floating point or [F]WAIT |
I ___
|8 | #DF |Double Fault |Abort | YES |Ant instrctions which can generate NMI|
I ___
19 | --- |Reserved | Fault |NO |

I ___
|10 | #TS |Invalid TSS |Fault|YES |Task switch or TSS access |
I ___
|11 | #NP |Segment Not Present |Fault|NO |Accessing segment register |
I ___
|12 | #SS |Stack-Segment Fault |Fault|YES |Stack operations |

113 | #GP |General Protection |Fault|YES |Memory reference |

https://en.wikipedia.org/wiki/Page_table
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://en.wikipedia.org/wiki/Interrupt_handler
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

IDTR

|14 | #PF |Page fault | Fault | YES |Memory reference |
| ...
|15 | --- |Reserved | |NO |
| ...
|16 | #MF |x87 FPU fp error | Fault |NO |Floating point or [F]wait |
| ...
|17 | #AC |Alignment Check | Fault | YES |Data reference |
| ...
|18 | #MC |Machine Check |Abort |NO |
| ___
|19 | #XM |SIMD fp exception | Fault |NO |SSE[2,3] instructions |
| ___
120 | #VE |Virtualization exc. |Fault|NO |EPT violations |
| ___
|21-31 | --- |Reserved |INT |NO |External interrupts |
CPU - IDTIDT 8IDT (gate) CPU 86416CPU GDTR
64 IDT
127 96
| |
| Reserved |
| |
95 64
| |
| offset 63..32 |
| |
63 48 47 46 44 42 39 34 32
	[b			[
offset 31..16	P	P	@	Type	00 0	@	6	IST
	[[
31 15 16 0								
Segment Selector	offset 15..0							
® Offset -
® DPL -
e P - Segment Present ;
e Segment selector - GDTLDT
® IST -
Type
°
°
°
(far) CPU 1r CPU 1r CPU CPU iret IF
0 CPU

e CPU cs IP
° #PF CPU

lidt

° iret

OK

IDT

for (1 = 0; 1 < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early_idt_handler_array[i]);

set_intr_gate

DT &idt_descr DT early idt_handler_array arch/x86/include/asm/segment.h 32

#define EARLY_IDT_HANDLER_SIZE 9
#define NUM_EXCEPTION_VECTORS 32

extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];

early_idt_handler_array 288 9 225
0T 32 early_idt_handler_array arch/x86/kernel/head_64.S set_intr_gate

set_intr_gate arch/x86/include/asm/desc.h

#define set_intr_gate(n, addr) \
do { \
BUG_ON((unsigned)n > OXFF); \
_set_gate(n, GATE_INTERRUPT, (void *)addr, 0, 0O, \
__KERNEL_CS); \
_trace_set_gate(n, GATE_INTERRUPT, (void *)trace_##addr, \
0, 0, _ _KERNEL_CS); \
} while (0)
BUG_ON 255 256 _set_gate IDT

static inline void _set_gate(int gate, unsigned type, void *addr,
unsigned dpl, unsigned ist, unsigned seg)

{
gate_desc s;
pack_gate(&s, type, (unsigned long)addr, dpl, ist, seg);
write_idt_entry(idt_table, gate, &s);
write_trace_idt_entry(gate, &s);

3

_set_gate pack_gate gate_desc

static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func,
unsigned dpl, unsigned ist, unsigned seg)

{
gate->offset_low = PTR_LOW(func);
gate->segment = __KERNEL_CS;
gate->ist = ist;
gate->p =1;
gate->dpl = dpl;
gate->zero0 = 0;
gate->zerol = 0;

gate->type = type;

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/segment.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h

gate->offset_middle = PTR_MIDDLE(func);
gate->offset_high = PTR_HIGH(func);

#define PTR_LOW(X)
#define PTR_MIDDLE(x)

((unsigned long long)(Xx) & OXFFFF)
(((unsigned long long)(x) >> 16) & OXFFFF)

#define PTR_HIGH(Xx) ((unsigned long long)(x) >> 32)

PTR_LOW X 2 PTR_MIDDLE X
Interrupt Stack Table 0
IDT native_write_idt_entry IDT

2 PTR_HIGH X 4

GAT_INTERRUPT

__KERNEL_CS

static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate)

{

memcpy(&idt[entry], gate, sizeof(*gate));

idt_table gate_desc

load_idt((const struct desc_ptr *)&idt_descr);

idt_descr

struct

load_idt lidt

asm volatile("lidt %0"::"m" (*dtr));
trace* _set_gate IDT
CPU
early_idt_handler_array IDT

.globl early_idt_handler_array
early idt_handlers:

i=o0

.rept NUM_EXCEPTION_VECTORS

= { NR_VECTORS * 16 - 1,

(unsigned long) idt_table };

idt_table

early_idt_handler_array

.1f (EXCEPTION_ERRCODE_MASK >> i) & 1

pushq $0

.endif

pushqg $i

jmp early_idt_handler_common
i=1i+1

.fill early_idt_handler_array + i*EARLY_IDT_HANDLER_SIZE - .,

.endr

32 (0]

$ objdump -D vmlinux

early_idt_handler_common

1, Oxcc

objdump

trace_idt_table tracepoint

arch/x86/kernel/head_64.S

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S

ffffffff81fe5000 <early_idt_handler_array>:

frffffff81fe5000:
frffffffgife5002:
frffffffgife5004:
frffffff81fe5009:
frffffffgife500b:
ffffffffgifes500d:
frffffffgifes5012:
frffffffgife5014:

CPU cs RIP

| %rflags |
| %cs |
| %rip |
| rsp --> error code |

6a
6a
e9
6a
6a
e9
6a
6a

early_idt_handler_common

cmpl , (%rsp)
je .Lis_nmi

is_nmi

addq ,%rsp
INTERRUPT_RETURN

INTERRUPT_RETURN

NMI

pushq %rax
%rcx
%rdx
%rsi
%rdi
%r8
%r9
%ri10
%ril

pushq
pushq
pushq
pushq
pushq
pushq
pushq
pushq

cmpl $__KERNEL_CS,

jne 11f

11 PANIC

cmpl , 72(%rsp)
jnz 16f

GET_CR2_INTO(%rdi)

early_recursion_flag

00
00
17 01 00 00
00
01
Oe 01 00 0O
00
02

early_idt_handler

arch/x86/kernel/head_64.S

iretq

(%rsp)

#PF Page Fault

call early_make_pgtable

andl %eax, %eax
jz 20f

#PF

pushq
pushq
jmpq

pushq
pushq
jmpq

pushq
pushq

cr2

$0x0
$0x0
ffffffff81fe5120 <early_idt_handler_common>
$0x0
$0x1
ffffffff81fe5120 <early_idt_handler_common>
$0x0
$0x2

(NMI)

early_idt_handler_common

rdi early _make_pgtable

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S#L343
http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Page_fault

popq %rii
popq %rio
popq %r9
popq %r8
popqg %rdi
popqg %rsi
popqg %rdx
popg %rcx
popg %rax

iret

early_make_pgtable #PF 46 4G boot_params

early make_pgtable arch/x86/kernel/head64.c cr2

int __init early_make_pgtable(unsigned long address)

{
unsigned long physaddr = address - __ PAGE_OFFSET;

unsigned long 1i;

pgdval_t pgd, *pgd_p;
pudval_t pud, *pud_p;
pmdval t pmd, *pmd_p;

*val_t

typedef unsigned long pgdval t;

*_t (val) pgd_t arch/x86/include/asm/pgtable_types.h

typedef struct { pgdval_t pgd; } pgd_t;

extern pgd_t early_level4_pgt[PTRS_PER_PGD];
early level4_pgt pdg_t pad
#PF pgd

pgd_p = &early level4_pgt[pgd_index(address)].pgd;
pgd = *pgd_p;

pgd pud_p

pud_p = (pudval t *)((pgd & PTE_PFN_MASK) + _ START_KERNEL_map - phys_base);

PTE_PFN_MASK

#define PTE_PFN_MASK ((pteval t)PHYSICAL PAGE_MASK)

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgtable_types.h

(~(PAGE_SIZE-1)) & ((1 << 46) - 1)

Ob111111112222222224241111212112222222211111111111112

46bit
pgd next_early_pgt EARLY_DYNAMIC_PAGE_TABLES 64 EARLY_DYNAMIC_PAGE_TABLES
next_early_pgt EARLY_DYNAMIC_PAGE_TABLES _KERPG_TABLE

if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
reset_early_page_tables();
goto again;

}
pud_p = (pudval t *)early_dynamic_pgts[next_early_pgt++];
for (1 = 0; i < PTRS_PER_PUD; i++)
pud_p[i] = ©0;
*pgd_p = (pgdval t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;

pud_p += pud_index(address);
pud = *pud_p;

In the end we fix address of the page middle directory which contains maps kernel text+data virtual addresses:

pmd = (physaddr & PMD_MASK) + early_pmd_flags;
pmd_p[pmd_index(address)] = pmd;

early level4_pgt

twitter 0xAX issue

start_kernel

o GNU assembly .rept
e APIC

o NMI

e Page table

e Interrupt handler

e Page Fault,

e Previous part

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://sourceware.org/binutils/docs-2.23/as/Rept.html
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Page_fault

69

«»

Linux Linux init/main.c start_kernel

boot_params again

IDTR copy_bootdata

copy_bootdata(__va(real_mode_data));

read_mode_data boot_params arch/x86/include/uapi/asm/bootparam.h

x86_64_start_kernel

/* rsi is pointer to real mode structure with interesting info.
pass it to C */

movq %rsi, %rdi

va init/main.c

#define _ va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

PAGE_OFFSET __PAGE_OFFSET Oxffff880000000000 boot_params

real_mod_data arch/x86/kernel/setup.h boot_params

extern struct a

copy_boot_data

static void __init copy_bootdata(char *real_mode_data)

{
char * command_line;
unsigned long cmd_line_ptr;
memcpy (&boot_params, real_mode_data, sizeof boot_params);
sanitize_boot_params(&boot_params);
cmd_line_ptr = get_cmd_line_ptr();
if (cmd_line_ptr) {
command_line = _ va(cmd_line_ptr);
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
}
3
__init
memcpy real_mode_data boot_params bootloader boot_params

ext_ramdisk_image get_cmd_line_ptr

unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;

cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 2
return cmd_line_ptr;

get_cmd_line_ptr boot_params 64 cmd_line_ptr boot_command_line

start_kernel

arch/x86/kernel/head_64.S

copy_bootdata

sanitize_boot_params

https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-2.md
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L114
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.h

extern char __initdata boot_command_line[];

boot_params load_ucode_bsp microcode
console_loglevel early_printk Kernel Alive early printk bug commit
boot_params reset_early_page_tables

clear_page(init_level4 _pgt);

init_level4 pgt arch/x86/kernel/head_64.S:

NEXT_PAGE(init_level4 pgt)

.quad level3_ident_pgt - _ START_KERNEL_map + _KERNPG_TABLE

.org init_level4_pgt + L4_PAGE_OFFSET*S,

.quad level3_ident_pgt - _ START_KERNEL_map + _KERNPG_TABLE

.org init_level4 _pgt + L4_START_KERNEL*S,

.quad level3_kernel_pgt - _ START_KERNEL_map + _PAGE_TABLE
bss 2.5G clear_page arch/x86/lib/clear_page 64.S

ENTRY(clear_page)
CFI_STARTPROC
xorl %eax,%eax

movl /64, %ecx
.p2align
decl %ecx

#define PUT(x) movqg %rax,x*s8(%rdi)
movq %rax, (%rdi)
PUT(1)
PUT(
PUT(
PUT(
PUT(
PUT(
PUT(
leaq (%rdi),%rdi
jnz .Lloop

—_— — — — — —

nop
ret
CFI_ENDPROC

ENDPROC(clear_page)

CFI_STARTPROC CFI_ENDPROC GNU

#define CFI_STARTPROC .cfi_startproc
#define CFI_ENDPROC .cfi_endproc

CFI_STARTPROC eax ecx 64 .Lloop ecx rax 0 rdi rdi
init_level4_pgt 7 rdi 8 init_level4_pgt 640 rdi 64 ecx 0 init_level4_pgt

init_level4_pgt O

init_level4_pgt[] = early_level4_pgt[1;

http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=91d8f0416f3989e248d3a3d3efb821eda10a85d2
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/lib/clear_page_64.S

reset_early_page_table early_level4_pgt

x86_64_start_kernel

x86_64_start_reservations(real_mode_data);

real_mode_data Xx86_64_start_reservations x86_64_start_kernel

void __init x86_64_start_reservations(char *real_mode_data)

{
if (!'boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));
reserve_ebda_region();
start_kernel();
}
x86_64_start_reservations boot_params.hdr.version

if (!boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));

0 copy_bootdata real_mode_data

reserve_ebda_region arch/x86/kernel/head.c EBDA Extended BIOS Data AreaBIOSBIOS
Conventiional Memory640K

reserve_ebda_region

if (paravirt_enabled())
return;

reserve_ebda_region BIOS

lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES);
lowmem <<= ;

BIOSKB101024BIOS

ebda_addr = get_bios_ebda();

get_bios_ebda arch/x86/include/asm/bios_ebda.h

static inline unsigned int get_bios_ebda(void)

{
unsigned int address = *(unsigned short *)phys_to_virt();
address <<= 4;
return address;

3

OX40E 0x0040:0x000e BIOS phys_to_virt va

static inline void *phys_to_virt(phys_addr_t address)

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bios_ebda.h

return __va(address);

phys_to_virt phys_addr_t CONFIG_PHYS_ADDR_T_64BIT

#ifdef CONFIG_PHYS_ADDR_T_64BIT
typedef u64 phys_addr_t;
#else
typedef u32 phys_addr_t;
#endif

CONFIG_PHYS_ADDR_T_64BIT BIOS4 ebda_addr BIOS

BIOS INSANE_CUTOFF

if (ebda_addr < INSANE_CUTOFF)
ebda_addr = LOWMEM_CAP;

if (lowmem < INSANE_CUTOFF)
lowmem = LOWMEM_CAP;

INSANE_CUTOFF

#define INSANE_CUTOFF 0x20000U

128 KB. BIOS memblock_reserve 1MBBIOS

lowmem = min(lowmem, ebda_addr);
lowmem = min(lowmem, LOWMEM_CAP);
memblock_reserve(lowmem, - lowmem);

memblock_reserve mm/block.c

memblock_reserve Linux

Linux

memblock_reserve memblock_reserve

memblock_reserve_region(base, size, MAX_NUMNODES, 0);

memblock_reserve_region

°
°
e NUMA
o flags

memblock_reserve_region memblock_type
struct * = &memblock.reserved;

memblock_type

https://github.com/torvalds/linux/blob/master/mm/block.c

struct {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;

struct * 2
3
BIOS memblock
struct {
bool bottom_up;
phys_addr_t current_limit;
struct 3
struct 2
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
struct 2
#endif
}
memblock.reserved _rgn memblock
struct _ = {
.memory.regions = memblock_memory_init_regions,
.memory.cnt =1,
.memory.max = INIT_MEMBLOCK_REGIONS,
.reserved.regions = memblock_reserved_init_regions,
.reserved.cnt =1,
.reserved.max = INIT_MEMBLOCK_REGIONS,
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
.physmem.regions = memblock_physmem_init_regions,
.physmem.cnt =1,
.physmem.max = INIT_PHYSMEM_REGIONS,
#endif
.bottom_up = ,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
}

__initdata_memblock

#define _ initdata_memblock __meminitdata

__meminit_data

#define __meminitdata __section(.meminit.data)

.meminit.data _rgn memblock_dbg memblock=debug

memblock_add_range(_rgn, base, size, nid, flags);

.meminit.data _rgn &memblock.reserved BIOS _rgn
if (type->regions[0].size == 0) {
WARN_ON(type->cnt != || type->total_size);

type->regions[0].base = base;
type->regions[0].size = size;
type->regions[0].flags = flags;
memblock_set_region_node(&type->regions[0], nid);
type->total_size = size;

return 0;

memblock_set_region_node

e NUMAID

memblock_region

struct {
phys_addr_t base;
phys_addr_t size;
unsigned long flags;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP

int nid;
#endif
3
NUMAID MAX_NUMNODES include/linux/numa.h

#define MAX_NUMNODES (1 << NODES_SHIFT)

NODES_SHIFT CONFIG_NODES_SHIFT

#ifdef CONFIG_NODES_SHIFT

#define NODES_SHIFT CONFIG_NODES_SHIFT
#else
#define NODES_SHIFT 0
#endif
memblick_set_region_node memblock_region nid

static inline void memblock_set_region_node(struct memblock_region *r, int nid)

{

r->nid = nid;

.meminit.data BIOS memblock reserve_ebda_region

x86_64_start_reservations init/main.c

start_kernel()

—_— start_kernel init

twitter 0xAX issue

e BIOS data area
e What is in the extended BIOS data area on a PC?

e Previous part

arch/x86/kernel/head64.c

~

Ul

https://github.com/torvalds/linux/blob/master/include/linux/numa.h
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
http://stanislavs.org/helppc/bios_data_area.html
http://www.kryslix.com/nsfaq/Q.6.html
https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-2.md

76

. Part 4.

Kernel entry point

- init/main.c start_kernel . start_kernel arch/ start_kernel 86
start_kernel (1) start_kernel ,IDcgroupsCPU VES Cachercu,vmalloc,scheduler(),IRQs(
),ACPI()
: Linux Kernel initialization process
attribute
start_kernel init/main.c. __init GCC __attribute__
#define init section(.init.text) cold notrace
free_initmem sections() __init __cold notrace cold notrace

#define notrace __attribute__ ((no_instrument_function))

no_instrument_function ()

start_kernel __visible

#define __visible _ attribute__((externally visible))

externally visible / unusable include/linux/init.h

start_kernel

start_kernel

char *command_line;
char *after_dashes;

parse_args mame=value":

lockdep_init();

lockdep_init lock validator. list_head lockdep_initialized 1 spinlockmutex .

set_task_stack_end_magic init_task STACK_END_MAGIC (©x57AC6E9D) init_task ():

struct = INIT_TASK(init_task);
task_struct include/linux/sched.h task_sreuct 100 task_struct Linux
init_task INIT_TASK include/linux/init_task.h(0)

® zero runnable . CPU;

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/DataStructures/linux-datastructures-1.md
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/Mutual_exclusion
https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L1278
https://github.com/torvalds/linux/blob/master/include/linux/init_task.h

o - PF_KTHREAD - ;

L
L
° &init_thread_info - init_thread_union.thread_info initthread_union - thread_union thread_info
union {
struct A
unsigned long stack[THREAD_SIZE/sizeof(long)];
}
x86_64 CPU16KB or 4stack unsigned long thread_union thread_union
struct {
struct * f
struct * g
_u32 flags;
_u32 status;
_u32 cpu;
int saved_preempt_count;
mm_segment_t addr_limit;
struct 2
void __user *sysenter_return;
unsigned int sig_on_uaccess_error:l;
unsigned int uaccess_err:1;
}
52 thread_info X86_64 thread_union.thread_info 16KB thread_info 16 kilobytes - 62 bytes = 16332 bytes .
thread_union union :
S +
| |
| |
| stack |
| |
| |
l	oo +
thread_info	<e-mmameam-- >
T S LT LLLL + Poscoacococncossansss +

http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-process-binds-in-union-construct

1

INIT_TASK task_struct's INIT_TASK

set_task_stack_end_magic kernel/fork.ccanary init

void set_task_stack_end_magic(struct task_struct *tsk)

{

unsigned long *stackend;

stackend = end_of_stack(tsk);

stackend = STACK_END_MAGIC; / for overflow detection */
3

set_task_stack_end_magic end_of_stack task_struct CONFIG_STACK_GROWSUP x86

(unsigned long *)(task_thread_info(p) + 1);

task_thread_info

http://en.wikipedia.org/wiki/Union_type
http://www.quora.com/In-Linux-kernel-Why-thread_info-structure-and-the-kernel-stack-of-a-process-binds-in-union-construct
https://github.com/torvalds/linux/blob/master/kernel/fork.c#L297
http://en.wikipedia.org/wiki/Stack_buffer_overflow

#define task_thread_info(task) ((struct thread_info *)(task)->stack)

STACK_END_MAGIC canary

if (*end_of_stack(task) != STACK_END_MAGIC) {

//
// handle stack overflow here
//
3
set_task_stack_end_magic smp_setup_processor_id . x86_64

void __init __weak smp_setup_processor_id(void)
{
3

s390 and arm64.
debug_objects_early_init lockdep_init

debug_object_early_init boot_init_stack_canary task_struct->canary GCC CONFIG_CC_STACKPROTECTOR
boot_init_stack_canary TSC:

get_random_bytes(&canary, sizeof(canary));

tsc = __native_read_tsc();
canary += tsc + (tsc <<)
s stack_canary task_struct

current ->stack7canary = canary,

IRQ:

this_cpu_write(irg_stack_union.stack_canary, canary); // read below about this cpu write

IRQ, IRQs.canary, bootstrap CPUCPU maps. (interrupts for current CPU) local_irg_disable

arch_local_irg_disable include/linux/percpu-defs.h:

static inline notrace void arch_local_irq_enable(void)

{
native_irqg_enable();
3
native_irq_enable cli x86_64 Where native_irq_enable is cli instruction for x86_64 .()CPU IDCPU bitmap

CPU

start_kernel boot_cpu_init CPUID

int cpu = smp_processor_id();

0. CONFIG_DEBUG_PREEMPT smp_processor_id raw_smp_processor_id

#define raw_smp_processor_id() (this_cpu_read(cpu_number))

http://en.wikipedia.org/wiki/IBM_ESA/390
http://en.wikipedia.org/wiki/ARM_architecture#64.2F32-bit_architecture
http://en.wikipedia.org/wiki/Time_Stamp_Counter
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h

this_cpu_read (this_cpu_write , this_cpu_add ...) include/linux/percpu-defs.h this_cpu .cpu per-cpu.

this_cpu_read :

__pcpu_size_call _return(this_cpu_read_, pcp)

cpu cpu_number this_cpu_read raw_smp_processor_id __pcpu_size_call return

#define pcpu_size_call return(stem, variable)

({

typeof(variable) pscr_ret__;
verify_pcpu_ptr(&(variable));
switch(sizeof(variable)) {
case 1: pscr_ret = stem##l(variable); break;
case 2: pscr_ret__ = stem##2(variable); break;
case 4: pscr_ret__ = stem##4(variable); break;
case 8: pscr_ret__ = stem##8(variable); break;
default:
__bad_size_call parameter(); break;

}
pscr_ret__;

1

pscr_ret__ int int common_cpu cpu(per-cpu):

DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number);

__verify_pcpu_ptr Cpu cpu_number pscr_ret__ common_cpu int ,4

__pcpu_size_call_return __pcpu_size_call_return

#define this_cpu_read_4(pcp) percpu_from_op("mov", pcp)
percpu_from_op mov Ccpu percpu_from_op
asm("movl %%gs:%1,%0" : "=r" (pfo_ret__) : "m" (common_cpu))

gs CPU mov COpY common_cpu

this_cpu_read(common_cpu)

movl %gs:$common_cpu, $pfo_ret__

CPU, - CPU zero smp_processor_id .

IDCPU, boot_cpu_init CPU,,:

set_cpu_online(cpu, true);
set_cpu_active(cpu, true);
set_cpu_present(cpu, true);
set_cpu_possible(cpu, true);

A g O R

this_cpu_read_4(common_cpu) Cpu pscr_ret__

CPU-CPU cpumask . cpu_possible CPUCPU ID. cpu_present CPU. cpu_online CPU cpu_present CPU. CPU

CONFIG_HOTPLUG_CPU possible == present active == online

true

true cpumask_set_cpu OI cpumask_clear_cpu

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h

cpumask_set_cpu(cpu, to_cpumask(cpu_possible bits));

to_cpumask struct cpumask * CPUCPU'sCPU1bitCPU cpu_mask :

typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;

#define DECLARE_BITMAP(name, bits) unsigned long name[BITS_TO_LONGS(bits)]

DECLARE_BITMAP unsigned long to_cpumask :
#define to_cpumask(bitmap) \
((struct cpumask *)(1 ? (bitmap) \

(void *)sizeof(__check_is_bitmap(bitmap))))

, __check_is_bitmap __check_is_bitmap

static inline int __check_is_bitmap(const unsigned long *bitmap)

{
return 1;

3
1 bitmap bitmap unsigned long * , to_cpumask unsigned long struct cpumask * cpumask_set_cpu
CPU set_cpu_*
set_cpu_* cpumask cpumask or documentation.
CPUstart_kernel page_address_init ,

L
Linux
pr_notice

#define pr_notice(fmt, ...) \

printk(KERN_NOTICE pr_fmt(fmt), ##_ VA _ARGS__)

pr_noticeprintkLinux banner

pr_notice("%s", linux_banner);

Linux version 4.0.0-rc6+ (alex@localhost) (gcc version 4.9.1 (Ubuntu 4.9.1-16ubuntu6)) #319 SMP

Linux setup_arch start_kernel arch/ setup_arch arch/x86/kernel/setup.c -

_text _data _text _bss_stop (arch/x86/kernel/head_64.S) memblock

memblock_reserve(__pa_symbol(_text), (unsigned long)__bss_stop - (unsigned long)_text);

set_bit

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S#L46

memblock Linux kernel memory management Part 1. memblock_reserve

e base physical address of a memory block;

e size of a memory block.

__pa_symbol _text

#define pa_symbol(x) \
phys_addr_symbol(__phys_reloc_hide((unsigned long)(x)))

__phys_reloc_hide __phys_reloc_hide x86_64 __phys_addr_symbol

#define phys_addr_symbol(x) \
((unsigned long)(x) - __START_KERNEL_map + phys_base)

memblock_reserve

initrd

textdatainitrd,initrd early_reserve_initrd RAM DISKRAM DISKRAM DISK

u64 ramdisk_image = get_ramdisk_image();
u64 ramdisk_size = get_ramdisk_size();
u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);

Linux Kernel Booting Process boot_params boot_params bootRAM DISK

Field name: ramdisk_image
Type: write (obligatory)
Offset/size: 0x218/4
Protocol: 2.00+

The 32-bit linear address of the initial ramdisk or ramfs. Leave at
zero if there is no initial ramdisk/ramfs.

boot_params . get_ramdisk_image

static u64 __init get_ramdisk_image(void)

{
u64 ramdisk_image = boot_params.hdr.ramdisk_image;
ramdisk_image |= (u64)boot_params.ext_ramdisk_image << g
return ramdisk_image;

3

32ramdisk ~ Documentation/x86/zero-page.txt:

0C0/004 ALL ext_ramdisk_image ramdisk_image high 32bits

3264ramdiskbootloader ramdisk

if (!boot_params.hdr.type_of_loader ||
'ramdisk_image || !ramdisk_size)
return;

ramdisk

_text

http://en.wikipedia.org/wiki/Initrd
https://github.com/0xAX/linux/blob/master/Documentation/x86/zero-page.txt

- start_kernel

memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);

start_kernel setup_arch
twitter

PR linux-insides-zh.

e GCC function attributes
e this_cpu operations

e cpumask

e lock validator

e cgroups

e stack buffer overflow
e IRQs

e initrd

e Previous part

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://www.kernel.org/doc/Documentation/this_cpu_ops.txt
http://www.crashcourse.ca/wiki/index.php/Cpumask
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Initrd

setup_arch initrd olpc_ofw_detect One Laptop Per Child support

early trap_init #bB - TF rflags int3 #BP x86 INT INTO

INT3 #BP

#DB early trap_init arch/x86/kernel/traps.c #DB #BP IDT

void __init early_trap_init(void)

DEBUG_STACK

INT3

{
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
load_idt(&idt_descr);

}

set_intr_gate set_intr_gate_ist set_system_intr_gate_ist

°

° /

° Interrupt Stack Table st TSS x86_64 16kb cpU linux -

Kernel stacks x86_64 Interrupt Stack Table CPU7 IST
set_intr_gate_ist set_system_intr_gate_ist set_intr_gate _set_gate
BUG_ON((unsigned)n >);

_set_gate(n, GATE_INTERRUPT, addr, 0, ist, __KERNEL_CS);

set_intr_gate dp] ist 0 _set_gate set_intr_gate_ist set_system_intr_gate_ist
DEBUG_STACK set_system_intr_gate_ist dpl 0x3 IST cpu_init
#DB #BP idt_descr load_idt ldtr 10T linux debug
set_intr_gate_ist &debug #DB Ixr.free-electorns.com linux debug
arch/x86/include/asm/traps.h debug
asmlinkage void debug(void);
idtentry

asmlinkage debug assembly :) #pB arch/x86/kernel/entry_64.S

idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

idtentry /

ist

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L856
http://en.wikipedia.org/wiki/Initrd
http://wiki.laptop.org/go/OFW_FAQ
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Task_state_segment
https://www.kernel.org/doc/Documentation/x86/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level
http://lxr.free-electrons.com/ident
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/traps.h
http://en.wikipedia.org/wiki/Assembly_language
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64.S

e paranoid - 1

o shift_ist -
idtentry ENTRY debug idtentry #DB
XCPT_FRAM XCPT_FRAME INTR_FRAME CFI CFI CFI
CFI dwarf2

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-
ENTRY (\sym)
/* Sanity check */

.if \shift_ist != -1 && \paranoid ==
.error "using shift_ist requires paranoid=1"
.endif

.if \has_error_code

XCPT_FRAME

.else

INTR_FRAME

.endif

P +

| |
+40 | SS |
+32 | RSP |
+24 | RFLAGS |
+16 | cs |
+8 | RIP |

0 | Error Code | <----rsp

| |

TP +
idtentry

ASM_CLAC

PARAVIRT_ADJUST_EXCEPTION_FRAME

ASM_CLAC CONFIG_X86_SMAP PARAVIRT_EXCEPTION_FRAME Xen
x86_64 OxXFFFfffffffffffff)

.ifeq \has_error_code
pushg_cfi $-
.endif

dummy $ORIG_RAX-R15

subg $ORIG_RAX-R15, %rsp

ORIG_RAX R15 arch/x86/include/asm/calling.h ORIG_RAX-R15 120 120

testl , CS(%rsp)
jnz 1f

INTR_FRAME
arch/x86/kernel/entry_64.S

cs cs RPL 0-3 save_paranoid 1 save_paranoid gs

gs

https://sourceware.org/binutils/docs/as/CFI-directives.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64
https://lwn.net/Articles/517475
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h

movl , %ebx
movl $MSR_GS_BASE, %ecx
rdmsr
testl %edx, %edx
js 1f
SWAPGS
xorl %ebx, %ebx
ret
pt_regs rdi rsi arch/x86/kernel/trap.c do_debug do_debug
e pt_regs- CPU
e error code -
paranoid_exit iret #DB idtentry idtentry early_trap_init
early_cpu_init arch/x86/kernel/cpu/common.c CPU
Ld
10remap
ioremap
e I/O
°
linux outb/inb 1/0 CPU 1/0 RAM ioremap
early ioremap_init ioremap 1/0 ioremap 1/0 ioremap arch/x86/mm/ioremap.c
early_ioremap_init pmd_t pmd typedef struct {pmdval_t pmd; } pmd_t; pmdval_t
fixmap
pmd_t *pmd;
BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
fixmap - FIXADDR_START FIXADDR_TOP early_ioremap_init mm/early_ioremap.c
early_ioremap_setup early_ioremap_setup 512 slot_virt
for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
slot_virt[i] = _ fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
FIX_BTMAP_BEGIN pmd bm_pte O pmd_populate_kernel
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
memset(bm_pte, 0, sizeof(bm_pte));
pmd_populate_kernel(&init_mm, pmd, bm_pte);
ioremap fixmaps
ioremap
ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
initrd do_mount_root 0ld_decode_dev boot_params_structure x86 linux
Field name: root_dev

Type: modify (optional)

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/cpu/common.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/ioremap.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/mm/early_ioremap.c

ox1fc/2
ALL

offset/size:
Protocol:

The default root device device number. The use of this field is
deprecated, use the "root=" option on the command line instead

old_decode_dev MKDEV dev_t

static inline dev_t old_decode_dev(ul6 val)

{

return MKDEV((val >> 8) & , val &)8

2 8bit 8 bit 256 256 32 bit 12 20

new_decode_dev

dev_t / old

static inline dev_t new_decode_dev(u32 dev)
{

unsigned major = (dev &
(dev &) |

return MKDEV(major, minor);

) >> 8;

unsigned minor = ((dev >>

) &)i

dev oxffffffff 12 oxfff 20 oxfffff old_decode_dev

Memory Map

setup_memory_map

screen_info =
edid_info =

boot_params.screen_info;
boot_params.edid_info;

saved_video_mode = boot_params.hdr.vid_mode;

bootloader_type

= boot_params.hdr.type_of_loader;

if ((bootloader_type >> ==
bootloader_type &= ;

bootloader_type |= (boot_params.hdr.ext_loader_type+

}

bootloader_version
bootloader_version |= boot_params.hdr.ext_loader_ver <<

boot_params

e /proc/ioports -

e /proc/iomem -

cat /proc/iomem

00000000-00000fff
00001000-0009d7ff
0009d800-0009ffff
000a0000-000bffff

000c0000-000cTfff :

000d0000-000d3fff
000d4000-000d7fff
000d8000-000dbfff
000dc000-000dffff
000e0000-000Tffff

I/0

/proc/iomem

reserved

. System RAM

reserved

PCI Bus 0000:00
Video ROM

PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
reserved

) {

= bootloader_type & ;

I/0

’

/proc/ioports

) <<

linux API PICs 1/0

000e0000-000e3fff : PCI Bus 0000:00
000e4000-000e7fff : PCI Bus 0000:00
000f0000-0EOFffff : System ROM

resource

ROOT_DEV

/proc/iomem

struct {
resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags;

struct * A P f
}
start end resource_size_t phys_addr_t x86_64
include/linux/ioport.h
focooooooooooo + doocoocoooooooo +
parent	------	sibling
focooooocooooo + doocoocooooooco +		
oo +		
child		
oo +
iomem iomem_resource
struct ={
.name = "PCI mem",
.start = 0,
.end = ,
.flags = IORESOURCE_MEM,
}
EXPORT_SYMBOL (iomem_resource);
TODO EXPORT_SYMBOL
iomem_resource PCI mem IORESOURCE_MEM (0x00000200) io

iomem_resource.end = (<< boot_cpu_data.x86_phys_bits) - 1;

1 boot_cpu_data.x86_phys_bits boot_cpu_data early cpu_init

u64

iomem

cpuinfo_x86

/proc/iomem

x86_phys_bits

setup_memory_map

Xx86_1init

iomem_resource EXPORT_SYMBOL iomem_resource iomem
void __init setup_memory_map(void)
{
char *who;
who = x86_init.resources.memory_setup();
memcpy(&e820_saved, &e820, sizeof(struct e820map));
printk (KERN_INFO "e820: BIOS-provided physical RAM map:\n");
e820_print_map(who);
3
X86_1init.resources.memory_setup x86_init x86_init_ops pci
arch/x86/kernel/x86_init.c
struct _ ={
.resources = {
.probe_roms = probe_roms,
.reserve_resources = reserve_standard_io_resources,
.memory_setup = default_machine_specific_memory_setup,

3

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/ioport.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/x86_init.c

memory_setup

default_machine_specific_memory_setup

e820

[0.000000] e820: BIOS-provided physical RAM map:

[0.000000] BIOS-e820: [mem 0x0000000000000000-0Xx000000000009d7ff]

[0.000000] BIOS-e820: [mem 0x000000000009d800-0x000000000009FFff]

[0.000000] BIOS-e820: [mem 0x00000000000e0000-0X00000000000FfFfff]

[0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000be825Fff]

[0.000000] BIOS-e820: [mem 0x00000000be826000-0x00000000be82cfff]

[0.000000] BIOS-e820: [mem 0x00000000be82d000-0X00000000bf744fff]

[0.000000] BIOS-e820: [mem Ox00000000bf745000-0x00000000bfff4fff]

[0.000000] BIOS-e820: [mem O0x00000000bfff5000-0x00000000dcO41fff]

[0.000000] BIOS-e820: [mem 0x00000000dc042000-0x00000000dcOd2fff]

[0.000000] BIOS-e820: [mem 0x00000000dcOd3000-0x00000000dc138fff]

[0.000000] BIOS-e820: [mem Ox00000000dc139000-0x00000000dc27dfff]

[0.000000] BIOS-e820: [mem Ox00000000dc27e000-0x00000000deffefff]

[0.000000] BIOS-e820: [mem Ox00000000defffO00-0x00000000deffffff]
BIOS

parse_setup_data setup_data BIOS EDD setup_data

Field name: setup_data

Type: write (special)

offset/size: 0x250/8

Protocol: 2.09+

The 64-bit physical pointer to NULL terminated single linked list of
struct setup_data. This is used to define a more extensible boot

parameters passing mechanism.

blob EFI

boot_params

arch/x86/boot/edd.c BIOS EDD

static inline void __init copy_edd(void)

{

memcpy(edd.mbr_signature,

boot_params.edd_mbr_sig_buffer,

sizeof(edd.mbr_signature));

memcpy(edd.edd_info,

boot_|

params.eddbuf, sizeof(edd.edd_info));

edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;

edd.edd_info_nr = boot_params.eddbuf_entries;

memory descriptor

include/linux/mm_types.h

#define INIT_TASK(tsk)

{

.mm =

.active_mm

’

= &init_j

linux mm_struct mm_struct /
task_struct mm active_mm init
\
\
mm, \

e820map

usable
reserved
reserved
usable
ACPI NVS
usable
reserved
usable
reserved
usable
ACPI NVS
reserved
usable

x86

edd

brk

INIT_TASK

printk

dmesg

task_struct

http://en.wikipedia.org/wiki/E820
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/edd.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mm_types.h

mm active_mm brk

init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;

init_mm.brk = _brk_end;
init_mm
struct ={
.mm_rb = RB_ROOT,
.pad = swapper_pg_dir,
.mm_users = ATOMIC_INIT(2),
.mm_count = ATOMIC_INIT(1),
.mmap_sem = __RWSEM_INITIALIZER(init_mm.mmap_sem),
.page_table_lock = _ SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),
.mmlist = LIST_HEAD_INIT(init_mm.mmlist),
INIT_MM_CONTEXT(init_mm)
}
mm_rb pgd mm_user mm_count mmap_sem mpx_mm_init
code_resource.start = __pa_symbol(_text);
code_resource.end = __pa_symbol(_etext)-1;
data_resource.start = __pa_symbol(_etext);
data_resource.end = __pa_symbol(_edata)-1;
bss_resource.start = _ _pa_symbol(__bss_start);
bss_resource.end = __pa_symbol(__bss_stop)-1;
resource // bss /proc/iomem

00100000-be825fff : System RAM
01000000-015bb392 : Kernel code
015bb393-01930c3f : Kernel data
01a11000-01ac3fff : Kernel bss

Intel //

bss

[arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/k

ernel/setup.c)
static struct resource code_resource = {

1]

.name = "Kernel code",
.start =0,
.end =0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
3
4
NX NX-bit no-execute 63 EFER.NXE 1 no-execute / x86_configure_nx
CPU NX-bit _supported_pte_mask

void x86_configure_nx(void)
{
if (cpu_has_nx && !disable_nx)
__supported_pte_mask |= _PAGE_NX;
else
__supported_pte_mask &= ~_PAGE_NX;

https://www.kernel.org/doc/Documentation/vm/active_mm.txt

linux setup_arch setup_arch

PR

pci
twitter

linux-insides

mm Vs active_mm

€820

Supervisor mode access prevention
Kernel stacks

TSS

IDT

Memory mapped I/0

CFI directives

PDF. dwarf4 specification
Call stack

. Part 4.

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://www.kernel.org/doc/Documentation/vm/active_mm.txt
http://en.wikipedia.org/wiki/E820
https://lwn.net/Articles/517475/
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Task_state_segment
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Memory-mapped_I/O
https://sourceware.org/binutils/docs/as/CFI-directives.html
http://dwarfstd.org/doc/DWARF4.pdf
http://en.wikipedia.org/wiki/Call_stack
http://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-4.md

arch/x86/kernel/setup.c(x86_64) x86_configure_nx NX bit _PAGE_NX , setup_arch
start_kernel x86_configure_nx parse_early param init/main.c (Documentation/kernel-
parameters.txt) earlyprintk arch/x86/boot/cmdline.c cmdline_find_option __cmdline_find_option ,

__cmdline_find_option_bool linux

early_param('"gbpages", parse_direct_gbpages_on);

early_param

#define early param(str, fn) \
__setup_param(str, fn, fn, 1)

include/linux/init.h .

early_param __setup_param

#define _ setup_param(str, unique_id, fn, early) \
static const char __setup_str_##unique_id[] __initconst \
__aligned(1) = str; \

static struct obs_kernel _param __ setup_##unique_id \
__used __section(.init.setup) \
__attribute_ ((aligned((sizeof(long))))) \

= { __setup_str_##unique_id, fn, early }

__setup_str_*_id (*) obs_kernel_param __setup_ *

obs_kernel_param

struct {
const char *str;
int (*setup_func)(char *);

int early;
}
°
°
e early
__set_param __section(.init.setup) __setup_str_ * .init.setup
generic/vmlinux.lds.h .init.setup __setup_start __setup_end

#define INIT_SETUP(initsetup_align)
. = ALIGN(initsetup_align);
VMLINUX_SYMBOL(__setup_start) = .;
*(.init.setup)
VMLINUX_SYMBOL(__setup_end) = .;

P

include/asm-

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
http://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/arch/x86/boot/cmdline.c
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://github.com/torvalds/linux/blob/master/include/asm-generic/vmlinux.lds.h

parse_early_param

void __init parse_early_param(void)

{
static int done __initdata;
static char tmp_cmdline[COMMAND_LINE_SIZE] __initdata;
if (done)
return;
/* All fall through to do_early param. */
strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE);
parse_early options(tmp_cmdline);
done = 1;
}
parse_early_param done parse_early_param boot_command_line (tmp_cmdline) main.c
parse_early_options parse_early_options kerneVparanl&c parse_args , parse_args do_early_param
do_early_param __setup_start __setup_end obs_kernel_param early 1, obs_kernel_param
setup_func parse_early_param Xx86_report_nx x86_configure_nx NX-bit
arch/x86/mm/setup_nx.c x86_report_nx NX Xx86_report_nx x86_configure_nx parse_early param
noexec parse_early_param noexec X86_report_nx
noexec [X86]
On X86-32 available only on PAE configured kernels.
//X86-32PAE
noexec=on: enable non-executable mappings (default)
//noexec=on: ()
noexec=off: disable non-executable mappings
//noexec=off:
bootconso

NX (Execute Disable) protection: active

SMBIOS 2.8 present.

memblock_x86_reserve_range_setup_data();

arch/x86/kernel/setup.c setup_data (setup_data Linux kernel memory management
and memblock)

if (acpi_mps_check()) {
#ifdef CONFIG_X86_LOCAL_APIC
disable_apic =

’

#endif
setup_clear_cpu_cap(X86_FEATURE_APIC);
}
acpi_mps_check arch/x86/kernel/acpi/boot.c CONFIG_X86_LOCAL_APIC CONFIG_x86_MPPARSE

int __init acpi_mps_check(void)
{
#1if defined(CONFIG_X86_LOCAL_APIC) && !defined(CONFIG_X86_MPPARSE)
/* mptable code is not built-in*/
if (acpi_disabled || acpi_noirq) {
printk (KERN_WARNING "MPS support code is not built-in.\n"
"Using acpi=off or acpi=noirq or pci=noacpi "
"may have problem\n");

ioremap

https://github.com/torvalds/linux/blob/master/
https://github.com/torvalds/linux/blob/master/init/main.c#L413
https://github.com/torvalds/linux/blob/master/arch/x86/mm/setup_nx.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/acpi/boot.c

return 1,

}
#endif
return 0;
}
acpi_mps_check MPS) CONFIG_X86_LOCAL_APIC CONFIG_x86_MPPAARSE acpi=off acpi=noirq
pci=noacpi acpi_mps_check acpi_mps_check 1 APIC, setup_clear_cpu_cap CPU
X86_FEATURE_APIC CPU masks CPU mask)

PCI

PCI:

#ifdef CONFIG_PCI
if (pci_early_dump_regs)
early_dump_pci_devices();
#endif

pci_early_dump_regs arch/x86/pci/common.c pci=earlydump drivers/pci/pci.c :

early_param('"pci", pci_setup);

pci_setup pci= drivers/pci/pci.c _weak pcibios_setup _weak x86_64

arch/x86/pci/common.c :
char *__init pcibios_setup(char *str) {
} else if (!strcmp(str, "earlydump")) {

pci_early_dump_regs = 1;
return NULL;

CONFIG_PCI pci=earlydump arch/x86/pci/early.c early_dump_pci_devices pci noearly

if (learly_pci_allowed())
return;

PCI 256 32:

for (bus = 0; bus < 256; bus++) {
for (slot = 0; slot < 32; slot++) {
for (func = 0; func < 8; func++) {

read_pci_config pci

pci pci Drivers/PCI

http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Conventional_PCI
https://github.com/torvalds/linux/blob/master/arch/x86/pci/common.c
https://github.com/torvalds/linux/blob/master/arch
https://github.com/torvalds/linux/blob/master/arch
https://github.com/torvalds/linux/blob/master/arch/x86/pci/common.c
https://github.com/torvalds/linux/blob/master/arch/x86/pci/early.c

early_dump_pci_devices €820 €820

/* update the e820_saved too */
e820_reserve_setup_data();
finish_e820_parsing();

€820_add_kernel_range();
trim_bios_range(void);

max_pfn = e820_end_of_ram_pfn();
early reserve_e820_mpc_new();

e820_reserve_setup_data memblock_x86_reserve_range_setup_data

e820map E820_RESERVED_KERN finish_e820_parsing , sanitize_e820_map

e820_add_kernel_range

u64 start = __pa_symbol(_text);

ué4 size = _ pa_symbol(_end) - start;

e820map E820RAM .text .data .bss trm_bios_range
sanitize_e820_map e820map e820_end_of_ram_pfn -

unsigned long __init e820_end_of_ram_pfn(void)

{
return e820_end_pfn(MAX_ARCH_PFN);

e820_end_pfn (x86_64 MAX_ARCH_PFN 0x400000000) e820_end_pfn
E820_PRAM €820

for (1 = 0; 1 < e820.nr_map; i++) {
struct *el = &e820.map[i];
unsigned long start_pfn;
unsigned long end_pfn;

if (ei->type != E820_RAM && ei->type != E820_PRAM)
continue;

start_pfn = ei->addr >> PAGE_SHIFT;
end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;

if (start_pfn >= limit_pfn)
continue;

if (end_pfn > limit_pfn) {
last_pfn = limit_pfn;
break;

}

if (end_pfn > last_pfn)
last_pfn = end_pfn;

if (last_pfn > max_arch_pfn)
last_pfn = max_arch_pfn;

printk (KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n",

last_pfn, max_arch_pfn);
return last_pfn;

last_pfn last_pfn (x86_64), last_pfn dmesg last_pfn

e820_update_range

es20Map 4096

e820_end_of_ram_pfn

820

e820map

e820

E820_RESERVED

€820

e820_end_pfn

E820_RAM

http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/E820

[0.000000] e820: last_pfn = 0x41f000 max_arch_pfn = 0x400000000

max_low_pfn , 4GB4GBRAM max_low_pfn e820_end_of_low_ram_pfn e820_end_of_ram_pfn
4GB max_low_pfn max_pfn
if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
max_low_pfn = e820_end_of_low_ram_pfn();

else
max_low_pfn = max_pfn;

high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) +

’

va 0,

€820

dmi_scan_machine();
dmi_memdev_walk();

drivers/firmware/dmi_scan.c dmi_scan_machine System Management BIOS SMBIOS : EFI

SMBIOS OXFOOOO 0x10000 dmi_scan_machine dmi_early_remap Oxf000 0x10000

early_ioremap

void __init dmi_scan_machine(void)

{
char __iomem *p, *q;
char buf[32];
p = dmi_early_remap(g)i
if (p ==)
goto error;
DMI _SM_
memset (buf, 0, e
for (g =p; g<p+ ;9 =) {
memcpy_fromio(buf + 16, q, 16);
if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
dmi_available = 1;
dmi_early_unmap(p,),
goto out;
}
memcpy(buf, buf + o)5
3
SM 000FO000H OXO0OFFFFF memcpy_fromio buf 16 memcpy (buf)
dmi_smbios3_present dmi_present buf 4 __SM__ SMBIOS _DMI_ _DMI_
dmesg

[0.000000] SMBIOS 2.7 present.
[0.000000] DMI: Gigabyte Technology Co., Ltd. Z97X-UD5H-BK/Z97X-UD5H-BK, BIOS F6 06/17/2014

http://en.wikipedia.org/wiki/Desktop_Management_Interface
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/drivers/firmware/dmi_scan.c
http://en.wikipedia.org/wiki/System_Management_BIOS
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

dmi_scan_machine

dmi_early_unmap(p,)

- dmi_memdev_walk

void __init dmi_memdev_walk(void)
{
if (!dmi_available)
return;

if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
if (dmi_memdev)
dmi_walk_early(save_mem_devices);

DMI (dmi_scan_machine dmi_available) dmi_walk_early

#ifdef CONFIG_DMI
RESERVE_BRK(dmi_alloc, 65536);
#endif

arch/x86/include/asm/setup.h RESERVE_BRK brk

init_hypervisor_platform();
x86_1init.resources.probe_roms();
insert_resource(&iomem_resource, &code_resource);
insert_resource(&iomem_resource, &data_resource);
insert_resource(&iomem_resource, &bss_resource);
early_gart_iommu_check();

(SMP)

SMP find_smp_config

static inline void find_smp_config(void)

{

x86_init.mpparse.find_smp_config();

x86_init.mpparse.find_smp_config arch/x86/kernel/mpparse.c default_find_smp_config

default_find_smp_config SMP ,:

if (smp_scan_config(g) |
smp_scan_config(* o)|
smp_scan_config(5))
return;

smp_scan_config

unsigned int *bp = phys_to_virt(base);
struct * 5

SMP mpf_intel mpf_intel mpf_intel

dmi_alloc

s

dmi_al

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/setup.h
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/mpparse.c

struct {
char signature[4];
unsigned int physptr;
unsigned char length;
unsigned char specification;
unsigned char checksum;
unsigned char featurel;
unsigned char feature2;
unsigned char feature3;
unsigned char feature4;
unsigned char feature5;

}

- BIOSMPMP mpf_intel (), smp_scan_config MP floating pointer structure

mpf->specification 14(14):

while (length > 0) {
if ((*bp == SMP_MAGIC_IDENT) &&

(mpf->length == 1) &&
'mpf_checksum((unsigned char *)bp,) &&
((mpf->specification == 1)

|| (mpf->specification == 4))) {

mem = virt_to_phys(mpf);

memblock_reserve(mem, sizeof(*mpf));

if (mpf->physptr)
smp_reserve_memory(mpf);

}
}

memblock_reserve MultiProcessor Specification SMP
setup_arch early_alloc_pgt_buf ,

void __init early_alloc_pgt_buf(void)

{
unsigned long tables = INIT_PGT_BUF_SIZE;
phys_addr_t base;
base = _ pa(extend_brk(tables, PAGE_SIZE));
pgt_buf_start = base >> PAGE_SHIFT;
pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
3
INIT_PGT_BUF_SIZE linux 4.0 (6 * PAGE_SIZE) extend_brk : sizealign,
BSS:

. = ALIGN(PAGE_SIZE);
.brk : AT(ADDR(.brk) - LOAD_OFFSET) {

_ _brk_base = .;
. = * ; /* 64k alignment slop space */
(.brk_reservation) / areas brk users have reserved */

__brk_limit = .;

readelf

brk linux

SMP

brk

brk

http://www.intel.com/design/pentium/datashts/24201606.pdf
http://en.wikipedia.org/wiki/.bss

MOBITS fIfrffffe199deae 060d9do0a
00000000000b4000 ©0O00000000000008 WA §] 8 4096

.brk NOBITS ffffffffg1a51000 00d9d000
0000000000026000 O0000000000000000 WA §] i} 1

_pa brk reserve_brk brk

static void __init reserve_brk(void)

{

if (_brk_end > _brk_start)

memblock_reserve(__pa_symbol(_brk_start),
_brk_end - _brk_start);

_brk_start = 0;
}
reserve_brk _brk_start 0, brk cleanup_highmap __START_KERNEL_map _end - _text

level2_kernel_pgt _text data bss clean_high_map

unsigned long vaddr = __ START_KERNEL_map;

unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
pmd_t *pmd = level2_ kernel_pgt;
pmd_t *last_pmd = pmd + PTRS_PER_PMD;

s _text end

for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
if (pmd_none(*pmd))

continue;
if (vaddr < (unsigned long) _text || vaddr > end)
set_pmd(pmd, __pmd(0));
3
memblock_set_current_limit (linux memblock) memblock ISA_END_ADDRESS 0x100000
memblock_x86_fill e820 memblock

MEMBLOCK configuration:

memory size = Ox1fff7ec00 reserved size = 0x1e30000

memory.cnt = Ox3

memory[0x0] [6X00000000001000-0x0000000009efff], 0x9e000 bytes flags: 0x0
memory[0x1] [6x00000000100000-0x000000bffdffff], Oxbfee0d0® bytes flags: 0x0
memory[0x2] [0x00000100000000-0x0000023fffffff], 0x140000000 bytes flags: 0x0

reserved.cnt = 0x3
reserved[0x0] [0x0000000009f000-0Xx000000000Fffff], 0x61000 bytes flags: 0x0
reserved[0x1] [0x00000001000000-0x00000001a57fff], 0xa58000 bytes flags: Ox0

reserved[0x2] [0x0000007ec89000-0x0000007FFfffff], 0x1377000 bytes flags: Ox0

memblock_x86_fill : early_reserve_e820_mpc_new e820map reserve_real_mode - 0x0 1h4(
) trim_platform_memory_ranges 0x20050000 , 0x20110000 Sandy Bridge trim_low_memory_range
memblock 4KB init_mem_mapping PAGE_OFFSET , early_trap_pf_init #PF (), setup_real_mode
setup_arch (early_gart_iommu_check mfir ...), setup_arch linuxlinux, :, ,
, linux, , ,
linux setup_arch , setup_arch

twitter

https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/MM/linux-mm-2.md
http://en.wikipedia.org/wiki/Sandy_Bridge
http://en.wikipedia.org/wiki/Real_mode
http://en.wikipedia.org/wiki/Memory_type_range_register
https://twitter.com/0xAX

linux-insides.

MultiProcessor Specification

NX bit
Documentation/kernel-parameters.txt
APIC

CPU masks

Linux kernel memory management
PCI

e820

System Management BIOS

EFI

SMP

MultiProcessor Specification

BSS

SMBIOS specification

100

https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/MultiProcessor_Specification
http://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Conventional_PCI
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/System_Management_BIOS
http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://www.intel.com/design/pentium/datashts/24201606.pdf
http://en.wikipedia.org/wiki/.bss
http://www.dmtf.org/sites/default/files/standards/documents/DSP0134v2.5Final.pdf

Kernel initialization. Part 7.

The End of the architecture-specific initialization, almost...

This is the seventh part of the Linux Kernel initialization process which covers insides of the setup_arch function from the
arch/x86/kernel/setup.c. As you can know from the previous parts, the setup_arch function does some architecture-specific (in our
case it is x86_64) initialization stuff like reserving memory for kernel code/data/bss, early scanning of the Desktop Management
Interface, early dump of the PCI device and many many more. If you have read the previous part, you can remember that we've finished
it at the setup_real_mode function. In the next step, as we set limit of the memblock to the all mapped pages, we can see the call of the

setup_log_buf function from the kernel/printk/printk.c.

The setup_log_buf function setups kernel cyclic buffer and its length depends on the conNFIG_L0G_BUF_SHIFT configuration option.
As we can read from the documentation of the CONFIG_L0G_BUF_SHIFT it can be between 12 and 21 . In the insides, buffer defined

as array of chars:

#define LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
static char *log_buf = __log_buf;

Now let's look on the implementation of the setup_log_buf function. It starts with check that current buffer is empty (It must be
empty, because we just setup it) and another check that it is early setup. If setup of the kernel log buffer is not early, we call the

log_buf_add_cpu function which increase size of the buffer for every CPU:

if (log_buf != _ log_buf)
return;

if (learly && !new_log_buf_len)
log_buf_add_cpu();

We will not research 1og_buf_add_cpu function, because as you can see in the setup_arch , we call setup_log_buf as:

setup_log_buf(1);

where 1 means that it is early setup. In the next step we check new_log_buf_len variable which is updated length of the kernel log

buffer and allocate new space for the buffer with the memblock_virt_alloc function for it, or just return.

As kernel log buffer is ready, the next function is reserve_initrd . You can remember that we already called the
early_reserve_initrd function in the fourth part of the Kernel initialization. Now, as we reconstructed direct memory mapping in the
init_mem_mapping function, we need to move initrd into directly mapped memory. The reserve_initrd function starts from the

definition of the base address and end address of the initrd and check that initrd is provided by a bootloader. All the same as what

we saw in the early_reserve_initrd . But instead of the reserving place in the memblock area with the call of the
memblock_reserve function, we get the mapped size of the direct memory area and check that the size of the initrd is not greater

than this area with:

mapped_size = memblock_mem_size(max_pfn_mapped);
if (ramdisk_size >= (mapped_size>>1))
panic("initrd too large to handle, "
"disabling initrd (%1ld needed, %l11ld available)\n",
ramdisk_size, mapped_size>>1);

You can see here that we call memblock_mem_size function and pass the max_pfn_mapped to it, where max_pfn_mapped contains the
highest direct mapped page frame number. If you do not remember what is page frame number , explanation is simple: First 12 bits

of the virtual address represent offset in the physical page or page frame. If we right-shift out 12 bits of the virtual address, we'll

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c#L861
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Desktop_Management_Interface
http://en.wikipedia.org/wiki/PCI
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/printk/printk.c
http://en.wikipedia.org/wiki/Initrd

discard offset part and will get Page Frame Number .Inthe memblock_mem_size we go through the all memblock mem (not reserved)
regions and calculates size of the mapped pages and return it to the mapped_size variable (see code above). As we got amount of the
direct mapped memory, we check that size of the initrd is not greater than mapped pages. If it is greater we just call panic which
halts the system and prints famous Kernel panic message. In the next step we print information about the initrd size. We can see the

result of this in the dmesg output:

[] RAMDISK: [mem 1

and relocate initrd to the direct mapping area with the relocate_initrd function. In the start of the relocate_initrd function we

try to find a free area with the memblock_find_in_range function:

relocated_ramdisk = memblock_find_in_range(®, PFN_PHYS(max_pfn_mapped), area_size, PAGE_SIZE);

if (!relocated_ramdisk)
panic("Cannot find place for new RAMDISK of size %11ld\n",
ramdisk_size);

The memblock_find_in_range function tries to find a free area in a given range, in our case from o to the maximum mapped physical
address and size must equal to the aligned size of the initrd . If we didn't find a area with the given size, we call panic again. If all

is good, we start to relocated RAM disk to the down of the directly mapped memory in the next step.

In the end of the reserve_initrd function, we free memblock memory which occupied by the ramdisk with the call of the:

memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);

After we relocated initrd ramdisk image, the next function is vsmp_init from the arch/x86/kernel/vsmp_64.c. This function
initializes support of the scalemp vsmp . As I already wrote in the previous parts, this chapter will not cover non-related x86_64
initialization parts (for example as the current or AcPI , etc.). So we will skip implementation of this for now and will back to it in the

part which cover techniques of parallel computing.

The next function is io_delay_init from the arch/x86/kernel/io_delay.c. This function allows to override default I/O delay ex8o
port. We already saw I/O delay in the Last preparation before transition into protected mode, now let's look on the io_delay init

implementation:

void __init io_delay_init(void)
{
if (!io_delay_override)
dmi_check_system(io_delay_Oxed_port_dmi_table);

This function check io_delay_override variable and overrides I/O delay port if io_delay_override is set. We can set
io_delay_override variably by passing io_delay option to the kernel command line. As we can read from the

Documentation/kernel-parameters.txt, io_delay option is:

io_delay= [X86] I/0 delay method
0x80
Standard port 0x80 based delay
Oxed
Alternate port Oxed based delay (needed on some systems)
udelay
Simple two microseconds delay
none
No delay

We can see io_delay command line parameter setup with the early _param macro in the arch/x86/kernel/io_delay.c

early _param("io_delay", io_delay_param);

http://en.wikipedia.org/wiki/Kernel_panic
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vsmp_64.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/io_delay.c
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.rst
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/io_delay.c

More about early_param you can read in the previous part. So the io_delay_param function which setups io_delay_override
variable will be called in the do_early param function. io_delay_param function gets the argument of the io_delay kernel command

line parameter and sets io_delay_type depends on it:

static int __init io_delay_param(char *s)
{
if (!'s)
return -EINVAL;

if (!'strcmp(s, "O0x80"))

io_delay_type = CONFIG_IO_DELAY_TYPE_0X80;
else if (!strcmp(s, "Oxed"))

io_delay_type = CONFIG_IO_DELAY_TYPE_OXED;
else if (!strcmp(s, "udelay"))

io_delay_type = CONFIG_IO_DELAY_TYPE_UDELAY;
else if (!strcmp(s, "none"))

io_delay_type = CONFIG_IO_DELAY_TYPE_NONE;
elise

return -EINVAL,;

io_delay_override = 1;
return 0;

The next functions are acpi_boot_table_init , early_acpi_boot_init and initmem_init after the io_delay_init , but as I wrote

above we will not cover ACPI related stuff in this Linux Kernel initialization process chapter.

Allocate area for DMA

In the next step we need to allocate area for the Direct memory access with the dma_contiguous_reserve function which is defined in
the drivers/base/dma-contiguous.c. pMA is a special mode when devices communicate with memory without CPU. Note that we pass
one parameter - max_pfn_mapped << PAGE_SHIFT , to the dma_contiguous_reserve function and as you can understand from this
expression, this is limit of the reserved memory. Let's look on the implementation of this function. It starts from the definition of the
following variables:

phys_addr_t selected_size = 0;
phys_addr_t selected_base = 0;
phys_addr_t selected_limit = limit;
bool fixed = ;

where first represents size in bytes of the reserved area, second is base address of the reserved area, third is end address of the reserved
area and the last fixed parameter shows where to place reserved area. If fixed is 1 we just reserve area with the
memblock_reserve , if itis @ we allocate space with the kmemleak_alloc . In the next step we check size_cmdline variable and if

itis not equal to -1 we fill all variables which you can see above with the values from the cma kernel command line parameter:

if (size_cmdline !=) {

You can find in this source code file definition of the early parameter:

early_param('cma'", early_cma);

where cma is:

cma=nn[MG]@[start[MG][-end[MG]]]
[ARM, X86, KNL]

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c#L413
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Direct_memory_access
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/drivers/base/dma-contiguous.c

Sets the size of kernel global memory area for
contiguous memory allocations and optionally the
placement constraint by the physical address range of
memory allocations. A value of 0 disables CMA
altogether. For more information, see
include/linux/dma-contiguous.h

If we will not pass cma option to the kernel command line, size_cmdline will be equal to -1 . In this way we need to calculate size

of the reserved area which depends on the following kernel configuration options:

® CONFIG_CMA_SIZE SEL_MBYTES - size in megabytes, default global cma area, which is equal to cMA_SIZE_MBYTES * Sz_iM or
CONFIG_CMA_SIZE_MBYTES * 1M ;

® CONFIG_CMA_SIZE_SEL_PERCENTAGE - percentage of total memory;

® CONFIG_CMA_SIZE_SEL_MIN - use lower value;

® CONFIG_CMA_SIZE_SEL_MAX - use higher value.

As we calculated the size of the reserved area, we reserve area with the call of the dma_contiguous_reserve_area function which first

of all calls:

ret = cma_declare_contiguous(base, size, limit, 0, 0, fixed, res_cma);

function. The cma_declare_contiguous reserves contiguous area from the given base address with given size. After we reserved area
for the pmA , next function is the memblock_find_dma_reserve . As you can understand from its name, this function counts the
reserved pages in the pmA area. This part will not cover all details of the cva and bpmA , because they are big. We will see much more

details in the special part in the Linux Kernel Memory management which covers contiguous memory allocators and areas.

Initialization of the sparse memory

The next step is the call of the function - x86_init.paging.pagetable_init . If you try to find this function in the linux kernel source

code, in the end of your search, you will see the following macro:

#define native_pagetable_init paging_init

which expands as you can see to the call of the paging_init function from the arch/x86/mm/init_64.c. The paging_init function
initializes sparse memory and zone sizes. First of all what's zones and what is it Sparsemem . The Sparsemem is a special foundation in
the linux kernel memory manager which used to split memory area into different memory banks in the NUMA systems. Let's look on

the implementation of the paginig_init function:

void __init paging_init(void)

{
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();
node_clear_state(©, N_MEMORY);
if (N_MEMORY != N_NORMAL_MEMORY)
node_clear_state(©, N_NORMAL_MEMORY);
zone_sizes_init();
3

As you can see there is call of the sparse_memory_present_with_active_regions function which records a memory area for every
NUMA node to the array of the mem_section structure which contains a pointer to the structure of the array of struct page . The next
sparse_init function allocates non-linear mem_section and mem_map . In the next step we clear state of the movable memory nodes

and initialize sizes of zones. Every NumMA node is divided into a number of pieces which are called - zones . So, zone_sizes_init

function from the arch/x86/mm/init.c initializes size of zones.

Again, this part and next parts do not cover this theme in full details. There will be special part about NumA .

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/init_64.c
http://en.wikipedia.org/wiki/Non-uniform_memory_access
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/init.c

vsyscall mapping

The next step after sparseMem initialization is setting of the trampoline_cr4_features which must contain content of the cra
Control register. First of all we need to check that current CPU has support of the cr4 register and if it has, we save its content to the

trampoline_cr4_features which is storage for cr4 in the real mode:

if (boot_cpu_data.cpuid_level >= 0) {
mmu_cr4_features = __read_cr4();
if (trampoline_cr4_features)
*trampoline_cr4_features = mmu_cr4_features;

The next function which you can see is map_vsyscal from the arch/x86/kernel/vsyscall_64.c. This function maps memory space for
vsyscalls and depends on CONFIG_x86_vSYSCALL_EMULATION kernel configuration option. Actually vsyscall is a special segment

which provides fast access to the certain system calls like getcpu , etc. Let's look on implementation of this function:

void __init map_vsyscall(void)

{
extern char __vsyscall_page;
unsigned long physaddr_vsyscall = _ pa_symbol(& _vsyscall page);
if (vsyscall_mode != NONE)
__set_fixmap(VSYSCALL_PAGE, physaddr_vsyscall,
vsyscall mode == NATIVE
? PAGE_KERNEL_VSYSCALL
: PAGE_KERNEL_VVAR);
BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_PAGE) !=
(unsigned long)VSYSCALL_ADDR);
}

In the beginning of the map_vsyscall we can see definition of two variables. The first is extern variable _ vsyscall page . As a
extern variable, it defined somewhere in other source code file. Actually we can see definition of the _ vsyscall page in the
arch/x86/kernel/vsyscall_emu_64.S. The __vsyscall page symbol points to the aligned calls of the vsyscalls as gettimeofday ,

etc.:

.globl __vsyscall_page
.balign PAGE_SIZE,
.type __vsyscall_page, @object

mov $__NR_gettimeofday, %rax
syscall
ret

.balign ,

mov $_ NR_time, %rax
syscall

ret

The second variable is physaddr_vsyscall which just stores physical address of the __vsyscall page symbol. In the next step we

check the vsyscall mode variable, and if it is not equal to NONE , itis EMULATE by default:

static enum { EMULATE, NATIVE, NONE } vsyscall _mode = EMULATE;

And after this check we can see the call of the __set_fixmap function which calls native_set_fixmap with the same parameters:

void native_set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)

http://en.wikipedia.org/wiki/Control_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vsyscall_64.c
https://lwn.net/Articles/446528/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vsyscall_emu_64.S

_ native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));

3
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
{
unsigned long address = _ fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
BUG();
return;
}
set_pte_vaddr(address, pte);
fixmaps_set++;
3

Here we can see that native_set_fixmap makes value of Page Table Entry from the given physical address (physical address of the
__vsyscall_page symbol in our case) and calls internal function - __native_set_fixmap . Internal function gets the virtual address of
the given fixed_addresses index (vVSYSCALL_PAGE in our case) and checks that given index is not greater than end of the fix-mapped
addresses. After this we set page table entry with the call of the set_pte_vaddr function and increase count of the fix-mapped
addresses. And in the end of the map_vsyscall we check that virtual address of the vsyscALL_PAGE (which is first index in the

fixed_addresses) is not greater than vsyscALL_ADDR whichis -1euL << 20 or ffffffffffeeeeee with the BUILD_BUG_ON macro:

BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_PAGE) !=
(unsigned long)VSYSCALL_ADDR);

Now vsyscall areaisinthe fix-mapped area.That's all about map_vsyscall , if you do not know anything about fix-mapped

addresses, you can read Fix-Mapped Addresses and ioremap. We will see more about vsyscalls inthe vsyscalls and vdso part.

Getting the SMP configuration

You may remember how we made a search of the SMP configuration in the previous part. Now we need to get the smp configuration if
we found it. For this we check smp_found_config variable which we set in the smp_scan_config function (read about it the previous

part) and call the get_smp_config function:

if (smp_found_config)
get_smp_config();

The get_smp_config expands to the x86_init.mpparse.default_get_smp_config function which is defined in the
arch/x86/kernel/mpparse.c. This function defines a pointer to the multiprocessor floating pointer structure - mpf_intel (you can read

about it in the previous part) and does some checks:

struct * = mpf_found;

if (!mpf)
return;

if (acpi_lapic && early)
return;

Here we can see that multiprocessor configuration was found in the smp_scan_config function or just return from the function if not.
The next check is acpi_lapic and early . And as we did this checks, we start to read the smp configuration. As we finished
reading it, the next step is - prefill possible_map function which makes preliminary filling of the possible CPU's cpumask (more

about it you can read in the Introduction to the cpumasks).

The rest of the setup_arch

http://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/mpparse.c

Here we are getting to the end of the setup_arch function. The rest of function of course is important, but details about these stuff will
not will not be included in this part. We will just take a short look on these functions, because although they are important as I wrote
above, but they cover non-generic kernel features related with the numMAa , sMP , AcPI and APICs , etc. First of all, the next call of the
init_apic_mappings function. As we can understand this function sets the address of the local APIC. The next is
x86_io_apic_ops.init and this function initializes I/O APIC. Please note that we will see all details related with ApIc in the chapter
about interrupts and exceptions handling. In the next step we reserve standard I/O resources like pMA , TIMER , FPU , etc., with the
call of the x86_init.resources.reserve_resources function. Following is mcheck_init function initializes Machine check

Exception and the lastis register_refined_jiffies which registers jiffy (There will be separate chapter about timers in the kernel).

So that's all. Finally we have finished with the big setup_arch function in this part. Of course as I already wrote many times, we did
not see full details about this function, but do not worry about it. We will be back more than once to this function from different chapters

for understanding how different platform-dependent parts are initialized.

That's all, and now we can back to the start_kernel from the setup_arch .

Back to the main.c

As I wrote above, we have finished with the setup_arch function and now we can back to the start_kernel function from the

init/main.c. As you may remember or saw yourself, start_kernel function as big asthe setup_arch . So the couple of the next part

will be dedicated to learning of this function. So, let's continue with it. After the setup_arch we can see the call of the
mm_init_cpumask function. This function sets the cpumask pointer to the memory descriptor cpumask . We can look on its

implementation:

static inline void mm_init_cpumask(struct mm_struct *mm)

{
#ifdef CONFIG_CPUMASK_OFFSTACK

mm->cpu_vm_mask_var = &mm->cpumask_allocation;
#endif
cpumask_clear (mm->cpu_vm_mask_var);

As you can see in the init/main.c, we pass memory descriptor of the init process to the mm_init_cpumask and depends on

CONFIG_CPUMASK_OFFSTACK configuration option we clear TLB switch cpumask .

In the next step we can see the call of the following function:

setup_command_line(command_line);

This function takes pointer to the kernel command line allocates a couple of buffers to store command line. We need a couple of buffers,
because one buffer used for future reference and accessing to command line and one for parameter parsing. We will allocate space for

the following buffers:

® saved_command_line - will contain boot command line;
® initcall_command_line - will contain boot command line. will be used in the do_initcall_level ;

e static_command_line - will contain command line for parameters parsing.

We will allocate space with the memblock_virt_alloc function. This function calls memblock_virt_alloc_try_nid which allocates
boot memory block with memblock_reserve if slab is not available or uses kzalloc_node (more about it will be in the linux memory
management chapter). The memblock_virt_alloc uses BOOTMEM_LOW_LIMIT (physical address of the (PAGE_OFFSET + 0x1000000)
value) and BOOTMEM_ALLOC_ACCESSIBLE (equal to the current value of the memblock.current_limit) as minimum address of the

memory region and maximum address of the memory region.

Let's look on the implementation of the setup_command_line :

static void __init setup_command_line(char *command_line)

{

saved_command_line =

http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Jiffy_%28time%29
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Slab_allocation

memblock_virt_alloc(strlen(boot_command_line) + 1, 0);
initcall_command_line =

memblock_virt_alloc(strlen(boot_command_line) + 1, 0);
static_command_line = memblock_virt_alloc(strlen(command_line) + 1, 0);
strcpy(saved_command_line, boot_command_line);
strcpy(static_command_line, command_line);

Here we can see that we allocate space for the three buffers which will contain kernel command line for the different purposes (read
above). And as we allocated space, we store boot_command_line inthe saved_command_line and command_line (kernel command

line from the setup_arch)tothe static_command_line .

The next function after the setup_command_line isthe setup_nr_cpu_ids . This function setting nr_cpu_ids (number of CPUs)
according to the last bit in the cpu_possible_mask (more about it you can read in the chapter describes cpumasks concept). Let's look

on its implementation:

void __init setup_nr_cpu_ids(void)

{
nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;

Here nr_cpu_ids represents number of CPUs, NR_cPus represents the maximum number of CPUs which we can set in configuration

time:

Terminal

.config - Linux/x86 4.1.0-rcl Kernel Configuration
— Processor type and features
Processor type and features
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y=
includes, <N=> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

Frocessor family (Generic-x86-64) --->
[*] Supported processor vendors --->
[*] Enable DMI scanning

[1 IBM Calgary IOMMU support

Enable Maximum number of SMP Processors and NUMA Nodes
()" Haxinun number-of cous
[1 sMT (Hyperthreading) scheduler support
[*] Multi-core scheduler support

Preemption Model (Voluntary Kernel Preemption (Desktop))

[*] Reroute for broken boot IRQs
[*#] Machine Check / overheating reporting

= Exit = < Help = < Save = < Load =

Actually we need to call this function, because NR_cPus can be greater than actual amount of the CPUs in the your computer. Here we

can see that we call find_last_bit function and pass two parameters to it:

® cpu_possible_mask bits;

e maximum number of CPUS.

In the setup_arch we can find the call of the prefill possible_map function which calculates and writes to the
cpu_possible_mask actual number of the CPUs. We call the find_last_bit function which takes the address and maximum size to
search and returns bit number of the first set bit. We passed cpu_possible_mask bits and maximum number of the CPUs. First of all

the find_last_bit function splits given unsigned long address to the words:

http://en.wikipedia.org/wiki/Word_%28computer_architecture%29

words = size / BITS_PER_LONG;

where BITS_PER_LONG is 64 onthe x86_64 . As we got amount of words in the given size of the search data, we need to check is

given size does not contain partial words with the following check:

if (size & (BITS_PER_LONG-1)) {
tmp = (addr[words] & (~ >> (BITS_PER_LONG
- (size & (BITS_PER_LONG-1)))));
if (tmp)
goto found;

if it contains partial word, we mask the last word and check it. If the last word is not zero, it means that current word contains at least
one set bit. We go to the found label:

found:
return words * BITS_PER_LONG + __ fls(tmp);

Here you can see __fls function which returns last set bit in a given word with help of the bsr instruction:

static inline unsigned long __fls(unsigned long word)

{
asm("bsr %1,%0"
"=r" (word)
"rm" (word));
return word;
3

The bsr instruction which scans the given operand for first bit set. If the last word is not partial we going through the all words in the
given address and trying to find first set bit:

while (words) {
tmp = addr[--words];

if (tmp) {
found:
return words * BITS_PER_LONG + _ fls(tmp);

Here we put the last word to the tmp variable and check that tmp contains at least one set bit. If a set bit found, we return the number

of this bit. If no one words do not contains set bit we just return given size:
return size;

After this nr_cpu_ids will contain the correct amount of the available CPUs.

That's all.

Conclusion

It is the end of the seventh part about the linux kernel initialization process. In this part, finally we have finished with the setup_arch
function and returned to the start_kernel function. In the next part we will continue to learn generic kernel code from the

start_kernel and will continue our way to the first init process.

If you have any questions or suggestions write me a comment or ping me at twitter.

https://twitter.com/0xAX

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e Desktop Management Interface
e x86_64

e initrd

e Kernel panic

e Documentation/kernel-parameters.txt
o ACPI

e Direct memory access

o NUMA

e Control register

e vsyscalls

e SMP

o jiffy

e Previous part

https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Desktop_Management_Interface
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Kernel_panic
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.rst
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Direct_memory_access
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Control_register
https://lwn.net/Articles/446528/
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Jiffy_%28time%29

Kernel initialization. Part 8.

Scheduler initialization

This is the eighth part of the Linux kernel initialization process and we stopped on the setup_nr_cpu_ids function in the previous part.
The main point of the current part is scheduler initialization. But before we will start to learn initialization process of the scheduler, we
need to do some stuff. The next step in the init/main.c is the setup_per_cpu_areas function. This function setups areas for the

percpu Vvariables, more about it you can read in the special part about the Per-CPU variables. After percpu areas is up and running,

the next step is the smp_prepare_boot_cpu function. This function does some preparations for the SMP:

static inline void smp_prepare_boot_cpu(void)

{

smp_ops.smp_prepare_boot_cpu();

where the smp_prepare_boot_cpu expands to the call of the native_smp_prepare_boot_cpu function (more about smp_ops will be in

the special parts about smp):

void __init native_smp_prepare_boot_cpu(void)

{
int me = smp_processor_id();
switch_to_new_gdt(me);
cpumask_set_cpu(me, cpu_callout_mask);
per_cpu(cpu_state, me) = CPU_ONLINE;

}

The native_smp_prepare_boot_cpu function gets the id of the current CPU (which is Bootstrap processor and its id is zero) with the
smp_processor_id function. I will not explain how the smp_processor_id works, because we already saw it in the Kernel entry point

part. As we got processor id number we reload Global Descriptor Table for the given CPU with the switch_to_new_gdt function:

void switch_to_new_gdt(int cpu)

{
struct g
gdt_descr.address = (long)get_cpu_gdt_table(cpu);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
load_percpu_segment(cpu);

3

The gdt_descr variable represents pointer to the GpT descriptor here (we already saw desc_ptr in the Early interrupt and

exception handling). We get the address and the size of the epT descriptor where 6pT_SIzE is 256 or:

#define GDT_SIZE (GDT_ENTRIES * 8)

and the address of the descriptor we will get with the get_cpu_gdt_table :

static inline struct desc_struct *get_cpu_gdt_table(unsigned int cpu)

{
return per_cpu(gdt_page, cpu).gdt;

The get_cpu_gdt_table uses per_cpu macro for getting gdt_page percpu variable for the given CPU number (bootstrap processor
with id - 0 in our case). You may ask the following question: so, if we can access gdt_page percpu variable, where it was defined?

Actually we already saw it in this book. If you have read the first part of this chapter, you can remember that we saw definition of the

https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Initialization/linux-initialization-7.md
http://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Global_Descriptor_Table

gdt_page in the arch/x86/kernel/head_64.S:

.word GDT_ENTRIES*8-

.quad INIT_PER_CPU_VAR(gdt_page)

and if we will look on the linker file we can see that it locates after the __per_cpu_load symbol:

#define INIT_PER_CPU(X) init_per_cpu__##x = X + per_cpu_load
INIT_PER_CPU(gdt_page);

and filled gdt_page in the arch/x86/kernel/cpu/common.c:

DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
#ifdef CONFIG_X86_64

[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(o ©p Do
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(s ©p),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(s ©p),
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(p O Vo
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(o ©p Do
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(s ©p Do

more about percpu variables you can read in the Per-CPU variables part. As we got address and size of the epT descriptor we reload

6DT with the load_gdt which just execute 1gdt instruct and load percpu_segment with the following function:

void load_percpu_segment(int cpu) {
loadsegment(gs, 0);
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irg_stack_union.gs_base, cpu));
load_stack_canary_segment();

The base address of the percpu area must contain gs register (or fs register for x86), so we are using loadsegment macro and
pass gs . In the next step we writes the base address if the IRQ) stack and setup stack canary (this is only for x86_32). After we load
new DT , we fill cpu_callout_mask bitmap with the current cpu and set cpu state as online with the setting cpu_state percpu

variable for the current processor - CPU_ONLINE :

cpumask_set_cpu(me, cpu_callout_mask);
per_cpu(cpu_state, me) = CPU_ONLINE;

So, what is cpu_callout_mask bitmap... As we initialized bootstrap processor (processor which is booted the first on x86) the other

processors in a multiprocessor system are known as secondary processors . Linux kernel uses following two bitmasks:

® cpu_callout_mask

® cpu_callin_mask

After bootstrap processor initialized, it updates the cpu_callout_mask to indicate which secondary processor can be initialized next.
All other or secondary processors can do some initialization stuff before and check the cpu_callout_mask on the boostrap processor
bit. Only after the bootstrap processor filled the cpu_callout_mask with this secondary processor, it will continue the rest of its
initialization. After that the certain processor finish its initialization process, the processor sets bit in the cpu_callin_mask . Once the
bootstrap processor finds the bit in the cpu_callin_mask for the current secondary processor, this processor repeats the same
procedure for initialization of one of the remaining secondary processors. In a short words it works as i described, but we will see more

details in the chapter about swp .

That's all. We did all smp boot preparation.

https://github.com/0xAX/linux/blob/master/arch/x86/kernel/head_64.S
https://github.com/0xAX/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c#L94
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Buffer_overflow_protection

Build zonelists

In the next step we can see the call of the build_all zonelists function. This function sets up the order of zones that allocations are
preferred from. What are zones and what's order we will understand soon. For the start let's see how linux kernel considers physical
memory. Physical memory is split into banks which are called - nodes . If you has no hardware support for numa , you will see only

one node:

$ cat /sys/devices/system/node/node®/numastat
numa_hit 72452442

numa_miss ©

numa_foreign 0

interleave_hit 12925

local_node 72452442

other_node 0

Every node is presented by the struct pglist_data in the linux kernel. Each node is divided into a number of special blocks which

are called - zones . Every zone is presented by the zone struct in the linux kernel and has one of the type:

® ZONE_DMA - 0-16M;

e ZONE_DMA32 - used for 32 bit devices that can only do DMA areas below 4G;
e ZONE_NORMAL - all RAM from the 4GB on the x86_64 ;

® ZONE_HIGHMEM - absent onthe x86_64 ;

® ZONE_MOVABLE - zone which contains movable pages.

which are presented by the zone_type enum. We can get information about zones with the:

$ cat /proc/zoneinfo

Node 0, zone DMA
pages free 3975
min 3
low 3

Node 0, zone DMA32

pages free 694163
min 875
low 1093

Node 0, zone Normal

pages free 2529995
min 3146
low 3932

As I wrote above all nodes are described with the pglist_data or pg_data_t structure in memory. This structure is defined in the
include/linux/mmzone.h. The build_all zonelists function from the mm/page_alloc.c constructs an ordered zonelist (of different
zones DMA , DMA32 , NORMAL , HIGH_MEMORY , MOVABLE) which specifies the zones/nodes to visit when a selected zone or node

cannot satisfy the allocation request. That's all. More about NuvA and multiprocessor systems will be in the special part.

The rest of the stuff before scheduler initialization

Before we will start to dive into linux kernel scheduler initialization process we must do a couple of things. The first thing is the

page_alloc_init function from the mm/page_alloc.c. This function looks pretty easy:

void __init page_alloc_init(void)
{

hotcpu_notifier(page_alloc_cpu_notify, 0);

https://github.com/torvalds/linux/blob/master/include/linux/mmzone.h
https://github.com/torvalds/linux/blob/master/mm/page_alloc.c
https://github.com/torvalds/linux/blob/master/mm/page_alloc.c

and initializes handler for the cpu hotplug. Of course the hotcpu_notifier depends onthe CONFIG_HOTPLUG_CPU configuration
option and if this option is set, it just calls cpu_notifier macro which expands to the call of the register_cpu_notifier which adds
hotplug cpu handler (page_alloc_cpu_notify in our case).

After this we can see the kernel command line in the initialization output:

Linux version 4.1.0-rc2+ (alex@localhost) (gcc version 4.9.2 (Ubuntu 4.9.2-10ubuntul3)) #493 SMP Thu

Command line: root=/dev/sdb earlyprintk=ttySe®,115200@ loglevel=7 debug rdinit=/sbin/init root=/dev/ram

And a couple of functions such as parse_early_param and parse_args which handles linux kernel command line. You may
remember that we already saw the call of the parse_early_param function in the sixth part of the kernel initialization chapter, so why
we call it again? Answer is simple: we call this function in the architecture-specific code (x86_64 in our case), but not all architecture

calls this function. And we need to call the second function parse_args to parse and handle non-early command line arguments.
In the next step we can see the call of the jump_label_init from the kernel/jump_label.c. and initializes jump label.

After this we can see the call of the setup_log_buf function which setups the printk log buffer. We already saw this function in the

seventh part of the linux kernel initialization process chapter.

PID hash initialization

The next is pidhash_init function. As you know each process has assigned a unique number which called - process identification
number or PID . Each process generated with fork or clone is automatically assigned a new unique PIb value by the kernel. The
management of PIDs centered around the two special data structures: struct pid and struct upid . First structure represents
information about a P1Dp in the kernel. The second structure represents the information that is visible in a specific namespace. All

PID instances stored in the special hash table:

static struct ;

This hash table is used to find the pid instance that belongs to a numeric Pip value. So, pidhash_init initializes this hash table. In

the start of the pidhash_init function we can see the call of the alloc_large_system_hash :

pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), ©, ,
HASH_EARLY | HASH_SMALL,
&pidhash_shift, ,
')i

The number of elements of the pid_hash depends on the RAM configuration, but it can be between 244 and 2r12 . The
pidhash_init computes the size and allocates the required storage (which is hlist in our case - the same as doubly linked list, but
contains one pointer instead on the struct hlist_head]. The alloc_large_system_hash function allocates a large system hash table with

memblock_virt_alloc_nopanic if we pass HASH_EARLY flag (as it in our case) or with __vmalloc if we did no pass this flag.

The result we can see in the dmesg output:

$ dmesg | grep hash
[0.000000] PID hash table entries: 4096 (order: 3, 32768 bytes)

That's all. The rest of the stuff before scheduler initialization is the following functions: vfs_caches_init_early does early
initialization of the virtual file system (more about it will be in the chapter which will describe virtual file system), sort_main_extable
sorts the kernel's built-in exception table entries which are between __start___ex_table and __stop__ex_table ,and trap_init

initializes trap handlers (more about last two function we will know in the separate chapter about interrupts).

The last step before the scheduler initialization is initialization of the memory manager with the mm_init function from the init/main.c.

As we can see, the mm_init function initializes different parts of the linux kernel memory manager:

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/kernel/jump_label.c
https://lwn.net/Articles/412072/
http://www.makelinux.net/books/lkd2/ch18lev1sec3
https://github.com/torvalds/linux/blob/master/include/linux/types.h
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/init/main.c

page_ext_init_flatmem();
mem_init();
kmem_cache_init();
percpu_init_late();
pgtable_init();
vmalloc_init();

The first is page_ext_init_flatmem which depends on the conFIG_sPARSEMEM kernel configuration option and initializes extended
data per page handling. The mem_init releases all bootmem ,the kmem_cache_init initializes kernel cache, the percpu_init_late -
replaces percpu chunks with those allocated by slub, the pgtable_init - initializes the page->ptl kernel cache, the

vmalloc_init - initializes vmalloc . Please, NOTE that we will not dive into details about all of these functions and concepts, but we

will see all of they it in the Linux kernel memory manager chapter.

That's all. Now we can look on the scheduler .

Scheduler initialization

And now we come to the main purpose of this part - initialization of the task scheduler. I want to say again as I already did it many
times, you will not see the full explanation of the scheduler here, there will be special chapter about this. Ok, next point is the

sched_init function from the kernel/sched/core.c and as we can understand from the function's name, it initializes scheduler. Let's
start to dive into this function and try to understand how the scheduler is initialized. At the start of the sched_init function we can see
the following code:

#ifdef CONFIG_FAIR_GROUP_SCHED

alloc_size += * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED

alloc_size += * nr_cpu_ids * sizeof(void **);
#endif

First of all we can see two configuration options here:

® CONFIG_FAIR_GROUP_SCHED

® CONFIG_RT_GROUP_SCHED

Both of this options provide two different planning models. As we can read from the documentation, the current scheduler - cFs or

Completely Fair Scheduler use a simple concept. It models process scheduling as if the system has an ideal multitasking processor
where each process would receive 1/n processor time, where n is the number of the runnable processes. The scheduler uses the
special set of rules. These rules determine when and how to select a new process to run and they are called scheduling policy . The
Completely Fair Scheduler supports following normal or non-real-time scheduling policies: SCHED_NORMAL , SCHED_BATCH and

SCHED_IDLE . The ScHED_NORMAL is used for the most normal applications, the amount of cpu each process consumes is mostly
determined by the nice value, the scHep_saTcH used for the 100% non-interactive tasks and the SCHED_IDLE runs tasks only when the
processor has no task to run besides this task. The real-time policies are also supported for the time-critical applications:

SCHED_FIFO and SCHED_RR . If you've read something about the Linux kernel scheduler, you can know that it is modular. It means that
it supports different algorithms to schedule different types of processes. Usually this modularity is called scheduler classes . These

modules encapsulate scheduling policy details and are handled by the scheduler core without knowing too much about them.

Now let's back to the our code and look on the two configuration options CONFIG_FAIR_GROUP_SCHED and CONFIG_RT_GROUP_SCHED .
The scheduler operates on an individual task. These options allows to schedule group tasks (more about it you can read in the CFS
group scheduling). We can see that we assign the alloc_size variables which represent size based on amount of the processors to

allocate for the sched_entity and cfs_rq tothe 2 * nr_cpu_ids * sizeof(void **) expression with kzalloc :

ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);

#ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.se = (struct sched_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);

http://en.wikipedia.org/wiki/SLUB_%28software%29
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://en.wikipedia.org/wiki/Nice_%28Unix%29
http://lwn.net/Articles/240474/

root_task_group.cfs_rq = (struct cfs_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
#endif

The sched_entity is a structure which is defined in the include/linux/sched.h and used by the scheduler to keep track of process
accounting. The cfs_rq presents run queue. So, you can see that we allocated space with size alloc_size for the run queue and
scheduler entity of the root_task_group . The root_task_group is an instance of the task_group structure from the

kernel/sched/sched.h which contains task group related information:

struct {
struct **se;
struct ** g

}

The root task group is the task group which belongs to every task in system. As we allocated space for the root task group scheduler
entity and runqueue, we go over all possible CPUs (cpu_possible_mask bitmap) and allocate zeroed memory from a particular

memory node with the kzalloc_node function for the load_balance_mask percpu variable:

DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);

Here cpumask_var_t isthe cpumask_t with one difference: cpumask_var_t is allocated only nr_cpu_ids bits when the

cpumask_t always has NR_cpus bits (more about cpumask you can read in the CPU masks part). As you can see:

#ifdef CONFIG_CPUMASK_OFFSTACK
for_each_possible_cpu(i) {
per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
cpumask_size(), GFP_KERNEL, cpu_to_node(i));
}

#endif

this code depends on the CONFIG_cPUMASK_OFFSTACK configuration option. This configuration options says to use dynamic allocation
for cpumask , instead of putting it on the stack. All groups have to be able to rely on the amount of CPU time. With the call of the two

following functions:

init_rt_bandwidth(&def_rt_bandwidth,

global_rt_period(), global rt_runtime());
init_dl_bandwidth(&def_dl_bandwidth,

global_rt_period(), global_rt_runtime());

we initialize bandwidth management for the SCHED_DEADLINE real-time tasks. These functions initializes rt_bandwidth and
d1_bandwidth structures which store information about maximum deadline bandwidth of the system. For example, let's look on the

implementation of the init_rt_bandwidth function:

void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{

rt_b->rt_period = ns_to_ktime(period);

rt_b->rt_runtime = runtime;

raw_spin_lock_init(&rt_b->rt_runtime_lock);
hrtimer_init(&rt_b->rt_period_timer,

CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rt_b->rt_period_timer.function = sched_rt_period_timer;

It takes three parameters:

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://en.wikipedia.org/wiki/Run_queue
https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

e address of the rt_bandwidth structure which contains information about the allocated and consumed quota within a period;
e period - period over which real-time task bandwidth enforcement is measured in us ;

e runtime - part of the period that we allow tasks torunin us .

As period and runtime we pass result of the global rt_period and global_rt_runtime functions. Which are 1s second and
and e.95s by default. The rt_bandwidth structure is defined in the kernel/sched/sched.h and looks:

struct {
raw_spinlock_t rt_runtime_lock;
ktime_t rt_period;
u64 rt_runtime;
struct B
3

As you can see, it contains runtime and period and also two following fields:

e rt_runtime_lock -spinlock forthe rt_time protection;

e rt_period_timer - high-resolution kernel timer for unthrottled of real-time tasks.

So, inthe init_rt_bandwidth we initialize rt_bandwidth period and runtime with the given parameters, initialize the spinlock and
high-resolution time. In the next step, depends on enable of SMP, we make initialization of the root domain:

#ifdef CONFIG_SMP
init_defrootdomain();
#endif

The real-time scheduler requires global resources to make scheduling decision. But unfortunately scalability bottlenecks appear as the
number of CPUs increase. The concept of root domains was introduced for improving scalability. The linux kernel provides a special
mechanism for assigning a set of CPUs and memory nodes to a set of tasks and it is called - cpuset .Ifa cpuset contains non-
overlapping with other cpuset CPUs, itis exclusive cpuset . Each exclusive cpuset defines an isolated domain or root domain of
CPUs partitioned from other cpusets or CPUs. A root domain is presented by the struct root_domain from the

kernel/sched/sched.h in the linux kernel and its main purpose is to narrow the scope of the global variables to per-domain variables and
all real-time scheduling decisions are made only within the scope of a root domain. That's all about it, but we will see more details about
it in the chapter about real-time scheduler.

After root domain initialization, we make initialization of the bandwidth for the real-time tasks of the root task group as we did it
above:

#ifdef CONFIG_RT_GROUP_SCHED
init_rt_bandwidth(&root_task_group.rt_bandwidth,
global_rt_period(), global_rt_runtime());
#endif

In the next step, depends on the coNFIG_cGRouP_SCHED kernel configuration option we initialize the siblings and children lists of

the root task group. As we can read from the documentation, the CONFIG_CGROUP_SCHED is:

This option allows you to create arbitrary task groups using the "cgroup" pseudo
filesystem and control the cpu bandwidth allocated to each such task group.

As we finished with the lists initialization, we can see the call of the autogroup_init function:

#ifdef CONFIG_CGROUP_SCHED
list_add(&root_task_group.list, &task_groups);
INIT_LIST_HEAD(&root_task_group.children);
INIT_LIST_HEAD(&root_task_group.siblings);
autogroup_init(&init_task);

#endif

which initializes automatic process group scheduling.

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h
http://en.wikipedia.org/wiki/Spinlock
https://www.kernel.org/doc/Documentation/timers/hrtimers.txt
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h

After this we are going through the all possible cpu (you can remember that possible CPUs store in the cpu_possible_mask

bitmap that can ever be available in the system) and initialize a runqueue for each possible cpu:

for_each_possible_cpu(i) {
struct *rq;

Each processor has its own locking and individual runqueue. All runnable tasks are stored in an active array and indexed according to
its priority. When a process consumes its time slice, it is moved to an expired array. All of these arras are stored in the special structure
which names is runqueue . As there are no global lock and runqueue, we are going through the all possible CPUs and initialize
runqueue for the every cpu. The runqueue is presented by the rq structure in the linux kernel which is defined in the

kernel/sched/sched.h.

rq = cpu_rq(i);

raw_spin_lock_init(&rq->lock);

rg->nr_running = 0;

rg->calc_load_active = 0;

rgq->calc_load_update = jiffies + LOAD_FREQ;
init_cfs_rq(&rqg->cfs);

init_rt_rq(&rq->rt);

init_dl_rq(&rq->dl);

rg->rt.rt_runtime = def_rt_bandwidth.rt_runtime;

Here we get the runqueue for the every CPU with the cpu_rq macro which returns runqueues percpu variable and start to initialize it
with runqueue lock, number of running tasks, calc_load relative fields (calc_load_active and calc_load_update) which are used
in the reckoning of a CPU load and initialization of the completely fair, real-time and deadline related fields in a runqueue. After this we
initialize cpu_load array with zeros and set the last load update tick to the jiffies variable which determines the number of time

ticks (cycles), since the system boot:

for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
rg->cpu_load[j] = 0O;

rq->last_load_update_tick = jiffies;

where cpu_load keeps history of runqueue loads in the past, for now cpPu_LoAD_IDx_MAX is 5. In the next step we fill runqueue
fields which are related to the SMP, but we will not cover them in this part. And in the end of the loop we initialize high-resolution

timer for the give runqueue and set the iowait (more about it in the separate part about scheduler) number:

init_rq_hrtick(rq);
atomic_set(&rqg->nr_iowait, 0);

Now we come out from the for_each_possible_cpu loop and the next we need to set load weight for the init task with the
set_load_weight function. Weight of process is calculated through its dynamic priority which is static priority + scheduling class of
the process. After this we increase memory usage counter of the memory descriptor of the init process and set scheduler class for the

current process:

atomic_inc(&init_mm.mm_count);
current->sched_class = &fair_sched_class;

And make current process (it will be the first init process) idle and update the value of the calc_load_update with the 5seconds

interval:

init_idle(current, smp_processor_id());
calc_load_update = jiffies + LOAD_FREQ;

https://github.com/torvalds/linux/blob/master/kernel/sched/sched.h
http://en.wikipedia.org/wiki/Symmetric_multiprocessing

So, the init process will be run, when there will be no other candidates (as it is the first process in the system). In the end we just set

scheduler_running variable:

scheduler_running = 1;

That's all. Linux kernel scheduler is initialized. Of course, we have skipped many different details and explanations here, because we
need to know and understand how different concepts (like process and process groups, runqueue, rcu, etc.) works in the linux kernel ,
but we took a short look on the scheduler initialization process. We will look all other details in the separate part which will be fully
dedicated to the scheduler.

Conclusion

It is the end of the eighth part about the linux kernel initialization process. In this part, we looked on the initialization process of the
scheduler and we will continue in the next part to dive in the linux kernel initialization process and will see initialization of the RCU

and many other initialization stuff in the next part.
If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e CPU masks

e high-resolution kernel timer

e spinlock

e Run queue

e Linux kernem memory manager
e slub

e virtual file system

e Linux kernel hotplug documentation
e [RQ

e Global Descriptor Table

e Per-CPU variables

e SMP

e RCU

e CFS Scheduler documentation
e Real-Time group scheduling

e Previous part

http://en.wikipedia.org/wiki/Read-copy-update
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
https://www.kernel.org/doc/Documentation/timers/hrtimers.txt
http://en.wikipedia.org/wiki/Spinlock
http://en.wikipedia.org/wiki/Run_queue
http://en.wikipedia.org/wiki/SLUB_%28software%29
http://en.wikipedia.org/wiki/Virtual_file_system
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Global_Descriptor_Table
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Read-copy-update
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

Kernel initialization. Part 9.

RCU initialization

This is ninth part of the Linux Kernel initialization process and in the previous part we stopped at the scheduler initialization. In this
part we will continue to dive to the linux kernel initialization process and the main purpose of this part will be to learn about
initialization of the RCU. We can see that the next step in the init/main.c after the sched_init is the call of the preempt_disable .

There are two macros:

® preempt_disable

® preempt_enable

for preemption disabling and enabling. First of all let's try to understand what is preempt in the context of an operating system kernel.
In simple words, preemption is ability of the operating system kernel to preempt current task to run task with higher priority. Here we
need to disable preemption because we will have only one init process for the early boot time and we don't need to stop it before we
call cpu_idle function. The preempt_disable macro is defined in the include/linux/preempt.h and depends on the

CONFIG_PREEMPT_COUNT kernel configuration option. This macro is implemented as:

#define preempt_disable() \

do { \
preempt_count_inc(); \
barrier(); \

} while (0)

and if CONFIG_PREEMPT_COUNT is not set just:

#define preempt_disable() barrier()

Let's look on it. First of all we can see one difference between these macro implementations. The preempt_disable with
CONFIG_PREEMPT_COUNT set contains the call of the preempt_count_inc . There is special percpu variable which stores the number of
held locks and preempt_disable calls:

DECLARE_PER_CPU(int, __preempt_count);

In the first implementation of the preempt_disable we increment this _ preempt_count . There is API for returning value of the
__preempt_count , it is the preempt_count function. As we called preempt_disable , first of all we increment preemption counter

with the preempt_count_inc macro which expands to the:

#define preempt_count_inc() preempt_count_add(1)
#define preempt_count_add(val) _ preempt_count_add(val)

where preempt_count_add calls the raw_cpu_add_4 macro which adds 1 to the given percpu variable (__preempt_count) in our
case (more about precpu variables you can read in the part about Per-CPU variables). Ok, we increased __preempt_count and the
next step we can see the call of the barrier macro in the both macros. The barrier macro inserts an optimization barrier. In the
processors with x86_64 architecture independent memory access operations can be performed in any order. That's why we need the
opportunity to point compiler and processor on compliance of order. This mechanism is memory barrier. Let's consider a simple

example:

preempt_disable();
foo();
preempt_enable();

http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/include/linux/preempt.h

Compiler can rearrange it as:

preempt_disable();
preempt_enable();
foo();

In this case non-preemptible function foo can be preempted. As we put barrier macro inthe preempt_disable and
preempt_enable macros, it prevents the compiler from swapping preempt_count_inc with other statements. More about barriers you

can read here and here.

In the next step we can see following statement:

if (WARN(!irgs_disabled(),
"Interrupts were enabled *very* early, fixing it\n"))
local_irg_disable();

which check IRQs state, and disabling (with c1i instruction for x86_64) if they are enabled.

That's all. Preemption is disabled and we can go ahead.

Initialization of the integer ID management

In the next step we can see the call of the idr_init_cache function which defined in the lib/idr.c. The idr library is used in a various

places in the linux kernel to manage assigning integer 1ps to objects and looking up objects by id.

Let's look on the implementation of the idr_init_cache function:

void __init idr_init_cache(void)

{
idr_layer_cache = kmem_cache_create("idr_layer_cache",
sizeof(struct idr_layer), 0, SLAB_PANIC,);

Here we can see the call of the kmem_cache_create . We already called the kmem_cache_init in the init/main.c. This function create
generalized caches again using the kmem_cache_alloc (more about caches we will see in the Linux kernel memory management
chapter). In our case, as we are using kmem_cache_t which will be used by the slab allocator and kmem_cache_create creates it. As

you can see we pass five parameters to the kmem_cache_create :

e name of the cache;

e size of the object to store in cache;
e offset of the first object in the page;
o flags;

e constructor for the objects.

and it will create kmem_cache for the integer IDs. Integer 1ps is commonly used pattern to map set of integer IDs to the set of
pointers. We can see usage of the integer IDs in the i2c drivers subsystem. For example drivers/i2c/i2c-core.c which represents the core

of the i2c subsystem defines 1D forthe i2c adapter with the DEFINE_IDR macro:

static DEFINE_IDR(i2c_adapter_idr);

and then uses it for the declaration of the i2c adapter:

static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)

{

int id;

http://en.wikipedia.org/wiki/Memory_barrier
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/lib/idr.c
http://lxr.free-electrons.com/ident?i=idr_find
https://github.com/torvalds/linux/blob/master/init/main.c#L485
http://en.wikipedia.org/wiki/Slab_allocation
http://en.wikipedia.org/wiki/I%C2%B2C
https://github.com/torvalds/linux/blob/master/drivers/i2c/i2c-core.c

id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);

and id2_adapter_idr presents dynamically calculated bus number.

More about integer ID management you can read here.

RCU initialization

The next step is RCU initialization with the rcu_init function and it's implementation depends on two kernel configuration options:

® CONFIG_TINY_RCU

® CONFIG_TREE_RCU

In the first case rcu_init will be in the kernel/rcu/tiny.c and in the second case it will be defined in the kernel/rcu/tree.c. We will see

the implementation of the tree rcu , but first of all about the Rrcu in general.

Rcu or read-copy update is a scalable high-performance synchronization mechanism implemented in the Linux kernel. On the early
stage the linux kernel provided support and environment for the concurrently running applications, but all execution was serialized in
the kernel using a single global lock. In our days linux kernel has no single global lock, but provides different mechanisms including
lock-free data structures, percpu data structures and other. One of these mechanisms is - the read-copy update . The Rrcu technique is
designed for rarely-modified data structures. The idea of the RrRcu is simple. For example we have a rarely-modified data structure. If
somebody wants to change this data structure, we make a copy of this data structure and make all changes in the copy. In the same time
all other users of the data structure use old version of it. Next, we need to choose safe moment when original version of the data

structure will have no users and update it with the modified copy.

Of course this description of the Rrcu is very simplified. To understand some details about Rrcu , first of all we need to learn some
terminology. Data readers in the RrRcu executed in the critical section. Every time when data reader get to the critical section, it calls the
rcu_read_lock , and rcu_read_unlock on exit from the critical section. If the thread is not in the critical section, it will be in state
which called - quiescent state . The moment when every thread is in the quiescent state called- grace period . If a thread
wants to remove an element from the data structure, this occurs in two steps. First step is removal - atomically removes element from
the data structure, but does not release the physical memory. After this thread-writer announces and waits until it is finished. From this
moment, the removed element is available to the thread-readers. After the grace period finished, the second step of the element

removal will be started, it just removes the element from the physical memory.

There a couple of implementations of the rcu . Old Rrcu called classic, the new implementation called tree RCU. As you may
already understand, the conrFIG_TREE_RcU kernel configuration option enables tree Rcu . Another is the tiny RCU which depends
on CONFIG_TINY_RcU and CONFIG_SMP=n . We will see more details about the RrRcu in general in the separate chapter about

synchronization primitives, but now let's look on the rcu_init implementation from the kernel/rcu/tree.c:

void __init rcu_init(void)
{

int cpu;

rcu_bootup_announce();

rcu_init_geometry();

rcu_init_one(&rcu_bh_state, &rcu_bh_data);
rcu_init_one(&rcu_sched_state, &rcu_sched_data);
__rcu_init_preempt();

open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);

* We don't need protection against CPU-hotplug here because
* this is called early in boot, before either interrupts
* or the scheduler are operational.
x/
cpu_notifier(rcu_cpu_notify, 0);
pm_notifier(rcu_pm_notify, 0);

https://lwn.net/Articles/103209/
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/kernel/rcu/tiny.c
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c
http://en.wikipedia.org/wiki/Concurrent_data_structure
http://en.wikipedia.org/wiki/Critical_section
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c

for_each_online_cpu(cpu)
rcu_cpu_notify(, CPU_UP_PREPARE, (void *)(long)cpu);

rcu_early boot_tests();

In the beginning of the rcu_init function we define cpu variable and call rcu_bootup_announce . The rcu_bootup_announce

function is pretty simple:

static void __init rcu_bootup_announce(void)

{
pr_info("Hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();

It just prints information about the rRcu with the pr_info function and rcu_bootup_announce_oddness which uses pr_info too,

for printing different information about the current rcu configuration which depends on different kernel configuration options like
CONFIG_RCU_TRACE , CONFIG_PROVE_RCU , CONFIG_RCU_FANOUT_EXACT , etc. In the next step, we can see the call of the
rcu_init_geometry function. This function is defined in the same source code file and computes the node tree geometry depends on

the amount of CPUs. Actually rcu provides scalability with extremely low internal RCU lock contention. What if a data structure will

be read from the different CPUs? RrRcu API provides the rcu_state structure which presents RCU global state including node

hierarchy. Hierarchy is presented by the:

struct rcu_node node[NUM_RCU_NODES];

array of structures. As we can read in the comment of above definition:

The root (first level) of the hierarchy is in ->node[0] (referenced by ->level[0]), the second
level in ->node[1] through ->node[m] (->node[1] referenced by ->level[1]), and the third level
in ->node[m+1] and following (->node[m+1] referenced by ->level[2]). The number of levels is

determined by the number of CPUs and by CONFIG_RCU_FANOUT.

Small systems will have a "hierarchy" consisting of a single rcu_node.

The rcu_node structure is defined in the kernel/rcu/tree.h and contains information about current grace period, is grace period
completed or not, CPUs or groups that need to switch in order for current grace period to proceed, etc. Every rcu_node contains a lock
for a couple of CPUs. These rcu_node structures are embedded into a linear array in the rcu_state structure and represented as a
tree with the root as the first element and covers all CPUs. As you can see the number of the rcu nodes determined by the

NUM_RCU_NODES which depends on number of available CPUs:

#define NUM_RCU_NODES (RCU_SUM - NR_CPUS)
#define RCU_SUM (NUM_RCU_LVL_O® + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3 + NUM_RCU_LVL_4)

where levels values depend on the CONFIG_RCU_FANOUT_LEAF configuration option. For example for the simplest case, one rcu_node

will cover two CPU on machine with the eight CPUs:

B T T +
| rcu_state

| oo + |
| | root | |
| | rcu_node | |
| B + |
| I | |
| +-- -V - + +--V------- + |
| | | I |
| |
| |
| |
| |
| |

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.h

| t-o---V----- + o - - V--+ +-V-------- + +-V-------- +

| | | | [(. | |

| | rcu_node | | rcu_node | | rcu_node | | rcu_node | |

| | | I [(. | |

| Fomm e - + Fomm e - + Fomm e - I + |

| | | | | |

| | | | | |

| | | | | |

| | | | | |
fmmmememee [===smemsmocmooeas |=m==mmsmeaes |om=emmmsmaaaa=s ====e== +

| | | |

B Vommmmmmm e R R e T T Vommmmm o +
cPUl	cPU3	CPUS5	cPU7
CPU2	cPU4	CPU6	cPU8
BT T T I SRy +

So, in the rcu_init_geometry function we just need to calculate the total number of rcu_node structures. We start to do it with the

calculation of the jiffies till to the first and next fqs which is force-quiescent-state (read above about it):

d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
if (jiffies_till first_fgs == ULONG_MAX)

jiffies_till first_fqs = d;
if (jiffies_till next_fgs == ULONG_MAX)

jiffies_till next_fgs = d;

where:

#define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
#define RCU_JIFFIES_FQS_DIV 256

As we calculated these jiffies, we check that previous defined jiffies till first_fqs and jiffies_till next_fqs variables are
equal to the ULONG_MAX (their default values) and set they equal to the calculated value. As we did not touch these variables before,

they are equal to the ULONG_MAX :

static ulong jiffies_till first_fqs = ULONG_MAX;
static ulong jiffies_till next_fgs = ULONG_MAX;

In the next step of the rcu_init_geometry , we check that rcu_fanout_leaf didn't change (it has the same value as
CONFIG_RCU_FANOUT_LEAF in compile-time) and equal to the value of the CONFIG_RcU_FANOUT_LEAF configuration option, we just

return:

if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
nr_cpu_ids == NR_CPUS)
return;

After this we need to compute the number of nodes that an rcu_node tree can handle with the given number of levels:

rcu_capacity[0] = 1;
rcu_capacity[1] = rcu_fanout_leaf;
for (1 = 2; 1 <= MAX_RCU_LVLS; i++)

rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

And in the last step we calculate the number of rcu_nodes at each level of the tree in the loop.

As we calculated geometry of the rcu_node tree, we need to go back to the rcu_init function and next step we need to initialize two

rcu_state structures with the rcu_init_one function:

rcu_init_one(&rcu_bh_state, &rcu_bh_data);

http://en.wikipedia.org/wiki/Jiffy_%28time%29
http://www.rowleydownload.co.uk/avr/documentation/index.htm?http://www.rowleydownload.co.uk/avr/documentation/ULONG_MAX.htm
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c#L4094

rcu_init_one(&rcu_sched_state, &rcu_sched_data);

The rcu_init_one function takes two arguments:

e Global Rrcu state;
o Per-CPU data for Rcu .

Both variables defined in the kernel/rcu/tree.h with its percpu data:

extern struct rcu_state rcu_bh_state;
DECLARE_PER_CPU(struct rcu_data, rcu_bh_data);

About this states you can read here. As I wrote above we need to initialize rcu_state structures and rcu_init_one function will help
us with it. After the rcu_state initialization, we can see the call of the __rcu_init_preempt which depends on the
CONFIG_PREEMPT_RCU kernel configuration option. It does the same as previous functions - initialization of the rcu_preempt_state

structure with the rcu_init_one function which has rcu_state type. After this, in the rcu_init , we can see the call of the:

open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);

function. This function registers a handler of the pending interrupt . Pending interrupt or softirq supposes that part of actions can

be delayed for later execution when the system is less loaded. Pending interrupts is represented by the following structure:

struct

{

void (*action)(struct softirg_action *);

3

which is defined in the include/linux/interrupt.h and contains only one field - handler of an interrupt. You can check about softirgs in

the your system with the:

$ cat /proc/softirgs

CPUO CPU1 CPU2 CPU3 CPU4 CPU5 CPUG CPU7

HI: 2 [¢] [0] 1 0 2 (0] (0]
TIMER: 137779 108110 139573 107647 107408 114972 99653 98665
NET_TX: 1127 [¢] 4 (0] 1 1 (0] 0]
NET_RX: 334 221 132939 3076 451 361 292 303
BLOCK: 5253 5596 8 779 2016 37442 28 2855
BLOCK_IOPOLL: 0 [¢] (0] 0 0 [¢] (0] (0]
TASKLET: 66 [¢] 2916 113 0 24 26708 0
SCHED: 102350 75950 91705 75356 75323 82627 69279 69914
HRTIMER: 510 302 368 260 219 255 248 246
RCU: 81290 68062 82979 69015 68390 69385 63304 63473

The open_softirq function takes two parameters:

e index of the interrupt;

e interrupt handler.

and adds interrupt handler to the array of the pending interrupts:

void open_softirq(int nr, void (*action)(struct softirg_action *))

{

softirg_vec[nr].action = action;

In our case the interrupt handler is - rcu_process_callbacks which is defined in the kernel/rcu/tree.c and does the Rcu core

processing for the current CPU. After we registered softirq interrupt for the Rcu , we can see the following code:

cpu_notifier(rcu_cpu_notify, 0);
pm_notifier(rcu_pm_notify, 0);

https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.h
http://lwn.net/Articles/264090/
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
https://github.com/torvalds/linux/blob/master/kernel/rcu/tree.c

for_each_online_cpu(cpu)
rcu_cpu_notify(, CPU_UP_PREPARE, (void *)(long)cpu);

Here we can see registration of the cpu notifier which needs in systems which supports CPU hotplug and we will not dive into details

about this theme. The last function in the rcu_init isthe rcu_early boot_tests :

void rcu_early_boot_tests(void)

{
pr_info("Running RCU self tests\n");
if (rcu_self_test)
early boot_test_call rcu();
if (rcu_self_test_bh)
early boot_test_call rcu_bh();
if (rcu_self_test_sched)
early boot_test_call rcu_sched();
}

which runs self tests for the Rrcu .

That's all. We saw initialization process of the RrRcu subsystem. As I wrote above, more about the rcu will be in the separate chapter

about synchronization primitives.

Rest of the initialization process

Ok, we already passed the main theme of this part which is Rrcu initialization, but it is not the end of the linux kernel initialization
process. In the last paragraph of this theme we will see a couple of functions which work in the initialization time, but we will not dive

into deep details around this function for different reasons. Some reasons not to dive into details are following:

e They are not very important for the generic kernel initialization process and depend on the different kernel configuration;
e They have the character of debugging and not important for now;

e We will see many of this stuff in the separate parts/chapters.

After we initialized Rcu , the next step which you can see in the init/main.c is the - trace_init function. As you can understand from

its name, this function initialize tracing subsystem. You can read more about linux kernel trace system - here.

After the trace_init , we can see the call of the radix_tree_init . If you are familiar with the different data structures, you can
understand from the name of this function that it initializes kernel implementation of the Radix tree. This function is defined in the

lib/radix-tree.c and you can read more about it in the part about Radix tree.
In the next step we can see the functions which are related to the interrupts handling subsystem, they are:

® early irq_init
® init_IRQ

® softirg_init

We will see explanation about this functions and their implementation in the special part about interrupts and exceptions handling. After
this many different functions (like init_timers , hrtimers_init , time_init , etc.) which are related to different timing and timers

stuff. We will see more about these function in the chapter about timers.

The next couple of functions are related with the perf events - perf_event-init (there will be separate chapter about perf),

initialization of the profiling with the profile_init . After this we enable irq with the call of the:

local_irqg_enable();

which expands to the sti instruction and making post initialization of the SLAB with the call of the kmem_cache_init_late function

(As I wrote above we will know about the sLaB in the Linux memory management chapter).

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Tracing_%28software%29
http://elinux.org/Kernel_Trace_Systems
http://en.wikipedia.org/wiki/Radix_tree
https://github.com/torvalds/linux/blob/master/lib/radix-tree.c
https://perf.wiki.kernel.org/index.php/Main_Page
http://en.wikipedia.org/wiki/Slab_allocation

After the post initialization of the sLAB , next point is initialization of the console with the console_init function from the

drivers/tty/tty_io.c.

After the console initialization, we can see the lockdep_info function which prints information about the Lock dependency validator.
After this, we can see the initialization of the dynamic allocation of the debug objects with the debug_objects_mem_init , kernel
memory leak detector initialization with the kmemleak_init , percpu pageset setup with the setup_per_cpu_pageset , setup of the
NUMA policy with the numa_policy_init , setting time for the scheduler with the sched_clock_init , pidmap initialization with the
call of the pidmap_init function for the initial PID namespace, cache creation with the anon_vma_init for the private virtual

memory areas and early initialization of the ACPI with the acpi_early_init .

This is the end of the ninth part of the linux kernel initialization process and here we saw initialization of the RCU. In the last paragraph
of this part (Rest of the initialization process) we will go through many functions but did not dive into details about their
implementations. Do not worry if you do not know anything about these stuff or you know and do not understand anything about this.

As I already wrote many times, we will see details of implementations in other parts or other chapters.

Conclusion

It is the end of the ninth part about the linux kernel initialization process. In this part, we looked on the initialization process of the
Rcu subsystem. In the next part we will continue to dive into linux kernel initialization process and I hope that we will finish with the
start_kernel function and will go to the rest_init function from the same init/main.c source code file and will see the start of the

first process.
If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e lock-free data structures

e kmemleak

e ACPI

e IRQs

e RCU

e RCU documentation

e integer ID management

e Documentation/memory-barriers.txt
e Runtime locking correctness validator
e Per-CPU variables

e Linux kernel memory management
e slab

e i2c

e Previous part

https://github.com/torvalds/linux/blob/master/drivers/tty/tty_io.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/kmemleak.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/init/main.c
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Concurrent_data_structure
https://www.kernel.org/doc/Documentation/kmemleak.txt
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/tree/master/Documentation/RCU
https://lwn.net/Articles/103209/
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
http://en.wikipedia.org/wiki/Slab_allocation
http://en.wikipedia.org/wiki/I%C2%B2C

Kernel initialization. Part 10.

End of the linux kernel initialization process

This is tenth part of the chapter about linux kernel initialization process and in the previous part we saw the initialization of the RCU
and stopped on the call of the acpi_early_init function. This part will be the last part of the Kernel initialization process chapter, so
let's finish it.

After the call of the acpi_early_init function from the init/main.c, we can see the following code:

#ifdef CONFIG_X86_ESPFIX64
init_espfix_bsp();
#endif

Here we can see the call of the init_espfix_bsp function which depends on the conFic_x86_EsPFIxe4 kernel configuration option.
As we can understand from the function name, it does something with the stack. This function is defined in the
arch/x86/kernel/espfix_64.c and prevents leaking of 31:16 bits of the esp register during returning to 16-bit stack. First of all we

install espfix page upper directory into the kernel page directory in the init_espfix_bs :

pgd_p = &init_level4 _pgt[pgd_index(ESPFIX_BASE_ADDR)];
pgd_populate(&init_mm, pgd_p, (pud_t *)espfix_pud_page);

Where ESPFIX_BASE_ADDR is:

#define PGDIR_SHIFT 39
#define ESPFIX_PGD_ENTRY _AC(-2, UL)
#define ESPFIX_BASE_ADDR (ESPFIX_PGD_ENTRY << PGDIR_SHIFT)

Also we can find it in the Documentation/x86/x86_64/mm:

. unused hole ...
frffffooeee00000 - FFFFFf7fFfffffff (=39 bits) %esp fixup stacks
. unused hole ...

After we've filled page global directory with the espfix pud, the next step is call of the init_espfix_random and init_espfix_ap
functions. The first function returns random locations for the espfix page and the second enables the espfix for the current CPU.
After the init_espfix_bsp finished the work, we can see the call of the thread_info_cache_init function which defined in the

kernel/fork.c and allocates cache for the thread_info if THREAD_SIZE is less than PAGE_SIZE :

if THREAD_SIZE >= PAGE_SIZE

void thread_info_cache_init(void)
{
thread_info_cache = kmem_cache_create("thread _info", THREAD_SIZE,
THREAD_SIZE, 0, DE
BUG_ON(thread_info_cache ==)i

#endif

http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/espfix_64.c
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c

As we already know the PAGE_SIZE is (_AC(1,UL) << PAGE_SHIFT) or 4096 bytes and THREAD_SIZE iS (PAGE_SIZE <<
THREAD_SIZE ORDER) or 16384 bytes for the x86_64 . The next function after the thread_info_cache_init isthe cred_init from

the kernel/cred.c. This function just allocates cache for the credentials (like uid , gid , etc.):

void __init cred_init(void)
{
cred_jar = kmem_cache_create('"cred_jar", sizeof(struct cred),
, SLAB_HWCACHE_ALIGN |SLAB_PANIC, D

more about credentials you can read in the Documentation/security/credentials.txt. Next step is the fork_init function from the
kernel/fork.c. The fork_init function allocates cache for the task_struct . Let's look on the implementation of the fork_init .

First of all we can see definitions of the ARCH_MIN_TASKALIGN macro and creation of a slab where task_structs will be allocated:

#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
#endif
task_struct_cachep =
kmem_cache_create("task struct", sizeof(struct task_struct),
ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK,)8
#endif

As we can see this code depends on the CONFIG_ARCH_TASK_STRUCT_ACLLOCATOR kernel configuration option. This configuration option
shows the presence of the alloc_task_struct for the given architecture. As x86_64 hasno alloc_task_struct function, this code

will not work and even will not be compiled on the x86_64 .

Allocating cache for init task

After this we can see the call of the arch_task_cache_init function inthe fork_init :

void arch_task_cache_init(void)

{
task_xstate_cachep =
kmem_cache_create("task xstate", xstate_size,
__alignof__(union thread_xstate),
SLAB_PANIC | SLAB_NOTRACK,);
setup_xstate_comp();
}

The arch_task_cache_init does initialization of the architecture-specific caches. In our case it is x86_64 , so as we can see, the
arch_task_cache_init allocates cache for the task_xstate which represents FPU state and sets up offsets and sizes of all extended
states in xsave area with the call of the setup_xstate_comp function. After the arch_task_cache_init we calculate default maximum

number of threads with the:

set_max_threads(MAX_THREADS) ;

where default maximum number of threads is:

#define FUTEX_TID_MASK OXx3fffffff
#define MAX_THREADS FUTEX_TID_MASK

In the end of the fork_init function we initialize signal handler:

init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;

init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;

init_task.signal->r1im[RLIMIT_SIGPENDING] =
init_task.signal->rlim[RLIMIT_NPROC];

https://github.com/torvalds/linux/blob/master/kernel/cred.c
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://en.wikipedia.org/wiki/Floating-point_unit
http://www.felixcloutier.com/x86/XSAVES.html
http://www.win.tue.nl/~aeb/linux/lk/lk-5.html

As we know the init_task is an instance of the task_struct structure, so it contains signal field which represents signal handler.
It has following type struct signal_struct . On the first two lines we can see setting of the current and maximum limit of the
resource limits . Every process has an associated set of resource limits. These limits specify amount of resources which current

process can use. Here rlim is resource control limit and presented by the:

struct {
kernel_ulong_t rlim_cur;
kernel_ulong_t rlim_max;
3

structure from the include/uapi/linux/resource.h. In our case the resource is the RLIMIT_NPROC which is the maximum number of

processes that user can own and RLIMIT_SIGPENDING - the maximum number of pending signals. We can see it in the:

cat /proc/self/limits

Limit Soft Limit Hard Limit Units
Max processes processes
Max pending signals signals

Initialization of the caches

The next function after the fork_init isthe proc_caches_init from the kernel/fork.c. This function allocates caches for the memory
descriptors (or mm_struct structure). At the beginning of the proc_caches_init we can see allocation of the different SLAB caches

with the call of the kmem_cache_create :

e sighand_cachep - manage information about installed signal handlers;
e signal_cachep - manage information about process signal descriptor;
e files_cachep - manage information about opened files;

e fs_cachep - manage filesystem information.

After this we allocate sLAB cache for the mm_struct structures:

mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
SLAB_HWCACHE_ALIGN |SLAB_PANIC|SLAB_NOTRACK, e

After this we allocate sLAB cache for the important vm_area_struct which used by the kernel to manage virtual memory space:

vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);

Note, that we use KMEM_CACHE macro here instead of the kmem_cache_create . This macro is defined in the include/linux/slab.h and

just expands to the kmem_cache_create call:

#define KMEM_CACHE(__struct, _ flags) kmem_cache_create(#__struct,\
sizeof(struct __struct), __alignof__(struct __struct),\
(__flags), NULL)

The kMEM_cAcHE has one difference from kmem_cache_create . Take a look on __alignof__ operator. The KMEM_CACHE macro
aligns sLAB to the size of the given structure, but kmem_cache_create uses given value to align space. After this we can see the call
of the mmap_init and nsproxy_cache_init functions. The first function initializes virtual memory area sLAB and the second

function initializes sLAB for namespaces.

https://github.com/torvalds/linux/blob/master/include/uapi/linux/resource.h
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://en.wikipedia.org/wiki/Slab_allocation
https://github.com/torvalds/linux/blob/master/include/linux/slab.h

The next function after the proc_caches_init is buffer_init . This function is defined in the fs/buffer.c source code file and allocate
cache for the buffer_head . The buffer_head is a special structure which defined in the include/linux/buffer_head.h and used for
managing buffers. In the start of the buffer_init function we allocate cache for the struct buffer_head structures with the call of

the kmem_cache_create function as we did in the previous functions. And calculate the maximum size of the buffers in memory with:

nrpages = (nr_free_buffer_pages() *) / 8
max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));

which will be equal to the 10% of the zone_NorMAL (all RAM from the 4GB on the x86_64). The next function after the

buffer_init is- vfs_caches_init . This function allocates sLAB caches and hashtable for different VFS caches. We already saw
the vfs_caches_init_early function in the eighth part of the linux kernel initialization process which initialized caches for dcache
(or directory-cache) and inode cache. The vfs_caches_init function makes post-early initialization of the dcache and inode
caches, private data cache, hash tables for the mount points, etc. More details about VE'S will be described in the separate part. After this
we can see signals_init function. This function is defined in the kernel/signal.c and allocates a cache for the sigqueue structures
which represents queue of the real time signals. The next function is page_writeback_init . This function initializes the ratio for the
dirty pages. Every low-level page entry contains the dirty bit which indicates whether a page has been written to after been loaded

into memory.

Creation of the root for the procfs

After all of this preparations we need to create the root for the proc filesystem. We will do it with the call of the proc_root_init
function from the fs/proc/root.c. At the start of the proc_root_init function we allocate the cache for the inodes and register a new
filesystem in the system with the:

err = register_filesystem(&proc_fs_type);
if (err)
return;

As I wrote above we will not dive into details about VFS and different filesystems in this chapter, but will see it in the chapter about the

VFs . After we've registered a new filesystem in our system, we call the proc_self_init function from the fs/proc/self.c and this
function allocates inode number for the self (/proc/self directory refers to the process accessing the /proc filesystem). The
next step after the proc_self_init is proc_setup_thread_self which setupsthe /proc/thread-self directory which contains
information about current thread. After this we create /proc/self/mounts symlink which will contains mount points with the call of
the

proc_symlink("mounts", , "self/mounts");

and a couple of directories depends on the different configuration options:

#ifdef CONFIG_SYSVIPC
proc_mkdir("sysvipc",);
#endif
proc_mkdir("fs", e
proc_mkdir ("driver",)
proc_mkdir ("fs/nfsd",)i
#1if defined(CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)
proc_mkdir ("openprom",);
#endif
proc_mkdir("bus",)

if (!proc_mkdir("tty",))
return;
proc_mkdir("tty/ldisc",)e

https://github.com/torvalds/linux/blob/master/fs/buffer.c
https://github.com/torvalds/linux/blob/master/include/linux/buffer_head.h
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/kernel/signal.c
http://en.wikipedia.org/wiki/Procfs
https://github.com/torvalds/linux/blob/master/fs/proc/root.c
http://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/torvalds/linux/blob/master/fs/proc/self.c

In the end of the proc_root_init we call the proc_sys_init function which creates /proc/sys directory and initializes the Sysctl.

It is the end of start_kernel function. I did not describe all functions which are called in the start_kernel . I skipped them, because

they are not important for the generic kernel initialization stuff and depend on only different kernel configurations. They are
taskstats_init_early which exports per-task statistic to the user-space, delayacct_init - initializes per-task delay accounting,
key_init and security_init initialize different security stuff, check_bugs - fix some architecture-dependent bugs, ftrace_init

function executes initialization of the ftrace, cgroup_init makes initialization of the rest of the cgroup subsystem,etc. Many of these

parts and subsystems will be described in the other chapters.

That's all. Finally we have passed through the long-long start_kernel function. But it is not the end of the linux kernel initialization
process. We haven't run the first process yet. In the end of the start_kernel we can see the last call of the - rest_init function.
Let's go ahead.

First steps after the start_kernel

The rest_init function is defined in the same source code file as start_kernel function, and this file is init/main.c. In the

beginning of the rest_init we can see call of the two following functions:

rcu_scheduler_starting();
smpboot_thread_init();

The first rcu_scheduler_starting makes RCU scheduler active and the second smpboot_thread_init registers the
smpboot_thread_notifier CPU notifier (more about it you can read in the CPU hotplug documentation. After this we can see the

following calls:

kernel_thread(kernel_init, , CLONE_FS);
pid = kernel_thread(kthreadd, , CLONE_FS | CLONE_FILES);

Here the kernel_thread function (defined in the kernel/fork.c) creates new kernel thread.As we can see the kernel_thread function

takes three arguments:

e Function which will be executed in a new thread;
o Parameter for the kernel_init function;

e Flags.

We will not dive into details about kernel_thread implementation (we will see it in the chapter which describe scheduler, just need to
say that kernel_thread invokes clone). Now we only need to know that we create new kernel thread with kernel_thread function,
parent and child of the thread will use shared information about filesystem and it will start to execute kernel_init function. A kernel
thread differs from a user thread that it runs in kernel mode. So with these two kernel_thread calls we create two new kernel threads
with the pIp = 1 for init processand pip = 2 for kthreadd . We already know what is init process. Let's look on the
kthreadd . It is a special kernel thread which manages and helps different parts of the kernel to create another kernel thread. We can

see it in the output of the ps util:

$ ps -ef | grep kthread
root Janll ? 100: [kthreadd]

Let's postpone kernel_init and kthreadd for now and go ahead in the rest_init . In the next step after we have created two new

kernel threads we can see the following code:

rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();

http://en.wikipedia.org/wiki/Sysctl
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://en.wikipedia.org/wiki/Cgroups
https://github.com/torvalds/linux/blob/master/init/main.c
http://en.wikipedia.org/wiki/Read-copy-update
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://github.com/torvalds/linux/blob/master/kernel/fork.c
http://www.tutorialspoint.com/unix_system_calls/clone.htm

The first rcu_read_lock function marks the beginning of an RCU read-side critical section and the rcu_read_unlock marks the end
of an RCU read-side critical section. We call these functions because we need to protect the find_task_by_pid_ns . The
find_task_by_pid_ns returns pointer to the task_struct by the given pid. So, here we are getting the pointer to the task_struct

for pip = 2 (we got it after kthreadd creation with the kernel_thread). In the next step we call complete function

complete(&kthreadd_done);

and pass address of the kthreadd_done . The kthreadd_done defined as

static __initdata DECLARE_COMPLETION(kthreadd_done);

where DECLARE_COMPLETION macro defined as:

#define DECLARE_COMPLETION(work) \
struct completion work = COMPLETION_INITIALIZER(work)

and expands to the definition of the completion structure. This structure is defined in the include/linux/completion.h and presents
completions concept. Completions is a code synchronization mechanism which provides race-free solution for the threads that must

wait for some process to have reached a point or a specific state. Using completions consists of three parts: The first is definition of the
complete structure and we did it with the pEcLARE_compLETION . The second is call of the wait for_completion . After the call of

this function, a thread which called it will not continue to execute and will wait while other thread did not call complete function.

Note that we call wait_for_completion with the kthreadd_done in the beginning of the kernel_init_freeable :

wait_for_completion(&kthreadd_done);

And the last step is to call complete function as we saw it above. After this the kernel_init_freeable function will not be executed

while kthreadd thread will not be set. After the kthreadd was set, we can see three following functions in the rest_init :

init_idle_bootup_task(current);
schedule_preempt_disabled();
cpu_startup_entry(CPUHP_ONLINE);

The first init_idle_bootup_task function from the kernel/sched/core.c sets the Scheduling class for the current process (idle class

in our case):

void init_idle_bootup_task(struct task_struct *idle)

{

idle->sched_class = &idle_sched_class;

where idle class is a low task priority and tasks can be run only when the processor doesn't have anything to run besides this tasks.
The second function schedule_preempt_disabled disables preemptin idle tasks. And the third function cpu_startup_entry is
defined in the kernel/sched/idle.c and calls cpu_idle_loop from the kernel/sched/idle.c. The cpu_idle_loop function works as
process with PID = @ and works in the background. Main purpose of the cpu_idle_loop is to consume the idle CPU cycles. When
there is no process to run, this process starts to work. We have one process with idle scheduling class (we just set the current task
to the idle with the call of the init_idle_bootup_task function), so the idle thread does not do useful work but just checks if

there is an active task to switch to:
static void cpu_idle_loop(void)

{

while (1) {
while (!need_resched()) {

http://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/master/include/linux/completion.h
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://github.com/torvalds/linux/blob/master/sched/idle.c
https://github.com/torvalds/linux/blob/master/sched/idle.c

More about it will be in the chapter about scheduler. So for this moment the start_kernel callsthe rest_init function which
spawns an init (kernel_init function) process and become idle process itself. Now is time to look on the kernel_init .
Execution of the kernel_init function starts from the call of the kernel_init_freeable function. The kernel_ init_freeable

function first of all waits for the completion of the kthreadd setup. I already wrote about it above:

wait_for_completion(&kthreadd_done);

After this we set gfp_allowed_mask to _ GFP_BITS_MASK which means that system is already running, set allowed cpus/mems to all

CPUs and NUMA nodes with the set_mems_allowed function, allow init process to run on any CPU with the
set_cpus_allowed_ptr , set pid for the cad or ctrl-Alt-pelete , do preparation for booting of the other CPUs with the call of the
smp_prepare_cpus , call early initcalls with the do_pre_smp_initcalls , initialize smp with the smp_init and initialize

lockup_detector with the call of the lockup_detector_init and initialize scheduler with the sched_init_smp .

After this we can see the call of the following functions - do_basic_setup . Before we will call the do_basic_setup function, our
kernel already initialized for this moment. As comment says:

Now we can finally start doing some real work..

The do_basic_setup will reinitialize cpuset to the active CPUs, initialize the khelper - which is a kernel thread which used for

making calls out to userspace from within the kernel, initialize tmpfs, initialize drivers subsystem, enable the user-mode helper
workqueue and make post-early call of the initcalls . We can see opening of the dev/console and dup twice file descriptors from
0 to 2 afterthe do_basic_setup :

if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
pr_err("warning: unable to open an initial console.\n");

(void) sys_dup(0);
(void) sys_dup(0);

We are using two system calls here sys_open and sys_dup . In the next chapters we will see explanation and implementation of the
different system calls. After we opened initial console, we check that rdinit= option was passed to the kernel command line or set
default path of the ramdisk:

if (!ramdisk_execute_command)
ramdisk_execute_command = "/init";

Check user's permissions for the ramdisk and call the prepare_namespace function from the init/do_mounts.c which checks and

mounts the initrd:

if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
ramdisk_execute_command = ;
prepare_namespace();

This is the end of the kernel_init_freeable function and we need return to the kernel_init . The next step after the
kernel_init_freeable finished its execution is the async_synchronize_full . This function waits until all asynchronous function

calls have been done and after it we will call the free_initmem which will release all memory occupied by the initialization stuff

which located between __init_begin and _ init_end . After this we protect .rodata withthe mark_rodata_ro and update state

of the system from the SysTEM_BooTING to the

https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://kernelnewbies.org/Documents/InitcallMechanism
https://www.kernel.org/doc/Documentation/lockup-watchdogs.txt
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://en.wikipedia.org/wiki/Tmpfs
https://github.com/torvalds/linux/blob/master/init/do_mounts.c
http://en.wikipedia.org/wiki/Initrd

system_state = SYSTEM_RUNNING;

And tries to run the init process:

if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d)\n",
ramdisk_execute_command, ret);

First of all it checks the ramdisk_execute_command which we setin the kernel_init_freeable function and it will be equal to the
value of the rdinit= kernel command line parameters or /init by default. The run_init_process function fills the first element

of the argv_init array:

static const char *argv_init[MAX_INIT_ARGS+2] = { "init", o BB

which represents arguments of the init program and call do_execve function:

argv_init[0] = init_filename;

return do_execve(getname_kernel(init_filename),
(const char __user *const __user *)argv_init,
(const char __user *const __user *)envp_init);

The do_execve function is defined in the include/linux/sched.h and runs program with the given file name and arguments. If we did
not pass rdinit= option to the kernel command line, kernel starts to check the execute_command which is equal to value of the

init= kernel command line parameter:

if (execute_command) {
ret = run_init_process(execute_command);
if (!ret)
return 0;
panic("Requested init %s failed (error %d).",
execute_command, ret);

If we did not pass init= kernel command line parameter either, kernel tries to run one of the following executable files:

if (!try_to_run_init_process("/sbin/init") ||
ltry_to_run_init_process("/etc/init") ||
'try_to_run_init_process("/bin/init") ||
'try_to_run_init_process("/bin/sh"))
return 0;

Otherwise we finish with panic:

panic("No working init found. Try passing init= option to kernel.
"See Linux Documentation/init.txt for guidance.");

That's all! Linux kernel initialization process is finished!

Conclusion

It is the end of the tenth part about the linux kernel initialization process. It is not only the tenth part, but also is the last part which
describes initialization of the linux kernel. As I wrote in the first part of this chapter, we will go through all steps of the kernel

initialization and we did it. We started at the first architecture-independent function - start_kernel and finished with the launch of the

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://en.wikipedia.org/wiki/Kernel_panic

first init process in the our system. I skipped details about different subsystem of the kernel, for example I almost did not cover
scheduler, interrupts, exception handling, etc. From the next part we will start to dive to the different kernel subsystems. Hope it will be

interesting.
If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e SLAB

® Xxsave

e [PU

e Documentation/security/credentials.txt
e Documentation/x86/x86_64/mm
e RCU

e VES

e inode

e proc

e man proc

e Sysctl

e ftrace

e cgroup

e CPU hotplug documentation

e completions - wait for completion handling
e NUMA

e Cpus/mems

e initcalls

e Tmpfs

e initrd

® panic

e Previous part

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Slab_allocation
http://www.felixcloutier.com/x86/XSAVES.html
http://en.wikipedia.org/wiki/Floating-point_unit
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.txt
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Procfs
http://linux.die.net/man/5/proc
http://en.wikipedia.org/wiki/Sysctl
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://en.wikipedia.org/wiki/Cgroups
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://www.kernel.org/doc/Documentation/scheduler/completion.txt
http://en.wikipedia.org/wiki/Non-uniform_memory_access
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
http://kernelnewbies.org/Documents/InitcallMechanism
http://en.wikipedia.org/wiki/Tmpfs
http://en.wikipedia.org/wiki/Initrd
http://en.wikipedia.org/wiki/Kernel_panic

linux

* -
e Linux -

* -

e - fourth part describes first non-early interrupt handlers.

* -

* -

* -

e IRQs-

e Softirg, Tasklets and Workqueues - softirgstasklets workqueues

Part 1.

Introduction

linux init interrupts

interrupts

[interrupts

° interrupt handlers
Linux

CPU event CPU CPU CPU PIC
Interrupt Controller Apic APIC

® Local APIC

e 1I/0 APIC

- Local ApIc CPULocal APIC CPU Local APIC APIC APIC-timer I/O

- 1/0 Apic CPU local I/0O APIC

e 0
e 0

Interrupt Descriptor Table IDT vector number IDT

BUG_ON((unsigned)n >);

Advanced Programmable

o]

Linux (set_intr_gate , void set_system_intr_gate arch/x86/include/asm/desc.h)

Linux - 32 255 1/0O

- Local APIC Local APIC - () syscall
CPU synchronous 3

® Faults
® Traps

® Aborts

«»

maskable non-maskable x86_64 - sti cli Linux

255 Linux

(¢]

31 32

http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/desc.h

static inline void native_irq_disable(void)

{

asm volatile("cli": : :"memory");

and

static inline void native_irq_enable(void)

{
asm volatile("sti": : :"memory");
3
IF sti IF cli
S
| |
| Priority | Description
| |
oo B T T
| | Hardware Reset and Machine Checks
| 1 | - RESET
| | - Machine Check
oo B e e PP
| | Trap on Task Switch
| 2 | - T flag in TSS is set
| |
oo B T e TR
| | External Hardware Interventions
| | - FLUSH
| 3 | - STOPCLK
| | - sMI
| | - INIT
oo B e T
| | Traps on the Previous Instruction
| 4 | - Breakpoints
| | - Debug Trap Exceptions
oo B T TP
| 5 | Nonmaskable Interrupts
oo B T L T TP
| 6 | Maskable Hardware Interrupts
oo B T e T
| 7 | Code Breakpoint Fault
oo B T e T
| 8 | Faults from Fetching Next Instruction
| | Code-Segment Limit Violation
| | Code Page Fault
Fomm e e o - B R T
| | Faults from Decoding the Next Instruction
| | Instruction length > 15 bytes
| 9 | Invalid Opcode
| | Coprocessor Not Available
| |
Fomm e m o - B R T T
10 Faults on Executing an Instruction

Overflow

Bound error

Invalid TSS

Segment Not Present

Stack fault

General Protection

Data Page Fault

Alignment Check

x87 FPU Floating-point exception
SIMD floating-point exception

Virtualization exception

IDT IDT IDT Global Descriptor Table IDT gates
e Interrupt gates
e Task gates
e Trap gates
x86 long mode x86_64 x86 8 x86_64 16 NULL
NULL
/*
* Set up the IDT
*/
static void setup_idt(void)
{
static const struct = {0, 0};
asm volatile("lidtl %0" : : "m" (null_idt));
3
arch/x86/boot/pm.c x86 8 x86_64 16 ot - IDTR x86 -
® LIDT
® SIDT
LIDT IDT IDTR SIDT IDTR x86 IDTR 48
o mmm e e e e e e emoeooooooo-o o mm e mmemmeeoooo- +
| | |
| Base address of the IDT | Limit of the IDT
I | |
dm mmm e e e e e e emoeeoooaooo-o o m e mmem oo +
a7 16 15 [}
setup_idt null_idt lidt IDTR null_idt gdt_ptr
struct {
ul6 len;
u32 ptr;
} __attribute_ ((packed));
IDTR 2 4 48 IDT x86 16
127 96
B T T +
| |
| Reserved |
| |
o e f el
95 64
B T +
| |
I offset 63..32 |
| |
L T +
63 48 47 46 44 42 39 34 32
mm o m e mmmmm—m +
| | [b | | | [B | | | |
| offset 31..16 | P | P | ©|Type |00 O | 0] O | |
| | [| [B |
___ +
31 16 15 0
B T L TR +

| Segment Selector | offset 15..0

descriptors

IDTR

http://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/Protected_mode
https://github.com/torvalds/linux/blob/master/arch/x86/boot/pm.c

IDT 16 call IpT

IpT

e 0-15 bits -

e 16-31 bits -

® IST - x86_64
® DPL -
e P -

e 48-63 bits -
® 64-95 bits -
e 96-127 bits- CPU.

Type IDT

e Interrupt gate
e Trap gate
e Task gate

IST Interrupt Stack Table x86_64 x86

1sT Task State Segment

gate_desc

extern gate_desc idt_table[];

gate_desc

#ifdef CONFIG_X86_64

typedef struct ;

#endif

gate_struct64

struct {
ulé offset_low;
ulé segment;

unsigned ist : 3, zero® : 5, type : 5, dpl : 2, p :

ul6 offset_middle;
u32 offset_high;
u32 zerol;

} __attribute_ ((packed));

IST

x86_64 Linux THREAD_SIZE

#define PAGE_SHIFT 12

#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define THREAD_SIZE_ORDER (2 + KASAN_STACK_ORDER)

#define

THREAD_SIZE

(PAGE_SIZE << THREAD_SIZE_ORDER)

x86
Tss 7

IST

IDT

Tss Linux

IST

IDT

http://en.wikipedia.org/wiki/Task_state_segment

PAGE_SIZE 4096 THREAD_SIZE_ORDER KASAN_STACK_ORDER KASAN_STACK CONFIG_KASAN

#ifdef CONFIG_KASAN
#define KASAN_STACK_ORDER 1

#else
#define KASAN_STACK_ORDER 0
#endif
KAsan CONFIG_KASAN THREAD_SIZE 16384 THREAD_SIZE 32768
Linux CPU CPU CPU CPU per-cpu

#define IRQ_STACK_ORDER (2 + KASAN_STACK_ORDER)
#define IRQ_STACK_SIZE (PAGE_SIZE << IRQ_STACK_ORDER)

16384 Per-cpu x86_64 irqg_stack_union

union {
char irq_stack[IRQ_STACK_SIZE];

struct {
char gs_base[40];
unsigned long stack_canary;

Y
}
irg_stack 16KB irqg_stack_union
® gs_base - irgstack gs x86_64 per-cpu per-cpu stackcanary
gs per-cpu Model specific registers - fs gs Linux
movl $MSR_GS_BASE, %ecx
movl initial gs(%rip),%eax
movl initial gs+4(%rip), %edx
wrmsr
initial_gs irg_stack_union

GLOBAL (initial_gs)
.quad INIT_PER_CPU_VAR(irqg_stack_union)

® stack_canary - Stack canary stack protector gs_base 40 Gcc stack canary
Xx86_64 40 x86 20
irg_stack_union percpu , System.map

0000000000000000 D _ per_cpu_start

0000000000000000 D irg_stack_union

0000000000004000 d exception_stacks
0000000000009000 D gdt_page

DECLARE_PER_CPU_FIRST(union irg_stack_union, irg_stack_union) __visible;

irg_stack_union irg_stack_union arch/x86/include/asm/processor.h per-cpu

thread_info

gs

gs

per-cpu

gs

interrup

http://lwn.net/Articles/618180/
http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/processor.h

DECLARE_PER_CPU(char *, irqg_stack_ptr);
DECLARE_PER_CPU(unsigned int, irqg_count);

irqg_stack_ptr irg_count CPU irq_stack_ptr arch/x86/kernel/setup_percpu.c setup_per_cpu_areas

void __init setup_per_cpu_areas(void)

{

#ifdef CONFIG_X86_64
for_each_possible_cpu(cpu) {

per_cpu(irg_stack_ptr, cpu) =
per_cpu(irg_stack_union.irq_stack, cpu) +
IRQ_STACK_SIZE - 64;

#endif

CPU irg_stack_ptr 64 64 TODO [arch/x86/kernel/cpu/common.c]

void load_percpu_segment(int cpu)

{
__loadsegment_simple(gs, 0);
wrmsr1(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
load_stack_canary_segment();
}
gs

movl $MSR_GS_BASE, %ecx

movl initial gs(%rip),%eax
movl initial_gs+4(%rip), %edx
wrmsr

SYM_DATA(initial_gs,
.quad INIT_PER_CPU_VAR(fixed_percpu_data))

wrmsr edx:eax ecx MSR)MSR MSR_GS_BASE gs edx:eax initial_gs

fixed_percpu_data
x86_64 Interrupt Stack Table ST 7 IST per-cpu;

® DOUBLEFAULT_STACK
® NMI_STACK
® DEBUG_STACK

® MCE_STACK

#define DOUBLEFAULT_STACK 1
#define NMI_STACK 2

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c

#define DEBUG_STACK 3
#define MCE_STACK 4

IST set_intr_gate_ist

static const __initconst struct

INTG(X86_TRAP_NMI, nmi),

INTG(X86_TRAP_DF,

&nmi &double_fault

arch/x86/kernel/entry_64.S

idtentry double_fault

SYM_CODE_START (nmi)

SYM_CODE_END (nmi)
SYM_CODE_END (nmi)

arch/x86/include/asm/traps.h:

asmlinkage void nmi(void);

asmlinkage void double_fault(void);

ss NULL ss rpl

S +

| |

| SS | 40
| RSP | 32
| RFLAGS | 24
| Cs | 16
| RIP | 8
| Error code | 0O
| |
Poccccscssocascs +

IST 0 IST rsp CS
rip rip iret
Linux -

Twitter
PR linux-insides(PR

e PIC

linux-insides-zh)

has_error_code=1

[1=¢
double_fault),
do_double_fault
cpl Ss rsp cs rip 64 8:
21 64
iret ss:rsp cpl

L

paranoid=2 read_cr2=1

Global Descriptor Table

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/traps.h
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller

Advanced Programmable Interrupt Controller
protected mode

long mode

kernel stacks

Task State Segement

segmented memory model

Model specific registers

Stack canary

Previous chapter

145

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Long_mode
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Task_state_segment
http://en.wikipedia.org/wiki/Memory_segmentation
http://en.wikipedia.org/wiki/Model-specific_register
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries

Part 2.

Linux

LinuxLinuxLinux

Linux x86_64 arch/x86/boot/pm.c

void go_to_protected_mode(void)

{
setup_idt();

}
setup_idt NULL :

static void setup_idt(void)

{

static const struct

asm volatile("lidtl %0"

}
gdt_ptr 48-bit GDTR Global Descriptor
struct {
ul6 len;
u32 ptr;

} __attribute_ ((packed));

gdt_prt GDTR IDTR Linux
Interrupt descriptor table, Global Descriptor Table

boot_params.hdr.code32_start

idt_ptr gdt_prt

LinuxLinux Linux

(IDT)IDT go_to_protected_mode

= {0, 0};

"m" (null_idt));

arch/x86/boot/pmjump.S

protected_mode_jump(boot_params.hdr.code32_start,

(u32)&boot_params + (ds() << 4));

arch/x86/boot/pmjump.S protected_mode_jump 8086 ax dx

GLOBAL(protected_mode_jump)

.byte 0

.long in_pm32
.word __BOOT_CS

ENDPROC(protected_mode_jump)

in_pm32 32-bit:

GLOBAL(1in_pm32)

1jmpl opcode
offset
segment

setup_idt IDT

Interrupt Descriptor Table

arch/x86/boot/pm.c boot_params protected_mode_jump :

NULL IDT

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
http://0xax.gitbooks.io/linux-insides/content/Booting/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/header.S#L292
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pm.c
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/GDT
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pmjump.S
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pm.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/pmjump.S
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/X86_calling_conventions#List_of_x86_calling_conventions

jmpl *%eax // %eax contains address of the “startup 32"
ENDPROC(in_pm32)

32-bit arch/x86/boot/compressed/head_64.S _64 arch/x86/boot/compressed :

® arch/x86/boot/compressed/head_32.S

® arch/x86/boot/compressed/head_64.S ;

32-bit x86_64 arch/x86/boot/compressed/Makefile:

vmlinux-objs-y := $(obj)/vmlinux.lds $(obj)/head_$(BITS).o $(obj)/misc.o \

head_* $(BITS) "" arch/x86/Makefile:

ifeq ($(CONFIG_X86_32),y)

BITS := 32
else
BITS := 64
endif
arch/x86/boot/compressed/head_64.S startup_32 startup_32 long mode long mode long mode
startup_64 arch/x86/boot/compressed/misc.c decompress_kernel arch/x86/kernel/head_64.S
startup_64 identity-mapped pages NX Extended Feature Enable Register () lgdt Global
Descriptor Table gs :

movl $MSR_GS_BASE, %ecx

movl initial _gs(%rip),%eax

movl initial_gs+4(%rip), %edx

wrmsr

wrmsr edx: eax ecx model specific register ecx $MSR_GS_BASE arch/x86/include/uapi/asm/msr-

index.h:

#define MSR_GS_BASE 0xc0000101

MSR_GS_BASE model specific register cs, ds, es, ss 64-bit fs gs model specific

register back door fs gs 64-bit GS.base initial_gs

GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irg_stack_union)

irg_stack_union INIT_PER_CPU_VAR init_per_cpu__ init_per_cpu__irq_stack_union

#define INIT_PER_CPU(x) init_per_cpu__##x = x + __per_cpu_load
INIT_PER_CPU(irg_stack_union);

init_per_cpu__irqg_stack_union irqg_stack_union + _ per_cpu_load init_per_cpu__irqg_stack_union
irq_stack_union arch/x86/include/asm/processor.h DECLARE_INIT_PER_CPU init_per_cpu_var :
DECLARE_INIT_PER_CPU(irq_stack_union);

#define DECLARE_INIT_PER_CPU(var) \
extern typeof(per_cpu_var(var)) init_per_cpu_var(var)

__per_cpu_load

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/Makefile
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/Makefile
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/head_64.S
http://en.wikipedia.org/wiki/Long_mode
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head_64.S
http://en.wikipedia.org/wiki/NX_bit
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
http://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/uapi/asm/msr-index.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/processor.h

#define init_per_cpu_var(var) 1init_per_cpu__##var

init_per_cpu__irqg_stack_union typeof(per_cpu_var(var)) , var irg_stack_union per_cpu_var

arch/x86/include/asm/percpu.h:

#define PER_CPU_VAR(var) %__percpu_seg:var

#ifdef CONFIG_X86_64
#define percpu_seg gs
endif

gs:irg_stack_union irg_union __per_cpu_load include/asm-generic/sections.h per-cpu :

extern char __per_cpu_load[], __per_cpu_start[], __per_cpu_end[];

irg_stack_union __per_cpu_load init_per_cpu__irqg_stack_union __per_cpu_load System.map:

FFFFFFff819ed00O D _ init_begin
FFFFFFff819edo0® D _ per_cpu_load
fFffffff819edo0O A init_per_cpu__irg_stack_union

initial _gs :

mov1l $MSR_GS_BASE, %ecx

movl initial_gs(%rip),%eax

movl initial gs+4(%rip), %edx

wrmsr

MSR_GS_BASE initial_gs 64-bit edx:eax wrmsr init_per_cpu__irq_stack_union gs
x86_64_start_kernel C arch/x86/kernel/head64.c Interrupt Descriptor Table

for (1 = 0; 1 < NUM_EXCEPTION_VECTORS; i++)

set_intr_gate(i, early_idt_handlers[i]);

load_idt((const struct desc_ptr *)&idt_descr);

Linux 3.18 Linux 4.1.0-rc6+ Andy Lutomirski early_idt_handlers patch NOTE patchLinux:

for (i = 0; 1 < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early_idt_handler_array[i]);

load_idt((const struct desc_ptr *)&idt_descr);

early _idt_handler_array :

extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];

NUM_EXCEPTION_VECTORS EARLY_IDT_HANDLER_SIZE

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/percpu.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/asm-generic-sections.h
http://en.wikipedia.org/wiki/System.map
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head64.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
https://lkml.org/lkml/2015/6/2/106
https://github.com/torvalds/linux/commit/425be5679fd292a3c36cb1fe423086708a99f11a

#define NUM_EXCEPTION_VECTORS 32
#define EARLY_IDT_HANDLER_SIZE 9

early idt_handler_array 9 early_idt_handlers arch/x86/kernel/head_64.S early idt_handler_array

ENTRY(early_idt_handler_array)

ENDPROC (early_idt_handler_common)

.rept NUM_EXCEPTION_VECTORS early_idt_handler_array early make_pgtable () x86-64

setup_arch x86_64

Stack Canary

Linuxarch/x86/kernel/head 64.Sinit/main.c start_kernel pid- 1 init boot_init_stack_canary canary

boot_init_stack_canary arch/x86/include/asm/stackprotector.h CONFIG_CC_STACKPROTECTOR

#ifdef CONFIG_CC_STACKPROTECTOR

#else

static inline void boot_init_stack_canary(void)
{

}

#endif

CONFIG_CC_STACKPROTECTOR boot_init_stack_canary irg_stack_union per-cpu stack_canary 40
offset

#ifdef CONFIG_X86_64
BUILD_BUG_ON(offsetof(union irg_stack_union, stack_canary) != 40);
#endif

irg_stack_union

union {
char irq_stack[IRQ_STACK_SIZE];

struct {
char gs_base[40];
unsigned long stack_canary;
+
3
arch/x86/include/asm/processor.h C gs_base 40 bytes irq_stack BUILD_BUG_ON (

BUILD_BUG_ON Linux)

canary

get_random_bytes(&canary, sizeof(canary));
tsc = __native_read_tsc();
canary += tsc + (tsc << 32UL);

this_cpu_write canary irg_stack_union

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head_64.S
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/head_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://en.wikipedia.org/wiki/Process_identifier
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/stackprotector.h
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/processor.h
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Union_type
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-1.html
http://en.wikipedia.org/wiki/Time_Stamp_Counter

this_cpu_write(irg_stack_union.stack_canary, canary);

this_cpu_* Linux kernel documentation

init/main.c canary local_irq_disable

include/linux/irgflags.h CPU CONFIG_TRACE_IRQFLAGS_SUPPORT

#ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT

#define local_irq_disable() \
do { raw_local_irqg_disable(); trace_hardirgs_off(); } while (0)

#else

#define local irq_disable() do { raw_local irqg_disable(); } while (0)
#endif
CONFIG_TRACE_IRQFLAGS_SUPPORT local_irq_disable trace_hardirgs_off Linux lockdep irg-flags
tracing hardirq softirq lockdep // trace_hardirgs_off kernel/locking/lockdep.c:

void trace_hardirqgs_off(void)
{
trace_hardirqgs_off_caller (CALLER_ADDRO);

}
EXPORT_SYMBOL (trace_hardirqgs_off);

trace_hardirqs_off_caller trace_hardirqs_off_caller |, hardirqgs_enabled local_irg_disable
redundant_hardirqs_off hardirgs_off_events lockdep kernel/locking/lockdep_insides.h lockdep_stats

struct {

int softirgs_off_events;

int redundant_softirqgs_off;

3

CONFIG_DEBUG_LOCKDEP lockdep_stats_debug_show /proc/lockdep

static void lockdep_stats_debug_show(struct seq_file *m)
{
#ifdef CONFIG_DEBUG_LOCKDEP
unsigned long long hil = debug_atomic_read(hardirqs_on_events),
hi2 = debug_atomic_read(hardirgs_off_events),
hrl = debug_atomic_read(redundant_hardirgs_on),

seq_printf(m, " hardirqg on events: %1111u\n", hil);

seg_printf(m, " hardirq off events: %1111u\n", hi2);
seq_printf(m, " redundant hardirq ons: %1111u\n", hr1);
#endif

}

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irqflags.h
http://lwn.net/Articles/321663/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/lockdep.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/locking/lockdep_insides.h

$ sudo cat /proc/lockdep

hardirg on events: 12838248974
hardirq off events: 12838248979
redundant hardirq ons: 67792
redundant hardirq offs: 3836339146
softirg on events: 38002159
softirq off events: 38002187
redundant softirq ons: 0
redundant softirq offs: 0
trace_hardirgs_off lockdep trancing local_disable_irq raw_local_irq_disable

arch/x86/include/asmy/irqflags.h :

static inline void native_irq_disable(void)

{

asm volatile("cli": : :"memory");

cli IF local _irqg_disable local _irqg_enable local _irqg_disable sti

static inline void native_irq_enable(void)

{
asm volatile("sti": : :"memory");
3
local _irqg_disable local _irq_enable local_irqg_disable Linux init/main.c start_kernel
" cli local_irg_{enabled,disable}
early_boot_irqgs_disabled = ;
early_boot_irqs_disabled include/linux/kernel.h :

extern bool early_boot_irqgs_disabled;

kernel/smp.c smp_call_function_many

WARN_ON_ONCE (cpu_online(this_cpu) && irqgs_disabled()
&& 'oops_in_progress && !early_boot_irqs_disabled);

t rap
local_disable_irq boot_cpu_init page_address_init () setup_arch arch/x86/kernel/setup.c
setup_arch early_trap_init arch/x86/kernel/traps.c Interrupt Descriptor Table

void __init early trap_init(void)
{
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
#ifdef CONFIG_X86_32
set_intr_gate(X86_TRAP_PF, page_fault);
#endif
load_idt(&idt_descr);

loc

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/irqflags.h
http://en.wikipedia.org/wiki/Interrupt_flag
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://lwn.net/Articles/291956/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/kernel.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/smp.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel.setup.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c

® set_intr_gate_ist
® set_system_intr_gate_ist

® set_intr_gate

arch/x86/include/asm/desc.h set_intr_gate_ist IDT :

static inline void set_intr_gate_ist(int n, void *addr, unsigned ist)

{
BUG_ON((unsigned)n > 0OxFF);
_set_gate(n, GATE_INTERRUPT, addr, 0, ist, _ KERNEL_CS);
}
n oxff 255[](http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html) 0 255
_set_gate IDT

static inline void _set_gate(int gate, unsigned type, void *addr,
unsigned dpl, unsigned ist, unsigned seg)

{
gate_desc s;
pack_gate(&s, type, (unsigned long)addr, dpl, ist, seg);
write_idt_entry(idt_table, gate, &s);
write_trace_idt_entry(gate, &s);

}

pack_gate IDT gate_desc ,

® GATE_INTERRUPT
® GATE_TRAP
® GATE_CALL

® GATE_TASK

IDT present :

static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func,
unsigned dpl, unsigned ist, unsigned seg)

{

gate->offset_low = PTR_LOW(func);

gate->segment = __KERNEL_CS;

gate->ist = ist;

gate->p =1;

gate->dpl = dpl;

gate->zero0 = 0;

gate->zerol = 0;

gate->type = type;

gate->offset_middle = PTR_MIDDLE(func);

gate->offset_high = PTR_HIGH(func);
}

write_idt_entry DT native_write_idt_entry idt_table

#define write_idt_entry(dt, entry, g) native_write_idt_entry(dt, entry, g)

static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate)

{
memcpy(&idt[entry], gate, sizeof(*gate));

idt_table gate_desc

extern gate_desc idt_table[];

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h
http://en.wikipedia.org/wiki/Interrupt_vector_table
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level

set_intr_gate_ist set_system_intr_gate_ist

static inline void set_system_intr_gate_ist(int n, void *addr, unsigned ist)

{
BUG_ON((unsigned)n > 0xFF);

_set_gate(n, GATE_INTERRUPT, addr, 0x3, ist KERNEL_CS);

[—

_set_gate 0x3 set_intr_gate_ist 0x0 DPL [¢] 3 set_system_intr_gate_ist ,

set_intr_gate_ist , set_intr_gate early_trap_init :

set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);

#DB int3 IDT :

e vector number of an interrupt;
e address of an interrupt handler;

e interrupt stack table index.

early_trap_init

LinuxLinux
twitter

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

o DT

e Protected mode

e List of x86 calling conventions
e 8086

e Long mode

o NX

e Extended Feature Enable Register
e Model-specific register

e Process identifier

e lockdep

e irgflags tracing

o [F

e Stack canary

e Union type

e thiscpu* operations

e vector number

e Interrupt Stack Table

e Privilege level

e Previous part

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Protected_mode
http://en.wikipedia.org/wiki/X86_calling_conventions#List_of_x86_calling_conventions
http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Long_mode
http://en.wikipedia.org/wiki/NX_bit
http://en.wikipedia.org/wiki/Control_register#Additional_Control_registers_in_x86-64_series
http://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Process_identifier
http://lwn.net/Articles/321663/
https://www.kernel.org/doc/Documentation/irqflags-tracing.txt
http://en.wikipedia.org/wiki/Interrupt_flag
http://en.wikipedia.org/wiki/Stack_buffer_overflow#Stack_canaries
http://en.wikipedia.org/wiki/Union_type
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt
http://en.wikipedia.org/wiki/Interrupt_vector_table
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
http://en.wikipedia.org/wiki/Privilege_level
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html

Linux

154

. Part 3.

chapter Linux part setup_arch arch/x86/kernel/setup.c .
setup_arch x86_64 architecture setup_arch

e #DB -

e #BP - int

x86_64 kgdb early trap_init

void __init early_ trap_init(void)

{
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
load_idt(&idt_descr);

}

arch/x86/kernel/traps.c. set_intr_gate_ist set_system_intr_gate_ist

Ok early trap_init #DB #BP
- DB debug - debug register debug register Intel 80386 xge CPU
debug register general protection fault #DB set_intr_gate_ist

#0B 1X86_TRAP_DB

T LT LT +

| Vector |Mnemonic |Description | Type |Error Code|

T L T L LT T TP +

|1 | #DB |Reserved |F/T |NO |

T L T L LT T TP +
int 3 #BP breakpointv DB BP

// breakpoint.c
#include <stdio.h>

int main() {
int i;
while (i < 6){
printf("i equal to: %d\n", 1i);
__asm__("int3");

++1;

$ gcc breakpoint.c -o breakpoint
i equal to: ©
Trace/breakpoint trap

set_system_intr_gate_ist

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://github.com/torvalds/linux/blame/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/KGDB
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
http://en.wikipedia.org/wiki/X86_debug_register
http://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/General_protection_fault
http://en.wikipedia.org/wiki/INT_%28x86_instruction%29#INT_3

gdb

$ gdb breakpoint

(gdb) run
Starting program: /home/alex/breakpoints
i equal to: ©

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000000000400585 in main ()

=> Ox0000000000400585 <main+31>: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1
(gdb) c

Continuing.

i equal to: 1

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000000000400585 in main ()

=> Ox0000000000400585 <main+31>: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1
(gdb) c

Continuing.

i equal to: 2

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000000000400585 in main ()
=> Ox0000000000400585 <main+31>: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1

set_intr_gate_ist set_system_intr_gate_ist

® debug ;
® int3.
C *.c/*.h arch/x86/include/asm/traps.h

asmlinkage void debug(void);

and

asmlinkage void int3(void);

asmlinkage gce C asmlinkage gcc So, both handlers are defined in the

arch/x86/entry/entry_64.S assembly source code file with the idtentry macro:

arch/x86/entry/entry_64.S idtentry

idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

and

idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/traps.h
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S

general purpose registers SIGILL signal arch/x86/kernel/entry_64.S

idtentry
sym globl name do_sym * has_error_code
paranoid - shift_ist -

idtentry
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-

ENTRY (\sym)

END(\sym)
.endm

Before we will consider internals of the idtentry macro, we should to know state of stack when an exception occurs. As we may read

in the Intel® 64 and TA-32 Architectures Software Developer’s Manual 3A, the state of stack when an exception occurs is following:

identry Intel®64 and IA-32 Architectures Software Developer's Manual 3A
focccoococooo +
+40 | %SS |
+32 | %RSP |
+24 | %RFLAGS |
+16 | %CS |
+8 | %RIP |
© | ERROR CODE | <-- %RSP
fococoocacooo +
idtmacro #DB BP

idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

debug int3 do_debug do_int3 debug int3 idtentry

.ifeq \has_error_code

pushq $-
.endif
«q»
idtentry shift_ist paranoid Interrupt Stack Table - x86_64 double fault

shift_istIST

paranoid CS CPL Current Privilege Level 3

testl $3,CS(%rsp)
jnz userspace

//

100

https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64.S
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/X86-64

if we are in an NMI/MCE/DEBUG/whatever super-atomic entry context, which might have triggered right after a normal entry
wrote CS to the stack but before we executed SWAPGS, then the only safe way to check for GS is the slower method: the
RDMSR.

NMI swapgs MSR_GS_BASE Cpu MSR_GS_BASE

movl $MSR_GS_BASE, %ecx

rdmsr
testl %edx,%edx
js 1f
MSR_GS_BASE edx:eax gs Oxffff880000000000 MSR_GS_BASE
Oxffff880000000000 Oxffffc7ffffffffff rdmsr edx - Oxffffggeo 4 -30720 CPU gs

ALLOC_PT_GPREGS_ON_STACK

arch / x86 / entry / calling.h 15* 8

.macro ALLOC_PT_GPREGS_ON_STACK addskip=0
addq $-(15*8+\addskip), %rsp
.endm

ALLOC_PT_GPREGS_ON_STACK

+160
+152
+144
+136
+128
+120

%RSP
%RFLAGS
%CS

%RIP

ERROR CODE

+112 |
+104 |
+96 |
+88 |
+80 |
+72 |
+64 |
+56 |
+48 |
+40 |
+32 |
+24 |
+16 |
+8 |

|

+0 <- %RSP

.1f \paranoid
.if \paranoid == 1
testb $3, CS(%rsp)
jnz 1f
.endif
call paranoid_entry
.else
call error_entry
.endif

http://www.felixcloutier.com/x86/SWAPGS.html
https://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h

debug int3 paranoid = 1 CS 1f paranoid_entry Let's consider first case when we came from

userspace to an exception handler. As described above we should jump at 1 label. The 1 label starts from the call of the

call error_entry

SAVE_C_REGS
SAVE_EXTRA_REGS

arch/x86/entry/calling.h

.macro SAVE_EXTRA_REGS offset=
movg %ri5, 0*s+\offset(%rsp)
movg %ri4, 1*s+\offset(%rsp)
movg %ri3, 2*s+\offset(%rsp)

movg %ri2, 3*s+\offset(%rsp)

movg %rbp, 4*s+\offset(%rsp)

movg %rbx, S5*s+\offset(%rsp)
.endm

SAVE_C_REGS SAVE_EXTRA_REGS :

Fomemmmeeeaaa +
+160 | %SS |
+152 | %RSP |
+144 | %RFLAGS |
+136 | %CS |
+128 | %RIP |
+120 | ERROR CODE |
Jececacacooas |
+112 | %RDI |
+104 | %RSI |
+96 | %RDX |
+88 | %RCX |
+80 | %RAX |
+72 | %R8 |
+64 | %R9 |
+56 | %R10 |
+48 | %R11 |
+40 | %RBX |
+32 | %RBP |
+24 | %R12 |
+16 | %R13 |
+8 | %R14 |
+0 | %R15 | <- %RSP
Fomm e +
testb , CS+8(%rsp)
jz .Lerror_kernelspace
RIP SWAPGS MSR_KERNEL_GS_BASE MSR_GS_BASE gs SWAPGS error_entry
idtentry error_entry

movq %rsp, %rdi
call sync_regs

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h
http://www.felixcloutier.com/x86/SWAPGS.html

rdi sync_regs (x86_64 ABI) arch / x86 / kernel / traps.c

asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)

{
struct * = task_pt_regs(current);
*regs = *eregs;
return regs;

}

[arch/x86/include/asm/processor.h] task_ptr_regs
(https://github.com/torvalds/linux/blob/16£73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/ include / asm / processor.h)
task_ptr_regs thread.sp0®

#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp® - 1)

sync_regs

movq %rax, %rsp

1. pt_regs rdi

movq %rsp, %rdi

2.rsi -1

.if \has_error_code
movq ORIG_RAX(%rsp), %rsi
movq $-1, ORIG_RAX(%rsp)
.else
xorl %esi, %esi
.endif

esi

call \do_sym

which:

dotraplinkage void do_debug(struct pt_regs *regs, long error_code);

debug

dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code);

int 3

>0

https://www.uclibc.org/docs/psABI-x86_64.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/

paranoid = 1 idtentry paranoid paranoid_entry

ENTRY(paranoid_entry)

cld

SAVE_C_REGS

SAVE_EXTRA_REGS

movl , %ebx

movl $MSR_GS_BASE, %ecx

rdmsr

testl %edx, %edx

js 1f

SWAPGS

xorl %ebx, %ebx
ret

END(paranoid_entry)

SWAPGS rdi rsi

movq %rsp, %rdi

.if \has_error_code
movq ORIG_RAX(%rsp), %rsi
movq $-1, ORIG_RAX(%rsp)
.elise
xorl %esi, %esi
.endif

IST

Lif \shift_ist != -
subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
.endif

shift_ist iddentry -1 shift_ist

call \do_sym

paranoid = 0

idtentry error_exit
jmp error_exit
arch/x86/entry/entry_64.S error_exit SWPAGS iret
That's all.
Linux #DB #BP setup_arch

insides] https://github.com/0xAX/linux-insides

twitter ping

PR[linux-

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides）。

Debug registers
Intel 80385

INT 3

gce

TSS

GNU assembly .error directive
dwarf2

CFI directives
IRQ

system call
swapgs

SIGTRAP
Per-CPU variables
kgdb

ACPI

Previous part

162

http://en.wikipedia.org/wiki/X86_debug_register
http://en.wikipedia.org/wiki/Intel_80386
http://en.wikipedia.org/wiki/INT_%28x86_instruction%29#INT_3
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Task_state_segment
https://sourceware.org/binutils/docs/as/Error.html#Error
http://en.wikipedia.org/wiki/DWARF
https://sourceware.org/binutils/docs/as/CFI-directives.html
http://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://en.wikipedia.org/wiki/System_call
http://www.felixcloutier.com/x86/SWAPGS.html
https://en.wikipedia.org/wiki/Unix_signal#SIGTRAP
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/KGDB
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html

Interrupts and Interrupt Handling. Part 4.

Initialization of non-early interrupt gates

This is fourth part about an interrupts and exceptions handling in the Linux kernel and in the previous part we saw first early #ps and
#BP exceptions handlers from the arch/x86/kernel/traps.c. We stopped on the right after the early_trap_init function that called in
the setup_arch function which defined in the arch/x86/kernel/setup.c. In this part we will continue to dive into an interrupts and
exceptions handling in the Linux kernel for x86_64 and continue to do it from the place where we left off in the last part. First thing
which is related to the interrupts and exceptions handling is the setup of the #PF or page fault handler with the early trap_pf_init

function. Let's start from it.

Early page fault handler

The early_trap_pf_init function defined in the arch/x86/kernel/traps.c. It uses set_intr_gate macro that fills Interrupt Descriptor

Table with the given entry:

void __init early_trap_pf_init(void)

{
#ifdef CONFIG_X86_64

set_intr_gate(X86_TRAP_PF, page_fault);
#endif

}

This macro defined in the arch/x86/include/asm/desc.h. We already saw macros like this in the previous part - set_system_intr_gate
and set_intr_gate_ist . This macro checks that given vector number is not greater than 255 (maximum vector number) and calls

_set_gate function as set_system intr_gate and set_intr_gate ist didit:

#define set_intr_gate(n, addr) \
do { \
BUG_ON((unsigned)n > OXFF); \
_set_gate(n, GATE_INTERRUPT, (void *)addr, 0, 0O, \
__KERNEL_CS); \
_trace_set_gate(n, GATE_INTERRUPT, (void *)trace_##addr,\
0, 0, __KERNEL_CS); \

} while (0)

The set_intr_gate macro takes two parameters:

e vector number of a interrupt;

e address of an interrupt handler;
In our case they are:

® X86_TRAP_PF - 14 ;

® page_fault - the interrupt handler entry point.

The x86_TRAP_PF is the element of enum which defined in the arch/x86/include/asm/traprs.h:

enum {

X86_TRAP_PF, /* 14, Page Fault */

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/traprs.h

When the early_trap_pf_init will be called, the set_intr_gate will be expanded to the call of the _set_gate which will fill the
1pT with the handler for the page fault. Now let's look on the implementation of the page_fault handler. The page_fault handler

defined in the arch/x86/kernel/entry_64.S assembly source code file as all exceptions handlers. Let's look on it:

trace_idtentry page_fault do_page_fault has_error_code=

We saw in the previous part how #pB and #Bp handlers defined. They were defined with the idtentry macro, but here we can see

trace_idtentry . This macro defined in the same source code file and depends on the conFIG_TRACING kernel configuration option:

#ifdef CONFIG_TRACING

.macro trace_idtentry sym do_sym has_error_code:req

idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code

.endm

#else

.macro trace_idtentry sym do_sym has_error_code:req

idtentry \sym \do_sym has_error_code=\has_error_code

.endm

#endif

We will not dive into exceptions Tracing now. If CONFIG_TRACING is not set, we can see that trace_idtentry macro just expands to
the normal idtentry . We already saw implementation of the idtentry macro in the previous part, so let's start from the
page_fault exception handler.

As we can see in the idtentry definition, the handler of the page_fault is do_page_fault function which defined in the
arch/x86/mm/fault.c and as all exceptions handlers it takes two arguments:

e regs - pt_regs structure that holds state of an interrupted process;

e error_code - error code of the page fault exception.

Let's look inside this function. First of all we read content of the cr2 control register:

dotraplinkage void notrace
do_page_fault(struct pt_regs *regs, unsigned long error_code)
{

unsigned long address = read_cr2();

This register contains a linear address which caused page fault . In the next step we make a call of the exception_enter function
from the include/linux/context_tracking.h. The exception_enter and exception_exit are functions from context tracking subsystem
in the Linux kernel used by the RCU to remove its dependency on the timer tick while a processor runs in userspace. Almost in the

every exception handler we will see similar code:

enum ;

prev_state = exception_enter();
// exception handler here

exception_exit(prev_state);

The exception_enter function checks that context tracking is enabled with the context_tracking_is_enabled and if it is in
enabled state, we get previous context with the this_cpu_read (more about this_cpu_* operations you can read in the
Documentation). After this it calls context_tracking_user_exit function which informs the context tracking that the processor is

exiting userspace mode and entering the kernel:

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64.S
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://en.wikipedia.org/wiki/Tracing_%28software%29
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/fault.c
https://en.wikipedia.org/wiki/Control_register
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/context_tracking.h
https://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt

static inline enum ctx_state exception_enter(void)

{
enum ;
if ('context_tracking_is_enabled())
return 0;
prev_ctx = this_cpu_read(context_tracking.state);
context_tracking_user_exit();
return prev_ctx;
3

The state can be one of the:

enum {
IN_KERNEL = ©,
IN_USER,

} state;

And in the end we return previous context. Between the exception_enter and exception_exit we call actual page fault handler:

__do_page_fault(regs, error_code, address);

The _ do_page_fault is defined in the same source code file as do_page_fault - arch/x86/mm/fault.c. In the beginning of the
_ do_page_fault we check state of the kmemcheck checker. The kmemcheck detects warns about some uses of uninitialized memory.
We need to check it because page fault can be caused by kmemcheck:

if (kmemcheck_active(regs))
kmemcheck_hide(regs);
prefetchw(&mm->mmap_sem);

After this we can see the call of the prefetchw which executes instruction with the same name which fetches
X86_FEATURE_3DNOW to get exclusive cache line. The main purpose of prefetching is to hide the latency of a memory access. In the
next step we check that we got page fault not in the kernel space with the following condition:

if (unlikely(fault_in_kernel_space(address))) {

where fault_in_kernel_space is:

static int fault_in_kernel_space(unsigned long address)

{
return address >= TASK_SIZE_MAX;
The TASK_SIzE_MAX macro expands to the:

#define TASK_SIZE MAX ((1UL << 47) - PAGE_SIZE)

or oxe0007ffffffffeee . Pay attention on unlikely macro. There are two macros in the Linux kernel:

#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/mm/fault.c
https://www.kernel.org/doc/Documentation/kmemcheck.txt
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/?title=3DNow!
https://en.wikipedia.org/wiki/CPU_cache

You can often find these macros in the code of the Linux kernel. Main purpose of these macros is optimization. Sometimes this situation
is that we need to check the condition of the code and we know that it will rarely be true or false . With these macros we can tell to

the compiler about this. For example

static int proc_root_readdir(struct file *file, struct dir_context *ctx)

{
if (ctx->pos < FIRST_PROCESS_ENTRY) {
int error = proc_readdir(file, ctx);
if (unlikely(error <= 0))
return error;
}

Here we can see proc_root_readdir function which will be called when the Linux VFS needs to read the root directory contents. If
condition marked with unlikely , compiler can put false code right after branching. Now let's back to the our address check.
Comparison between the given address and the oxeeee7ffffffffeee will give us to know, was page fault in the kernel mode or user
mode. After this check we know it. After this _ do_page_fault routine will try to understand the problem that provoked page fault
exception and then will pass address to the appropriate routine. It can be kmemcheck fault, spurious fault, kprobes fault and etc. Will
not dive into implementation details of the page fault exception handler in this part, because we need to know many different concepts

which are provided by the Linux kernel, but will see it in the chapter about the memory management in the Linux kernel.

Back to start_kernel

There are many different function calls after the early_trap_pf_init inthe setup_arch function from different kernel subsystems,
but there are no one interrupts and exceptions handling related. So, we have to go back where we came from - start_kernel function
from the init/main.c. The first things after the setup_arch isthe trap_init function from the arch/x86/kernel/traps.c. This function
makes initialization of the remaining exceptions handlers (remember that we already setup 3 handlers for the #pB - debug exception,
#BP - breakpoint exception and #PF - page fault exception). The trap_init function starts from the check of the Extended Industry

Standard Architecture:

#ifdef CONFIG_EISA

void __iomem *p = early_ioremap(, 4);
if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
EISA bus = 1;

early_iounmap(p, 4);
#endif

Note that it depends on the conF1G_EISA kernel configuration parameter which represents EISA support. Here we use
early_ioremap functionto map I/0 memory on the page tables. We use readl function to read first 4 bytes from the mapped
region and if they are equal to EISA string we set EISA_bus to one. In the end we just unmap previously mapped region. More about

early_ioremap you can read in the part which describes Fix-Mapped Addresses and ioremap.

After this we start to fill the Interrupt Descriptor Table with the different interrupt gates. First of all we set #DE or Divide

Error and #NMI oOr Non-maskable Interrupt :

set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);

We use set_intr_gate macro to set the interrupt gate for the #DE exception and set_intr_gate_ist forthe #nmI . You can
remember that we already used these macros when we have set the interrupts gates for the page fault handler, debug handler and etc,

you can find explanation of it in the previous part. After this we setup exception gates for the following exceptions:

set_system_intr_gate(X86_TRAP_OF, &overflow);
set_intr_gate(X86_TRAP_BR, bounds);

http://lxr.free-electrons.com/ident?i=unlikely
https://en.wikipedia.org/wiki/Virtual_file_system
https://www.kernel.org/doc/Documentation/kprobes.txt
http://0xax.gitbooks.io/linux-insides/content/MM/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c#L492
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture
http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

set_intr_gate(X86_TRAP_UD, invalid_op);
set_intr_gate(X86_TRAP_NM, device_not_available);

Here we can see:

#0F or overflow exception. This exception indicates that an overflow trap occurred when an special INTO instruction was
executed;

#BR OI BOUND Range exceeded exception. This exception indicates that a BOUND-range-exceed fault occurred when a BOUND
instruction was executed;

#UD or Invalid Opcode exception. Occurs when a processor attempted to execute invalid or reserved opcode, processor
attempted to execute instruction with invalid operand(s) and etc;

#NM Or Device Not Available exception. Occurs when the processor tries to execute x87 FPu floating point instruction while

em flag in the control register cre was set.

In the next step we set the interrupt gate for the #DF or Double fault exception:

set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);

This exception occurs when processor detected a second exception while calling an exception handler for a prior exception. In usual

way when the processor detects another exception while trying to call an exception handler, the two exceptions can be handled serially.

If the processor cannot handle them serially, it signals the double-fault or #bF exception.

The following set of the interrupt gates is:

set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
set_intr_gate(X86_TRAP_TS, &invalid_TSS);
set_intr_gate(X86_TRAP_NP, &segment_not_present);
set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
set_intr_gate(X86_TRAP_GP, &general_protection);
set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
set_intr_gate(X86_TRAP_MF, &coprocessor_error);
set_intr_gate(X86_TRAP_AC, &alignment_check);

Here we can see setup for the following exception handlers:

#CSO Or Coprocessor Segment Overrun - this exception indicates that math coprocessor of an old processor detected a page or
segment violation. Modern processors do not generate this exception

#TS or Invalid TSS exception - indicates that there was an error related to the Task State Segment.

#NP O Segment Not Present exception indicates that the present flag of a segment or gate descriptor is clear during attempt
toload oneof cs, ds, es, fs,or gs register.

#SS or Stack Fault exception indicates one of the stack related conditions was detected, for example a not-present stack
segment is detected when attempting to load the ss register.

#GP Or General Protection exception indicates that the processor detected one of a class of protection violations called
general-protection violations. There are many different conditions that can cause general-protection exception. For example
loading the ss, ds, es, fs,or gs register with a segment selector for a system segment, writing to a code segment or a
read-only data segment, referencing an entry in the Interrupt Descriptor Table (following an interrupt or exception) that is not
an interrupt, trap, or task gate and many many more.

Spurious Interrupt - a hardware interrupt that is unwanted.

#MF Or x87 FPU Floating-Point Error exception caused when the x87 FPU has detected a floating point error.

#AC or Alignment Check exception Indicates that the processor detected an unaligned memory operand when alignment

checking was enabled.

After that we setup this exception gates, we can see setup of the Machine-Check exception:

#ifdef CONFIG_X86_MCE

set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);

#endif

http://x86.renejeschke.de/html/file_module_x86_id_142.html
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/?title=Opcode
https://en.wikipedia.org/wiki/Control_register#CR0
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Task_state_segment
https://en.wikipedia.org/wiki/X86_instruction_listings#x87_floating-point_instructions

Note that it depends on the conFic_x86_McE kernel configuration option and indicates that the processor detected an internal machine

error or a bus error, or that an external agent detected a bus error. The next exception gate is for the SIMD Floating-Point exception:

set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);

which indicates the processor has detected an sse or sse2 or sse3 SIMD floating-point exception. There are six classes of

numeric exception conditions that can occur while executing an SIMD floating-point instruction:

e Invalid operation
e Divide-by-zero

e Denormal operand
e Numeric overflow
e Numeric underflow

e Inexact result (Precision)

In the next step we fill the used_vectors array which defined in the arch/x86/include/asm/desc.h header file and represents bitmap :

DECLARE_BITMAP(used_vectors, NR_VECTORS);

of the first 32 interrupts (more about bitmaps in the Linux kernel you can read in the part which describes cpumasks and bitmaps)

for (1 = 0; i < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors)

where FIRST EXTERNAL_VECTOR is:

#define FIRST_EXTERNAL_VECTOR 0x20

After this we setup the interrupt gate for the ia32_syscall and add ox8e tothe used_vectors bitmap:

#ifdef CONFIG_IA32_EMULATION
set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
set_bit(IA32_SYSCALL_VECTOR, used_vectors);

#endif

There is CONFIG_IA32_EMULATION kernel configuration option on x86_64 Linux kernels. This option provides ability to execute 32-bit
processes in compatibility-mode. In the next parts we will see how it works, in the meantime we need only to know that there is yet

another interrupt gate in the 1pT with the vector number oxge . In the next step we maps IDT to the fixmap area:

__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
idt_descr.address = fix_to_virt(FIX_RO_IDT);

and write its address to the idt_descr.address (more about fix-mapped addresses you can read in the second part of the Linux kernel
memory management chapter). After this we can see the call of the cpu_init function that defined in the
arch/x86/kernel/cpu/common.c. This function makes initialization of the all per-cpu state. In the beginning of the cpu_init we do
the following things: First of all we wait while current cpu is initialized and than we call the cr4_init_shadow function which stores

shadow copy of the cr4 control register for the current cpu and load CPU microcode if need with the following function calls:

wait_for_master_cpu(cpu);
cr4_init_shadow();
load_ucode_ap();

Next we get the Task State Segment for the current cpu and orig_ist structure which represents origin Interrupt Stack Table

values with the:

https://en.wikipedia.org/wiki/Machine-check_exception
https://en.wikipedia.org/?title=SIMD
https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/desc.h
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/cpu/common.c

t = &per_cpu(cpu_tss, cpu);
oist = &per_cpu(orig_ist, cpu);

As we got values of the Task state Segment and Interrupt Stack Table for the current processor, we clear following bits in the

cr4 control register:

cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);

with this we disable vmgé extension, virtual interrupts, timestamp (RDTSC can only be executed with the highest privilege) and debug

extension. After this we reload the Global Descriptor Table and Interrupt Descriptor table with the:

switch_to_new_gdt(cpu);
loadsegment(fs, 0);
load_current_idt();

After this we setup array of the Thread-Local Storage Descriptors, configure NX and load CPU microcode. Now is time to setup and
load per-cpu Task State Segments. We are going in a loop through the all exception stack which is N_EXCEPTION_STACks or 4 and

fill it with Interrupt Stack Tables

if (loist->ist[0]) {
char *estacks = per_cpu(exception_stacks, cpu);

for (v = 0; v < N_EXCEPTION_STACKS; v++) {
estacks += exception_stack_sizes[v];
oist->ist[v] = t->x86_tss.ist[v] =
(unsigned long)estacks;
if (v == DEBUG_STACK-1)
per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;

As we have filled Task state Segments withthe Interrupt Stack Tables we canset Tss descriptor for the current processor and
load it with the:

set_tss_desc(cpu, t);
load_TR_desc();

where set_tss_desc macro from the arch/x86/include/asm/desc.h writes given descriptor to the Global Descriptor Table of the

given processor:

#define set_tss_desc(cpu, addr) _ set_tss_desc(cpu, GDT_ENTRY_TSS, addr)
static inline void __set_tss_desc(unsigned cpu, unsigned int entry, void *addr)

{
struct *d = get_cpu_gdt_table(cpu);
tss_desc tss;
set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS,
I0_BITMAP_OFFSET + IO_BITMAP_BYTES +
sizeof(unsigned long) - 1);
write_gdt_entry(d, entry, &tss, DESC_TSS);
3

and load_TR_desc macro expands tothe 1tr or Load Task Register instruction:

#define load_TR_desc() native_load_tr_desc()
static inline void native_load_tr_desc(void)
{

asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8));

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/NX_bit
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h

In the end of the trap_init function we can see the following code:

set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);

#ifdef CONFIG_X86_64
memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * Ve
set_nmi_gate(X86_TRAP_DB, &debug);
set_nmi_gate(X86_TRAP_BP, &int3);

#endif

Here we copy idt_table tothe nmi_dit_table and setup exception handlers for the #DB or Debug exception and #BR or
Breakpoint exception . You can remember that we already set these interrupt gates in the previous part, so why do we need to setup it
again? We setup it again because when we initialized it before in the early trap_init function, the Task State Segment was not

ready yet, but now it is ready after the call of the cpu_init function.

That's all. Soon we will consider all handlers of these interrupts/exceptions.

Conclusion

It is the end of the fourth part about interrupts and interrupt handling in the Linux kernel. We saw the initialization of the Task State
Segment in this part and initialization of the different interrupt handlers as pivide Error , Page Fault exception and etc. You can
note that we saw just initialization stuff, and will dive into details about handlers for these exceptions. In the next part we will start to do
it.

If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e page fault

e Interrupt Descriptor Table

e Tracing

e cr2

e RCU

e thiscpu* operations

e kmemcheck

e prefetchw

e 3DNow

e CPU caches

e VES

e Linux kernel memory management
e Fix-Mapped Addresses and ioremap
e Extended Industry Standard Architecture
e INT isntruction

e INTO

e BOUND

e opcode

e control register

e x87 FPU

e MCE exception

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://en.wikipedia.org/wiki/Task_state_segment
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://en.wikipedia.org/wiki/Tracing_%28software%29
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/Read-copy-update
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/this_cpu_ops.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/?title=3DNow!
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Virtual_file_system
http://0xax.gitbooks.io/linux-insides/content/MM/index.html
http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html
https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture
https://en.wikipedia.org/wiki/INT_%28x86_instruction%29
http://x86.renejeschke.de/html/file_module_x86_id_142.html
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/?title=Opcode
https://en.wikipedia.org/wiki/Control_register#CR0
https://en.wikipedia.org/wiki/X86_instruction_listings#x87_floating-point_instructions
https://en.wikipedia.org/wiki/Machine-check_exception

SIMD

cpumasks and bitmaps
NX

Task State Segment

Previous part

171

https://en.wikipedia.org/?title=SIMD
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Task_state_segment
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html

Interrupts and Interrupt Handling. Part 5.

Implementation of exception handlers

This is the fifth part about an interrupts and exceptions handling in the Linux kernel and in the previous part we stopped on the setting
of interrupt gates to the Interrupt descriptor Table. We did it in the trap_init function from the arch/x86/kernel/traps.c source code
file. We saw only setting of these interrupt gates in the previous part and in the current part we will see implementation of the exception
handlers for these gates. The preparation before an exception handler will be executed is in the arch/x86/entry/entry_64.S assembly file

and occurs in the idtentry macro that defines exceptions entry points:

idtentry divide_error do_divide_error has_error_code=
idtentry overflow do_overflow has_error_code=
idtentry invalid_op do_invalid_op has_error_code=
idtentry bounds do_bounds has_error_code=
idtentry device_not_available do_device_not_available has_error_code=
idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=
idtentry invalid_TSS do_invalid_TSS has_error_code=
idtentry segment_not_present do_segment_not_present has_error_code=
idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=
idtentry coprocessor_error do_coprocessor_error has_error_code=
idtentry alignment_check do_alignment_check has_error_code=
idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=

The idtentry macro does following preparation before an actual exception handler (do_divide_error for the divide_error ,
do_overflow forthe overflow and etc.) will get control. In another words the idtentry macro allocates place for the registers

(pt_regs structure) on the stack, pushes dummy error code for the stack consistency if an interrupt/exception has no error code, checks

the segment selector in the cs segment register and switches depends on the previous state(userspace or kernelspace). After all of

these preparations it makes a call of an actual interrupt/exception handler:
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-
ENTRY (\sym)

call \do_sym

END(\sym)
.endm

After an exception handler will finish its work, the idtentry macro restores stack and general purpose registers of an interrupted task

and executes iret instruction:
ENTRY(paranoid_exit)
RESTORE_EXTRA_REGS
RESTORE_C_REGS
REMOVE_PT_GPREGS_FROM_STACK

INTERRUPT_RETURN
END(paranoid_exit)

where INTERRUPT_RETURN is:

#define INTERRUPT_RETURN jmp native_iret

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-4.html
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S#L820
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/uapi/asm/ptrace.h#L43
http://x86.renejeschke.de/html/file_module_x86_id_145.html

ENTRY(native_iret)
.global native_irq_return_iret

iretq

More about the idtentry macro you can read in the third part of the http://0Oxax.gitbooks.io/linux-insides/content/interrupts/interrupts-
3.html chapter. Ok, now we saw the preparation before an exception handler will be executed and now time to look on the handlers.

First of all let's look on the following handlers:

e divide_error

e overflow

e invalid_op

® COprocessor_segment_overrun
e invalid_TSS

e segment_not_present

e stack_segment

e alignment_check

All these handlers defined in the arch/x86/kernel/traps.c source code file with the po_ERROR macro:

DO_ERROR(X86_TRAP_DE, SIGFPE, '"divide error", divide_error)
DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow'", overflow)
DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, '"coprocessor segment overrun', coprocessor_segment_overrun)
DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(X86_TRAP_NP, SIGBUS, '"segment not present", segment_not_present)
DO_ERROR(X86_TRAP_SS, SIGBUS, '"stack segment", stack_segment)

DO_ERROR (X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)

As we can see the Dpo_ERROR macro takes 4 parameters:

Vector number of an interrupt;

Signal number which will be sent to the interrupted process;

String which describes an exception;

Exception handler entry point.

This macro defined in the same source code file and expands to the function with the do_handler name:

#define DO_ERROR(trapnr, signr, str, name) \
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
{ \

do_error_trap(regs, error_code, str, trapnr, signr); \
}

Note on the ## tokens. This is special feature - GCC macro Concatenation which concatenates two given strings. For example, first

DO_ERROR in our example will expands to the:

dotraplinkage void do_divide error(struct pt_regs *regs, long error_code) \

{

We can see that all functions which are generated by the po_ERROR macro just make a call of the do_error_trap function from the

arch/x86/kernel/traps.c. Let's look on implementation of the do_error_trap function.

Trap handlers

The do_error_trap function starts and ends from the two following functions:

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

enum = exception_enter();

exception_exit(prev_state);

from the include/linux/context_tracking.h. The context tracking in the Linux kernel subsystem which provide kernel boundaries probes
to keep track of the transitions between level contexts with two basic initial contexts: user or kernel . The exception_enter
function checks that context tracking is enabled. After this if it is enabled, the exception_enter reads previous context and compares
it with the CcONTEXT_KERNEL . If the previous context is user , we call context_tracking_exit function from the
kernel/context_tracking.c which inform the context tracking subsystem that a processor is exiting user mode and entering the kernel

mode:

if (!context_tracking_is_enabled())
return 0;

prev_ctx = this_cpu_read(context_tracking.state);
if (prev_ctx != CONTEXT_KERNEL)
context_tracking_exit(prev_ctx);

return prev_ctx;

If previous context is non user , we just return it. The pre_ctx has enum ctx_state type which defined in the

include/linux/context_tracking_state.h and looks as:

enum {
CONTEXT_KERNEL = 0,
CONTEXT_USER,
CONTEXT_GUEST,

} state;

The second function is exception_exit defined in the same include/linux/context_tracking.h file and checks that context tracking is

enabled and call the contert_tracking_enter function if the previous context was user :

static inline void exception_exit(enum ctx_state prev_ctx)

{
if (context_tracking_is_enabled()) {
if (prev_ctx != CONTEXT_KERNEL)
context_tracking_enter(prev_ctx);
}
}

The context_tracking_enter function informs the context tracking subsystem that a processor is going to enter to the user mode from

the kernel mode. We can see the following code between the exception_enter and exception_exit :

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
NOTIFY_STOP) {
conditional_sti(regs);
do_trap(trapnr, signr, str, regs, error_code,
fill trap_info(regs, signr, trapnr, &info));

First of all it calls the notify_die function which defined in the kernel/notifier.c. To get notified for kernel panic, kernel oops, Non-
Maskable Interrupt or other events the caller needs to insert itself in the notify_die chain and the notify die function does it. The
Linux kernel has special mechanism that allows kernel to ask when something happens and this mechanism called notifiers or
notifier chains . This mechanism used for example for the use hotplug events (look on the drivers/usb/core/notify.c), for the
memory hotplug (look on the include/linux/memory.h, the hotplug_memory_notifier macro and etc...), system reboots and etc. A

notifier chain is thus a simple, singly-linked list. When a Linux kernel subsystem wants to be notified of specific events, it fills out a

https://github.com/torvalds/linux/tree/master/include/linux/context_tracking.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/context_tracking.c
https://github.com/torvalds/linux/tree/master/include/linux/context_tracking_state.h
https://github.com/torvalds/linux/tree/master/include/linux/context_tracking.h
https://github.com/torvalds/linux/tree/master/kernel/notifier.c
https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://github.com/torvalds/linux/tree/master/drivers/usb/core/notify.c
https://en.wikipedia.org/wiki/Hot_swapping
https://github.com/torvalds/linux/tree/master/include/linux/memory.h

special notifier_block structure and passes it to the notifier_chain_register function. An event can be sent with the call of the
notifier_call_chain function. First of all the notify_die function fills die_args structure with the trap number, trap string,
registers and other values:

struct ={
.regs = regs,
.str = str,
.err = err,

.trapnr = trap,
.signr = sig,

and returns the result of the atomic_notifier_call_chain function with the die_chain :

static ATOMIC_NOTIFIER_HEAD(die_chain);
return atomic_notifier_call _chain(&die_chain, val, &args);

which just expands to the atomic_notifier_head structure that contains lock and notifier_block :

struct {
spinlock_t lock;
struct *

3

The atomic_notifier_call_chain function calls each function in a notifier chain in turn and returns the value of the last notifier
function called. If the notify_die inthe do_error_trap does notreturn NOTIFY_STOP we execute conditional_sti function from

the arch/x86/kernel/traps.c that checks the value of the interrupt flag and enables interrupt depends on it:

static inline void conditional_sti(struct pt_regs *regs)

{
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();

more about local_irq_enable macro you can read in the second part of this chapter. The next and last call in the do_error_trap is
the do_trap function. First of all the do_trap function defined the tsk variable which has task_struct type and represents the

current interrupted process. After the definition of the tsk , we can see the call of the do_trap_no_signal function:

struct * = current;

if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
return;

The do_trap_no_signal function makes two checks:

e Did we come from the Virtual 8086 mode;

e Did we come from the kernelspace.

if (vB8086_mode(regs)) {

if (!user_mode(regs)) {

return ;

We will not consider first case because the long mode does not support the Virtual 8086 mode. In the second case we invoke

fixup_exception function which will try to recover a fault and die if we can't:

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Interrupt_flag
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-2.html
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Virtual_8086_mode

if (!fixup_exception(regs)) {
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
die(str, regs, error_code);

The die function defined in the arch/x86/kernel/dumpstack.c source code file, prints useful information about stack, registers, kernel
modules and caused kernel oops. If we came from the userspace the do_trap_no_signal function will return -1 and the execution of
the do_trap function will continue. If we passed through the do_trap_no_signal function and did not exit from the do_trap after
this, it means that previous context was - user . Most exceptions caused by the processor are interpreted by Linux as error conditions,
for example division by zero, invalid opcode and etc. When an exception occurs the Linux kernel sends a signal to the interrupted
process that caused the exception to notify it of an incorrect condition. So, in the do_trap function we need to send a signal with the
given number (s16rFPE for the divide error, s1eILL for the overflow exception and etc...). First of all we save error code and vector

number in the current interrupts process with the filling thread.error_code and thread_trap_nr :

tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;

After this we make a check do we need to print information about unhandled signals for the interrupted process. We check that
show_unhandled_signals variable is set, that unhandled_signal function from the kernel/signal.c will return unhandled signal(s) and

printk rate limit:

#ifdef CONFIG_X86_64
if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
printk_ratelimit()) {
pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
tsk->comm, tsk->pid, str,
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
pr_cont("\n");
}

#endif

And send a given signal to interrupted process:

force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);

This is the end of the do_trap . We just saw generic implementation for eight different exceptions which are defined with the

DO_ERROR macro. Now let's look on another exception handlers.

Double fault

The next exception is #DF or Double fault . This exception occurs when the processor detected a second exception while calling an

exception handler for a prior exception. We set the trap gate for this exception in the previous part:

set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);

Note that this exception runs on the DOUBLEFAULT_STAcK Interrupt Stack Table which has index - 1 :

#define DOUBLEFAULT_STACK 1

The double_fault is handler for this exception and defined in the arch/x86/kernel/traps.c. The double_fault handler starts from the

definition of two variables: string that describes exception and interrupted process, as other exception handlers:

static const char str[] = "double fault";

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/dumpstack.c
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/signal.c
https://en.wikipedia.org/wiki/Printk
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

struct * = current;

The handler of the double fault exception split on two parts. The first part is the check which checks that a faultis a non-1sT fault on
the espfixe4 stack. Actually the iret instruction restores only the bottom 16 bits when returning toa 16 bit segment. The
espfix feature solves this problem. So if the non-1sT fault on the espfix64 stack we modify the stack to make it look like General

Protection Fault :

struct * = task_pt_regs(current);

memmove (&normal_regs->ip, (void *)regs->sp, 5*8);
ormal_regs->orig_ax = 0;

regs->ip = (unsigned long)general_protection;
regs->sp = (unsigned long)&normal_regs->orig_ax;
return;

In the second case we do almost the same that we did in the previous exception handlers. The first is the call of the ist_enter

function that discards previous context, user in our case:

ist_enter(regs);

And after this we fill the interrupted process with the vector number of the bouble fault exception and error code as we did it in the

previous handlers:

tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_DF;

Next we print useful information about the double fault (PID number, registers content):

#ifdef CONFIG_DOUBLEFAULT
df_debug(regs, error_code);

#endif
And die:
for (;7)
die(str, regs, error_code);
That's all.

Device not available exception handler

The next exception is the #NM or Device not available . The Device not available exception can occur depending on these

things:

e The processor executed an x87 FPU floating-point instruction while the EM flag in control register cre was set;
e The processor executed a wait or fwait instruction while the mp and Ts flags of register cro were set;
e The processor executed an x87 FPU, MMX or SSE instruction while the Ts flag in control register cre was set and the Em

flag is clear.

The handler of the Dpevice not available exception isthe do_device not_available function and it defined in the
arch/x86/kernel/traps.c source code file too. It starts and ends from the getting of the previous context, as other traps which we saw in

the beginning of this part:

enum ;
prev_state = exception_enter();

https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/MMX_%28instruction_set%29
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c

exception_exit(prev_state);

In the next step we check that Fpu is not eager:

BUG_ON(use_eager_fpu());

When we switch into a task or interrupt we may avoid loading the Fpu state. If a task will use it, we catch pevice not Available
exception exception. If we loading the Fpu state during task switching, the Fpu is eager. In the next step we check cre control

register on the em flag which can show us is x87 floating point unit present (flag clear) or not (flag set):

#ifdef CONFIG_MATH_EMULATION
if (read_cr0() & X86_CRO_EM) {
struct ={};

conditional_sti(regs);

info.regs = regs;
math_emulate(&info);
exception_exit(prev_state);
return;

}

#endif

If the x87 floating point unit not presented, we enable interrupts with the conditional_sti , fill the math_emu_info (defined in the
arch/x86/include/asm/math_emu.h) structure with the registers of an interrupt task and call math_emulate function from the
arch/x86/math-emu/fpu_entry.c. As you can understand from function's name, it emulates x87 FPu unit (more about the x87 we will
know in the special chapter). In other way, if x86_cre_em flag is clear which means that x87 Fpu unit is presented, we call the
fpu__restore function from the arch/x86/kernel/fpu/core.c which copies the Fpu registers from the fpustate to the live hardware

registers. After this FPu instructions can be used:

fpu__restore(¤t->thread.fpu);

General protection fault exception handler
The next exception is the #GP or General protection fault . This exception occurs when the processor detected one of a class of
protection violations called general-protection violations . It can be:

e Exceeding the segment limit when accessing the cs, ds, es, fs or gs segments;
e Loadingthe ss, ds, es, fs or gs register with a segment selector for a system segment.;
e Violating any of the privilege rules;

e and other...
The exception handler for this exception is the do_general_protection from the arch/x86/kernel/traps.c. The
do_general_protection function starts and ends as other exception handlers from the getting of the previous context:
prev_state = exception_enter();

exception_exit(prev_state);

After this we enable interrupts if they were disabled and check that we came from the Virtual 8086 mode:

conditional_sti(regs);

if (vB8086_mode(regs)) {
local_irg_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);

https://github.com/torvalds/linux/tree/master/arch/x86/include/asm/math_emu.h
https://github.com/torvalds/linux/tree/master/arch/x86/math-emu/fpu_entry.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/fpu/core.c
https://github.com/torvalds/linux/tree/master/arch/x86/kernel/traps.c
https://en.wikipedia.org/wiki/Virtual_8086_mode

goto exit;

As long mode does not support this mode, we will not consider exception handling for this case. In the next step check that previous
mode was kernel mode and try to fix the trap. If we can't fix the current general protection fault exception we fill the interrupted process

with the vector number and error code of the exception and add it to the notify_die chain:

if (luser_mode(regs)) {
if (fixup_exception(regs))
goto exit;

tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_GP;
if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
die("general protection fault", regs, error_code);
goto exit;

If we can fix exception we go to the exit label which exits from exception state:

exit:
exception_exit(prev_state);

If we came from user mode we send s1GSeGv signal to the interrupted process from user mode as we did it in the do_trap function:

if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
printk_ratelimit()) {
pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
tsk->comm, task_pid_nr(tsk),
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
pr_cont("\n");

force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);

That's all.

Conclusion

It is the end of the fifth part of the Interrupts and Interrupt Handling chapter and we saw implementation of some interrupt handlers in
this part. In the next part we will continue to dive into interrupt and exception handlers and will see handler for the Non-Maskable

Interrupts, handling of the math coprocessor and SIMD coprocessor exceptions and many many more.
If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e Interrupt descriptor Table
e iret instruction

o GCC macro Concatenation
e kernel panic

e kernel oops

e Non-Maskable Interrupt

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://x86.renejeschke.de/html/file_module_x86_id_145.html
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html#Concatenation
https://en.wikipedia.org/wiki/Kernel_panic
https://en.wikipedia.org/wiki/Linux_kernel_oops
https://en.wikipedia.org/wiki/Non-maskable_interrupt

hotplug
interrupt flag
long mode
signal

printk
coprocessor
SIMD
Interrupt Stack Table
PID

x87 FPU
control register
MMX

Previous part

180

https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/MMX_%28instruction_set%29
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-4.html

Interrupts and Interrupt Handling. Part 6.

Non-maskable interrupt handler

It is sixth part of the Interrupts and Interrupt Handling in the Linux kernel chapter and in the previous part we saw implementation of
some exception handlers for the General Protection Fault exception, divide exception, invalid opcode exceptions and etc. As I wrote in

the previous part we will see implementations of the rest exceptions in this part. We will see implementation of the following handlers:

e Non-Maskable interrupt;
e BOUND Range Exceeded Exception;
e Coprocessor exception;

e SIMD coprocessor exception.

in this part. So, let's start.

Non-Maskable interrupt handling

A Non-Maskable interrupt is a hardware interrupt that cannot be ignored by standard masking techniques. In a general way, a non-

maskable interrupt can be generated in either of two ways:

e External hardware asserts the non-maskable interrupt pin on the CPU.

e The processor receives a message on the system bus or the APIC serial bus with a delivery mode NmI .

When the processor receives a NI from one of these sources, the processor handles it immediately by calling the nm1 handler
pointed to by interrupt vector which has number 2 (see table in the first part). We already filled the Interrupt Descriptor Table with the

vector number, address of the nmi interrupt handler and NMI_sTAck Interrupt Stack Table entry:

set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);

inthe trap_init function which defined in the arch/x86/kernel/traps.c source code file. In the previous parts we saw that entry points

of the all interrupt handlers are defined with the:
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-

ENTRY (\sym)

END(\sym)
.endm

macro from the arch/x86/entry/entry_64.S assembly source code file. But the handler of the Non-Maskable interrupts is not defined

with this macro. It has own entry point:

ENTRY (nmi)
END(nmi)

in the same arch/x86/entry/entry_64.S assembly file. Lets dive into it and will try to understand how Non-Maskable interrupt handler

works. The nmi handlers starts from the call of the:

PARAVIRT_ADJUST_EXCEPTION_FRAME

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Non-maskable_interrupt
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/CPU_socket
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://en.wikipedia.org/wiki/Interrupt_vector_table
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/x86/kernel-stacks
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S

macro but we will not dive into details about it in this part, because this macro related to the Paravirtualization stuff which we will see

in another chapter. After this save the content of the rdx register on the stack:

pushq %rdx

And allocated check that cs was not the kernel segment when an non-maskable interrupt occurs:

cmpl $__ KERNEL_CS, (%rsp)
jne first_nmi

The _ KkerneL_cs macro defined in the arch/x86/include/asm/segment.h and represented second descriptor in the Global Descriptor
Table:

#define GDT_ENTRY_KERNEL_CS 2
#define KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)

more about DT you can read in the second part of the Linux kernel booting process chapter. If cs is not kernel segment, it means
that it is not nested nMI and we jump on the first_nmi label. Let's consider this case. First of all we put address of the current stack
pointer to the rdx and pushes 1 to the stack in the first_nmi label:

mov(q (%rsp), %rdx
pushq

Why do we push 1 on the stack? As the comment says: we allow breakpoints in NMIs . On the x86 64, like other architectures, the
CPU will not execute another nmI until the first nmI is completed. A nm1 interrupt finished with the iret instruction like other
interrupts and exceptions do it. If the nmr handler triggers either a page fault or breakpoint or another exception which are use iret
instruction too. If this happens while in nMI context, the CPU will leave nMI context and a new NMI may come in. The iret used
to return from those exceptions will re-enable nMIs and we will get nested non-maskable interrupts. The problem the nNmI handler
will not return to the state that it was, when the exception triggered, but instead it will return to a state that will allow new nmIs to
preempt the running nMI handler. If another nMI comes in before the first NMI handler is complete, the new NMI will write all over
the preempted NmIs stack. We can have nested nmIs where the next NMI is using the top of the stack of the previous NmI . It
means that we cannot execute it because a nested non-maskable interrupt will corrupt stack of a previous non-maskable interrupt. That's
why we have allocated space on the stack for temporary variable. We will check this variable that it was set when a previous NMI is
executing and clear if it is not nested NMI . We push 1 here to the previously allocated space on the stack to denote that a non-

maskable interrupt executed currently. Remember that when and NMI or another exception occurs we have the following stack frame:

Poscoasscocscscosnscncnas +
| SS |
| RSP |
| RFLAGS |
| cs |
| RIP |
Pooosacososososnonasonaoa +

RSP

(9]
2]

https://en.wikipedia.org/wiki/Paravirtualization
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/segment.h
https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-2.html
https://en.wikipedia.org/wiki/X86-64
http://faydoc.tripod.com/cpu/iret.htm
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Breakpoint
https://en.wikipedia.org/wiki/Call_stack

In the next step we allocate yet another 40 bytes on the stack:

subq $(5*8), %rsp

and pushes the copy of the original stack frame after the allocated space:

.rept
pushq *8(%rsp)
.endr

with the .rept assembly directive. We need in the copy of the original stack frame. Generally we need in two copies of the interrupt

stack. First is copied interrupts stack: saved stack frame and copied stack frame. Now we pushes original stack frame to the
saved stack frame which locates after the just allocated 4e bytes (copied stack frame). This stack frame is used to fixup the
copied stack frame that a nested NMI may change. The second - copied stack frame modified by any nested nmIs to let the first
NMI - know that we triggered a second nmI and we should repeat the first nmr handler. Ok, we have made first copy of the original

stack frame, now time to make second copy:

addq $(10*8), %rsp

.rept

pushq -6*8(%rsp)
.endr

subq $(5*8), %rsp

After all of these manipulations our stack frame will be like this:

original SS |
original Return RSP |
original RFLAGS |
original CS |
original RIP |

-
()
3
©
0
-+
o
=
o
Q
()
-4
o
=
=
=%
X

=
=
H
o
X
3
2]
c
o+
[
=]
Q
<
)
S
.
@
o
=
®

copied SS |
copied Return RSP |
RFLAGS |

copied CS |
|

[2]
o
©
T
[]
o

copied RIP

Saved SS |
Saved Return RSP |

RFLAGS |
Saved CS |
Saved RIP |

[
Q
<
®
o

After this we push dummy error code on the stack as we did it already in the previous exception handlers and allocate space for the

general purpose registers on the stack:

pushq $-
ALLOC_PT_GPREGS_ON_STACK

We already saw implementation of the ALLoC_PT_GREGS_ON_STACK macro in the third part of the interrupts chapter. This macro defined
in the arch/x86/entry/calling.h and yet another allocates 126 bytes on stack for the general purpose registers, from the rdi to the

ri5 :

.macro ALLOC_PT_GPREGS_ON_STACK addskip=

http://tigcc.ticalc.org/doc/gnuasm.html#SEC116
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-3.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/calling.h

addq $-(15*3+\addskip), %rsp
.endm

After space allocation for the general registers we can see call of the paranoid_entry :

call paranoid_entry

We can remember from the previous parts this label. It pushes general purpose registers on the stack, reads Msr_Gs_ase Model
Specific register and checks its value. If the value of the MSR_GS_BASE is negative, we came from the kernel mode and just return from
the paranoid_entry , in other way it means that we came from the usermode and need to execute swapgs instruction which will

change user gs with the kernel gs :

ENTRY(paranoid_entry)

cld

SAVE_C_REGS

SAVE_EXTRA_REGS

movl , %ebx

movl $MSR_GS_BASE, %ecx

rdmsr

testl %edx, %edx

js 1f

SWAPGS

xorl %ebx, %ebx
ret

END(paranoid_entry)

Note that after the swapgs instruction we zeroed the ebx register. Next time we will check content of this register and if we executed
swapgs than ebx must contain @ and 1 in other way. In the next step we store value of the cr2 control register to the ri12

register, because the nm1 handler can cause page fault and corrupt the value of this control register:

movq %Ccr2, %ri2

Now time to call actual nm1 handler. We push the address of the pt_regs tothe rdi, error code to the rsi and call the do_nmi
handler:

movq %rsp, %rdi
movq $-1, %rsi
call do_nmi

We will back to the do_nmi little later in this part, but now let's look what occurs after the do_nmi will finish its execution. After the
do_nmi handler will be finished we check the cr2 register, because we can got page fault during do_nmi performed and if we got it
we restore original cr2 , in other way we jump on the label 1 . After this we test content of the ebx register (remember it must
contain o if we have used swapgs instruction and 1 if we didn't use it) and execute SWAPGS_UNSAFE_STACK if it contains 1 or
jump to the nmi_restore label. The SwAPGS_UNSAFE_STACK macro just expands to the swapgs instruction. In the nmi_restore label
we restore general purpose registers, clear allocated space on the stack for this registers, clear our temporary variable and exit from the

interrupt handler with the INTERRUPT_RETURN macro:

movq %Cr2, %rcx
cmpq %rex, %ri2
je 1f

movq %ri2, %cr2

testl %ebx, %ebx
jnz nmi_restore

SWAPGS_UNSAFE_STACK
RESTORE_EXTRA_REGS

RESTORE_C_REGS
/* Pop the extra iret frame at once */

https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Control_register

REMOVE_PT_GPREGS_FROM_STACK 6*

/* Clear the NMI executing stack variable */
movq , 5*8(%rsp)

INTERRUPT_RETURN

where INTERRUPT_RETURN is defined in the arch/x86/include/irgflags.h and just expands to the iret instruction. That's all.

Now let's consider case when another NmI interrupt occurred when previous NI interrupt didn't finish its execution. You can
remember from the beginning of this part that we've made a check that we came from userspace and jump on the first_nmi in this

case:

cmpl $__ KERNEL_CS, (%rsp)
jne first_nmi

Note that in this case it is first nmI every time, because if the first nm1 catched page fault, breakpoint or another exception it will be

executed in the kernel mode. If we didn't come from userspace, first of all we test our temporary variable:

cmpl , -8(%rsp)
je nested_nmi

and if itissetto 1 we jump to the nested_nmi label. If it is not 1 , we test the 1sT stack. In the case of nested NmIs we check
that we are above the repeat_nmi . In this case we ignore it, in other way we check that we above than end_repeat_nmi and jump on

the nested_nmi_out label.

Now let's look on the do_nmi exception handler. This function defined in the arch/x86/kernel/nmi.c source code file and takes two

parameters:

e address of the pt_regs ;

e error code.

as all exception handlers. The do_nmi starts from the call of the nmi_nesting_preprocess function and ends with the call of the
nmi_nesting_postprocess . The nmi_nesting_preprocess function checks that we likely do not work with the debug stack and if we

on the debug stack set the update_debug_stack per-cpu variable to 1 and call the debug_stack_set_zero function from the

arch/x86/kernel/cpu/common.c. This function increases the debug_stack_use_ctr per-cpu variable and loads new Interrupt

Descriptor Table :

static inline void nmi_nesting_preprocess(struct pt_regs *regs)

{
if (unlikely(is_debug_stack(regs->sp))) {
debug_stack_set_zero();
this_cpu_write(update_debug_stack, 1);
}
3

The nmi_nesting_postprocess function checks the update_debug_stack per-cpu variable which we set in the
nmi_nesting_preprocess and resets debug stack or in another words it loads origin Interrupt Descriptor Table . After the call of
the nmi_nesting_preprocess function, we can see the call of the nmi_enter inthe do_nmi . The nmi_enter increases
lockdep_recursion field of the interrupted process, update preempt counter and informs the RCU subsystem about NMI . There is
also nmi_exit function that does the same stuff as nmi_enter , but vice-versa. After the nmi_enter we increase __ nmi_count in
the irg_stat structure and call the default_do_nmi function. First of all in the default_do_nmi we check the address of the

previous nmi and update address of the last nmi to the actual:

if (regs->ip == __this_cpu_read(last_nmi_rip))
b2b = ;

else
__this_cpu_write(swallow_nmi,);

__this_cpu_write(last_nmi_rip, regs->ip);

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/irqflags.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/nmi.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/cpu/common.c
https://en.wikipedia.org/wiki/Read-copy-update

After this first of all we need to handle CPU-specific NMIs :

handled = nmi_handle(NMI_LOCAL, regs, b2b);
__this_cpu_add(nmi_stats.normal, handled);

And then non-specific nmIs depends on its reason:

reason = x86_platform.get_nmi_reason();
if (reason & NMI_REASON_MASK) {
if (reason & NMI_REASON_SERR)
pci_serr_error(reason, regs);
else if (reason & NMI_REASON_IOCHK)
io_check_error(reason, regs);

__this_cpu_add(nmi_stats.external, 1);
return;

That's all.

Range Exceeded Exception

The next exception is the BounD range exceeded exception. The Bounp instruction determines if the first operand (array index) is
within the bounds of an array specified the second operand (bounds operand). If the index is not within bounds, a Bounp range
exceeded exception or #BR is occurred. The handler of the #BR exception is the do_bounds function that defined in the
arch/x86/kernel/traps.c. The do_bounds handler starts with the call of the exception_enter function and ends with the call of the

exception_exit :
prev_state = exception_enter();
if (notify_die(DIE_TRAP, "bounds", regs, error_code,

X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
goto exit;

exception_exit(prev_state);
return;

After we have got the state of the previous context, we add the exception to the notify_die chain and if it will return NOTIFY_sToP
we return from the exception. More about notify chains and the context tracking functions you can read in the previous part. In the
next step we enable interrupts if they were disabled with the contidional sti function that checks 1F flag and call the

local_irg_enable depends on its value:

conditional_sti(regs);
if (luser_mode(regs))

die("bounds", regs, error_code);

and check that if we didn't came from user mode we send siGseGv signal with the die function. After this we check is MPX enabled

or not, and if this feature is disabled we jump on the exit_trap label:

if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
goto exit_trap;

where we execute “do_trap® function (more about it you can find in the previous part):

“c
exit_trap:

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html
https://en.wikipedia.org/wiki/Intel_MPX

do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code,);
exception_exit(prev_state);

If mpx feature is enabled we check the BNDSTATUS with the get xsave field_ptr function and if it is zero, it means that the MPXx

was not responsible for this exception:

bndcsr = get_xsave_field_ptr(XSTATE_BNDCSR);
if (!bndcsr)
goto exit_trap;

After all of this, there is still only one way when Mpx is responsible for this exception. We will not dive into the details about Intel

Memory Protection Extensions in this part, but will see it in another chapter.

Coprocessor exception and SIMD exception

The next two exceptions are x87 FPU Floating-Point Error exception or #Mr and SIMD Floating-Point Exception or #xF . The first
exception occurs when the x87 Fpu has detected floating point error. For example divide by zero, numeric overflow and etc. The
second exception occurs when the processor has detected SSE/SSE2/SSE3 simp floating-point exception. It can be the same as for the
x87 FPU . The handlers for these exceptions are do_coprocessor_error and do_simd_coprocessor_error are defined in the
arch/x86/kernel/traps.c and very similar on each other. They both make a call of the math_error function from the same source code

file but pass different vector number. The do_coprocessor_error passes X86_TRAP_MF vector number to the math_error :

dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)

{
enum ;
prev_state = exception_enter();
math_error(regs, error_code, X86_TRAP_MF);
exception_exit(prev_state);

}

and do_simd_coprocessor_error passes X86_TRAP_XF tothe math_error function:

dotraplinkage void
do_simd_coprocessor_error(struct pt_regs *regs, long error_code)

{
enum 8
prev_state = exception_enter();
math_error(regs, error_code, X86_TRAP_XF);
exception_exit(prev_state);

}

First of all the math_error function defines current interrupted task, address of its fpu, string which describes an exception, add it to

the notify_die chain and return from the exception handler if it will return NOTIFY_sToP :

struct * = current;

struct * = &task->thread.fpu;

siginfo_t info;

char *str = (trapnr == X86_TRAP_MF) ? "fpu exception"
"simd exception";

if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
return;

After this we check that we are from the kernel mode and if yes we will try to fix an exception with the fixup_exception function. If

we cannot we fill the task with the exception's error code and vector number and die:

if (luser_mode(regs)) {

https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SSE3
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c

if (!fixup_exception(regs)) {
task->thread.error_code = error_code;
task->thread.trap_nr = trapnr;
die(str, regs, error_code);

}

return;

If we came from the user mode, we save the fpu state, fill the task structure with the vector number of an exception and siginfo_t

with the number of signal, errno , the address where exception occurred and signal code:

fpu__save(fpu);

task->thread. trap_nr = trapnr;

task->thread.error_code = error_code;

info.si_signo = SIGFPE;

info.si_errno = 0;

info.si_addr = (void __user *)uprobe_get_trap_addr(regs);

info.si_code = fpu__exception_code(fpu, trapnr);

After this we check the signal code and if it is non-zero we return:

if (!info.si_code)
return;

Or send the s1GFPE signal in the end:

force_sig_info(SIGFPE, &info, task);

That's all.

Conclusion

It is the end of the sixth part of the Interrupts and Interrupt Handling chapter and we saw implementation of some exception handlers in
this part, like non-maskable interrupt, SIMD and x87 FPU floating point exception. Finally we have finsihed with the trap_init
function in this part and will go ahead in the next part. The next our point is the external interrupts and the early_irq_init function

from the init/main.c.
If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e General Protection Fault
e opcode

e Non-Maskable

e BOUND instruction

e CPU socket

e Interrupt Descriptor Table
e Interrupt Stack Table

e Paravirtualization

e .rept

e SIMD

e Coprocessor

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/X87
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Non-maskable_interrupt
http://pdos.csail.mit.edu/6.828/2005/readings/i386/BOUND.htm
https://en.wikipedia.org/wiki/CPU_socket
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/Documentation/x86/kernel-stacks
https://en.wikipedia.org/wiki/Paravirtualization
http://tigcc.ticalc.org/doc/gnuasm.html#SEC116
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Coprocessor

x86_64

iret

page fault

breakpoint

Global Descriptor Table
stack frame

Model Specific regiser
percpu

RCU

MPX

x87 FPU

Previous part

189

https://en.wikipedia.org/wiki/X86-64
http://faydoc.tripod.com/cpu/iret.htm
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Breakpoint
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Model-specific_register
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Intel_MPX
https://en.wikipedia.org/wiki/X87
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-5.html

Interrupts and Interrupt Handling. Part 7.

Introduction to external interrupts

This is the seventh part of the Interrupts and Interrupt Handling in the Linux kernel chapter and in the previous part we have finished
with the exceptions which are generated by the processor. In this part we will continue to dive to the interrupt handling and will start
with the external hardware interrupt handling. As you can remember, in the previous part we have finished with the trap_init

function from the arch/x86/kernel/trap.c and the next step is the call of the early_irg_init function from the init/main.c.

Interrupts are signal that are sent across IRQ) or Interrupt Request Line by a hardware or software. External hardware interrupts
allow devices like keyboard, mouse and etc, to indicate that it needs attention of the processor. Once the processor receives the
Interrupt Request , it will temporary stop execution of the running program and invoke special routine which depends on an
interrupt. We already know that this routine is called interrupt handler (or how we will call it ISR or Interrupt Service Routine
from this part). The ISR or Interrupt Handler Routine can be found in Interrupt Vector table that is located at fixed address in the
memory. After the interrupt is handled processor resumes the interrupted process. At the boot/initialization time, the Linux kernel
identifies all devices in the machine, and appropriate interrupt handlers are loaded into the interrupt table. As we saw in the previous
parts, most exceptions are handled simply by the sending a Unix signal to the interrupted process. That's why kernel is can handle an
exception quickly. Unfortunately we can not use this approach for the external hardware interrupts, because often they arrive after (and
sometimes long after) the process to which they are related has been suspended. So it would make no sense to send a Unix signal to the

current process. External interrupt handling depends on the type of an interrupt:

e I/0 interrupts;
e Timer interrupts;

e Interprocessor interrupts.
I will try to describe all types of interrupts in this book.

Generally, a handler of an 1/0 interrupt must be flexible enough to service several devices at the same time. For example in the PCI
bus architecture several devices may share the same 1IRQ line. In the simplest way the Linux kernel must do following thing when an

1/0 interrupt occurred:

e Save the value of an 1RQ and the register's contents on the kernel stack;
e Send an acknowledgment to the hardware controller which is servicing the 1rQ line;
e Execute the interrupt service routine (next we will call it 1SR) which is associated with the device;

e Restore registers and return from an interrupt;

Ok, we know a little theory and now let's start with the early irq_init function. The implementation of the early irq_init
function is in the kernel/irq/irqdesc.c. This function make early initialization of the irq_desc structure. The irq_desc structure is the
foundation of interrupt management code in the Linux kernel. An array of this structure, which has the same name - irq_desc , keeps
track of every interrupt request source in the Linux kernel. This structure defined in the include/linux/irqdesc.h and as you can note it
depends on the conFIG_sPARSE_IRQ kernel configuration option. This kernel configuration option enables support for sparse irgs. The

irq_desc structure contains many different files:

e irg_common_data - per irq and chip data passed down to chip functions;

e status_use_accessors - contains status of the interrupt source which is combination of the values from the enum from the
include/linux/irq.h and different macros which are defined in the same source code file;

® kstat_irgs - irq stats per-cpu;

® handle_irq - highlevel irg-events handler;

e action - identifies the interrupt service routines to be invoked when the IRQ) occurs;

e irg_count - counter of interrupt occurrences on the IRQ line;

e depth - o if the IRQ line is enabled and a positive value if it has been disabled at least once;

e last_unhandled - aging timer for unhandled count;

e irgs_unhandled - count of the unhandled interrupts;

e lock -aspin lock used to serialize the accesses to the IRQ descriptor;

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-6.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Conventional_PCI
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irqdesc.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irq.h
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29

e pending_mask - pending rebalanced interrupts;
e owner -anowner of interrupt descriptor. Interrupt descriptors can be allocated from modules. This field is need to proved
refcount on the module which provides the interrupts;

e and etc.

Of course it is not all fields of the irq_desc structure, because it is too long to describe each field of this structure, but we will see it

all soon. Now let's start to dive into the implementation of the early_irq_init function.

Early external interrupts initialization

Now, let's look on the implementation of the early irq_init function. Note that implementation of the early irq_init function
depends on the conFIG_SPARSE_IRQ kernel configuration option. Now we consider implementation of the early irq_init function
when the conFIG_sPARSE_IRQ kernel configuration option is not set. This function starts from the declaration of the following

variables: irq descriptors counter, loop counter, memory node and the irq_desc descriptor:

int __init early_irq_init(void)

{
int count, i, node = first_online_node;
struct * f

The node is an online NUMA node which depends on the max_numnopes value which depends on the CONFIG_NODES_SHIFT kernel

configuration parameter:

#define MAX_NUMNODES (1 << NODES_SHIFT)

#ifdef CONFIG_NODES_SHIFT

#define NODES_SHIFT CONFIG_NODES_SHIFT
#else

#define NODES_SHIFT (0]
#endif

As 1 already wrote, implementation of the first_online_node macro depends on the MAX_NUMNODES value:

#if MAX_NUMNODES > 1

#define first_online_node first_node(node_states[N_ONLINE])
#else
#define first_online_node (0]

The node_states is the enum which defined in the include/linux/nodemask.h and represent the set of the states of a node. In our case
we are searching an online node and it will be e if MAX_NUMNODES is one or zero. If the MAX_NUMNODES is greater than one, the
node_states[N_ONLINE] will return 1 and the first_node macro will be expands to the call of the _ first_node function which

will return minimal or the first online node:

#define first_node(src) _ first_node(&(src))

static inline int __ first_node(const nodemask_t *srcp)

{
return min_t(int, MAX_NUMNODES, find_first_bit(srcp->bits, MAX_NUMNODES));

More about this will be in the another chapter about the nNumA . The next step after the declaration of these local variables is the call of
the:

https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Enumerated_type
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/nodemask.h

init_irq_default_affinity();

function. The init_irq_default_affinity function defined in the same source code file and depends on the conFic_smp kernel

configuration option allocates a given cpumask structure (in our case it is the irq_default_affinity):

#if defined(CONFIG_SMP)
cpumask _var_t irq_default_affinity;

static void __init init_irq_default_affinity(void)

{
alloc_cpumask_var(&irg_default_affinity, GFP_NOWAIT);
cpumask_setall(irqg_default_affinity);

3

#else

static void __init init_irq_default_affinity(void)
{

}
#endif

We know that when a hardware, such as disk controller or keyboard, needs attention from the processor, it throws an interrupt. The
interrupt tells to the processor that something has happened and that the processor should interrupt current process and handle an
incoming event. In order to prevent multiple devices from sending the same interrupts, the IRQ system was established where each
device in a computer system is assigned its own special IRQ so that its interrupts are unique. Linux kernel can assign certain IRrQs to
specific processors. This is known as sMp IRQ affinity , and it allows you control how your system will respond to various hardware
events (that's why it has certain implementation only if the conFic_smp kernel configuration option is set). After we allocated

irg_default_affinity cpumask, we cansee printk output:

printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);

which prints NR_IRQS :

~$ dmesg | grep NR_IRQS
[1 NR_IRQS:

The NR_IRQS is the maximum number of the irq descriptors or in another words maximum number of interrupts. Its value depends
on the state of the conFIc_x86_10_APIc kernel configuration option. If the conFIG_x86_10_APIC is not set and the Linux kernel uses
an old PIC chip, the NR_IRQS is:

#define NR_IRQS_LEGACY 16

#ifdef CONFIG_X86_I0 APIC

#else

define NR_IRQS NR_IRQS_LEGACY

#endif

In other way, when the conFI6_x86_10_APICc kernel configuration option is set, the NR_IRQS depends on the amount of the processors

and amount of the interrupt vectors:

#define CPU_VECTOR_LIMIT (64 * NR_CPUS)
#define NR_VECTORS 256
#define I0_APIC_VECTOR_LIMIT (32 * MAX_IO_APICS)
#define MAX_IO_APICS 128
define NR_IRQS \
(CPU_VECTOR_LIMIT > IO_APIC_VECTOR_LIMIT ? \
(NR_VECTORS + CPU_VECTOR_LIMIT) 3 \

(NR_VECTORS + IO_APIC_VECTOR_LIMIT))

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller

We remember from the previous parts, that the amount of processors we can set during Linux kernel configuration process with the
CONFIG_NR_CPUS configuration option:

File Edit ‘iew Search Terminal Help

.config - Linux/x86 4.2.0-rcl Kernel Configuration
> Processor type and features
Processor type and features
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y=
includes, <N> excludes, <M= modularizes features. Press <Esc=<Esc> to
exit, <?> for Help, </= for Search. Legend: [*] built-in []

FProcessor family (Generic-x86-64) --->
[*] Supported processor vendors ---=
[*] Enable DMI scanning
[]

IBM Calgary IOMMU support
[1 Enable Maximum number of SMP Processors and NUMA Nodes
(i) Maximum number of CPUS
[1 SMT (Hyperthreading) scheduler support
[*] Multi-core scheduler support

Freemption Model (Voluntary Kernel Preemption (Desktop))
[#*] Reroute for broken boot IRQs

= it < Help > < Save > < Load >

In the first case (CPU_VECTOR_LIMIT > IO_APIC_VECTOR_LIMIT), the NR_IRQS will be 4352 , in the second case (CPU_VECTOR_LIMIT <
I0_APIC_VECTOR_LIMIT), the NR_IRQS will be 768 .In my case the NR_CPUs is 8 as you can see in the my configuration, the

CPU_VECTOR_LIMIT is 512 andthe I0_APIC_VECTOR_LIMIT is 4096 . So NR_IRQS for my configurationis 4352 :

~$ dmesg | grep NR_IRQS
[0.000000] NR_IRQS:4352

In the next step we assign array of the IRQ descriptors to the irq_desc variable which we defined in the start of the early irq_init

function and calculate count of the irq_desc array with the ARRAY_SIZE macro:

desc = irg_desc;
count = ARRAY_SIZE(irg_desc);

The irg_desc array defined in the same source code file and looks like:

struct [1 ={
[0 ... NR_IRQS-1] = {
.handle_irq = handle_bad_irgq,
.depth =1,
.lock = _ RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
}
3

The irq_desc isarray of the irq descriptors. It has three already initialized fields:

e handle_irq - asI already wrote above, this field is the highlevel irg-event handler. In our case it initialized with the
handle_bad_irq function that defined in the kernel/irg/handle.c source code file and handles spurious and unhandled irgs;
e depth - o if the IRQ line is enabled and a positive value if it has been disabled at least once;

e lock - Aspinlock used to serialize the accesses to the 1RQ descriptor.

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/handle.c

As we calculated count of the interrupts and initialized our irq_desc array, we start to fill descriptors in the loop:

for (1 = 0; 1 < count; i++) {
desc[i].kstat_irgs = alloc_percpu(unsigned int);
alloc_masks(&desc[i], GFP_KERNEL, node);
raw_spin_lock_init(&desc[i].lock);
lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
desc_set_defaults(i, &desc[i], node,)

We are going through the all interrupt descriptors and do the following things:

First of all we allocate percpu variable for the irq kernel statistic with the alloc_percpu macro. This macro allocates one instance

of an object of the given type for every processor on the system. You can access kernel statistic from the userspace via /proc/stat :

~$ cat /proc/stat

cpu 207907 68 53904 5427850 14394 0 394 0 0 0O
cpu@ 25881 11 6684 679131 1351 0 18 0 0 O

cpul 24791 16 5894 679994 2285 0 24 0 0 0

cpu2 26321 4 7154 678924 664 0 71 0 0 O

cpul3 26648 8 6931 678891 414 0 244 0 0 O

Where the sixth column is the servicing interrupts. After this we allocate cpumask for the given irq descriptor affinity and initialize the

spinlock for the given interrupt descriptor. After this before the critical section, the lock will be acquired with a call of the

raw_spin_lock and unlocked with the call of the raw_spin_unlock . In the next step we call the lockdep_set_class macro which

set the Lock validator irq_desc_lock_class class for the lock of the given interrupt descriptor. More about lockdep , spinlock and

other synchronization primitives will be described in the separate chapter.

In the end of the loop we call the desc_set_defaults function from the kernel/irq/irqdesc.c. This function takes four parameters:

e number of a irq;

e interrupt descriptor;

e online NUMA node;

e owner of interrupt descriptor. Interrupt descriptors can be allocated from modules. This field is need to proved refcount on the

module which provides the interrupts;

and fills the rest of the irq_desc fields. The desc_set_defaults function fills interrupt number, irq chip, platform-specific per-

chip private data for the chip methods, per-IRQ data for the irq_chip methods and MSI descriptor for the per irq and irq chip

data:

desc->irq_data.
desc->irq_data.
desc->irq_data.
desc->irq_data.
desc->irq_data.

irq = irq;

chip = &no_irq_chip;
chip_data = 5
handler_data = ;
msi_desc = 2

The irq_data.chip structure provides general API like the irq_set_chip , irq_set_irq_type and etc, for the irq controller

drivers. You can find it in the kernel/irq/chip.c source code file.

After this we set the status of the accessor for the given descriptor and set disabled state of the interrupts:

irg_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);

http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Critical_section
https://lwn.net/Articles/185666/
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://github.com/torvalds/linux/tree/master/drivers/irqchip
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/chip.c

In the next step we set the high level interrupt handlers to the handle_bad_irq which handles spurious and unhandled irgs (as the
hardware stuff is not initialized yet, we set this handler), set irq_desc.desc to 1 which means that an 1RQ is disabled, reset count

of the unhandled interrupts and interrupts in general:

desc->handle_irq = handle_bad_irq;
desc->depth = 1;

desc->irqg_count = 0;
desc->irqs_unhandled = ©;
desc->name = 5

desc->owner = owner;

After this we go through the all possible processor with the for_each possible_cpu helper and set the kstat_irgs to zero for the given

interrupt descriptor:

for_each_possible_cpu(cpu)
*per_cpu_ptr(desc->kstat_irqgs, cpu) = 0;

and call the desc_smp_init function from the kernel/irq/irqdesc.c that initializes NumA node of the given interrupt descriptor, sets
default swp affinity and clears the pending_mask of the given interrupt descriptor depends on the value of the

CONFIG_GENERIC_PENDING_IRQ kernel configuration option:

static void desc_smp_init(struct irq_desc *desc, int node)

{
desc->irqg_data.node = node;
cpumask_copy(desc->irqg_data.affinity, irq_default_affinity);
#ifdef CONFIG_GENERIC_PENDING_IRQ
cpumask_clear (desc->pending_mask);
#endif

}

In the end of the early_irq_init function we return the return value of the arch_early_irg_init function:

return arch_early_irq_init();

This function defined in the kernel/apic/vector.c and contains only one call of the arch_early_ioapic_init function from the
kernel/apic/io_apic.c. As we can understand from the arch_early_ioapic_init function's name, this function makes early
initialization of the I/O APIC. First of all it make a check of the number of the legacy interrupts with the call of the nr_legacy_irgs
function. If we have no legacy interrupts with the Intel 8259 programmable interrupt controller we set io_apic_irgs to the

OxFFffffffffffffff

if (!nr_legacy_irgs())
io_apic_irqgs = ~ 2

After this we are going through the all 1/0 ArIcs and allocate space for the registers with the call of the

alloc_ioapic_saved_registers

for_each_ioapic(1i)
alloc_ioapic_saved_registers(i);

http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cpumask.h#L714
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/apic/vector.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/apic/io_apic.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Intel_8259

And in the end of the arch_early_ioapic_init function we are going through the all legacy irgs (from 1IrRQe to IRQ15) in the loop

and allocate space for the irq_cfg which represents configuration of an irq on the given NuMA node:

for (i = 0; 1 < nr_legacy_irgs(); i++) {
cfg = alloc_irq_and_cfg_at(i, node);
cfg->vector = IRQO_VECTOR + i;
cpumask_setall(cfg->domain);

That's all.

Sparse IRQs

We already saw in the beginning of this part that implementation of the early irq_init function depends on the CONFIG_SPARSE_IRQ
kernel configuration option. Previously we saw implementation of the early_irq_init function when the CONFIG_SPARSE_IRQ
configuration option is not set, now let's look on the its implementation when this option is set. Implementation of this function very
similar, but little differ. We can see the same definition of variables and call of the init_irq_default_affinity in the beginning of the

early_irg_init function:

#ifdef CONFIG_SPARSE_IRQ
int __init early_irq_init(void)

{
int i, initcnt, node = first_online_node;
struct * ;
init_irg_default_affinity();

}

#else

But after this we can see the following call:

initcnt = arch_probe_nr_irqgs();

The arch_probe_nr_irgs function defined in the arch/x86/kernel/apic/vector.c and calculates count of the pre-allocated irgs and
update nr_irgqs with its number. But stop. Why there are pre-allocated irqs? There is alternative form of interrupts called - Message
Signaled Interrupts available in the PCI. Instead of assigning a fixed number of the interrupt request, the device is allowed to record a
message at a particular address of RAM, in fact, the display on the L.ocal APIC. ms1 permits a device to allocate 1, 2, 4, 8,
16 or 32 interrupts and MSI-X permits a device to allocate up to 2048 interrupts. Now we know that irgs can be pre-allocated.
More about mMs1 will be in a next part, but now let's look on the arch_probe_nr_irgs function. We can see the check which assign
amount of the interrupt vectors for the each processor in the system to the nr_irgs if it is greater and calculate the nr which

represents number of MsI interrupts:

int nr_irgs = NR_IRQS;

if (nr_irgs > (NR_VECTORS * nr_cpu_ids))
nr_irgs = NR_VECTORS * nr_cpu_ids;

nr = (gsi_top + nr_legacy_irqgs()) + * nr_cpu_ids;
Take a look on the gsi_top variable. Each Apic is identified with its own 1D and with the offset where its IRQ starts. It is called

GSI base or Global System Interrupt base. Sothe gsi_top represents it. We get the Global System Interrupt base from the

MultiProcessor Configuration Table table (you can remember that we have parsed this table in the sixth part of the Linux Kernel

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/apic/vector.c
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/MultiProcessor_Specification
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html

initialization process chapter).

After this we update the nr depends on the value of the gsi_top :

#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
if (gsi_top <= NR_IRQS_LEGACY)
nr += * nr_cpu_ids;
else
nr += gsi_top * H

#endif

Update the nr_irqgs ifitlessthan nr and return the number of the legacy irgs:

if (nr < nr_irgs)
nr_irgs = nr;

return nr_legacy_irqgs();

}

The next after the arch_probe_nr_irgs is printing information about number of 1RQs :

printk (KERN_INFO "NR_IRQS:%d nr_irqs:%d %d\n", NR_IRQS, nr_irqs, initcnt);

We can find it in the dmesg output:

$ dmesg | grep NR_IRQS
[0.000000] NR_IRQS:4352 nr_irqgs:488 16

After this we do some checks that nr_irgs and initcnt values is not greater than maximum allowable number of irgs :

if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
nr_irgs = IRQ BITMAP_BITS;

if (WARN_ON(initcnt > IRQ_BITMAP_BITS))

initent = IRQ_BITMAP_BITS;

where IRQ BITMAP_BITS is equal to the NR_IRQs if the CONFIG_SPARSE_IRQ is notsetand NR_IRQS + 8196 in other way. In the next
step we are going over all interrupt descriptors which need to be allocated in the loop and allocate space for the descriptor and insert to

the irg_desc_tree radix tree:

for (1 = 0; i < initent; i++) {
desc = alloc_desc(i, node,);
set_bit(i, allocated_irqs);
irg_insert_desc(i, desc);

In the end of the early_irq_init function we return the value of the call of the arch_early_irq_init function as we did it already

in the previous variant when the CONFIG_SPARSE_IRQ option was not set:

return arch_early_irqg_init();

That's all.

Conclusion

https://en.wikipedia.org/wiki/Dmesg
http://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html

It is the end of the seventh part of the Interrupts and Interrupt Handling chapter and we started to dive into external hardware interrupts
in this part. We saw early initialization of the irg_desc structure which represents description of an external interrupt and contains
information about it like list of irq actions, information about interrupt handler, interrupt's owner, count of the unhandled interrupt and

etc. In the next part we will continue to research external interrupts.
If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e [RQ

e numa

e Enum type

e cpumask

e percpu

e spinlock

e critical section
e Lock validator
e MSI

e /O APIC

e Local APIC

e Intel 8259

e PIC

e MultiProcessor Configuration Table
e radix tree

e dmesg

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Enumerated_type
http://0xax.gitbooks.io/linux-insides/content/Concepts/cpumask.html
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Critical_section
https://lwn.net/Articles/185666/
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/MultiProcessor_Specification
http://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html
https://en.wikipedia.org/wiki/Dmesg

Interrupts and Interrupt Handling. Part 8.

Non-early initialization of the IRQs

This is the eighth part of the Interrupts and Interrupt Handling in the Linux kernel chapter and in the previous part we started to dive
into the external hardware interrupts. We looked on the implementation of the early irq_init function from the kernel/irg/irqdesc.c
source code file and saw the initialization of the irq_desc structure in this function. Remind that irq_desc structure (defined in the
include/linux/irqdesc.h is the foundation of interrupt management code in the Linux kernel and represents an interrupt descriptor. In this

part we will continue to dive into the initialization stuff which is related to the external hardware interrupts.

Right after the call of the early irq_init function in the init/main.c we can see the call of the init_1rRQ function. This function is
architecture-specific and defined in the arch/x86/kernel/irqinit.c. The init_IRQ function makes initialization of the vector_irg

percpu variable that defined in the same arch/x86/kernel/irqinit.c source code file:

DEFINE_PER_CPU(vector_irg_t, vector_irq) = {
[0 ... NR_VECTORS - 1] = -1,
}

and represents percpu array of the interrupt vector numbers. The vector_irq_t defined in the arch/x86/include/asm/hw_irg.h and

expands to the:

typedef int vector_irq_t[NR_VECTORS];

where NR_VECTORS is count of the vector number and as you can remember from the first part of this chapter itis 256 for the x86_64:

#define NR_VECTORS 256

So, in the start of the init_IrRQ function we fill the vector_irq percpu array with the vector number of the legacy interrupts:

void __init init_IRQ(void)

{
int i;
for (1 = 0; i < nr_legacy_irqgs(); i++)
per_cpu(vector_irq, ©)[IRQO_VECTOR + i] = 1i;
3

This vector_irq will be used during the first steps of an external hardware interrupt handling in the do_1rQ function from the

arch/x86/kernel/irq.c:
__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)

{

irg = __this_cpu_read(vector_irq[vector]);

if ('handle_irq(irg, regs)) {

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irqdesc.h#L46
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/hw_irq.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/X86-64
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/irq.c

exiting_irq();

return 1;

Why is legacy here? Actually all interrupts are handled by the modern IO-APIC controller. But these interrupts (from ex3e to
ox3f) by legacy interrupt-controllers like Programmable Interrupt Controller. If these interrupts are handled by the 1/0 ApIc then
this vector space will be freed and re-used. Let's look on this code closer. First of all the nr_legacy_irqs defined in the

arch/x86/include/asm/i8259.h and just returns the nr_legacy_irqs field from the legacy_pic structure:

static inline int nr_legacy_irqgs(void)
{

return legacy_pic->nr_legacy_irgs;

This structure defined in the same header file and represents non-modern programmable interrupts controller:

struct {
int nr_legacy_irgs;
struct * ;
void (*mask)(unsigned int irq);
void (*unmask)(unsigned int irq);
void (*mask_all)(void);
void (*restore_mask)(void);
void (*init)(int auto_eoi);
int (*irg_pending)(unsigned int irq);
void (*make_irq)(unsigned int irq);

3

Actual default maximum number of the legacy interrupts represented by the NR_IRQ LEGACY macro from the

arch/x86/include/asm/irq_vectors.h:

#define NR_IRQS_LEGACY 16

In the loop we are accessing the vecto_irq per-cpu array with the per_cpu macro by the 1rRQe_VECTOR + i index and write the

legacy vector number there. The 1RQe_VECTOR macro defined in the arch/x86/include/asm/irq_vectors.h header file and expands to the

0x30 :
#define FIRST_EXTERNAL_VECTOR 0x20
#define IRQO_VECTOR ((FIRST_EXTERNAL_VECTOR + 16) & ~15)

Why is ex30 here? You can remember from the first part of this chapter that first 32 vector numbers from e to 31 are reserved by
the processor and used for the processing of architecture-defined exceptions and interrupts. Vector numbers from ©x3e to ox3f are
reserved for the ISA. So, it means that we fill the vector_irq from the I1RQe_VECTOR which is equal to the 32 tothe IRQe_VECTOR +

16 (before the ox30).

In the end of the init_IRQ function we can see the call of the following function:

x86_init.irqgs.intr_init();

from the arch/x86/kernel/x86_init.c source code file. If you have read chapter about the Linux kernel initialization process, you can
remember the x86_init structure. This structure contains a couple of files which are points to the function related to the platform
setup (x86_64 in our case), for example resources - related with the memory resources, mpparse - related with the parsing of the
MultiProcessor Configuration Table table and etc.). As we can see the x86_init also contains the irqgs field which contains three

following fields:

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/i8259.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/irq_vectors.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/irq_vectors.h
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-1.html
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/x86_init.c
http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html
https://en.wikipedia.org/wiki/MultiProcessor_Specification

struct

{
Lirgs = {
.pre_vector_init = init_ISA irgs,
.intr_init = native_init_IRQ,
.trap_init = x86_init_noop,
+
3

Now, we are interesting in the native_init_IRQ . As we can note, the name of the native_init_IRQ function contains the native_
prefix which means that this function is architecture-specific. It defined in the arch/x86/kernel/irginit.c and executes general
initialization of the Loocal APIC and initialization of the ISA irgs. Let's look on the implementation of the native_init_IRQ function

and will try to understand what occurs there. The native_init_IRQ function starts from the execution of the following function:

x86_1init.irqgs.pre_vector_init();

As we can see above, the pre_vector_init pointsto the init_ISA_irgs function that defined in the same source code file and as we
can understand from the function's name, it makes initialization of the 1sa related interrupts. The init_ISA_irgs function starts

from the definition of the chip variable which hasa irq_chip type:

void __init init_ISA_irqgs(void)
{

struct * = legacy_pic->chip;

The irg_chip structure defined in the include/linux/irg.h header file and represents hardware interrupt chip descriptor. It contains:

e name -name of a device. Used in the /proc/interrupts :

$ cat /proc/interrupts

CPUO CpPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
I0-APIC -edge
timer
: I0-APIC -edge
ig8042
3 I0-APIC -edge
rtco

look on the last column;

® (*irqg_mask)(struct irq_data *data) - mask an interrupt source;

® (*irg_ack)(struct irg_data *data) - start of a new interrupt;

® (*irg_startup)(struct irq_data *data) - start up the interrupt;

® (*irg_shutdown)(struct irq_data *data) - shutdown the interrupt

e and etc.

fields. Note that the irq_data structure represents set of the per irq chip data passed down to chip functions. It contains mask -
precomputed bitmask for accessing the chip registers, irq - interrupt number, hwirq - hardware interrupt number, local to the

interrupt domain chip low level interrupt hardware access and etc.

After this depends on the conrFIG_x86_64 and CONFIG_x86_LOCAL_APIC kernel configuration option call the init_bsp_APIc function

from the arch/x86/kernel/apic/apic.c:

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irqinit.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/irq.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/apic/apic.c

#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
init_bsp_APIC();
#endif

This function makes initialization of the APIC of bootstrap processor (or processor which starts first). It starts from the check that
we found SMP config (read more about it in the sixth part of the Linux kernel initialization process chapter) and the processor has

APIC :

if (smp_found_config || !'cpu_has_apic)
return;

In other way we return from this function. In the next step we call the clear_local Apic function from the same source code file that
shutdowns the local Apic (more about it will be in the chapter about the Advanced Programmable Interrupt Controller)and enable

Ap1ic of the first processor by the setting unsigned int value tothe APIC_SPIV_APIC_ENABLED :

value = apic_read(APIC_SPIV);
value &= ~APIC_VECTOR_MASK;
value |= APIC_SPIV_APIC_ENABLED;

and writing it with the help of the apic_write function:

apic_write(APIC_SPIV, value);

After we have enabled Apic for the bootstrap processor, we return to the init_ISA_irgs function and in the next step we initialize

legacy Programmable Interrupt Controller and set the legacy chip and handler for the each legacy irq:

legacy_pic->init(0);

for (1 = 0; i < nr_legacy_irqgs(); i++)
irg_set_chip_and_handler (i, chip, handle_level_irq);

Where can we find init function? The legacy_pic defined in the arch/x86/kernel/i8259.c and it is:

struct * = &default_legacy_pic;

Where the default_legacy_pic is:

struct ={

.init = init_8259A,

The init_s259A function defined in the same source code file and executes initialization of the Intel 8259 “Programmable Interrupt

Controller (more about it will be in the separate chapter about Programmable Interrupt Controllers and APIC).

Now we can return to the native_init_IRQ function, after the init ISA_irgs function finished its work. The next step is the call of
the apic_intr_init function that allocates special interrupt gates which are used by the SMP architecture for the Inter-processor

interrupt. The alloc_intr_gate macro from the arch/x86/include/asm/desc.h used for the interrupt descriptor allocation:

#define alloc_intr_gate(n, addr)
do {
alloc_system_vector(n);

s s s

set_intr_gate(n, addr);

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-6.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/i8259.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h

} while (0)

As we can see, first of all it expands to the call of the alloc_system_vector function that checks the given vector number in the
used_vectors bitmap (read previous part about it) and if it is not set in the used_vectors bitmap we set it. After this we test that the

first_system_vector is greater than given interrupt vector number and if it is greater we assign it:

if (!test_bit(vector, used_vectors)) {
set_bit(vector, used_vectors);
if (first_system_vector > vector)
first_system_vector = vector;
} else {
BUG();

We already saw the set_bit macro, now let's look on the test_bit andthe first_system_vector . The first test_bit macro
defined in the arch/x86/include/asm/bitops.h and looks like this:

#define test_bit(nr, addr) \
(__builtin_constant_p((nr)) \
? constant_test_bit((nr), (addr)) \

variable_test_bit((nr), (addr)))

We can see the ternary operator here make a test with the gcc built-in function __builtin_constant_p tests that given vector number

(nr) is known at compile time. If you're feeling misunderstanding of the __builtin_constant_p , we can make simple test:

#include <stdio.h>
#define PREDEFINED_VAL 1

int main() {
int i = 5;

printf("__builtin_constant_p(i) is %d\n", __builtin_constant_p(i));

printf("__builtin_constant_p(PREDEFINED_VAL) is %d\n", __builtin_constant_p(PREDEFINED_VAL));

printf("__builtin_constant_p(100) is %d\n", __builtin_constant_p(),

return 0;

and look on the result:

$ gcc test.c -o test

$./test

__builtin_constant_p(i) is ©
__builtin_constant_p(PREDEFINED_VAL) is 1
__builtin_constant_p(160) is 1

Now I think it must be clear for you. Let's get back to the test_bit macro. If the _ builtin_constant_p will return non-zero, we

call constant_test_bit function:

static inline int constant_test_bit(int nr, const void *addr)

{
const u32 *p = (const u32 *)addr;

return ((<< (nr &)) & (p[nr >> 5])) !'=

and the variable_test_bit in other way:

static inline int variable_test_bit(int nr, const void *addr)

{

ug8 v;

http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/bitops.h
https://en.wikipedia.org/wiki/Ternary_operation
https://en.wikipedia.org/wiki/GNU_Compiler_Collection

const u32 *p = (const u32 *)addr;

asm("btl %2,%1; setc %0" : "=gm" (v) : "m" (*p), "Ir" (nr))
return v;

What's the difference between two these functions and why do we need in two different functions for the same purpose? As you already

can guess main purpose is optimization. If we will write simple example with these functions:

#define CONST 25

int main() {

int nr B

variable_test_bit(nr, (int*))
constant_test_bit(CONST, (int*))
return 0;

and will look on the assembly output of our example we will see following assembly code:

pushq %rbp
mov(q %rsp, %rbp

mov1l , %esi
mov1l , %edi
call constant_test_bit

for the constant_test_bit , and:

pushq %rbp
mov(q %rsp, %rbp

subq , %rsp

movl , -4(%rbp)
movl -4(%rbp), %eax
mov1l , %esi
mov1l %eax, %edi

call variable_test_bit

for the variable_test_bit . These two code listings starts with the same part, first of all we save base of the current stack frame in the
%rbp register. But after this code for both examples is different. In the first example we put $268435456 (here the $268435456 is our
second parameter - 0x10000000) to the esi and $25 (our first parameter) to the edi register and call constant_test_bit . We
put function parameters to the esi and edi registers because as we are learning Linux kernel for the x86_64 architecture we use
System vV AMD64 ABI calling convention. All is pretty simple. When we are using predefined constant, the compiler can just substitute
its value. Now let's look on the second part. As you can see here, the compiler can not substitute value from the nr variable. In this
case compiler must calculate its offset on the program's stack frame. We subtract 16 from the rsp register to allocate stack for the

local variables data and put the $24 (value of the nr variable) to the rbp with offset -4 . Our stack frame will be like this:
<- stack grows

%[rbp]

I [l [| return | | I
I nr [-1 [-1 [-1 arge |
I [l | | address | | I

%[rsp]

https://en.wikipedia.org/wiki/X86_calling_conventions
https://en.wikipedia.org/wiki/Call_stack

After this we put this value to the eax , so eax register now contains value of the nr . In the end we do the same that in the first
example, we put the $268435456 (the first parameter of the variable_test_bit function) and the value of the eax (value of nr)

tothe edi register (the second parameter of the variable_test_bit function).

The next step after the apic_intr_init function will finish its work is the setting interrupt gates from the FIRST_EXTERNAL_VECTOR OF
ox20 tothe ox256 :

i = FIRST_EXTERNAL_VECTOR;

#ifndef CONFIG_X86_LOCAL_APIC
#define first_system_vector NR_VECTORS
#endif

for_each_clear_bit_from(i, used_vectors, first_system_vector) {
set_intr_gate(i, irg_entries_start + * (i - FIRST_EXTERNAL_VECTOR));

But as we are using the for_each_clear_bit_from helper, we set only non-initialized interrupt gates. After this we use the same

for_each_clear_bit_from helper to fill the non-filled interrupt gates in the interrupt table with the spurious_interrupt :

#ifdef CONFIG_X86_LOCAL_APIC

for_each_clear_bit_from(i, used_vectors, NR_VECTORS)
set_intr_gate(i, spurious_interrupt);

#endif

Where the spurious_interrupt function represent interrupt handler for the spurious interrupt. Here the used_vectors is the
unsigned long that contains already initialized interrupt gates. We already filled first 32 interrupt vectors in the trap_init

function from the arch/x86/kernel/setup.c source code file:

for (1 = 0; i < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors);

You can remember how we did it in the sixth part of this chapter.

In the end of the native_init_IRQ function we can see the following check:

if (lacpi_ioapic && !'of_ioapic && nr_legacy_irqs())
setup_irq(2, &irqg2);

First of all let's deal with the condition. The acpi_ioapic variable represents existence of /0O APIC. It defined in the

arch/x86/kernel/acpi/boot.c. This variable set in the acpi_set_irq_model_ioapic function that called during the processing Multiple
APIC Description Table . This occurs during initialization of the architecture-specific stuff in the arch/x86/kernel/setup.c (more about
it we will know in the other chapter about APIC). Note that the value of the acpi_ioapic variable depends on the conFic_AcPI and

CONFIG_x86_LOCAL_APIC Linux kernel configuration options. If these options did not set, this variable will be just zero:

#define acpi_ioapic 0

The second condition - !'of_ioapic && nr_legacy_irgs() checks that we do not use Open Firmware 1/0 APIC and legacy interrupt
controller. We already know about the nr_legacy irgs . The second is of_ioapic variable defined in the

arch/x86/kernel/devicetree.c and initialized in the dtb_ioapic_setup function that build information about Apics in the devicetree.
Note that of_ioapic variable depends on the conFiG_oF Linux kernel configuration option. If this option is not set, the value of the

of_ioapic will be zero too:

#ifdef CONFIG_OF
extern int of_ioapic;

#else

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-6.html
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/acpi/boot.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Open_Firmware
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/devicetree.c
https://en.wikipedia.org/wiki/Device_tree

#define of_ioapic 0

#endif

If the condition will return non-zero value we call the:

setup_irq(2, &irq2);

function. First of all about the irq2 . The irqg2 isthe irgaction structure that defined in the arch/x86/kernel/irqinit.c source code

file and represents 1RQ 2 line that is used to query devices connected cascade:

static struct ={
.handler = no_action,
.name = "cascade",
.flags = IRQF_NO_THREAD,

}

Some time ago interrupt controller consisted of two chips and one was connected to second. The second chip that was connected to the
first chip via this 1rQ 2 line. This chip serviced lines from 8 to 15 and after this lines of the first chip. So, for example Intel 8259A

has following lines:

e IRQ 0 -system time;

e 1IRQ 1 - keyboard;

e 1IRQ 2 - used for devices which are cascade connected;
e 1IRQ 8 -RTC;

e IRQ 9 -reserved;

e IRQ 10 - reserved;

e IRQ 11 -reserved;

e IRQ 12 - ps/2 mouse,

e IRQ 13 - COProcessor;

e 1IRQ 14 - hard drive controller;
e IRQ 1 -reserved;

e IRQ 3 - coM2 and com4 ;

e 1IRQ 4 - coMi and COM3 ;

e IRQ5 - LPT2;

e 1IRQ 6 -drive controller;

e IRQ 7 - LPTL.
The setup_irq function defined in the kernel/irg/manage.c and takes two parameters:

e vector number of an interrupt;

® irqgaction structure related with an interrupt.

This function initializes interrupt descriptor from the given vector number at the beginning:

struct * = irg_to_desc(irq);

And call the _ setup_irq function that setups given interrupt:

chip_bus_lock(desc);

retval = _ setup_irq(irg, desc, act);
chip_bus_sync_unlock(desc);

return retval;

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/irqinit.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Real-time_clock
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/irq/manage.c

Note that the interrupt descriptor is locked during _ setup_irq function will work. The _ setup_irq function makes many different
things: It creates a handler thread when a thread function is supplied and the interrupt does not nest into another interrupt thread, sets the

flags of the chip, fills the irgaction structure and many many more.

All of the above it creates /prov/vector_number directory and fills it, but if you are using modern computer all values will be zero

there:

$ cat /proc/irq/2/node
0

$cat /proc/irq/2/affinity_hint
00

cat /proc/irq/2/spurious
count 0

unhandled ©
last_unhandled 0 ms

because probably Apic handles interrupts on the our machine.

That's all.

Conclusion

It is the end of the eighth part of the Interrupts and Interrupt Handling chapter and we continued to dive into external hardware
interrupts in this part. In the previous part we started to do it and saw early initialization of the 1Rgs . In this part we already saw non-
early interrupts initialization in the init_IRQ function. We saw initialization of the vector_irq per-cpu array which is store vector
numbers of the interrupts and will be used during interrupt handling and initialization of other stuff which is related to the external

hardware interrupts.
In the next part we will continue to learn interrupts handling related stuff and will see initialization of the softirgs .
If you have any questions or suggestions write me a comment or ping me at twitter.

Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please

send me PR to linux-insides.

Links

e [RQ

® percpu

e x86 64

e Intel 8259

e Programmable Interrupt Controller
e [SA

e MultiProcessor Configuration Table
e Local APIC

e [/O APIC

e SMP

e Inter-processor interrupt

e ternary operator

e gcc

e calling convention

e PDF. System V Application Binary Interface AMD64
e C(Call stack

e Open Firmware

http://0xax.gitbooks.io/linux-insides/content/interrupts/index.html
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://0xax.gitbooks.io/linux-insides/content/Concepts/per-cpu.html
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://en.wikipedia.org/wiki/MultiProcessor_Specification
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#Integrated_local_APICs
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller#I.2FO_APICs
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://en.wikipedia.org/wiki/Ternary_operation
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/X86_calling_conventions
http://x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Open_Firmware

IRQs

e devicetree
e RTC

e Previous part

208

https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Real-time_clock
http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-7.html

0

(Tasklets)

Linux arch/x86/kernel/irqinit.c init_IRQ

Linux

°
® tasklets

ksoftirqd () ksoftirqd/n n systemd-cgls

$ systemd-cgls -k | grep ksoft
I 3 [ksoftirqd/0]
- 13 [ksoftirqd/i]
- 18 [ksoftirqd/2]
|= 23 [ksoftirqd/3]
|— 28 [ksoftirqd/4]
|— 33 [ksoftirqd/5]
|- 38 [ksoftirqd/6]
|— 43 [ksoftirqd/7]

spawn_ksoftirqd initcall

early_initcall(spawn_ksoftirqd);

Linux open_softirq softirq kernel/softirg.c

void open_softirq(int nr, void (*action)(struct softirg_action *))

{

softirg_vec[nr].action = action;

® softirg_vec

softirq_vec

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irqinit.c
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/index.html
https://github.com/torvalds/linux/blob/master/kernel/softirq.c

static struct [] H

softirg_vec NR_SOFTIRQS (10) softirq softirg_action Linux tasklet RCU

enum

HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
BLOCK_SOFTIRQ,
BLOCK_IOPOLL_SOFTIRQ,
TASKLET_SOFTIRQ,
SCHED_SOFTIRQ,
HRTIMER_SOFTIRQ,
RCU_SOFTIRQ,
NR_SOFTIRQS

const char * const softirq_to_name[NR_SOFTIRQS] = {
"HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL",
"TASKLET", "SCHED", "HRTIMER", "RCU"

3

/proc/softirqgs

~$ cat /proc/softirgs

CPUO CPU1 CPU2 CPU3 CPU4 CPU5S CPU6 CPU7
HI: 5 ¢} ¢} 0 0 0 ¢} (¢}
TIMER: 332519 310498 289555 272913 282535 279467 282895 270979
NET_TX: 2320 0 ¢} 2 1 1 ¢} 0
NET_RX: 270221 225 338 281 311 262 430 265
BLOCK: 134282 32 40 10 12 7 8 8
BLOCK_IOPOLL: 0 0 ¢} 0 0 0 ¢} 0
TASKLET: 196835 2 3 0 0 ¢} ¢} 0
SCHED: 161852 146745 129539 126064 127998 128014 120243 117391
HRTIMER: 0 0 0 0 0 0 ¢} 0
RCU: 337707 289397 251874 239796 254377 254898 267497 256624
softirqg_vec softirg_action
struct
{
void (*action)(struct softirg_action *);
3
open_softirqg softirg_action softirg_vec open_softirqg raise_softirq -- nr

void raise_softirqg(unsigned int nr)

{
unsigned long flags;
local_irqg_save(flags);
raise_softirqg_irqoff(nr);
local_irq_restore(flags);
3
local_irq_save local_irq_restore raise_softirq_irqoff local_irq_save include/linux/irqflags.h

eflags IF local_irq_restore softirq

https://github.com/torvalds/linux/blob/master/include/linux/irqflags.h
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Interrupt_flag

raise_softirq_irqoff nr(__softirg_pending)

__raise_softirq_irqoff(nr);

in_interrupt irg_count cpu raise_softirq_irqoff IF wakeup_softirqd

if ('in_interrupt())
wakeup_softirqd();

wakeup_softirqd ksoftirqd

static void wakeup_softirqd(void)

{
struct * = __this_cpu_read(ksoftirqd);
if (tsk && tsk->state != TASK_RUNNING)
wake_up_process(tsk);
3
ksoftirqd run_ksoftirqd __do_softirq __do_softirq __softirg_pending
__do_softirq

unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
restart:
while ((softirq_bit = ffs(pending))) {

h->action(h);

pending = local_softirqg_pending();
if (pending) {
if (time_before(jiffies, end) && !'need_resched() &&
--max_restart)
goto restart;

arch/x86/kernel/irq.c do_IRQ Linux arch/x86/include/asm/apic.h exiting_irq exiting_irq

irg_exit irg_exit invoke_softirq

if (!in_interrupt() && local_softirqg_pending())
invoke_softirq();

__do_softirq softirq open_softirq raise_softirq Linux

tasklets

Tasklets

Linux tasklets tasklets softirq

® TASKLET_SOFTIRQ ;

® HI_SOFTIRQ .

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/apic.h

tasklets tasklets softirg_init

void __init softirg_init(void)

{
int cpu;
for_each_possible_cpu(cpu) {
per_cpu(tasklet_vec, cpu).tail =
&per_cpu(tasklet_vec, cpu).head;
per_cpu(tasklet_hi_vec, cpu).tail =
&per_cpu(tasklet_hi_vec, cpu).head;
}
open_softirq(TASKLET_SOFTIRQ, tasklet_action);
open_softirq(HI_SOFTIRQ, tasklet_hi_action);
}
Ccpu integer for_each_possible_cpu possible_cpu
possible processor cpu_possible_bits kernel/cpu.c

kernel/softirg.c

CPU masks possible_cpu

static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) _ read_mostly;

const struct * = to_cpumask(cpu_possible_bits);

integer cpu for_each_possible_cpu per-cpu

® tasklet_vec ;

® tasklet_hi_vec ;

per-cpu softirg_init tasklet_head

static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec);
static DEFINE_PER _CPU(struct tasklet_head, tasklet_hi_vec);

tasklet_head Tasklets head tail

struct {
struct * ;
struct *x ;
}
tasklet_struct include/linux/interrupt.h Tasklet Tasklet
struct
{
struct * ;

unsigned long state;
atomic_t count;

void (*func)(unsigned long);
unsigned long data;

3

5
° Tasklet
° Tasklet
° Tasklet

® Tasklet

Tasklet tasklet_struct

https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/kernel/cpu.c
https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h

softirq_init tasklets tasklet_vec tasklet_hi_vec Tasklets Tasklets kernel/softirg.c

softirg_init open_softirq

open_softirq(TASKLET_SOFTIRQ, tasklet_action);
open_softirq(HI_SOFTIRQ, tasklet_hi_action);

open_softirq Tasklets tasklet_action tasklet_hi_action tasklet_hi_action
tasklet_action TASKLET_SOFTIRQ
Linux API Tasklets tasklet_init task_struct task_struct

void tasklet_init(struct tasklet_struct *t,
void (*func)(unsigned long), unsigned long data)

{
t->next = 3
t->state = 0;
atomic_set(&t->count, 0);
t->func = func;
t->data = data;

}

tasklet

DECLARE_TASKLET(name, func, data);
DECLARE_TASKLET_DISABLED(name, func, data);

Linux tasklet

void tasklet_schedule(struct tasklet_struct *t);
void tasklet_hi_schedule(struct tasklet_struct *t);
void tasklet_hi_schedule_first(struct tasklet_struct *t);

tasklet tasklet_schedule

static inline void tasklet_schedule(struct tasklet_struct *t)

{
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
__tasklet_schedule(t);
}
void __tasklet_schedule(struct tasklet_struct *t)
{
unsigned long flags;
local_irqg_save(flags);
t->next = 5
*__this_cpu_read(tasklet_vec.tail) = t;
__this_cpu_write(tasklet_vec.tail, &(t->next));
raise_softirg_irqoff (TASKLET_SOFTIRQ);
local_irq_restore(flags);
3
tasklet TASKLET_STATE_SCHED tasklet __tasklet_schedule __tasklet_schedule
tasklet tasklet_vec raise_softirg_irqoff Linux tasklet_action

tasklet_hi_action HI_SOFTIRQ ---

tasklet_hi_vec

tasklet_action

static void tasklet_action(struct softirg_action *a)

HI_SOFTIRQ

raise_softirq
TASKLET_SOFTIRQ

tasklet_action

https://github.com/torvalds/linux/blob/master/kernel/softirq.c

local_irqg_disable();

list = __this_cpu_read(tasklet_vec.head);
__this_cpu_write(tasklet_vec.head,);
__this_cpu_write(tasklet_vec.tail, this_cpu_ptr(&tasklet_vec.head));
local_irg_enable();

while (list) {
if (tasklet_trylock(t)) {
t->func(t->data);
tasklet_unlock(t);

tasklet_action local_irq_disable () tasklet nuLL tasklet tasklet tasklet

tasklet_trylock TASKLET_STATE_RUN

static inline int tasklet_trylock(struct tasklet_struct *t)

{
return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state);
}
tasklet (tasklet_init) tasklet_unlock TASKLET_STATE_RUN

tasklet tasklets

tasklets Linux --

tasklets tasklets tasklets Tasklets Linux

struct {

spinlock_t lock;

int cpu;

int node;

int id;

unsigned int flags;

struct 2

int nr_workers;

worker thread include/linux/workqueue.h work_struct

struct {
atomic_long_t data;
struct
work_func_t func;

#ifdef CONFIG_LOCKDEP
struct

#endif

3

func -- data --Linux kworker cpu

kernel/workqueue.c

http://lxr.free-electrons.com/ident?i=tasklet_init
https://github.com/torvalds/linux/blob/master/kernel/workqueue.c
https://github.com/torvalds/linux/blob/master/include/linux/workqueue.h

systemd-cgls -k | grep kworker
5 [kworker/0:0H]

15 [kworker/1:0H]

20 [kworker/2:0H]

25 [kworker/3:0H]

30 [kworker/4:0H]

TTTTT

(ksoftirgd) Linux

#define DECLARE_WORK(n, f) \
struct work_struct n = _ WORK_INITIALIZER(n, f)

#define INIT_WORK(_work, _func) \
__INIT_WORK((_work), (_func), 0)

#define __ INIT_WORK(_work, _func, _onstack) \
do { \
__init_work((_work), _onstack); \
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
INIT_LIST_HEAD(&(_work)->entry); \
(_work)->func = (_func); \
} while (0)
work_struct work queue_work queue_delayed_work
static inline bool queue_work(struct workqueue_struct *wq,
struct work_struct *work)
{
return queue_work_on(WORK_CPU_UNBOUND, wq, work);
}
queue_work queue_work_on queue_work_on WORK_CPU_UNBOUND
include/linux/workqueue.h queue_work_on WORK_STRUCT_PENDING_BIT __queue_work

bool queue_work_on(int cpu, struct workqueue_struct *wq,
struct work_struct *work)

{
bool ret = false;
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
__queue_work(cpu, wq, work);
ret = true;
}
return ret;
}
__queue_work work poll work poll workqueue works workqueue Linux worker_pool
work poll workqueue_struct pwgs worker_pool workqueue worker_pool worker_pool
pool_workqueue workqueue worker_pool __queue_work raw_smp_processor_id cpu)
work_struct pool_workqueue work workqueue

static void __queue_work(int cpu, struct workqueue_struct *wq,
struct work_struct *work)

https://github.com/torvalds/linux/blob/master/include/linux/workqueue.h

if (req_cpu == WORK_CPU_UNBOUND)
cpu = raw_smp_processor_id();

if (!(wq->flags & WQ_UNBOUND))
pwg = per_cpu_ptr(wg->cpu_pwqgs, cpu);
else
pwg = unbound_pwqg_by_node(wqg, cpu_to_node(cpu));

insert_work(pwqg, work, worklist, work_flags);

works workqueue works workqueue
work_struct works workqueue
IRQs irq_desc tasklet
Twitter

PR linux-insides(PR linux-insides-zh)

e initcall

o [F

e eflags

e CPU masks

e per-cpu

e Workqueue

e Previous part

works

worker_thread

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/index.html
https://en.wikipedia.org/wiki/Interrupt_flag
https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/Documentation/workqueue.txt

0

Linux softirq tasklet workqueue
StringARM** SA-100/21285 IRQ
Linux

® module_init

® module_exit

module_init(serial21285_init);
module_exit(serial21285_exit);

Linux module_init module_exit

drivers/tty/serial/21285.c

include/linux/init.h :

#define module_init(initfn) \
static inline initcall_t _ inittest(void) \
{ return initfn; } \
int init_module(void) __attribute_ ((alias(#initfn)));

#define module_exit(exitfn) \
static inline exitcall t _ exittest(void) \
{ return exitfn; } \
void cleanup_module(void) __attribute__((alias(#exitfn)));

initcall

® early initcall

® pure_initcall

® core_initcall

® postcore_initcall
® arch_initcall

® subsys_initcall
e fs_initcall

® rootfs_initcall

® device_initcall

® late_initcall

init/main.c do_initcalls Linux

#define module_init(x) __initcall(x);

#define module_exit(x) __exitcall(x);
kernel/module.c do_init_module Linux

static int __init serial21285_init(void)
{

int ret;

module_init

serial21285_init

http://netwinder.osuosl.org/pub/netwinder/docs/intel/datashts/27813501.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/21285.c
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://github.com/torvalds/linux/blob/master/include/linux/init.h
http://kernelnewbies.org/Documents/InitcallMechanism
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/module.c

printk (KERN_INFO "Serial: 21285 driver\n");
serial21285_setup_ports();

ret = uvart_register_driver(&serial21285_reg);
if (ret == 0)

uart_add_one_port(&serial21285_reg, &serial21285_port);

return ret;

serial21285_setup_ports serial21285_port uart

unsigned int mem_fclk_21285 = g

static void serial21285_setup_ports(void)

{
serial21285_port.uartclk = mem_fclk_21285 / 4;
3
serial21285 uart
static struct ={
.owner = THIS_MODULE,
.driver_name = "ttyFB",
.dev_name = "ttyFB",
.major = SERIAL_21285_MAJOR,
.minor = SERIAL_21285_MINOR,
.nr =1,
.cons = SERIAL_21285_CONSOLE,
}
drivers/tty/serial/serial_core.c uart_add_one_port serial21285_port
if (ret == 0)

uart_add_one_port(&serial21285_reg, &serial21285_port);

return ret;

uart drivers/tty/serial/serial_core.c uart_open uart_startup
uart
static struct ={
.startup = serial21285_startup,
3
.startup serial21285_startup

serial21285_startup

static int serial21285_startup(struct uart_port *port)

{

int ret;

tx_enabled(port) = 1;

rx_enabled(port) = 1;

serial21285_init

startup

uart_ops

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/serial_core.c
https://github.com/torvalds/linux/blob/master/drivers/tty/serial/serial_core.c

ret = request_irq(IRQ_CONRX, serial21285_rx_chars, 0,
serial21285_name, port);
if (ret == 0) {
ret = request_irq(IRQ_CONTX, serial21285_tx_chars, 0,
serial21285_name, port);

if (ret)
free_irq(IRQ_CONRX, port);
}
return ret;
3
TX RX - RX - TX tx_enabled rx_enalbed request_irq

include/linux/interrupt.h

static inline int __must_check
request_irq(unsigned int irq, irqg_handler_t handler, unsigned long flags,
const char *name, void *dev)

return request_threaded_irq(irq, handler, NULL, flags, name, dev);

request_irq

® irq -
® handler -
e flags -
® name -
® dev -
request_irq IRQ_CONRX CONRX arch/arm/mach-footbridge/include/mach/irgs.h 21285
request_irq IRQ_CONTX RX TX
#define IRQ_CONRX _DC21285_IRQ(0)
#define IRQ_CONTX _DC21285_IRQ(1)
#define _DC21285 TIRQ(x) (16 + (X))
ISA o 15 16 17 request_irq serial21285_rx_chars serial21285_tx_chars
X flags request_irq flags include/linux/interrupt.h IRQF_*

® IRQF_SHARED -
® IRQF_PERCPU - cpu(per cpu)
® IRQF_NO_THREAD -

® IRQF_NOBALANCING - irq

® IRQF_IRQPOLL -

°
0 IRQF_TRIGGER_NONE (name) serial21285_name
static const char serial21285_name[] = "Footbridge UART";
/proc/interrupts uart_port request_irq request_irq
request_threaded_irq irqaction irq_desc

int request_threaded_irq(unsigned int irq, irqg_handler_t handler,
irg_handler_t thread_fn, unsigned long irqgflags,
const char *devname, void *dev_id)

kernel/irg/manage.c

RX

https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
https://github.com/torvalds/linux/blob/master/arch/arm/mach-footbridge/include/mach/irqs.h
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://github.com/torvalds/linux/blob/master/include/linux/interrupt.h
https://github.com/torvalds/linux/blob/master/kernel/irq/manage.c

struct 8
struct 2
int retval;

irgaction irq_desc irgaction

irqg_handler_t thread_fn NULL irq irq

if (((irqgflags & IRQF_SHARED) && !dev_id) ||
(!(irqflags & IRQF_SHARED) && (irqgflags & IRQF_COND_SUSPEND)) ||
((irgflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
return -EINVAL;

dev_id () IRQF_COND_SUSPEND -EINVAL kernel/irq/irqdesc.c
irqg irqg -EINVAL
desc = irq_to_desc(irq);
if (!desc)
return -EINVAL,
irg_to_desc irq irq irg_desc
struct irg_desc *irg_to_desc(unsigned int irq)
{
return (irq < NR_IRQS) ? irqg_desc + irq : 5
}
irq irq

if (!irg_settings_can_request(desc) || WARN_ON(irq_settings_is_per_cpu_devid(desc)))

return -EINVAL,;

thread_fn NULL -EINVAL

-EINVAL (handler) request_irgq

thread_fn handler irg_default_primary_handler

if (!'handler) {
if (!thread_fn)
return -EINVAL;
handler = irq_default_primary_handler;

kzalloc irgaction

action = kzalloc(sizeof(struct irgaction), GFP_KERNEL);
if (laction)
return -ENOMEM;

kzalloc Linux irgaction

action->handler = handler;
action->thread_fn = thread_fn;
action->flags = irgflags;
action->name = devname;
action->dev_id = dev_id;

request_threaded_irq kernel/irg/manage.c __setup_irq irqaction

request_threaded_irq

irq_to_desc

request_irq

irgaction

request_irq

https://github.com/torvalds/linux/blob/master/kernel/irq/irqdesc.c
https://github.com/torvalds/linux/blob/master/kernel/irq/manage.c

chip_bus_lock(desc);
retval = _ setup_irq(irqg, desc, action);
chip_bus_sync_unlock(desc);

if (retval)
kfree(action);

return retval;

__setup_irq chip_bus_lock chip_bus_sync_unlock (i2c) __setup_irq __setup_irq
NULL irqchip NULL NULL irg_nested_primary_handler irg_default_priamry_handler
thread_fn kthread_create

if (new->thread_fn && !nested) {
struct *t;

t = kthread_create(irq_thread, new, "irq/%d-%s'", irq, new->name);

16 17 serial21285_rx_chars serial21285_tx_chars

irgaction native_init_IRQ APIC

for_each_clear_bit_from(i, used_vectors, first_system_vector) {
set_intr_gate(i, irg_entries_start +
* (i - FIRST_EXTERNAL_VECTOR));

first_system_vector used_vectors

int first_system_vector = FIRST_SYSTEM_VECTOR; // Oxef

i irg_entries_start + 8 * (i - FIRST_EXTERNAL_VECTOR) - irg_entries_start

irqg

.align
ENTRY(irg_entries_start)
vector=FIRST_EXTERNAL_VECTOR
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
pushq $(~vector+)
vector=vector+
jmp common_interrupt
.align
.endr
END(irg_entries_start)

GNU .rept .endr FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR
FIRST_EXTERNAL_VECTOR 0x20
>>> -
.rept () vector 1 common_interrupt common_interrupt

do_IRQ

arch/x86/entry/entry_64.S

FIRST_SYSTEM_VECTOR oxef

interrupt

https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://github.com/torvalds/linux/blob/master/arch/x86/entry_entry_64.S
https://en.wikipedia.org/wiki/GNU_Assembler
https://en.wikipedia.org/wiki/System_call

addq $- , (%rsp)
interrupt do_IRQ

interrupt SWAPGS gs per-cpu irg_count do_IRQ

do_IRQ - pt_regs

__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)

arch/x86/kernel/irq.c

{
struct * = set_irq_regs(regs);
unsigned vector = ~regs->orig_ax;
unsigned irq;
irg_enter();
exit_idle();
3
set_irq_regs per-cpu irg_enter exit_idle irg_enter __preempt_count
exit_idle pid [°] idle IDLE_END idle_notifier
cpu irq handle_irq
irq = __this_cpu_read(vector_irq[vector]);

if ('handle_irq(irg, regs)) {

handle_irq arch/x86/kernel/irq_64.c generic_handle_irq_desc

desc = irqg_to_desc(irq);
if (unlikely(!desc))
return 8
generic_handle_irq_desc(irq, desc);

static inline void generic_handle_irqg_desc(unsigned int irq, struct irg_desc *desc)

{

desc->handle_irq(irq, desc);

3
...... handle_irq irgaction irg_desc->handle_irq API APIC
serial21285_tx_chars serial21285_rx_chars
do_IRQ irg_exit set_irg_regs

irg_exit();
set_irg_regs(old_regs);
return 1;

IRQ

irg->actions(s)

https://en.wikipedia.org/wiki/Processor_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://en.wikipedia.org/wiki/Process_identifier
https://github.com/torvalds/linux/blob/arch/x86/kernel/irq_64.c
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller

do_IRQ arch/x86/entry/entry_64.S

per-cpu irg_count 1 1

DISABLE_INTERRUPTS(CLBR_NONE)
TRACE_IRQS_OFF
decl PER_CPU_VAR(irg_count)

0

INTERRUPT_RETURN

INTERRUPT_RETURN

#define INTERRUPT_RETURN jmp native_iret

ENTRY(native_iret)
.global native_irqg_return_iret

native_irq_return_iret:

iretq

Linux
twitter

linux-insides PR(PR

o StrongARM** SA-110/21285
e IRQ

e initcall
e uart

e ISA

e i2c
e APIC
e GNU

e per-cpu

e pid

ret_from_intr

linux-insides-zh)

DISABLE_INTERRUPTS

cli

https://github.com/torvalds/linux/blob/master/arch/x86/entry_entry_64.S
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://github.com/hust-open-atom-club/linux-insides-zh
https://www.kernel.org/doc/Documentation/serial/driver
http://netwinder.osuosl.org/pub/netwinder/docs/intel/datashts/27813501.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Loadable_kernel_module
http://kernelnewbies.org/Documents/InitcallMechanism
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
https://en.wikipedia.org/wiki/Industry_Standard_Architecture
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/GNU_Assembler
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Device_tree
https://en.wikipedia.org/wiki/System_call

224

Linux

e - Linux

e Linux - Linux

e vsyscall and vDSO - vsyscall vDSO
e Linux -

e open - open

e Linux - getrlimit/setrlimit

Linux

linux , Linux System Call Linux VDSO vsyscall
Linux
4
L]
socket [C] (https://en.wikipedia.org/wiki/C_%?28programming_language%29)
Linux CPU x86_64 322 x86 Hello world
.data
msg:
.ascii "Hello, world!\n"
len = . - msg
.text
.global _start
start:
movg $1, %rax
movq $1, %rdi
movq $msg, %rsi
movq $len, %rdx
syscall
movg $60, %rax
xorq %rdi, %rdi
syscall
$ gcc -c test.S
$ 1d -o test test.o
./test
Hello, world!
Linux x86_64 Hello world
® .data
® .text
- .data (Hello world) - .text syscall syscall syscall

architectures-software-developer-vol-2b-manual:

SYSCALL OIA32_LSTAR MSRRIP(RCX SYSCALL)
(WRMSR IA32_LSTAR MSR)

64-ia-32-

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/VDSO
https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_32.tbl
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

SYSCALL IA32_STAR MSR 4732 CS SS CS SS (GDT LDT)

SYSCALL

arch/x86/entry/entry_64.S

entry_SYSCALL_64 syscalls
Model specific register:
wrmsr1(MSR_LSTAR, entry_SYSCALL_64);
syscall , - write write.
write

e (1 stdout)
[]

s ¢ write [fs/read_write.c] (

write - 1 rax :

syscaLL arch/x86/kernel/cpu/common.c IA32_STAR

%rdi , %rsi %rdx

https://github.com/torvalds/linux/blob/master/fs/read_write.c) :

SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,

size t, count)

ssize_t write(int fd, const void *buf, size_t nbytes);

SYSCALL_DEFINE3

>

, exit:
e Return value

strace :

$ strace test
execve("./test", ["./test"],
write(1, "Hello, world!\n",
) =14
_exit(0) =2

[/* 62 vars */]) = 0
14Hello, world!

+++ exited with 0 +++

strace , execve: write

(https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions)

Interface. PDF:

® rdi
® rsi
® rdx
® rcx
e r8

[] ro

exit - [x86-64 calling conventions]

x86_64 - System V Application Binary

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c
https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Processor_register
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L10
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L69
https://en.wikipedia.org/wiki/Strace
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L68
https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions)中定义。
http://www.x86-64.org/documentation/abi.pdf

#include <stdio.h>

int main(int argc, char **argv)

{
FILE *fp;
char buff[18
fp = fopen("test.txt", "r");
fgets(buff, , p);
printf("%s\n", buff);
fclose(fp);
return 0;
}
Linux fopen , fgets , printf fclose open , read write close fopen, fgets , printf fclose
¢ standard library
$ gcc test.c -0 test
Itrace:
$ ltrace ./test
_ libc_start_main(["./test"] <unfinished ...>
fopen("test.txt", "r") = 0x602010
fgets("Hello World!\n", 255, 0x602010) = Ox7ffd2745e700
puts("Hello World!\n"Hello World!
) = 14
fclose(0x602010) =0
+++ exited (status 0) +++
ltrace fopen , fgets buf puts stdout fclose puts

ltrace -S @

write@SYS(1, "Hello World!\n\n", 14) = 14

Vi proc: /proc/${pid}/syscall , 1 systemd:

$ sudo cat /proc/1/comm
systemd

$ sudo cat /proc/1/syscall

232 0x4 ox7ffdf82e11be Ox1f Oxffffffff 0x100 0x7ffdf82elibf Ox7ffdf82e11a® O0x7f9114681193

232 epoll_wait epoll I/O. emacs

$ ps ax | grep emacs
2093 ? sl 2:40 emacs

$ sudo cat /proc/2093/comm
emacs

$ sudo cat /proc/2093/syscall
270 oxf Ox7fffe68a5a90 Ox7fff068a5b10 Ox0 Ox7fff068a59cO Ox7fff068a59d0 Ox7fff068a59b0 Ox7f777dd8813c

270 sys_pselect6 emacs

write

write

https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Wrapper_function
https://en.wikipedia.org/wiki/Ltrace
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Systemd
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L241
https://en.wikipedia.org/wiki/Epoll
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L279

write

Linux fs/read_write.c write

SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,
size_t, count)

{
struct = fdget_pos(fd);
ssize t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_write(f.file, buf, count, &pos);
if (ret >= 0)
file_pos_write(f.file, pos);
fdput_pos(f);
}
return ret;
}
SYSCALL_DEFINE3 include/linux/syscalls.h sys_name(...)
#define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, __VA_ARGS_)
#define SYSCALL_DEFINEx(x, sname, ...) \
SYSCALL_METADATA(shame, X, __VA_ARGS__) \
__SYSCALL_DEFINEX(x, sname, __VA_ARGS_)
SYSCALL_DEFINE3 name SYSCALL_DEFINEX _##name (## documentation of gcc)

SYSCALL_DEFINEX

® SYSCALL_METADATA ;

® _ SYSCALL_DEFINEX .

SYSCALL_METADATA CONFIG_FTRACE_SYSCALLS tracer SYSCALL_METADATA include/trace/syscall.h

syscall_metadata ,

#define SYSCALL_METADATA(sname, nb, ...) \
\
\
bao \
struct syscall _metadata __used \
__syscall_meta_##sname = { \
.name = "sys'"#sname, \
.syscall_nr = -1, \
.nb_args = nb, \
.types = nb ? types_##sname : NULL, \
.args = nb ? args_##sname : NULL, \
.enter_event = &event_enter_##sname, \
.exit_event = &event_exit_##sname, \
.enter_fields = LIST_HEAD_INIT(__syscall meta_##sname.enter_fields), \
Iy \
static struct _ \
= ((("— ")) \
S ##t = &__syscall_meta_##sname;
CONFIG_FTRACE_SYSCALLS SYSCALL_METADATA
#define SYSCALL_METADATA(sname, nb, ...)

__SYSCALL_DEFINEX

https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://github.com/torvalds/linux/blob/master/include/linux/syscalls.h
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/master/include/trace/syscall.h
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

#define __ SYSCALL_DEFINEX(X, name, ...)
asmlinkage long sys##name(__MAP(X,__SC_DECL,__VA_ARGS__))
__attribute_ ((alias(__stringify(SyS##name))));
static inline long SYSC##name(___MAP(X,__SC_DECL,__VA_ARGS__));

asmlinkage long SyS##name(__MAP(X,__SC_LONG, VA _ARGS__));

asmlinkage long SyS##name(__MAP(X,__SC_LONG,__VA_ARGS__))

{
long ret = SYSC##name(___MAP(x,__SC_CAST,__VA_ARGS__));
__MAP(x,__SC_TEST,__ VA _ARGS__);
__PROTECT(x, ret,_MAP(x,__SC_ARGS,_ VA ARGS_));
return ret;

}

P O R A S G G

static inline long SYSC##name(__MAP(x,__SC_DECL,__VA_ARGS__))

sys##name sys_system_call_name __SC_DECL _ VA_ARGS___ MAP __ SC_DECL

__VA_ARGS___ __SYSCALL_DEFINEX CVE-2009-0029 write:

asmlinkage long sys_write(unsigned int fd, const char __user * buf, size_t count);

write

SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,
size t, count)

{
struct = fdget_pos(fd);
ssize t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_write(f.file, buf, count, &pos);
if (ret >= 0)
file_pos_write(f.file, pos);
fdput_pos(f);
}
return ret;
3
e fd -
® buf -
® count -
buf , __user sparse Linux sparse [include/linux/compiler.h]
(https://github.com/torvalds/linux/blob/master/include/linux/compiler.h) Linux __CHECKER__ sys_write
f f fd fd Linux fdget_pos fdget_pos __to_fd

static inline struct fd fdget_pos(int fd)

{
return __to_fd(__fdget_pos(fd));
3
fdget_pos fd fdget_pos , current->files , fd , file_pos_read f_pos

static inline loff_t file_pos_read(struct file *file)

{

return file->f_pos;

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0029
https://en.wikipedia.org/wiki/Sparse
https://github.com/torvalds/linux/blob/master/include/linux/compiler.h
https://github.com/torvalds/linux/blob/master/fs/read_write.c

vfs_write vfs_write fs/read_write.c - vfs_write

file_pos_write

if (ret >= 0)
file_pos_write(f.file, pos);

f_pos :

static inline void file_pos_write(struct file *file, loff_t pos)

{

file->f_pos = pos;

write ,:

fdput_pos(f);

f_pos_lock

Linux write ,

LinuxLinux
, twitter @ OxAX, email issue.

PR linux-insides.

e system call

e vdso

e vsyscall

e general purpose registers

e socket

e C programming language

o x86

e x86_64

e x86-64 calling conventions
e System V Application Binary Interface. PDF
e GCC

e Intel manual. PDF

e system call table

e GCC macro documentation
e file descriptor

e stdout

e strace

e standard library

e wrapper functions

e ltrace

e sparse

vfs_write ,

N
w

https://github.com/torvalds/linux/blob/master/fs/read_write.c
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Virtual_file_system
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/VDSO
https://lwn.net/Articles/446528/
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86_calling_conventions#x86-64_calling_conventions
http://www.x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://en.wikipedia.org/wiki/Strace
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Wrapper_function
https://en.wikipedia.org/wiki/Ltrace
https://en.wikipedia.org/wiki/Sparse

proc file system
Virtual file system
systemd

epoll

Previous chapter

232

https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Epoll

Linux

Linux

Linux system call write Linux

Hello World
int main(int argc, char **argv)

{

sys_write(fd1l, buf, strlen(buf));

C standard library :

#include <unistd.h>

int main(int argc, char **argv)

{

write(fd1, buf, strlen(buf));

write syscall Linux syscall

syscall (C) Linux Linux system call table Linux

arch/x86/entry/syscall_64.c sys_call_table

asmlinkage const sys_call ptr_t sys_call table[_ NR_syscall max+1] = {
[6 ... _NR_syscall _max] = &sys_ni_syscall,
#include <asm/syscalls_64.h>

}
sys_call_table __NR_syscall_max + 1 __NR_syscall_max x86_64 , __NR_syscall_max 547 (
Linux 5.0.0-rc7) Kbuild - include/generated/asm-offsets.h™:

#define _ NR_syscall _max 547

x86_64 arch/x86/entry/syscalls/syscall_64.tbl ; sys_call_table

typedef void (*sys_call ptr_t)(void);

sys_call g

https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/write.2.html
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_64.c
https://en.wikipedia.org/wiki/List_of_CPU_architectures
https://en.wikipedia.org/wiki/X86-64
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L331

sys_call_table sys_ni_syscall sys_ni_syscall “not-implemented” sys_call_table

“not-implemented”

asmlinkage long sys_ni_syscall(void)

{
return -ENOSYS;

The -ENosys error tells us that:

ENOSYS Function not implemented (POSIX.1)

sys_call_table N GCC - Designated Initializers asm/syscalls_64.h
arch/x86/entry/syscalls/syscalltbl.sh syscall table asm/syscalls_64.h

__SYSCALL_COMMON(©, sys_read, sys_read)

__ SYSCALL_COMMON(1, sys_write, sys_write)
__SYSCALL_COMMON(2, sys_open, sys_open)
__SYSCALL_COMMON(3, sys_close, sys_close)
__SYSCALL_COMMON(5, sys_newfstat, sys_newfstat)

__SYSCALL_COMMON __SYSCALL_64

#define __ SYSCALL_COMMON(nr, sym, compat) _ SYSCALL_64(nr, sym, compat)
#define __ SYSCALL_64(nr, sym, compat) [nr] = sym,

sys_call_table

asmlinkage const sys call ptr_t sys_call_table[_ NR_syscall max+1] = {
[0 ... _NR_syscall_max] = &sys_ni_syscall,
[0] = sys_read,
[1] = sys_write,
[2] = sys_open,

}
“non-implemented” sys_ni_syscall -ENOSYS sys_syscall_name
Linux Linux sys_syscall_name Linux Linux Linux
Linux
? Intel - 64-ia-32-architectures-software-developer-vol-2b-manual:

SYSCALL 0 IA32_LSTAR MSR RIP

1A32_LSTAR model specific register Linux Linux Linux trap_init arch/x86/kernel/setup.c

non-early non-early arch/x86/kernel/cpu/common.c

per-cpu

cpu_init

sy

https://en.wikipedia.org/wiki/Typedef
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscalltbl.sh
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscall_64.c
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/Model-specific_register
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Coprocessor
https://github.com/torvalds/linux/blob/master/blob/arch/x86/kernel/cpu/common.c

wrmsr1(MSR_STAR, ((u64)__USER32_CS)<< | ((u64)__KERNEL_CS)<<32);
wrmsr1(MSR_LSTAR, entry_SYSCALL_64);

- MSR_STAR 63:48 cs SS sysret MSR_STAR 47:32 cs and ss
entry_SYSCALL_64 MSR_LSTAR entry_SYSCALL_64 arch/x86/entry/entry_64.S () entry_SYSCALL_64
® MSR_CSTAR -target rip for the compability mode callers;
® MSR_IA32_SYSENTER_CS -target cs forthe sysenter instruction;
® MSR_IA32_SYSENTER_ESP - target esp forthe sysenter instruction;
® MSR_IA32_SYSENTER_EIP -target eip forthe sysenter instruction.
CONFIG_IA32 EMULATION 64 32 CONFIG_IA32_EMULATION
wrmsr1(MSR_CSTAR, entry_SYSCALL_compat);
entry_SYSENTER_compat
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__ KERNEL_CS);
wrmsrl_safe(MSR_IA32_SYSENTER_ESP,)5
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
CONFIG_IA32_EMULATION ignore_sysret MSR_CSTAR :
wrmsr1(MSR_CSTAR, ignore_sysret);
arch/x86/entry/entry_64.S -ENOSYS
ENTRY(ignore_sysret)
mov $-ENOSYS, %eax
sysret
END(ignore_sysret)
CONFIG_IA32_EMULATION MSR_IA32_SYSENTER_CS MSR_IA32_SYSENTER_ESP MSR_IA32_SYSENTER_EIP
CONFIG_IA32_EMULATION MSR_IA32_SYSENTER_ESP MSR_IA32_SYSENTER_EIP Global Descriptor Table

MSR_IA32_SYSENTER_CS

wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);

wrmsrl_safe(MSR_IA32_SYSENTER_ESP,)

wrmsrl_safe(MSR_IA32_SYSENTER_EIP,)
Linux Global Descriptor Table

syscall_init MSR_SYSCALL_MASK

wrmsr1(MSR_SYSCALL_MASK,
X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_IF|
X86_EFLAGS_IOPL | X86_EFLAGS_AC|X86_EFLAGS_NT);

syscall syscall_init syscall

Linux idtentry interrupt entry_SYSCALL_64

http://man7.org/linux/man-pages/man3/errno.3.html
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Program_counter
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/FLAGS_register

entry_SYSCALL_64 arch/x86/entry/entry_64.S :

SWAPGS_UNSAFE_STACK

arch/x86/include/asm/irgflags.h swapgs

#define SWAPGS_UNSAFE_STACK swapgs

GS MSR_KERNEL_GS_BASE rsp_scratch per-cpu

movq %rsp, PER_CPU_VAR(rsp_scratch)
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp

pushq $__USER_DS
pushq PER_CPU_VAR(rsp_scratch)

(bp bx riz ris)“non-implemented” -ENOSYS

ENABLE_INTERRUPTS(CLBR_NONE)

pushq %ril

pushq $__USER_CS
pushq %rcx

pushq %rax

pushq %rdi

pushq %rsi

pushq %rdx

pushq %rcx

pushq $-ENOSYS
pushq %r8

pushq %r9

pushq %ri10

pushq %ril

sub $(6*8), %rsp

[] rax -

e rcx - contains return address to the user space;
e ril -

e rdi - system call handler

® rsi - system call handler

e rdx - system call handler

e ri10 - system call handler

e rg - system call handler

e r9 - system call handler
(rbp rbx ri2 ris) CABI) “non-implemented” dump

thread_info _TIF_WORK_SYSCALL_ENTRY

testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
jnz tracesys

_TIF_WORK_SYSCALL_ENTRY arch/x86/include/asm/thread_info.h

#define _TIF_WORK_SYSCALL_ENTRY \

https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irqflags.h
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/thread_info.h

(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU | _TIF_SYSCALL_AUDIT | \

_TIF_SECCOMP | _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT |

_TIF_NOHZ)

/ Linux tracesys entry_SYSCALL_64_fastpath

arch/x86/include/asm/unistd.h ~ __SYSCALL_MASK

ifdef CONFIG_X86_X32_ABI

define _ SYSCALL_MASK (~(__X32_SYSCALL_BIT))
else

define SYSCALL_MASK (~0)

endif

__X32_SYSCALL_BIT

#define _ X32_SYSCALL_BIT 0x40000000

__SYSCALL_MASK CONFIG_X86_X32_ABI 64 32 ABI

__SYSCALL_MASK CONFIG_X86_X32_ABI

X32_SYSCALL_BIT

#1if _ SYSCALL_MASK == ~0

cmpq $__NR_syscall_max, %rax
#else

andl $__ SYSCALL_MASK, %eax

cmpl $__NR_syscall_max, %eax
#endif

ja CF zF O:

ja 1f

rio rcx x86_64 C ABI call

movq %rl0, %rcx
call *sys_call_table(, %rax, 8)

sys_call_table rax sys_call_table 8

sys_call_table

Linux SYSCALL_DEFINE[N]

arch/x86/entry/entry_64.S:

call *sys_call_table(, %rax, 8)

rax RAX

movq %rax, RAX(%rsp)

arch/x86/include/asm/irqflags.h ~ LOCKDEP_SYS_EXIT

LOCKDEP_SYS_EXIT

rax (__NR_syscall max)

sys_read sys_write

\

entry_SYSCALL_64_fastpath

CNOFIG_X86_X32_ABI

*sys_call_table(, %rax, 8)

eax

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/unistd.h
https://en.wikipedia.org/wiki/Application_binary_interface
http://www.x86-64.org/documentation/abi.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irqflags.h

CONFIG_DEBUG_LOCK_ALLOC

flags register rex rii

RESTORE_C_REGS_EXCEPT_RCX_R11

movq RIP(%rsp), %rcx
movq EFLAGS(%rsp), %rii
mov(q RSP (%rsp), %rsp

USERGS_SYSRET64

USERGS_SYSRET64 swapgs

#define USERGS_SYSRET64
swapgs;
sysretq;

o - entry_SYSCALL_64 ;
® entry_SYSCALL_64 ;

® entry_SYSCALL_64 rax

GS

entry_SYSCALL_64

rsp

GS sysretq

sys_call table ;

° sysretq entry_SYSCALL_64

Linux Linux

twitter @ 0xAX email issue

PR linux-insides

Links

e system call

e write

e C standard library

e list of cpu architectures
o x86 64

e kbuild

e typedef

e errmno

e gcc

e model specific register
e intel 2b manual

® COoprocessor

e instruction pointer

e flags register

e Global Descriptor Table
® per-cpu

e general purpose registers
e ABI

e x86_64 C ABI

rxc

rii

rcx

rili

https://en.wikipedia.org/wiki/FLAGS_register
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/write.2.html
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/List_of_CPU_architectures
https://en.wikipedia.org/wiki/X86-64
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://en.wikipedia.org/wiki/Typedef
http://man7.org/linux/man-pages/man3/errno.3.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Model-specific_register
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Application_binary_interface
http://www.x86-64.org/documentation/abi.pdf

Linux

e previous chapter

239

Linux

vsyscalls vDSO

Linux vsyscall vdso

Linux Linux

vsyscalls

vsyscall virtual system call vsyscall Linux X86_64 Linux []
(https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt)

FFFFFFFFFF600000 - FFFFFFFFFFAFFFFF (=8 MB) vsyscalls

~$ sudo cat /proc/1/maps | grep vsyscall
frffffffffe600000-ffffffffff601000 r-xp 000000 00:00 O [vsyscall]

s vsyscall arch/x86/entry/vsyscall/vsyscall 64.c map_vsyscall Linux arch/x86/kernel/setup.c

setup_arch (Linux)

map_vsyscall CONFIG_X86_VSYSCALL_EMULATION

#ifdef CONFIG_X86_VSYSCALL_EMULATION
extern void map_vsyscall(void);

#else

static inline void map_vsyscall(void) {}
#endif

s CONFIG_X86_VSYSCALL_EMULATION : vsyscall . vsyscall ?, vsyscall ABI, vsyscall

map_vsyscall

void __init map_vsyscall(void)

{
extern char __vsyscall_page;
unsigned long physaddr_vsyscall = _ pa_symbol(&_ _vsyscall page);
}
map_vsyscall __pa_symbol vsyscall (of the Linux kernel initialization process) __vsyscall_page

arch/x86/entry/vsyscall/vsyscall_emu_64.S

ffffffff81881000 D _ vsyscall_page

.data..page_aligned, aw

® gettimeofday ;
® time ;

® getcpu .

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_64.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://en.wikipedia.org/wiki/Application_binary_interface
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_emu_64.S
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Memory_segmentation

mov $__NR_gettimeofday, %rax
syscall
ret
.balign 7
mov $__NR_time, %rax
syscall
ret
.balign ’
mov $__NR_getcpu, %rax
syscall

ret

map_vsyscall __vsyscall_page __vsyscall_page __set_fixmap vsyscall fiXﬂnapped
vsyscall_mode :

if (vsyscall_mode != NONE)
__set_fixmap(VSYSCALL_PAGE, physaddr_vsyscall,
vsyscall mode == NATIVE
? PAGE_KERNEL_VSYSCALL
PAGE_KERNEL_VVAR);

The _ set_fixmap takes three arguments: The first is index of the fixed_addresses enum. In our case VSYSCALL_PAGE is the first

element of the fixed_addresses enum for the x86_e64 architecture:

enum {

#ifdef CONFIG_X86_VSYSCALL_EMULATION
VSYSCALL_PAGE = (FIXADDR_TOP - VSYSCALL_ADDR) >> PAGE_SHIFT,

#endif
511 VSYSCALL_PAGE vsyscall_mode vsyscall_mode NATIVE PAGE_KERNEL_VSYSCALL
PAGE_KERNEL_VVAR (PAGE_KERNEL_VSYSCALL PAGE_KERNEL_VVAR)Z
#define _ PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER)
#define _ PAGE_KERNEL_VVAR (__PAGE_KERNEL_RO | _PAGE_USER)
vsyscall _PAGE_USER vsyscall_mode (_PAGE_KERNEL_VSYSCALL) vsyscall_mode
NATIVE syscall vsyscall_mode emulate vsyscall PAGE_KERNEL_VVAR

vsyscall_setup

static int __init vsyscall_setup(char *str)
{
if (str) {
if (!strcmp("emulate", str))
vsyscall mode = EMULATE;
else if (!strcmp("native", str))
vsyscall _mode = NATIVE;
else if (!strcmp("none", str))
vsyscall _mode = NONE;
else
return -EINVAL;

return 0;

https://en.wikipedia.org/wiki/Enumerated_type

return -EINVAL;

early_param('"vsyscall", vsyscall_setup);

early param Linux

vsyscall_map BUILD_BUG_ON vsyscall VSYSCALL_ADDR

BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_PAGE) !=
(unsigned long)VSYSCALL_ADDR);

vsyscall vsyscall=native arch/x86/entry/vsyscall/vsyscall_emu_64.S
(ox400)

vsyscall page:
mov $__NR_gettimeofday, %rax
syscall
ret

.balign 1024, 0Oxcc
mov $__NR_time, %rax
syscall

ret

.balign 1024, 0Oxcc

mov $__NR_getcpu, %rax
syscall

ret

vsyscall fEffffffff600000 , glibc glibc

#define VSYSCALL_ADDR_vgettimeofday OXFFFfFFFfff600000
#define VSYSCALL_ADDR_vtime Oxffffffffffe00400
#define VSYSCALL_ADDR_vgetcpu Oxffffffffff600800

__vsyscall_page + VSYSCALL_ADDR_vsyscall_name , Xx86_64

s vsyscall=emulate , pagefauh 5 vsyscall ___PAGE_KERNEL_VVAR

#PF page fault page fault vsyscall emulate vsyscall arch/x86/entry/vsyscall/vsyscall_64.c

emulate_vsyscall

do_page_fault

glibc

102¢

The emulate_vsyscall function gets the number of a virtual system call, checks it, prints error and sends segementation fault single:

vsyscall nr = addr_to_vsyscall _nr(address);

if (vsyscall_nr < 0) {
warn_bad_vsyscall(KERN_WARNING, regs, "misaligned vsyscall...);
goto sigsegv;

sigsegv:
force_sig(SIGSEGV, current);
reutrn true;

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_emu_64.S
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vsyscall/vsyscall_64.c
https://en.wikipedia.org/wiki/Segmentation_fault

As it checked number of a virtual system call, it does some yet another checks like access_ok violations and execute system call

function depends on the number of a virtual system call:

switch (vsyscall _nr) {
case
ret = sys_gettimeofday(
(struct timeval __user *)regs->di,
(struct timezone __user *)regs->si);
break;

In the end we put the result of the sys_gettimeofday or another virtual system call handler to the ax general purpose register, as we
did it with the normal system calls and restore the instruction pointer register and add 8 bytes to the stack pointer register. This

operation emulates ret instruction.

regs->ax = ret;

do_ret:
regs->ip = caller;
regs->sp += 3;

return 5

That's all. Now let's look on the modern concept - vDso .

Introduction to vDSO

As 1 already wrote above, vsyscall is an obsolete concept and replaced by the vbso or virtual dynamic shared object . The
main difference between the vsyscall and vbso mechanisms is that vbso maps memory pages into each process in a shared object
form, but vsyscall is static in memory and has the same address every time. For the x86_64 architecture it is called - 1inux-

vdso.so.1 . All userspace applications linked with this shared library via the glibc . For example:

~$ 1ldd /bin/uname
linux-vdso.so0.1 (0x00007ffed014b7000)
libc.so0.6 => /1ib64/1ibc.so0.6 (0x00007fbfee2fe000)
/1ib64/1d-1inux-x86-64.50.2 (0x00005559aab7c000)

Or:

~$ sudo cat /proc/1/maps | grep vdso
7fff39f73000-7fff39f75000 r-xp 0OOCOO0O 0O:00 O [vdso]

Here we can see that uname util was linked with the three libraries:

® linux-vdso.so.1 ;
® libc.so0.6 ;

® 1d-1linux-x86-64.50.2 .

The first provides vbso functionality, the second is ¢ standard library and the third is the program interpreter (more about this you
can read in the part that describes linkers). So, the vbso solves limitations of the vsyscall . Implementation of the vbso is similar

to vsyscall .

Initialization of the vbso occurs in the init_vdso function that defined in the arch/x86/entry/vdso/vma.c source code file. This
function starts from the initialization of the vbpso images for 32-bits and 64-bits depends on the CcoNFIG_x86_x32_ABI kernel

configuration option:

https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/Library_%28computing%29#Shared_libraries
https://en.wikipedia.org/wiki/Uname
https://en.wikipedia.org/wiki/C_standard_library
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vma.c

static int __init init_vdso(void)

{

init_vdso_image(&vdso_image_64);

#ifdef CONFIG_X86_X32_ABI
init_vdso_image(&vdso_image_x32);
#endif

Both function initialize the vdso_image structure. This structure is defined in the two generated source code files: the
arch/x86/entry/vdso/vdso-image-64.c and the arch/x86/entry/vdso/vdso-image-64.c. These source code files generated by the vdso2c
program from the different source code files, represent different approaches to call a system call like int exs8e , sysenter and etc.

The full set of the images depends on the kernel configuration.

For example for the x86_64 Linux kernel it will contain vdso_image_64 :

#ifdef CONFIG_X86_64
extern const struct 2
#endif

But for the x86 - vdso_image_32 :

#ifdef CONFIG_X86_X32
extern const struct H
#endif

If our kernel is configured for the x86 architecture or for the x86_64 and compability mode, we will have ability to call a system call

with the int exse interrupt, if compability mode is enabled, we will be able to call a system call with the native syscall

instruction Or sysenter instruction in other way:

#if defined CONFIG_X86_32 || defined CONFIG_COMPAT

extern const struct 5
#ifdef CONFIG_COMPAT

extern const struct 2
#endif

extern const struct 2
#endif

As we can understand from the name of the vdso_image structure, it represents image of the vbpso for the certain mode of the system
call entry. This structure contains information about size in bytes of the vbso area that always a multiple of PAGE_S1zE (4096
bytes), pointer to the text mapping, start and end address of the alternatives (set of instructions with better alternatives for the

certain type of the processor) and etc. For example vdso_image_64 looks like this:

const struct ={
.data = raw_data,
.size = o
.text_mapping = {
.name = "[vdso]",
.pages = pages,
iy
.alt = 0
.alt_len = 0
.sym_vvar_start = ’
.sym_vvar_page = o
.sym_hpet_page = p

3

Where the raw_data contains raw binary code of the 64-bit vbso system calls which are 2 page size:

static struct * [2];

https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso-image-64.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso-image-64.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vdso2c.c

or 8 Kilobytes.

The init_vdso_image function is defined in the same source code file and just initializes the vdso_image.text_mapping.pages . First
of all this function calculates the number of pages and initializes each vdso_image.text_mapping.pages[number_of page] with the

virt_to_page macro that converts given address to the page structure:

void __init init_vdso_image(const struct vdso_image *image)

{
int i;
int npages = (image->size) / PAGE_SIZE;
for (1 = 0; i < npages; i++)
image->text_mapping.pages[i] =
virt_to_page(image->data + i*PAGE_SIZE);
3

The init_vdso function passed to the subsys_initcall macro adds the given function to the initcalls list. All functions from
this list will be called in the do_initcalls function from the init/main.c source code file:

subsys_initcall(init_vdso);

Ok, we just saw initialization of the vbso and initialization of page structures that are related to the memory pages that contain
vDso system calls. But to where do their pages map? Actually they are mapped by the kernel, when it loads binary to the memory. The
Linux kernel calls the arch_setup_additional_pages function from the arch/x86/entry/vdso/vma.c source code file that checks that
vDso enabled for the x86_64 and calls the map_vdso function:

int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)

{
if (!vdso64_enabled)
return 0;
return map_vdso(&vdso_image_64,);
}

The map_vdso function is defined in the same source code file and maps pages for the vbso and for the shared vbso variables.
That's all. The main differences between the vsyscall andthe vbso concepts is that vsyscal has a static address of

fEFfFFffffee0000 and implements 3 system calls, whereas the vbso loads dynamically and implements four system calls:

® _ vdso_clock_gettime ;
® _ vdso_getcpu ;
® _ vdso_gettimeofday ;
® _ vdso_time .
That's all.
L
Conclusion

This is the end of the third part about the system calls concept in the Linux kernel. In the previous part we discussed the implementation
of the preparation from the Linux kernel side, before a system call will be handled and implementation of the exit process from a
system call handler. In this part we continued to dive into the stuff which is related to the system call concept and learned two new

concepts that are very similar to the system call - the vsyscall andthe vbso .

After all of these three parts, we know almost all things that are related to system calls, we know what system call is and why user

applications need them. We also know what occurs when a user application calls a system call and how the kernel handles system calls.

The next part will be the last part in this chapter and we will see what occurs when a user runs the program.

https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vma.c

If you have questions or suggestions, feel free to ping me in twitter 0xAX, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e x86_64 memory map
e x86_64

e context switching

e ABI

e virtual address

e Segmentation

e enum

e fix-mapped addresses
e glibc

e BUILD_BUG_ON

e Processor register

e Page fault

e segementation fault
e instruction pointer

e stack pointer

e uname

e Linkers

e Previous part

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Enumerated_type
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/Uname

System calls in the Linux kernel. Part 4.

How does the Linux kernel run a program

This is the fourth part of the chapter that describes system calls in the Linux kernel and as I wrote in the conclusion of the previous - this

part will be last in this chapter. In the previous part we stopped at the two new concepts:

® vsyscall ;

® VvDSO ;
that are related and very similar on system call concept.

This part will be last part in this chapter and as you can understand from the part's title - we will see what does occur in the Linux kernel

when we run our programs. So, let's start.

how do we launch our programs?

There are many different ways to launch an application from an user perspective. For example we can run a program from the shell or
double-click on the application icon. It does not matter. The Linux kernel handles application launch regardless how we do launch this

application.

In this part we will consider the way when we just launch an application from the shell. As you know, the standard way to launch an
application from shell is the following: We just launch a terminal emulator application and just write the name of the program and pass

or not arguments to our program, for example:

~$ 1s --version

1ls (GNU coreutils) 8.23

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Written by Richard M. Stallman and David MacKenzie.

Let's consider what does occur when we launch an application from the shell, what does shell do when we write program name, what
does Linux kernel do etc. But before we will start to consider these interesting things, I want to warn that this book is about the Linux
kernel. That's why we will see Linux kernel insides related stuff mostly in this part. We will not consider in details what does shell do,

we will not consider complex cases, for example subshells etc.

My default shell is - bash, so I will consider how do bash shell launches a program. So let's start. The bash shell as well as any
program that written with C programming language starts from the main function. If you will look on the source code of the bash
shell, you will find the main function in the shell.c source code file. This function makes many different things before the main thread

loop of the bash started to work. For example this function:

e checks and tries to open /dev/tty ;

e check that shell running in debug mode;

e parses command line arguments;

e reads shell environment;

e loads .bashrc, .profile and other configuration files;

e and many many more.

After all of these operations we can see the call of the reader_loop function. This function defined in the eval.c source code file and
represents main thread loop or in other words it reads and executes commands. As the reader_loop function made all checks and read
the given program name and arguments, it calls the execute_command function from the execute cmd.c source code file. The

execute_command function through the chain of the functions calls:

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Terminal_emulator
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Entry_point
https://github.com/bminor/bash/blob/master/shell.c#L357
https://github.com/bminor/bash/blob/master/eval.c#L67
https://github.com/bminor/bash/blob/master/execute_cmd.c#L378

execute_command

--> execute_command_internal
----> execute_simple_command
------ > execute_disk_command
-------- > shell_execve

makes different checks like do we need to start subshell , was it builtin bash function or not etc. As I already wrote above, we will
not consider all details about things that are not related to the Linux kernel. In the end of this process, the shell_execve function calls

the execve system call:

execve (command, args, env);

The execve system call has the following signature:

int execve(const char *filename, char *const argv [], char *const envp[]);

and executes a program by the given filename, with the given arguments and environment variables. This system call is the first in our

case and only, for example:

$ strace 1s
execve("/bin/1s", ["1s"], [/* 62 vars */]) = 0

$ strace echo
execve("/bin/echo", ["echo"], [/* 62 vars */]) = 0

$ strace uname

execve("/bin/uname", ["uname"], [/* 62 vars */]) = 0

So, an user application (bash in our case) calls the system call and as we already know the next step is Linux kernel.

execve system call

We saw preparation before a system call called by an user application and after a system call handler finished its work in the second part
of this chapter. We stopped at the call of the execve system call in the previous paragraph. This system call defined in the fs/exec.c

source code file and as we already know it takes three arguments:

SYSCALL_DEFINE3(execve,
const char __user *, filename,
const char __user *const __user *, argv,
const char __user *const __user *, envp)

return do_execve(getname(filename), argv, envp);

Implementation of the execve is pretty simple here, as we can see it just returns the result of the do_execve function. The

do_execve function defined in the same source code file and do the following things:

o [Initialize two pointers on a userspace data with the given arguments and environment variables;

e return the result of the do_execveat_common .

We can see its implementation:

struct = { .ptr.native = __argv };
struct = { .ptr.native = __envp };
return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);

https://en.wikipedia.org/wiki/Environment_variable
https://github.com/torvalds/linux/blob/master/fs/exec.c

The do_execveat_common function does main work - it executes a new program. This function takes similar set of arguments, but as
you can see it takes five arguments instead of three. The first argument is the file descriptor that represent directory with our application,
in our case the AT_Fpcwb means that the given pathname is interpreted relative to the current working directory of the calling process.

The fifth argument is flags. In our case we passed o tothe do_execveat_common . We will check in a next step, so will see it latter.

First of all the do_execveat_common function checks the filename pointer and returns if itis nuLL . After this we check flags of the

current process that limit of running processes is not exceed:

if (IS_ERR(filename))
return PTR_ERR(filename);

if ((current->flags & PF_NPROC_EXCEEDED) &&
atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
retval = -EAGAIN;
goto out_ret;

current->flags &= ~PF_NPROC_EXCEEDED;

If these two checks were successful we unset PF_NPROC_EXCEEDED flag in the flags of the current process to prevent fail of the
execve . You can see that in the next step we call the unshare_files function that defined in the kernel/fork.c and unshares the files

of the current task and check the result of this function:

retval = unshare_files(&displaced);
if (retval)
goto out_ret;

We need to call this function to eliminate potential leak of the execve'd binary's file descriptor. In the next step we start preparation of

the bprm that represented by the struct linux_binprm structure (defined in the include/linux/binfmts.h header file). The
linux_binprm structure is used to hold the arguments that are used when loading binaries. For example it contains vma field which

has vm_area_struct type and represents single memory area over a contiguous interval in a given address space where our application

will be loaded, mm field which is memory descriptor of the binary, pointer to the top of memory and many other different fields.

First of all we allocate memory for this structure with the kzalloc function and check the result of the allocation:

bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
if (!bprm)
goto out_files;

After this we start to prepare the binprm credentials with the call of the prepare_bprm_creds function:

retval = prepare_bprm_creds(bprm);
if (retval)
goto out_free;

check_unsafe_exec(bprm);
current->in_execve = 1;

Initialization of the binprm credentials in other words is initialization of the cred structure that stored inside of the linux_binprm
structure. The cred structure contains the security context of a task for example real uid of the task, real guid of the task, uid and
guid for the virtual file system operations etc. In the next step as we executed preparation of the bprm credentials we check that now

we can safely execute a program with the call of the check_unsafe_exec function and set the current process to the in_execve state.

After all of these operations we call the do_open_execat function that checks the flags that we passed to the do_execveat_common
function (remember that we have e inthe flags)and searches and opens executable file on disk, checks that our we will load a
binary file from noexec mount points (we need to avoid execute a binary from filesystems that do not contain executable binaries like

proc or sysfs), intializes file structure and returns pointer on this structure. Next we can see the call the sched_exec after this:

file = do_open_execat(fd, filename, flags);

https://github.com/torvalds/linux/blob/master/kernel/fork.c
https://en.wikipedia.org/wiki/File_descriptor
https://github.com/torvalds/linux/blob/master/linux/binfmts.h
https://en.wikipedia.org/wiki/User_identifier#Real_user_ID
https://en.wikipedia.org/wiki/Globally_unique_identifier
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs

retval = PTR_ERR(file);
if (IS_ERR(file))
goto out_unmark;

sched_exec();

The sched_exec function is used to determine the least loaded processor that can execute the new program and to migrate the current

process to it.

After this we need to check file descriptor of the give executable binary. We try to check does the name of the our binary file starts from
the / symbol or does the path of the given executable binary is interpreted relative to the current working directory of the calling

process or in other words file descriptor is AT_Fpcwp (read above about this).
If one of these checks is successfull we set the binary parameter filename:

bprm->file = file;

if (fd == AT_FDCWD || filename->name[0] == '/") {
bprm->filename = filename->name;

Otherwise if the filename is empty we set the binary parameter filename to the /dev/fd/%d or /dev/fd/%d/%s depends on the

filename of the given executable binary which means that we will execute the file to which the file descriptor refers:

} else {
if (filename->name[0] == '\0")
pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
else

pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
fd, filename->name);
if (!pathbuf) {
retval = -ENOMEM;
goto out_unmark;

bprm->filename = pathbuf;

bprm->interp = bprm->filename;

Note that we set not only the bprm->filename butalso bprm->interp that will contain name of the program interpreter. For now we
just write the same name there, but later it will be updated with the real name of the program interpreter depends on binary format of a
program. You can read above that we already prepared cred forthe 1linux_binprm . The next step is initalization of other fields of the

linux_binprm . First of all we call the bprm_mm_init function and pass the bprm to it:

retval = bprm_mm_init(bprm);
if (retval)
goto out_unmark;

The bprm_mm_init defined in the same source code file and as we can understand from the function's name, it makes initialization of

the memory descriptor or in other words the bprm_mm_init function initializes mm_struct structure. This structure defined in the

include/linux/mm_types.h header file and represents address space of a process. We will not consider implementation of the
bprm_mm_init function because we do not know many important stuff related to the Linux kernel memory manager, but we just need

to know that this function initializes mm_struct and populate it with a temporary stack vm_area_struct .

After this we calculate the count of the command line arguments which are were passed to the our executable binary, the count of the

environment variables and set it to the bprm->argc and bprm->envc respectively:

bprm->argc = count(argv, MAX_ARG_STRINGS);
if ((retval = bprm->argc) < 0)
goto out;

https://en.wikipedia.org/wiki/File_descriptor
https://github.com/torvalds/linux/blob/master/include/mm_types.h

bprm->envc = count(envp, MAX_ARG_STRINGS);
if ((retval = bprm->envc) < 0)
goto out;

As you can see we do this operations with the help of the count function that defined in the same source code file and calculates the
count of strings in the argv array. The MAX_ARG_STRINGS macro defined in the include/uapi/linux/binfmts.h header file and as we can
understand from the macro's name, it represents maximum number of strings that were passed to the execve system call. The value of

the MAX_ARG_STRINGS :

#define MAX_ARG_STRINGS Ox7FFFFFFF

After we calculated the number of the command line arguments and environment variables, we call the prepare_binprm function. We
already call the function with the similar name before this moment. This function is called prepare_binprm_cred and we remember

that this function initializes cred structure in the 1inux_bprm . Now the prepare_binprm function:

retval = prepare_binprm(bprm);
if (retval < 0)
goto out;

fills the 1inux_binprm structure with the uid from inode and read 128 bytes from the binary executable file. We read only first
128 from the executable file because we need to check a type of our executable. We will read the rest of the executable file in the later
step. After the preparation of the 1linux_bprm structure we copy the filename of the executable binary file, command line arguments

and enviroment variables to the 1inux_bprm with the call of the copy_strings_kernel function:

retval = copy_strings_kernel(1l, &bprm->filename, bprm);
if (retval < 0)
goto out;

retval = copy_strings(bprm->envc, envp, bprm);
if (retval < 0)

goto out;
retval = copy_strings(bprm->argc, argv, bprm);

if (retval < 0)
goto out;

And set the pointer to the top of new program's stack that we set in the bprm_mm_init function:

bprm->exec = bprm->p;

The top of the stack will contain the program filename and we store this fileneme tothe exec field of the linux_bprm structure.

Now we have filled linux_bprm structure, we call the exec_binprm function:

retval = exec_binprm(bprm);
if (retval < 0)
goto out;

First of all we store the pid and pid that seen from the namespace of the current task in the exec_binprm :

old_pid = current->pid;

rcu_read_lock();

old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
rcu_read_unlock();

and call the:

https://github.com/torvalds/linux/blob/master/fs/exec.c
https://github.com/torvalds/linux/blob/master/include/uapi/linux/binfmts.h
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Cgroups

search_binary_handler (bprm);

function. This function goes through the list of handlers that contains different binary formats. Currently the Linux kernel supports

following binary formats:

e binfmt_script - support for interpreted scripts that are starts from the #! line;

e binfmt_misc - support differnt binary formats, according to runtime configuration of the Linux kernel;
e binfmt_elf - support elf format;

e binfmt_aout - support a.out format;

e binfmt_flat - support for flat format;

e binfmt_elf fdpic - Support for elf FDPIC binaries;

e binfmt_ems6 - support for Intel elf binaries running on Alpha machines.

So, the search-binary_handler tries to call the load_binary function and pass linux_binprm to it. If the binary handler supports the

given executable file format, it starts to prepare the executable binary for execution:

int search_binary_handler(struct linux_binprm *bprm)

{

list_for_each_entry(fmt, &formats, 1lh) {
retval = fmt->load_binary(bprm);
if (retval < 0 && !bprm->mm) {
force_sigsegv(SIGSEGV, current);
return retval;

return retval;

Where the 1oad_binary for example for the elf checks the magic number (each elf binary file contains magic number in the header)

in the linux_bprm buffer (remember that we read first 128 bytes from the executable binary file): and exit if it is not elf binary:

static int load_elf_binary(struct linux_binprm *bprm)

{

loc->elf_ex = *((struct elfhdr *)bprm->buf);

if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
goto out;

If the given executable file is in elf format, the load_elf_binary continues to execute. The load_elf binary does many different

things to prepare on execution executable file. For example it checks the architecture and type of the executable file:

if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
goto out;

if (!elf_check_arch(&loc->elf_ex))
goto out;

and exit if there is wrong architecture and executable file non executable non shared. Tries to load the program header table :

elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
if (!elf_phdata)
goto out;

https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Binary_file#Structure
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://elinux.org/UClinux_Shared_Library#FDPIC_ELF
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

that describes segments. Read the program interpreter and libraries that linked with the our executable binary file from disk and
load it to memory. The program interpreter specified in the .interp section of the executable file and as you can read in the part
that describes Linkers it is- /1ib64/1d-1inux-x86-64.s0.2 forthe x86_64 . It setups the stack and map elf binary into the correct
location in memory. It maps the bss and the brk sections and does many many other different things to prepare executable file to

execute.

In the end of the execution of the load_elf_binary we call the start_thread function and pass three arguments to it:

start_thread(regs, elf_entry, bprm->p);

retval = 0;
out:

kfree(loc);
out_ret:

return retval;

These arguments are:

e Set of registers for the new task;
e Address of the entry point of the new task;
e Address of the top of the stack for the new task.

As we can understand from the function's name, it starts new thread, but it is not so. The start_thread function just prepares new

task's registers to be ready to run. Let's look on the implementation of this function:

void
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
start_thread_common(regs, new_ip, new_sp,
__USER_CS, __USER_DS, 0);

As we can see the start_thread function just makes a call of the start_thread_common function that will do all for us:

static void
start_thread_common(struct pt_regs *regs, unsigned long new_ip,
unsigned long new_sp,
unsigned int _cs, unsigned int _ss, unsigned int _ds)

{
loadsegment(fs, 0);
loadsegment(es, _ds);
loadsegment(ds, _ds);
load_gs_index(0);
regs->ip = new_ip;
regs->sp = new_sp;
regs->cs = _cs;
regs->ss = _ss;
regs->flags = X86_EFLAGS_IF;
force_iret();

3

The start_thread_common function fills fs segment register with zero and es and ds with the value of the data segment register.
After this we set new values to the instruction pointer, cs segments etc. In the end of the start_thread_common function we can see
the force_iret macro that force a system call return via iret instruction. Ok, we prepared new thread to run in userspace and now
we can return from the exec_binprm and now we are in the do_execveat_common again. After the exec_binprm will finish its

execution we release memory for structures that was allocated before and return.

After we returned from the execve system call handler, execution of our program will be started. We can do it, because all context
related information already configured for this purpose. As we saw the execve system call does not return control to a process, but
code, data and other segments of the caller process are just overwritten of the program segments. The exit from our application will be

implemented through the exit system call.

That's all. From this point our programm will be executed.

https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/.bss
http://man7.org/linux/man-pages/man2/sbrk.2.html
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Program_counter

Conclusion

This is the end of the fourth and last part of the about the system calls concept in the Linux kernel. We saw almost all related stuff to the
system call concept in these four parts. We started from the understanding of the system call concept, we have learned what is it
and why do users applications need in this concept. Next we saw how does the Linux handle a system call from an user application. We

met two similar concepts to the system call concept, they are vsyscall and vbso and finally we saw how does Linux kernel run

an user program.
If you have questions or suggestions, feel free to ping me in twitter OxAX, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e System call

e shell

e bash

e enfry point

o C

e environment variables
e file descriptor

e real uid

e virtual file system
e procfs

e sysfs

e inode

e pid

e namespace

o #!

o elf

e a.out

o flat

e Alpha

e FDPIC

e segments

e Linkers

e Processor register
e instruction pointer

e Previous part

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Entry_point
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/User_identifier#Real_user_ID
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Binary_file#Structure
https://en.wikipedia.org/wiki/DEC_Alpha
http://elinux.org/UClinux_Shared_Library#FDPIC_ELF
https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Program_counter

open

Linux Linux Linux Linux Linux sector,tracks

open C open

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

int main(int argc, char *argv) {
int fd = open("test", O_RDONLY);

if fd < 0 {

read , write , open , close , dup

perror("Opening of the file is failed\n");

3
else {

printf("file sucessfully opened\n");

close(fd);
return 0;

open open

$ sudo 1ls /proc/1/fd/
0 10 12 14 16 2 21
8

1 11 13 15 19 20 22
9

open open

open

23 25

24 26

man

open

27 29

28

3

30 32 34 36 38 4

proc

41 43 45

31 33 35 37 39 40 42 44 46

SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode)

return do_sys_open(AT_FDCWD, filename, flags, mode);

{
if (force_o_largefile())
flags |= O_LARGEFILE;

3
SYSCALL_DEFINE open

open fs/open.c

SYSCALL_DEFINE3(open, const char __user *,

filename,

int, flags,

umode_t, mode)

47 49 50 53 655

48

5

51 54 57

58 6 61 63 67

59 60 62 65 7

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/open.2.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Procfs
http://man7.org/linux/man-pages/man2/open.2.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c

open

{
if (force_o_largefile())
flags |= O_LARGEFILE;
return do_sys_open(AT_FDCWD, filename, flags, mode);
3

do_sys_open open if

if (force_o_largefile())
flags |= O_LARGEFILE;

force_o_largefile() true open ﬂags

O_LARGEFILE

O_LARGEFILE

O_LARGEFILE

open(2) man

(LFS) Allow files whose sizes cannot be represented in an off_t (but can be represented in an off64._t) to be opened.

GNU C

off t

This is a signed integer type used to represent file sizes. In the GNU C Library, this type is no narrower than int. If the source is

compiled with _FILE_OFFSET_BITS == 64 this type is transparently replaced by off64 _t.

off64_t

This type is used similar to off_t. The difference is that even on 32 bit machines, where the off_t type would have 32 bits, off64 t

has 64 bits and so is able to address files up to 2463 bytes in length. When compiling with _FILE_OFFSET_BITS == 64 this

type is available under the name off_t.

off_t , off64_t 0_LARGEFILE Linux 32

include/linux/fentl.h linux force_o_largefile

#ifndef force_o_largefile
#define force_o_largefile() (BITS_PER_LONG != 32)
#endif

CPU x86_64 force_o_largefile

force_o_largefile x86_64 "true" 64

flags

O_LARGEFILE force_o_largefile do_sys_open

O_LARGEFILE 64

include/linux/fcntl.h

force_o_largefile true

long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode)

{
struct 2
int fd = build_open_flags(flags, mode, &op);
struct * ;
if (fd)
return fd;

tmp = getname(filename);
if (IS_ERR(tmp))
return PTR_ERR(tmp);

fd = get_unused_fd_flags(flags);
if (fd >= 0) {
struct *f = do_filp_open(dfd, tmp, &op);
if (IS_ERR(F)) {
put_unused_fd(fd);

open

O_LARGEFILE

open

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c
http://man7.org/linux/man-pages/man2/open.2.html
https://www.gnu.org/software/libc/manual/html_mono/libc.html#File-Position-Primitive
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fcntl.h#L7
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fcntl.h#L7
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c

fd = PTR_ERR(F);

} else {
fsnotify_open(f);
fd_install(fd, f);

}
putname(tmp);
return fd;

do_sys_open

open(2) flags

open flags mode do_sys_open build_open_flags flags flags mode

build_open_flags

o flags -

e mode -

- op open_flags

struct {
int open_flag;
umode_t mode;
int acc_mode;
int intent;
int lookup_flags;
}

fs/internal.h flags build_open_flags open_flags

build_open_flags

int acc_mode = ACC_MODE(flags);

ACC_MODE include/linux/fs.h,

#define ACC_MODE(x) ("\004\002\006\006"[(x)&0_ACCMODE])
#define O_ACCMODE 00000003

"\004\002\006\006"

"\004\002\006\006" == {'\004', '\002', '\006', '\006'}
ACC_MODE [(x) & O_ACCMODE] 0_AccmMobE == 00000003.

#define O_RDONLY 00000000

#define O_WRONLY 00000001

#define O_RDWR 00000002
ACC_MODE MAY_WRITE , MAY_READ

if (flags & (O_CREAT | __O_TMPFILE))

op->mode = (mode & S_IALLUGO) | S_IFREG;
else

X & 0_ACCMODE

read , write

read/weite

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/internal.h#L99
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fs.h

op->mode = 0;

open_flags

if neither O_CREAT nor O_TMPFILE is specified, then mode is ignored.

O_CREAT O_TMPFILE opendir (http://man7.org/linux/man-pages/man3/opendir.3.html)

fanotify ~ 0_CLOSEXEC

flags &= ~FMODE_NONOTIFY & ~O_CLOEXEC;

execve open 0_CLOSEXEC 0_CLOSEXEC fork) + execve)

flags 0_SYNC 0_DSYNC

if (flags & __0_SYNC)
flags |= O_DSYNC;

0_SYNC 0_DSYNC 0_sYNC (0_DSYNC) atime , mtime Linux

__0_SYNC|O_DSYNC

ﬂags O_TMPFILE_MASK O_CREAT | O_TMPFILE 0_CREAT & O_TMPFILE

if (flags & __O_TMPFILE) {
if ((flags & O_TMPFILE_MASK) != O_TMPFILE)
return -EINVAL;
if (!(acc_mode & MAY_WRITE))
return -EINVAL;
} else if (flags & O_PATH) {
flags &= O_DIRECTORY | O_NOFOLLOW | O_PATH;
acc_mode = 0;

man
O_TMPFILE must be specified with one of O_RDWR or O_WRONLY
O_TMPFILE 0_PATH 0_PATH

* 0

dup , fcntl read , write O_DIRECTORY | O_NOFOLLOW | O_PATH

open_flags->open_flag

op->open_flag = flags;

0_DSYNC + __0_SYNC,

build_open_flags

open_flag ﬂags umask mode open_flags op->acc_mode build_open_flags

acc_mode flag

if (flags & O_TRUNC)
acc_mode |= MAY_WRITE;
if (flags & O_APPEND)
acc_mode |= MAY_APPEND;
op->acc_mode = acc_mode;

o_TRUNC O o_aApPEND append mode ()

open_flags - intent ﬂags O_PATH open_flags 0

http://man7.org/linux/man-pages/man3/opendir.3.html
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Fork_\(system_call\
https://en.wikipedia.org/wiki/Exec_\(system_call\

op->intent = flags & O_PATH ? : LOOKUP_OPEN;

open_flags LOOKUP_OPEN LOOKUP_CREATE O_EXEC

if (flags & O_CREAT) {
op->intent |= LOOKUP_CREATE;
if (flags & O_EXCL)
op->intent |= LOOKUP_EXCL;

open_flags lookup_flags

if (flags & O_DIRECTORY)
lookup_flags |= LOOKUP_DIRECTORY;

if (!(flags & O_NOFOLLOW))
lookup_flags |= LOOKUP_FOLLOW;

op->lookup_flags = lookup_flags;

return 0;
LOOKUP_DIRECTORY LOOKUP_FOLLOW build_open_flags open_flags modes flags
build_open_flags flags modes getname filename open

tmp = getname(filename);
if (IS_ERR(tmp))
return PTR_ERR(tmp);

getname fs/namei.c

struct filename *
getname(const char __user * filename)

{
return getname_flags(filename, 0,);
}
getname_flags getname_flags filename include/linux/fs.h
® name -
e uptr-

e aname - audit

e refcnt -
e iname - PATH_MAX
getname_flags strncpy_from_user open

fd = get_unused_fd_flags(flags);

get_unused_fd_flags minimum (©) maximum (RLIMIT_NOFILE) open

get_unused_fd_flags o_cLoexec flags

do_sys_open do_filp_open function :

struct *f = do_filp_open(dfd, tmp, &op);

do_sys_open

https://en.wikipedia.org/wiki/Symbolic_link
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/fs.h

if (IS_ERR(F)) {
put_unused_fd(fd);
fd = PTR_ERR(T);

} else {
fsnotify_open(f);
fd_install(fd, f);

3
do_filp_open() file file do_filp_open
file
do_filp_open() fs/namei.c Linux nameidata inode
nameidata path_openat
filp = path_openat(&nd, op, flags | LOOKUP_RCU);
if (unlikely(filp == ERR_PTR(-ECHILD)))
filp = path_openat(&nd, op, flags);
if (unlikely(filp == ERR_PTR(-ESTALE)))
filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
path_openat Linux RCU nfs
Linux)
path_openat get_empty_flip() get_empty_flip() file
O_CREATE O_PATH do_tmpfile do_o_path
path_init inode dentry inode AT_CWD
path_init lOOplOOp link_path_walk do_last link_path_walk
dcache link_path_walk do_last link_path_walk file
vfs_open fs/open.c Linux
open open file_operations.open
Linux , twitter @0xAX/email, issue., Linux read
linux-insides PR
e system call
® open
e file descriptor
® proc
e GNU C Library Reference Manual
o [A-64
o x86 64
e opendir
e fanotify
o fork)
® execve)
e symlink

o audit

put_unused_fd

do_filp_open()

do_filp_open()

path_openat

file

do_sys_open

do_last

filesystem

open

file

open inode

path lookup dentry (

O_TMPFILE

walk_component

vfs_open

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c
https://en.wikipedia.org/wiki/Inode
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://en.wikipedia.org/wiki/Network_File_System
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c#L3457
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c
https://github.com/torvalds/linux/tree/master/fs
https://twitter.com/0xAX
https://github.com/0xAX/linux-internals/issues/new
http://man7.org/linux/man-pages/man2/read.2.html
https://github.com/0xAX/linux-internals
https://en.wikipedia.org/wiki/System_call
http://man7.org/linux/man-pages/man2/open.2.html
https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/Procfs
https://www.gnu.org/software/libc/manual/html_mono/libc.html#File-Position-Primitive
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/X86-64
http://man7.org/linux/man-pages/man3/opendir.3.html
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://en.wikipedia.org/wiki/Fork_\(system_call\
https://en.wikipedia.org/wiki/Exec_\(system_call\
https://en.wikipedia.org/wiki/Symbolic_link
https://linux.die.net/man/8/auditd

open

e inode
e RCU
e read

e previous part

261

https://en.wikipedia.org/wiki/Inode
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
http://man7.org/linux/man-pages/man2/read.2.html

Linux

e - Linux

e - this part describes clocksource framework in the Linux kernel.

e The tick broadcast framework and dyntick - tick broadcast framework and dyntick
e - Linux

e Clockevents - : clockevents .

e x86 - x86_64

e Linux -

Timers and time management in the Linux kernel. Part 1.

Introduction

This is yet another post that opens new chapter in the linux-insides book. The previous part was a list part of the chapter that describes
system call concept and now time is to start new chapter. As you can understand from the post's title, this chapter will be devoted to the
timers and time management in the Linux kernel. The choice of topic for the current chapter is not accidental. Timers and generally
time management are very important and widely used in the Linux kernel. The Linux kernel uses timers for various tasks, different
timeouts for example in TCP implementation, the kernel must know current time, scheduling asynchronous functions, next event

interrupt scheduling and many many more.

So, we will start to learn implementation of the different time management related stuff in this part. We will see different types of timers
and how do different Linux kernel subsystems use them. As always we will start from the earliest part of the Linux kernel and will go
through initialization process of the Linux kernel. We already did it in the special chapter which describes initialization process of the

Linux kernel, but as you may remember we missed some things there. And one of them is the initialization of timers.

Let's start.

Initialization of non-standard PC hardware clock

After the Linux kernel was decompressed (more about this you can read in the Kernel decompression part) the architecture non-specific
code starts to work in the init/main.c source code file. After initialization of the lock validator, initialization of cgroups and setting

canary value we can see the call of the setup_arch function.

As you may remember this function defined in the arch/x86/kernel/setup.c source code file and prepares/initializes architecture-specific
stuff (for example it reserves place for bss section, reserves place for initrd, parses kernel command line and many many other things).

Besides this, we can find some time management related functions there.

The first is:

x86_init.timers.wallclock_init();

We already saw x86_init structure in the chapter that describes initialization of the Linux kernel. This structure contains pointers to
the default setup functions for the different platforms like Intel MID, Intel CE4100 and etc. The x86_init structure defined in the

arch/x86/kernel/x86_init.c and as you can see it determines standard PC hardware by default.

As we can see, the x86_init structure has x86_init_ops type that provides a set of functions for platform specific setup like

reserving standard resources, platform specific memory setup, initialization of interrupt handlers and etc. This structure looks like:

struct {
struct 5
struct 2
struct B
struct 8
struct B
struct B
struct B
struct B

b
We can note timers field that has x86_init_timers type and as we can understand by its name - this field is related to time
management and timers. The x86_init_timers contains four fields which are all functions that returns pointer on void:

e setup_percpu_clockev - setup the per cpu clock event device for the boot cpu;

e tsc_pre_init - platform function called before TSC init;

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://github.com/torvalds/linux/blob/master/init/main.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Buffer_overflow_protection
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://en.wikipedia.org/wiki/.bss
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
http://www.wpgholdings.com/epaper/US/newsRelease_20091215/255874.pdf
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c#L36
https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Time_Stamp_Counter

e timer_init - initialize the platform timer;

e wallclock_init - initialize the wallclock device.

So, as we already know, in our case the wallclock_init executes initialization of the wallclock device. If we will look on the

x86_init structure, we will see that wallclock_init points to the x86_init_noop :
struct = {
.timers = {

.wallclock_init = x86_init_noop,

}

Where the x86_init_noop is just a function that does nothing:

void __cpuinit x86_init_noop(void) { }

for the standard PC hardware. Actually, the wallclock_init function is used in the Intel MID platform. Initialization of the
x86_init.timers.wallclock_init located in the arch/x86/platform/intel-mid/intel-mid.c source code file in the

x86_intel_mid_early_setup function:

void __init x86_intel mid_early_setup(void)

{

Xx86_init.timers.wallclock_init = intel _mid_rtc_init;

Implementation of the intel mid_rtc_init function is in the arch/x86/platform/intel-mid/intel_mid_vrtc.c source code file and looks

pretty easy. First of all, this function parses Simple Firmware Interface M-Real-Time-Clock table for the getting such devices to the

sfi_mrtc_array array and initialization of the set_time and get_time functions:

void __init intel mid_rtc_init(void)
{

unsigned long vrtc_paddr;

sfi_table_parse(SFI_SIG_MRTC, 0 , sfi_parse_mrtc);
vrtc_paddr = sfi_mrtc_array[0].phys_addr;

if (!sfi_mrtc_num || !vrtc_paddr)

return;

vrtc_virt_base = (void __iomem *)set_fixmap_offset_nocache(FIX_LNW_VRTC,
vrtc_paddr);

x86_platform.get_wallclock = vrtc_get_time;
x86_platform.set_wallclock = vrtc_set_mmss;

That's all, after this a device based on 1Intel mip will be able to get time from hardware clock. As I already wrote, the standard PC

x86_64 architecture does not support x86_init_noop and just do nothing during call of this function. We just saw initialization of the

real time clock for the Intel MID architecture and now times to return to the general x86_64 architecture and will look on the time

management related stuff there.

https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
https://github.com/torvalds/linux/blob/master/arch/x86/platform/intel-mid/intel-mid.c
https://github.com/torvalds/linux/blob/master/arch/x86/platform/intel-mid/intel_mid_vrtc.c
https://en.wikipedia.org/wiki/Simple_Firmware_Interface
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms

Acquainted with jiffies

If we will return to the setup_arch function which is located as you remember in the arch/x86/kernel/setup.c source code file, we will

see the next call of the time management related function:

register_refined_jiffies(CLOCK_TICK_RATE);

Before we will look on the implementation of this function, we must know about jiffy. As we can read on wikipedia:

Jiffy is an informal term for any unspecified short period of time

This definition is very similar to the jiffy in the Linux kernel. There is global variable with the jiffies which holds the number of

ticks that have occurred since the system booted. The Linux kernel sets this variable to zero:

extern unsigned long volatile __jiffy_data jiffies;

during initialization process. This global variable will be increased each time during timer interrupt. Besides this, near the jiffies

variable we can see definition of the similar variable

extern u64 jiffies_64;

Actually only one of these variables is in use in the Linux kernel. And it depends on the processor type. For the x86_64 it will be ue4

use and for the x86 is unsigned long . We will see this if we will look on the arch/x86/kernel/vmlinux.lds.S linker script:

#ifdef CONFIG_X86_32
J.'J.LT.‘fies = jiffies_64;
pelse
J.'_W.L1.‘fie3764 = jiffies;
pendit

In the case of x86_32 the jiffies will be lower 32 bits of the jiffies_64 variable. Schematically, we can imagine it as follows

jiffies_64
e +
	jiffies on "x86_32"
PeocooncoonoooocooancoEno0ooEooaCooENE0oREooaCoDEN0D0 D0 +
63 31 0

Now we know a little theory about jiffies and we can return to the our function. There is no architecture-specific implementation for
our function - the register_refined_jiffies . This function located in the generic kernel code - kernel/time/jiffies.c source code file.
Main point of the register_refined_jiffies is registration of the jiffy clocksource . Before we will look on the implementation of

the register_refined_jiffies function, we must know what is it clocksource . As we can read in the comments:

The “clocksource™ is hardware abstraction for a free-running counter.

I'm not sure about you, but that description didn't give a good understanding about the clocksource concept. Let's try to understand
what is it, but we will not go deeper because this topic will be described in a separate part in much more detail. The main point of the

clocksource is timekeeping abstraction or in very simple words - it provides a time value to the kernel. We already know about

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://en.wikipedia.org/wiki/Jiffy_%28time%29
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c

jiffies interface that represents number of ticks that have occurred since the system booted. It represented by the global variable in
the Linux kernel and increased each timer interrupt. The Linux kernel can use jiffies for time measurement. So why do we need in
separate context like the clocksource ? Actually different hardware devices provide different clock sources that are widely in their

capabilities. The availability of more precise techniques for time intervals measurement is hardware-dependent.

For example x86 has on-chip a 64-bit counter that is called Time Stamp Counter and its frequency can be equal to processor
frequency. Or for example High Precision Event Timer that consists of a 64-bit counter of at least 10 MHz frequency. Two different
timers and they are both for x86 . If we will add timers from other architectures, this only makes this problem more complex. The

Linux kernel provides clocksource concept to solve the problem.

The clocksource concept represented by the clocksource structure in the Linux kernel. This structure defined in the
include/linux/clocksource.h header file and contains a couple of fields that describe a time counter. For example it contains - name
field which is the name of a counter, flags field that describes different properties of a counter, pointers to the suspend and

resume functions, and many more.

Let's look on the clocksource structure for jiffies that defined in the kernel/time/jiffies.c source code file:

static struct = {
.name = "jiffies",
.rating =1,
.read = jiffies_read,
.mask = ,
.mult = NSEC_PER_JIFFY << JIFFIES_SHIFT,
.shift = JIFFIES_SHIFT,
.max_cycles = ,
}

We can see definition of the default name here - jiffies , the nextis rating field allows the best registered clock source to be

chosen by the clock source management code available for the specified hardware. The rating may have following value:

e 1-99 - Only available for bootup and testing purposes;
e 100-199 - Functional for real use, but not desired.

e 200-299 - A correct and usable clocksource.

e 300-399 - Areasonably fast and accurate clocksource.

o 400-499 - The ideal clocksource. A must-use where available;

For example rating of the time stamp counter is 3ee , but rating of the high precision event timer is 25 . The next field is read - is

pointer to the function that allows to read clocksource's cycle value or in other words it just returns jiffies variable with cycle_t

type:

static cycle_t jiffies_read(struct clocksource *cs)

{

return (cycle_t) jiffies;

that is just 64-bit unsigned type:

typedef u64 cycle_t;

The next field is the mask value ensures that subtraction between counters values from non 64 bit counters do not need special
overflow logic. In our case the mask is oxffffffff anditis 32 bits. This means that jiffy wraps around to zero after 42

seconds:

42 nanoseconds

>>> * pow(10, -9)

43 nanoseconds

>>> * pow(10, -9)

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer

4.3e-08

The next two fields mult and shift are used to convert the clocksource's period to nanoseconds per cycle. When the kernel calls the
clocksource.read function, this function returns value in machine time units represented with cycle_t data type that we saw just
now. To convert this return value to the nanoseconds we need in these two fields: mult and shift . The clocksource provides

clocksource_cyc2ns function that will do it for us with the following expression:

((u64) cycles * mult) >> shift;

As we can see the mult field is equal:

NSEC_PER_JIFFY << JIFFIES_SHIFT

#define NSEC_PER_JIFFY ((NSEC_PER_SEC+HZ/2)/HZ)
#define NSEC_PER_SEC 1000000000L

by default, and the shift is

#if HZ < 34

#define JIFFIES_SHIFT 6
#elif Hz < 67

#define JIFFIES_SHIFT 7
#else

#define JIFFIES_SHIFT 8
#endif

The jiffies clock source uses the Nsec_Per_JIFry multiplier conversion to specify the nanosecond over cycle ratio. Note that
values of the JIFFIES_SHIFT and NSec_PER_JIFFY depend on Hz value. The Hz represents the frequency of the system timer. This
macro defined in the include/asm-generic/param.h and depends on the conFic_Hz kernel configuration option. The value of Hz

differs for each supported architecture, but for xgé it's defined like:

#define HZ CONFIG_HZ

Where conFIG_Hz can be one of the following values:

Terminal

File Edit View Search Terminal Help

.config - Linux/x86 4.3.0-rc2 Kernel Configuration
- Processor type and features

Timer frequency
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?> for additional information about this

() 100 HZ

[(X)
() 300 HZ
() 1000 HZJ}

< Help >

https://en.wikipedia.org/wiki/Nanosecond
https://github.com/torvalds/linux/blob/master/include/asm-generic/param.h

This means that in our case the timer interrupt frequency is 250 Hz or occurs 256 times per second or one timer interrupt each 4ms .

The last field that we can see in the definition of the clocksource_jiffies structure is the - max_cycles that holds the maximum

cycle value that can safely be multiplied without potentially causing an overflow.

Ok, we just saw definition of the “clocksource_jiffies’ structure, also we know a little about “jiffies® and “clockso
urce’, now is time to get back to the implementation of the our function. In the beginning of this part we have stopp
ed on the call of the:

register_refined_jiffies(CLOCK_TICK_RATE);

function from the arch/x86/kernel/setup.c source code file.

As I already wrote, the main purpose of the register_refined_jiffies function is to register refined_jiffies clocksource. We
already saw the clocksource_jiffies structure represents standard jiffies clock source. Now, if you look in the

kernel/time/jiffies.c source code file, you will find yet another clock source definition:

struct

There is one different between refined_jiffies and clocksource_jiffies : The standard jiffies based clock source is the lowest
common denominator clock source which should function on all systems. As we already know, the jiffies global variable will be
increased during each timer interrupt. This means that standard jiffies based clock source has the same resolution as the timer
interrupt frequency. From this we can understand that standard jiffies based clock source may suffer from inaccuracies. The

refined_jiffies uses CLOCK_TICK_RATE as the base of jiffies shift.

Let's look on the implementation of this function. First of all we can see that the refined_jiffies clock source based on the

clocksource_jiffies structure:

int register_refined_jiffies(long cycles_per_second)

{
u64 nsec_per_tick, shift_hz;
long cycles_per_tick;

refined_jiffies = clocksource_jiffies;

refined_jiffies.name = "refined-jiffies";
refined_jiffies.rating++;

Here we can see that we update the name of the refined_jiffies to refined-jiffies and increase the rating of this structure. As
you remember, the clocksource_jiffies hasrating- 1 ,soour refined_jiffies clocksource will have rating - 2 . This means

that the refined_jiffies will be best selection for clock source management code.

In the next step we need to calculate number of cycles per one tick:

cycles_per_tick = (cycles_per_second + HZ/2)/HZ;

Note that we have used Nsec_PER_SEC macro as the base of the standard jiffies multiplier. Here we are using the

cycles_per_second which is the first parameter of the register_refined_jiffies function. We've passed the CLOCK_TICK_RATE
macro to the register_refined_jiffies function. This macro definied in the arch/x86/include/asm/timex.h header file and expands to
the:

#define CLOCK_TICK_RATE PIT_TICK_RATE

where the PIT_TICK_RATE macro expands to the frequency of the Intel 8253:

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c#L842
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/timex.h

#define PIT_TICK_RATE 1193182ul

After this we calculate shift_hz forthe register_refined_jiffies that will store hz << 8 or in other words frequency of the
system timer. We shift left the cycles_per_second or frequency of the programmable interval timer on 8 in order to get extra

accuracy:

shift_hz = (u64)cycles_per_second << 8;
shift_hz += cycles_per_tick/2;
do_div(shift_hz, cycles_per_tick);

In the next step we calculate the number of seconds per one tick by shifting left the NSEc_PER_SEC on 8 too as we did it with the

shift_hz and do the same calculation as before:

nsec_per_tick = (u64)NSEC_PER_SEC << 8;
nsec_per_tick += (u32)shift_hz/2;
do_div(nsec_per_tick, (u32)shift_hz);

refined_jiffies.mult = ((u32)nsec_per_tick) << JIFFIES_SHIFT;

In the end of the register_refined_jiffies function we register new clock source with the _ clocksource_register function that

defined in the include/linux/clocksource.h header file and return:

__clocksource_register(&refined_jiffies);
return 0;

The clock source management code provides the API for clock source registration and selection. As we can see, clock sources are
registered by calling the _ clocksource_register function during kernel initialization or from a kernel module. During registration,
the clock source management code will choose the best clock source available in the system using the clocksource.rating field

which we already saw when we initialized clocksource structure for jiffies .

Using the jiffies

We just saw initialization of two jiffies based clock sources in the previous paragraph:

e standard jiffies based clock source;

o refined jiffies based clock source;

Don't worry if you don't understand the calculations here. They look frightening at first. Soon, step by step we will learn these things.
So, we just saw initialization of jffies based clock sources and also we know that the Linux kernel has the global variable jiffies
that holds the number of ticks that have occurred since the kernel started to work. Now, let's look how to use it. To use jiffies we
just can use jiffies global variable by its name or with the call of the get_jiffies_64 function. This function defined in the

kernel/time/jiffies.c source code file and just returns full 64-bit value of the jiffies :

ué4 get_jiffies_64(void)

{
unsigned long seq;
ué4 ret;
do {
seq = read_segbegin(&jiffies_lock);
ret = jiffies_64;
} while (read_seqretry(&jiffies_lock, seq));
return ret;
3

EXPORT_SYMBOL (get_jiffies_64);

https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c

Note that the get_jiffies_64 function does notimplemented as jiffies_read for example:

static cycle_t jiffies_read(struct clocksource *cs)

{

return (cycle_t) jiffies;

We can see that implementation of the get_jiffies_64 is more complex. The reading of the jiffies_64 variable is implemented

using seqlocks. Actually this is done for machines that cannot atomically read the full 64-bit values.

If we can access the jiffies orthe jiffies_64 variable we can convertitto human time units. To get one second we can use

following expression:

jiffies / HZ

So, if we know this, we can get any time units. For example:

/* Thirty seconds from now */
jiffies + *HZ

/* Two minutes from now */
jiffies + *HZ

/* One millisecond from now */
jiffies + HZ /

That's all.

Conclusion

This concludes the first part covering time and time management related concepts in the Linux kernel. We met first two concepts and its
initialization in this part: jiffies and clocksource . In the next part we will continue to dive into this interesting theme and as I
already wrote in this part we will acquainted and try to understand insides of these and other time management concepts in the Linux
kernel.

If you have questions or suggestions, feel free to ping me in twitter OxA X, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e system call

e TCP

e lock validator
e cgroups

e bss

e initrd

e Intel MID

e TSC

e void

e Simple Firmware Interface
e x86 64

e real time clock

o Jiffy

https://en.wikipedia.org/wiki/Seqlock
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/.bss
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Mobile_Internet_device#Intel_MID_platforms
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Simple_Firmware_Interface
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Jiffy_%28time%29

high precision event timer
nanoseconds

Intel 8253

seqlocks

cloksource documentation

Previous chapter

271

https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Seqlock
https://www.kernel.org/doc/Documentation/timers/timekeeping.txt

Timers and time management in the Linux kernel. Part 2.

Introduction to the clocksource framework

The previous part was the first part in the current chapter that describes timers and time management related stuff in the Linux kernel.

We got acquainted with two concepts in the previous part:

e jiffies

® clocksource
The first is the global variable that is defined in the include/linux/jiffies.h header file and represents the counter that is increased during
each timer interrupt. So if we can access this global variable and we know the timer interrupt rate we can convert jiffies to the
human time units. As we already know the timer interrupt rate represented by the compile-time constant that is called Hz in the Linux

kernel. The value of Hz is equal to the value of the conF1c_Hz kernel configuration option and if we will look into the

arch/x86/configs/x86_64_defconfig kernel configuration file, we will see that:

CONFIG_HZ_1000=y

kernel configuration option is set. This means that value of conF1c_Hz will be 1060 by default for the x86_64 architecture. So, if we

divide the value of jiffies by the value of Hz :

jiffies / HZ

we will get the amount of seconds that elapsed since the beginning of the moment the Linux kernel started to work or in other words we
will get the system uptime. Since Hz represents the amount of timer interrupts in a second, we can set a value for some time in the

future. For example:

unsigned long later = jiffies + *HZ;
unsigned long later = jiffies + 5*60*HZ;

This is a very common practice in the Linux kernel. For example, if you will look into the arch/x86/kernel/smpboot.c source code file,
you will find the do_boot_cpu function. This function boots all processors besides bootstrap processor. You can find a snippet that

waits ten seconds for a response from the application processor:

if (!boot_error) {
timeout = jiffies + *HZ;
while (time_before(jiffies, timeout)) {

udelay ()3

We assign jiffies + 10*Hz value to the timeout variable here. As I think you already understood, this means a ten seconds timeout.

After this we are entering a loop where we use the time_before macro to compare the current jiffies value and our timeout.

https://github.com/torvalds/linux/blob/master/include/linux/jiffies.h
https://github.com/torvalds/linux/blob/master/arch/x86/configs/x86_64_defconfig
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Uptime
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/smpboot.c

Or for example if we look into the sound/isa/sscape.c source code file which represents the driver for the Ensoniq Soundscape Elite
sound card, we will see the obp_startup_ack function that waits upto a given timeout for the On-Board Processor to return its start-up

acknowledgement sequence:

static int obp_startup_ack(struct soundscape *s, unsigned timeout)

{
unsigned long end_time = jiffies + msecs_to_jiffies(timeout);
do {
X = host_read_unsafe(s->io_base);
if (x == || x ==)
return 1;
msleep(10);
} while (time_before(jiffies, end_time));
return 0;
3

As you can see, the jiffies variable is very widely used in the Linux kernel code. As I already wrote, we met yet another new time
management related concept in the previous part - clocksource . We have only seen a short description of this concept and the API for
a clock source registration. Let's take a closer look in this part.

Introduction to clocksource

The clocksource concept represents the generic API for clock sources management in the Linux kernel. Why do we need a separate
framework for this? Let's go back to the beginning. The time concept is the fundamental concept in the Linux kernel and other
operating system kernels. And the timekeeping is one of the necessities to use this concept. For example Linux kernel must know and
update the time elapsed since system startup, it must determine how long the current process has been running for every processor and
many many more. Where the Linux kernel can get information about time? First of all it is Real Time Clock or RTC that represents by
the a nonvolatile device. You can find a set of architecture-independent real time clock drivers in the Linux kernel in the drivers/rtc
directory. Besides this, each architecture can provide a driver for the architecture-dependent real time clock, for example - cmos/rRTC -
arch/x86/kernel/rtc.c for the x86 architecture. The second is system timer - timer that excites interrupts with a periodic rate. For

example, for IBM PC compatibles it was - programmable interval timer.

We already know that for timekeeping purposes we can use jiffies in the Linux kernel. The jiffies can be considered as read
only global variable which is updated with Hz frequency. We know that the Hz is a compile-time kernel parameter whose reasonable
range is from 100 to 1000 Hz. So, it is guaranteed to have an interface for time measurement with 1 - 1e milliseconds resolution.
Besides standard jiffies , we saw the refined_jiffies clock source in the previous part that is based on the i8253/i8254
programmable interval timer tick rate which is almost 1193182 hertz. So we can get something about 1 microsecond resolution with

the refined_jiffies . In this time, nanoseconds are the favorite choice for the time value units of the given clock source.

The availability of more precise techniques for time intervals measurement is hardware-dependent. We just knew a little about x8e
dependent timers hardware. But each architecture provides own timers hardware. Earlier each architecture had own implementation for
this purpose. Solution of this problem is an abstraction layer and associated API in a common code framework for managing various

clock sources and independent of the timer interrupt. This common code framework became - clocksource framework.

Generic timeofday and clock source management framework moved a lot of timekeeping code into the architecture independent portion
of the code, with the architecture-dependent portion reduced to defining and managing low-level hardware pieces of clocksources. It
takes a large amount of funds to measure the time interval on different architectures with different hardware, and it is very complex.
Implementation of the each clock related service is strongly associated with an individual hardware device and as you can understand, it

results in similar implementations for different architectures.

https://github.com/torvalds/linux/blob/master/sound/isa/sscape
https://en.wikipedia.org/wiki/Ensoniq_Soundscape_Elite
http://lxr.free-electrons.com/ident?i=jiffies
https://en.wikipedia.org/wiki/Real-time_clock
https://github.com/torvalds/linux/tree/master/drivers/rtc
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/rtc.c
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Nanosecond

Within this framework, each clock source is required to maintain a representation of time as a monotonically increasing value. As we
can see in the Linux kernel code, nanoseconds are the favorite choice for the time value units of a clock source in this time. One of the
main point of the clock source framework is to allow an user to select clock source among a range of available hardware devices

supporting clock functions when configuring the system and selecting, accessing and scaling different clock sources.

The clocksource structure

The fundamental of the clocksource framework isthe clocksource structure that defined in the include/linux/clocksource.h header
file. We already saw some fields that are provided by the clocksource structure in the previous part. Let's look on the full definition of

this structure and try to describe all of its fields:

struct {
cycle t (*read)(struct clocksource *cs);
cycle t mask;
u32 mult;
u32 shift;
u64 max_idle_ns;
u32 maxadj;
#ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
struct B
#endif
u64 max_cycles;
const char *name;
struct g
int rating;
int (*enable)(struct clocksource *cs);
void (*disable)(struct clocksource *cs);
unsigned long flags;
void (*suspend)(struct clocksource *cs);
void (*resume)(struct clocksource *cs);
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
struct 2
cycle_t cs_last;
cycle t wd_last;
#endif
struct * ;
} __ cacheline_aligned;

We already saw the first field of the clocksource structure in the previous part - it is pointer to the read function that returns best

counter selected by the clocksource framework. For example we use jiffies_read function toread jiffies value:

static struct ={

.read = jiffies_read,

where jiffies_read justreturns:

static cycle_t jiffies_read(struct clocksource *cs)

{
return (cycle_t) jiffies;
Orthe read_tsc function:

static struct ={

.read = read_tsc,

https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h

for the time stamp counter reading.

The next field is mask that allows to ensure that subtraction between counters values from non 64 bit counters do not need special
overflow logic. After the mask field, we can see two fields: mult and shift . These are the fields that are base of mathematical
functions that are provide ability to convert time values specific to each clock source. In other words these two fields help us to convert

an abstract machine time units of a counter to nanoseconds.

After these two fields we can see the 64 bits max_idle_ns field represents max idle time permitted by the clocksource in
nanoseconds. We need in this field for the Linux kernel with enabled conFic_no_Hz kernel configuration option. This kernel
configuration option enables the Linux kernel to run without a regular timer tick (we will see full explanation of this in other part). The
problem that dynamic tick allows the kernel to sleep for periods longer than a single tick, moreover sleep time could be unlimited. The

max_idle_ns field represents this sleeping limit.

The next field after the max_idle_ns isthe maxadj field which is the maximum adjustment value to mult . The main formula by

which we convert cycles to the nanoseconds:

((u64) cycles * mult) >> shift;

isnot 100% accurate. Instead the number is taken as close as possible to a nanosecond and maxadj helps to correct this and allows

clocksource API to avoid mult values that might overflow when adjusted. The next four fields are pointers to the function:

e enable - optional function to enable clocksource;
e disable - optional function to disable clocksource;
e suspend -suspend function for the clocksource;

e resume -resume function for the clocksource;

The next field is the max_cycles and as we can understand from its name, this field represents maximum cycle value before potential
overflow. And the last field is owner represents reference to a kernel module that is owner of a clocksource. This is all. We just went
through all the standard fields of the clocksource structure. But you can noted that we missed some fields of the clocksource
structure. We can divide all of missed field on two types: Fields of the first type are already known for us. For example, they are name
field that represents name of a clocksource , the rating field that helps to the Linux kernel to select the best clocksource and etc.

The second type, fields which are dependent from the different Linux kernel configuration options. Let's look on these fields.

The first field is the archdata . This field has arch_clocksource_data type and depends on the CONFIG_ARCH_CLOCKSOURCE_DATA
kernel configuration option. This field is actual only for the x86 and IA64 architectures for this moment. And again, as we can
understand from the field's name, it represents architecture-specific data for a clock source. For example, it represents vbso clock

mode:

struct {
int vclock_mode;

3

for the x86 architectures. Where the vbso clock mode can be one of the:

#define VCLOCK_NONE 0O
#define VCLOCK_TSC 1
#define VCLOCK_HPET 2
#define VCLOCK_PVCLOCK 3

The last three fields are wd_list , cs_last andthe wd_last depends onthe CONFIG_CLOCKSOURCE_WATCHDOG kernel configuration
option. First of all let's try to understand what is it watchdog . In a simple words, watchdog is a timer that is used for detection of the
computer malfunctions and recovering from it. All of these three fields contain watchdog related data that is used by the clocksource
framework. If we will grep the Linux kernel source code, we will see that only arch/x86/KConfig kernel configuration file contains the
CONFIG_CLOCKSOURCE_WATCHDOG kernel configuration option. So, why do xs8é and x86_64 need in watchdog? You already may know
that all xse processors has special 64-bit register - time stamp counter. This register contains number of cycles since the reset.
Sometimes the time stamp counter needs to be verified against another clock source. We will not see initialization of the watchdog

timer in this part, before this we must learn more about timers.

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/IA-64
https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig#L54
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Clock_rate

That's all. From this moment we know all fields of the clocksource structure. This knowledge will help us to learn insides of the

clocksource framework.

New clock source registration

We saw only one function from the clocksource framework in the previous part. This function was - __clocksource_register . This
function defined in the include/linux/clocksource.h header file and as we can understand from the function's name, main point of this
function is to register new clocksource. If we will look on the implementation of the __clocksource_register function, we will see

that it just makes call of the __clocksource_register_scale function and returns its result:

static inline int __clocksource_register(struct clocksource *cs)

{

return __clocksource_register_scale(cs, 1, 0);

Before we will see implementation of the __clocksource_register_scale function, we can see that clocksource provides additional

API for a new clock source registration:

static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)

{
return __clocksource_register_scale(cs, 1, hz);
}
static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
{
return __clocksource_register_scale(cs, , khz);
}

And all of these functions do the same. They return value of the __clocksource_register_scale function but with different set of
parameters. The _ clocksource_register_scale function defined in the kernel/time/clocksource.c source code file. To understand
difference between these functions, let's look on the parameters of the clocksource_register_khz function. As we can see, this

function takes three parameters:

e cs - clocksource to be installed;
e scale -scale factor of a clock source. In other words, if we will multiply value of this parameter on frequency, we will get hz
of a clocksource;

e freq - clock source frequency divided by scale.

Now let's look on the implementation of the __clocksource_register_scale function:

int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)

{

__clocksource_update_freq_scale(cs, scale, freq);
mutex_lock(&clocksource_mutex);
clocksource_enqueue(cs);
clocksource_enqueue_watchdog(cs);
clocksource_select();
mutex_unlock(&clocksource_mutex);

return 0;

First of all we can see that the __clocksource_register_scale function starts from the call of the

__clocksource_update_freq_scale function that defined in the same source code file and updates given clock source with the new
frequency. Let's look on the implementation of this function. In the first step we need to check given frequency and if it was not passed
as zero , we need to calculate mult and shift parameters for the given clock source. Why do we need to check value of the

frequency ? Actually it can be zero. if you attentively looked on the implementation of the __clocksource_register function, you

https://github.com/torvalds/linux/tree/master/include/linux/clocksource.h
https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c

may have noticed that we passed frequency as o . We will do it only for some clock sources that have self defined mult and
shift parameters. Look in the previous part and you will see that we saw calculation of the mult and shift for jiffies .The

__clocksource_update_freq_scale function will do it for us for other clock sources.

So in the start of the __clocksource_update_freq_scale function we check the value of the frequency parameter and if is not zero

we need to calculate mult and shift for the given clock source. Let's look on the mult and shift calculation:

void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)

{
ué4 sec;
if (freq) {
sec = cs->mask;
do_div(sec, freq);
do_div(sec, scale);
if (!sec)
sec = 1;
else if (sec > && cs->mask > UINT_MAX)
sec = 7
clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
NSEC_PER_SEC / scale, sec * scale);
}
3

Here we can see calculation of the maximum number of seconds which we can run before a clock source counter will overflow. First of
all we fill the sec variable with the value of a clock source mask. Remember that a clock source's mask represents maximum amount
of bits that are valid for the given clock source. After this, we can see two division operations. At first we divide our sec variable on a
clock source frequency and then on scale factor. The freq parameter shows us how many timer interrupts will be occurred in one
second. So, we divide mask value that represents maximum number of a counter (for example jiffy) on the frequency of a timer

and will get the maximum number of seconds for the certain clock source. The second division operation will give us maximum number

of seconds for the certain clock source depends on its scale factor which can be 1 hertz or 1 kilohertz (10A Hz).

After we have got maximum number of seconds, we check this value and setitto 1 or 6ee depends on the result at the next step.
These values is maximum sleeping time for a clocksource in seconds. In the next step we can see call of the clocks_calc_mult_shift .
Main point of this function is calculation of the mult and shift values for a given clock source. In the end of the
__clocksource_update_freq_scale function we check that just calculated mult value of a given clock source will not cause
overflow after adjustment, update the max_idle_ns and max_cycles values of a given clock source with the maximum nanoseconds

that can be converted to a clock source counter and print result to the kernel buffer:

pr_info("%s: mask: 0x%1llx max_cycles: 0x%1llx, max_idle_ns: %1ld ns\n",
cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);

that we can see in the dmesg output:

$ dmesg | grep "clocksource:"
0.000000] clocksource: refined-jiffies: mask: OXffffffff max_cycles: Oxffffffff, max_idle_ns: 1910969940391419 n

[
s
[0.000000] clocksource: hpet: mask: Oxffffffff max_cycles: Oxffffffff, max_idle_ns: 133484882848 ns

[0.094084] clocksource: jiffies: mask: Oxffffffff max_cycles: Oxffffffff, max_idle_ns: 1911260446275000 ns

[0.205302] clocksource: acpi_pm: mask: Oxffffff max_cycles: Oxffffff, max_idle_ns: 2085701024 ns

[1.452979] clocksource: tsc: mask: OxFfffffffffffffff max_cycles: 0x7350b459580, max_idle_ns: 881591204237 ns

After the _ clocksource_update_freq_scale function will finish its work, we can return back to the __clocksource_register_scale

function that will register new clock source. We can see the call of the following three functions:

mutex_lock(&clocksource_mutex);

https://en.wikipedia.org/wiki/Dmesg

clocksource_enqueue(cs);
clocksource_enqueue_watchdog(cs);
clocksource_select();
mutex_unlock(&clocksource_mutex);

Note that before the first will be called, we lock the clocksource_mutex mutex. The point of the clocksource_mutex mutex is to
protect curr_clocksource variable which represents currently selected clocksource and clocksource_list variable which

represents list that contains registered clocksources . Now, let's look on these three functions.

The first clocksource_enqueue function and other two defined in the same source code file. We go through all already registered
clocksources or in other words we go through all elements of the clocksource_list and tries to find best place for a given

clocksource :

static void clocksource_enqueue(struct clocksource *cs)

{
struct * = &clocksource_list;
struct * g
list_for_each_entry(tmp, &clocksource_list, list)
if (tmp->rating >= cs->rating)
entry = &tmp->list;
list_add(&cs->1list, entry);
}

In the end we just insert new clocksource to the clocksource_list . The second function - clocksource_enqueue_watchdog does
almost the same that previous function, but it inserts new clock source to the wd_1ist depends on flags of a clock source and starts

new watchdog timer. As I already wrote, we will not consider watchdog related stuff in this part but will do it in next parts.

The last function is the clocksource_select . As we can understand from the function's name, main point of this function - select the

best clocksource from registered clocksources. This function consists only from the call of the function helper:

static void clocksource_select(void)

{

return __clocksource_select();

Note that the __clocksource_select function takes one parameter (false in our case). This bool parameter shows how to traverse
the clocksource_list .In our case we pass false that is meant that we will go through all entries of the clocksource_list . We
already know that clocksource with the best rating will the first in the clocksource_list after the call of the

clocksource_enqueue function, so we can easily get it from this list. After we found a clock source with the best rating, we switch to

it:

if (curr_clocksource != best && !timekeeping_notify(best)) {
pr_info("Switched to clocksource %s\n", best->name);
curr_clocksource = best;

The result of this operation we can see in the dmesg output:

$ dmesg | grep Switched
[0.199688] clocksource: Switched to clocksource hpet
[2.452966] clocksource: Switched to clocksource tsc

Note that we can see two clock sources in the dmesg output (hpet and tsc in our case). Yes, actually there can be many different
clock sources on a particular hardware. So the Linux kernel knows about all registered clock sources and switches to a clock source

with a better rating each time after registration of a new clock source.

https://en.wikipedia.org/wiki/Mutual_exclusion
https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Boolean_data_type

If we will look on the bottom of the kernel/time/clocksource.c source code file, we will see that it has sysfs interface. Main initialization
occurs in the init_clocksource_sysfs function which will be called during device initcalls . Let's look on the implementation of

the init_clocksource_sysfs function:

static struct ={
.name = "clocksource",
.dev_name = "clocksource",

3

static int __init init_clocksource_sysfs(void)

{

int error = subsys_system_register(&clocksource_subsys,)8

if (lerror)
error = device_register(&device_clocksource);
if (lerror)
error = device_create_file(
&device_clocksource,
&dev_attr_current_clocksource);
if (lerror)
error = device_create_file(&device_clocksource,
&dev_attr_unbind_clocksource);
if (lerror)
error = device_create_file(
&device_clocksource,
&dev_attr_available_clocksource);
return error;
}

device_initcall(init_clocksource_sysfs);

First of all we can see that it registers a clocksource subsystem with the call of the subsys_system_register function. In other

words, after the call of this function, we will have following directory:

$ pwd
/sys/devices/system/clocksource

After this step, we can see registration of the device_clocksource device which is represented by the following structure:

static struct ={
.id =0,
.bus = &clocksource_subsys,

}

and creation of three files:

® dev_attr_current_clocksource ;
® dev_attr_unbind_clocksource ;

® dev_attr_available_clocksource

These files will provide information about current clock source in the system, available clock sources in the system and interface which

allows to unbind the clock source.

After the init_clocksource_sysfs function will be executed, we will be able find some information about available clock sources in
the:

$ cat /sys/devices/system/clocksource/clocksource®@/available_clocksource
tsc hpet acpi_pm

Or for example information about current clock source in the system:

$ cat /sys/devices/system/clocksource/clocksource®/current_clocksource
tsc

https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c
https://en.wikipedia.org/wiki/Sysfs

In the previous part, we saw API for the registration of the jiffies clock source, but didn't dive into details about the clocksource
framework. In this part we did it and saw implementation of the new clock source registration and selection of a clock source with the
best rating value in the system. Of course, this is not all API that clocksource framework provides. There a couple additional
functions like clocksource_unregister for removing given clock source from the clocksource_list and etc. But I will not describe
this functions in this part, because they are not important for us right now. Anyway if you are interesting in it, you can find it in the

kernel/time/clocksource.c.

That's all.

Conclusion

This is the end of the second part of the chapter that describes timers and timer management related stuff in the Linux kernel. In the
previous part got acquainted with the following two concepts: jiffies and clocksource . In this part we saw some examples of the

jiffies usage and knew more details about the clocksource concept.
If you have questions or suggestions, feel free to ping me in twitter OxAX, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

o x86

e x86_64

e uptime

e Ensoniq Soundscape Elite
e RTC

e interrupts

e IBMPC

e programmable interval timer
o Hz

e nanoseconds

e dmesg

e time stamp counter

e loadable kernel module

o IAG4

e watchdog

e clock rate

e mutex

e sysfs

e previous part

https://github.com/torvalds/linux/tree/master/kernel/time/clocksource.c
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Uptime
https://en.wikipedia.org/wiki/Ensoniq_Soundscape_Elite
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Sysfs

Timers and time management in the Linux kernel. Part 3.

The tick broadcast framework and dyntick

This is third part of the chapter which describes timers and time management related stuff in the Linux kernel and we stopped on the
clocksource framework in the previous part. We have started to consider this framework because it is closely related to the special

counters which are provided by the Linux kernel. One of these counters which we already saw in the first part of this chapter is -
jiffies . As I already wrote in the first part of this chapter, we will consider time management related stuff step by step during the

Linux kernel initialization. Previous step was call of the:

register_refined_jiffies(CLOCK_TICK_RATE);

function which defined in the kernel/time/jiffies.c source code file and executes initialization of the refined_jiffies clock source for
us. Recall that this function is called from the setup_arch function that defined in the
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c source code and executes architecture-specific (x86_64 in our
case) initialization. Look on the implementation of the setup_arch and you will note that the call of the register_refined_jiffies

is the last step before the setup_arch function will finish its work.

There are many different x86_64 specific things already configured after the end of the setup_arch execution. For example some
early interrupt handlers already able to handle interrupts, memory space reserved for the initrd, DMI scanned, the Linux kernel log
buffer is already set and this means that the printk function is able to work, e820 parsed and the Linux kernel already knows about
available memory and and many many other architecture specific things (if you are interesting, you can read more about the

setup_arch function and Linux kernel initialization process in the second chapter of this book).

Now, the setup_arch finished its work and we can back to the generic Linux kernel code. Recall that the setup_arch function was
called from the start_kernel function which is defined in the init/main.c source code file. So, we shall return to this function. You
can see that there are many different function are called right after setup_arch function inside of the start_kernel function, but
since our chapter is devoted to timers and time management related stuff, we will skip all code which is not related to this topic. The

first function which is related to the time management in the Linux kernel is:

tick_init();

inthe start_kernel . The tick_init function defined in the kernel/time/tick-common.c source code file and does two things:

o Initialization of tick broadcast framework related data structures;

e Initialization of full tickless mode related data structures.

We didn't see anything related to the tick broadcast framework in this book and didn't know anything about tickless mode in the

Linux kernel. So, the main point of this part is to look on these concepts and to know what are they.

The idle process

First of all, let's look on the implementation of the tick_init function. As I already wrote, this function defined in the

kernel/time/tick-common.c source code file and consists from the two calls of following functions:

void __init tick_init(void)
{
tick_broadcast_init();
tick_nohz_init();

https://github.com/torvalds/linux/blob/master/kernel/time/jiffies.c
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/E820
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c

As you can understand from the paragraph's title, we are interesting only in the tick_broadcast_init function for now. This function
defined in the kernel/time/tick-broadcast.c source code file and executes initialization of the tick broadcast framework related data
structures. Before we will look on the implementation of the tick_broadcast_init function and will try to understand what does this

function do, we need to know about tick broadcast framework.

Main point of a central processor is to execute programs. But sometimes a processor may be in a special state when it is not being used
by any program. This special state is called - idle. When the processor has no anything to execute, the Linux kernel launches idle
task. We already saw a little about this in the last part of the Linux kernel initialization process. When the Linux kernel will finish all
initialization processes in the start_kernel function from the init/main.c source code file, it will call the rest_init function from
the same source code file. Main point of this function is to launch kernel init thread and the kthreadd thread, to call the schedule
function to start task scheduling and to go to sleep by calling the cpu_idle_loop function that defined in the kernel/sched/idle.c source

code file.

The cpu_idle_loop function represents infinite loop which checks the need for rescheduling on each iteration. After the scheduler
finds something to execute, the idle process will finish its work and the control will be moved to a new runnable task with the call of

the schedule_preempt_disabled function:

static void cpu_idle_loop(void)

{
while (1) {
while (!'need_resched()) {
/* the main idle function */
cpuidle_idle_call();
}
schedule_preempt_disabled();
}

Of course, we will not consider full implementation of the cpu_idle_loop function and details of the idle state in this part, because
it is not related to our topic. But there is one interesting moment for us. We know that the processor can execute only one task in one
time. How does the Linux kernel decide to reschedule and stop idle process if the processor executes infinite loop in the

cpu_idle_loop ? The answer is system timer interrupts. When an interrupt occurs, the processor stops the idle thread and transfers
control to an interrupt handler. After the system timer interrupt handler will be handled, the need_resched will return true and the
Linux kernel will stop idle process and will transfer control to the current runnable task. But handling of the system timer interrupts
is not effective for power management, because if a processor is in idle state, there is little point in sending it a system timer

interrupt.

By default, there is the conFI6_Hz_PERIODIC kernel configuration option which is enabled in the Linux kernel and tells to handle each
interrupt of the system timer. To solve this problem, the Linux kernel provides two additional ways of managing scheduling-clock

interrupts:

The first is to omit scheduling-clock ticks on idle processors. To enable this behaviour in the Linux kernel, we need to enable the
CONFIG_NO_Hz_IDLE kernel configuration option. This option allows Linux kernel to avoid sending timer interrupts to idle processors.
In this case periodic timer interrupts will be replaced with on-demand interrupts. This mode is called - dyntick-idle mode. But if the

kernel does not handle interrupts of a system timer, how can the kernel decide if the system has nothing to do?

Whenever the idle task is selected to run, the periodic tick is disabled with the call of the tick_nohz_idle_enter function that defined
in the kernel/time/tick-sched.c source code file and enabled with the call of the tick_nohz_idle_exit function. There is special
concept in the Linux kernel which is called - clock event devices that are used to schedule the next interrupt. This concept provides
API for devices which can deliver interrupts at a specific time in the future and represented by the clock_event_device structure in
the Linux kernel. We will not dive into implementation of the clock_event_device structure now. We will see it in the next prat of this

chapter. But there is one interesting moment for us right now.

https://github.com/torvalds/linux/blob/master/kernel/time/tick-broadcast.c
https://en.wikipedia.org/wiki/Idle_%28CPU%29
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/kernel/sched/idle.c
https://en.wikipedia.org/wiki/Power_management
https://github.com/torvalds/linux/blob/master/kernel/time/tich-sched.c

The second way is to omit scheduling-clock ticks on processors that are either in idle state or that have only one runnable task or in
other words busy processor. We can enable this feature with the conFre_no_Hz_ruLL kernel configuration option and it allows to

reduce the number of timer interrupts significantly.

Besides the cpu_idle_loop , idle processor can be in a sleeping state. The Linux kernel provides special cpuidle framework. Main
point of this framework is to put an idle processor to sleeping states. The name of the set of these states is - c-states . But how does a
processor will be woken if local timer is disabled? The linux kernel provides tick broadcast framework for this. The main point of

this framework is assign a timer which is not affected by the c-states . This timer will wake a sleeping processor.

Now, after some theory we can return to the implementation of our function. Let's recall that the tick_init function just calls two

following functions:

void __init tick_init(void)

{
tick_broadcast_init();
tick_nohz_init();

Let's consider the first function. The first tick_broadcast_init function defined in the kernel/time/tick-broadcast.c source code file
and executes initialization of the tick broadcast framework related data structures. Let's look on the implementation of the

tick_broadcast_init function:

void __init tick_broadcast_init(void)
{
zalloc_cpumask_var (&tick_broadcast_mask, GFP_NOWAIT);
zalloc_cpumask_var (&tick_broadcast_on, GFP_NOWAIT);
zalloc_cpumask_var (&tmpmask, GFP_NOWAIT);
#ifdef CONFIG_TICK_ONESHOT
zalloc_cpumask_var (&tick_broadcast_oneshot_mask, GFP_NOWAIT);
zalloc_cpumask_var (&tick_broadcast_pending_mask, GFP_NOWAIT);
zalloc_cpumask_var (&tick_broadcast_force_mask, GFP_NOWAIT);
#endif

}

As we can see, the tick_broadcast_init function allocates different cpumasks with the help of the zalloc_cpumask_var function.

The zalloc_cpumask_var function defined in the lib/cpumask.c source code file and expands to the call of the following function:

bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)

{
return alloc_cpumask_var(mask, flags | __GFP_ZERO);

Ultimately, the memory space will be allocated for the given cpumask with the certain flags with the help of the kmalloc_node

function:

*mask = kmalloc_node(cpumask_size(), flags, node);

Now let's look on the cpumasks that will be initialized in the tick_broadcast_init function. As we can see, the
tick_broadcast_init function will initialize six cpumasks , and moreover, initialization of the last three cpumasks will be depended

on the conrFIG_TICK ONESHOT Kkernel configuration option.
The first three cpumasks are:

e tick_broadcast_mask - the bitmap which represents list of processors that are in a sleeping mode;
e tick_broadcast_on - the bitmap that stores numbers of processors which are in a periodic broadcast state;

e tmpmask - this bitmap for temporary usage.

As we already know, the next three cpumasks depends on the conFIG_TICK_ONESHOT kernel configuration option. Actually each clock

event devices can be in one of two modes:

https://github.com/torvalds/linux/blob/master/kernel/time/tick-broadcast.c
https://github.com/torvalds/linux/blob/master/lib/cpumask.c

e periodic - clock events devices that support periodic events;

e oneshot - clock events devices that capable of issuing events that happen only once.

The linux kernel defines two mask for such clock events devices in the include/linux/clockchips.h header file:

#define CLOCK_EVT_FEAT_PERIODIC 0x000001
#define CLOCK_EVT_FEAT_ONESHOT 0Xx000002

So, the last three cpumasks are:

e tick_broadcast_oneshot_mask - stores numbers of processors that must be notified;
e tick_broadcast_pending_mask - stores numbers of processors that pending broadcast;

e tick_broadcast_force_mask - stores numbers of processors with enforced broadcast.

We have initialized six cpumasks inthe tick broadcast framework, and now we can proceed to implementation of this framework.

The tick broadcast framework

Hardware may provide some clock source devices. When a processor sleeps and its local timer stopped, there must be additional clock
source device that will handle awakening of a processor. The Linux kernel uses these special clock source devices which can raise an
interrupt at a specified time. We already know that such timers called clock events devices in the Linux kernel. Besides clock
events devices. Actually, each processor in the system has its own local timer which is programmed to issue interrupt at the time of the
next deferred task. Also these timers can be programmed to do a periodical job, like updating jiffies and etc. These timers

represented by the tick_device structure in the Linux kernel. This structure defined in the kernel/time/tick-sched.h header file and

looks:
struct {
struct * ;
enum ;
}

Note, that the tick_device structure contains two fields. The first field - evtdev represents pointer to the clock_event_device
structure that defined in the include/linux/clockchips.h header file and represents descriptor of a clock event device. A clock event
device allows to register an event that will happen in the future. As I already wrote, we will not consider clock_event_device

structure and related API in this part, but will see it in the next part.

The second field of the tick_device structure represents mode of the tick_device . As we already know, the mode can be one of
the:

num tick_device_mode {
TICKDEV_MODE_PERIODIC,
TICKDEV_MODE_ONESHOT,
}

Each clock events device in the system registers itself by the call of the clockevents_register_device function or
clockevents_config_and_register function during initialization process of the Linux kernel. During the registration of a new clock
events device, the Linux kernel calls the tick_check_new_device function that defined in the kernel/time/tick-common.c source code

file and checks the given clock events device should be used by the Linux kernel. After all checks, the tick_check_new_device

function executes a call of the:

tick_install_broadcast_device(newdev);

function that checks that the given clock event device can be broadcast device and install it, if the given device can be broadcast

device. Let's look on the implementation of the tick_install broadcast_device function:

void tick_install broadcast_device(struct clock_event_device *dev)

https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/time/tick-sched.h
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/tick-common.c

struct * = tick_broadcast_device.evtdev;

if (!tick_check_broadcast_device(cur, dev))
return;

if (!try_module_get(dev->owner))
return;

clockevents_exchange_device(cur, dev);

if (cur)
cur->event_handler = clockevents_handle_noop;

tick_broadcast_device.evtdev = dev;

if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(dev);

if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
tick_clock_notify();

First of all we get the current clock event device from the tick_broadcast_device . The tick_broadcast_device defined in the

kernel/time/tick-common.c source code file:

static struct

and represents external clock device that keeps track of events for a processor. The first step after we got the current clock device is the
call of the tick_check_broadcast_device function which checks that a given clock events device can be utilized as broadcast device.
The main point of the tick_check_broadcast_device function is to check value of the features field of the given clock events
device. As we can understand from the name of this field, the features field contains a clock event device features. Available values
defined in the include/linux/clockchips.h header file and can be one of the cLock_EvT_FEAT_PERIODIC - which represents a clock events
device which supports periodic events and etc. So, the tick_check_broadcast_device function check features flags for

CLOCK_EVT_FEAT_ONESHOT , CLOCK_EVT_FEAT_DUMMY and other flags and returns false if the given clock events device has one of
these features. In other way the tick_check_broadcast_device function compares ratings of the given clock event device and

current clock event device and returns the best.

After the tick_check_broadcast_device function, we can see the call of the try_module_get function that checks module owner of
the clock events. We need to do it to be sure that the given clock events device was correctly initialized. The next step is the call of
the clockevents_exchange_device function that defined in the kernel/time/clockevents.c source code file and will release old clock

events device and replace the previous functional handler with a dummy handler.
In the last step of the tick_install_broadcast_device function we check that the tick_broadcast_mask is not empty and start the

given clock events device in periodic mode with the call of the tick_broadcast_start_periodic function:

if (!cpumask_empty(tick_broadcast_mask))
tick_broadcast_start_periodic(dev);

if (dev->features & CLOCK_EVT_FEAT_ONESHOT)

tick_clock_notify();

The tick_broadcast_mask filled in the tick_device_uses_broadcast function that checksa clock events device during

registration of this clock events device:

int cpu = smp_processor_id();

int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)

{

https://github.com/torvalds/linux/blob/master/kernel/tick-common.c
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c

if (!'tick_device_is_functional(dev)) {

cpumask_set_cpu(cpu, tick_broadcast_mask);

More about the smp_processor_id macro you can read in the fourth part of the Linux kernel initialization process chapter.

The tick_broadcast_start_periodic function check the given clock event device and call the tick_setup_periodic function:

static void tick_broadcast_start_periodic(struct clock_event_device *bc)

{
if (bc)
tick_setup_periodic(bc, 1);

that defined in the kernel/time/tick-common.c source code file and sets broadcast handler for the given clock event device by the call

of the following function:

tick_set_periodic_handler(dev, broadcast);

This function checks the second parameter which represents broadcast state (on or off) and sets the broadcast handler depends on

its value:

void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)

{
if (!broadcast)
dev->event_handler = tick_handle_periodic;
else
dev->event_handler = tick_handle_periodic_broadcast;
}

When an clock event device will issue an interrupt, the dev->event_handler will be called. For example, let's look on the interrupt

handler of the high precision event timer which is located in the arch/x86/kernel/hpet.c source code file:

static irqreturn_t hpet_interrupt_handler(int irq, void *data)

{

struct * = (struct hpet_dev *)data;
struct * = &dev->evt;

if ('hevt->event_handler) {
printk (KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
dev->num);
return IRQ_HANDLED;

hevt->event_handler(hevt);
return IRQ_HANDLED;

The hpet_interrupt_handler gets the irq specific data and check the event handler of the clock event device. Recall that we just
setin the tick_set_periodic_handler function. So the tick_handler_periodic_broadcast function will be called in the end of the

high precision event timer interrupt handler.

The tick_handler_periodic_broadcast function calls the

bc_local = tick_do_periodic_broadcast();

https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/hpet.c
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29

function which stores numbers of processors which have asked to be woken up in the temporary cpumask and call the

tick_do_broadcast function:

cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
return tick_do_broadcast(tmpmask);

The tick_do_broadcast callsthe broadcast function of the given clock events which sends IPI interrupt to the set of the processors.

In the end we can call the event handler of the given tick_device :

if (bc_local)
td->evtdev->event_handler(td->evtdev);

which actually represents interrupt handler of the local timer of a processor. After this a processor will wake up. That is all about tick
broadcast framework in the Linux kernel. We have missed some aspects of this framework, for example reprogramming of a clock
event device and broadcast with the oneshot timer and etc. But the Linux kernel is very big, it is not real to cover all aspects of it. I

think it will be interesting to dive into with yourself.

If you remember, we have started this part with the call of the tick_init function. We just consider the tick_broadcast_init
function and releated theory, but the tick_init function contains another call of a function and this function is - tick_nohz_init .

Let's look on the implementation of this function.

Initialization of dyntick related data structures

We already saw some information about dyntick concept in this part and we know that this concept allows kernel to disable system

timer interrupts in the idle state. The tick_nohz_init function makes initialization of the different data structures which are related

to this concept. This function defined in the kernel/time/tick-sched.c source code file and starts from the check of the value of the
tick_nohz_full running variable which represents state of the tick-less mode for the idle state and the state when system timer

interrups are disabled during a processor has only one runnable task:

if (!tick_nohz_full_running) {
if (tick_nohz_init_all() < 0)
return;

If this mode is not running we call the tick_nohz_init_all function that defined in the same source code file and check its result. The
tick_nohz_init_all function tries to allocate the tick_nohz_full_mask with the call of the alloc_cpumask_var that will allocate

space fora tick_nohz_full_mask . The tck_nohz_full mask will store numbers of processors that have enabled full No_Hz . After

successful allocation of the tick_nohz_full_mask we set all bits in the tick_nogz_full_mask , set the tick_nohz_full_running and

return result to the tick_nohz_init function:

static int tick_nohz_init_all(void)
{
int err = g
#ifdef CONFIG_NO_HZ_ FULL_ALL
if (talloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
return err;
}
err = 0;
cpumask_setall(tick_nohz_full_mask);
tick_nohz_full_running = g
#endif
return err;

In the next step we try to allocate a memory space for the housekeeping_mask :

https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://github.com/torvalds/linux/blob/master/kernel/time/tich-sched.c

if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
cpumask_clear(tick_nohz_full_mask);
tick_nohz_full_running = ;
return;

This cpumask will store number of processor for housekeeping or in other words we need at least in one processor that will not be in
No_Hz mode, because it will do timekeeping and etc. After this we check the result of the architecture-specific
arch_irq_work_has_interrupt function. This function checks ability to send inter-processor interrupt for the certain architecture. We

need to check this, because system timer of a processor will be disabled during No_Hz mode, so there must be at least one online

processor which can send inter-processor interrupt to awake offline processor. This function defined in the
arch/x86/include/asm/irq_work.h header file for the x86_64 and just checks that a processor has APIC from the CPUID:

static inline bool arch_irq_work_has_interrupt(void)

{

return cpu_has_apic;

If a processor has not Apic , the Linux kernel prints warning message, clears the tick_nohz_full_mask cpumask, copies numbers of

all possible processors in the system to the housekeeping_mask and resets the value of the tick_nohz_full running variable:

if (larch_irq_work_has_interrupt()) {
pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
"support irq work self-IPIs\n");
cpumask_clear (tick_nohz_full_mask);
cpumask_copy(housekeeping_mask, cpu_possible_mask);
tick_nohz_full _running = ;
return;

After this step, we get the number of the current processor by the call of the smp_processor_id and check this processor in the
tick_nohz_full mask . If the tick_nohz_full_mask contains a given processor we clear appropriate bit in the

tick_nohz_full mask :

cpu = smp_processor_id();

if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
cpumask_clear_cpu(cpu, tick_nohz_full mask);

Because this processor will be used for timekeeping. After this step we put all numbers of processors that are in the

cpu_possible_mask and notinthe tick_nohz_full_mask

cpumask_andnot (housekeeping_mask,
cpu_possible_mask, tick_nohz_full_mask);

After this operation, the housekeeping_mask will contain all processors of the system except a processor for timekeeping. In the last
step of the tick_nohz_init_all function, we are going through all processors that are defined in the tick_nohz_full mask and call

the following function for an each processor:

for_each_cpu(cpu, tick_nohz_full_mask)
context_tracking_cpu_set(cpu);

The context_tracking_cpu_set function defined in the kernel/context_tracking.c source code file and main point of this function is to
set the context_tracking.active percpu variableto true . When the active field will be setto true for the certain processor, all

context switches will be ignored by the Linux kernel context tracking subsystem for this processor.

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/irq_work.h
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/CPUID
https://github.com/torvalds/linux/blob/master/kernel/context_tracking.c
https://en.wikipedia.org/wiki/Context_switch

That's all. This is the end of the tick_nohz_init function. After this No_Hz related data structures will be initialzed. We didn't see

API of the No_Hz mode, but will see it soon.

Conclusion

This is the end of the third part of the chapter that describes timers and timer management related stuff in the Linux kernel. In the
previous part got acquainted with the clocksource concept in the Linux kernel which represents framework for managing different
clock source in a interrupt and hardware characteristics independent way. We continued to look on the Linux kernel initialization
process in a time management context in this part and got acquainted with two new concepts for us: the tick broadcast framework
and tick-less mode. The first concept helps the Linux kernel to deal with processors which are in deep sleep and the second concept

represents the mode in which kernel may work to improve power management of idle processors.

In the next part we will continue to dive into timer management related things in the Linux kernel and will see new concept for us -

timers .
If you have questions or suggestions, feel free to ping me in twitter OxAX, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e x86_64

e initrd

e interrupt

e DMI

e printk

e CPU idle

e power management

e NO_HZ documentation
e cpumasks

e high precision event timer
e irq

e IPI

e CPUID

e APIC

® percpu

e context switches

e Previous part

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Printk
https://en.wikipedia.org/wiki/Idle_%28CPU%29
https://en.wikipedia.org/wiki/Power_management
https://github.com/torvalds/linux/blob/master/Documentation/timers/NO_HZ.txt
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Inter-processor_interrupt
https://en.wikipedia.org/wiki/CPUID
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Context_switch

Timers and time management in the Linux kernel. Part 4.

Timers

This is fourth part of the chapter which describes timers and time management related stuff in the Linux kernel and in the previous part
we knew about the tick broadcast framework and No_Hz mode in the Linux kernel. We will continue to dive into the time

management related stuff in the Linux kernel in this part and will be acquainted with yet another concept in the Linux kernel - timers .
Before we will look at timers in the Linux kernel, we have to learn some theory about this concept. Note that we will consider software

timers in this part.

The Linux kernel provides a software timer concept to allow to kernel functions could be invoked at future moment. Timers are
widely used in the Linux kernel. For example, look in the net/netfilter/ipset/ip_set_list_set.c source code file. This source code file

provides implementation of the framework for the managing of groups of IP addresses.

We can find the 1list_set structure that contains gc filed in this source code file:

struct {
struct 2
}

Not that the gc filed has timer_1ist type. This structure defined in the include/linux/timer.h header file and main point of this
structure is to store dynamic timers in the Linux kernel. Actually, the Linux kernel provides two types of timers called dynamic timers
and interval timers. First type of timers is used by the kernel, and the second can be used by user mode. The timer_list structure
contains actual dynamic timers. The list_set contains gc timer in our example represents timer for garbage collection. This timer

will be initialized in the 1ist_set_gc_init function:

static void
list_set_gc_init(struct ip_set *set, void (*gc)(unsigned long ul_set))

{

struct * = set->data;

map->gc.function = gc;

map->gc.expires = jiffies + IPSET_GC_PERIOD(set->timeout) * HZ;
}

A function that is pointed by the gc pointer, will be called after timeout which is equal to the map->gc.expires .

Ok, we will not dive into this example with the netfilter, because this chapter is not about network related stuff. But we saw that timers

are widely used in the Linux kernel and learned that they represent concept which allows to functions to be called in future.

Now let's continue to research source code of Linux kernel which is related to the timers and time management stuff as we did it in all

previous chapters.

Introduction to dynamic timers in the Linux kernel

As I already wrote, we knew about the tick broadcast framework and No_Hz mode in the previous part. They will be initialized in
the init/main.c source code file by the call of the tick_init function. If we will look at this source code file, we will see that the next

time management related function is:

https://github.com/torvalds/linux/blob/master/net/netfilter/ipset/ip_set_list_set.c
https://en.wikipedia.org/wiki/Internet_Protocol
https://github.com/torvalds/linux/blob/master/include/linux/timer.h
https://en.wikipedia.org/wiki/Netfilter
https://en.wikipedia.org/wiki/Computer_network
https://github.com/torvalds/linux/blob/master/init/main.c

init_timers();

This function defined in the kernel/time/timer.c source code file and contains calls of four functions:

void __init init_timers(void)

{
init_timer_cpus();
init_timer_stats();
timer_register_cpu_notifier();
open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
3

Let's look on implementation of each function. The first function is init_timer_cpus defined in the same source code file and just

calls the init_timer_cpu function for each possible processor in the system:

static void __init init_timer_cpus(void)

{
int cpu;
for_each_possible_cpu(cpu)
init_timer_cpu(cpu);
}

If you do not know or do not remember what is it a possible cpu, you can read the special part of this book which describes
cpumask concept in the Linux kernel. In short words, a possible processor is a processor which can be plugged in anytime during

the life of the system.

The init_timer_cpu function does main work for us, namely it executes initialization of the tvec_base structure for each processor.
This structure defined in the kernel/time/timer.c source code file and stores data related to a dynamic timer for a certain processor.

Let's look on the definition of this structure:

struct {
spinlock_t lock;
struct * ;

unsigned long timer_jiffies;
unsigned long next_timer;
unsigned long active_timers;
unsigned long all_timers;
int cpu;
bool migration_enabled;
bool nohz_active;
struct 2
struct 8
struct 8
struct 8
struct 8

} __ cacheline_aligned;

The thec_base structure contains following fields: The lock for tvec_base protection, the next running_timer field points to the
currently running timer for the certain processor, the timer_jiffies fields represents the earliest expiration time (it will be used by the
Linux kernel to find already expired timers). The next field - next_timer contains the next pending timer for a next timer interrupt in a
case when a processor goes to sleep and the No_Hz mode is enabled in the Linux kernel. The active_timers field provides
accounting of non-deferrable timers or in other words all timers that will not be stopped during a processor will go to sleep. The
all_timers field tracks total number of timers or active_timers + deferrable timers. The cpu field represents number of a
processor which owns timers. The migration_enabled and nohz_active fields are represent opportunity of timers migration to

another processor and status of the No_Hz mode respectively.

The last five fields of the tvec_base structure represent lists of dynamic timers. The first tvi field has:

#define TVR_SIZE (1 << TVR_BITS)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://en.wikipedia.org/wiki/Interrupt

struct {
struct [1;
}

type. Note that the value of the TvR_s1ze depends on the conFIc_BASE_sMALL kernel configuration option:

Terminal

File Edit View Search Terminal Help

.config - Linux/x86 4.3.0-rc6 Kernel Configuration
- General setup - Configure standard kernel features (expert users)
Configure standard kernel features (expert users)
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

[*] Enable support for printk

[*] BUG() support

[*] Enable ELF core dumps

[*] Enable PC-Speaker support

[y] _Enable full-sized data structures for core
[*] Enable futex support

Bl Enable eventpoll support

[*] Enable signalfd() system call

</ Exit > < Help > < Save > < Load >

that reduces size of the kernel data structures if disabled. The vi is array that may contain 64 or 256 elements where an each
element represents a dynamic timer that will decay within the next 255 system timer interrupts. Next three fields: tv2 , tv3 and
tv4 are lists with dynamic timers too, but they store dynamic timers which will decay the next 2r14 - 1, 2r20 - 1 and 2426

respectively. The last tvs field represents list which stores dynamic timers with a large expiring period.

So, now we saw the tvec_base structure and description of its fields and we can look on the implementation of the init_timer_cpu
function. As I already wrote, this function defined in the kernel/time/timer.c source code file and executes initialization of the

tvec_bases :

static void __init init_timer_cpu(int cpu)

{
struct * = per_cpu_ptr(&tvec_bases, cpu);
base->cpu = cpu;
spin_lock_init(&base->lock);
base->timer_jiffies = jiffies;
base->next_timer = base->timer_jiffies;
3

The tvec_bases represents per-cpu variable which represents main data structure for a dynamic timer for a given processor. This

per-cpu variable defined in the same source code file:

static DEFINE_PER_CPU(struct tvec_base, tvec_bases);

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c

First of all we're getting the address of the tvec_bases for the given processor to base variable and as we got it, we are starting to
initialize some of the tvec_base fieldsinthe init_timer_cpu function. After initialization of the per-cpu dynamic timers with the
jiffies and the number of a possible processor, we need to initialize a tstats_lookup_lock spinlock inthe init_timer_stats

function:

void __init init_timer_stats(void)

{
int cpu;
for_each_possible_cpu(cpu)
raw_spin_lock_init(&per_cpu(tstats_lookup_lock, cpu));
}

The tstats_lookcup_lock variable represents per-cpu raw spinlock:

static DEFINE_PER_CPU(raw_spinlock_t, tstats_lookup_lock);

which will be used for protection of operation with statistics of timers that can be accessed through the procfs:

static int __init init_tstats_procfs(void)

{
struct *pe;
pe = proc_create("timer_stats", , , &tstats_fops);
if (!pe)
return -ENOMEM;
return 0;
}

For example:

$ cat /proc/timer_stats
Timerstats sample period: 3.888770 s

12, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
15, 1 swapper hcd_submit_urb (rh_timer_func)

4, 959 kedac schedule_timeout (process_timeout)

1, 0 swapper page_writeback_init (wb_timer_fn)
28, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
22, 2948 IRQ 4 tty_flip_buffer_push (delayed_work_timer_fn)

The next step after initialization of the tstats_lookup_lock spinlock is the call of the timer_register_cpu_notifier function. This
function depends on the conFIG_HoTPLUG_CPU kernel configuration option which enables support for hotplug processors in the Linux

kernel.

When a processor will be logically offlined, a notification will be sent to the Linux kernel with the cPu_beap or the CPU_DEAD_FROZEN

event by the call of the cpu_notifier macro:

#ifdef CONFIG_HOTPLUG_CPU

static inline void timer_register_cpu_notifier(void)

{

cpu_notifier(timer_cpu_notify, 0);
3
#else

static inline void timer_register_cpu_notifier(void) { }

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Hot_swapping

#endif /* CONFIG_HOTPLUG_CPU */

In this case the timer_cpu_notify will be called which checks an event type and will call the migrate_timers function:

static int timer_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)

switch (action) {

case CPU_DEAD:

case CPU_DEAD_FROZEN:
migrate_timers((long)hcpu);
break;

default:
break;

return NOTIFY_OK;

This chapter will not describe hotplug related events in the Linux kernel source code, but if you are interesting in such things, you can

find implementation of the migrate_timers function in the kernel/time/timer.c source code file.

The last step in the init_timers function is the call of the:

open_softirq(TIMER_SOFTIRQ, run_timer_softirq);

function. The open_softirg function may be already familar to you if you have read the ninth part about the interrupts and interrupt
handling in the Linux kernel. In short words, the open_softirq function defined in the kernel/softirq.c source code file and executes

initialization of the deferred interrupt handler.

In our case the deferred function is the run_timer_softirq function that is will be called after a hardware interrupt in the do_IRQ
function which defined in the arch/x86/kernel/irq.c source code file. The main point of this function is to handle a software dynamic

timer. The Linux kernel does not do this thing during the hardware timer interrupt handling because this is time consuming operation.

Let's look on the implementation of the run_timer_softirq function:

static void run_timer_softirq(struct softirg_action *h)

{
struct * = this_cpu_ptr(&tvec_bases);
if (time_after_eq(jiffies, base->timer_jiffies))
__run_timers(base);
}

At the beginning of the run_timer_softirq function we geta dynamic timer for a current processor and compares the current value
of the jiffies with the value of the timer_jiffies for the current structure by the call of the time_after_eq macro which is defined

in the include/linux/jiffies.h header file:

#define time_after_eq(a,b) \
(typecheck(unsigned long, a) && \
typecheck(unsigned long, b) && \
((long)((a) - (b)) >= 0))

Reclaim that the timer_jiffies field of the tvec_base structure represents the relative time when functions delayed by the given
timer will be executed. So we compare these two values and if the current time represented by the jiffies is greater than base-
>timer_jiffies , we call the __run_timers function that defined in the same source code file. Let's look on the implementation of this

function.

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/softirq.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/irq.c
https://github.com/torvalds/linux/blob/master/include/linux/jiffies.h

As I just wrote, the _ run_timers function runs all expired timers for a given processor. This function starts from the acquiring of the

tvec_base's lock to protect the tvec_base structure

static inline void __run_timers(struct tvec_base *base)

{
struct * ;
spin_lock_irq(&base->lock);
spin_unlock_irq(&base->lock);
}

After this it starts the loop while the timer_jiffies will not be greater than the jiffies :

while (time_after_eq(jiffies, base->timer_jiffies)) {

We can find many different manipulations in the our loop, but the main point is to find expired timers and call delayed functions. First

of all we need to calculate the index of the base->tvi list that stores the next timer to be handled with the following expression:

index = base->timer_jiffies & TVR_MASK;

where the TVR_MAsk is a mask for the getting of the tvec_root->vec elements. As we got the index with the next timer which must
be handled we check its value. If the index is zero, we go through all lists in our cascade table tv2 , tv3 and etc., and rehashing it

with the call of the cascade function:

if (!index &&
(!cascade(base, &base->tv2, INDEX(0))) &&
(!cascade(base, &base->tv3, INDEX(1))) &&
Icascade(base, &base->tv4, INDEX(2)))
cascade(base, &base->tv5, INDEX(3));

After this we increase the value of the base->timer_jiffies :

++base->timer_jiffies;

In the last step we are executing a corresponding function for each timer from the list in a following loop:

hlist_move_list(base->tvil.vec + index, head);

while (!'hlist_empty(head)) {

timer = hlist_entry(head->first, struct timer_list, entry);
fn = timer->function;
data = timer->data;

spin_unlock(&base->lock);
call_timer_fn(timer, fn, data);
spin_lock(&base->lock);

where the call_timer_fn just call the given function:

static void call timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
unsigned long data)

fn(data);

That's all. The Linux kernel has infrastructure for dynamic timers from this moment. We will not dive into this interesting theme. As I
already wrote the timers is a widely used concept in the Linux kernel and nor one part, nor two parts will not cover understanding of
such things how it implemented and how it works. But now we know about this concept, why does the Linux kernel needs in it and

some data structures around it.

Now let's look usage of dynamic timers in the Linux kernel.

Usage of dynamic timers

As you already can noted, if the Linux kernel provides a concept, it also provides API for managing of this concept and the dynamic
timers concept is not exception here. To use a timer in the Linux kernel code, we must define a variable with a timer_list type. We
can initialize our timer_list structure in two ways. The first is to use the init_timer macro that defined in the include/linux/timer.h

header file:

#define init_timer(timer) \
__init_timer((timer), 0)

#define __init_timer(_timer, _flags) \
init_timer_key((_timer), (_flags), NULL, NULL)

where the init_timer_key function just calls the:

do_init_timer(timer, flags, name, key);

function which fields the given timer with default values. The second way is to use the:

#define TIMER_INITIALIZER(_function, _expires, _data) \
_ TIMER_INITIALIZER((_function), (_expires), (_data), 0)

macro which will initilize the given timer_list structure too.

After a dynamic timer is initialzed we can start this timer with the call of the:

void add_timer(struct timer_list * timer);

function and stop it with the:

int del_timer(struct timer_list * timer);

function.

That's all.

http://lxr.free-electrons.com/ident?i=timer_list
https://github.com/torvalds/linux/blob/master/include/linux/timer.h

Conclusion

This is the end of the fourth part of the chapter that describes timers and timer management related stuff in the Linux kernel. In the
previous part we got acquainted with the two new concepts: the tick broadcast framework and the No_Hz mode. In this part we
continued to dive into time managemented related stuff and got acquainted with the new concept - dynamic timer or software timer.
We didn't saw implementation of a dynamic timers management code in details in this part but saw data structures and API around

this concept.

In the next part we will continue to dive into timer management related things in the Linux kernel and will see new concept for us -

timers .
If you have questions or suggestions, feel free to ping me in twitter OxAX, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e [P

e netfilter
e network
e cpumask
e interrupt
o jiffies

e per-cpu
e spinlock
e procfs

e previous part

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Netfilter
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Procfs

Timers and time management in the Linux kernel. Part 5.

Introduction to the clockevents framework

This is fifth part of the chapter which describes timers and time management related stuff in the Linux kernel. As you might noted from
the title of this part, the clockevents framework will be discussed. We already saw one framework in the second part of this chapter. It

was clocksource framework. Both of these frameworks represent timekeeping abstractions in the Linux kernel.

At first let's refresh your memory and try to remember what is it clocksource framework and and what its purpose. The main goal of

the clocksource framework is to provide timeline . As described in the documentation:

For example issuing the command 'date' on a Linux system will eventually read the clock source to determine exactly what time

it is.

The Linux kernel supports many different clock sources. You can find some of them in the drivers/closksource. For example old good
Intel 8253 - programmable interval timer with 1193182 Hz frequency, yet another one - ACPI PM timer with 3579545 Hz frequency.
Besides the drivers/closksource directory, each architecture may provide own architecture-specific clock sources. For example x86
architecture provides High Precision Event Timer, or for example powerpc provides access to the processor timer through timebase

register.

Each clock source provides monotonic atomic counter. As I already wrote, the Linux kernel supports a huge set of different clock source
and each clock source has own parameters like frequency. The main goal of the clocksource framework is to provide API to select
best available clock source in the system i.e. a clock source with the highest frequency. Additional goal of the clocksource framework
is to represent an atomic counter provided by a clock source in human units. In this time, nanoseconds are the favorite choice for the

time value units of the given clock source in the Linux kernel.

The clocksource framework represented by the clocksource structure which is defined in the include/linux/clocksource.h header
code file which contains name of a clock source, rating of certain clock source in the system (a clock source with the higher frequency
has the biggest rating in the system), 1ist of all registered clock source in the system, enable and disable fields to enable and

disable a clock source, pointer to the read function which must return an atomic counter of a clock source and etc.

Additionally the clocksource structure provides two fields: mult and shift which are needed for translation of an atomic counter

which is provided by a certain clock source to the human units, i.e. nanoseconds. Translation occurs via following formula:

ns ~= (clocksource * mult) >> shift

As we already know, besides the clocksource structure, the clocksource framework provides an API for registration of clock

source with different frequency scale factor:

static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)

A clock source unregistration:

int clocksource_unregister(struct clocksource *cs)

and etc.
Additionally to the clocksource framework, the Linux kernel provides clockevents framework. As described in the documentation:
Clock events are the conceptual reverse of clock sources

Main goal of the is to manage clock event devices or in other words - to manage devices that allow to register an event or in other words

interrupt that is going to happen at a defined point of time in the future.

https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://github.com/torvalds/linux/tree/master/drivers/clocksource
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Programmable_interval_timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://github.com/torvalds/linux/tree/master/drivers/clocksource
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/clocksource.h
https://en.wikipedia.org/wiki/Nanosecond
https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://en.wikipedia.org/wiki/Interrupt

Now we know a little about the clockevents framework in the Linux kernel, and now time is to see on it API.

API of clockevents framework

The main structure which described a clock event device is clock_event_device structure. This structure is defined in the
include/linux/clockchips.h header file and contains a huge set of fields. as well as the clocksource structure it has name fields which
contains human readable name of a clock event device, for example local APIC timer:

static struct ={
.name = "lapic",

Addresses of the event_handler , set_next_event , next_event functions for a certain clock event device which are an interrupt
handler, setter of next event and local storage for next event respectively. Yet another field of the clock_event_device structure is -
features field. Its value maybe on of the following generic features:

#define CLOCK_EVT_FEAT_PERIODIC 0x000001
#define CLOCK_EVT_FEAT_ONESHOT 0x000002

Where the cLock_EVT_FEAT_PERIODIC represents device which may be programmed to generate events periodically. The
CLOCK_EVT_FEAT_ONESHOT represents device which may generate an event only once. Besides these two features, there are also

architecture-specific features. For example x86_64 supports two additional features:

#define CLOCK_EVT_FEAT_C3STOP 0x000008

The first cLock_EVT_FEAT_c3sToP means that a clock event device will be stopped in the C3 state. Additionally the
clock_event_device structure has mult and shift fields as well as clocksource structure. The clocksource structure also

contains other fields, but we will consider it later.

After we considered part of the clock_event_device structure, time is to look at the API of the clockevents framework. To work
with a clock event device, first of all we need to initialize clock_event_device structure and register a clock events device. The

clockevents framework provides following Ap1 for registration of clock event devices:

void clockevents_register_device(struct clock_event_device *dev)

{

This function defined in the kernel/time/clockevents.c source code file and as we may see, the clockevents_register_device function

takes only one parameter:
e address of a clock_event_device structure which represents a clock event device.

So, to register a clock event device, at first we need to initialize clock_event_device structure with parameters of a certain clock event
device. Let's take a look at one random clock event device in the Linux kernel source code. We can find one in the drivers/closksource
directory or try to take a look at an architecture-specific clock event device. Let's take for example - Periodic Interval Timer (PIT) for

at91sam926x. You can find its implementation in the drivers/closksource.

First of all let's look at initialization of the clock_event_device structure. This occurs in the at91sam926x_pit_common_init function:

struct {

https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface#Device_states
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c
https://github.com/torvalds/linux/tree/master/drivers/clocksource
http://www.atmel.com/Images/doc6062.pdf
https://github.com/torvalds/linux/tree/master/drivers/clocksource/timer-atmel-pit.c

struct 2

3

static void __init at9lsam926x_pit_common_init(struct pit_data *data)

{

data->clkevt.name = "pit";

data->clkevt.features = CLOCK_EVT_FEAT_PERIODIC;

data->clkevt.shift = 2

data->clkevt.mult = div_sc(pit_rate, NSEC_PER_SEC, data->clkevt.shift);
data->clkevt.rating = 5

data->clkevt.cpumask = cpumask_of(0);

data->clkevt.set_state_shutdown = pit_clkevt_shutdown;
data->clkevt.set_state_periodic = pit_clkevt_set_periodic;
data->clkevt.resume = at91lsam926x_pit_resume;
data->clkevt.suspend = at91sam926x_pit_suspend;

Here we can see that at91sam926x_pit_common_init takes one parameter - pointer to the pit_data structure which contains
clock_event_device structure which will contain clock event related information of the atoisam926x periodic Interval Timer. At the
start we fill name of the timer device and its features . In our case we deal with periodic timer which as we already know may be

programmed to generate events periodically.

The next two fields shift and mult are familiar to us. They will be used to translate counter of our timer to nanoseconds. After this
we set rating of the timer to 100 . This means if there will not be timers with higher rating in the system, this timer will be used for
timekeeping. The next field - cpumask indicates for which processors in the system the device will work. In our case, the device will
work for the first processor. The cpumask_of macro defined in the include/linux/cpumask.h header file and just expands to the call of
the:

#define cpumask_of (cpu) (get_cpu_mask(cpu))

Where the get_cpu_mask returns the cpumask containing just a given cpu number. More about cpumasks concept you may read in
the CPU masks in the Linux kernel part. In the last four lines of code we set callbacks for the clock event device suspend/resume, device

shutdown and update of the clock event device state.

After we finished with the initialization of the at91sam926x periodic timer, we can register it by the call of the following functions:

clockevents_register_device(&data->clkevt);

Now we can consider implementation of the clockevent_register_device function. As I already wrote above, this function is defined

in the kernel/time/clockevents.c source code file and starts from the initialization of the initial event device state:

clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);

Actually, an event device may be in one of this states:

enum {
CLOCK_EVT_STATE_DETACHED,
CLOCK_EVT_STATE_SHUTDOWN,
CLOCK_EVT_STATE_PERIODIC,
CLOCK_EVT_STATE_ONESHOT,
CLOCK_EVT_STATE_ONESHOT_STOPPED,

Where:

https://en.wikipedia.org/wiki/Programmable_interval_timer
https://github.com/torvalds/linux/tree/master/include/linux/cpumask.h
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c

® CLOCK_EVT_STATE_DETACHED - a clock event device is not not used by clockevents framework. Actually it is initial state of all
clock event devices;

® CLOCK_EVT_STATE_SHUTDOWN - a clock event device is powered-off;

® CLOCK_EVT_STATE_PERIODIC - a clock event device may be programmed to generate event periodically;

® CLOCK_EVT_STATE_ONESHOT - a clock event device may be programmed to generate event only once;

® CLOCK_EVT_STATE_ONESHOT_STOPPED - a clock event device was programmed to generate event only once and now it is temporary

stopped.

The implementation of the clock_event_set_state function is pretty easy:

static inline void clockevent_set_state(struct clock_event_device *dev,
enum clock_event_state state)

dev->state_use_accessors = state;

As we can see, it just fills the state_use_accessors field of the given clock_event_device structure with the given value which is in
our case is CLOCK_EVT_STATE_DETACHED . Actually all clock event devices has this initial state during registration. The

state_use_accessors field of the clock_event_device structure provides current state of the clock event device.

After we have set initial state of the given clock_event_device structure we check that the cpumask of the given clock event device

is not zero:

if (!dev->cpumask) {
WARN_ON(num_possible_cpus() > 1);
dev->cpumask = cpumask_of(smp_processor_id());

Remember that we have set the cpumask of the at9isam926x periodic timer to first processor. If the cpumask field is zero, we check
the number of possible processors in the system and print warning message if it is less than on. Additionally we set the cpumask of the
given clock event device to the current processor. If you are interested in how the smp_processor_id macro is implemented, you can

read more about it in the fourth part of the Linux kernel initialization process chapter.

After this check we lock the actual code of the clock event device registration by the call following macros:

raw_spin_lock_irqgsave(&clockevents_lock, flags);

raw_spin_unlock_irqgrestore(&clockevents_lock, flags);

Additionally the raw_spin_lock_irgsave and the raw_spin_unlock_irgrestore macros disable local interrupts, however interrupts
on other processors still may occur. We need to do it to prevent potential deadlock if we adding new clock event device to the list of

clock event devices and an interrupt occurs from other clock event device.

We can see following code of clock event device registration between the raw_spin_lock_irgsave and raw_spin_unlock_irqrestore

macros:

list_add(&dev->1list, &clockevent_devices);
tick_check_new_device(dev);
clockevents_notify_released();

First of all we add the given clock event device to the list of clock event devices which is represented by the clockevent_devices :

static LIST_HEAD(clockevent_devices);

https://en.wikipedia.org/wiki/Deadlock

At the next step we call the tick_check_new_device function which is defined in the kernel/time/tick-common.c source code file and
checks do the new registered clock event device should be used or not. The tick_check_new_device function checks the given
clock_event_device gets the current registered tick device which is represented by the tick_device structure and compares their

ratings and features. Actually CLOCK_EVT_STATE_ONESHOT is preferred:

static bool tick_check_preferred(struct clock_event_device *curdev,
struct clock_event_device *newdev)

if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
return 2
if (tick_oneshot_mode_active())
return 2

return !curdev ||
newdev->rating > curdev->rating ||
Icpumask_equal(curdev->cpumask, newdev->cpumask);

If the new registered clock event device is more preferred than old tick device, we exchange old and new registered devices and install

new device:

clockevents_exchange_device(curdev, newdev);
tick_setup_device(td, newdev, cpu, cpumask_of(cpu));

The clockevents_exchange device function releases or in other words deleted the old clock event device from the
clockevent_devices list. The next function - tick_setup_device as we may understand from its name, setups new tick device. This
function check the mode of the new registered clock event device and call the tick_setup_periodic function or the

tick_setup_oneshot depends on the tick device mode:

if (td->mode == TICKDEV_MODE_PERIODIC)
tick_setup_periodic(newdev, 0);

else
tick_setup_oneshot(newdev, handler, next_event);

Both of this functions calls the clockevents_switch_state to change state of the clock event device and the
clockevents_program_event function to set next event of clock event device based on delta between the maximum and minimum

difference current time and time for the next event. The tick_setup_periodic :

clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
clockevents_program_event(dev, next,))

and the tick_setup_oneshot_periodic :

clockevents_switch_state(newdev, CLOCK_EVT_STATE_ONESHOT);
clockevents_program_event(newdev, next_event,);

The clockevents_switch_state function checks that the clock event device is not in the given state and calls the

__clockevents_switch_state function from the same source code file:

if (clockevent_get_state(dev) != state) {
if (__clockevents_switch_state(dev, state))
return;

The _ clockevents_switch_state function just makes a call of the certain callback depends on the given state:

static int __clockevents_switch_state(struct clock_event_device *dev,
enum clock_event_state state)

https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c

if (dev->features & CLOCK_EVT_FEAT_DUMMY)
return 0;

switch (state) {
case CLOCK_EVT_STATE_DETACHED:
case CLOCK_EVT_STATE_SHUTDOWN :
if (dev->set_state_shutdown)
return dev->set_state_shutdown(dev);
return 0;

case CLOCK_EVT_STATE_PERIODIC:
if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
return -ENOSYS;
if (dev->set_state_periodic)
return dev->set_state_periodic(dev);
return 0;

In our case for at91isam926x periodic timer, the state is the CLOCK_EVT_FEAT_PERIODIC :

data->clkevt.features = CLOCK_EVT_FEAT_PERIODIC;
data->clkevt.set_state_periodic = pit_clkevt_set_periodic;

So, for the pit_clkevt set periodic callback will be called. If we will read the documentation of the Periodic Interval Timer (PIT)

for at91sam926x, we will see that there is Periodic Interval Timer Mode Register which allows us to control of periodic interval

timer.

It looks like:
31 25 24
0000000000 CCo000G +
| | PITIEN | PITEN |
0000000000 CCo00000000050000000000000000000000000000000000000G +
23 19 16
o 0000000000 Cco00000000000000000000000000000C00000000000000000G +
| | PIV |
5 00000000000 Cco00000000000000000000000000000C00000000000000000G +
15 8
o 00000000000 Cco00000000000000000000000000000C00000000000000000G +
| PIV |
o 00000000000 Cco00000000000000000000000000000C00000000000000000G +
7 0
o 0000000000 Cco00000000000000000000000000000C00000000000000000G +
| PIV |
P +

Where PIv or Periodic Interval value - defines the value compared with the primary 2e-bit counter of the Periodic Interval
Timer. The PITEN or Period Interval Timer Enabled if the bitis 1 andthe PITIEN or Periodic Interval Timer Interrupt
Enable if the bitis 1 . So, to set periodic mode, we need to set 24 , 25 bits inthe Periodic Interval Timer Mode Register . And

we are doing it in the pit_clkevt_set_periodic function:

static int pit_clkevt_set_periodic(struct clock_event_device *dev)

{

struct * = clkevt_to_pit_data(dev);

pit_write(data->base, AT91_PIT_MR,
(data->cycle - 1) | AT91_PIT_PITEN | AT91_PIT_PITIEN);

return 0;

http://www.atmel.com/Images/doc6062.pdf

Where the AT91 PT_MR, AT91 _PT_PITEN andthe AT91_PIT_PITIEN are declared as:

#define AT91 PIT_MR 0x00
#define AT91_PIT_PITIEN BIT(25)
#define AT91_PIT_PITEN BIT(24)

After the setup of the new clock event device is finished, we can return to the clockevents_register_device function. The last

function in the clockevents_register_device function is:

clockevents_notify_released();

This function checks the clockevents_released list which contains released clock event devices (remember that they may occur after
the call of the clockevents_exchange_device function). If this list is not empty, we go through clock event devices from the

clock_events_released list and delete it from the clockevent_devices

static void clockevents_notify_released(void)

{
struct *]
while (!list_empty(&clockevents_released)) {
dev = list_entry(clockevents_released.next,
struct clock_event_device, list);
list_del(&dev->list);
list_add(&dev->1list, &clockevent_devices);
tick_check_new_device(dev);
}
}

That's all. From this moment we have registered new clock event device. So the usage of the clockevents framework is simple and
clear. Architectures registered their clock event devices, in the clock events core. Users of the clockevents core can get clock event
devices for their use. The clockevents framework provides notification mechanisms for various clock related management events like

a clock event device registered or unregistered, a processor is offlined in system which supports CPU hotplug and etc.

We saw implementation only of the clockevents_register_device function. But generally, the clock event layer API is small. Besides
the Ap1 for clock event device registration, the clockevents framework provides functions to schedule the next event interrupt,

clock event device notification service and support for suspend and resume for clock event devices.

If you want to know more about clockevents API you can start to research following source code and header files: kernel/time/tick-

common.c, kernel/time/clockevents.c and include/linux/clockchips.h.

That's all.

Conclusion

This is the end of the fifth part of the chapter that describes timers and timer management related stuff in the Linux kernel. In the
previous part got acquainted with the timers concept. In this part we continued to learn time management related stuff in the Linux

kernel and saw a little about yet another framework - clockevents .
If you have questions or suggestions, feel free to ping me in twitter OxAX, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e timekeeping documentation

e Intel 8253

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/time/tick-common.c
https://github.com/torvalds/linux/blob/master/kernel/time/clockevents.c
https://github.com/torvalds/linux/blob/master/include/linux/clockchips.h
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://github.com/0xAX/linux/blob/master/Documentation/timers/timekeeping.txt
https://en.wikipedia.org/wiki/Intel_8253

Clockevents

programmable interval timer
ACPI pdf

x86

High Precision Event Timer
powerpc

frequency

API

nanoseconds

interrupt

interrupt handler

local APIC

C3 state

Periodic Interval Timer (PIT) for at91sam926x
CPU masks in the Linux kernel
deadlock

CPU hotplug

previous part

https://en.wikipedia.org/wiki/Programmable_interval_timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface#Device_states
http://www.atmel.com/Images/doc6062.pdf
https://en.wikipedia.org/wiki/Deadlock
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

Linux 6

x86_64

LinuxclockeventsLinuxx86

x86

sysfs /sys/devices/system/clocksource/clocksource@/available_clocksource

/sys/devices/system/clocksource/clocksourceN

® available_clocksource

® current_clocksource -

$ cat /sys/devices/system/clocksource/clocksource®/available_clocksource
tsc hpet acpi_pm

e tsc - Time Stamp Counter;

e hpet - High Precision Event Timer;

o acpi_pm - ACPI Power Management Timer.

$ cat /sys/devices/system/clocksource/clocksource®/current_clocksource

tsc

Time Stamp Counter

ACPI3.579545MHz High Precision Event Timer() =~ 10MHz Time Stamp Counter() TSC

/proc/cpuinfo

$ cat /proc/cpuinfo

model name

Tsc TSC

Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz

ACPI PM HPET

/sys/devices/system/clocksource/clocksource®/available_clocksource jiffy refined_jiffies
CLOCK_SOURCE_VALID_FOR_HRES

® hpet

® acpi_pm

L] tsc

dmesg

$ dmesg | grep

[
S
[
[
[
[

0.000000]

0.000000]
0.094369]
0.186498]
0.196827]

clocksource

clocksource:

clocksource:
clocksource:
clocksource:
clocksource:

refined-jiffies: mask: Oxffffffff max_cycles: OxFffffffff, max_idle_ns: 1910969940391419 n

hpet: mask: Oxffffffff max_cycles: Oxffffffff, max_idle_ns: 133484882848 ns
jiffies: mask: Oxffffffff max_cycles: Oxffffffff, max_idle_ns: 1911260446275000 ns
Switched to clocksource hpet

acpi_pm: mask: Oxffffff max_cycles: Oxffffff, max_idle_ns: 2085701024 ns

https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/clocksource.h#L113

[1.413685] tsc: Refined TSC clocksource calibration: 3999.981 MHz
[1.413688] clocksource: tsc: mask: Oxffffffffffffffff max_cycles: 0x73509721780, max_idle_ns: 881591102108 ns
[2.413748] clocksource: Switched to clocksource tsc

High Precision Event Timer

High Precision Event Timer

x86HPETarch/x86/kernel/hpet.c hpet_enable Linux init/main.c start_kernel "early console'

if (late_time_init)
late_time_init();

jiffy x86 late_time_init arch/x86/kernel/time.c

static __init void x86_late_time_init(void)

{
x86_1init.timers.timer_init();
tsc_init();
}
x86 TSC x86_init.timers.timer_init timer_init hpet_time_init x86_init arch/x86/kernel/x86_init.c:
struct — ={
.timers = {
.setup_percpu_clockev = setup_boot_APIC_clock
.timer_init = hpet_time_init,
.wallclock_init = x86_init_noop,
}
HPET hpet_time_init programmable interval timerIRQ:

void __init hpet_time_init(void)

{
if (!'hpet_enable())
setup_pit_timer();
setup_default_timer_irq();
}

hpet_enable is_hpet_capable' HPET"

int __init hpet_enable(void)

{
if (!is_hpet_capable())
return 0;
hpet_set_mapping();
3

is_hpet_capable hpet=disable hpet_address ACPI HPET hpet_set_mapping

hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);

https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/X86
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/hpet.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/time.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/x86_init.c
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

IA-PC HPET (High Precision Event Timers) Specification

1024
HPET_MMAP_SIZE 1024
#define HPET_MMAP_SIZE 1024
HPET HPET_ID :

id = hpet_readl(HPET_ID);

last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;

HPET

cfg = hpet_readl(HPET_CFG);

hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg), GFP_KERNEL);

HPET HPET_CFG_ENABLE HPET_CFG_ENABLE hpet_clocksource_register

if (hpet_clocksource_register())
goto out_nohpet;

clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);

clocksource_hpet clocksource rating 250 refined_jiffies rating 2 hpet read_hpet
static struct ={
.name = "hpet",
.rating = ,
.read = read_hpet,
.mask = HPET_MASK,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.resume = hpet_resume_counter,
.archdata = { .vclock_mode = VCLOCK_HPET },
}
clocksource_hpet arch/x86/kernel/time.c hpet_time_init()

setup_default_timer_irq();

setup_default_timer_irq legacy IRQ 18259 IRQO

High Precision Event TimerLinux read_hpet

static cycle_t read_hpet(struct clocksource *cs)

{
return (cycle_t)hpet_readl(HPET_COUNTER);

Main Counter Register

ACPI PM timer

HPET

http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/time.c
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29#Master_PIC
https://en.wikipedia.org/wiki/High_Precision_Event_Timer

ACPI Power Management Timerdrivers/clocksource/acpi_pm.c fs initcall init_acpi_pm_clocksource

init_acpi_pm_clocksource pmtmr_ioport

static int __init init_acpi_pm_clocksource(void)

{
if (!pmtmr_ioport)
return -ENODEV;
pmtmr_ioport Power Management Timer Control Register Block arch/x86/kernel/acpi/boot.c acpi_parse_fadt FADT

Fixed ACPI Description Table ACPI X_PM_TMR_BLK Power Management Timer Control Register Blcok , Generic

Address Structure

static int __init acpi_parse_fadt(struct acpi_table_header *table)

{
#ifdef CONFIG_X86_PM_TIMER

pmtmr_ioport = acpi_gbl_FADT.xpm_timer_block.address;

#endif
return 0;

CONFIG_X86_PM_TIMER acpi_parse_fadt Power Management Timer init_acpi_pm_clocksource

pmtmr_ioport O

clocksource_register_hz(&clocksource_acpi_pm, PMTMR_TICKS_PER_SEC);

clocksource_register_hs acpi_pm clocksource
static struct ={
.name = "acpi_pm",
.rating = ,
.read = acpi_pm_read,
.mask = (cycle_t)ACPI_PM_MASK,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
3
rating 200 acpi_pm_read apci_pm acpi_pm_read read_pmtmr

static cycle_t acpi_pm_read(struct clocksource *cs)

{

return (cycle_t)read_pmtmr();

Power Management Timer

upper eight bits of a running count of the

|

|

32-bit power management timer power management timer |
|

http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/drivers/clocksource_acpi_pm.c
https://kernelnewbies.org/Documents/InitcallMechanism
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/acpi/boot.c
https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

31 E_TMR_VAL 24 TMR_VAL 0

Fixed ACPI Description Table ACPI pmtmr_ioport read_pmtmr

static inline u32 read_pmtmr(void)

{
return inl(pmtmr_ioport) & ACPI_PM_MASK;
}
Power Management Timer 24

Time Stamp Counter

Time Stamp Counter

Time Stamp Counterarch/x86/kernel/tsc.c x86_late_time_init Time Stamp Counter tsc_init()

tsc_init Time Stamp Counter :

void __init tsc_init(void)

{
u64 1pj;
int cpu;
if (!cpu_has_tsc) {
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
return;
}
cpu_has_tsc cpu_has macro:
#define cpu_has_tsc boot_cpu_has(X86_FEATURE_TSC)
#define boot_cpu_has(bit) cpu_has(&boot_cpu_data, bit)
#define cpu_has(c, bit) \
(__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \

test_cpu_cap(c, bit))

boot_cpu_data X86_FEATURE_TSC_DEADLINE_TIMER Time Stamp Counter calibrate_tsc TSC MSRprogrammable

interval timer

tsc_khz = x86_platform.calibrate_tsc();
cpu_khz = tsc_khz;

for_each_possible_cpu(cpu) {
cyc2ns_init(cpu);
set_cyc2ns_scale(cpu_khz, cpu);

tsc_init TSC

if (tsc_disabled > 0)

return;

check_system_tsc_reliable();

https://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc.c
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Model-specific_register
https://en.wikipedia.org/wiki/Programmable_interval_timer

check_system_tsc_reliable bootstrap X86_FEATURE_TSC_RELIABLE tsc_clocksource_reliable tsc_init TSC

static int __init init_tsc_clocksource(void)

{
if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
return 0;
if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
clocksource_register_khz(&clocksource_tsc, tsc_khz);
return 0;
}
device initcall Tsc HPET clocksource TSC
static struct ={
.name = "tsc",
.rating = 300,
.read = read_tsc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_MUST_VERIFY,
.archdata = { .vclock_mode = VCLOCK_TSC },
}
Conclusion
Linux clockevents Linux x86 Linux twitter 0xAX emailissue PR linux-
insides
o x86
e sysfs

e Time Stamp Counter

e High Precision Event Timer

e ACPI Power Management Timer (PDF)
e frequency.

e dmesg

e programmable interval timer

e [RQ

e IA-PC HPET (High Precision Event Timers) Specification
e IRQO

e 8259

e initcall

e previous part

https://kernelnewbies.org/Documents/InitcallMechanism
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/System_call
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
http://uefi.org/sites/default/files/resources/ACPI_5.pdf
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Programmable_interval_timer
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29#Master_PIC
https://en.wikipedia.org/wiki/Intel_8259
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html

Timers and time management in the Linux kernel. Part 7.

Time related system calls in the Linux kernel

This is the seventh and last part chapter which describes timers and time management related stuff in the Linux kernel. In the previous
part we saw some x86_64 like High Precision Event Timer and Time Stamp Counter. Internal time management is interesting part of the
Linux kernel, but of course not only the kernel needs in the time concept. Our programs need to know time too. In this part, we will

consider implementation of some time management related system calls. These system calls are:

® clock_gettime ;
® gettimeofday ;

® nanosleep .

We will start from simple userspace C program and see all way from the call of the standard library function to the implementation of
certain system call. As each architecture provides its own implementation of certain system call, we will consider only x86_64 specific

implementations of system calls, as this book is related to this architecture.

Additionally we will not consider concept of system calls in this part, but only implementations of these three system calls in the Linux

kernel. If you are interested in what is it a system call , there is special chapter about this.

So, let's from the gettimeofday system call.

Implementation of the gettimeofday system call

As we can understand from the name of the gettimeofday , this function returns current time. First of all, let's look on the following
simple example:

#include <time.h>
#include <sys/time.h>
#include <stdio.h>

int main(int argc, char **argv)
{

char buffer[40];

struct g

gettimeofday(&time, B

strftime(buffer, , "Current date/time: %m-%d-%Y/%T", localtime(&time.tv_sec));
printf("%s\n", buffer);

return 0;

As you can see, here we call the gettimeofday function which takes two parameters: pointer to the timeval structure which

represents an elapsed tim:

struct {
time_t tv_sec;
suseconds_t tv_usec;

3

The second parameter of the gettimeofday function is pointer to the timezone structure which represents a timezone. In our
example, we pass address of the timeval time tothe gettimeofday function, the Linux kernel fills the given timeval structure and
returns it back to us. Additionally, we format the time with the strftime function to get something more human readable than elapsed

microseconds. Let's see on result:

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/High_Precision_Event_Timer
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Standard_library
https://github.com/torvalds/linux/tree/master/arch
https://en.wikipedia.org/wiki/X86-64

~$ gcc date.c -o date
~$./date
Current date/time: /

As you already may know, an userspace application does not call a system call directly from the kernel space. Before the actual system
call entry will be called, we call a function from the standard library. In my case it is glibc, so I will consider this case. The
implementation of the gettimeofday function is located in the sysdeps/unix/sysv/linux/x86/gettimeofday.c source code file. As you
already may know, the gettimeofday is not usual system call. It is located in the special area which is called vbso (you can read

more about it in the part which describes this concept).

The glibc implementation of the gettimeofday tries to resolve the given symbol, in our case this symbol is __vdso_gettimeofday
by the call of the _d1_vdso_vsym internal function. If the symbol will not be resolved, it returns nuLL and we fallback to the call of

the usual system call:

return (_dl_vdso_vsym ("__vdso_gettimeofday", &linux26)
?: (void*) (&__gettimeofday_syscall));

The gettimeofday entry is located in the arch/x86/entry/vdso/vclock_gettime.c source code file. As we can see the gettimeofday is

weak alias of the __vdso_gettimeofday :

int gettimeofday(struct timeval *, struct timezone *)
__attribute_ ((weak, alias("__vdso_gettimeofday")));

The _ vdso_gettimeofday is defined in the same source code file and calls the do_realtime function if the given timeval is not

null:

notrace int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz)

{
if (likely(tv !=) {
if (unlikely(do_realtime((struct timespec *)tv) == VCLOCK_NONE))
return vdso_fallback_gtod(tv, tz);
tv->tv_usec /= 2
}
if (unlikely(tz !=)) {
tz->tz_minuteswest = gtod->tz_minuteswest;
tz->tz_dsttime = gtod->tz_dsttime;
}
return 0;
}

If the do_realtime will fail, we fallback to the real system call via call the syscall instruction and passing the _ NR_gettimeofday

system call number and the given timeval and timezone :

notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz)

{
long ret;
asm("syscall" : "=a" (ret)
"0" (__NR_gettimeofday), "D" (tv), "S" (tz) : "memory");
return ret;
3

The do_realtime function gets the time data from the vsyscall gtod_data structure which is defined in the
arch/x86/include/asm/vgtod.h header file and contains mapping of the timespec structure and a couple of fields which are related to
the current clock source in the system. This function fills the given timeval structure with values from the vsyscall gtod_data

which contains a time related data which is updated via timer interrupt.

First of all we try to access the gtod or global time of day the vsyscall gtod_data structure via the call of the

gtod_read_begin and will continue to do it until it will be successful:

https://en.wikipedia.org/wiki/GNU_C_Library
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86/gettimeofday.c;h=36f7c26ffb0e818709d032c605fec8c4bd22a14e;hb=HEAD
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vclock_gettime.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/vgtod.h#L16

do {
seq = gtod_read_begin(gtod);
mode = gtod->vclock_mode;
ts->tv_sec = gtod->wall_time_sec;
ns = gtod->wall_time_snsec;
ns += vgetsns(&mode);
ns >>= gtod->shift;
} while (unlikely(gtod_read_retry(gtod, seq)));

ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);

ts->tv_nsec = ns;

As we got access to the gtod , we fill the ts->tv_sec with the gtod->wall time_sec which stores current time in seconds gotten
from the real time clock during initialization of the timekeeping subsystem in the Linux kernel and the same value but in nanoseconds.

In the end of this code we just fill the given timespec structure with the resulted values.

That's all about the gettimeofday system call. The next system call in our list is the clock_gettime .

Implementation of the clock_gettime system call

The clock_gettime function gets the time which is specified by the second parameter. Generally the clock_gettime function takes
two parameters:

e clk_id - clock identifier;

e timespec - address of the timespec structure which represent elapsed time.

Let's look on the following simple example:

#include <time.h>
#include <sys/time.h>
#include <stdio.h>

int main(int argc, char **argv)

{
struct 2
clock_gettime(CLOCK_BOOTTIME, &elapsed_from_boot);
printf("%d - seconds elapsed from boot\n", elapsed_from_boot.tv_sec);
return 0;
}

which prints uptime information:

~$ gcc uptime.c -o uptime
~$./uptime
- seconds elapsed from boot

We can easily check the result with the help of the uptime util:

~$ uptime
up 3:56

The elapsed_from_boot.tv_sec represents elapsed time in seconds, so:

https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Uptime#Using_uptime

The clock_id maybe one of the following:

® CLOCK_REALTIME - system wide clock which measures real or wall-clock time;

® CLOCK_REALTIME_COARSE - faster version of the CLOCK_REALTIME ;

e CLOCK_MONOTONIC - represents monotonic time since some unspecified starting point;

® CLOCK_MONOTONIC_COARSE - faster version of the cLock_MONOTONIC ;

® CLOCK_MONOTONIC_RAW - the same asthe cLock_monoTonIC but provides non NTP adjusted time.

® CLOCK_BOOTTIME - the same asthe cLocK_MONOTONIC but plus time that the system was suspended;
® CLOCK_PROCESS_CPUTIME_ID - per-process time consumed by all threads in the process;

® CLOCK_THREAD_CPUTIME_ID - thread-specific clock.

The clock_gettime is not usual syscall too, but as the gettimeofday , this system call is placed in the vbso area. Entry of this

system call is located in the same source code file - arch/x86/entry/vdso/vclock gettime.c) as for gettimeofday .

The Implementation of the clock_gettime depends on the clock id. If we have passed the cLock REALTIME clock id, the

do_realtime function will be called:

notrace int __vdso_clock_gettime(clockid t clock, struct timespec *ts)

{
switch (clock) {
case CLOCK_REALTIME:
if (do_realtime(ts) == VCLOCK_NONE)
goto fallback;
break;
fallback:
return vdso_fallback_gettime(clock, ts);
}

In other cases, the do_{name_of_clock_id} function is called. Implementations of some of them is similar. For example if we will pass

the cLock_MonoToNIC clock id:

case CLOCK_MONOTONIC:
if (do_monotonic(ts) == VCLOCK_NONE)
goto fallback;
break;

the do_monotonic function will be called which is very similar on the implementation of the do_realtime :

notrace static int __always_inline do_monotonic(struct timespec *ts)
{
do {
seq = gtod_read_begin(gtod);
mode = gtod->vclock_mode;
ts->tv_sec = gtod->monotonic_time_sec;
ns = gtod->monotonic_time_snsec;
ns += vgetsns(&mode);
ns >>= gtod->shift;
} while (unlikely(gtod_read_retry(gtod, seq)));

ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
ts->tv_nsec = ns;

return mode;

https://en.wikipedia.org/wiki/Network_Time_Protocol
https://github.com/torvalds/linux/blob/master/arch/x86/entry/vdso/vclock_gettime.c

We already saw a little about the implementation of this function in the previous paragraph about the gettimeofday . There is only one
difference here, that the sec and nsec of our timespec value will be based on the gtod->monotonic_time_sec instead of gtod-

>wall _time_sec which maps the value of the tk->tkr_mono.xtime_nsec or number of nanoseconds elapsed.

That's all.

Implementation of the nanosleep system call

The last system call in our list is the nanosleep . As you can understand from its name, this function provides sleeping ability. Let's

look on the following simple example:

#include <time.h>
#include <stdlib.h>

#include <stdio.h>

int main (void)

{
struct = {5,0};
printf("sleep five seconds\n");
nanosleep(&ts,);
printf("end of sleep\n");
return 0;

3

If we will compile and run it, we will see the first line

~$ gcc sleep_test.c -o sleep
~$./sleep

sleep five seconds

end of sleep

and the second line after five seconds.

The nanosleep is not located in the vbso area like the gettimeofday andthe clock_gettime functions. So, let's look how the
real system call which is located in the kernel space will be called by the standard library. The implementation of the nanosleep

system call will be called with the help of the syscall instruction. Before the execution of the syscall instruction, parameters of the

system call must be put in processor registers according to order which is described in the System V Application Binary Interface or in

other words:

e rdi - first parameter;

e rsi -second parameter;
® rdx - third parameter;

e ri10 - fourth parameter;
e rg - fifth parameter;

® r9 -sixth parameter.

The nanosleep system call has two parameters - two pointers to the timespec structures. The system call suspends the calling thread
until the given timeout has elapsed. Additionally it will finish if a signal interrupts its execution. It takes two parameters, the first is
timespec which represents timeout for the sleep. The second parameter is the pointer to the timespec structure too and it contains

remainder of time if the call of the nanosleep was interrupted.

As nanosleep has two parameters:

int nanosleep(const struct timespec *req, struct timespec *rem);

https://en.wikipedia.org/wiki/Nanosecond
http://www.felixcloutier.com/x86/SYSCALL.html
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf

To call system call, we need put the req tothe rdi register, and the rem parameter to the rsi register. The glibc does these job in

the INTERNAL_SYSCALL macro which is located in the sysdeps/unix/sysv/linux/x86_64/sysdep.h header file.

define INTERNAL_SYSCALL(name, err, nr, args...) \
INTERNAL_SYSCALL_NCS (__NR_##name, err, nr, ##args)

which takes the name of the system call, storage for possible error during execution of system call, number of the system call (all
x86_64 system calls you can find in the system calls table) and arguments of certain system call. The INTERNAL_SYSCALL macro just
expands to the call of the INTERNAL_SYScALL_NCS macro, which prepares arguments of system call (puts them into the processor

registers in correct order), executes syscall instruction and returns the result:

define INTERNAL_SYSCALL_NCS(name, err, nr, args...) \
£ \
unsigned long int resultvar; \
LOAD_ARGS_##nr (args) \
LOAD_REGS_##nr \
asm volatile (\
"syscall\n\t" \
"=a" (resultvar) \
"0" (name) ASM_ARGS_##nr : "memory", REGISTERS_CLOBBERED_BY_SYSCALL); \
(long int) resultvar; })

The LoAD_ARGS_##nr macro calls the LoAD_ARGS_N macro where the N is number of arguments of the system call. In our case, it will

be the LoAD_ARGs_2 macro. Ultimately all of these macros will be expanded to the following:

define LOAD_REGS_TYPES_1(t1, al) \
register t1 _al asm ("rdi") = __argil; \
LOAD_REGS_0

define LOAD_REGS_TYPES_2(t1, al, t2, a2) \
register t2 _a2 asm ("rsi") = __arg2; \

LOAD_REGS_TYPES_1(t1, al)

After the syscall instruction will be executed, the context switch will occur and the kernel will transfer execution to the system call
handler. The system call handler for the nanosleep system call is located in the kernel/time/hrtimer.c source code file and defined with

the syscALL_DEFINE2 macro helper:

SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
struct timespec __user *, rmtp)

{
struct 5
if (copy_from_user(&tu, rqgtp, sizeof(tu)))
return -EFAULT;
if (!timespec_valid(&tu))
return -EINVAL;
return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
3

More about the SYSCALL_DEFINE2 macro you may read in the chapter about system calls. If we look at the implementation of the
nanosleep system call, first of all we will see that it starts from the call of the copy_from_user function. This function copies the
given data from the userspace to kernelspace. In our case we copy timeout value to sleep to the kernelspace timespec structure and

check that the given timespec is valid by the call of the timesc_valid function:

static inline bool timespec_valid(const struct timespec *ts)

{

if (ts->tv_sec < 0)

https://en.wikipedia.org/wiki/GNU_C_Library
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/x86_64/sysdep.h;h=d023d68174d3dfb4e698160b31ae31ad291802e1;hb=HEAD
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/kernel/time/hrtimer.c

return 8

if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
return 8

return 5

which just checks that the given timespec does not represent date before 1976 and nanoseconds does not overflow 1 second. The
nanosleep function ends with the call of the hrtimer_nanosleep function from the same source code file. The hrtimer_nanosleep

function creates a timer and calls the do_nanosleep function. The do_nanosleep does main job for us. This function provides loop:

do {
set_current_state(TASK_INTERRUPTIBLE);
hrtimer_start_expires(&t->timer, mode);

if (likely(t->task))
freezable_schedule();

} while (t->task && !signal_pending(current));

__set_current_state(TASK_RUNNING);
return t->task == 3

Which freezes current task during sleep. After we set TASK_INTERRUPTIBLE flag for the current task, the hrtimer_start_expires
function starts the give high-resolution timer on the current processor. As the given high resolution timer will expire, the task will be

again running.

That's all.

Conclusion

This is the end of the seventh part of the chapter that describes timers and timer management related stuff in the Linux kernel. In the
previous part we saw x86_64 specific clock sources. As I wrote in the beginning, this part is the last part of this chapter. We saw
important time management related concepts like clocksource and clockevents frameworks, jiffies counter and etc., in this
chpater. Of course this does not cover all of the time management in the Linux kernel. Many parts of this mostly related to the

scheduling which we will see in other chapter.
If you have questions or suggestions, feel free to ping me in twitter OxA X, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e system call

e C programming language

e standard library

e glibc

e real time clock

e NTP

e nanoseconds

® register

e System V Application Binary Interface
e context switch

e Introduction to timers in the Linux kernel
e uptime

e system calls table for x86_64

e High Precision Event Timer

https://en.wikipedia.org/wiki/X86-64
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Nanosecond
https://en.wikipedia.org/wiki/Processor_register
http://www.x86-64.org/documentation/abi.pdf
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Uptime#Using_uptime
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://en.wikipedia.org/wiki/High_Precision_Event_Timer

Linux

e Time Stamp Counter
e x86_64

e previous part

319

https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/X86-64

Linux

e - Linux

* - -

e - this part describes impmentation of semaphore synchronization primitive in the Linux kernel. Linux semaphore
e - Linux mutex

® / - - reader/writer

e - Linux.

Linux..

Introduction

linux-insides Linux

mutex_lock(&clocksource_mutex);

clocksource_enqueue(cs);
clocksource_enqueue_watchdog(cs);
clocksource_select();

mutex_unlock(&clocksource_mutex);

kernel/time/clocksource.c __clocksource_register_scale clocksource
clocksource_list mutex_lock mutex_unlock —— clocksource_mutex
(mutex) mutex_lock mute_unlock clocksource_list
clocksource_enqueue clocksource_list

static void clocksource_enqueue(struct clocksource *cs)

{
struct * = &clocksource_list;
struct * ;
list_for_each_entry(tmp, &clocksource_list, list)
if (tmp->rating >= cs->rating)
entry = &tmp->list;
list_add(&cs->1list, entry);
}
(entry) (race condition) list_add
Linux [] (/Timers/) Linux mutex Linux Linux
® nmutex ;

® semaphores ;
® seqlocks ;

® atomic operations ;

(spinlock)

Linux

® acquired ;

® released .

(spinlock acquire) (spinlock released) (atomic)

Linux (widely) spinlock_t

clocksource_enqueue

Linux

spinlock_t

https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Parallel_computing
https://github.com/torvalds/linux/master/kernel/time/clocksource.c
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Race_condition
http://lxr.free-electrons.com/ident?i=spinlock_t

typedef struct {
union {
struct H

#ifdef CONFIG_DEBUG_LOCK_ALLOC
define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))

struct {
u8 __padding[LOCK_PADSIZE];
struct f
}
#endif
}
} spinlock_t;
include/linux/spinlock_types.h CONFIG_DEBUG_LOCK_ALLOC

spinlock_t (union)

raw_spinlock

typedef struct {
union {
struct D
}
} spinlock_t;

raw_spinlock (normal) raw_spinlock

typedef struct {
arch_spinlock_t raw_lock;

#ifdef CONFIG_GENERIC_LOCKBREAK
unsigned int break_lock;

#endif

} raw_spinlock_t;

arch_spinlock_t break_lock —— 1 (SMP)
arch/x86/include/asm/spinlock_types.h

#ifdef CONFIG_QUEUED_SPINLOCKS
#include <asm-generic/qspinlock_types.h>

#else
typedef struct {
union {
__ticketpair_t head_tail;
struct __ {
__ticket_t head, tail;
} tickets;
}i
} arch_spinlock_t;
arch_spinlock CONFIG_QUEUED_SPINLOCKS Linux
CONFIG_QUEUED_SPINLOCKS arch_spinlock_t
typedef struct {

atomic_t val;
} arch_spinlock_t;
include/asm-generic/gspinlock_types.h
arch_spinlock gspinlock Linux

® spin_lock_init ——
® spin_lock ——

® spin_lock_bh ——

® spin_lock_irgsave spin_lock_irq (flag)

x86_64

acquired

CONFIG_DEBUG_LOCK_ALLOC

arch_spinlock_t

released

https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Union_type#C.2FC.2B.2B
https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/master/arch/x86/include/asm/spinlock_types.h
https://en.wikipedia.org/wiki/Linearizability
https://github.com/torvalds/linux/master/include/asm-generic/qspinlock_types.h
https://en.wikipedia.org/wiki/Interrupt

® spin_unlock ——

® spin_unlock_bh ——

® spin_is_locked -

°
spin_lock_init include/linux/spinlock.h spin_lock_init
#define spin_lock_init(_lock) \
do { \
spinlock_check(_lock); \
raw_spin_lock_init(&(_lock)->rlock); \
} while (0)
spin_lock_init raw_spin_lock_init spinlock_check raw_spinlock_t (normal)

static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock)
{

return &lock->rlock;

raw_spin_lock_init

define raw_spin_lock_init(lock) \
do { \
*(lock) = __RAW_SPIN_LOCK_UNLOCKED(lock); \
} while (0) \
__RAW_SPIN_LOCK_UNLOCKED raw_spinlock_t __RAW_SPIN_LOCK_UNLOCKED (released)

include/linux/spinlock_types.h

#define _ RAW_SPIN_LOCK_UNLOCKED(lockname) \
(raw_spinlock_t) _ RAW_SPIN_LOCK_INITIALIZER(lockname)

#define __ RAW_SPIN_LOCK_INITIALIZER(lockname) \

{ \
.raw_lock = __ARCH_SPIN_LOCK_UNLOCKED, \
SPIN_DEBUG_INIT(lockname) \
SPIN_DEP_MAP_INIT(lockname) \
}
SPIN_DEBUG_INIT SPIN_DEP_MAP_INIT __RAW_SPINLOCK_UNLOCKED
*(&(_lock)->rlock) = _ ARCH_SPIN_LOCK_UNLOCKED;
__ARCH_SPIN_LOCK_UNLOCKED
#define __ ARCH_SPIN_LOCK_UNLOCKED {{01}}
#define __ ARCH_SPIN_LOCK_UNLOCKED { ATOMIC_INIT(O) }
[x86_64] CONFIG_QUEUED_SPINLOCKS spin_lock_init —— (unlocked)
Linux API

static __always_inline void spin_lock(spinlock_t *lock)
{

raw_spin_lock(&lock->rlock);

https://github.com/torvalds/linux/master/include/linux/spinlock.h
https://github.com/torvalds/linux/master/include/linux/spinlock_types.h
https://en.wikipedia.org/wiki/Application_programming_interface

raw_spin_lock _raw_spin_lock
#define raw_spin_lock(lock) raw_spin_lock(lock)
include/linux/spinlock.h _raw_spin_lock CONFIG_SMP

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
include <linux/spinlock_api_smp.h>

#else
include <linux/spinlock_api_up.h>
#endif
Linux SMP _raw_spin_lock arch/x86/include/asm/spinlock.h

#define _raw_spin_lock(lock) __raw_spin_lock(lock)

__raw_spin_lock

static inline void __raw_spin_lock(raw_spinlock_t *lock)

{
preempt_disable();
spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
LOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);
}

include/linux/preempt.h (Linux) preempt_disable

static inline void __raw_spin_unlock(raw_spinlock_t *1lock)

{
preempt_enable();
}
spin_acquire
#define spin_acquire(l, s, t, 1) lock_acquire_exclusive(l, s, t, NULL, i)
#define lock_acquire_exclusive(l, s, t, n, i) lock_acquire(l, s, t, 0, 1, n, 1)

lock_acquire

void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
int trylock, int read, int check,
struct lockdep_map *nest_lock, unsigned long ip)

unsigned long flags;

if (unlikely(current->lockdep_recursion))
return;

raw_local_irqg_save(flags);
check_flags(flags);

current->lockdep_recursion = 1;

trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);

_ lock_acquire(lock, subclass, trylock, read, check,
irgs_disabled_flags(flags), nest_lock, ip, 0, 0);

current->lockdep_recursion = 0;

https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://github.com/torvalds/linux/blob/master/include/linux/preempt.h

raw_local_irq_restore(flags);

}
lock_acquire raw_local_irg_save lock_acquire raw_local_irqg_restore
__lock_acquire kernel/locking/lockdep.c
__lock_acquire Linux (lock validator) __raw_spin_lock

LOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);

LOCK_CONTENDED include/linux/lockdep.h

#define LOCK_CONTENDED(_lock, try, lock) \
lock(_lock)

lock include/linux/spinlock.h do_raw_spin_lock _lock raw_spinlock_t

static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock)

{
__acquire(lock);
arch_spin_lock(&lock->raw_lock);

__acquire [(sparse)] arch_spin_lock (queued spinlocks) x86_64

include/asm-generic/gspinlock.h

#define arch_spin_lock(1l) queued_spin_lock(1)
arch_spin_lock arch/x86/include/asm/spinlock.h arch_spinlock
typedef struct {
union {
__ ticketpair_t head_tail;
struct __ {
_ ticket_t head, tail;
} tickets;

}

} arch_spinlock_t;

—— (ticket spinlock) (tail) 1 arch_spin_lock

static __always_inline void arch_spin_lock(arch_spinlock_t *lock)

{
register struct __ = { .tail = TICKET_LOCK_INC };

inc = xadd(&lock->tickets, inc);

if (likely(inc.head == inc.tail))
goto out;

for (7)) {
unsigned count = SPIN_THRESHOLD;

do {
inc.head = READ_ONCE(lock->tickets.head);
if (__tickets_equal(inc.head, inc.tail))

goto clear_slowpath;

cpu_relax();

} while (--count);

__ticket_lock_spinning(lock, inc.tail);

}

clear_slowpath:

arch_spin_lock

arch_spin_lock

https://github.com/torvalds/linux/blob/master/kernel/locking/lockdep.c
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/lockdep.h
https://github.com/torvalds/linux/blob/master/include/linux/spnlock.h
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlocks.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h

__ticket_check_and_clear_slowpath(lock, inc.head);

out:
barrier();
3
arch_spin_lock — [__raw_tickets
#define TICKET_LOCK_INC 1
inc lock->tickets xadd inc (tickets) tickets.tail inc 1 1
out arch_spin_lock barrier (barrier instruction) ((documentatic
arch_spin_lock o 1 cpu_relax NOP
#define cpu_relax() asm volatile("rep; nop")
spin_unlock spin_lock unlock arch_spin_unlock arch_spin_lock lock tickets

__add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);

spin_lock spin_unlock
E + E +
| | | |

head | 7 | - - - 7 | tail

| | | |
E + E +

|
E R +
| |
| 8 |
| |
fooacoss +

|
Dooacoss +
| |
9 |
| |
Dooacoss +

API

Linux Linux
twitter 0xAX email issue

PR linux-insides

e Concurrent computing
e Synchronization

e Clocksource framework

http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://en.wikipedia.org/wiki/NOP
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29

Mutex

Race condition
Atomic operations
SMP

x86_64

Interrupts
Preemption

Linux kernel lock validator
Sparse

xadd instruction
NOP

Memory barriers

Previous chapter

327

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Sparse
http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://en.wikipedia.org/wiki/NOP
https://www.kernel.org/doc/Documentation/memory-barriers.txt

Linux..

Linux Linux -

API:

® spin_lock_init -

® spin_lock -

® spin_lock_bh -

® spin_lock_irgsave spin_lock_irq -/
® spin_unlock -

® spin_unlock_bh -

® spin_is_locked -

°
include/linux/spinlock.h x86_64 arch/x86/include/asm/spinlock.h arch_spin_.*
(arch_spin_is_locked arch_spin_lock arch_spin_unlock) CONFIG_QUEUED_SPINLOCKS

#ifdef CONFIG_QUEUED_SPINLOCKS
#include <asm/qgspinlock.h>

#else
static __always_inline void arch_spin_lock(arch_spinlock_t *1lock)
{
}
#endif
arch/x86/include/asm/qspinlock.h include/asm-generic/gspinlock.h
#define arch_spin_is_locked(1l) queued_spin_is_locked(1l)
#define arch_spin_is_contended(1) queued_spin_is_contended(1)
#define arch_spin_value_unlocked(1) queued_spin_value_unlocked(1l)
#define arch_spin_lock(1) queued_spin_lock(1l)
#define arch_spin_trylock(1l) queued_spin_trylock(1l)
#define arch_spin_unlock(1l) queued_spin_unlock(1l)
#define arch_spin_lock_flags(1l, f) queued_spin_lock(1l)
#define arch_spin_unlock_wait (1) queued_spin_unlock_wait (1)
API

Linux x86_64 - kernel/Kconfig.locks

config ARCH_USE_QUEUED_SPINLOCKS
bool

config QUEUED_SPINLOCKS
def_bool y if ARCH_USE_QUEUED_SPINLOCKS
depends on SMP

¥

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/spinlock.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/qspinlock.h
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h#L126
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/kernel/Kconfig.locks

ARCH_USE_QUEUED_SPINLOCKS CONFIG_QUEUED_SPINLOCKS ARCH_USE_QUEUED_SPINLOCKS x86_64 -
arch/x86/Kconfig

config X86

select ARCH_USE_QUEUED_SPINLOCKS

test and set

int lock(lock)

{
while (test_and_set(lock) == 1)
;
return 0;
3
int unlock(lock)
{
lock=0;
return lock;
3
test_and_set lock 1 lock while unlock lock 0 lock
test_and_set lock=1 lock 1
- (ticket spinlock)
MCS MCS
mcs Linux per-cpu
next next
Poscoasoss +
| |
| Queue |
| |
Fomm e - - +
Fommm e - - + B +
| | | |
| Queue |---->| First thread acquired lock |
| | | |
Fommmm e - - + B +
Fommmmmamm + B T T + E T TR +
| | I | | | |
| Queue |---->| Second thread waits for first thread |<----| First thread holds lock |
| | |

https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig
https://en.wikipedia.org/wiki/Test-and-set
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf

void lock(...)

lock.next = NULL;
ancestor = put_lock_to_queue_and_return_ancestor(queue, lock);

// if we have ancestor,

the lock already acquired and we

// need to wait until it will be released
if (ancestor)

lock.locked = 1;
ancestor.next = lock;

while (lock.is_locked == true)

’

// in other way we are owner of the lock and may exit

void unlock(...)

// do we need to notify somebody or we are alonw in the
// queue?

if (lock.next != NULL) {
// the while loop from the lock() function will be

// finished
lock.next.is_locked = false;

// delete ourself from the queue and exit

return;

// So, we have no next threads in the queue to notify about

// lock releasing event.

Let's just put "0° to the lock, will

// delete ourself from the queue and exit.

{
{
}
}
{
}
}
Linux
Linux

API

Linux

#define
#define
#define
#define
#define
#define
#define
#define

typedef

Linux 32(32-bit)

(word) mcs spinlock_t Linux

include/asm-generic/gspinlock.h API

arch_spin_is_locked(1)
arch_spin_is_contended(1)
arch_spin_value_unlocked(1l)
arch_spin_lock(1l)
arch_spin_trylock(1l)
arch_spin_unlock(1l)
arch_spin_lock_flags(1l, f)
arch_spin_unlock_wait(1)

include/asm-generic/gspinlock_types.h

struct gspinlock {

atomic_t val;

} arch_spinlock_t;

queued_spin_is_locked(1)
queued_spin_is_contended(1l)
queued_spin_value_unlocked(1)
queued_spin_lock(1l)
queued_spin_trylock(1l)
queued_spin_unlock(1l)
queued_spin_lock(1l)
queued_spin_unlock_wait (1)

gspinlock Linux

(widely) Linux
32

330

https://en.wikipedia.org/wiki/Word_%28computer_architecture%29
http://lxr.free-electrons.com/ident?i=spinlock_t
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h#L126
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock_types.h

gspinlock - val 4 4

e 0-7 - (locked byte);
e 8 -(pending bit);

e 16-17 - MCS per_cpu ()
e 18-31 -
9-15
struct {
struct * 9
int locked;
int count;
}
kernel/locking/mcs_spinlock.h 1] mcs_spinlock (nested locks)

mcs_spinlock

static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[4]);

(This array allows to make four attempts of a lock acquisition for the four events in following contexts:)

gspinlock API API gspinlock val - atomic_t (one operation at a time variable)
val API

static __always_inline int queued_spin_is_locked(struct gspinlock *lock)

{

return atomic_read(&lock->val);

Ok Linux API main

#define arch_spin_lock(1) queued_spin_lock(1l)

- queued_spin_lock include/asm-generic/gspinlock_types.h

static __always_inline void queued_spin_lock(struct gspinlock *lock)

{

u32 val;

val = atomic_cmpxchg_acquire(&lock->val, ©, _Q_LOCKED_VAL);

if (likely(val == 0))

return;

queued_spin_lock_slowpath(lock, val);

3
queued_spin_lock_slowpath queued_spin_lock atomic_cmpxchg_acquire
CMPXCHG _Q_LOCKED_VAL &lock->val

atomic_cmpxchg_acquire include/linux/atomic.h atomic_cmpxchg

#define atomic_cmpxchg_acquire atomic_cmpxchg

https://github.com/torvalds/linux/blob/master/kernel/locking/mcs_spinlock.h
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock_types.h
http://x86.renejeschke.de/html/file_module_x86_id_41.html
https://github.com/torvalds/linux/blob/master/include/linux/atomic.h

x86_64 arch/x86/include/asm/atomic.h atomic_cmpxchg cmpxchg

static __always_inline int atomic_cmpxchg(atomic_t *v, int old, int new)

{

return cmpxchg(&v->counter, old, new);

arch/x86/include/asm/cmpxchg.h

#define cmpxchg(ptr, old, new) \
cmpxchg(ptr, old, new, sizeof(*(ptr)))

#define cmpxchg(ptr, old, new, size) \
raw_cmpxchg((ptr), (old), (new), (size), LOCK_PREFIX)

cmpxchg __cpmxchg __cpmxchg LOCK_PREFIX __raw_cmpxchg Lock_PREFIX LOCK

__raw_cmpxchg

#define __ raw_cmpxchg(ptr, old, new, size, lock) \

({
volatile u32 *__ptr = (volatile u32 *)(ptr); \
asm volatile(lock "cmpxchgl %2,%1" \
"=a" (_ret), "+m" (*_ ptr) \
"r'" (__new), "" (__old) \
"memory"); \
1)
atomic_cmpxchg_acquire val queued_spin_lock
val = atomic_cmpxchg_acquire(&lock->val, O, _Q_LOCKED_VAL);
if (likely(val == 0))
return;
MCS Linux MCS
queued_spin_lock lock->val 1 _Q_LOCKED_VAL queued_spin_lock_slowpath

queued_spin_lock_slowpath kernel/locking/qspinlock.c

void queued_spin_lock_slowpath(struct gspinlock *lock, u32 val)

{
if (pv_enabled())
goto queue;
if (virt_spin_lock(lock))
return;
3
pvgspinlock pvgspinlock paravirtualized Linux _Q_PENDING_VAL After these checks

we compare our value which represents lock with the value of the _Q_PENDING_vAL macro and do nothing while this is true

if (val == _Q_PENDING_VAL) {
while ((val = atomic_read(&lock->val)) == _Q PENDING_VAL)

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/atomic.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/cmpxchg.h
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/kernel/locking/qspinlock.c
https://en.wikipedia.org/wiki/Paravirtualization

cpu_relax();

cpu_relax NOP - pending pending (touched) mcs_spinlock This
is done for optimization, because there are no need in unnecessary latency which will be caused by the cache invalidation in a touching

of own mcs_spinlock array.

for (7;) {
if (val & ~_Q_LOCKED_MASK)
goto queue;

new = _Q LOCKED_VAL;
if (val == new)
new |= _Q_PENDING_VAL;
old = atomic_cmpxchg_acquire(&lock->val, val, new);
if (old == val)

break;
val = old;
3
if (val)(pending) val &lock->val atomic_cmpxchg_acquire
1 new val &lock->val val atomic_cmpxchg_acquire lock->val 1

smp_cond_acquire(!(atomic_read(&lock->val) & _Q LOCKED_MASK));
clear_pending_set_locked(lock);
return;

lock->val _Q_LOCKED_VAL | _Q_PENDING_VAL mcs_nodes

node = this_cpu_ptr(&mcs_nodes[0]);
idx = node->count++;
tail = encode_tail(smp_processor_id(), idx);

mcs_nodes tail node mcs_nodes locked next NULL

node += idx;
node->locked = 0;
node->next = 7

cpuper-cpu queued_spin_trylock

if (queued_spin_trylock(lock))
goto release;

queued_spin_trylock include/asm-generic/gspinlock.h queued_spin_lock

static __always_inline int queued_spin_trylock(struct gspinlock *lock)

{
if (tatomic_read(&lock->val) &&
(atomic_cmpxchg_acquire(&lock->val, ©, _Q_LOCKED_VAL) == 0))
return 1;
return 0;

https://en.wikipedia.org/wiki/NOP
https://github.com/torvalds/linux/blob/master/include/asm-generic/qspinlock.h

release:
this_cpu_dec(mcs_nodes[0].count);

queued_spin_trylock

old = xchg_tail(lock, tail);

if (old & _Q_TAIL_MASK) {
prev = decode_tail(old);
WRITE_ONCE(prev->next, node);

arch_mcs_spin_lock_contended(&node->locked);

next = READ_ONCE(node->next);
if (next)
prefetchw(next);

PREFETCHW cache line MCS

smp_cond_acquire(!((val = atomic_read(&lock->val)) & _Q_LOCKED_PENDING_MASK));

Linux Linux ticket spinlock - Linux
twitter 0xAX email issue.
PR linux-insides
e spinlock
e interrupt

e interrupt handler

e API

e Test and Set

e MCS

e per-cpu variables

e atomic instruction

e CMPXCHG instruction
e [OCK instruction

e NOP instruction

e PREFETCHW instruction
e x86_64

http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Test-and-set
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://en.wikipedia.org/wiki/NOP
http://www.felixcloutier.com/x86/PREFETCHW.html
https://en.wikipedia.org/wiki/X86-64

e Previous part

335

chapter, -

Linux

Linux

- Linux - y

API

Linux API include/linux/semaphore.h

struct {
raw_spinlock_t lock;
unsigned int count;
struct 5

3

® lock - H
® count -;

® wait_list -.

Linux API Linux

DEFINE_SEMAPHORE

#define DEFINE_SEMAPHORE(name) \
struct semaphore name = __ SEMAPHORE_INITIALIZER(name, 1)

DEFINE_SEMAPHORE DEFINE_SEMAPHORE

#define __ SEMAPHORE_INITIALIZER(name, n)

__SEMAPHORE_INITIALIZER

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h
https://en.wikipedia.org/wiki/Application_programming_interface

{ \
.lock = __ RAW_SPIN_LOCK_UNLOCKED((name).lock), \
.count =n, \
.wait_list = LIST_HEAD_INIT((name).wait_list), \
}
__ SEMAPHORE_INITIALIZER __ RAW_SPIN_LOCK_UNLOCKED __ RAW_SPIN_LOCK_UNLOCKED
include/linux/spinlock_types.h __ARCH_SPIN_LOCK_UNLOCKED __ARCH_SPIN_LOCK_UNLOCKED
#define __ ARCH_SPIN_LOCK_UNLOCKED {{0}}
count wait_list sema_init include/linux/semaphore.h
static inline void sema_init(struct semaphore *sem, int val)
{
static struct _ :
*sem = (struct semaphore) __ SEMAPHORE_INITIALIZER(*sem, val);
lockdep_init_map(&sem->lock.dep_map, "semaphore->lock", &__key, 0);
}
__SEMAPHORE_INITIALIZER Linux Linux API
void down(struct semaphore *sem);
void up(struct semaphore *sem);
int down_interruptible(struct semaphore *sem);
int down_killable(struct semaphore *sem);
int down_trylock(struct semaphore *sem);
int down_timeout(struct semaphore *sem, long jiffies);
down up down_interruptible TASK_INTERRUPTIBLE TASK_INTERRUPTIBLE
down_killable down_interruptible TASK_KILLABLE
down_trylock spin_trylock down_timeout jiffies
API down kernel/locking/semaphore.c
void down(struct semaphore *sem)
{
unsigned long flags;
raw_spin_lock_irgsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
else
__down(sem);
raw_spin_unlock_irqrestore(&sem->lock, flags);
3
EXPORT_SYMBOL (down) ;
down flags raw_spin_lock_irgsave raw_spin_lock_irqrestore include/linux/spinlock.h
spin_lock spin_unlock /
down raw_spin_lock_irgsave raw_spin_unlock_irqrestore

_down)

static noinline void __sched __down(struct semaphore *sem)

{
__down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);

__down

https://github.com/torvalds/linux/blob/master/include/linux/spinlock_types.h
https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://github.com/torvalds/linux/blob/master/include/linux/spinlock.h
https://en.wikipedia.org/wiki/Interrupt
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c

__down __down_common

® semaphore ;
e flag -;

® timeout -

__down_common down_trylock , down_timeout down_killable

static noinline int __sched __down_interruptible(struct semaphore *sem)

{

return __down_common(sem, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);

down_killable

static noinline int __sched __down_killable(struct semaphore *sem)

{

return __down_common(sem, TASK_KILLABLE, MAX_SCHEDULE_TIMEOUT);

__down_timeout

__down_common

static noinline int __sched __down_timeout(struct semaphore *sem, long timeout)

{
return __down_common(sem, TASK_UNINTERRUPTIBLE, timeout);
3
__down_common kernel/locking/semaphore.c
struct * = current;
struct 2

current arch/x86/include/asm/current.h

#define current get_current()

get_current current_task per-cpu

DECLARE_PER_CPU(struct task_struct *, current_task);

static __always_inline struct task_struct *get_current(void)

{

return this_cpu_read_stable(current_task);

}

waiter semaphore.wait_list

struct {
struct 2
struct * ;
bool up;

3

wait_list waiter

list_add_tail(&waiter.list, &sem->wait_list);
waiter.task = task;
waiter.up = ’

https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/current.h

for (7;) {
if (signal_pending_state(state, task))
goto interrupted;

if (unlikely(timeout <= 0))
goto timed_out;

set_task_state(task, state);

raw_spin_unlock_irq(&sem->lock);
timeout = schedule_timeout(timeout);
raw_spin_lock_irq(&sem->lock);

if (waiter.up)

return 0;
}
waiter.up false up true pending TASK_INTERRUPTIBLE TASK_WAKEKILL
(https://en.wikipedia.org/wiki/Unix_signal) signal_pending_state include/linux/sched.h

static inline int signal_pending_state(long state, struct task_struct *p)

{
if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))

return 0;
if (!signal_pending(p))
return 0;
return (state & TASK_INTERRUPTIBLE) || __fatal signal_pending(p);
}
state TASK_INTERRUPTIBLE TASK_WAKEKILL state
interrupted
interrupted:

list_del(&waiter.list);
return -EINTR;

-EINTR

if (unlikely(timeout <= 0))
goto timed_out;

timed_out

timed_out:
list_del(&waiter.list);
return -ETIME;

interrupted -ETIME

__set_task_state(task, state);

schedule_timeout

raw_spin_unlock_irq(&sem->lock);
timeout = schedule_timeout(timeout);
raw_spin_lock_irq(&sem->lock);

TASK_INTERRUPTIBLE

state

https://en.wikipedia.org/wiki/Unix_signal
https://github.com/torvalds/linux/blob/master/include/linux/sched.h
https://en.wikipedia.org/wiki/Mask_%28computing%29
https://en.wikipedia.org/wiki/Errno.h

kernel/time/timer.c schedule_timeout

__down_common up

up down

void up(struct semaphore *sem)

{
unsigned long flags;
raw_spin_lock_irgsave(&sem->lock, flags);
if (likely(list_empty(&sem->wait_list)))
sem->count++;
else
__up(sem);
raw_spin_unlock_irqrestore(&sem->lock, flags);
}

EXPORT_SYMBOL (up);

down semaphore _up

static noinline void __sched __up(struct semaphore *sem)

{
struct * = list_first_entry(&sem->wait_list,
struct semaphore_waiter, list);
list_del(&waiter->1list);
waiter->up = true;
wake_up_process(waiter->task);
}
waiter-up __down_common wake_up_process _up __down_common
schedule_timeout schedule_timeout schedule_timeout kernel/sched/core.c wake_up_process
Linux Linux ticket spinlock Linux
twitter 0xAX email issue
e spinlocks

e synchronization primitive
e semaphore

e context switch

e preemption

e deadlocks

e scheduler

e Doubly linked list in the Linux kernel
e jiffies

e interrupts

® per-cpu

e bitmask

e SIGKILL

® errno

o API

https://github.com/torvalds/linux/blob/master/kernel/time/timer.c
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://github.com/torvalds/linux/blob/master/kernel/sched/core.c
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Mutual_exclusion
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Scheduling_%28computing%29
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Mask_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal#SIGKILL
https://en.wikipedia.org/wiki/Errno.h
https://en.wikipedia.org/wiki/Application_programming_interface

e mutex

e Previous part

341

https://en.wikipedia.org/wiki/Mutual_exclusion

chapter (mutex) MUTual EXclusion
Linux API
struct {
raw_spinlock_t lock;
unsigned int count;
struct ;
}
count semaphore
0 API
Linux
struct {
atomic_t count;
spinlock_t wait_lock;
struct 8
#if defined(CONFIG_DEBUG_MUTEXES) || defined(CONFIG_MUTEX_SPIN_ON_OWNER)
struct * ;
#endif
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
struct 8
#endif
#ifdef CONFIG_DEBUG_MUTEXES
void *magic;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct 5
#endif
}
include/linux/mutex.h - count count 1
count
- wait_lock wait_list Linux
- owner mutex CONFIG_DEBUG_MUTEXES CONFIG_MUTEX_SPIN_ON_OWNER
spinning) - magic dep_map magic - lockdep_map Linux
Linux mutex->count Linux
mutex

e fastpath ;
® midpath ;

® slowpath .

API

count

osq (optimistic

(lock validator)

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Context_switch
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Debugging
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt

fastpath mutex count

- midpath midpath

fastpath midpath - slowpath
struct {
struct ;
struct * f
#ifdef CONFIG_DEBUG_MUTEXES
void *magic;
#endif
}
include/linux/mutex.h Linux API

semaphore_waiter

count

MCS lock

mutex_waiter mutex_waiter

struct {
struct 5
struct * P
bool up;
}
list task mutex_waiter up CONFIG_DEBUG_MUTEXES magic
LinuxLinux API
Linux API API include/linux/mutex.h
Linux
#define DEFINE_MUTEX(mutexname) \
struct mutex mutexname = __ MUTEX_INITIALIZER(mutexname)
DEFINE_MUTEX mutex _ MUTEX_INITIALIZER

#define _ MUTEX_INITIALIZER(lockname)

{ \

.count = ATOMIC_INIT(1), \

.wait_lock = __ SPIN_LOCK_UNLOCKED(lockname.wait_lock), \

.wait_list = LIST_HEAD_INIT(lockname.wait_list) \
}

mutex count 1 wait_lock wait_list

kernel/locking/mutex.c ~ __mutex_init __mutex_init mutex_init

define mutex_init(mutex) \
do {

static struct lock_class_key __key;

__mutex_init((mutex), #mutex, & key);
} while (0)

mutex_init lock_class_key

void

__mutex_init(struct mutex *lock, const char *name,

{

__mutex_init

s s s

struct lock_class_key *key)

kernel/locking/semaphore.c

__ MUTEX_INITIALIZER

https://en.wikipedia.org/wiki/Linearizability
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/semaphore.c
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://en.wikipedia.org/wiki/Spinlock
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c

atomic_set(&lock->count, 1);
spin_lock_init(&lock->wait_lock);
INIT_LIST_HEAD(&lock->wait_list);
mutex_clear_owner (lock);

#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
osg_lock_init(&lock->o0sq);

#endif
debug_mutex_init(lock, name, key);

__mutex_init

® lock -;
® name -;

e key -key.

__mutex_init atomic_set include/linux/osq_lock.h

osq_lock_init (optimistic queue) tail:

static inline bool osq_is_locked(struct optimistic_spin_queue *1lock)

{
return atomic_read(&lock->tail) != 0SQ_UNLOCKED_VAL;
}
__mutex_init debug_mutex_init
API mutex_lock mutex_unlock kernel/locking/mutex.c mutex_lock

void __sched mutex_lock(struct mutex *lock)
{
might_sleep();

__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
mutex_set_owner (lock);

include/linux/kernel.h mutex_lock might_sleep CONFIG_DEBUG_ATOMIC_SLEEP

might_sleep __mutex_fastpath_lock x86_64 \ __mutex_fastpath_lock

arch/x86/include/asm/mutex_64.h __mutex_fastpath_lock fast path count

__mutex_fastpath_lock

asm_volatile_goto(LOCK_PREFIX " decl %O\n"

jns %1l[exit]\n"

"m" (v->counter)
"memory", "cc"
:oexit);

asm_volatile_goto include/linux/compiler-gcc.h

#define asm_volatile goto(x...) do { asm goto(x); asm (""); } while (0)

goto (barrier) LOCK lock

#define LOCK_PREFIX LOCK_PREFIX_HERE "\n\tlock; "

mutex->counter mutex->counter jns exit exit
__mutex_fastpath_lock

exit:

return;

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/osq_lock.h
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c
https://github.com/torvalds/linux/blob/master/include/linux/kernel.h
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h
https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://en.wikipedia.org/wiki/Memory_barrier
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://en.wikipedia.org/wiki/Linearizability
http://unixwiz.net/techtips/x86-jumps.html

__mutex_fastpath_lock mutex->counter

__mutex_lock_slowpath

fail _fn(v);
fail_fn __mutex_fastpath_lock midpath/slowpath fail_fn
__mutex_lock_slowpath mutex_lock __mutex_fastpath_lock mutex_lock

mutex_set_owner (lock);

mutex_set_owner kernel/locking/mutex.h

static inline void mutex_set_owner(struct mutex *lock)

{

lock->owner = current;

__mutex_lock_slowpath kernel/locking/mutex.c

__visible void __sched
__mutex_lock_slowpath(atomic_t *lock_count)

container_of

{
struct * = container_of(lock_count, struct mutex, count);
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
, _RET_IP_, , 0);
3
__mutex_lock_common __mutex_lock_common
preempt_disable();
CONFIG_MUTEX_SPIN_ON_OWNER - slowpath

if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
preempt_enable();
return 0;

mutex_optimistic_spin (spinner) MCS

osq_lock(&lock->0sq)

while () {
owner = READ_ONCE(lock->owner);

if (owner && !mutex_spin_on_owner (lock, owner))
break;

if (mutex_try_to_acquire(lock)) {
lock_acquired(&lock->dep_map, ip);

mutex_set_owner(lock);
osg_unlock(&lock->0sq);
return ;

__mutex_fastpath_lock

https://github.com/torvalds/linux/blob/master/include/linux/mutex.h
https://github.com/torvalds/linux/blob/master/kernel/locking/mutex.c
https://en.wikipedia.org/wiki/Preemption_%28computing%29

0 mutex_spin_on_owner mutex_try_to_acquired MCS

mutex_optimistic_spin __mutex_lock_common

if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
preempt_enable();
return 0;

mutex_optimistic_spin mutex_optimistic_spin CONFIG_MUTEX_SPIN_ON_OWNER

mutex_optimistic_spin

#ifndef CONFIG_MUTEX_SPIN_ON_OWNER
static bool mutex_optimistic_spin(struct mutex *lock,
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)

{

return B
}
#endif

__mutex_lock_common

if (!mutex_is_locked(lock) &&
(atomic_xchg_acquire(&lock->count, == 1))
goto skip_wait;

list_add_tail(&waiter.list, &lock->wait_list);
waiter.task = task;

__mutex_lock_common

skip_wait:
mutex_set_owner (lock);
preempt_enable();

return 0;
for (77) {
if (atomic_read(&lock->count) >= 0 && (atomic_xchg_acquire(&lock->count, == 1))
break;

if (unlikely(signal_pending_state(state, task))) {
ret = -EINTR;
goto err;

_ set_task_state(task, state);

schedule_preempt_disabled();

pending TASK_UNINTERRUPTIBLE schedule_preempt_disabled

https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal

mutex_unlock mutex_unlock __mutex_fastpath_unlock arch/x86/include/asm/mutex_64.h

void __sched mutex_unlock(struct mutex *lock)

{
__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
}
_ mutex_fastpath_unlock _ mutex_fastpath_lock

static inline void __mutex_fastpath_unlock(atomic_ t *v,
void (*fail_fn)(atomic_t *))

{
asm_volatile_goto(LOCK_PREFIX " incl %O\n"
" jg %1l[exit]\n"
"m" (v->counter)
"memory", "cc"
exit);
fail fn(v);
exit:
return;
3
, mutex->count fail_fn
__mutex_unlock_slowpath __mutex_unlock_slowpath mutex->count mutex __mutex_unlock_common_slowpath

__mutex_unlock_slowpath(atomic_t *lock_count)

{

struct * = container_of(lock_count, struct mutex, count);

__mutex_unlock_common_slowpath(lock, 1);

__mutex_unlock_common_slowpath

if (!list_empty(&lock->wait_list)) {

struct * =

list_entry(lock->wait_list.next, struct mutex_waiter, list);
wake_up_process(waiter->task);

API mutex_lock mutex_unlock Linux API

® mutex_lock_interruptible ;
® mutex_lock_killable ;

® mutex_trylock .

unlock . API | API
Linux - Linux Linux
twitter 0xAX email issue

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/mutex_64.h
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://twitter.com/0xAX
mailto:anotherworldofworld@gmail.com
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/0xAX/linux-insides

Mutex

Spinlock
Semaphore
Synchronization primitives
API

Locking mechanism
Context switches
lock validator
Atomic

MCS lock

Doubly linked list
x86_64

Inline assembly
Memory barrier
Lock instruction
JNS instruction
preemption

Unix signals

Previous part

348

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Context_switch
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Linearizability
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Memory_barrier
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://unixwiz.net/techtips/x86-jumps.html
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Unix_signal

Synchronization primitives in the Linux kernel. Part 5.

Introduction

This is the fifth part of the chapter which describes synchronization primitives in the Linux kernel and in the previous parts we finished
to consider different types spinlocks, semaphore and mutex synchronization primitives. We will continue to learn synchronization

primitives in this part and start to consider special type of synchronization primitives - readers—writer lock.

The first synchronization primitive of this type will be already familiar for us - semaphore. As in all previous parts of this book, before
we will consider implementation of the reader/writer semaphores in the Linux kernel, we will start from the theoretical side and will

try to understand what is the difference between reader/writer semaphores and normal semaphores .

So, let's start.

Reader/Writer semaphore

Actually there are two types of operations may be performed on the data. We may read data and make changes in data. Two
fundamental operations - read and write . Usually (but not always), read operation is performed more often than write
operation. In this case, it would be logical to we may lock data in such way, that some processes may read locked data in one time, on

condition that no one will not change the data. The readers/writer lock allows us to get this lock.

When a process which wants to write something into data, all other writer and reader processes will be blocked until the process
which acquired a lock, will not release it. When a process reads data, other processes which want to read the same data too, will not be
locked and will be able to do this. As you may guess, implementation of the reader/writer semaphore is based on the implementation
of the normal semaphore . We already familiar with the semaphore synchronization primitive from the third part of this chapter. From

the theoretical side everything looks pretty simple. Let's look how reader/writer semaphore is represented in the Linux kernel.

The semaphore is represented by the:

struct {
raw_spinlock_t lock;
unsigned int count;
struct 5
}

structure. If you will look in the include/linux/rwsem.h header file, you will find definition of the rw_semaphore structure which

represents reader/writer semaphore in the Linux kernel. Let's look at the definition of this structure:

#ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
#include <linux/rwsem-spinlock.h>
#else
struct {
long count;
struct ;
raw_spinlock_t wait_lock;
#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
struct ;
struct ;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct ;
#endif

3

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h

Before we will consider fields of the rw_semaphore structure, we may notice, that declaration of the rw_semaphore structure depends
on the CONFIG_RWSEM_GENERIC_SPINLOCK kernel configuration option. This option is disabled for the x86_64 architecture by default. We
can be sure in this by looking at the corresponding kernel configuration file. In our case, this configuration file is -

arch/x86/um/Kconfig:

config RWSEM_XCHGADD_ALGORITHM
def_bool 64BIT

config RWSEM_GENERIC_SPINLOCK
def_bool !'RWSEM_XCHGADD_ALGORITHM

So, as this book describes only x86_64 architecture related stuff, we will skip the case when the CONFIG_RWSEM_GENERIC_SPINLOCK

kernel configuration is enabled and consider definition of the rw_semaphore structure only from the include/linux/rwsem.h header file.

If we will take a look at the definition of the rw_semaphore structure, we will notice that first three fields are the same that in the
semaphore structure. It contains count field which represents amount of available resources, the wait_list field which represents
doubly linked list of processes which are waiting to acquire a lock and wait_lock spinlock for protection of this list. Notice that

rw_semaphore.count fieldis long type unlike the same field in the semaphore structure.
The count field of a rw_semaphore structure may have following values:

e 0x0000000000000000 - reader/writer semaphore is in unlocked state and no one is waiting for a lock;

e 0x000000000000000X - X readers are active or attempting to acquire a lock and no writer waiting;

e oxffffffffoeoeeeex - may represent different cases. The firstis - x readers are active or attempting to acquire a lock with
waiters for the lock. The second is - one writer attempting a lock, no waiters for the lock. And the last - one writer is active and no
waiters for the lock;

e oxffffffffoeoeeeol - may represented two different cases. The first is - one reader is active or attempting to acquire a lock and
exist waiters for the lock. The second case is one writer is active or attempting to acquire a lock and no waiters for the lock;

e oxfffFffffeee00000 - represents situation when there are readers or writers are queued, but no one is active or is in the process

of acquire of a lock;

exfffffffe0p000001 - a writer is active or attempting to acquire a lock and waiters are in queue.

So, besides the count field, all of these fields are similar to fields of the semaphore structure. Last three fields depend on the two
configuration options of the Linux kernel: the CONFIG_RWSEM_SPIN_ON_OWNER and CONFIG_DEBUG_LOCK_ALLOC . The first two fields may
be familiar us by declaration of the mutex structure from the previous part. The first osq field represents MCS lock spinner for

optimistic spinning and the second represents process which is current owner of a lock.

The last field of the rw_semaphore structure is - dep_map - debugging related, and as I already wrote in previous parts, we will skip

debugging related stuff in this chapter.

That's all. Now we know a little about what is it reader/writer lock in general and reader/writer semaphore in particular.
Additionally we saw how a reader/writer semaphore is represented in the Linux kernel. In this case, we may go ahead and start to

look at the API which the Linux kernel provides for manipulation of reader/writer semaphores .

Reader/Writer semaphore API

So, we know a little about reader/writer semaphores from theoretical side, let's look on its implementation in the Linux kernel. All

reader/writer semaphores related API is located in the include/linux/rwsem.h header file.

As always Before we will consider an API of the reader/writer semaphore mechanism in the Linux kernel, we need to know how to
initialize the rw_semaphore structure. As we already saw in previous parts of this chapter, all synchronization primitives may be

initialized in two ways:

® statically ;

® dynamically .

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/um/Kconfig
https://0xax.gitbooks.io/linux-insides/content
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/DataStructures/dlist.html
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Mutual_exclusion
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://en.wikipedia.org/wiki/Application_programming_interface
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/index.html
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29

And reader/writer semaphore isnot an exception. First of all, let's take a look at the first approach. We may initialize
rw_semaphore structure with the help of the DECLARE_RwSEM macro in compile time. This macro is defined in the

include/linux/rwsem.h header file and looks:

#define DECLARE_RWSEM(name) \
struct rw_semaphore name = RWSEM_INITIALIZER(name)

As we may see, the DECLARE_RWSEM macro just expands to the definition of the rw_semaphore structure with the given name.

Additionally new rw_semaphore structure is initialized with the value of the _ RwSEM_INITIALIZER macro:

#define RWSEM_INITIALIZER(name) \

{
.count = RWSEM_UNLOCKED_VALUE,
.wait_list = LIST_HEAD_INIT((name).wait_list),
.wait_lock = __ RAW_SPIN_LOCK_UNLOCKED(name.wait_lock)
__RWSEM_OPT_INIT(name)
___RWSEM_DEP_MAP_INIT(name)

s

and expands to the initialization of fields of rw_semaphore structure. First of all we initialize count field of the rw_semaphore
structure to the unlocked state with RWSEM_UNLOCKED_VALUE macro from the arch/x86/include/asm/rwsem.h architecture specific

header file:

#define RWSEM_UNLOCKED_VALUE 0x00000000L

After this we initialize list of a lock waiters with the empty linked list and spinlock for protection of this list with the unlocked state
too. The _ RwsSeM_oPT_INIT macro depends on the state of the CONFIG_RWSEM_SPIN_ON_OWNER kernel configuration option and if this
option is enabled it expands to the initialization of the osq and owner fields of the rw_semaphore structure. As we already saw
above, the coNFIG_RwSEM_SPIN_ON_OWNER kernel configuration option is enabled by default for x86_64 architecture, so let's take a look

at the definition of the _ RWSEM_OPT_INIT macro:

#ifdef CONFIG_RWSEM_SPIN_ON_OWNER

#define _ RWSEM_OPT_INIT(lockname) , .osq = 0SQ_LOCK_UNLOCKED, .owner = NULL
#else

#define _ RWSEM_OPT_INIT(lockname)
#endif

As we may see, the _ RwSEM_OPT_INIT macro initializes the MCS lock lock with unlocked state and initial owner of a lock with

NULL . From this moment, a rw_semaphore structure will be initialized in a compile time and may be used for data protection.

The second way to initialize a rw_semaphore structure is dynamically or use the init_rwsem macro from the
include/linux/rwsem.h header file. This macro declares an instance of the lock_class_key which is related to the lock validator of the

Linux kernel and to the call of the __init_rwsem function with the given reader/writer semaphore :

#define init_rwsem(sem) \
do {
static struct lock_class_key __key;

s s s s

__init_rwsem((sem), #sem, &__key);
} while (0)

If you will start definition of the __init_rwsem function, you will notice that there are couple of source code files which contain it. As
you may guess, sometimes we need to initialize additional fields of the rw_semaphore structure, like the osq and owner . But
sometimes not. All of this depends on some kernel configuration options. If we will look at the kernel/locking/Makefile makefile, we

will see following lines:

obj-$(CONFIG_RWSEM_GENERIC_SPINLOCK) += rwsem-spinlock.o
obj-$(CONFIG_RWSEM_XCHGADD_ALGORITHM) += rwsem-xadd.o

https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/X86-64
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://github.com/torvalds/linux/blob/master/include/linux/rwsem.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/kernel/locking/Makefile

As we already know, the Linux kernel for x86_64 architecture has enabled CONFIG_RWSEM_XCHGADD_ALGORITHM kernel configuration

option by default:

config RWSEM_XCHGADD_ALGORITHM
def_bool 64BIT

in the arch/x86/um/Kconfig kernel configuration file. In this case, implementation of the __init_rwsem function will be located in the

kernel/locking/rwsem-xadd.c source code file for us. Let's take a look at this function:

void __init_rwsem(struct rw_semaphore *sem, const char *name,
struct lock_class_key *key)

{

#ifdef CONFIG_DEBUG_LOCK_ALLOC
debug_check_no_locks_freed((void *)sem, sizeof(*sem));
lockdep_init_map(&sem->dep_map, name, key, 0);

#endif
sem->count = RWSEM_UNLOCKED_VALUE;
raw_spin_lock_init(&sem->wait_lock);
INIT_LIST_HEAD(&sem->wait_list);

#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
sem->owner = g
osq_lock_init(&sem->0sq);

#endif

}

We may see here almost the same as in __RWSEM_INITIALIZER macro with difference that all of this will be executed in runtime.

So, from now we are able to initialize a reader/writer semaphore let's look at the lock and unlock API. The Linux kernel

provides following primary API to manipulate reader/writer semaphores :

® void down_read(struct rw_semaphore *sem) - lock for reading;
e int down_read_trylock(struct rw_semaphore *sem) - try lock for reading;
® void down_write(struct rw_semaphore *sem) - lock for writing;
® int down_write_trylock(struct rw_semaphore *sem) - try lock for writing;
e void up_read(struct rw_semaphore *sem) -release aread lock;

® void up_write(struct rw_semaphore *sem) - release a write lock;

Let's start as always from the locking. First of all let's consider implementation of the down_write function which executes a try of
acquiring of a lock for write . This function is kernel/locking/rwsem.c source code file and starts from the call of the macro from the

include/linux/kernel.h header file:

void __sched down_write(struct rw_semaphore *sem)

{
might_sleep();
rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
LOCK_CONTENDED(sem, __ down_write_trylock, __down_write);
rwsem_set_owner(sem);

3

We already met the might_sleep macro in the previous part. In short words, Implementation of the might_sleep macro depends on
the conFIG_DEBUG_ATOMIC_SLEEP kernel configuration option and if this option is enabled, this macro just prints a stack trace if it was
executed in atomic context. As this macro is mostly for debugging purpose we will skip it and will go ahead. Additionally we will skip
the next macro from the down_read function - rwsem_acquire which is related to the lock validator of the Linux kernel, because this

is topic of other part.

The only two things that remained in the down_write function is the call of the Lock_conNTENDED macro which is defined in the
include/linux/lockdep.h header file and setting of owner of a lock with the rwsem_set_owner function which sets owner to currently

running process:

https://github.com/torvalds/linux/blob/master/arch/x86/um/Kconfig
https://github.com/torvalds/linux/blob/master/locking/rwsem-xadd.c
https://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/kernel/locking/rwsem.c
https://github.com/torvalds/linux/blob/master/include/linux/kernel.h
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
https://en.wikipedia.org/wiki/Linearizability
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/lockdep.h

static inline void rwsem_set_owner(struct rw_semaphore *sem)

{

sem->owner = current;

As you already may guess, the Lock_coNTENDED macro does all job for us. Let's look at the implementation of the Lock_CONTENDED
macro:

#define LOCK_CONTENDED(_lock, try, lock) \
lock(_lock)

As we may see it just calls the lock function which is third parameter of the Lock_CONTENDED macro with the given rw_semaphore .
In our case the third parameter of the Lock_CONTENDED macro is the _ down_write function which is architecture specific function

and located in the arch/x86/include/asm/rwsem.h header file. Let's look at the implementation of the __down_write function:

static inline void __down_write(struct rw_semaphore *sem)

{

__down_write_nested(sem, 0);

which just executes a call of the __down_write_nested function from the same source code file. Let's take a look at the implementation

of the __down_write_nested function:

static inline void __down_write_nested(struct rw_semaphore *sem, int subclass)

{
long tmp;
asm volatile("# beginning down_write\n\t"
LOCK_PREFIX " xadd %1, (%2)\n\t"
" test " __ ASM_SEL(%w1,%k1) "," __ ASM_SEL(%w1,%k1) "\n\t"
" jz 1f\n"
" call call rwsem_down_write_failed\n"
"1:\n"
"# ending down_write"
"+m" (sem->count), "=d" (tmp)
"a" (sem), "1" (RWSEM_ACTIVE_WRITE_BIAS)
"memory", "cc");
}

As for other synchronization primitives which we saw in this chapter, usually lock/unlock functions consists only from an inline
assembly statement. As we may see, in our case the same for __down_write_nested function. Let's try to understand what does this
function do. The first line of our assembly statement is just a comment, let's skip it. The second like contains Lock_PReFIx which will

be expanded to the LOCK instruction as we already know. The next xadd instruction executes add and exchange operations. In other

words, xadd instruction adds value of the RWSEM_ACTIVE_WRITE_BIAS :

#define RWSEM_ACTIVE_WRITE_BIAS (RWSEM_WAITING_BIAS + RWSEM_ACTIVE_BIAS)
#define RWSEM_WAITING_BIAS (-RWSEM_ACTIVE_MASK-1)
#define RWSEM_ACTIVE_BIAS 0x00000001L

or exffffffffoeee00e1 tothe count of the given reader/writer semaphore and returns previous value of it. After this we check
the active mask in the rw_semaphore->count . If it was zero before, this means that there were no-one writer before, so we acquired a
lock. In other way we call the call rwsem_down_write_failed function from the arch/x86/lib/rwsem.S assembly file. The the

call_rwsem_down_write_failed function just calls the rwsem_down_write_failed function from the kernel/locking/rwsem-xadd.c

source code file anticipatorily save general purpose registers:

ENTRY(call_rwsem_down_write_failed)
FRAME_BEGIN
save_common_regs

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/Theory/asm.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://x86.renejeschke.de/html/file_module_x86_id_327.html
https://github.com/torvalds/linux/blob/master/arch/x86/lib/rwsem.S
https://github.com/torvalds/linux/blob/master/locking/rwsem-xadd.c

movq %rax,%rdi

call rwsem_down_write_failed
restore_common_regs

FRAME_END

ret
ENDPROC(call_rwsem_down_write_failed)

The rwsem_down_write_failed function starts from the atomic update of the count value:

__visible
struct rw_semaphore __sched *rwsem_down write failed(struct rw_semaphore *sem)
{
count = rwsem_atomic_update(-RWSEM_ACTIVE_WRITE_BIAS, sem);
}

with the -RWSEM_ACTIVE_WRITE_BIAS value. The rwsem atomic_update function is defined in the arch/x86/include/asm/rwsem.h

header file and implement exchange and add logic:

static inline long rwsem_atomic_update(long delta, struct rw_semaphore *sem)

{

return delta + xadd(&sem->count, delta);

This function atomically adds the given delta to the count and returns old value of the count. After this it just returns sum of the given
delta and old value of the count field. In our case we undo write bias from the count as we didn't acquire a lock. After this step

we try to do optimistic spinning by the call of the rwsem_optimistic_spin function:

if (rwsem_optimistic_spin(sem))
return sem;

We will skip implementation of the rwsem_optimistic_spin function, as it is similar on the mutex_optimistic_spin function which

we saw in the previous part. In short words we check existence other tasks ready to run that have higher priority in the
rwsem_optimistic_spin function. If there are such tasks, the process will be added to the MCS waitqueue and start to spin in the

loop until a lock will be able to be acquired. If optimistic spinning is disabled, a process will be added to the and marked as waiting

for write:

waiter.task = current;
waiter.type = RWSEM_WAITING_FOR_WRITE;

if (list_empty(&sem->wait_list))
waiting = 2

list_add_tail(&waiter.list, &sem->wait_list);

waiters list and start to wait until it will successfully acquire the lock. After we have added a process to the waiters list which was empty

before this moment, we update the value of the rw_semaphore->count with the RWSEM_WAITING_BIAS :

count = rwsem_atomic_update(RWSEM_WAITING_BIAS, sem);

with this we mark rw_semaphore->counter that it is already locked and exists/waits one writer which wants to acquire the lock. In
other way we try to wake reader processes from the wait queue that were queued before this writer process and there are no
active readers. In the end of the rwsem_down_write_failed a writer process will go to sleep which didn't acquire a lock in the

following loop:

while () {
if (rwsem_try_write_lock(count, sem))

https://en.wikipedia.org/wiki/Linearizability
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf

break;
raw_spin_unlock_irq(&sem->wait_lock);
do {
schedule();
set_current_state(TASK_UNINTERRUPTIBLE);
} while ((count = sem->count) & RWSEM_ACTIVE_MASK);
raw_spin_lock_irq(&sem->wait_lock);

I will skip explanation of this loop as we already met similar functional in the previous part.

That's all. From this moment, our writer process will acquire or not acquire a lock depends on the value of the rw_semaphore-
>count field. Now if we will look at the implementation of the down_read function which executes a try of acquiring of a lock. We

will see similar actions which we saw in the down_write function. This function calls different debugging and lock validator related

functions/macros:

void __sched down_read(struct rw_semaphore *sem)

{
might_sleep();
rwsem_acquire_read(&sem->dep_map, 0, O, _RET_IP_);
LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
}

and does all job in the __down_read function. The _ down_read consists of inline assembly statement:

static inline void __down_read(struct rw_semaphore *sem)

{
asm volatile("# beginning down_read\n\t"
LOCK_PREFIX _ASM_INC "(%1)\n\t"
" jns 1f\n"
" call call rwsem_down_read_failed\n"
"1:\n\t"
"# ending down_read\n\t"
"+m" (sem->count)
"a" (sem)
"memory", "cc");
}

which increments value of the given rw_semaphore->count and call the call_rwsem_down_read_failed if this value is negative. In
other way we jump at the label 1: and exit. After this read lock will be successfully acquired. Notice that we check a sign of the

count value as it may be negative, because as you may remember most significant word of the rw_semaphore->count contains

negated number of active writers.

Let's consider case when a process wants to acquire a lock for read operation, but it is already locked. In this case the

call_rwsem_down_read_failed function from the arch/x86/lib/rwsem.S assembly file will be called. If you will look at the
implementation of this function, you will notice that it does the same that call rwsem_down_read_failed function does. Except it calls
the rwsem_down_read_failed function instead of rwsem_dow_write_failed . Now let's consider implementation of the

rwsem_down_read_failed function. It starts from the adding a process to the wait queue and updating of value of the rw_semaphore-
>counter :
long adjustment = -RWSEM_ACTIVE_READ_BIAS;

waiter.task = tsk;
waiter.type = RWSEM_WAITING_FOR_READ;

if (list_empty(&sem->wait_list))
adjustment += RWSEM_WAITING_BIAS;

list_add_tail(&waiter.list, &sem->wait_list);

count = rwsem_atomic_update(adjustment, sem);

https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-4.html
https://en.wikipedia.org/wiki/Word_%28computer_architecture%29
https://github.com/torvalds/linux/blob/master/arch/x86/lib/rwsem.S

Notice that if the wait queue was empty before we clear the rw_semaphore->counter and undo read bias in other way. At the next
step we check that there are no active locks and we are first in the wait queue we need to join currently active reader processes. In

other way we go to sleep until a lock will not be able to acquired.

That's all. Now we know how reader and writer processes will behave in different cases during a lock acquisition. Now let's take a
short look at unlock operations. The up_read and up_write functions allows usto unlock a reader or writer lock. First of all

let's take a look at the implementation of the up_write function which is defined in the kernel/locking/rwsem.c source code file:

void up_write(struct rw_semaphore *sem)

{
rwsem_release(&sem->dep_map, 1, _RET_IP_);
rwsem_clear_owner(sem);
__up_write(sem);

}

First of all it calls the rwsem_release macro which is related to the lock validator of the Linux kernel, so we will skip it now. And at
the next line the rwsem_clear_owner function which as you may understand from the name of this function, just clears the owner

field of the given rw_semaphore :

static inline void rwsem_clear_owner(struct rw_semaphore *sem)

{

sem->owner = H

The __up_write function does all job of unlocking of the lock. The _up_write is architecture-specific function, so for our case it will
be located in the arch/x86/include/asm/rwsem.h source code file. If we will take a look at the implementation of this function, we will
see that it does almost the same that __down_write function, but conversely. Instead of adding of the RWSEM_ACTIVE_WRITE_BIAS to

the count , we subtract the same value and check the sign of the previous value.

If the previous value of the rw_semaphore->count is not negative, a writer process released a lock and now it may be acquired by
someone else. In other case, the rw_semaphore->count will contain negative values. This means that there is at least one writer ina
wait queue. In this case the call rwsem_wake function will be called. This function acts like similar functions which we already saw

above. It store general purpose registers at the stack for preserving and call the rwsem_wake function.

First of all the rwsem_wake function checks if a spinner is present. In this case it will just acquire a lock which is just released by lock
owner. In other case there must be someone in the wait queue and we need to wake or writer process if it exists at the top of the wait
queue orall reader processes. The up_read function which release a reader lock acts in similar way like up_write , but with a
little difference. Instead of subtracting of RWSEM_ACTIVE_WRITE_BIAS from the rw_semaphore->count , it subtracts 1 from it, because
less significant word of the count contains number active locks. After this it checks sign of the count and calls the rwsem_wake

like __up_write ifthe count is negative or in other way lock will be successfully released.

That's all. We have considered API for manipulation with reader/writer semaphore : up_read/up_write and
down_read/down_write . We saw that the Linux kernel provides additional API, besides this functions, like the , and etc. But I will
not consider implementation of these function in this part because it must be similar on that we have seen in this part of except few

subtleties.

Conclusion

This is the end of the fifth part of the synchronization primitives chapter in the Linux kernel. In this part we met with special type of
semaphore - readers/writer semaphore which provides access to data for multiply process to read or for one process to writer. In

the next part we will continue to dive into synchronization primitives in the Linux kernel.
If you have questions or suggestions, feel free to ping me in twitter 0xAX, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

https://github.com/torvalds/linux/blob/master/kernel/locking/rwsem.c
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/rwsem.h
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides

Links

Synchronization primitives
Readers/Writer lock
Spinlocks

Semaphore

Mutex

x86_64 architecture
Doubly linked list

MCS lock

API

Linux kernel lock validator
Atomic operations

Inline assembly

XADD instruction

LOCK instruction

Previous part

7

https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Semaphore_%28programming%29
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/X86-64
http://www.cs.rochester.edu/~scott/papers/1991_TOCS_synch.pdf
https://en.wikipedia.org/wiki/Application_programming_interface
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_327.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html

Synchronization primitives in the Linux kernel. Part 6.

Introduction

This is the sixth part of the chapter which describes synchronization primitives) in the Linux kernel and in the previous parts we
finished to consider different readers-writer lock synchronization primitives. We will continue to learn synchronization primitives in this
part and start to consider a similar synchronization primitive which can be used to avoid the writer starvation problem. The name

of this synchronization primitive is - seqlock oOr sequential locks .

We know from the previous part that readers-writer lock is a special lock mechanism which allows concurrent access for read-only

operations, but an exclusive lock is needed for writing or modifying data. As we may guess, it may lead to a problem which is called
writer starvation . In other words, a writer process can't acquire a lock as long as at least one reader process which aqcuired a lock

holds it. So, in the situation when contention is high, it will lead to situation when a writer process which wants to acquire a lock will

wait for it for a long time.
The seqlock synchronization primitive can help solve this problem.

As in all previous parts of this book, we will try to consider this synchronization primitive from the theoretical side and only than we

will consider API provided by the Linux kernel to manipulate with seqglocks .

So, let's start.

Sequential lock

So, what is a seqlock synchronization primitive and how does it work? Let's try to answer on these questions in this paragraph.
Actually sequential locks were introduced in the Linux kernel 2.6.x. Main point of this synchronization primitive is to provide fast
and lock-free access to shared resources. Since the heart of sequential lock synchronization primitive is spinlock synchronization
primitive, sequential locks work in situations where the protected resources are small and simple. Additionally write access must be

rare and also should be fast.

Work of this synchronization primitive is based on the sequence of events counter. Actually a sequential lock allows free access to a
resource for readers, but each reader must check existence of conflicts with a writer. This synchronization primitive introduces a special
counter. The main algorithm of work of sequential locks is simple: Each writer which acquired a sequential lock increments this
counter and additionally acquires a spinlock. When this writer finishes, it will release the acquired spinlock to give access to other

writers and increment the counter of a sequential lock again.

Read only access works on the following principle, it gets the value of a sequential lock counter before it will enter into critical
section and compares it with the value of the same sequential lock counter at the exit of critical section. If their values are equal, this
means that there weren't writers for this period. If their values are not equal, this means that a writer has incremented the counter during

the critical section. This conflict means that reading of protected data must be repeated.

That's all. As we may see principle of work of sequential locks is simple.

unsigned int seq_counter_value;

do {
seg_counter_value = get_seq_counter_val(&the_lock);
//
// do as we want here
//

} while (__retry_);

Actually the Linux kernel does not provide get_seq_counter_val() function. Here it is just a stub. Likea __retry__ too. AsI

already wrote above, we will see actual the API for this in the next paragraph of this part.

https://en.wikipedia.org/wiki/Synchronization_(computer_science
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Critical_section
https://en.wikipedia.org/wiki/Application_programming_interface

Ok, now we know what a seqlock synchronization primitive is and how it is represented in the Linux kernel. In this case, we may go

ahead and start to look at the API which the Linux kernel provides for manipulation of synchronization primitives of this type.

Sequential lock API

So, now we know a little about sequentional lock synchronization primitive from theoretical side, let's look at its implementation in

the Linux kernel. All sequentional locks API are located in the include/linux/seqlock.h header file.

First of all we may see that the a sequential lock machanism is represented by the following type:

typedef struct {
struct
spinlock_t lock;
} seqlock_t;

As we may see the seqlock_t provides two fields. These fields represent a sequential lock counter, description of which we saw above
and also a spinlock which will protect data from other writers. Note that the seqcount counter represented as seqcount type. The

seqcount is structure:

typedef struct {
unsigned sequence;

#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct

#endif

} seqcount_t;

’

which holds counter of a sequential lock and lock validator related field.

As always in previous parts of this chapter, before we will consider an API of sequential lock mechanism in the Linux kernel, we

need to know how to initialize an instance of seglock_t .

We saw in the previous parts that often the Linux kernel provides two approaches to execute initialization of the given synchronization

primitive. The same situation with the seqlock_t structure. These approaches allows to initialize a seqlock_t in two following:

® statically ;

® dynamically .

ways. Let's look at the first approach. We are able to intialize a seqlock_t statically with the DEFINE_SEQLOCK macro:

#define DEFINE_SEQLOCK(x) \
seqlock_t x = _ SEQLOCK_UNLOCKED(x)

which is defined in the include/linux/seqlock.h header file. As we may see, the DEFINE_SEQLOCK macro takes one argument and
expands to the definition and initialization of the seqlock_t structure. Initialization occurs with the help of the __SEQLOCK_UNLOCKED

macro which is defined in the same source code file. Let's look at the implementation of this macro:

#define __ SEQLOCK_UNLOCKED(lockname) \
{ \
.seqcount = SEQCNT_ZERO(lockname), \
.lock = __ SPIN_LOCK_UNLOCKED(lockname) \
}

As we may see the, _ SEQLOCK_UNLOCKED macro executes initialization of fields of the given seqlock_t structure. The first field is

seqcount initialized with the SEQCNT_zErRo macro which expands to the:

#define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h

So we just initialize counter of the given sequential lock to zero and additionally we can see lock validator related initialization which

depends on the state of the conrFIc_beEBUG_LOCK_ALLOC kernel configuration option:

#ifdef CONFIG_DEBUG_LOCK_ALLOC
define SEQCOUNT_DEP_MAP_INIT(lockname) \
.dep_map = { .name = #lockname } \

#else
define SEQCOUNT_DEP_MAP_INIT(lockname)

#endif

As I already wrote in previous parts of this chapter we will not consider debugging and lock validator related stuff in this part. So for

now we just skip the seQcounT_bep_mAP_INIT macro. The second field of the given seqlock_t is lock initialized with the
__SPIN_LOCK_UNLOCKED macro which is defined in the include/linux/spinlock_types.h header file. We will not consider implementation

of this macro here as it just initialize rawspinlock with architecture-specific methods (More abot spinlocks you may read in first parts of

this chapter).

We have considered the first way to initialize a sequential lock. Let's consider second way to do the same, but do it dynamically. We can

initialize a sequentional lock with the seqlock_init macro which is defined in the same include/linux/seqlock.h header file.

Let's look at the implementation of this macro:

#define seqlock_init(x) \
do { \
seqcount_init (&(x)->seqcount); \
spin_lock_init(&(x)->lock); \
} while (0)

As we may see, the seqlock_init expands into two macros. The first macro seqcount_init takes counter of the given sequential

lock and expands to the call of the __seqcount_init function:

define seqcount_init(s) \
do { \
static struct lock _class_key _ key; \
__seqcount_init((s), #s, & __key); \
} while (0)

from the same header file. This function

static inline void __seqcount_init(seqcount_t *s, const char *name,
struct lock_class_key *key)

lockdep_init_map(&s->dep_map, name, key, 0);
s->sequence = 0;

just initializes counter of the given seqcount_t with zero. The second call from the seqlock_init macro is the call of the

spin_lock_init macro which we saw in the first part of this chapter.

So, now we know how to initialize a sequential lock , now let's look at how to use it. The Linux kernel provides following API to

manipulate sequential locks :

static inline unsigned read_seqbegin(const seqlock_t *sl);

static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start);
static inline void write_seqlock(seqlock_t *sl);

static inline void write_sequnlock(seqlock_t *sl);

static inline void write_seqlock_irq(seqlock_t *sl);

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://en.wikipedia.org/wiki/Debugging
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://github.com/torvalds/linux/blob/master/include/linux/spinlock_types.h
https://github.com/torvalds/linux/blob/master/include/linux/seqlock.h
https://en.wikipedia.org/wiki/Application_programming_interface

static inline void write_sequnlock_irq(seqlock_t *sl);
static inline void read_seqlock_excl(seqglock_t *sl)
static inline void read_sequnlock_excl(seqlock_t *sl)

and others. Before we move on to considering the implementation of this API, we must know that actually there are two types of
readers. The first type of reader never blocks a writer process. In this case writer will not wait for readers. The second type of reader

which can lock. In this case, the locking reader will block the writer as it will wait while reader will not release its lock.
First of all let's consider the first type of readers. The read_segbegin function begins a seq-read critical section.

As we may see this function just returns value of the read_seqcount_begin function:

static inline unsigned read_segbegin(const seqlock_t *sl)

{

return read_seqcount_begin(&sl->seqcount);

In its turn the read_seqcount_begin function calls the raw_read_seqgcount_begin function:

static inline unsigned read_seqcount_begin(const seqcount_t *s)

{

return raw_read_seqcount_begin(s);

which just returns value of the sequential lock counter:

static inline unsigned raw_read_seqcount(const seqcount_t *s)

{
unsigned ret = READ_ONCE(s->sequence);
smp_rmb();
return ret;

}

After we have the initial value of the given sequential lock counter and did some stuff, we know from the previous paragraph of this
function, that we need to compare it with the current value of the counter the same sequential lock before we will exit from the
critical section. We can achieve this by the call of the read_seqretry function. This function takes a sequential lock , start value of

the counter and through a chain of functions:

static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)

{
return read_seqcount_retry(&sl->seqcount, start);
3
static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
{
smp_rmb();
return __read_seqcount_retry(s, start);
3

it calls the __read_seqcount_retry function:

static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)

{

return unlikely(s->sequence != start);

which just compares value of the counter of the given sequential lock with the initial value of this counter. If the initial value of the
counter which is obtained from read_segbegin() function is odd, this means that a writer was in the middle of updating the data when

our reader began to act. In this case the value of the data can be in inconsistent state, so we need to try to read it again.

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Critical_section

This is a common pattern in the Linux kernel. For example, you may remember the jiffies concept from the first part of the timers

and time management in the Linux kernel chapter. The sequential lock is used to obtain value of jiffies at x86_64 architecture:

u64 get_jiffies_64(void)

{
unsigned long seq;
ué4 ret;
do {
seq = read_segbegin(&jiffies_lock);
ret = jiffies_64;
} while (read_seqretry(&jiffies_lock, seq));
return ret;
}

Here we just read the value of the counter of the jiffies_lock sequential lock and then we write value of the jiffies_64 system
variable to the ret . As here we may see do/while loop, the body of the loop will be executed at least one time. So, as the body of
loop was executed, we read and compare the current value of the counter of the jiffies_lock with the initial value. If these values are

not equal, execution of the loop will be repeated, else get_jiffies_64 will return its value in ret .

We just saw the first type of readers which do not block writer and other readers. Let's consider second type. It does not update value of

a sequential lock counter, but just locks spinlock

static inline void read_seqlock_excl(seqlock_t *sl)

{
spin_lock(&sl->lock);

So, no one reader or writer can't access protected data. When a reader finishes, the lock must be unlocked with the:

static inline void read_sequnlock_excl(seqlock_t *sl)

{
spin_unlock(&sl->lock);
}
function.

Now we know how sequential lock work for readers. Let's consider how does writer act when it wants to acquire a sequential
lock to modify data. To acquire a sequential lock , writer should use write_seqlock function. If we look at the implementation of

this function:

static inline void write_seqlock(seqlock_t *sl)

{
spin_lock(&sl->lock);
write_seqcount_begin(&sl->seqcount);

We will see that it acquires spinlock to prevent access from other writers and calls the write_seqcount_begin function. This

function just increments value of the sequential lock counter:

static inline void raw_write_seqcount_begin(seqcount_t *s)

{
s->sequence++;
smp_wmb () ;

When a writer process will finish to modify data, the write_sequnlock function must be called to release a lock and give access to

other writers or readers. Let's consider at the implementation of the write_sequnlock function. It looks pretty simple:

static inline void write_sequnlock(seqlock_t *sl)

https://en.wikipedia.org/wiki/X86-64

write_seqcount_end(&sl->seqcount);
spin_unlock(&sl->1lock);

First of all it just calls write_seqcount_end function to increase value of the counter of the sequential lock again:

static inline void raw_write_seqcount_end(seqcount_t *s)

{
smp_wmb();
s->sequence++;

and in the end we just call the spin_unlock macro to give access for other readers or writers.

That's all about sequential lock mechanism in the Linux kernel. Of course we did not consider full API of this mechanism in this
part. But all other functions are based on these which we described here. For example, Linux kernel also provides some safe
macros/functions to use sequential lock mechanism in interrupt handlers of softirq: write_seqclock_irq and

write_sequnlock_irq :

static inline void write_seqlock_irq(seqlock_t *sl)

{ spin_lock_irq(&sl->lock);
write_seqcount_begin(&sl->seqcount);

}

static inline void write_sequnlock_irq(seqlock_t *sl)

{
write_seqcount_end(&sl->seqcount);
spin_unlock_irq(&sl->lock);

}

As we may see, these functions differ only in the initialization of spinlock. They call spin_lock_irq and spin_unlock_irq instead of

spin_lock and spin_unlock .

Or for example write_seqlock_irgsave and write_sequnlock_irqrestore functions which are the same but used

spin_lock_irgsave and spin_unlock_irgsave macro to use in IRQ) handlers.

That's all.

Conclusion

This is the end of the sixth part of the synchronization primitives chapter in the Linux kernel. In this part we met with new
synchronization primitive which is called - sequential lock . From the theoretical side, this synchronization primitive very similar on

a readers-writer lock synchronization primitive, but allows to avoid writer-starving issue.
If you have questions or suggestions, feel free to ping me in twitter OxA X, drop me email or just create issue.

Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please

send me PR to linux-insides.

Links

e synchronization primitives)
e readers-writer lock

e spinlock

e critical section

e lock validator

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Synchronization_(computer_science
https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
https://en.wikipedia.org/wiki/Critical_section
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt

debugging

API

x86_64

Timers and time management in the Linux kernel
interrupt handlers

softirq

IRQ)

Previous part

364

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture

Linux

Linux Linux

o - memblock
e ioremap - ioremap

o kmemcheck - kmemcheck

0 start_kernel start_kernel init ()

memblock

Yinghai Lu memblock x86_64

memblock include/linux/memblock.h
memblock
struct {

bool bottom_up;
phys_addr_t current_limit;

struct
struct
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
struct 2
#endif
}
bottom_up true current_limit (
memblock_type
struct {

unsigned long cnt;
unsigned long max;
phys_addr_t total_size;
struct *

3

memblock_region memblock_region

struct {
phys_addr_t base;
phys_addr_t size;
unsigned long flags;

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;

#endif

3

memblock_region flags

#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
#define MEMBLOCK_ALLOC_ACCESSIBLE (¢}
#define MEMBLOCK_HOTPLUG ox1

CONFIG_HAVE_MEMBLOCK_NODE_MAP memblock_region

numa

start_kernel API

g --> array of memblock_region
; --> array of memblock_region

CONFIG_HAVE_MEMBLOCK_PHYS_MAP)-

https://lkml.org/lkml/2010/7/13/68
https://github.com/torvalds/linux/blob/master/include/linux/memblock.h
http://en.wikipedia.org/wiki/Non-uniform_memory_access

memblock

|
|
| Array of the
|
|

| |
| |
(! memory (!
| | memblock_type |-]--> membock_region
|1 ||
| | B T +
| | B T +
	reserved			
	memblock_type	-1-->] Array of the		
				memblock_region
[
ocoooooooooocoooooooooo00So + docoooooooooccooooconooooos0 +
memblock memblock_type memblock_region Memblock Memblock
memblock API include/linux/memblock.h , mm/memblock.c memblock
struct _ = {
.memory.regions = memblock_memory_init_regions,
.memory.cnt =1,
.memory.max = INIT_MEMBLOCK_REGIONS,
.reserved.regions = memblock_reserved_init_regions,
.reserved.cnt =1,
.reserved.max = INIT_MEMBLOCK_REGIONS,

#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP

.physmem.regions = memblock_physmem_init_regions,
.physmem.cnt =1,
.physmem.max = INIT_PHYSMEM_REGIONS,
#endif
.bottom_up = false,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
}
memblock __initdata_memblock

#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK

#define __init_memblock __meminit

#define __initdata_memblock __meminitdata
#else

#define __init_memblock

#define __initdata_memblock

#endif
CONFIG_ARCH_DISCARD_MEMBLOCK .init
memblock_type memory memblock_type reserved memblock_type physmem memblock_type.regions
memblock_type memblock_region
static struct [1 ;
static struct [1
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static struct [1 2
#endif
128 INIT_MEMBLOCK_REGIONS

#define INIT_MEMBLOCK_REGIONS 128

https://github.com/torvalds/linux/blob/master/include/linux/memblock.h
https://github.com/torvalds/linux/blob/master/mm/memblock.c

memblock __initdata memblock ()

bottom_up

#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)e)

OXFEFfffffffffffff

On this step the initialization of the memblock structure has been finished and we can look on the Memblock API. ~ memblock
API

memblock API memblock mm/memblock.c memblock arch/x86/kernel/e820.c
memblock_x86_fill e820 memblock_add memblock memblock_add
memblock memblock_add

memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);

- memory CONFIG_NODES_SHIFT 1 1 << CONFIG_NODES_SHIFT memblock_add_range 0

memblock_type memblock memory_region () memblock_type memblock_type

memblock

phys_addr_t end = base + memblock_cap_size(base, &size);

memblock_cap_size size base + size

static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)

{
return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
}
memblock_cap_size ULLONG_MAX - base
memblock_add_range memblock
°
°
for (1 = 0; 1 < type->cnt; i++) {
struct * = &type->regions[i];

phys_addr_t rbase = rgn->base;
phys_addr_t rend = rbase + rgn->size;

if (rbase >= end)
break;

if (rend <= base)
continue;

memblock_double_array

https://github.com/torvalds/linux/blob/master/mm/memblock.c
http://lxr.free-electrons.com/ident?i=memblock
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c#L1061
http://en.wikipedia.org/wiki/E820

while (type->cnt + nr_new > type->max)
if (memblock_double_array(type, obase, size) < 0)
return -ENOMEM;
insert = f
goto repeat;

memblock_double_array insert true repeat repeat

if (base < end) {
nr_new++;
if (insert)
memblock_insert_region(type, i, base, end - base,
nid, flags);

}
insert true memblock_insert_region memblock_insert_region
struct * = &type->regions[idx];
memmove

memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));

memblock_insert_region

memblock_type ()

memblock_region memblock_type memblock_add_range memblock_merge_regions
memblock regionl

0 0x1000

T +

I |

| |

| regioni |

| |

| |

R +

memblock region2

0x100 0x2000

S S S S +

| |

| |

| region2 |

| |

| |

e e +

base = min(rend, end);

0x1000

if (base < end) {
nr_new++;
if (insert)
memblock_insert_region(type, i, base, end - base, nid, flags);

overlapping portion ()

type->regions[i + 1]

while (i < type->cnt - 1) {

memblock_merge_regions memblock_type - type->regions[i]

struct * = &type->regions[i];
struct * = &type->regions[i + 1];
if (this->base + this->size != next->base ||

memblock_get_region_node(this) !=
memblock_get_region_node(next) ||

this->flags != next->flags) {
BUG_ON(this->base + this->size > next->base);

i++;

continue;

this->size += next->size;

memmove

memmove (next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));

memblock_type

type->cnt--;

(0] 0x2000

S +

| |

| |

| regioni |

| |

| |

Poscoosscocnscnsasaconnoncocoaoocoonoacoooo000000 +

memblock_add_range

memblock_reserve memblock_add memblock_reserve memblock_type.reserved memblock_type.memory
API memory reserved

e memblock_remove -
e memblock_find_in_range -
o memblock_free -

e for_each_mem_range -

memblock API

e get_allocated_memblock_memory_regions_info -

e get_allocated_memblock_reserved_regions_info -

get_allocated_memblock_reserved_regions_info

phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
phys_addr_t *addr)

{
if (memblock.reserved.regions == memblock_reserved_init_regions)
return 0;
*addr = __pa(memblock.reserved.regions);
return PAGE_ALIGN(sizeof(struct memblock_region) *
memblock.reserved.max);
}
memblock O PAGE_ALIGN

#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)

get_allocated_memblock_memory_regions_info get_allocated_memblock_memory_regions_info
memblock_type.memory memblock_type.reserved

memblock_dbg memblock=debug memblock_dbg printk

#define memblock_dbg(fmt, ...) \

if (memblock_debug) printk(KERN_INFO pr_fmt(fmt), ##_ VA ARGS_)

memblock_reserve

memblock_dbg("memblock_reserve: [%#01611x-%#01611x] flags %#021x %pF\n",
(unsigned long long)base,
(unsigned long long)base + size - 1,
flags, (void *)_RET_IP_);

Kernel command line: root=/dev/sdb earlyprintk=ttySe® loglevel=7 debug rdinit=/sbin/init root=/dev/ram memblock=debug
memblock_virt_alloc_try_nid_nopanic: 32768 bytes align=0x0 nid=-1 from=8x8 max_addr=0x® alloc_large_system_hash+8x144/6x228
memblock_reserve: [0xP0P0023ff38e00-0x0000023FF40dff] flags Ox® memblock_virt_allec_internal+@xfd/Ox13f

PID hash table entries: 4096 (order: 3, 32768 bytes)

memblock_virt_alloc_try_nid_nopanic: 67188864 bytes align=0x1000 nid=-1 from=0x@ max_addr=exffffffff swiotlb_init+8x4c/exad
memblock_reserve: [0x000000bbfe0000-0x000000bffdffff] flags 8x® memblock_wvirt_alloc_internal+0xfd/0x13f

memblock_virt_alloc_try_nid_nopanic: 32768 bytes align=0x1000 ni 1 from=0x0 max_addr=exffffffff swiotlb_init_with_tbl+0x69/0x147
memblock_reserve: [0x000000bbfdB000-0x000000bbfdffff] flags ©x® memblock_virt_alloc_internal+exfd/ex13f
memblock_virt_alloc_try_nid: 131872 bytes align=0x1000 nid=-1 from=0x0 max_addr=0x0 swiotlb_init_with_tbl+8xb9o/0x147
memblock_reserve: [0xP0P0023ff18000-0x0000023FF37FFF] flags Ox0 memblock_ t_alloc_internal+®xfd/@x13f
memblock_virt_alloc_try_nid: 262144 bytes align=0x1000 nid=-1 from=0x0 ma ddr=6x6 swiotlb_init_with_tbl+0xe8/0x147
memblock_reserve: [0xP0P0023fedBO00-0x0000023FF17fff] flags ©x® memblock_wirt_allec_internal+0xfd/ex13f

debugfs x86

e /sys/kernel/debug/memblock/memory
o /sys/kernel/debug/memblock/reserved

e /sys/kernel/debug/memblock/physmem

memblock

twitter issue

PR linux-insides.

http://en.wikipedia.org/wiki/Debugfs
https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh

€820
numa
debugfs

372

http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/Non-uniform_memory_access
http://en.wikipedia.org/wiki/Debugfs

“»

__START_KERNEL_map level2_fixmap_pgt

NEXT_PAGE(level2_fixmap_pgt)
.fill 506,8,0
.quad levell_fixmap_pgt - __ START_KERNEL_map + _PAGE_TABLE
.fill 5,8,0

NEXT_PAGE(levell_fixmap_pgt)
.fill 512,8,0

level2_fixmap_pgt level2_kernel_pgt code+data+bss arch/x86/include/asm/fixmap.h
fixed_addresses VSYSCALL_PAGE - vsyscall apic FIX_APIC_BASE

Fommmmm oo Fommmme e eeaaas Fommmmmmmeeaao Fommmmmmeeemeeaao +
| | | | |
|kernel text| kernel | | vsyscalls

| mapping | text | Modules | fix-mapped

| from phys 0] data | | addresses |
| | | | |
B TR mmmmm e e dommmmmeemoo o mmmmmmemoemoo o +

__ START_KERNEL_map __ START_KERNEL MODULES_VADDR OxFfffffffffffffff

#define FIXADDR_SIZE (__end_of_permanent_fixed_addresses << PAGE_SHIFT)

#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
__end_of_permanent_fixed_addresses fixed_addresses fixed_addresses PAGE_SHIFT 1 <<
PAGE_SHIFT __end_of_permanent_fixed_addresses 536 KB

The second FIXADDR_START macro just substracts fix-mapped area size from the last address of the fix-mapped area to get its base
virtual address. FIxAppr_Top is a rounded up address from the base address of the vsyscall space: ~ FIXADDR_START

FIXADDR_TOP vsyscall

#define FIXADDR_TOP (round_up(VSYSCALL_ADDR + PAGE_SIZE, 1<<PMD_SHIFT) - PAGE_SIZE)

fixed_addresses fix_to_virt

static __always_inline unsigned long fix_to_virt(const unsigned int idx)

{
BUILD_BUG_ON(idx >= __end_of_fixed_addresses);
return __fix_to_virt(idx);

BUILD_BUG_ON fixed_addresses __end_of_fixed_addresses _ fix_to_virt

#define _ fix_to_virt(x) (FIXADDR_TOP - ((x) << PAGE_SHIFT))

PAGE_SHIFT FIXADDR_TOP FIXADDR_TOP

static inline unsigned long virt_to_fix(const unsigned long vaddr)

{

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/fixmap.h
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://lwn.net/Articles/446528/
https://lwn.net/Articles/446528/

BUG_ON(vaddr >= FIXADDR_TOP || vaddr < FIXADDR_START);
return __virt_to_fix(vaddr);

virt_to_fix

#define

virt_to_fix(x)

FIXADDR_START

FIXADDR_TOP

((FIXADDR_TOP -

PEFN PEN (page_phys_addr >> PAGE_SHIFT)

_virt_to_fix 12(FIXADDR_TOP) PAGE_SHIFT 12
FIXADDR_TOP 12 12 PAGE_SHIFT Page frame number
FIX_TBOOT_BASE Xen ioremap
1/0
e IO
.
in out /proc/ioports I/O
$ cat /proc/ioports
0000-0cf7 PCI Bus 0000:00
0000-001f dmail
0020-0021 picil
0040-0043 timero@
0050-0053 timerl
0060-0060 keyboard
0064-0064 keyboard
0070-0077 rtco
0080-008f : dma page reg
00a0-00al : pic2
00c0-00df : dma2
00f0-00ff : fpu
00f0-00f0 PNPOCO4:00
03c0-03df : vesafb
03f8-03ff serial
04d0-04d1 : pnp 00:06
0800-087f : pnp 00:01
0a00-0a0f pnp 00:04
0a20-0a2f pnp 00:04
0a30-0a3f : pnp 00:04
0cf8-0cff PCI conf1l
0doo-ffff PCI Bus 0000:00
/proc/ioports 1/O 0000-0cf7 include/linux/ioport.h

#define request_region(start,n, name)

® start -;
e n -;
® name -

__request_region(&ioport_resource,

_ virt_to_fix

((X)&PAGE_MASK)) >> PAGE_SHIFT)

X & PAGE_MASK 12

12 DT

request_region

(start), (n),

UUID

FIXADDR_TOP

request_region

(name),

0)

http://lxr.free-electrons.com/ident?i=fix_to_virt
http://en.wikipedia.org/wiki/Trusted_Execution_Technology
http://en.wikipedia.org/wiki/Xen
https://github.com/torvalds/linux/blob/master/include/linux/ioport.h

request_region I/O request_region check_region release_region request_region

resource resource

struct {
resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags;

struct * A P f
3
resource parent slibling child I/O ioport_resource
struct ={
.name = "PCI IO",
.start =0,
.end = IO_SPACE_LIMIT,
.flags = IORESOURCE_IO,
}

EXPORT_SYMBOL (ioport_resource);

iomem iomem_resource

struct = {
.name = "PCI mem",
.start =0,
.end = ,
.flags = IORESOURCE_MEM,

}

request_region I/O drivers/char/rtc.c rtc module_init

module_init(rtc_init);

rtc_init rtc RECHC rtc_init rtc_request_region request_region

r = rtc_request_region(RTC_IO_EXTENT);

rtc_request_region

r = request_region(RTC_PORT(0), size, "rtc");

RTC_TO_EXTENT 0x8 "rtc" RTC_PORT
#define RTC_PORT(x) (OX70 + (X))
request_region(RTC_PORT(0), size, "rtc") 0Xx70 0x8 /proc/ioports

~$ sudo cat /proc/ioports | grep rtc
0070-0077 : rtcoO

/0 1/0 CPU I/O ioremap ioremap I/0

/O API 1/0O API

® request_mem_region

http://lxr.free-electrons.com/ident?i=request_region
https://github.com/torvalds/linux/blob/master/char/rtc.c
http://en.wikipedia.org/wiki/Real-time_clock

® release_mem_region

® check_mem_region

~$ sudo cat /proc/iomem

be826000-be82cfff
be82d000-bf744fff
bf745000-bfffafff
bfff5000-dco41fff
dc042000-dcod2fff
dc0d3000-dc138fff
dc139000-dc27dfff
dc27e000-deffefff
defffooeo-deffffff
dfeeee00-dfffffff
e0000000-feafffff :

e0000000-efffffff

€0000000-efffffff
f7c00000-f7cfffff :
f7c00000-f7cOffff
f7¢10000-f7c101ff

: ACPI Non-volatile Storage

System RAM
reserved
System RAM
reserved
System RAM

: ACPI Non-volatile Storage

reserved

System RAM

RAM buffer

PCI Bus 0000:00

PCI Bus 0000:01
0000:01:00.0

PCI Bus 0000:06
0000:06:00.0
0000:06:00.0

f7c10000-f7c101ff : ahci

f7d00000-f7dfffff

f7d00000- f7d3ffff

PCI Bus 0000:03
0000:03:00.0

f7d00000-f7d3ffff : alx

€820_reserve_resources

arch/x86/kernel/setup.c arch/x86/kernel/e820.c

iomem

static inline const

{

char *e820_type_to_string(int e820_type)

switch (e820_type) {
case E820_RESERVED_KERN:

case E820_RAM:
case E820_ACPI:
case EB20_NVS:

case E820_UNUSABLE:

default: return "reserved";
}
3
/proc/iomem
ioremap ioremap arch/x86/mm/ioremap.c early_ioremap_init
ioremap vmalloc paging_init ioremap vmalloc

return "System RAM";

return "ACPI Tables";
return "ACPI Non-volatile Storage";
return "Unusable memory";

BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));

BUILD_BUG_ON

BUILD_BUG_ON early _ioremap_setup

early _ioremap_setup slot_virt __end_of_permanent_fixed_addresses
FIX_BITMAP_END ioremap 512
#define NR_FIX_BTMAPS 64

#define FIX_BTMAPS_SLOTS 8

#define TOTAL_FIX_BTMAPS

early_ioremap_setup

(NR_FIX_BTMAPS * FIX_BTMAPS_SLOTS)

e820 iomen

ioremap

early ioremap_init

mm/early_ioremap.c

FIX_BITMAP_BEGIN

€820

https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/e820.c
http://en.wikipedia.org/wiki/E820
https://github.com/torvalds/linux/blob/master/arch/x86/mm/ioremap.c
https://github.com/torvalds/linux/blob/master/mm/early_ioremap.c

void __init early_ioremap_setup(void)

{
int i;
for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
if (WARN_ON(prev_map[i]))
break;
for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
3
slot_virt

static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata;
static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata;
static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata;

slot_virt prev_map ioremap ioremap 512 __initdata

early_ioremap_pmd ioremap early_ioremap_pmd

static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
{

pgd_t *base = __va(read_cr3());

pgd_t *pgd = &base[pgd_index(addr)];

pud_t *pud = pud_offset(pgd, addr);

pmd_t *pmd = pmd_offset(pud, addr);

return pmd;

0 bm_pte (ioremap) pmd_populate_kernel

pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
memset (bm_pte, 0, sizeof(bm_pte));
pmd_populate_kernel(&init_mm, pmd, bm_pte);

pmd_populate_kernel

e init. mm - init ()
® pmd - ioremap

® bm_pte - ioremap

static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;

pmd_popularte_kernel arch/x86/include/asm/pgalloc.h (bm_pte)(pmd):

static inline void pmd_populate_kernel(struct mm_struct *mm,
pmd_t *pmd, pte_t *pte)

{
paravirt_alloc_pte(mm, _ pa(pte) >> PAGE_SHIFT);
set_pmd(pmd, __pmd(__pa(pte) | _PAGE_TABLE));
3
set_pmd
#define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)

native_set_pmd

early_ioremap_setup

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgalloc.h

static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
{
*pmdp = pmd;

ioremap early_ioremap_init ioremap

ioremap

e early_ioremap

e early_iounmap

10 / CONFIG_MMU cr3 (pgd) CONFIG_MMU n

early_iounmap y early_ioremap __early_ioremap

® phys_addr - I/O

e size -1/0
® prot -
__early_ioremap ioremap prev_map slot
slot = ;
for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
if (!prev_map[i]) {
slot = i;
break;
}
3

prev_size[slot] = size;
last_addr = phys_addr + size -

’

offset = phys_addr & ~PAGE_MASK;
phys_addr &= PAGE_MASK;
size = PAGE_ALIGN(last_addr + 1) - phys_addr;

PAGE_MASK 12 phys_addr PAGE_MASK
#define PAGE_MASK (~(PAGE_SIZE-1))
4096 1000000000000 PAGE_SIZE - 1 111111111111 ~ 000000000000
111111111121 12 ioremap
nrpages = size >> PAGE_SHIFT;
idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
arch/x86/mm/ioremap.c __early_set_fixmap 4096

while (nrpages > 0) {
__early_set_fixmap(idx, phys_addr, prot);
phys_addr += PAGE_SIZE;
--1idx;
--nrpages;

early_ioremap

~PAGE_MASK

http://en.wikipedia.org/wiki/Memory_management_unit
https://github.com/torvalds/linux/blob/master/arch/x86/mm/ioremap.c

__early set_fixmap (bm_pte)

pte = early_ioremap_pte(addr);

early_ioremap_pte pgprot_val set_pte pte_clear

if (pgprot_val(flags))
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
else

pte_clear(&init_mm, addr, pte);

As you can see above, we passed FIXMAP_PAGE_IO as flagstothe __early ioremap .

FIXMAP_PAGE_IO __early_ioremap FIXMPA_PAGE_IO

(__PAGE_KERNEL_EXEC | _PAGE_NX)

set_pte set_pmd PTE () PTE __flush_tlb_one

_ flush_tlb_one(addr);

arch/x86/include/asm/tlbflush.h cpu_has_invlpg _ flush_tlb_single

static inline void __flush_tlb_one(unsigned long addr)

{
if (cpu_has_invlpg)
_ flush_tlb_single(addr);
else
_ flush_tlb();
}

__flush_tlb_one TLB TLB cr3 __flush_tlb

native_write_cr3(native_read_cr3());

invlpg TLB __flush_tlb_one

#if defined(CONFIG_X86_INVLPG) || defined(CONFIG_X86_64)

define cpu_has_invlpg 1
#else
define cpu_has_invlpg (boot_cpu_data.x86 > 3)
#endif
CPU invlpg __flush_tlb_single __native_flush_tlb_single

static inline void __pative_flush_tlb_single(unsigned long addr)

{

asm volatile("invlpg (%0)" ::"r" (addr) "memory");

__flush_tlb cr3 __early_set_fixmap __early_ioremap I/O

prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]);

cpu_has_invlpg

FIXMPA_PAGE_IO expands to the:

_ flush_tlb

slot prev_map

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/tlbflush.h
http://en.wikipedia.org/wiki/Translation_lookaside_buffer

early iounmap I/O I/O early_ioremap after_paging_init

__late_clear_fixmap __early_set_fixmap 0 __early_set_fixmap I/O NULL

prev_map[slot] = NULL;

fixmap ioremap ioremap ioremap ioremap

twitter issue

PR linux-insides.

® apic

e vsyscall

e Intel Trusted Execution Technology
e Xen

e Real Time Clock

e 820

e Memory management unit

e TLB

e Paging

https://twitter.com/0xAX
https://github.com/hust-open-atom-club/linux-insides-zh/issues/new
https://github.com/hust-open-atom-club/linux-insides-zh
http://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://lwn.net/Articles/446528/
http://en.wikipedia.org/wiki/Trusted_Execution_Technology
http://en.wikipedia.org/wiki/Xen
http://en.wikipedia.org/wiki/Real-time_clock
http://en.wikipedia.org/wiki/E820
http://en.wikipedia.org/wiki/Memory_management_unit
http://en.wikipedia.org/wiki/Translation_lookaside_buffer

Linux

kmemcheck

LinuxLinux

/proc/iomem

$ sudo cat /proc/iomem

00000000-00000fff reserved
00001000-0009d7ff : System RAM
0009d800-0009ffff reserved

000a0000-000bffff
000c0000-000cffff

PCI Bus 0000:00

: video ROM

000d0000-000d3fff
000d4000-000d7fff
000d8000-000dbfff
000dc000-000dffff
000e0000-000Fffff

PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
PCI Bus 0000:00
reserved

iomem

$ sudo cat /proc/ioports

0000-0cf7 : PCI Bus 0000:00
0000-001f : dmal
0020-0021 : picl

0040-0043 timero@
0050-0053 timer1l
0060-0060 : keyboard
0064-0064 : keyboard
0070-0077 : rtco
0080-008f : dma page reg

00a0-00al : pic2
00c0-00df : dma2
00f0-00ff : fpu

00f0-00f0 :

PNPOCO4:00
03c0-03df : vgat
03f8-03ff serial

04d0-04d1 : pnp 00:06
0800-087f : pnp 00:01
0a00-0a0f : pnp 00:04
Qa20-0a2f : pnp 00:04
0a30-0a3f : pnp 00:04

ioports I/0/ io remap io remap

Linux Linux

kmemcheck kmemcheck Linux

io remap

https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Memory_leak
https://www.kernel.org/doc/Documentation/kmemcheck.txt

Linux kmemcheck kmemcheck kmemcheck C

#include <stdlib.h>
#include <stdio.h>

struct {
int a;

}

int main(int argc, char **argv) {

struct *a = malloc(sizeof(struct A));
printf("a->a = %d\n", a->a);
return 0;
}
A a

gcc test.c -o test

a valgrind

~$ valgrind --leak-check=yes ./test

==28469== Memcheck, a memory error detector

==28469== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==28469== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==28469== Command: ./test

==28469==

==28469== Conditional jump or move depends on uninitialised value(s)
==28469== at Ox4E820EA: vfprintf (in /usr/1ib64/libc-2.22.s0)
==28469== by ©0x4E88D48: printf (in /usr/lib64/libc-2.22.s0)
==28469== by 0x4005B9: main (in /home/alex/test)

==28469==

==28469== Use of uninitialised value of size 8

==28469== at Ox4E7EGBB: _itoa_word (in /usr/1ib64/1ibc-2.22.s0)
==28469== by 0x4E8262F: vfprintf (in /usr/1ib64/1ibc-2.22.s0)
==28469== by ©0x4E88D48: printf (in /usr/lib64/libc-2.22.s0)
==28469== by 0x4005B9: main (in /home/alex/test)

kmemcheck valgrind

CONFIG_KMEMCHECK

Kernel hacking
-> Memory Debugging

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Valgrind

E Linux/x 1 Configuration
~ Kernel hacking

r n

Arrow keys navigate the menu. <Enter> selects submenus ---> (Or empty SUbmenus -- Highligh

features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

9
ted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes

Extend memmap on extra space for more information on page
Poison pages after freeing
Debug object operations
Enable SLUB performance statistics
Kernel memory leak detector
Stack utilization instrumentation
Debug VM
Debug VM translations
Debug memory initialisation
Debug access to per_cpu maps
*] Check for stack overflows

kmemcheck: trap use of uninitialized memory --->)

<Exit > <Help> <Save> < Load >

kmemcheck kmemcheck x86_64 x86 arch/x86/Kconfig

config X86

select HAVE_ARCH_KMEMCHECK

kmemcheck

kmemcheck kmemcheck

struct my_struct *my_struct = kmalloc(sizeof(struct my_struct), GFP_KERNEL);

page kmemcheck Linux kmemcheck kmemcheck kmemcheck present

kmemcheck not present

kmemcheck Linux

kmemcheck Linux

kmemcheck LinuxLinux kmemcheck mm/kmemcheck.c x86_64arch/x86/mm/kmemcheck
kmemcheck CONFIG_KMEMCHECK command line kmemcheck

e kmemcheck=0 (disabled)
e kmemcheck=1 (enabled)

e kmemcheck=2 (one-shot mode)

kmemcheck kmemcheck

https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/Kconfig
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/tree/master/arch/x86/mm/kmemcheck

nfig - Linu 2 Kernel Configuration
. Kernel hacking -+ Memory Debugging - kmemcheck: trap use of uninitialized me
kmemc tr unin ory
Arrow keys navigate the menu. <Enters selects submenus ---> (or empty submenus). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

ap use of uninitialized memor

default mode at boot (one-shot)
kmemcheck: error queue size
kmemcheck: shadow copy size (5 => 32 bytes, 6 => 64 bytes)
kmemcheck: allow partially uninitialized memory
kmemcheck: allow bit-field manipulation

< Exit > < Help > < Save > < Load >

Linux part do_initcall_level , do_early_param command line k

param_kmemcheck command line:

static int __init param_kmemcheck(char *str)

{
int val;
int ret;

if (!str)
return -EINVAL;

ret = kstrtoint(str, 0, &val);
if (ret)

return ret;
kmemcheck_enabled = val;
return 0;

early_param("kmemcheck", param_kmemcheck);

param_kmemcheck o (), 1 (or 2 () param_kmemcheck command line kmemcheck

kmemcheck_enabled

initcalls kmemcheck_init :

int __init kmemcheck_init(void)

{

early_initcall(kmemcheck_init);

kmemcheck_init kmemcheck_selftest

if (!kmemcheck_selftest()) {
printk (KERN_INFO "kmemcheck: self-tests failed; disabling\n");
kmemcheck_enabled = 0;
return -EINVAL;

printk (KERN_INFO "kmemcheck: Initialized\n");

kmemcheck_init EINVAL kmemcheck_selftest rep movsb , movzwq)
true false
struct * = kmalloc(sizeof(struct my_struct), GFP_KERNEL);
kmem_getpages mm/slab.c

if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

if (cachep->ctor)
kmemcheck_mark_uninitialized_pages(page, nr_pages);
else
kmemcheck_mark_unallocated_pages(page, nr_pages);

kmemcheck SLAB_NOTRACK non-present SLAB_NOTRACK

mm/kmemcheck.c

void kmemcheck_alloc_shadow(struct page *page, int order, gfp_t flags, int node)

{

struct * ;
shadow = alloc_pages_node(node, flags | __GFP_NOTRACK, order);
for(i = 0; i < pages; ++i)

page[i].shadow = page_address(&shadow[i]);

kmemcheck_hide_pages(page, pages);

shadow bits shadow kmemcheck

arch/x86/mm/kmemcheck/kmemcheck.c non-present

void kmemcheck_hide_pages(struct page *p, unsigned int n)

kmemcheck_selftest

kmemcheck_alloc_shadow

kmemcheck_hide_pages

{
unsigned int i;
for (1 = 0; 1 <n; ++i) {
unsigned long address;
pte_t *pte;
unsigned int level;
address = (unsigned long) page_address(&p[i]);
pte = lookup_address(address, &level);
BUG_ON(!pte);
BUG_ON(level != PG_LEVEL_4K);
set_pte(pte, _ pte(pte_val(*pte) & ~_PAGE_PRESENT));
set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN));
_ flush_tlb_one(address);
}
3
present hidden TLB, kmemcheck present kmalloc

Linux arch/x86/mm/fault.c do_page_fault

https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://en.wikipedia.org/wiki/Opcode
https://github.com/torvalds/linux/blob/master/mm/slab.c
https://en.wikipedia.org/wiki/Paging
https://github.com/torvalds/linux/blob/master/mm/kmemcheck.c
https://github.com/torvalds/linux/tree/master/arch/x86/mm/kmemcheck/kmemcheck.c
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Page_fault
https://github.com/torvalds/linux/blob/master/arch/x86/mm/fault.c

static noinline void
__do_page_fault(struct pt_regs *regs, unsigned long error_code,
unsigned long address)

{
if (kmemcheck_active(regs))
kmemcheck_hide(regs);
3
kmemcheck_active kmemcheck_context per-cpu balance 0

bool kmemcheck_active(struct pt_regs *regs)

{
struct kmemcheck_context *data = this_cpu_ptr(&kmemcheck_context);
return data->balance > 0;
3
kmemcheck_context kmemcheck balance kmemcheck balance
data->balance 0 kmemcheck_hide kmemecheck present kmemcheck_hide
kmemcheck data->balance 0 kmemcheck_active false kmemcheck_hide

if (kmemcheck_fault(regs, address, error_code))
return;

kmemcheck_fault

if (regs->flags & X86_VM_MASK)

return 8
if (regs->cs != _ KERNEL_CS)
return 8
kmemcheck kmemcheck_fault false false:

pte = kmemcheck_pte_lookup(address);

if (!pte)
return 8
kmemcheck_fault kmemcheck_access present kmemcheck_access
static struct [1;

kmemcheck tasklet :

static DECLARE_TASKLET(kmemcheck_tasklet, &do_wakeup, 0);

tasklet do_wakeup arch/x86/mm/kmemcheck/error.c

do_wakeup kmemcheck_error_recall kmemcheck

kmemcheck_show(regs);

kmemcheck
present

do_page_fault

https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/arch/x86/mm/kmemcheck/error.c

kmemcheck_fault kmemcheck_show present

if (unlikely(data->balance != 0)) {
kmemcheck_show_all();
kmemcheck_error_save_bug(regs);
data->balance = 0;
return;

kmemcheck_show_all kmemcheck_show_addr

static unsigned int kmemcheck_show_all(void)

{
struct * = this_cpu_ptr(&kmemcheck_context);
unsigned int i;
unsigned int n;
n=0;
for (1 = 0; i < data->n_addrs; ++i)
n += kmemcheck_show_addr(data->addr[i]);
return n;
}

kmemcheck_show_addr

int kmemcheck_show_addr(unsigned long address)

{
pte_t *pte;
pte = kmemcheck_pte_lookup(address);
if (!pte)
return 0;
set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT));
__flush_tlb_one(address);
return 1;
}

kmemcheck_show TF

if (!(regs->flags & X86_EFLAGS_TF))
data->flags = regs->flags;
TF debug kmemcheck /

kmemcheck

Linux 0xAX issue - kmemleak

PR linux-insides.

Links

e memory management
e debugging
e memory leaks

e kmemcheck documentation

https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/Memory_management
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Memory_leak
https://www.kernel.org/doc/Documentation/kmemcheck.txt

kmemcheck

e valgrind

e page fault

e initcalls

e opcode

e translation lookaside buffer
e per-cpu variables

o flags register

o tasklet

e Paging

e Previous part

388

https://en.wikipedia.org/wiki/Valgrind
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/FLAGS_register

Linux

linux - Linux cgroups

cgroups Linux cgroup Cgroups cgroups cgroups cgroup
cgroup cgroup cgroup "
cgroup cgroup pid Linux 12 cgroup
® cpuset - cgroup
® cpu - cgroup CPU
® cpuacct - cgroup
e io -;
® memory - cgroup ;
® devices - cgroup
o freezer - cgroup /
® net_cls - cgroup
® net_prio - cgroup
e perf_event - cgroup);
® hugetlb - cgroup ;
® pid - cgroup
cgroup cpuset CONFIG_CPUSETS io CONFIG_BLK_CGROUP General setup - Control Group
support

proc cgroup

$ cat /proc/cgroups

#subsys_name hierarchy num_cgroups enabled
cpuset 8 1 1

cpu 7 66 1

cpuacct 7 66 1

blkio 11 66 1

memory 9 94 1

devices 6 66 1

freezer 2 1 1

390

https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Device_file
https://en.wikipedia.org/wiki/Perf_\(Linux\
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://en.wikipedia.org/wiki/Procfs

net_cls 4

perf_event
net_prio 4
hugetlb 10
pids 5]
sysfs :

$ 1s -1 /sys/fs/cgroup/

total 0

dr-xr-xr-x
1rwXrwxrwx
1rwXrwxrwx
dr-xr-xr-x
dr-xr-xr-x
dr-xr-xr-x
dr-xr-xr-x
dr-xr-xr-x
dr-xr-xr-x
1rwXrwxrwx
dr-xr-xr-x
1rwXrwxrwx
dr-xr-xr-x
dr-xr-xr-x

a a N BB NP NN OaNDaR RO

dr-xr-xr-x

3

69

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

cgroup Linux

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

/sys/fs/cgroup pid

libcgroup //

bash

#!1/bin/bash

while
do

11
11

© © © © © ©

16

16

Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
Dec 2 22:
cgroup
tasks

cgroups (Fedora

echo "print line" > /dev/tty

sleep 5
done

37
37
37
37
37
37
37
37
37
37
37
37
37
37
37

$ sudo chmod +x cgroup_test_script.sh

~$./cgroup_test_script.sh

print line
print line
print line

cgroupfs

/sys/fs/cgroup

$ cd /sys/fs/cgroup

devices

cd devices

cgroup_test_group

cgroup

blkio

cpu -> cpu,cpuacct

cpuacct -> cpu,cpuacct

cpu, cpuacct

cpuset

devices

freezer

hugetlb

memory

net_cls -> net_cls,net_prio
net_cls,net_prio

net_prio -> net_cls,net_prio
perf_event

pids

systemd

libcgroup-tools)

https://en.wikipedia.org/wiki/Sysfs
https://www.gnu.org/software/bash/

mkdir cgroup_test_group

cgroup_test_group

/sys/fs/cgroup/devices/cgroup_test_group$ 1ls -1
total 0

-rw-r--r-- 1 root root @ Dec 3 22:55 cgroup.clone_children

-rw-r--r-- 1 root root @ Dec 3 22:55 cgroup.procs

-eW------- 1 root root © Dec 3 22:55 devices.allow

-eW------- 1 root root ©® Dec 3 22:55 devices.deny

-r--r--r-- 1 root root @ Dec 3 22:55 devices.list

-rw-r--r-- 1 root root @ Dec 3 22:55 notify_on_release

-rw-r--r-- 1 root root @ Dec 3 22:55 tasks

tasks devices.deny tasks cgroup_test_group cgroup pid devices.deny cgroup (
/dev/tty) devices.deny

echo "c 5:0 w" > devices.deny

B /dev/tty “” 1s

~$ 1s -1 /dev/tty
crw-rw-rw- 1 root tty 5, © Dec 3 22:48 /dev/tty

@ 550 1s w cgroups cgroup_test_script.sh

~$./cgroup_test_script.sh
print line
print line
print line

pid cgroup devices/tasks

echo $(pidof -x cgroup_test_script.sh) > /sys/fs/cgroup/devices/cgroup_test_group/tasks

~$./cgroup_test_script.sh

print line

print line

print line

print line

print line

print line

./cgroup_test_script.sh: line 5: /dev/tty: Operation not permitted

docker)
~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
fa2d2085cdic mariadb:10 "docker-entrypoint..." 12 days ago Up 4 minutes 0.0.0.0:3306

->3306/tcp mysql-work

~$ cat /sys/fs/cgroup/devices/docker/fa2d2085cd1c8d797002c77387d2061f56fefb470892f140d0dc511bd4d9bb61/tasks | head -3
5501
5584
5585

https://en.wikipedia.org/wiki/Docker_\(software\

docker docker cgroup

$ docker exec -it mysqgl-work /bin/bash
$ top
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 mysql 20 0 963996 101268 15744 S 0.0 0.6 0:00.46 mysqgld

71 root 20 0 20248 3028 2732
S 0.0 0.0 0:00.01 bash

20 0 21948 2424 2056 R 0.0 0.0 0:00.00 top

77 roo

cgroup

$ systemd-cgls

Control group /:

-.slice

j—docker

| Lfa2d2085cd1c8d797002c77387d2061f56fefb470892f140d0dc511bd4d9bb61
| H mysqld

| L /bin/bash

cgroup Linux

cgroup
Linux cgroup Linux cgroup Linux cgroups ‘“7¢”
Ccgroups Linux init/main.c

cgroup_init_early();

kernel/cgroup.c

int __init cgroup_init_early(void)
{

static struct

struct *

cgroup_sbh_opts

struct {
ul6é subsys_mask;
unsigned int flags;
char *release_agent;
bool cpuset_clone_children;
char *name;
bool none;

cgroupfs name= cgroup (my_cgrp)

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/cgroup.c

$ mount -t cgroup -oname=my_cgrp,none /mnt/cgroups

- ss cgroup_subsys include/linux/cgroup-defs.h cgroup

struct {
int (*css_online)(struct cgroup_subsys_state *css);
void (*css_offline)(struct cgroup_subsys_state *css);

bool early init:1;
int id;

const char *name;
struct *

396

css_online css_offline cgroup cgroup early_init id name Cgroup root

cgroup

¢

cgroup_subsys cgroups cgroup_init_early cgroup_subsys->early_init

1

init_cgroup_root(&cgrp_dfl_root, &opts);
cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;

init_cgroup_root cgroup CSS_NO_REF CSS cgrp_dfl_root
struct 8
cgrp cgroup cgroup cgroup include/linux/cgroup-defs.h Linux task_struct
task_struct cgroup task_struct css_set css_set
struct {
struct * [1;
}
cgroup_subsys_state cgroup
struct {
struct * ;
3

cgroups

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cgroup-defs.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cgroup-defs.h

| task_struct | | css_set | | | cgroup_subsys_state | | cgroup
R + | | | B R T + B
| | | | | | | | flags
| | | | | e e T + | cgroup.procs
| | | I | cgroup [CEREETEES >| id
| | | I LELPCPCEPPRPLRPLRPEES + |
[+ [+----4 Fomm e
| cgroups | ------ > | cgroup_subsys_state | array of cgroup_subsys_state
[+ Fommm e e o Fommm e e o m Sehem e e e e + Fomm e
| | | | | cgroup_subsys_state | | cgroup
R LT + R e + oo + oo
| | | flags
R e + | cgroup.procs
| cgroup |--------- >| id
o ee s + |
| cgroup_subsys | B e T
oo +
|
|
!
oo +
| cgroup_subsys |
B L C T TP +
| id |
| name |
| css_online |
| css_ofline |
| attach |
| |
oo +
init_cgroup_root cgrp_dfl_root css_set init_task
RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
cgroup_init_early early cgroups cgroup_init_subsys
for_each_subsys(ss, i) {
ss->id = i;
ss->name = cgroup_subsys_name[i];
if (ss->early_init)
cgroup_init_subsys(ss, true);
}
for_each_subsys kernel/cgroup.c cgroup_subsys for
#define SUBSYS(_x) [_x ## _cgrp_id] = & x ## _cgrp_subsys,
static struct * [1=¢
#include <linux/cgroup_subsys.h>
}
#undef SUBSYS
suBsys () cgroup cgroup_subsys linux/cgroup_subsys.h SUBSYS

#if IS_ENABLED(CONFIG_CPUSETS)
SUBSYS(cpuset)
#endif

#if IS_ENABLED(CONFIG_CGROUP_SCHED)
SUBSYS(cpu)
#endif

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/cgroup.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/cgroup_subsys.h

SUBSYS #undef &_X ## _cgrp_subsys © ## cpuset cpu SUBSYS

cpuset_cgrp_subsys cp_cgrp_subsys kernel/cpuset.c
struct ={
.early_init = true,
}
cgroup_init_early cgroup_init_subsys
® cpuset ;
® cpu;

® cpuacct .

cgroup_init_subsys css_alloc

Linux cgroup cgroup cgroup
twitter

PR linux-insides.

e control groups
e PID

e cpuset

e block devices
e huge pages

e sysfs

e proc

e cgroups kernel documentation
® cgroups v2

e bash

e docker)

e perf events)

e Previous chapter

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/cpuset.c
https://twitter.com/0xAX
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Process_identifier
http://man7.org/linux/man-pages/man7/cpuset.7.html
https://en.wikipedia.org/wiki/Device_file
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/Procfs
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.gnu.org/software/bash/
https://en.wikipedia.org/wiki/Docker_\(software\
https://en.wikipedia.org/wiki/Perf_\(Linux\

Linux

e CPU
o CPU

initcall

e Linux

Per-cpu
Per-cpu CPU
per-cpu API - DEFINE_PER_CPU

#define DEFINE_PER_CPU(type, name) \
DEFINE_PER_CPU_SECTION(type, name, "")

per-cpu include/linux/percpu-defs.h

DECLARE_PER_CPU 2 type name per-cpu

DEFINE_PER_CPU(int, per_cpu_n)

DEFINE_PER_CPU DEFINE_PER_CPU_SECTION DEFINE_PER_CPU_SECTION

#define DEFINE_PER_CPU_SECTION(type, name, sec) \
_ PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES \
__typeof__(type) name

#define __ PCPU_ATTRS(sec) \
__percpu __attribute__ ((section(PER_CPU_BASE_SECTION sec))) \
PER_CPU_ATTRIBUTES

section

#define PER_CPU_BASE_SECTION ".data..percpu"

per-cpu

__attribute__ ((section(".data..percpu"))) int per_cpu_n

.data..percpu per_cpu_n vmlinux

.data..percpu 00013a58 0000000000000000 0000000001a5c000 00e000O0 2**12
CONTENTS, ALLOC, LOAD, DATA

DEFINE_PER_CPU .data..percpu per-cpu setup_per_cpu_areas .data
CPU

per-cpu init/main.c ~ setup_per_cpu_areas arch/x86/kernel/setup_percpu.c

pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);

setup_per_cpu_areas CONFIG_NR_cPUs CPUs CPU nr_cpumask_bits cpumask
NUMA

dmesg

$ dmesg | grep percpu
[0.000000] setup_percpu: NR_CPUS:8 nr_cpumask_bits:8 nr_cpu_ids:8 nr_node_ids:1

..percpu

NR_CPUS

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h
https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c

per-cpu per-cpu per-cpu Linux percpu_alloc

percpu_alloc= per-cpu
"embed” "page"

mm/percpu.c

mm/percpu.c

early param("percpu_alloc", percpu_alloc_setup);

percpu_alloc_setup percpu_alloc pcpu_chosen_fc auto
enum _ = PCPU_FC_AUTO;
percpu_alloc embed per-cpu memblock bootmem page PAGE_SIZE

setup_per_cpu_areas page

if (pcpu_chosen_fc != PCPU_FC_PAGE) {

PCPU_FC_PAGE embed pcpu_embed_first_chunk

rc = pcpu_embed_first_chunk(PERCPU_FIRST_CHUNK_RESERVE,
dyn_size, atom_size,
pcpu_cpu_distance,
pcpu_fc_alloc, pcpu_fc_free);

pcpu_embed_first_chunk per-cpu bootmen pcpu_embed_first_chunk

® PERCPU_FIRST_CHUNK_RESERVE - per-cpu
® dyn_size -

® atom_size -

® pcpu_cpu_distance - Cpus

® pcpu_fc_alloc - percpu

® pcpu_fc_free - percpu

pcpu_embed_first_chunk

const size t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE - PERCPU_FIRST_CHUNK_RESERVE;
size_t atom_size;
#ifdef CONFIG_X86_64

atom_size = PMD_SIZE;

#else
atom_size = PAGE_SIZE;
#endif
PCPU_FC_PAGE pcpu_page_first_chunk pcpu_embed_first_chunk per-cpu setup_percpu_segment per-
cpu x86 per-cpu x86_cpu_to_apicid , irq_stack_ptr N .data..percpu N CPU
bootstrap DEFINE_PER_CPU
per-cpu API

e get_cpu_var(var)

https://github.com/torvalds/linux/blob/master/mm/percpu.c

e put_cpu_var(var)

get_cpu_var
#define get_cpu_var(var)
(*({

preempt_disable();

\
\
\
this_cpu_ptr(&var); \

1)

Linux per-cpu per-cpu CPU preempt_disable

#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)

#define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0)

per_cpu_ptr CPU 2 per-cpu per-cpu put_cpu_var

get_cpu_var(var);

// 'var

put_cpu_var(var);

per_cpu_ptr

#define per_cpu_ptr(ptr, cpu) \
({ \
_ verify_pcpu_ptr(ptr); \
SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))); \
1
Cpu per-cpu __verify_pcpu_ptr

#define _ verify_pcpu_ptr(ptr)
do {

const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;
(void)__vpp_verify;
} while (0)

ptr const void __percpu *
SHIFT_PERCPU_PTR per_cpu_offset CPU

#define per_cpu_offset(x) (__per_cpu_offset[x])

X __per_cpu_offset

extern unsigned long __per_cpu_offset[NR_CPUS];

NR_cPus CPU __per_cpu_offset CPU per-cpu X
SHIFT_PERCPU_PTR

#define SHIFT_PERCPU_PTR(__p, _ offset)

this_cpu_ptr

preempt_enable per-cpu

__per_cpu_offset[Y]

\

RELOC_HIDE((typeof(*(__p)) __kernel _ force *)(_p), (__offset))

RELOC_HIDE (typeof(ptr)) (__ptr + (off))

API per-cpu include/linux/percpu-defs.h
per-cpu
. .data..percpu per-cpu
° DEFINE_PER_cPU CPUO
® _ per_cpu_offset (BOOT_PERCPU_OFFSET) .data. .percpu

. per_cpu_ptr per-cpu CPU __per_cpu_offset CPU

https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h

CPU masks

Cpumasks LinuxCPU Cpumasks API

e include/linux/cpumask.h
e lib/cpumask.c

e kernel/cpu.c

include/linux/cpumask.h Cpumasks CPU CPU

cpumask cpu

set_cpu_online(cpu, true);
set_cpu_active(cpu, true);
set_cpu_present(cpu, true);
set_cpu_possible(cpu, true);

Kernel entry point

boot_cpu_init

set_cpu_possible cpulD cpu_present CPUs cpu_online cpu_present CPUs
CONFIG_HOTPLUG_CPU possible == present active == online true cpumask_set_cpu
cpumask_clear_cpu

cpumask cpumask_t

typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;

cpumask bits DECLARE_BITMAP

e bitmap name;

e number of bits.

unsigned long

#define DECLARE_BITMAP(name,bits) \

unsigned long name[BITS_TO_LONGS(bits)]

BITS_TO_LONGS

#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))

x86_64 unsigned long 8

(((8) + (8) - 1) 7/ (8)) =1

BITS_PER_BYTE * sizeof(long))

NR_cPus CPU include/linux/threads.h CONFIG_NR_CPUS

#ifndef CONFIG_NR_CPUS
#define CONFIG_NR_CPUS 1

#endif
#define NR_CPUS CONFIG_NR_CPUS
cpunlask DECLARE_BITMAP to_cpumask

struct cpumask *

https://github.com/torvalds/linux/blob/master/include/linux/cpumask.h
https://github.com/torvalds/linux/blob/master/lib/cpumask.c
https://github.com/torvalds/linux/blob/master/kernel/cpu.c
https://github.com/torvalds/linux/blob/master/include/linux/cpumask.h
https://github.com/torvalds/linux/blob/master/include/linux/threads.h

#define to_cpumask(bitmap) \
((struct cpumask *)(1 ? (bitmap) \
(void *)sizeof(__check_is_bitmap(bitmap))))

true _ check_is_bitmap

static inline int __check_is_bitmap(const unsigned long *bitmap)

{
return 1;
3
1 bitmap bitmap unsigned long * cpu_possible_bits to_cpumask unsigned
long struct cpumask *

cpumask API

cpumaskLinux API cpumask set_cpu_online

e CPU;
e CPU;

void set_cpu_online(unsigned int cpu, bool online)

{
if (online) {
cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
} else {
cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
}
}
state cpumask_set_cpu cpumask_clear_cpu cpumask_set_cpu struct cpumask * cpu_online_bits

static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __ read_mostly;

cpumask_set_cpu set_bit

static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)

{
set_bit(cpumask_check(cpu), cpumask_bits(dstp));

3
set_bit cpu_online_bits set_bit

e cpumask_check;

e cpumask_bits.

cpumask_check cpumask_bits struct cpumask * bits

#define cpumask_bits(maskp) ((maskp)->bits)

set_bit

static __always_inline void
set_bit(long nr, volatile unsigned long *addr)
{

if (IS_IMMEDIATE(nr)) {

asm volatile(LOCK_PREFIX "orb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((u8)CONST_MASK(nr))
"memory");
} else {
asm volatile(LOCK_PREFIX "bts %1,%0"
: BITOP_ADDR(addr) : "Ir" (nr) : "memory")

}
}
nr 1s_IMMEDIATE GCC __builtin_constant_p
#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
__builtin_constant_p cpu else

asm volatile(LOCK_PREFIX "bts %1,%0" : BITOP_ADDR(addr) : "Ir" (nr) : "memory");

LOCK_PREFIX Xx86 lock CPU CPU - DMA cell

BITOP_ADDR (*(volatile long *) +m + m BITOP_ADDR

#define BITOP_ADDR(x) "+m" (*(volatile long *) (X))

memory
Ir -
bts cF cpu 0 set_bit cpu_online_bits cpumask O cpu

set_cpu_* API cpumask cpumasks API

cpumask API

cpumaks CPUs

#define num_online_cpus() cpumask_weight(cpu_online_mask)

online CPUs cpu_online_mask cpumask_weight cpumask_weight bitmap_weight

e cpumask bitmap;

® nr_cpumask_bits - NR_CPUS

static inline unsigned int cpumask_weight(const struct cpumask *srcp)

{

return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits);

num_online_cpus cpumask CPU

e num_possible_cpus;
e num_active_cpus;
e cpu_online;

e cpu_possible.

Linux cpumask API

e for_each_cpu -mask cpu;

e for_each_cpu_not - Cpu;

e cpumask_clear_cpu - cpumask cpu;
e cpumask_test_cpu - mask cpu;

e cpumask_setall - mask cpu,

® cpumask_size - 'struct cpumask’;

e cpumask documentation

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

initcall

Linux initcall Linux

early _param('"debug", debug_kernel);

arch_initcall(init_pit_clocksource);

Linux Linux initcall

static int __init nmi_warning_debugfs(void)

{
debugfs_create_u64("nmi_longest_ns", ,
arch_debugfs_dir, &nmi_longest_ns);

return 0;

arch/x86/kernel/nmi.c arch_debugfs_dir

Linux

arch_initcall(arch_kdebugfs_init);

Linux fs initcalls initcalls arch_kdebugfs_dir
® early;
® core;
® postcore ;
® arch;
® susys ;
e fs;
® device ;
e late .
initcall_level_names init/main.c

static char *initcall_level _names[] __initdata = {
"early",
"core",
"postcore",
"arch",
"subsys",
"fs",
"device",
"late",

initcall early initcalls core initcalls

initcall Linux

nmi_longest_ns debugfs

arch_debugfs_dir debugfs

arch/x86/kernel/kdebugfs.c arch_kdebugfs_init

nmi_longest_ns Linux initcalls

initcall Linux

https://en.wikipedia.org/wiki/Callback_%28computer_programming%29
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/nmi.c
https://en.wikipedia.org/wiki/Debugfs
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/kdebugfs.c
https://github.com/torvalds/linux/blob/master/init/main.c

initcall

Linux

include/linux/init.h

#define early _initcall(fn)
#define core_initcall(fn)
#define postcore_initcall(fn)
#define arch_initcall(fn)
#define subsys_initcall(fn)
#define fs_initcall(fn)
#define device_initcall(fn)
#define late_initcall(fn)

e fn

e id

define_initcall

- initcalls

- initcall

__define_initcall

initcall

__define_initcall(fn, early)
__define_initcall(fn, 1)
__define_initcall(fn, 2)
__define_initcall(fn, 3)
__define_initcall(fn, 4)
__define_initcall(fn, 5)
__define_initcall(fn, 6)
__define_initcall(fn, 7)

__define_initcall

initcalls

#define _ define_initcall(fn, id) \

static initcall_t _ initcall ##fn##id __used \
__attribute_ ((__section__ (".initcall" #id ".init"))) = fn; \
LTO_REFERENCE_INITCALL(__initcall ##fn##id)

__define_initcall

initcall_t initcall

typedef int (*initcall t)(void);

_-define_initcall i

__initcall_function_name_id

#define INIT_CALLS
VMLINUX_SYMBOL(__initcall start) = .; \

*(.initcallearly.init)

INIT_CALLS_LEVEL(O)
INIT_CALLS_LEVEL(1)
INIT_CALLS_LEVEL(2)
INIT_CALLS_LEVEL(3)
4

INIT_CALLS_LEVEL(5)

__define_initcall .initcall id .init ELF gce

__used include/asm-generic/vmlinux.lds.h initcalls .data

\

s I s s s

INIT_CALLS_LEVEL(rootfs) \

INIT_CALLS_LEVEL(6)

(
(
(
(
INIT_CALLS_LEVEL(4)
(
(
(
INIT_CALLS_LEVEL(7)

-~

VMLINUX_SYMBOL(__initcall_end) = .;

#define INIT_DATA_SECTION(initsetup_align) \

- __used

#define _ used

.init.data :

INIT_CALLS

__define_initcall

__attribute__

AT(ADDR(.init.data) - LOAD_OFFSET) { \

include/linux/compiler-gcc.h gcc

((_used__))

LTO_REFERENCE_INITCALL(__initcall_##fn##id)

CONFIG_LTO

407

https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://en.wikipedia.org/wiki/Integer
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
http://www.skyfree.org/linux/references/ELF_Format.pdf
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://github.com/torvalds/linux/blob/master/include/asm-generic/vmlinux.lds.h
https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://gcc.gnu.org/wiki/LinkTimeOptimization

#ifdef CONFIG_LTO
#define LTO_REFERENCE_INITCALL(x) \
static __used __exit void *reference_##x(void) \

{ \
return &x; \

}
#else
#define LTO_REFERENCE_INITCALL(X)
#endif

__define_initcall *_initcall Linux initcalls .data Linux

Linux initcalls Linux init/main.c do_basic_setup

static void __init do_basic_setup(void)

{
do_initcalls();
}
Linux CPU do_initcalls initcall do_initcall level

static void __init do_initcalls(void)

{
int level;
for (level = 0; level < ARRAY_SIZE(initcall levels) - 1; level++)
do_initcall level(level);
}
initcall_levels __define_initcall

static initcall t *initcall_levels[] __initdata = {

__initcalle_start,
__initcalll_start,
__initcall2_start,
__initcall3_start,
__initcall4_start,
__initcall5_start,
__initcallé_start,
__initcall7_start,
__initcall_end,

3

Linux arch/x86/kernel/vmlinux.lds

.init.data : AT(ADDR(.init.data) - Oxffffffff8o000000) {

__initcall_start = .;
*(.initcallearly.init)
__initcalle_start = .;
*(.initcalle.init)
*(.initcall@s.init)
__initcallil_start = .;

initcall

https://github.com/torvalds/linux/blob/master/init/main.c
https://github.com/torvalds/linux/blob/master/init/main.c

do_initcall_level - initcall initcall_command_line kernel/params.c

do_on_initcall

for (fn = initcall levels[level]; fn < initcall levels[level+1]; fn++)
do_one_initcall(*fn);

do_on_initcall initcall

int __init_or_module do_one_initcall(initcall_t fn)

{
int count = preempt_count();
int ret;
char msgbuf[64];
if (initcall_blacklisted(fn))
return -EPERM;
if (initcall_debug)
ret = do_one_initcall_debug(fn);
else
ret = fn();
msgbuf[0] = 0;
if (preempt_count() != count) {
sprintf(msgbuf, "preemption imbalance ");
preempt_count_set(count);
}
if (irgs_disabled()) {
strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf));
local_irq_enable();
}
WARN(msgbuf[0], "initcall %pF returned with %s\n", fn, msgbuf);
return ret;
}
do_on_initcall preemption initcall_backlist initcalls

initcall

list_for_each_entry(entry, &blacklisted_initcalls, next) {
if (!strcmp(fn_name, entry->buf)) {
pr_debug("initcall %s blacklisted\n", fn_name);
kfree(fn_name);

return 8
}
3
initcalls blacklisted_initcalls Linux Linux
initcalls initcall

if (initcall_debug)

ret = do_one_initcall_debug(fn);
else

ret = fn();

initcall_debug do_one_initcall_debug initcall fn() initcall_debug

bool initcall_debug;

parse_args

blacklisted_initcalls

https://en.wikipedia.org/wiki/Linker_%28computing%29
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://github.com/torvalds/linux/blob/master/kernel/params.c
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://github.com/torvalds/linux/blob/master/init/main.c

initcall debug Linux

initcall_debug [KNL] Trace initcalls as they are executed. Useful
for working out where the kernel is dying during
startup.
do_one_initcall_debug do_one_initcall do_one_initcall_debug initcall initcall

pid initcall

static int __init_or_module do_one_initcall debug(initcall t fn)

{
ktime_t calltime, delta, rettime;
unsigned long long duration;
int ret;
printk (KERN_DEBUG "calling %pF @ %i\n", fn, task_pid_nr(current));
calltime = ktime_get();
ret = fn();
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long) ktime_to_ns(delta) >> ;
printk (KERN_DEBUG "initcall %pF returned %d after %lld usecs\n",
fn, ret, duration);
return ret;
}
initcall do_one_initcall do_one_initcall_debug do_one_initcall initcall __preempt_count_add
__preempt_count_sub preemption imbalance
if (preempt_count() != count) {
sprintf(msgbuf, "preemption imbalance ");
preempt_count_set(count);
}

IRQs disabled interrupts IRQs IRQs initcall

if (irgs_disabled()) {
strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf));
local_irq_enable();

3
Linux Linux initcall initcall
initcalls rootfs initcalls include/linux/init.h rootfs_initcall
#define rootfs_initcall(fn) __define_initcall(fn, rootfs)
rootfs init/initramfs.c populate_rootfs initramfs

rootfs_initcall(populate_rootfs);

[0.199960] Unpacking initramfs...

rootfs_initcall console_initcall security_initcall initcall *_initcall_sync

*_initcall _sync

https://en.wikipedia.org/wiki/Dmesg
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/init.h
https://en.wikipedia.org/wiki/Initramfs
https://github.com/torvalds/linux/blob/master/init/initramfs.c
https://en.wikipedia.org/wiki/Initramfs

initcall

#define
#define
#define
#define
#define
#define
#define

core_initcall _sync(fn)
postcore_initcall_sync(fn)
arch_initcall _sync(fn)
subsys_initcall_sync(fn)
fs_initcall _sync(fn)
device_initcall_sync(fn)
late_initcall sync(fn)

Linux Linux

twitter

PR

0xAX email issue

linux-insides.

e callback
e debugfs

e integer type

e symbols concatenation

o GCC

e Link time optimization

e Introduction to linkers

e Linux kernel command line

e Process identifier

e [RQs

e rootfs

® previous part

__define_initcall(fn, 1s)
__define_initcall(fn, 2s)
__define_initcall(fn, 3s)
__define_initcall(fn, 4s)
__define_initcall(fn, 5s)
__define_initcall(fn, 6s)
__define_initcall(fn, 7s)

411

https://twitter.com/0xAX
https://github.com/0xAX/linux-insides/issues/new
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Callback_%28computer_programming%29
https://en.wikipedia.org/wiki/Debugfs
https://en.wikipedia.org/wiki/Integer
https://gcc.gnu.org/onlinedocs/cpp/Concatenation.html
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://en.wikipedia.org/wiki/Process_identifier
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Initramfs

Notification Chains in Linux Kernel

Introduction

The Linux kernel is huge piece of C) code which consists from many different subsystems. Each subsystem has its own purpose which
is independent of other subsystems. But often one subsystem wants to know something from other subsystem(s). There is special
mechanism in the Linux kernel which allows to solve this problem partly. The name of this mechanism is - notification chains and
its main purpose to provide a way for different subsystems to subscribe on asynchronous events from other subsystems. Note that this

mechanism is only for communication inside kernel, but there are other mechanisms for communication between kernel and userspace.

Before we will consider notification chains API and implementation of this AP, let's look at Notification chains mechanism
from theoretical side as we did it in other parts of this book. Everything which is related to notification chains mechanism is

located in the include/linux/notifier.h header file and kernel/notifier.c source code file. So let's open them and start to dive.

Notification Chains related data structures

Let's start to consider notification chains mechanism from related data structures. As I wrote above, main data structures should be
located in the include/linux/notifier.h header file, so the Linux kernel provides generic API which does not depend on certain
architecture. In general, the notification chains mechanism represents a list (that's why it named chains) of callback) functions

which are will be executed when an event will be occurred.

All of these callback functions are represented as notifier_fn_t type in the Linux kernel:

typedef int (*notifier_fn_t)(struct notifier_block *nb, unsigned long action, void *data);

So we may see that it takes three following arguments:

e nb -is linked list of function pointers (will see it now);
e action - is type of an event. A notification chain may support multiple events, so we need this parameter to distinguish an event
from other events;

e data - is storage for private information. Actually it allows to provide additional data information about an event.
Additionally we may see that notifier_fn_t returns an integer value. This integer value maybe one of:

® NOTIFY_DONE - subscriber does not interested in notification;
e NOTIFY_OK - notification was processed correctly;
e NOTIFY_BAD - something went wrong;

e NOTIFY_STOP - notification is done, but no further callbacks should be called for this event.

All of these results defined as macros in the include/linux/notifier.h header file:

#define NOTIFY_DONE 0x0000

#define NOTIFY_OK 0x0001

#define NOTIFY_BAD (NOTIFY_STOP_MASK|0Ox0002)
#define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK)

Where NOTIFY_sToP_mAsk represented by the:

#define NOTIFY_STOP_MASK Ox8000

macro and means that callbacks will not be called during next notifications.

Each part of the Linux kernel which wants to be notified on a certain event will should provide own notifier_fn_t callback function.

Main role of the notification chains mechanism is to call certain callbacks when an asynchronous event occurred.

https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://github.com/torvalds/linux/blob/master/kernel/notifier.c
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://en.wikipedia.org/wiki/Callback_(computer_programming
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h

The main building block of the notification chains mechanism is the notifier_block structure:

struct {
notifier_fn_t notifier_call;
struct — * ;
int priority;

}

which is defined in the include/linux/notifier.h file. This struct contains pointer to callback function - notifier_call , link to the next

notification callback and priority of a callback function as functions with higher priority are executed first.
The Linux kernel provides notification chains of four following types:

e Blocking notifier chains;
e SRCU notifier chains;
e Atomic notifier chains;

e Raw notifier chains.
Let's consider all of these types of notification chains by order:

In the first case for the blocking notifier chains , callbacks will be called/executed in process context. This means that the calls in a

notification chain may be blocked.

The second SRcu notifier chains represent alternative form of blocking notifier chains . In the first case, blocking notifier
chains uses rw_semaphore synchronization primitive to protect chain links. srcu notifier chains run in process context too, but uses

special form of RCU mechanism which is permissible to block in an read-side critical section.

In the third case for the atomic notifier chains runs in interrupt or atomic context and protected by spinlock synchronization
primitive. The last raw notifier chains provides special type of notifier chains without any locking restrictions on callbacks. This
means that protection rests on the shoulders of caller side. It is very useful when we want to protect our chain with very specific locking

mechanism.

If we will look at the implementation of the notifier_block structure, we will see that it contains pointer to the next element from a
notification chain list, but we have no head. Actually a head of such list is in separate structure depends on type of a notification chain.

For example for the blocking notifier chains :

struct {

struct g

struct . * ;
}

or for atomic notification chains :

struct {
spinlock_t lock;
struct * ;

3

Now as we know a little about notification chains mechanism let's consider implementation of its API.

Notification Chains

Usually there are two sides in a publish/subscriber mechanisms. One side who wants to get notifications and other side(s) who generates
these notifications. We will consider notification chains mechanism from both sides. We will consider blocking notification chains

in this part, because of other types of notification chains are similar to it and differs mostly in protection mechanisms.

Before a notification producer is able to produce notification, first of all it should initialize head of a notification chain. For example
let's consider notification chains related to kernel loadable modules. If we will look in the kernel/module.c source code file, we will see

following definition:

https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://github.com/torvalds/linux/blob/master/kernel/module.c

static BLOCKING_NOTIFIER_HEAD(module_notify_list);

which defines head for loadable modules blocking notifier chain. The BLOCKING_NOTIFIER_HEAD macro is defined in the

include/linux/notifier.h header file and expands to the following code:

#define BLOCKING_INIT_NOTIFIER_HEAD(name) do { \

init_rwsem(&(name)->rwsem); \
(name)->head = NULL; \
} while (0)

So we may see that it takes name of a name of a head of a blocking notifier chain and initializes read/write semaphore and set head to
NULL . Besides the BLOCKING_INIT_NOTIFIER_HEAD macro, the Linux kernel additionally provides ATOMIC_INIT_NOTIFIER_HEAD ,

RAW_INIT_NOTIFIER_HEAD macros and srcu_init_notifier function for initialization atomic and other types of notification chains.

After initialization of a head of a notification chain, a subsystem which wants to receive notification from the given notification chain it
should register with certain function which is depends on type of notification. If you will look in the include/linux/notifier.h header file,

you will see following four function for this:

extern int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
struct notifier_block *nb);

extern int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
struct notifier_block *nb);

extern int raw_notifier_chain_register(struct raw_notifier_head *nh,
struct notifier_block *nb);

extern int srcu_notifier_chain_register(struct srcu_notifier_head *nh,

struct notifier_block *nb);

As T already wrote above, we will cover only blocking notification chains in the part, so let's consider implementation of the
blocking_notifier_chain_register function. Implementation of this function is located in the kernel/notifier.c source code file and as

we may see the blocking_notifier_chain_register takes two parameters:

e nh -head of a notification chain;

e nb - notification descriptor.

Now let's look at the implementation of the blocking_notifier_chain_register function:

int raw_notifier_chain_register(struct raw_notifier_head *nh,
struct notifier_block *n)

return notifier_chain_register(&nh->head, n);

As we may see it just returns result of the notifier_chain_register function from the same source code file and as we may

understand this function does all job for us. Definition of the notifier_chain_register function looks:

int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
struct notifier_block *n)

int ret;

if (unlikely(system_state == SYSTEM_BOOTING))
return notifier_chain_register(&nh->head, n);

down_write(&nh->rwsem);

ret = notifier_chain_register(&nh->head, n);
up_write(&nh->rwsem);

return ret;

https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://github.com/torvalds/linux/blob/master/include/linux/notifier.h
https://github.com/torvalds/linux/blob/master/kernel/notifier.c

As we may see implementation of the blocking_notifier_chain_register is pretty simple. First of all there is check which check
current system state and if a system in rebooting state we just call the notifier_chain_register . In other way we do the same call of
the notifier_chain_register but as you may see this call is protected with read/write semaphores. Now let's look at the

implementation of the notifier_chain_register function:

static int notifier_chain_register(struct notifier_block **nl,
struct notifier_block *n)

while ((*nl) !=) {
if (n->priority > (*nl)->priority)
break;
nl = &((*nl)->next);
}
n->next = *nl;
rcu_assign_pointer(*nl, n);
return 0;

This function just inserts new notifier_block (given by a subsystem which wants to get notifications) to the notification chain list.

Besides subscribing on an event, subscriber may unsubscribe from a certain events with the set of unsubscribe functions:

extern int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
struct notifier_block *nb);

extern int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
struct notifier_block *nb);

extern int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
struct notifier_block *nb);

extern int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,

struct notifier_block *nb);

When a producer of notifications wants to notify subscribers about an event, the *.notifier_call chain function will be called. As

you already may guess each type of notification chains provides own function to produce notification:

extern int atomic_notifier_call chain(struct atomic_notifier_head *nh,
unsigned long val, void *v);

extern int blocking_notifier_call chain(struct blocking_notifier_head *nh,
unsigned long val, void *v);

extern int raw_notifier_call_chain(struct raw_notifier_head *nh,
unsigned long val, void *v);

extern int srcu_notifier_call_chain(struct srcu_notifier_head *nh,

unsigned long val, void *v);

Let's consider implementation of the blocking_notifier_call chain function. This function is defined in the kernel/notifier.c source

code file:

int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
unsigned long val, void *v)

return __blocking_notifier_call_chain(nh, val, v, o);

and as we may see it just returns result of the __blocking_notifier_call chain function. As we may see, the

blocking_notifer_call chain takes three parameters:

e nh -head of notification chain list;

e val -type of a notification;

https://github.com/torvalds/linux/blob/master/kernel/notifier.c

e v -input parameter which may be used by handlers.

But the _ blocking_notifier_call_chain function takes five parameters:

int __blocking_notifier_call _chain(struct blocking_notifier_head *nh,
unsigned long val, void *v,
int nr_to_call, int *nr_calls)

Where nr_to_call and nr_calls are number of notifier functions to be called and number of sent notifications. As you may guess
the main goal of the __blocking_notifer_call chain function and other functions for other notification types is to call callback
function when an event occurred. Implementation of the __blocking_notifier_call_chain is pretty simple, it just calls the

notifier_call_chain function from the same source code file protected with read/write semaphore:

int __blocking_notifier_call chain(struct blocking_notifier_head *nh,
unsigned long val, void *v,
int nr_to_call, int *nr_calls)

{
int ret = NOTIFY_DONE;
if (rcu_access_pointer(nh->head)) {
down_read(&nh->rwsem);
ret = notifier_call _chain(&nh->head, val, v, nr_to_call,
nr_calls);
up_read(&nh->rwsem);
}
return ret;
}

and returns its result. In this case all job is done by the notifier_call chain function. Main purpose of this function informs

registered notifiers about an asynchronous event:

static int notifier_call_chain(struct notifier_block **nl,
unsigned long val, void *v,
int nr_to_call, int *nr_calls)

ret = nb->notifier_call(nb, val, v);

return ret;

That's all. In generall all looks pretty simple.
Now let's consider on a simple example related to loadable modules. If we will look in the kernel/module.c. As we already saw in this

part, there is:

static BLOCKING_NOTIFIER_HEAD(module_notify_list);

definition of the module_notify list in the kernel/module.c source code file. This definition determines head of list of blocking

notifier chains related to kernel modules. There are at least three following events:

e MODULE_STATE_LIVE
e MODULE_STATE_COMING
e MODULE_STATE_GOING

https://en.wikipedia.org/wiki/Loadable_kernel_module
https://github.com/torvalds/linux/blob/master/kernel/module.c
https://github.com/torvalds/linux/blob/master/kernel/module.c

in which maybe interested some subsystems of the Linux kernel. For example tracing of kernel modules states. Instead of direct call of
the atomic_notifier_chain_register , blocking notifier_chain_register and etc., most notification chains come with a set of

wrappers used to register to them. Registatrion on these modules events is going with the help of such wrapper:

int register_module_notifier(struct notifier_block *nb)

{

return blocking_notifier_chain_register(&module_notify_list, nb);

If we will look in the kernel/tracepoint.c source code file, we will see such registration during initialization of tracepoints:

static __init int init_tracepoints(void)

{
int ret;
ret = register_module_notifier(&tracepoint_module_nb);
if (ret)
pr_warn("Failed to register tracepoint module enter notifier\n");
return ret;
}

Where tracepoint_module_nb provides callback function:

static struct ={
.notifier_call = tracepoint_module_notify,
.priority = 0,

}

When one of the MODULE_STATE_LIVE , MODULE_STATE_COMING OI MODULE_STATE_GOING events occurred. For example the
MODULE_STATE_LIVE the MODULE_STATE_COMING notifications will be sent during execution of the init_module system call. Or for

example MODULE_STATE_GOING will be sent during execution of the delete_module system call :

SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
unsigned int, flags)

blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);

Thus when one of these system call will be called from userspace, the Linux kernel will send certain notification depends on a system

call and the tracepoint_module_notify callback function will be called.

That's all.

Links

e C programming langauge)
e API

e callback)

e RCU

e spinlock

e loadable modules

https://github.com/torvalds/linux/blob/master/kernel/tracepoint.c
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
http://man7.org/linux/man-pages/man2/init_module.2.html
http://man7.org/linux/man-pages/man2/delete_module.2.html
https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Callback_(computer_programming
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Loadable_kernel_module

Linux

e semaphore

e tracepoints

e system call

e init module system call
o delete_module

e previous part

418

https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
http://man7.org/linux/man-pages/man2/init_module.2.html
http://man7.org/linux/man-pages/man2/delete_module.2.html

Linux

LinuxB+

Linux

Linux ——

include/linux/types.h

struct {
struct

}

glib

struct {
gpointer data;
GList *next;
GList *prev;

include/linux/list.h

}

struct {
spinlock_t lock;
struct g

}

list_head

#define MISC_MAJOR

1s -1 /dev | grep 10
Crw------- 1 root root
drwxr-xr-x 10 root root
Crw------- 1 root root
Crw------- 1 root root
drwxr-xr-x 2 root root
Crw-rw-rw- 1 root root
CWEEEEEEL 1 root root
1 root root
1 root kvm
1 root disk
1 root root
1 root root
1 root root
1 root root
1 root kmem
brw-rw---- 1 root disk
Crw--w---- 1 root tty
Crw-rw---- 1 root dialout
1 root root
1 root root

miscdevice

10,

10,
10,

10

235
200
62
203
100
229
228
183
232
237
227
59
61
60
144
10
10
74
63
137

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

free-electrons.com

21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

drivers/char/misc.c API

01
01
01
01
01
01
01
01
01
01
01
01
01
01

01
01
01
01
01

autofs

cpu
cpu_dma_latency
cuse

dri

fuse

hpet

hwrng

kvm

loop-control
mcelog
memory_bandwidth
network_latency
network_throughput
nvram

ramio®

tty1e

ttysioe
vga_arbiter

vheci

https://github.com/torvalds/linux/blob/master/include/linux/list.h
https://elixir.bootlin.com/linux/latest/A/ident/list_head
https://github.com/torvalds/linux/blob/master/include/linux/types.h
http://www.gnu.org/software/libc/
https://github.com/torvalds/linux/blob/master/drivers/char/misc.c

struct

{
int minor;
const char *name;
const struct * H
struct H
struct * g
struct * g
const char *nodename;
mode_t mode;

}

list

static LIST_HEAD(misc_list);

list_head

#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)

LIST_HEAD_INIT name prev next

#define LIST_HEAD_INIT(name) { &(name), &(name) }

misc_register INIT_LIST_HEAD miscdevice->1ist

INIT_LIST_HEAD(&misc->list);

LIST_HEAD_INIT

static inline void INIT_LIST_HEAD(struct list_head *list)
{

list->next = list;
list->prev = list;

device_create

list_add(&misc->1ist, &misc_list);

list.h

static inline void list_add(struct list_head *new, struct list_head *head)

{

__list_add(new, head, head->next);

3 __list_add

e new -
e head - head

e head->next - head

_ list_add

static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)

next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;

prev next LIST_HEAD_INIT misc miscdevice->list

#define list_entry(ptr, type, member) \
container_of(ptr, type, member)

® Dtr-

e type-;

e member- list_head

const struct *n = list_entry(v, struct miscdevice, list)
p->minor p->name miscdevice list_entry

#define list_entry(ptr, type, member) \
container_of(ptr, type, member)

container_of

#define container_of(ptr, type, member) ({ \
const typeof(((type *)0)->member) *_mptr = (ptr); \
(type *)((char *)__mptr - offsetof(type,member));})

#include <stdio.h>

int main() {

int i = 0;
printf("i = %d\n", ({++i; ++i;}));
return 0;
3
2
typeof , container_of container_of 0 0

#include <stdio.h>

struct {
int field1;
char field2;
char field3;
3

int main() {
printf("%p\n", &((struct s*)0)->field3);
return 0O;

0x5

offsetof

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

container_of type list_head member ptr) __mptr ptr list_head type
member
ptr struct list_head * imcompatible pointer types warning ((type *)0)->member type member
offsetof

list_add list_entry <linux/list.h> API

e list_add

o list_add_tail

o list_del

e list_replace

e list_move

e list_is_last

o list_empty

e list_cut_position
e list_splice

e list_for_each

e list_for_each_entry

API

Linux

Linux Radix treeLinux radix tree API

e include/linux/radix-tree.h

e lib/radix-tree.c
radix tree Radix tree trie trie associative array -key-value

trie n-tree

E - +
| |
| won |
I |
£ S £ +
| |
| |
L AT + Fomaoe Ve---- +
g		c
hememmmeaaes + E TR +		
R A + Fomon Vo---- +

o
Q

tmmmmmmma oo + £ TSR +
|
|
----- Vomn-- +
| |
| t |
| |
Poccccsascoa +
trie go cat trie radix tree trie
Linux Radix Radix include/linux/radix-tree.h :
struct {
unsigned int height;
gfp_t gfp_mask;
struct _ * ;
3
radix root
® height -
® gfp_mask -
® rnode -
gfp_mask
Linux flag - gfp_mask GFP_ GFP_NoI0 IO __GFP_HIGHMEM GFP_ATOMIC

rnode

http://en.wikipedia.org/wiki/Radix_tree
https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h
https://github.com/torvalds/linux/blob/master/lib/radix-tree.c
http://en.wikipedia.org/wiki/Trie
https://github.com/torvalds/linux/blob/master/include/linux/radix-tree.h

struct {

unsigned int path;
unsigned int count;
union {
struct {
struct * 7
void *private_data;
}
struct B
}
/* For tree user */
struct 2
void __rcu *slots[RADIX_TREE_MAP_SIZE],;
unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
}
® path -
® count -
® parent -

® private_data -
e rcu_head - RCU

® private_list -

radix_tree_node tags slots Radix slots slots NULL Linux Radix tags
Radix

radix radix API

Linux API

radix

RADIX_TREE

RADIX_TREE(name, gfp_mask);

name RADIX_TREE radix RADIX_TREE

#define RADIX_TREE(name, mask) \
struct radix_tree_root name = RADIX_TREE_INIT(mask)

#define RADIX_TREE_INIT(mask) {\
.height = 0, \
.gfp_mask = (mask), \
.rnode = NULL, \
}
RADIX_TREE name radix_tree_root RADIX_TREE_INIT mask RADIX_TREE_INIT radix_tree_root
gfp_jnask mask radix_tree_root mask INIT_RADIX_TREE
struct 2

INIT_RADIX_TREE(my_tree, gfp_mask_for_my_radix_tree);

INIT_RADIX_TREE

#define INIT_RADIX_TREE(root, mask) \
do { \

(root)->height = 0; \
(root)->gfp_mask = (mask); \

(root)->rnode = NULL; \
} while (0)
INIT_RADIX_TREE RADIX_TREE_INIT

radix

® radix_tree_insert ;

® radix_tree_delete
radix_tree_insert

e radix root
[)

°
radix_tree_delete radix_tree_insert
radix The search in a radix tree implemented in two ways:

® radix_tree_lookup ;
® radix_tree_gang_lookup ;

® radix_tree_lookup_slot
radix_tree_lookup

e radix root

[)
radix

radix_tree_gang_lookup

unsigned int radix_tree_gang_lookup(struct radix_tree_root *root,
void **results,
unsigned long first_index,
unsigned int max_items);

max_items

radix_tree_lookup_slot slot

o Radix tree

e Trie

http://en.wikipedia.org/wiki/Radix_tree
http://en.wikipedia.org/wiki/Trie

Linux ——

Linux

Linux bitmap API Linux API

e lib/bitmap.c

e include/linux/bitmap.h
x86_64
e arch/x86/include/asm/bitops.h

Linux / CPU cpumasks bit array Linux

bit array Linux

API Linux unsigned long

unsigned long my_bitmap[8]

DECLARE_BITMAP include/linux/types.h

#define DECLARE_BITMAP(name,bits) \
unsigned long name[BITS_TO_LONGS(bits)]

DECLARE_BITMAP

® name -;
® bits -;
BITS_TO_LONGS(bits) unsigned long BITS_TO_LONGS long bits
#define BITS_PER_BYTE 8
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))

DECLARE_BITMAP(my_bitmap, 64)

>>> (((64) + (64) - 1) / (64))
1

unsigned long my_bitmap[1];

https://en.wikipedia.org/wiki/Linked_data_structure
https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/lib/bitmap.c
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://github.com/torvalds/linux/blob/master/include/linux/types.h

API API arch/x86/include/asm/bitops.h

® set_bit ;

® clear_bit .
arch/x86/include/asm/bitops.h atomic
x86 xchgempxchg lock set_bit clear_bit

non-atomic set_bit clear_bit arch/x86/include/asm/bitops.h __set_bit :

static inline void __set_bit(long nr, volatile unsigned long *addr)

{
asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");

e nr -LCTT O

® addr -
addr volatile __set_bit bts nr CFLCTT nr 1
nr addr ADDR ADDR +m
#define ADDR BITOP_ADDR(addr)

#define BITOP_ADDR(x) "+m" (*(volatile long *) (X))

+m __set_bit
® +m - +
e I -
e r -

memory atomicnon-atomic

static __always_inline void
set_bit(long nr, volatile unsigned long *addr)

{
if (IS_IMMEDIATE(nr)) {
asm volatile(LOCK_PREFIX "orb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((u8)CONST_MASK(nr))
"memory");
} else {
asm volatile(LOCK_PREFIX "bts %1,%0"
: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
}
}
LCTT BITOP_ADDR #define BITOP_ADDR(x) "=m" (*(volatile long *) (x)) ORB

__set_bit __always_inline __always_inline include/linux/compiler-gcc.h always_inline

#define __always_inline inline __attribute__ ((always_inline))

Linux set_bit set_bit IS_IMMEDIATE gcCC

#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))

https://en.wikipedia.org/wiki/Application_programming_interface
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_328.html
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/Inline_assembler
http://x86.renejeschke.de/html/file_module_x86_id_25.html
https://en.wikipedia.org/wiki/FLAGS_register
https://github.com/torvalds/linux/blob/master/include/linux/compiler-gcc.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://en.wikipedia.org/wiki/GNU_Compiler_Collection

__builtin_constant_p 1 0 bts 10

CONST_MASK_ADDR

#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))

0x1000 0x9 0x9 + addr + 1 :

>>> hex(0x1000 + (0x9 >> 3))

'0x1001"
CONST_MASK 1 0
#define CONST_MASK(nr) (1 << ((nr) & 7))

>>> bin(1 << (0x9 & 7))
'0b10’

0x4097 9 1
>>> bin(0x4097)
'0b100000010010111"
>>> bin((0x4097 >> 0x9) | (1 << (6x9 & 7)))

'0b100010"

9 LCTT 9 000101 1

LOCK_PREFIX lock
set_bit __set_bit Linux clear_bit __clear_bit
__clear_bit

static inline void __clear_bit(long nr, volatile unsigned long *addr)

{
asm volatile("btr %1,%0" : ADDR : "Ir" (nr));

__clear_bit btr bts btr bts LCTT btr bts

clear_bit clear_bit

static __always_inline void
clear_bit(long nr, volatile unsigned long *addr)

{
if (IS_IMMEDIATE(nr)) {
asm volatile(LOCK_PREFIX "andb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((u8)~CONST_MASK(nr)));
} else {
asm volatile(LOCK_PREFIX "btr %1,%0"
BITOP_ADDR(addr)
"Irt(nr));
}
3
set_bit clear_bit btr set_bit bts

__set_bit

clear_bit

CF

set_bit

https://en.wikipedia.org/wiki/Bitwise_operation#OR
http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
http://x86.renejeschke.de/html/file_module_x86_id_24.html

Linux Linux test_bit arch/x86/include/asm/bitops.h constant_test_bit

variable_test_bit

#define test_bit(nr, addr) \
(__builtin_constant_p((nr)) \
? constant_test_bit((nr), (addr)) \
: variable_test_bit((nr), (addr)))

nr test_bit constant_test_bit variable_test_bit variable_test_bit

static inline int variable_test_bit(long nr, volatile const unsigned long *addr)

{
int oldbit;

asm volatile("bt %2,%1\n\t"
"sbb %0,%0"
"=r" (oldbit)
"m" (*(unsigned long *)addr), "Ir" (nr));

return oldbit;

}
variable_test_bit set_bit bt sbhb bt bit test CF sbb CF
CF sbb 00000000 - CF oldbit
constant_test_bit set_bit

static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr)
{
return ((1UL << (nr & (BITS_PER_LONG-1))) &
(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;

3
1 ¢} CONST_MASK
Linux
® _ change_bit ;

® change_bit .

set_bit __set_bit __change_bit

static inline void __change_bit(long nr, volatile unsigned long *addr)

{
asm volatile("btc %1,%0" : ADDR : "Ir" (nr));

__change_bit __set_bit btc bts CF 1 0

>>> int(not 1)
0
>>> int(not 0)
1

__change_bit change_bit

static inline void change_bit(long nr, volatile unsigned long *addr)
{
if (IS_IMMEDIATE(nr)) {
asm volatile(LOCK_PREFIX "xorb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((uB)CONST_MASK(nr)));

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
http://x86.renejeschke.de/html/file_module_x86_id_22.html
http://x86.renejeschke.de/html/file_module_x86_id_286.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Bitwise_operation#AND
http://x86.renejeschke.de/html/file_module_x86_id_23.html

} else {
asm volatile(LOCK_PREFIX "btc %1,%0"
: BITOP_ADDR(addr)

"Irt (nr));
}
}
set_bit xor or btc LCTT bts bts
API
arch/x86/include/asm/bitops.h API Linux API include/linux/bitmap.h

include/linux/bitops.h
4

® for_each_set_bit
® for_each_set_bit_from
e for_each_clear_bit

e for_each_clear_bit_from

for_each_set_bit

#define for_each_set_bit(bit, addr, size) \
for ((bit) = find_first_bit((addr), (size)); \
(bit) < (size); \
(bit) = find_next_bit((addr), (size), (bit) + 1))
find_first_bit

arch/x86/include/asm/bitops.h 64-bit 32-bit API

API

® bitmap_zero ;

® bitmap_fill

1 bitmap_zero

static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)

{
if (small_const_nbits(nbits))
*dst = OUL;
else {
unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
memset(dst, ©, len);

nbits small_const_nbits

#define small_const_nbits(nbits) \
(__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG)

nbits BITS_PER_LONG 64 long O long memset

bitmap_fill biramp_zero oxff 0b11111111

static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)

lib/bitmap.c

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://github.com/torvalds/linux/blob/master/lib/bitmap.c
https://github.com/torvalds/linux/blob/master/include/linux/bitops.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/bitops.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
http://man7.org/linux/man-pages/man3/memset.3.html

unsigned int nlongs = BITS_TO_LONGS(nbits);

if (!small_const_nbits(nbits)) {
unsigned int len = (nlongs - 1) * sizeof(unsigned long);
memset(dst, Oxff, 1len);

}

dst[nlongs - 1] = BITMAP_LAST_WORD_MASK(nbits);

bitmap_fill bitmap_zero include/linux/bitmap.h bitmap_zero bitmap_copy memcpy

bitmap_and , bitmap_or , bitamp_xor include/linux/bitmap.h

LCTT Linux

bitmap

linked data structures
tree data structures
hot-plug

cpumasks

IRQs

API

atomic operations
xchg instruction
cmpxchg instruction
lock instruction

bts instruction

btr instruction

bt instruction

sbb instruction

btc instruction

man memcpy

man memset

CF

inline assembler

gcc

memset

N

https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man3/memset.3.html
https://github.com/torvalds/linux/blob/master/include/linux/bitmap.h
https://github.com/LCTT/TranslateProject
https://linux.cn/
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Linked_data_structure
https://en.wikipedia.org/wiki/Tree_%28data_structure%29
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://en.wikipedia.org/wiki/Interrupt_request_%28PC_architecture%29
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Linearizability
http://x86.renejeschke.de/html/file_module_x86_id_328.html
http://x86.renejeschke.de/html/file_module_x86_id_41.html
http://x86.renejeschke.de/html/file_module_x86_id_159.html
http://x86.renejeschke.de/html/file_module_x86_id_25.html
http://x86.renejeschke.de/html/file_module_x86_id_24.html
http://x86.renejeschke.de/html/file_module_x86_id_22.html
http://x86.renejeschke.de/html/file_module_x86_id_286.html
http://x86.renejeschke.de/html/file_module_x86_id_23.html
http://man7.org/linux/man-pages/man3/memcpy.3.html
http://man7.org/linux/man-pages/man3/memset.3.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/Inline_assembler
https://en.wikipedia.org/wiki/GNU_Compiler_Collection

e FEIf64

Linux init initrd lockdep

Linux
64

Intel

... 64 Linux

o 32
e PAE
T1A-32e

IA-32e

° CRO.PG
° CR4.PAE

° IA32_EFER.LME

arch/x86/boot/compressed/head_64.S

mov1 $(X86_CRO_PG | X86_CRO_PE), %eax
movl %eax, %Cro

and

movl $MSR_EFER, %ecx

rdmsr
btsl $_EFER_LME, %eax
wrmsr
X86_64 4096 4096 512 PAE IA32_EFER.LME Linux X86_64
4CPU

leal pgtable(%ebx), %eax
movl %eax, %cr3

cr3 cr3 Linux PML4 Page Global Directory cr3 64

63 52 51 32

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S

P
| Address of the top level structure | Reserved | C | W | Reserved |
T

e 02 -

e 12 51 -

e 3 4 -PWT Page-Level Writethrough PCD Page-level Cache Disable
e -0

e 5263-0

° MMU
e 6448 2n48 256TB
® cr3

39 47 430 38329 21212201011

Virtual Address

63 48 47 3938 30 29 2120 12 11 0
Page-Map
Sign Extend Level4 Offset
PML4

Page-Directory- | Page-Directory Page-Table Physical-
Pointer Offset Offset Dffset Page Offset

Page-Map Directary- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
== PTE ;2
52
5o —®= POPE o
™ PMLLE § 5o || Physica
= PDE Address
. — L | ——] I L
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
Page-Map Level-4
Base Address CR3
CPL (Current Privilege Level) CPL < 3
63 62 52 51 32
N		
	Available	Address of the paging structure on lower level
X		

https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S
http://en.wikipedia.org/wiki/Memory_management_unit

I [[M |T|
| Address of the paging structure on lower level | AVL | B |G|A
I [| Z IN|

o O T
- = T
o

e 63 -N/X
e 52 62 -CPU
e 12 51 -
e 911 - CPU
e MBZ- 0

o A-

e PWT PCD
o U/S-/

e R/W-

o P-

Linux 4

Linux

x86_64 Linux 4

Linux System.map

$ grep "start_kernel" System.map
ffffffff8lefe497 T x86_64_start_kernel
ffffffff8lefeaa2 T start_kernel

OxfFFfffffalefedo7 start_kernel x86_64_start_kernel X86_64 2764 48
48 64

OXFRFFFFFFFFFFFFFf +---ooooooo- +
I |

| | Kernelspace

| |
Oxffff800000000000 +----------- +

| |
| |
| hole |
| |
| |
OX00007FFFFFffffff +----------- +

| | Userspace

0x0000000000000000 +----------- +

sign extension 48 48 63 0 1

0x000000000000000 0x00007FFFFFFFffff oxffff8000000000 oxfFFFFFFFFFFFFfFff 48 63 0

148

0000000000000000 - OEEO7ffffFffffff (=47 bits) user space, different per mm
hole caused by [48:63] sign extension
ffff800000000000 - fFFFfE7ffffffffff (=43 bits) guard hole, reserved for hypervisor
ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory
ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole
ffffco0000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space
ffffeo0000000000 - ffffedffffffffff (=40 bits) hole
ffffea0@EOOOO000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)

. unused hole ...
ffffeco000000000 - fffffcOOOOOOEEOO (=44 bits) kasan shadow memory (16TB)

. unused hole ...
ffffffooee000000 - FFFFFf7fFFfffffff (=39 bits) %esp fixup stacks

. unused hole ...
ffffffffeeo00000 - fFffffffa00eeEee (=512 MB) kernel text mapping, from phys 0
ffffffffaeoo000 - fFFFffffff5fffff (=1525 MB) module mapping space
frffffffffeo0000 - FFFFFFffffdfffff (=8 MB) vsyscalls
frffffffffeoo0o0 - FFFFFFFfFfFfffff (=2 MB) unused hole

(hypervisor) (guard hole) arch/x86/include/asm/page_64_types.h

#define PAGE_OFFSET _AC(0xffff880000000000, UL)

__PAGE_OFFSET Oxffff800000000000 oxfFFFROFFFFFFFfff 3

- ffffsso000000000 vmalloc 1TB ksan (shadow memory) commit

esp - (¢} __ PAGE_OFFSET

#define __ START_KERNEL_map _AC(Oxffffffff80000000, UL)

. text CONFIG_PHYSICAL_START ELF64

readelf -s vmlinux | grep ffffffff81000000

1: ffffffff81000000 O SECTION LOCAL DEFAULT 1
65099: ffffffff81000000 0 NOTYPE GLOBAL DEFAULT 1 _text
90766: ffffffff81000000 0 NOTYPE GLOBAL DEFAULT 1 startup_64
CONFIG_PHYSICAL_START 0x1000000 vmlinux - oxffffffff8o000000 - 0x1000000

OxFFFFffFf80000000 + 1000000 = OXFfffffff81000000

vsyscalls 2M

Oxffffffff81000000

111112212212134321 1213231721171 1111111160 000001000 OOOOCOCO0 OOOOOOOEOLEOO

63:48 47:39 38:30 29:21 20:12 11:0
® 48-63 -
® 37-49 - 4
e 30-38 - 3
e 21-29 -2
e 12-20 -1

https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/page_64_types.h
https://github.com/torvalds/linux/commit/ef7f0d6a6ca8c9e4b27d78895af86c2fbfaeedb2
https://github.com/hust-open-atom-club/linux-insides-zh/blob/master/Theory/ELF.md

e 0-11 -

Linux

e Paging on Wikipedia

e Intel 64 and [A-32 architectures software developer's manual volume 3A
e MMU

e ELF64

e Documentation/x86/x86_64/mm.txt

e Last part - Kernel booting process

438

https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt
http://en.wikipedia.org/wiki/Paging
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://en.wikipedia.org/wiki/Memory_management_unit
https://github.com/0xAX/linux-insides/blob/master/Theory/ELF.md
https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt

ELF

ELF (Executable and Linkable Format)(core dumps) LinuxUnix 64ELF
ELF

e ELF(ELF header) - CPU

e (Program header table) - (segments)

e (Section header table) - (sections)

ELF(ELF header)
ELF(ELF header)

e ELF-ELF

o - ...

e ELF

e ELF(ELF header)

ELF64 header elfe4_hdr

typedef struct {
unsigned char e_ident[EI_NIDENT];
E1f64_Half e_type;
E1f64_Half e_machine;
E1f64_Word e_version;
E1f64_Addr e_entry;
E1f64_0ff e_phoff;
E1f64_0ff e_shoff;
E1f64_Word e_flags;
E1f64_Half e_ehsize;
E1f64_Half e_phentsize;
E1f64_Half e_phnum;
E1f64_Half e_shentsize;
E1f64_Half e_shnum;
E1f64_Half e_shstrndx;

} E1f64_Ehdr;

elf.h
(sections)

ELF(sections) (index)(sections)

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L220

°
°
linux elf64_shdr
typedef struct {

E1f64_Word sh_name;
E1f64_Word sh_type;
E1f64_Xword sh_flags;
E1f64_Addr sh_addr;
E1f64_0Off sh_offset;
E1f64_Xword sh_size;
E1f64_Word sh_link;
E1f64_Word sh_info;
E1f64_Xword sh_addralign;
E1f64_Xword sh_entsize;
} E1f64_Shdr;

elf.h
(Program header table)

(sections)(segments) (segments)

typedef struct {
E1f64_Word p_type;
E1f64_Word p_flags;
E1f64_Off p_offset;
E1f64_Addr p_vaddr;
E1f64_Addr p_paddr;
E1f64_Xword p_filesz;
E1f64_Xword p_memsz;
E1f64_Xword p_align;

} E1f64_Phdr;

elf64_phdr elf.h.

EFL Documentation vmlinux ELF
vmlinux
vmlinux ELF readelf

$ readelf -h vmlinux

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 0O 00 00 6O 00 60 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: Ox1
Entry point address: 0x1000000
Start of program headers: 64 (bytes into file)
Start of section headers: 381608416 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 5

Size of section headers: 64 (bytes)

https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L312
https://github.com/torvalds/linux/blob/master/include/uapi/linux/elf.h#L254
http://www.uclibc.org/docs/elf-64-gen.pdf

Number of section headers:

73

Section header string table index: 70

vmlinux 64

frffffff80000000 - ffffffffa0oEo000 (=512 MB)

vmlinux ELF

Documentation/x86/x86_64/mm.txt :

$ readelf -s vmlinux | grep ffffffff81000000

1: ffffffff81000000
65099: ffffffff81000000
90766: ffffffff81000000

startup_64

frffffff80000000 ,

arch/x86/kernel/vmlinux.lds.S :

. = __START_KERNEL;

/* Text and read-only data */

.text
_text =

__ START_KERNEL

#define __ START_KERNEL

__START_KERNEL_map frffffff80000000 __PHYSICAL_START 0x1000000
frffffff81000000
readelf -1 vmlinux
E1f file type is EXEC (Executable file)
Entry point 0x1000000
There are 5 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000200000 OXFfffffff81000000 OXx0000000001000000
0x0000000000cTdOO0 Ox0000000000cTdOGO R E 200000
LOAD 0x0000000001000000 OXFfffffff81e00000 0Xx0000000001e00000
0x0000000000100000 Ox0000000000100000 RW 200000
LOAD 0x0000000001200000 Ox0000000000000000 OxO0000000001FOOO00
0x0000000000014d98 OXx0000000000014d98 RW 200000
LOAD 0x0000000001315000 OXFfffffff81f15000 0x0000000001f15000
0x000000000011d006 OXxO000000000279000 RWE 200000
NOTE 0x0000000000b17284 OXFFffffff81917284 0x0000000001917284
0x0000000000000024 OXx0000000000000024 4
Section to Segment mapping:
Segment Sections...
00 .text .notes __ex_table .rodata __bug_table .pci_fixup .builtin_fw

.

0 SECTION LOCAL DEFAULT
0 NOTYPE GLOBAL DEFAULT
0 NOTYPE GLOBAL DEFAULT

kernel text mapping, from phys ©

1
1 _text
1 startup_64

frffffff81000000

AT(ADDR(.text) - LOAD_OFFSET) {

(__START_KERNEL_map + __ PHYSICAL_START)

.tracedata __ksymtab __ksymtab_gpl __kcrctab __kcrctab_gpl
__ksymtab_strings __param __modver

startup_64

https://github.com/torvalds/linux/blob/master/Documentation/x86/x86_64/mm.txt#L19
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/vmlinux.lds.S

01 .data .vvar

02 .data..percpu

03 .init.text .init.data .x86_cpu_dev.init .altinstructions
.altinstr_replacement .iommu_table .apicdrivers .exit.text
.smp_locks .data_nosave .bss .brk

(sections)(segments) - arch/x86/kernel/vmlinux.lds (sections)

ELF(Executable and Linkable Format) -

http://www.uclibc.org/docs/elf-64-gen.pdf

Inline assembly

Introduction

While reading source code in the Linux kernel, I often see statements like this:

__asm__("andq %%rsp,%0; ":"=r" (ti) : "0" (CURRENT_MASK));

Yes, this is inline assembly or in other words assembler code which is integrated in a high level programming language. In this case the

high level programming language is C. Yes, the ¢ programming language is not very high-level, but still.

If you are familiar with the assembly programming language, you may notice that inline assembly is not very different from normal

assembler. Moreover, the special form of inline assembly which is called basic form is exactly the same. For example:

asm__("movq %rax, %rsp");

or:

asm__("hlt");

The same code (of course without __asm__ prefix) you might see in plain assembly code. Yes, this is very similar, but not so simple as

it might seem at first glance. Actually, the GCC supports two forms of inline assembly statements:

® basic ;

® extended .

The basic form consists of only two things: the __asm__ keyword and the string with valid assembler instructions. For example it may

look something like this:

__asm__("movq $3, %rax\t\n"
"movq %rsi, %rdi");

The asm keyword may be used in place of __asm__ , however __asm__ is portable whereas the asm keywordisa GNu extension.

In further examples I will only use the __asm__ variant.

If you know assembly programming language this looks pretty familiar. The main problem is in the second form of inline assembly
statements - extended . This form allows us to pass parameters to an assembly statement, perform jumps etc. Does not sound difficult,
but requires knowledge of special rules in addition to knowledge of the assembly language. Every time I see yet another piece of inline
assembly code in the Linux kernel, I need to refer to the official documentation of ecc to remember how a particular qualifier

behaves or what the meaning of =&r is for example.

I've decided to write this part to consolidate my knowledge related to the inline assembly, as inline assembly statements are quite
common in the Linux kernel and we may see them in linux-insides parts sometimes. I thought that it would be useful if we have a
special part which contains information on more important aspects of the inline assembly. Of course you may find comprehensive

information about inline assembly in the official documentation, but I like to put everything in one place.

Note: This part will not provide guide for assembly programming. It is not intended to teach you to write programs with

assembler or to know what one or another assembler instruction means. Just a little memo for extended asm.

Introduction to extended inline assembly

https://github.com/torvalds/linux
https://en.wikipedia.org/wiki/Inline_assembler
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://en.wikipedia.org/wiki/Branch_%28computer_science%29
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C

So, let's start. As I already mentioned above, the basic assembly statement consists of the asm or __asm__ keyword and set of

assembly instructions. This form is in no way different from "normal" assembly. The most interesting part is inline assembler with

operands, or extended assembler. An extended assembly statement looks more complicated and consists of more than two parts:

__asm__ [volatile] [goto] (AssemblerTemplate
[: OutputOperands]

[: InputOperands]
[: Clobbers]
[: GotoLabels 1),

All parameters which are marked with squared brackets are optional. You may notice that if we skip the optional parameters and the

modifiers volatile and goto we obtain the basic form.

Let's start to consider this in order. The first optional qualifier is volatile . This specifier tells the compiler that an assembly
statement may produce side effects . In this case we need to prevent compiler optimizations related to the given assembly statement.
In simple terms the volatile specifier instructs the compiler not to modify the statement and place it exactly where it was in the

original code. As an example let's look at the following function from the Linux kernel:

static inline void native_load_gdt(const struct desc_ptr *dtr)

{
asm volatile("lgdt %0"::"m" (*dtr));

Here we see the native_load_gdt function which loads a base address from the Global Descriptor Table to the 6bTR register with the
1gdt instruction. This assembly statement is marked with volatile qualifier. It is very important that the compiler does not change
the original place of this assembly statement in the resulting code. Otherwise the GbpTR register may contain wrong address for the
Global Descriptor Table or the address may be correct, but the structure has not been filled yet. This can lead to an exception being
generated, preventing the kernel from booting correctly.

The second optional qualifier isthe goto . This qualifier tells the compiler that the given assembly statement may perform a jump
to one of the labels which are listed in the GotoLabels . For example:

__asm__ goto("jmp %1l[label]" : : : : label);

Since we finished with these two qualifiers, let's look at the main part of an assembly statement body. As we have seen above, the main

part of an assembly statement consists of the following four parts:

e set of assembly instructions;
e output parameters;
e input parameters;

e clobbers.

The first represents a string which contains a set of valid assembly instructions which may be separated by the \t\n sequence. Names
of processor registers must be prefixed with the %% sequence in extended form and other symbols like immediates must start with
the $ symbol. The outputoperands and InputOperands are comma-separated lists of C variables which may be provided with
"constraints" and the clobbers is a list of registers or other values which are modified by the assembler instructions from the
AssemblerTemplate beyond those listed in the outputoperands . Before we dive into the examples we have to know a little bit about
constraints . A constraint is a string which specifies placement of an operand. For example the value of an operand may be written to

a processor register or read from memory etc.

Consider the following simple example:

#include <stdio.h>

int main(void)

{
unsigned long a = 5;
unsigned long b = 5
unsigned long sum = 0;

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/desc.h
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/C_%28programming_language%29

__asm__("addq %1,%2" : "=r" (sum) : "r" (a), "0" (b));
printf("a + b = %lu\n", sum);
return 0;

Let's compile and run it to be sure that it works as expected:

$ gcc test.c -0 test
./test
a+b=15

Ok, great. It works. Now let's look at this example in detail. Here we see a simple ¢ program which calculates the sum of two
variables placing the result into the sum variable and in the end we print the result. This example consists of three parts. The first is the
assembly statement with the add instruction. It adds the value of the source operand together with the value of the destination operand
and stores the result in the destination operand. In our case:

addq %1, %2

will be expanded to the:

addq a, b

Variables and expressions which are listed in the outputoperands and Inputoperands may be matched in the AssemblerTemplate .
An input/output operand is designated as %N where the N is the number of operand from left to right beginning from zero . The

second part of the our assembly statement is located after the first : symbol and contains the definition of the output value:

"=r'" (sum)

Notice that the sum is marked with two special symbols: =r . This is the first constraint that we have encountered. The actual
constraint here is only r itself. The = symbol is modifier which denotes output value. This tells to compiler that the previous

value will be discarded and replaced by the new data. Besides the = modifier, ccc provides support for following three modifiers:

e + -anoperand is read and written by an instruction;
e & -output register shouldn't overlap an input register and should be used only for output;

e % -tells the compiler that operands may be commutative.

Now let's go back to the r qualifier. As I mentioned above, a qualifier denotes the placement of an operand. The r symbol means a

value will be stored in one of the general purpose register. The last part of our assembly statement:

"t (a), "e" (b)

These are input operands - variables a and b . We already know what the r qualifier does. Now we can have a look at the
constraint for the variable b . The e or any other digit from 1 to 9 is called "matching constraint". With this a single operand can
be used for multiple roles. The value of the constraint is the source operand index. In our case © will match sum . If we look at

assembly output of our program:

<main>:
e: c7 8 movq $ p (%rbp)
C) fo oa movq $ p (%rbp)
8 mov (%rbp), %rdx
a: fo mov (%rbp), %rax

e: do add %rdx, %rax

http://x86.renejeschke.de/html/file_module_x86_id_5.html
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Processor_register

First of all our values 5 and 10 will be put at the stack and then these values will be moved to the two general purpose registers:

%rdx and %rax .

This way the %rax register is used for storing the value of the b as well as storing the result of the calculation. NOTE that I've used

gcc 6.3.1 version, so the resulted code of your compiler may differ.

We have looked at input and output parameters of an inline assembly statement. Before we move on to other constraints supported by

gec , there is one remaining part of the inline assembly statement we have not discussed yet - clobbers .

Clobbers

As mentioned above, the "clobbered" part should contain a comma-separated list of registers whose content will be modified by the
assembler code. This is useful if our assembly expression needs additional registers for calculation. If we add clobbered registers to the
inline assembly statement, the compiler take this into account and the register in question will not simultaneously be used by the

compiler.

Consider the example from before, but we will add an additional, simple assembler instruction:

asm__("movg $100, %%rdx\t\n"
"addgq %1,%2" : "=r" (sum) : "r" (a), "0" (b)),

If we look at the assembly output:

<main>:
e: &7 f8 movq $0x5, (%rbp)
c7 fo oa movq $0xa, (%rbp)
f8 mov (%rbp), %rdx
a: fo mov (%rbp), %rax
e: c7 c2 mov $, %rdx
do add %rdx, %rax

we will see that the %rdx register is overwritten with ex64 or 1ee and the result will be 110 instead of 16 . Now if we add the

%rdx register to the list of clobbered registers:

__asm__("movg $100, %%rdx\t\n"
"addq %1,%2" : "=r" (sum) : "r" (a), "0" (b) : "%rdx")

and look at the assembler output again:

<main>:
e: c7 f8 movq $ o (%rbp)
c7 fo oa movq $ o (%rbp)
d f8 mov (%rbp), %rcx
a: fo mov (%rbp), %rax
e: c7 c2 mov $, %rdx
c8 add %rex, %rax

the %rcx register will be used for sum calculation, preserving the intended semantics of the program. Besides general purpose

registers, we may pass two special specifiers. They are:

® cc;

[] memory .

The first - cc indicates that an assembler code modifies flags register. This is typically used if the assembly within contains arithmetic

or logic instructions:

asm__("incg %0" ::""(variable): '"cc");

The second memory specifier tells the compiler that the given inline assembly statement executes read/write operations on memory not
specified by operands in the output list. This prevents the compiler from keeping memory values loaded and cached in registers. Let's
take a look at the following example:

#include <stdio.h>

int main(void)

{
unsigned long a[3] = { p @p A3
unsigned long b = 5;
__asm__ volatile("incqg %0" :: "m" (a[0]));
printf("a[0] - b = %lu\n", a[0@] - b);
return 0;

3

This example may be artificial, but it illustrates the main idea. Here we have an array of integers and one integer variable. The example
is pretty simple, we take the first element of a and increment its value. After this we subtract the value of b from the first element of

a . In the end we print the result. If we compile and run this simple example the result may surprise you:

~$ gcc -03 test.c -0 test
~$./test
a[0] - b = 9999999995

The result is a[e] - b = 9999999995 here, but why? We incremented a[e] and subtracted b , so the result should be afe] - b =
9999999996 here.

If we have a look at the assembler output for this example:

00000000004004f6 <main>:

4004b4: b8 e4 movabs x2540be400, %rax
4004be: mov %rax, (%rsp)
40050e: ff fo incq (%rsp)

4004d8: be fb e3 movabs x2540be3fb, %rsi

we will see that the first element of the a contains the value ox2546be400 (10000000000). The last two lines of code are the actual

calculations.

We see our increment instruction with incq but then just a move of ex254ebe3fb (9999999995) to the %rsi register. This looks

strange.

The problem is we have passed the -03 flagto gcc , so the compiler did some constant folding and propagation to determine the

result of a[e] - 5 at compile time and reduced it to a movabs with a constant ©x25406be3fb Or 9999999995 in runtime.

Let's now add memory to the clobbers list:

__asm__ volatile("incq %0" :: "m" (a[0]) : "memory");

and the new result of running this is:

https://en.wikipedia.org/wiki/FLAGS_register

~$ gcc -03 test.c -0 test
~$./test
a[0] - b = 9999999996

Now the result is correct. If we look at the assembly output again:

00000000004004f6 <main>:

H b8 e4 movabs Xx2540be400, %rax
40040b:
40040e: mov %rax, (%rsp)
H Gl movq X0, (%rsp)
40041b:) movq x1, (%rsp)
ff incq (%rsp)
8b mov (%rsp),%rax
fb lea - (%rax),%rsi

we will see one difference here which is in the last two lines:

8b mov (%rsp),%rax
b lea - (%rax),%rsi

Instead of constant folding, 6cc now preserves calculations in the assembly and places the value of a[e] inthe %rax register

afterwards. In the end it just subtracts the constant value of b from the %rax register and puts result to the %rsi .

Besides the memory specifier, we also see a new constraint here - m . This constraint tells the compiler to use the address of a[e] ,
instead of its value. So, now we are finished with clobbers and we may continue by looking at other constraints supported by 6cc

besides r and m which we have already seen.

Constraints

Now that we are finished with all three parts of an inline assembly statement, let's return to constraints. We already saw some
constraints in the previous parts, like r which represents a register operand, m which represents a memory operand and ©-9
which represent an reused, indexed operand. Besides these Gcc provides support for other constraints. For example the i constraint

represents an immediate integer operand with know value:

#include <stdio.h>

int main(void)

{
int a = 0;
_asm__("movl %1, %0" : "=r"(a) : "i"());
printf("a = %d\n", a);
return 0;
3

The result is:

~$ gcc test.c -o test
~$./test
a = 100

Or for example 1 which represents an immediate 32-bit integer. The difference between i and 1 isthat i is general, whereas 1

is strictly specified to 32-bit integer data. For example if you try to compile the following code:

unsigned long test_asm(int nr)

{

unsigned long a = 0;

_asm__("movg %1, %0" : "=r'"(a) : "I"(),
return a;

you will get an error:

$ gcc -03 test.c -o test

test.c: In function ‘test_asm’:

test.c:7:9: warning: asm operand 1 probably doesn’t match constraints
__asm__("movq %1, %0" : "=r"(a) : "I"(OXFFfFffffffff)),

N

test.c:7:9: error: impossible constraint in ‘asm’

when at the same time:

unsigned long test_asm(int nr)

{
unsigned long a = 0;
__asm__("movqg %1, %0" : "=r"(a) : "i"(DE
return a;

}

works perfectly:

~$ gcc -03 test.c -o test
~$ echo $?
(0]

Gce also supports J, K, N constraints for integer constants in the range of 0-63 bits, signed 8-bit integer constants and unsigned
8-bit integer constants respectively. The o constraint represents a memory operand with an offsetable memory address. For
example:

#include <stdio.h>

int main(void)

{
static unsigned long arr[3] = {0, 1, 2};
static unsigned long element;
__asm__ volatile("movq 16+%1, %0" : "=r"(element) : "o"(arr)),
printf("%lu\n", element);
return 0;
3

The result, as expected:

~$ gcc -03 test.c -0 test
~$./test
2

All of these constraints may be combined (so long as they do not conflict). In this case the compiler will choose the best one for a

certain situation. For example:

unsigned long a = B
unsigned long b = B

void main(void)
{

_asm__ ("movg %1,%0" : "=mr"(b) : "rm"(a));

will use a memory operand:

movg a(%rip),b(%rip)
ret

.quad

.quad

instead of direct usage of general purpose registers.

That's about all of the commonly used constraints in inline assembly statements. You can find more in the official documentation.

Architecture specific constraints

Before we finish, let's look at the set of special constraints. These constrains are architecture specific and as this book is specific to the
x86_64 architecture, we will look at constraints related to it. First of all the set of a ... d andalso s and D constraints represent
generic purpose registers. In this case the a constraint corresponds to %al , %ax , %eax Or %rax register depending on instruction
size. The s and b constraints are %si and %di registers respectively. For example let's take our previous example. We can see in
its assembly output that value of the a wvariable is stored in the %eax register. Now let's look at the assembly output of the same

assembly, but with other constraint:
#include <stdio.h>
int a = 1;

int main(void)

{
int b;
_asm__ ("movg %1,%0" : "=r"(b) : "d"(a));
return b;

}

Now we see that value of the a variable will be stored in the %rax register:

<main>:
4004aa: 8b 6f mov (%rip),%rax # <a>

The f and t constraints represent any floating point stack register - %st and the top of the floating point stack respectively. The

u constraint represents the second value from the top of the floating point stack.

That's all. You may find more details about x86_64 and general constraints in the official documentation.

Links

e Linux kernel source code

e assembly programming language
e GCC

e GNU extension

e Global Descriptor Table

e Processor registers

e add instruction

o flags register

o x86_64

https://gcc.gnu.org/onlinedocs/gcc/Simple-Constraints.html#Simple-Constraints
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/X86-64
https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html#Machine-Constraints
https://github.com/torvalds/linux
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/Processor_register
http://x86.renejeschke.de/html/file_module_x86_id_5.html
https://en.wikipedia.org/wiki/FLAGS_register
https://en.wikipedia.org/wiki/X86-64

e constraints

451

https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html#Machine-Constraints

452

Linux

x86_64 Hello World
syscall printf Linux Linux Linux

Linux Linux Linux linux-insides 9096

® Unwatch ~ 912 Star 9,09 Y Fork 674

Linux linux-insides Linux Linux

GO gle contribute to linux kernel n

Web Images News Videos More * Search tools

About 18,300,000 results (0.38 seconds)

W

Linux Linux Linux Linux Linux

Linux

Linux

e Linux

e Linux
Linux Linux Linux

Linux Ubuntu (Vivid Vervet) Linux 4.1

$ sudo add-apt-repository ppa:kernel-ppa/ppa
$ sudo apt-get update

$ apt-cache showpkg linux-headers

Linux ${version}

$ sudo apt-get install linux-headers-${version} linux-headers-${version}-generic linux-image-${version}-generic --fix
-missing

https://0xax.github.io/categories/assembler/
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://github.com/0xAX/linux-insides
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Package_manager
http://releases.ubuntu.com/15.04/

grub

Linux Linux kernel.org Linux Linux git git

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

github Linux

$ git clone git@github.com:torvalds/linux.git

fork

$ git checkout master
$ git pull upstream master

upstream Linux

git remote add upstream git@github.com:torvalds/linux.git

~/dev/linux (master) $ git remote -v

origin git@github.com:0xAX/1linux.git (fetch)

origin git@github.com:0xAX/1linux.git (push)

upstream https://github.com/torvalds/linux.git (fetch)
upstream https://github.com/torvalds/linux.git (push)

fork (origin) (upstream)

Linux Linux /boot

$ sudo cp /boot/config-$(uname -r) ~/dev/linux/.config

/proc/config.gz

$ cat /proc/config.gz | gunzip > ~/dev/linux/.config

Linux Linux Makefile menuconfig

kernel.org

https://en.wikipedia.org/wiki/GNU_GRUB
https://kernel.org/
https://en.wikipedia.org/wiki/Version_control
https://github.com/torvalds/linux
https://github.com/0xAX/linux
https://github.com/torvalds/linux/blob/master/Makefile

Terminal

File Edit View Search Terminal Help

.config - Linux/x86 4.3.0-rcl Kernel Configuration

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

[§] 64-bit kernel

seneral setup --->
[*] Enable loadable module support --->
-*. Enable the block layer --->
Processor type and features --->
Power management and ACPI options --->
“us options (PCI etc.) --->
Executable file formats / Emulations --->
[*] Networking support --->
Device Drivers --->

Figahas < Help >

defconfig x86_64 defconfig ARCH make defconfig

$ make ARCH=armé4 defconfig

allnoconfig allyesconfig allmodconfig nconfig ncurses Linux

Terminal

File Edit View Search Terminal Help

.config - Linux/x86 4.3.0-1
Linux/x86 4.3.0-rcl Kernel Configuration

[#] 64-bit Kkernel

General setup --->
[*] Enable loadable module support --->
-*-. Enable the block layer --->
Processor type and features --->
Power management and ACPI options --->
Bus options (PCI etc.) --->
Executable file formats / Emulations
Networking support --->
Device Drivers --->
Firmware Drivers --->
File systems --->
Kernel hacking --->
Security options --->
Cryptographic API --->
Virtualization --->
Library routines --->

randconfig Linux Linux

Linux Linux Linux

https://github.com/torvalds/linux/blob/master/arch/x86/configs/x86_64_defconfig

$ make

scripts/kconfig/conf --silentoldconfig Kconfig
#
configuration written to .config
#
CHK include/config/kernel.release
UPD include/config/kernel.release
CHK include/generated/uapi/linux/version.h
CHK include/generated/utsrelease.h

O0BJCOPY arch/x86/boot/vmlinux.bin

AS arch/x86/boot/header.o

LD arch/x86/boot/setup.elf

OBJCOPY arch/x86/boot/setup.bin

BUILD arch/x86/boot/bzImage

Setup is 15740 bytes (padded to 15872 bytes).
System is 4342 kB
CRC 82703414
Kernel: arch/x86/boot/bzImage is ready (#73)

make -jN N
$ make -3j8
® ARCH

® CROSS_COMPILER

arm64 Linux

$ make -j4 ARCH=arm64 CROSS_COMPILER=aarch64-linux-gnu- defconfig
$ make -j4 ARCH=armé64 CROSS_COMPILER=aarch64-linux-gnu-

- arch/x86/boot/bzImage

Linux

Linux Linux Linux

Kernel: arch/x86/boot/bzImage is ready (#73)

bzlmage Linux headers modules

$ sudo make headers_install
$ sudo make modules_install

$ sudo make install

Linux bootloader /boot/grub2/grub.cfg Linux Fedora Ubuntu grub

#1/bin/bash

https://en.wikipedia.org/wiki/ARM_architecture#AArch64_features
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/GNU_GRUB

source "term-colors"

DISTRIBUTIVE=$(cat /etc/*-release | grep NAME | head -1 | sed -n -e 's/NAME\=//p')
echo -e "Distributive: ${Green}${DISTRIBUTIVE}${Color_Off}"

if [["$DISTRIBUTIVE" == "Fedora"]] ;
then

su -c 'grub2-mkconfig -o /boot/grub2/grub.cfg’
else

sudo update-grub
fi

echo "${Green}Done.${Color_oOff}"

Linux
Linux gemu - initrd initrd Linux initrd

busybox menuconfig

mkdir initrd

cd initrd

curl http://busybox.net/downloads/busybox-1.23.2.tar.bz2 | tar xjf -
cd busybox-1.23.2/

make menuconfig

make -j4

R R R - -

busybox - /bin/busybox coreutils busysbox Build BusyBox as a static binary (no shared libs)
make menuconfig

Settings

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </=>
for Search. Legend: [*] built-in [] excluded <M> module < >

r1C-)

--- Build Options
ﬂ*
] Force NOMMU build

Cross compiler prefix

Path to sysroot

Additional CFLAGS

Additional LDFLAGS

Additional LDLIBS

avold using GCC-specific code constructs

Use -mpreferred-stack-boundary=2 on 1386 arch

< Exit = < Help =

Busybox Settings
--> Build Options

https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/BusyBox
https://en.wikipedia.org/wiki/GNU_Core_Utilities

busysbox

$ make -j4
$ sudo make install

busybox initrd initrd

$cd ..

$ mkdir -p initramfs

$ cd initramfs

$ mkdir -pv {bin,sbin,etc,proc,sys,usr/{bin,sbin}}
$ cp -av ../busybox-1.23.2/_install/*

busybox bin sbin init init

#1/bin/sh

mount -t proc none /proc
mount -t sysfs none /sys

exec /bin/sh

initrd

procfs sysfs shell

$ find . -print® | cpio --null -ov --format=newc | gzip -9 > ~/dev/initrd_x86_64.gz

gemu Linux

$ gemu-system-x86_64 -snapshot -m 8GB -serial stdio -kernel ~/dev/linux/arch/x86_64/boot/bzImage -initrd ~/dev/initrd

_Xx86_64.g9z -append "root=/dev/sdal ignore_loglevel"

Machine View

linuxrc

Linux

QEMU b3

https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://en.wikipedia.org/wiki/QEMU

ivandaviov/minimal initrd

Linux

Linux (to do) (not to do)(to do) (todo) Linux Linux

Linus

$ git checkout master
$ git pull upstream master

Linux staging drivers/staging
Linux
Digi International EPCA PCI 295 dgap_sindex

static char *dgap_sindex(char *string, char *group)
{

char *ptr;

if (!string || !group)
return NULL;

for (; *string; string++) {
for (ptr = group; *ptr; ptr++) {
if (*ptr == *string)
return string;

}
}
return NULL;
}
group string Linux lib/string.c strpbrk

drivers/staging/dgap/dgap.c ~ dgap_sindex strpbrk

git Linux

$ git checkout -b "dgap-remove-dgap_sindex"

dgap_sindex strpbrk Linux dgap

Device Drivers
--> Staging drivers
----> Digi EPCA PCI products

staging

dgap_sinidex

Greg Kroah-Hartman

https://github.com/ivandavidov/minimal
https://github.com/torvalds/linux
https://github.com/torvalds/linux/tree/master/drivers/staging
https://en.wikipedia.org/wiki/Greg_Kroah-Hartman
https://lkml.org/
https://github.com/torvalds/linux/tree/master/drivers/staging/dgap
https://github.com/torvalds/linux/blob/master/lib/string.c#L473
https://github.com/torvalds/linux/blob/master/drivers/staging/dgap/dgap.c
https://github.com/torvalds/linux/tree/master/drivers/staging/dgap

Terminal

File Edit View Search Terminal Help

.config - Linux/x86 4.3.0-rcl Kernel Configuration
- Device Drivers - Staging drivers
Staging drivers
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

Android ----
GCT GDM72xx WiMAX support
GCT GDM724x LTE support
Lustre file system client support
Digi Neo and Classic PCI Products
<@> Digi EPCA PCI products
Xilinx FPGA firmware download module
Skein digest algorithm
Unisys SPAR driver support ----
Support for small TFT LCD display modules

< EXit > < Help > < Save > < Load >

$ git add .
$ git commit -s -v

$GIT_EDITOR $EDITOR -s Signed-off-by - 00cc1633 -v HEAD
[PATCH]

[PATCH] staging/dgap: Use strpbrk() instead of dgap_sindex()

The <linux/string.h> provides strpbrk() function that does the same that the
dgap_sindex(). Let's use already defined function instead of writing custom.

Sign-off-by 80 custom function removed git blame
format-patch

$ git format-patch master
0001-staging-dgap-Use-strpbrk-instead-of-dgap_sindex.patch

(master) format-patch dgap-remove-dgap_sindex master format-patch --

stdout

$ git format-patch master --stdout > dgap-patch-1.patch

Linux git git send-email linux-kernel@vger.kernel.org

get_maintainer.pl

$./scripts/get_maintainer.pl -f drivers/staging/dgap/dgap.c

https://github.com/torvalds/linux/commit/00cc1633816de8c95f337608a1ea64e228faf771
http://git-scm.com/docs/git-blame

Lidza Louina <lidza.louina@gmail.com> (maintainer:DIGI EPCA PCI PRODUCTS)
Mark Hounschell <markh@compro.net> (maintainer:DIGI EPCA PCI PRODUCTS)
Daeseok Youn <daeseok.youn@gmail.com> (maintainer:DIGI EPCA PCI PRODUCTS)
Greg Kroah-Hartman <gregkh@linuxfoundation.org> (supporter:STAGING SUBSYSTEM)
driverdev-devel@linuxdriverproject.org (open list:DIGI EPCA PCI PRODUCTS)
devel@driverdev.osuosl.org (open list:STAGING SUBSYSTEM)
linux-kernel@vger.kernel.org (open list)

$ git send-email --to "Lidza Louina <lidza.louina@gmail.com>" \
--cc "Mark Hounschell <markh@compro.net>"
--cc "Daeseok Youn <daeseok.youn@gmail.com>"
--cc "Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
--cc "driverdev-devel@linuxdriverproject.org"
--cc "devel@driverdev.osuosl.org"
--cc "linux-kernel@vger.kernel.org"

s s s s s

Linux () Linus

Linux

e Linux -

e Linux - scripts/checkpatch.pl

$./scripts/checkpatch.pl -f drivers/staging/dgap/dgap.c
WARNING: Block comments use * on subsequent lines

#94: FILE: drivers/staging/dgap/dgap.c:94:

+/*

+ SUPPORTED PRODUCTS

CHECK: spaces preferred around that '|' (ctx:VxV)
#143: FILE: drivers/staging/dgap/dgap.c:143:
+ { PPCM, PCI_DEV_XEM_NAME, 64, (T_PCXM|T_PCLITE|T_PCIBUS) },

git diff

~fdev/linux (dgap-remove-dgap sindex) $ git diff
diff --git a/init/main.c b/init/main.c

index 9e64d70..af379a5 100644

--- a/init/main.c
+++ b/init/main.c

EXPORT SYMBOL(reset devices);

static int __init set reset devices(char *str)

reset devices = 1;

return 1:

e Linus github pull requests

https://git.kernel.org/cgit/linux/kernel/git/gregkh/staging.git/commit/?h=staging-testing&id=b9f7f1d0846f15585b8af64435b6b706b25a5c0b
https://github.com/torvalds/linux/blob/master/Documentation/CodingStyle
https://github.com/torvalds/linux/blob/master/scripts/checkpatch.pl
https://github.com/torvalds/linux/pull/17#issuecomment-5654674

[} git format-patch VN N git format-patch

send-email --in-reply-to

| --> cover letter

|----> patch_1
|----> patch_2
message-id --in-reply-to git send-email
send-email format-patch git send-email
[]
e scripts Linux checkpatch.pl get_maintainer.pl
scripts Lorenzo Stoakes
e Linux 1kml Linux 1kml Linux
e Linux [PATCH vN] (N)

[PATCH v2] staging/dgap: Use strpbrk() instead of dgap_sindex()

Linux

Happy Hacking!

Linux Twitter

PR

e blog posts about assembly programming for x86_64
e Assembler

e distro

e package manager

e grub

e kernel.org

e version control system

e arm64

e bzlmage

e gemu

e initrd

e busybox

e coreutils

e procfs

e sysfs

e Linux kernel mail listing archive

e Linux kernel coding style guide

e How to Get Your Change Into the Linux Kernel
e Linux Kernel Newbies

e plain text

git format-patch

stackusage

--cover-letter

extract-vmlinux

git

https://en.wikipedia.org/wiki/Plain_text
http://git-scm.com/docs/git-send-email
http://git-scm.com/docs/git-format-patch
https://github.com/torvalds/linux/tree/master/scripts
https://github.com/torvalds/linux/blob/master/scripts/stackusage
https://github.com/torvalds/linux/blob/master/scripts/extract-vmlinux
https://github.com/lorenzo-stoakes/kernel-scripts
https://twitter.com/ljsloz
http://vger.kernel.org/vger-lists.html
https://twitter.com/0xAX
http://0xax.github.io/categories/assembly/
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/GNU_GRUB
https://kernel.org/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/ARM_architecture#AArch64_features
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Initrd
https://en.wikipedia.org/wiki/BusyBox
https://en.wikipedia.org/wiki/GNU_Core_Utilities
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Sysfs
https://lkml.org/
https://github.com/torvalds/linux/blob/master/Documentation/CodingStyle
https://github.com/torvalds/linux/blob/master/Documentation/SubmittingPatches
http://kernelnewbies.org/
https://en.wikipedia.org/wiki/Plain_text

Linux

463

Linux

Linux make
Makefile :) Makefile 1591 4.2.0
Makefile Linux Makefile Makefile tags make bzImage
make
make Makefile
Makefile vmlinux Makefile
VERSION = 4

PATCHLEVEL = 2

SUBLEVEL = 0

EXTRAVERSION = -rc3

NAME = Hurr durr I'ma sheep

Makefile KERNELVERSION

KERNELVERSION = $(VERSION)$(if $(PATCHLEVEL), .$(PATCHLEVEL)S$(if $(SUBLEVEL), .$(SUBLEVEL)))$(EXTRAVERSION)

ifeq make Makefile make help make make V=1 ifeq make V=n
ifeq ("$(origin V)", "command line")

KBUILD_VERBOSE = $(V)
endif

ifndef KBUILD_VERBOSE
KBUILD_VERBOSE = 0
endif

ifeq ($(KBUILD_VERBOSE),1)
quiet =
Q =
else
quiet=quiet_
Q=0

endif

export quiet Q KBUILD_VERBOSE

V=n make KBUILD_VERBOSE \% KBUILD_VERBOSE (c] KBUILD_VERBOSE quiet Q
@ CC scripts/mod/empty.o Compiling scripts/mod/empty.o LCTT CC Makefile
ifeq make 0=/dir dir

ifeq ($(KBUILD_SRC),)

ifeq ("$(origin 0)", "command line")

https://encrypted.google.com/search?q=building+linux+kernel#q=building+linux+kernel+from+source+code
https://github.com/torvalds/linux/blob/master/Makefile
https://en.wikipedia.org/wiki/Make_%28software%29
https://github.com/torvalds/linux/commit/52721d9d3334c1cb1f76219a161084094ec634dc
https://en.wikipedia.org/wiki/Ctags
https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/Make_%28software%29
https://en.wikipedia.org/wiki/Vmlinux
https://github.com/torvalds/linux/blob/master/Makefile

KBUILD_OUTPUT := $(0)
endif

ifneq ($(KBUILD_OUTPUT),)
saved-output := $(KBUILD_OUTPUT)
KBUILD_OUTPUT := $(shell mkdir -p $(KBUILD_OUTPUT) && cd $(KBUILD_OUTPUT) \
&& /bin/pwd)
$(if $(KBUILD_OUTPUT),, \
$(error failed to create output directory "$(saved-output)"))

sub-make: FORCE
(Q)(MAKE) -C $(KBUILD_OUTPUT) KBUILD_SRC=$(CURDIR) \
-f $(CURDIR)/Makefile $(filter-out _all sub-make, $(MAKECMDGOALS))

skip-makefile := 1
endif # ifneq ($(KBUILD_OUTPUT),)
endif # ifeq ($(KBUILD_SRC),)

KBUILD_SRC makefile KBUILD_OUTPUT 0 KBUILD_OUTPUT
° KBUILD_OUTPUT saved-output
[)
[)
° make -C

ifeq make c M

ifeq ("$(origin C)", "command line")

KBUILD_CHECKSRC = $(C)
endif

ifndef KBUILD_CHECKSRC
KBUILD_CHECKSRC = 0

endif

ifeq ("$(origin M)", "command line")
KBUILD_EXTMOD := $(M)

endif

c Makefile $CHECK ® sparse M

KBUILD_SRC KBUILD_SRC srctree

ifeq ($(KBUILD_SRC),)

srctree := .
endif
objtree =,
src := $(srctree)
obj 1= $(objtree)

export srctree objtree VPATH

Makefile make objtree suBArRcH LCTT CPU

SUBARCH := $(shell uname -m | sed -e s/i.86/x86/ -e s/x86_64/x86/ \
-e s/sundu/sparc64/ \
-e s/arm.*/arm/ -e s/sall®@/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ -e s/aarch64.*/armé64/)

uname uname SUBARCH SUBARCH SRCARCH hfr-arch SRCARCH

ifeq ($(ARCH),1386)
SRCARCH := x86

hfr-arch

https://en.wikipedia.org/wiki/Sparse
https://en.wikipedia.org/wiki/Uname

endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86

endif
hdr-arch := $(SRCARCH)
ARCH SUBARCH KCONFIG_CONFIG .config

KCONFIG_CONFIG ?= .config
export KCONFIG_CONFIG

shell

CONFIG_SHELL := $(shell if [-x "$$BASH"]; then echo $$BASH; \
else if [-x /bin/bash]; then echo /bin/bash; \
else echo sh; fi ; fi)

c C++

HOSTCC = gcc

HOSTCXX = g+t

HOSTCFLAGS = -Wall -Wmissing-prototypes -Wstrict-prototypes -02 -fomit-frame-pointer -std=gnu89

HOSTCXXFLAGS = -02

ccC HOST* ccC HOSTCC host

KBUILD_MODULES KBUILD_BUILTIN

KBUILD_MODULES :
KBUILD_BUILTIN := 1

ifeq ($(MAKECMDGOALS),modules)
KBUILD_BUILTIN := $(if $(CONFIG_MODVERSIONS),1)
endif

modules make KBUILD_BUILTIN CONFIG_MODVERSIONS

include scripts/Kbuild.include

Kbuild ~ Kernel Build System Kbuild Makefile scripts/Kbuild.include

binutils

AS $(CROSS_COMPILE)as

LD = $(CROSS_COMPILE)1d

GG = $(CROSS_COMPILE)gcc

CPP = $(cC) -E

AR = $(CROSS_COMPILE)ar

NM = $(CROSS_COMPILE)nm

STRIP = $(CROSS_COMPILE)strip
0BJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
AWK = awk

USERINCLUDE LINUXINCLUDE

Kbuild

Kbuild

https://en.wikipedia.org/wiki/Shell_%28computing%29
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/kbuild.txt
https://github.com/torvalds/linux/blob/master/scripts/Kbuild.include
http://www.gnu.org/software/binutils/

USERINCLUDE =\
-I$(srctree)/arch/$(hdr-arch)/include/uapi \
-Iarch/$(hdr-arch)/include/generated/uapi \
-I$(srctree)/include/uapi \
-Iinclude/generated/uapi \

-include $(srctree)/include/linux/kconfig.h

LINUXINCLUDE =\
-I$(srctree)/arch/$(hdr-arch)/include \

KBUILD_CFLAGS := -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs \
-fno-strict-aliasing -fno-common \
-Werror-implicit-function-declaration \
-Wno-format-security \

-std=gnu89

Makefile arch/ Kbuild Makefile

RCS_FIND_IGNORE RCS_TAR_IGNORE

export RCS_FIND_IGNORE := \(-name SCCS -0 -name BitKeeper -o -name .svn -0 \
-name CVS -0 -name .pc -0 -name .hg -o -name .git \) \
-prune -o
export RCS_TAR_IGNORE := --exclude SCCS --exclude BitKeeper --exclude .svn \
--exclude CVS --exclude .pc --exclude .hg --exclude .git

vmlinux

Makefile Makefile make Makefile 598 vmlinux

all: vmlinux
include arch/$(SRCARCH)/Makefile

export RCS_FIND_IGNORE..... all: vmlinux..... Makefile make *.config
all: Makefile arch/x86/Makefile Makefile all Makefile
vmlinux: scripts/link-vmlinux.sh $(vmlinux-deps) FORCE
vmlinux linux scripts/link-vmlinux.sh vmlinux
vmlinux-deps
vmlinux-deps := $(KBUILD_LDS) $(KBUILD_VMLINUX_INIT) $(KBUILD_VMLINUX MAIN)
built-in.o Kbuild $(obj-y) $(LD) -r build-in.o vmlinux-deps

vmlinux-deps

arch/x86/kernel/vmlinux.lds arch/x86/kernel/head_64.0
arch/x86/kernel/head64.0 arch/x86/kernel/head.o

init/built-in.o usr/built-in.o
arch/x86/built-in.o kernel/built-in.o
mm/built-in.o fs/built-in.o
ipc/built-in.o security/built-in.o

crypto/built-in.o block/built-in.o

vmlinux

vmlinux

https://github.com/torvalds/linux/blob/master/Makefile#L598
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/scripts/link-vmlinux.sh

1lib/1lib.a arch/x86/1ib/1ib.a

1lib/built-in.o arch/x86/1ib/built-in.o
drivers/built-in.o sound/built-in.o
firmware/built-in.o arch/x86/pci/built-in.o

arch/x86/power/built-in.o arch/x86/video/built-in.o
net/built-in.o

$(sort $(vmlinux-deps)): $(vmlinux-dirs) ;
$(vmlinux-dirs): prepare scripts
(Q)(MAKE) $(build)=$@

vmlinux-dir prepare scripts prepare Makefile

prepare: prepare0®
prepare@: archprepare FORCE
(Q)(MAKE) $(build)=.
archprepare: archheaders archscripts preparel scripts_basic

preparel: prepare2 $(version_h) include/generated/utsrelease.h \
include/config/auto.conf
$(cmd_crmodverdir)
prepare2: prepare3 outputmakefile asm-generic

prepare® archprepare archheader archscripts x86_64 Makefile x86_64 Makefile
(defconfig) 16-bit BITS 32 arch/x86/Makefile i386 64 x86_84

Makefile (syscall table) archheaders

archheaders:
(Q)(MAKE) $(build)=arch/x86/entry/syscalls all

Makefile archscripts

archscripts: scripts_basic
(Q)(MAKE) $(build)=arch/x86/tools relocs

archscripts Makefile scripts_basic scripts_basic scripts/basic Makefile make

scripts_basic:
(Q)(MAKE) $(build)=scripts/basic

scripts/basic/Makefile fixdep bin2
hostprogs-y 1= fixdep
hostprogs-$(CONFIG_BUILD_BIN2C) += bin2c
always 1= $(hostprogs-y)

$(addprefix $(obj)/,$(filter-out fixdep,$(always))): $(obj)/fixdep

fixdep gce make bin2c coNFI6_BUILD_BIN2C LCTT stdinstdout C C
hostprogs-y Kbuild documentation hostprogs-y Kbuild fixed
fixdep.c
make Kbuild
$ make

HOSTCC scripts/basic/fixdep

Makefile

https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/tree/master/arch/x86/configs
https://en.wikipedia.org/wiki/Real_mode
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/Makefile
https://github.com/torvalds/linux/blob/master/scripts/basic/Makefile
https://gcc.gnu.org/
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/makefiles.txt

script_basic archscripts make arch/x86/tools Makefile

(Q)(MAKE) $(build)=arch/x86/tools relocs

relocs_32.c relocs_64.c make

HOSTCC arch/x86/tools/relocs_32.0
HOSTCC arch/x86/tools/relocs_64.0
HOSTCC arch/x86/tools/relocs_common.o
HOSTLD arch/x86/tools/relocs

relocs.c version.h

$(version_h): $(srctree)/Makefile FORCE
$(call filechk,version.h)
$(Q)rm -f $(old_version_h)

CHK include/config/kernel.release
Makefile arch/x86/include/generated/asm asm-generic
prepare®

prepare@: archprepare FORCE
(Q)(MAKE) $(build)=.

build scripts/Kbuild.include

build := -f $(srctree)/scripts/Makefile.build obj

(Q)(MAKE) -f $(srctree)/scripts/Makefile.build obj=.

scripts/Makefile.build ~ obj Kbuild Kbuild

include $(kbuild-file)

kernel/bounds.s arch/x86/kernel/asm-offsets.s

scripts filealias mk_elfconfig modpost

vmlinux-dirs

init usr arch/x86 kernel mm fs ipc security crypto block
drivers sound firmware arch/x86/pci arch/x86/power
arch/x86/video net 1lib arch/x86/1ib

Makefile vmlinux-dirs

vmlinux-dirs 1= $(patsubst %/,%,$(filter %/, $(init-y) $(init-m) \
$(core-y) $(core-m) $(drivers-y) $(drivers-m) \

$(net-y) $(net-m) $(libs-y) $(libs-m)))

init-y 1= init/
drivers-y 1= drivers/ sound/ firmware/
net-y := net/

generic

Kbuild

scripts/host-programs

asm-generic

prepare

archprepare

vmlinux-dirs

vmlinux-dirs

https://github.com/torvalds/linux/blob/master/arch/x86/tools/Makefile
https://en.wikipedia.org/wiki/Relocation_%28computing%29
https://github.com/torvalds/linux/blob/master/scripts/Kbuild.include
https://github.com/torvalds/linux/blob/master/scripts/Makefile.build
https://github.com/torvalds/linux/blob/master/Kbuild
https://github.com/torvalds/linux/blob/master/Makefile

libs-y

patsubst

$(vmlinux

1= 1lib/

filter / vmlinux-dirs vmlinux-dirs

-dirs): prepare scripts

(Q)(MAKE) $(build)=$@

$@ vmlinux-dirs vmlinux-dirs make
cc init/main.o
CHK include/generated/compile.h
cc init/version.o
cc init/do_mounts.o
cc arch/x86/crypto/glue_helper.o
AS arch/x86/crypto/aes-x86_64-asm_64.0
cc arch/x86/crypto/aes_glue.o
AS arch/x86/entry/entry_64.0
AS arch/x86/entry/thunk_64.0
cc arch/x86/entry/syscall_64.0
built-io.o
$ find . -name built-in.o

./arch/x86/crypto/built-in.o
./arch/x86/crypto/sha-mb/built-in.o
./arch/x86/net/built-in.o
./init/built-in.o

./usr/built-in.o

built-in.o vmlinux vmlinux Makefile

vmlinux:

+$(ca

scripts/link-vmlinux.sh $(vmlinux-deps) FORCE

11 if_changed, link-vmlinux)

scripts/link-vmlinux.sh built-in.o System.map
LINK vmlinux
LD vmlinux.o
MODPOST vmlinux.o
GEN .version
CHK include/generated/compile.h
UPD include/generated/compile.h
cc init/version.o
LD init/built-in.o
KSYM .tmp_kallsyms1.0
KSYM .tmp_kallsyms2.0
LD vmlinux
SORTEX vmlinux
SYSMAP System.map
vmlinux System.map

vmlinux

samples , Documentation

https://github.com/torvalds/linux/tree/master/samples
https://github.com/torvalds/linux/tree/master/Documentation
https://github.com/torvalds/linux/blob/master/scripts/link-vmlinux.sh
https://en.wikipedia.org/wiki/System.map

$ 1s vmlinux System.map
System.map vmlinux

vmlinux bzImage.
bzIlmage
bzImage linux vmlinux make bzImage bzImage make bzImage

all: bzImage

bzImage arch/x86/kernel/Makefile

bzImage: vmlinux
(Q)(MAKE) $(build)=$(boot) $(KBUILD_IMAGE)
$(Q)mkdir -p $(objtree)/arch/$(UTS_MACHINE)/boot
$(Q)1n -fsn ../../x86/boot/bzImage $(objtree)/arch/$(UTS_MACHINE)/boot/$@

boot make

boot := arch/x86/boot

arch/x86/boot arch/x86/boot/compressed setup.bin vmlinux.bin

$(obj)/setup.elf

$(obj)/setup.elf: $(src)/setup.ld $(SETUP_OBJS) FORCE
$(call if_changed, 1d)

arch/x86/boot setup.1ld boot SETUP_OBJS
AS arch/x86/boot/bioscall.o

CC arch/x86/boot/cmdline.o

AS arch/x86/boot/copy.o

HOSTCC arch/x86/boot/mkcpustr
CPUSTR arch/x86/boot/cpustr.h

cc arch/x86/boot/cpu.o

cc arch/x86/boot/cpuflags.o

cc arch/x86/boot/cpucheck.o

cc arch/x86/boot/early_serial_console.o
cc arch/x86/boot/edd.o

arch/x86/boot/header.S

$(obj)/header.o: $(obj)/voffset.h $(obj)/zoffset.h

voffset.h sed nm vmlinux

#define VO__end oxffffffff82aboooo
#define VO__text Oxffffffff81000000

zoffset.h arch/x86/boot/compressed/Makefile ~ vmlinux

$(obj)/zoffset.h: $(obj)/compressed/vmlinux FORCE
$(call if_changed, zoffset)

arch/x86/kernel/Makefile

bzImage

arch/x86/boot/Makefile

https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/boot/Makefile
https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S
https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/Makefile

$(obj)/compressed/vmlinux vmlinux-objs-y —— arch/x86/boot/compressed vmlinux.bin vmlinux.bin.bz2

mkpiggy
LDS arch/x86/boot/compressed/vmlinux.lds
AS arch/x86/boot/compressed/head_64.0
cc arch/x86/boot/compressed/misc.o
cc arch/x86/boot/compressed/string.o
cc arch/x86/boot/compressed/cmdline.o

OBJCOPY arch/x86/boot/compressed/vmlinux.bin
BZIP2 arch/x86/boot/compressed/vmlinux.bin.bz2
HOSTCC arch/x86/boot/compressed/mkpiggy

vmlinux.bin vmlinux u32 LCTT 4-Byte vmlinux.bin.all vmlinux.bin.bz2
vmlinux.bin.all vmlinux.bin vmlinux.relocs LCTT vmlinux vmlinux.relocs vmlinux
relocs vmlinux piggy.S mkpiggy

MKPIGGY arch/x86/boot/compressed/piggy.S
AS arch/x86/boot/compressed/piggy.o

zoffset

ZOFFSET arch/x86/boot/zoffset.h

zoffset.h voffset.h arch/x86/boot
AS arch/x86/boot/header .o

cc arch/x86/boot/main.o

cc arch/x86/boot/mca.o

cc arch/x86/boot/memory.o

cc arch/x86/boot/pm.o

AS arch/x86/boot/pmjump.o

cc arch/x86/boot/printf.o

cc arch/x86/boot/regs.o

cc arch/x86/boot/string.o

cc arch/x86/boot/tty.o

cc arch/x86/boot/video.o

cc arch/x86/boot/video-mode.o
cc arch/x86/boot/video-vga.o
cc arch/x86/boot/video-vesa.o
cc arch/x86/boot/video-bios.o

setup.elf
LD arch/x86/boot/setup.elf

1d -m elf_x86_64 -T arch/x86/boot/setup.ld arch/x86/boot/a20.0 arch/x86/boot/bioscall.o arch/x86/boot/cmdline.o arc
h/x86/boot/copy.o arch/x86/boot/cpu.o arch/x86/boot/cpuflags.o arch/x86/boot/cpucheck.o arch/x86/boot/early_serial_co
nsole.o arch/x86/boot/edd.o arch/x86/boot/header.o arch/x86/boot/main.o arch/x86/boot/mca.o arch/x86/boot/memory.o ar
ch/x86/boot/pm.o arch/x86/boot/pmjump.o arch/x86/boot/printf.o arch/x86/boot/regs.o arch/x86/boot/string.o arch/x86/b
oot/tty.o arch/x86/boot/video.o arch/x86/boot/video-mode.o arch/x86/boot/version.o arch/x86/boot/video-vga.o arch/x86
/boot/video-vesa.o arch/x86/boot/video-bios.o -o arch/x86/boot/setup.elf

arch/x86/boot/* setup.bin

objcopy -0 binary arch/x86/boot/setup.elf arch/x86/boot/setup.bin

vmlinux vmlinux.bin

https://github.com/torvalds/linux/tree/master/arch/x86/boot/compressed
https://github.com/torvalds/linux/tree/master/arch/x86/boot/

objcopy -0 binary -R .note -R .comment -S arch/x86/boot/compressed/vmlinux arch/x86/boot/vmlinux.bin

arch/x86/boot/tools/build.c setup.bin vmlinux.bin bzImage

arch/x86/boot/tools/build arch/x86/boot/setup.bin arch/x86/boot/vmlinux.bin arch/x86/boot/zoffset.h arch/x86/boot/bzI
mage

bzImage setup.bin vmlinux.bin

Setup is 16268 bytes (padded to 16384 bytes).
System is 4704 kB

CRC 94a88f9a

Kernel: arch/x86/boot/bzImage is ready (#5)

make bzImage linux Makefile linux linux

LCTT Linux

e GNU make util

e Linux kernel top Makefile
e cross-compilation
o Ctags

® sparse

e bzlmage

e uname

o shell

e Kbuild

e binutils

e gcC

e Documentation

e System.map

o Relocation

https://github.com/torvalds/linux/blob/master/arch/x86/boot/tools/build.c
https://github.com/LCTT/TranslateProject
https://linux.cn/
https://en.wikipedia.org/wiki/Make_%28software%29
https://github.com/torvalds/linux/blob/master/Makefile
https://en.wikipedia.org/wiki/Cross_compiler
https://en.wikipedia.org/wiki/Ctags
https://en.wikipedia.org/wiki/Sparse
https://en.wikipedia.org/wiki/Vmlinux#bzImage
https://en.wikipedia.org/wiki/Uname
https://en.wikipedia.org/wiki/Shell_%28computing%29
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/kbuild.txt
http://www.gnu.org/software/binutils/
https://gcc.gnu.org/
https://github.com/torvalds/linux/blob/master/Documentation/kbuild/makefiles.txt
https://en.wikipedia.org/wiki/System.map
https://en.wikipedia.org/wiki/Relocation_%28computing%29

linux-insides

Linker

C 2.@ /

*-linkers
*--main.c
*--lib.c
*--1lib.h

main.c

#include <stdio.h>
#include "lib.h"
int main(int argc, char **argv) {

printf("factorial of 5 is: %d\n", factorial(5));
return 0;

lib.c

int factorial(int base) {
int res,i = 1;

if (base == 0) {

return 1;

}

while (i <= base) {
res *= i;
i++;

}

return res;

}
lib.h

#ifndef LIB_H
#define LIB_H

int factorial(int base);

#endif

main.c

$ gcc -c main.c

474

https://zh.wikipedia.org/wiki/%E9%93%BE%E6%8E%A5%E5%99%A8
https://en.wikipedia.org/wiki/Object_file

nm

$ nm -A main.o

main.o: U factorial
main.o:0000000000000000 T main
main.o: U printf
nm U T .text nm
e factorial - 1lib.c main.c lib.c
® main -;
® printf - glibc main.c
nm main.o 0000000000000000 main
$ objdump -S main.o
main.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 48 83 ec 10 sub $0x10, %rsp
8: 89 7d fc mov %edi, -0x4(%rbp)
b: 48 89 75 f0O mov %rsi, -0x10(%rbp)
f: bf 05 00 00 00 mov $0x5, %edi
14: e8 00 00 00 00 callg 19 <main+0x19>
19: 89 c6 mov %eax, %esi
1b: bf 00 00 00 00 mov $0x0, %edi
20: b8 00 00 00 00 mov $0x0, %eax
25: e8 00 00 00 00 callg 2a <main+0x2a>
2a: b8 00 00 00 00 mov $0x0, %eax
2f: c9 leaveq
30: c3 retq
callq callq objdump

$ objdump -S -r main.o

14: e8 00 00 00 00

15: R_X86_64_PC32

19: 89 c6

25: e8 00 00 00 00

26: R_X86_64_PC32

2a: b8 00 00 00 00
objdump -r --reloc

objdump

14: e8 00 00 00 00

15: R_X86_64_PC32

19: 89 c6

e8 00 00 00 0O e8 call

-mcmodel=small

callg 19 <main+0x19>
factorial-0x4

mov %eax, %esi

callg 2a <main+0x2a>
printf-ox4

mov $0x0, %eax

callg 19 <main+0x19>
factorial-ox4
mov %eax, %esi

eg8 00 00 00

main.c gcc

main.c

main.o

00 00 60 00 4 4

x86_64 64 8

https://en.wikipedia.org/wiki/GNU_C_Library
https://en.wikipedia.org/wiki/Opcode

-mcmodel=small

2GB 64

2GB 4

gcc gcc

call main.c

$ gcc main.c lib.c -o factorial | objdump -S factorial | grep factorial

factorial:

0000000000400506 <main>:
40051a: eg8 18 00 00 00

0000000000400537 <factorial>:

400550: 75 07
400557: eb 1b
400559: eb Qe
40056f : 7e ea

0X0000000000400506 0x0

main

objdump -S factorial | less

factorial:

Disassembly of section .init:

00000000004003a8 <_init>:

file format elf64-x86-64

file format elf64-x86-64

callg 400537 <factorial>

jne 400559 <factorial+Ox22>
jmp 400574 <factorial+Ox3d>
jmp 400569 <factorial+0x32>
jle 40055b <factorial+0Ox24>

glibc C -nostdlib

4003a8: 48 83 ec 08 sub $0x8, %rsp

4003ac: 48 8b 05 a5 05 20 00 mov 0x2005a5(%rip), %rax

glibc 0x00000000004003a8 readelf ELF
$ readelf -d factorial | grep \(INIT\)

0x000000000000000c (INIT) 0x4003a8

main 0000000000400506 .init factorial 0x0000000000400537
00 e8 call 18 00 00 00 X86_64 00 00 00 18 callq

>>> hex(+ Ci) == hex()

0x18 0x5 call 5 e8 18 00 00 00 0x18 factorial

GNU
GNU 1d gcc

$ gcc main.c lib.o -o factorial

factorial

gcc

main

.init objdump

factorial

factorial

600958 <_DYNAMIC+0x1do>

e8 18 00 00

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/GNU_linker

e factorial

./factorial
factorial of 5 is: 120

gcc GUN 1d

collect2

~$ /usr/lib/gcc/x86_64-1linux-gnu/4.9/collect2 --version
collect2 version 4.9.3

/usr/bin/1ld --version

GNU 1d (GNU Binutils for Debian) 2.25

gcc GUN 1d

1d main.o lib.o -o factorial

$ 1d main.o lib.o -o factorial

1d: warning: cannot find entry symbol _start; defaulting to 00000000004000b0O
main.o: In function “main':

main.c:(.text+0x26): undefined reference to “printf'

[} _start
° printf
_start main J _start _start crtl.0

$ objdump -S /usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-1linux-gnu/crtl.o

/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crtl.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <_start>:
0: 31 ed xor %ebp, %ebp
2: 49 89 di mov %rdx, %r9

1d

1d /usr/lib/gcc/x86_64-1linux-gnu/4.9/../../../x86_64-1linux-gnu/crtl.o0 \
main.o lib.o -o factorial

/usr/lib/gcc/x86_64-1linux-gnu/4.9/../../../x86_64-1linux-gnu/crtl.o0: In function "_start':
/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:115: undefined reference to "__libc_csu_fini'
/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:116: undefined reference to "__libc_csu_init'
/tmp/buildd/glibc-2.19/csu/../sysdeps/x86_64/start.S:122: undefined reference to "__libc_start_main'
main.o: In function "main':

main.c:(.text+0x26): undefined reference to “printf'

printf

® _ libc_csu_fini

® _ libc_csu_init

® _ libc_start_main

_start glibc sysdeps/x86_64/start.S

mov $__libc_csu_fini, %R8_LP
mov $__libc_csu_init, %RCX_LP

call _ libc_start_main

.init Lfini main csu/elf-init.c

® crtn.o;

® crti.o.
.nit fini _init _fini
crtn.o .init .fini

$ objdump -S /usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-1linux-gnu/crtn.o
0000000000000000 <.init>:

0: 48 83 c4 08 add $0x8, %rsp

4: c3 retq

Disassembly of section .fini:

0000000000000000 <.fini>:

0: 48 83 c4 08 add $0x8, %rsp
4: c3 retq

crti.o _init _fini

$ 1d \

/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crtl.o \
/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crti.o \
/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crtn.o main.o lib.o \
-o factorial

-1c 1d $LD_LIBRARY_PATH -lc

$ 1d \

/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crtl.o \
/usr/lib/gcc/x86_64-1linux-gnu/4.9/../../../x86_64-1linux-gnu/crti.o \
/usr/lib/gcc/x86_64-1linux-gnu/4.9/../../../x86_64-1linux-gnu/crtn.o main.o lib.o -1lc \
-o factorial

$./factorial
bash: ./factorial: No such file or directory

readelf

$ readelf -1 factorial

E1f file type is EXEC (Executable file)
Entry point 0x4003c0
There are 7 program headers, starting at offset 64

Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=0d27a38e9c02835ce17d1c9287aa01be222e72eb;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/elf-init.c;hb=1d4bbc54bd4f7d85d774871341b49f4357af1fb7
https://sourceware.org/binutils/docs/binutils/readelf.html

PHDR 0X0000000000000040 OXOOEOOOOOO00400040 OXOOEOOOEOO0400040
0X0000000000000188 OXO000O000000000188 R E 8

INTERP 0X00000000000001c8 OXO0OOOOOO004001c8 OXOOOOOOOO004001c8

0X000000000000001c OXO000OO0OOO000001C

[Requesting program interpreter: /1ib64/1d-1inux-x86-64.s0.2]

R 1

LOAD 0X0000000000000000 OXOOOOOOOOEO400000 OXOOOOOEEEEE400000
0X0000000000000610 OXOOOOOO0000000610 R E 200000

LOAD 0Xx0000000000000610 OXOOOOOOOOOO600610 OXOOOOOOEEEEE00610
0x00 00 0lcc OxOOOOO000 0lcc RW 200000

DYNAMIC 0X0000000000000610 OXOOOOOOOOOO600610 OXOOOOOOEEEEEO0610
0x00 00 0190 OXxOOOO0000 0190 RW 8

NOTE 0Ox00 00 0led4 Ox00 00004001e4 0OxO 000004001e4
0x00 00 0020 Ox0 00 0020 R 4

GNU_STACK 0x00 00 0000 0x0 00 0000 0x0 00 000
0x00 00 0000 O0x0 00 0000 RW 10

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt

t .fini .rodata .eh_frame

03 .dynamic .got .got.plt .data

04 .dynamic

05 .note.ABI-tag

06

INTERP 0x00 00 1c8 0x0 00004001c8 0x0 00004001c8
0x00 00 0lc Ox00 00 001c R 1

[Requesting program interpreter: /1ib64/1d-1inux-x86-64.s0.2]

elf .interp .interp

ascii

1inux-x86-64.s0.2 1d-1inux-x86-64.s0.2

$ gcc -c main.c lib.c

$ 1d \

Linux

readelf X86_64 /1ib64/1d-

-dynamic-linker 1d

/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crtl.o \
/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crti.o \
/usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crtn.o main.o lib.o \
-dynamic-linker /1ib64/1d-1inux-x86-64.s0.2 \

-1c -o factorial

$./factorial

factorial of 5 is: 120

main.c lib.c

$ file lib.o main.o

gce

main.o

lib.o

1lib.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped
main.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped

gcc GNU 1d C

GNU

GNU linker

-0 -dynamic-linker GNU 1d

.tex

GNU linker -0 <output> - 1d output -l<name> - -dynamic-1linker 1d

@file file linker.1ld

$ 1d @linker.1ld

-b --format ELF , DJGPP/COFF --oformat=output-format
--defsym --defsym=symbol=expression Linux ARM Makefile - arch/arm/boot/compressed/Makefile
LDFLAGS_vmlinux = --defsym _kernel_bss_size=$(KBSS_Sz)
.bss _kernel_bss_size
1dr r5, =_kernel_bss_size
-shared -M -map <filename>

$ 1d -M @linker.ld

.text 0X00000000004003cO 0x112
*(.text.unlikely .text.*_unlikely .text.unlikely.*)
(.text.exit .text.exit.?)

(.text.startup .text.startup.?)
(.text.hot .text.hot.)
(.text .stub .text. .gnu.linkonce.t.*)

.text 0x00000000004003c0O Ox2a /usr/lib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu/crtil.o
.text 0x00000000004003ea 0x31 main.o
0x00000000004003ea main
.text 0x000000000040041b 0x3f lib.o
0x000000000040041b factorial
GNU --help --version 1d GNU 1d 1d
1d AT&T
°
°
°
°
°
-T 1d SECTIONS . hello world
.data

.ascii "hello, world!\n"

.text

https://github.com/torvalds/linux/blob/master/arch/arm/boot/compressed/Makefile
https://github.com/torvalds/linux/blob/master/arch/arm/boot/compressed/head.S

.global _start

mov , %rax
mov ,%rdi
mov $msg, %rsi
mov , %rdx
syscall

mov , %rax
mov ,%rdi
syscall

$ as -0 hello.o hello.asm
$ 1d -0 hello hello.o

.text .data hello.asm
/*
* Linker script for the factorial
*/
OUTPUT (hello)

OUTPUT_FORMAT ("elf64-x86-64")
INPUT (hello.o)

SECTIONS
{
. = 0x200000;
.text @ {
*(.text)
}
. = 0x400000;
.data : {
*(.data)
}
}
[OUTPUT OUTPUT_FORMAT INPUT 1d SECTIONS
SECTIONS . = 0x200000 . 0x200000 . = 0x400000 0x400000 . = 0x200000
(.text) * *(.text) .text hello.o(.text) . = 0x400000

$ as -o hello.o hello.S && 1ld -T linker.script && ./hello
hello, world!

objdump .text 0Xx200000 .data 0x400000

$ objdump -D hello

Disassembly of section .text:

0000000000200000 <_start>:

200000: 48 c7 cO 01 00 00 00 mov $0x1, %rax

Disassembly of section .data:

0000000000400000 <msg>:
400000: 68 65 6Cc 6C 6T pushq $0x6f6c6C65

SECTIONS

.text

ASSERT (exp, message)

linux-insides Linux Linux

= ASSERT(hdr == 0x1f1, "The setup header has the wrong offset!");

INCLUDE filename 1d

symbol = expression ;
symbol += expression ;
symbol -= expression ;
symbol *= expression ;
symbol /= expression ;
symbol <<= expression ;
symbol >>= expression ;
symbol &= expression ;

symbol |= expression ;

START_ADDRESS = 0x200000;
DATA_OFFSET = 0x200000;

SECTIONS

{

PR

= START_ADDRESS;
.text @ {
*(.text)

= START_ADDRESS + DATA_OFFSET;
.data : {
*(.data)

ABSOLUTE -

ADDR -

ALIGN -

DEFINED - 1)
MAX and MIN -

NEXT -

SIZEOF -

linux-insides-zh

Book about Linux kernel insides
linker
object files

glibc

ox1f1 Linux

https://github.com/hust-open-atom-club/linux-insides-zh
https://en.wikipedia.org/wiki/Linker_%28computing%29
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/GNU_C_Library

opcode

ELF

GNU linker

My posts about assembly programming for x86_64

readelf

483

https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/GNU_linker
http://0xax.github.io/categories/assembly/
https://sourceware.org/binutils/docs/binutils/readelf.html

linux-insides-zh

Linux Linux

C main

int main(int argc, char *argv[]) {
// Entry point is here

main

int main(int argc, char *argv[]) {

gdb

return 0;

$ gcc -ggdb program.c -o program
$ gdb ./program
The target architecture is assumed to be i386:x86-64:intel
Reading symbols from ./program...done.

gdb

info files

(gdb) info files
Symbols from "/home/alex/program".
Local exec file:
“/home/alex/program', file type elf64-x86-64.

Entry point: 0x400430

0x0000000000400238
0x0000000000400254
0x0000000000400274
0x0000000000400298
0x00000000004002b8
0x0000000000400318
0x0000000000400358
0x0000000000400360
0x0000000000400380
0x0000000000400398
0X00000000004003c8
0x00000000004003T0
0X0000000000400420
0X0000000000400430
0X00000000004005e4
0x00000000004005T0
0X0000000000400610
0X0000000000400648
0X0000000000600e10
0X0000000000600e18
0X0000000000600e20
0X0000000000600e28
0x00000000006001T8
0X0000000000601000
0X0000000000601028
0X0000000000601034

0x0000000000400254
0x0000000000400274
0x0000000000400298
0x00000000004002b4
0x0000000000400318
0x0000000000400357
0x0000000000400360
0x0000000000400380
0x0000000000400398
0x60000000004003c8
0x00000000004003e2
0x0000000000400420
0x0000000000400428
0x00000000004005e2
0x00000000004005ed
0xX0000000000400610
0xX0000000000400644
0x000000000040073C
0x0000000000600e18
0x0000000000600€20
0x0000000000600e28
0x0000000000600TT8
0xX0000000000601000
0x0000000000601028
0xX0000000000601034
0x0000000000601038

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

.interp
.note.ABI-tag
.note.gnu.build-id
.gnu.hash
.dynsym
.dynstr
.gnu.version
.gnu.version_r
.rela.dyn
.rela.plt
.init

.plt

.plt.got
.text

.fini

.rodata
.eh_frame_hdr
.eh_frame
.init_array
.fini_array
.jer

.dynamic

.got

.got.plt
.data

.bss

https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%BB%9F%E8%B0%83%E7%94%A8
https://www.gnu.org/software/gdb/

Entry point: 0x400430

(gdb) break

*0x400430

Breakpoint 1 at 0x400430

(gdb) run

Starting program: /home/alex/program

Breakpoint 1, 0x0000000000400430 in _start ()

main

// program.

#include <s
#include <s

static int

int y = 2;

int main(in
int z =

_start

(o]

tdlib.h>
tdio.h>

x =1;

t argc, char *argv[]) {

2.
St

main

printf("x + y + z = %d\n", x +y + 2);

return

$ gcc -Wall

$./sum
X +y+2z-=

EXIT_SUCCESS;

program.c -o sum

6

- exec*

The exec() family of functions replaces the current process image with a new process image.

execve fil

SYSCALL_DEF

con
con
con
{
return
3
x86_64

start_thread

Linux

es/exec.c

INE3(execve,

st char __user *, filename,
st char __user *const __user
st char __user *const __user

do_execve(getname(filename),

do_execve

arch/x86/kernel/process_64.c

_start

*, argv,

*, envp)

argv, envp);

do_execve ELF

start_thread

https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%BB%9F%E8%B0%83%E7%94%A8
http://man7.org/linux/man-pages/man3/execl.3.html
https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%BB%9F%E8%B0%83%E7%94%A8
https://github.com/torvalds/linux/blob/master/fs/exec.c#L1859
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/X86-64
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/process_64.c#L231
https://en.wikipedia.org/wiki/X86_memory_segmentation

_start

$ gcc -wWall program.c -o sum

_start gcc verbose mode -V

gcc

$ gcc -v -ggdb program.c -o sum

/usr/libexec/gcc/x86_64-redhat-1inux/6.1.1/ccl -quiet -v program.c -quiet -dumpbase program.c -mtune=generic -march=x
86-64 -auxbase test -ggdb -version -o /tmp/ccvUWZKF.s

ccl © /tmp/ccvUWZKF. s GNU as

$ gcc -v -ggdb program.c -o sum

as -v --64 -o /tmp/cc79wzZSU.o0 /tmp/ccvUWZKF.s

collect2

$ gcc -v -ggdb program.c -o sum

/usr/libexec/gcc/x86_64-redhat-1linux/6.1.1/collect2 -plugin /usr/libexec/gcc/x86_64-redhat-1inux/6.1.1/1iblto_plugin.
so -plugin-opt=/usr/libexec/gcc/x86_64-redhat-1linux/6.1.1/1to-wrapper -plugin-opt=-fresolution=/tmp/ccLEGYra.res -plu
gin-opt=-pass-through=-1gcc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-1c -plugin-opt=-pass-through
=-1lgcc -plugin-opt=-pass-through=-1lgcc_s --build-id --no-add-needed --eh-frame-hdr --hash-style=gnu -m elf_x86_64 -dy
namic-linker /1ib64/1d-linux-x86-64.s0.2 -0 test /usr/lib/gcc/x86_64-redhat-linux/6.1.1/../../../../1ib64/crtl.0 /usr
/1ib/gcc/x86_64-redhat-1inux/6.1.1/../../../../1ib64/crti.o /usr/lib/gcc/x86_64-redhat-1inux/6.1.1/crtbegin.o -L/usr/
1lib/gcc/x86_64-redhat-1linux/6.1.1 -L/usr/lib/gcc/x86_64-redhat-linux/6.1.1/../../../../1ib64 -L/1lib/../1ib64 -L/usr/1
ib/../1ib64 -L. -L/usr/lib/gcc/x86_64-redhat-linux/6.1.1/../../.. /tmp/cc79wZSU.o -lgcc --as-needed -lgcc_s --no-as-n
eeded -1c -lgcc --as-needed -lgcc_s --no-as-needed /usr/lib/gcc/x86_64-redhat-1linux/6.1.1/crtend.o /usr/lib/gcc/x86_6
4-redhat-linux/6.1.1/../../../../1ib64/crtn.o

$ 1ldd program
linux-vdso.so.1 (0x00007ffc9afd2000)
libc.so.6 => /1ib64/1libc.s0.6 (0x00007f56b389b000)
/1ib64/1d-1inux-x86-64.50.2 (0x0000556198231000)

printf -nostdlib

$ gcc -nostdlib program.c -o program
/usr/bin/1d: warning: cannot find entry symbol _start; defaulting to 000000000040017c

https://en.wikipedia.org/wiki/Standard_library

/tmp/ccO2msGW.o: In function "main':
/home/alex/program.c:11: undefined reference to “printf'
collect2: error: 1d returned 1 exit status

_start _start

$ gcc -nostdlib -1lc -ggdb program.c -o program
/usr/bin/1d: warning: cannot find entry symbol _start; defaulting to 0000000000400350

/usr/1ib64/1ibc.so0.6 _start gcc collect2 /1ib64/crtl.o

objdump _start

$ objdump -d /1lib64/crtil.o

/1ib64/crtil.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <_start>:

0: 31 ed xor %ebp, %ebp
2: 49 89 di mov %rdx, %r9
5: 5e pop %rsi
6: 48 89 e2 mov %rsp, %rdx
9: 48 83 e4 foO and $OxFFFFffffffrfffffo,%rsp
d: 50 push %rax
e: 54 push %rsp
f: 49 c7 cO 00 00 0O 00 mov $0x0,%r8

16: 48 c7 cl1 00 00 0O 00 mov $0x0, %rex

1d: 48 c7 c7 00 00 0O 00 mov $0x0, %rdi

24: e8 00 00 00 00 callg 29 <_start+0x29>

29: f4 hlt

crti.o _start _start sysdeps/x86_64/start.S
_start ebp ABI)

xorl %ebp, %ebp

ro

mov %RDX_LP, %R9_LP

ELF

After the dynamic linker has built the process image and performed the relocations, each shared object gets the opportunity to
execute some initialization code. ... Similarly, shared objects may have termination functions, which are executed with the atexit

(BA_OS) mechanism after the base process begins its termination sequence.
ro __libc_start_main rdx %rdx %rsp _start __libc_start_main

__libc_start_main csu/libe-start.c

STATIC int LIBC_START_MAIN (int (*main) (int, char **, char **),
int argc,
char **argv,
__typeof (main) init,
void (*fini) (void),
void (*rtld_fini) (void),
void *stack_end)

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/libc-start.c;h=0fb98f1606bab475ab5ba2d0fe08c64f83cce9df;hb=HEAD

It takes address of the main function of a program, argc and argv . init and fini functions are constructor and destructor of
the program. The rtld_fini is termination function which will be called after the program will be exited to terminate and free
dynamic section. The last parameter of the _ libc_start_main is the pointer to the stack of the program. Before we can call the

_ libc_start_main function, all of these parameters must be prepared and passed to it. Let's return to the sysdeps/x86_64/start.S

assembly file and continue to see what happens before the _ 1ibc_start_main function will be called from there.

main argc argv init fini rtld_fini __libc_start_main _ _libc_start_main
sysdeps/x86_64/start.S __libc_start_main
_ libc_start_main _start
focoooocoooooscoo0 +
| NULL |
focooooooooooscoo0 +
| envp |
focooooocooooscooo +
| NULL |
e e e e e e e e —am
| argv | <- rsp
e e e e e e e e —am
| argc |
TP +
ebp r9 rsi rsp argv rsi
TP +
| NULL |
T P +
| envp |
TP +
| NULL |
e e e e e a -
| argv | <- rsp
L TP +
argv rdx

popq %rsi
mov %RSP_LP, %RDX_LP

argc argv ABI 16 rax

and $~15, %RSP_LP
pushq %rax

pushq %rsp

mov $__libc_csu_fini, %R8_LP
mov $__libc_csu_init, %RCX_LP
mov $main, %RDI_LP

rg rex main rdi csu/libe-start.c __libc_start_main

_ libc_start_main /1ib64/crti.o

$ gcc -nostdlib /1ib64/crtl.o -1lc -ggdb program.c -o program
/1ib64/crti1.0: In function "_start':

(.text+0x12): undefined reference to °__libc_csu_fini'
/1ib64/crtl1.0: In function "_start':
(.text+0x19): undefined reference to "__libc_csu_init'

collect2: error: 1d returned 1 exit status

- __libc_csu_fini __libc_csu_init __libc_start_main C ELF

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/libc-start.c;h=0fb98f1606bab475ab5ba2d0fe08c64f83cce9df;hb=HEAD
http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf

After the dynamic linker has built the process image and performed the relocations, each shared object gets the opportunity to
execute some initialization code. ... Similarly, shared objects may have termination functions, which are executed with the atexit

(BA_OS) mechanism after the base process begins its termination sequence.
.text , .data

e .init

e .fini
We can find it with readelf util:

readelf

$ readelf -e test | grep init
[11] .init PROGBITS 00000000004003Cc8 0OOOO3C8

$ readelf -e test | grep fini
[15] .fini PROGBITS 0000000000400504 00000504

/ errno
main .init Lfini /1ib64/crti.o

$ gcc -nostdlib /1ib64/crtl.o /lib64/crti.o -lc -ggdb program.c -o program

$./program
Segmentation fault (core dumped)

segmentation fault objdump 1ib64/crti.o
$ objdump -D /1lib64/crti.o

/1ib64/crti.o: file format elf64-x86-64

Disassembly of section .init:

0000000000000000 <_init>:

0: 48 83 ec 08 sub $0x8,%rsp

4: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # b <_init+0xb>
b: 48 85 c0O test %rax,%rax

e: 74 05 je 15 <_init+0x15>
10: e8 00 00 00 00 callg 15 <_init+Ox15>

Disassembly of section .fini:

0000000000000000 <_fini>:
0: 48 83 ec 08 sub $0x8, %rsp

/1ib64/crti.o .init .fini sysdeps/x86_64/crti.S

.section .init,"ax",@progbits
.p2align 2
.globl _init
.type _init, @function
_init:
subq $8, %rsp
movg PREINIT_FUNCTION@GOTPCREL(%rip), %rax
testq %rax, %rax
je .Lno_weak_fn
call *%rax
.Lno_weak_fn:

http://man7.org/linux/man-pages/man3/errno.3.html
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crti.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD

call PREINIT_FUNCTION

.init 16 PREINIT_FUNCTION

00000000004003¢c8 <_init>:

4003c8: 48 83 ec 08 sub $0x8, %rsp

4003cc: 48 8b 05 25 Oc 20 00 mov 0Xx200c25(%rip), %rax # 600ff8 <_DYNAMIC+Ox1d0>
4003d3: 48 85 cO test %rax, %rax

4003d6: 74 05 je 4003dd <_init+0x15>

4003d8: e8 43 00 00 00 callg 400420 <__libc_start_main@plt+0x10>

4003dd: 48 83 c4 08 add $0x8, %rsp

4003e1l: c3 retq

where the PREINIT_FUNCTION isthe _ gmon_start__ which does setup for profiling. You may note that we have no return instruction
in the sysdeps/x86_64/crti.S. Actually that's why we got segmentation fault. Prolog of _init and _fini is placed in the
sysdeps/x86_64/crtn.S assembly file:

PREINIT_FUNCTION __gmon_start__ sysdeps/x86_64/crti.S return segmentation fault

_init _fini sysdeps/x86_64/crtn.S

.section .init,"ax",@progbits
addq , %rsp
ret

.section .fini,"ax",@progbits

addq , %rsp
ret

$ gcc -nostdlib /1ib64/crtl.o /lib64/crti.o /1ib64/crtn.o -lc -ggdb program.c -o program

$./program
X+y+2z=6

_start main

_start 1d .text

$ 1d --verbose | grep ENTRY
ENTRY(_start)

_start sysdeps/x86_64/start.S __libc_start_main argc/argv csu/libc-start.c __1libc_start_main

stack canary main main

result = main (argc, argv, __environ MAIN_AUXVEC_PARAM);
exit (result);

e system call
e gdb

® execve

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crti.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crtn.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crti.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/crtn.S;h=e9d86ed08ab134a540e3dae5f97a9afb82cdb993;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/start.S;h=f1b961f5ba2d6a1ebffee0005f43123c4352fbf4;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=csu/libc-start.c;h=0fb98f1606bab475ab5ba2d0fe08c64f83cce9df;hb=HEAD
https://en.wikipedia.org/wiki/System_call
https://www.gnu.org/software/gdb/
http://linux.die.net/man/2/execve

ELF

x86_64

segment registers
context switch
System V ABI

491

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/Context_switch
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

Linux

linux-insides-zh Linux (Interrupt Descriptor Table), (Global Descriptor Table)

Intel AMD

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/resources/developer-guides-manuals/

IDT

e -sync
e -sync

® -async

o - %rip
o - %rip
o -

RFLAGS.IF =1 RFLAGS.IF

NMIrFLAGS.IF NMINMIIRET

25632 arch / x86 / include / asm / traps.h

VARVARY

enum {
X86_TRAP_DE = @, /* e, */
X86_TRAP_DB, /e oa,
X86_TRAP_NMI, 72 8, °f
X86_TRAP_BP, 7/~
X86_TRAP_OF, 7R b,
X86_TRAP_BR, /* 5, */
X86_TRAP_UD, /* 6, */
X86_TRAP_NM, 72 T, S
X86_TRAP_DF, 7~eoB,
X86_TRAP_OLD_MF, /* 9, */
X86_TRAP_TS, /* 18, TSS */
X86_TRAP_NP, 72 ady, S
X86_TRAP_SS, 72 92,
X86_TRAP_GP, 7R a3,
X86_TRAP_PF, /* 14, */
X86_TRAP_SPURIOUS, /* 15, */
X86_TRAP_MF, /* 16, x87 */
X86_TRAP_AC, 72 97,
X86_TRAP_MC, /* 18, */
X86_TRAP_XF, /* 19, SIMD */
X86_TRAP_IRET = 32, /* 32, IRET */

+

Error code

.

.

31 16 15 3 2 1

http://lxr.free-electrons.com/source/arch/x86/include/asm/traps.h#L121

e EXT -10

e IDT - 1“7 0“”“LDT”“TI”

e TI -1“LDT” 0“GDT”

e Selector Index - “GDT““LDT”“IDT”“IDT”“TI”

31 4 3 2 1 0
IO D O000Co0C00CC00000000000C0000000000000000C00000000000C0C000000000005000000C000 +
| | [RITUIRI] -]
| Reserved /D | s|-1]-1P]|
| | [vis|w]-]
I e C O 0000000000000 000000000C0000000000000000C00000000000C0C000000000000000000C000 +
e I/D -1
e RSV -11;
e u/s -0 cpL=o90,12 1ICPL=3
e R/W -01
e P -01
Interrupt Control Transfers
IDT
® Task Gate -TSS
® Interrupt Gate -
® Trap Gate -
127 96
Pocoossocnoaocono0nooc00aoEE000000E000Ec0000c00000000000c000000000000s0000000000 +
| |
| Reserved |
| |
e mm e m o —m - —
95 64
Poooossocnonoconoonooc0oacCE000000EE00Ec0000c00000000000c000000000000s0000000000 +
| |
| offset 63..32 |
| |
L L L T T e - L T T e L L e L E L +
63 48 47 46 44 42 39 34 32
T L L L e - Lo S +
		[[
Offset 31..16	P	P	@	Type	00 0	0] 0	IST
		[[
___ +							
31 16 15 0							
L T £ L e L L e e L o ey +							
Segment Selector	offset 15..0						
T = L e L L R o +

® Selector -

e Offset -

e DPL -
e P -
e IST -

e TYPE - LDTTSS

10T Linux x86_64

struct {
ul6 offset_low;
ulé segment;
unsigned ist : 3, zero® : 5, type : 5, dpl : 2, p
ul6 offset_middle;
u32 offset_high;
u32 zerol;
} __attribute__((packed));

arch/x86/include/asm/desc_defs.h

1ST /

struct {
ul6 limitoe;
ul6é base0;
unsigned basel : 8, type : 5, dpl : 2, p : 1;
unsigned limitl : 4, zero® : 3, g : 1, base2 : 3;
u32 base3;
u32 zeroil;

} __attribute_ ((packed));

Exceptions During a Task Switch

TSSTSS

Nonmaskable interrupt

API

Interrupt Stack Table

http://lxr.free-electrons.com/source/arch/x86/include/asm/desc_defs.h#L51

Linux

Linux/x86 boot protocol

e Linux kernel parameters

e 64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

e 8250 UART Programming
e Serial ports on OSDEV

VGA

e Video Graphics Array (VGA)

10

e]O port programming

GCC and GAS

GCC type attributes

o Assembler Directives

e task_struct definition

e PowerPC and Linux Kernel Inside

o Linux x86 Program Start Up

e Memory Layout in Program Execution (32 bits)

496

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://en.wikibooks.org/wiki/Serial_Programming/8250_UART_Programming#UART_Registers
http://wiki.osdev.org/Serial_Ports
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://www.tldp.org/HOWTO/text/IO-Port-Programming
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
http://www.chemie.fu-berlin.de/chemnet/use/info/gas/gas_toc.html#TOC65
http://lxr.free-electrons.com/source/include/linux/sched.h#L1274
http://www.systemcomputing.org/ppc/
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://fgiasson.com/articles/memorylayout.txt

497

0

@xingiu
@lijiangsheng1
@littleneko
@qianmoke
(@icecoobe
@choleraehyq
@mudongliang
@oska874
@cloudusers
@hailincai
@zmj1316
(@zhangyangjing
@huxq
@worldwar
@keltoy
@alickgu0
(@hao-lee
@woodpenker
@tm-1990
(@up2wing
@NeoCui
(@narcijie

@biopuppet

@Albertchamberlain

(@nannxnann

498

https://github.com/xinqiu
https://github.com/lijiangsheng1
https://github.com/littleneko
https://github.com/qianmoke
https://github.com/icecoobe
http://github.com/choleraehyq
https://github.com/mudongliang
https://github.com/oska874
https://github.com/cloudusers
https://github.com/hailincai
https://github.com/zmj1316
https://github.com/zhangyangjing
https://github.com/huxq
https://github.com/worldwar
https://github.com/keltoy
https://github.com/a1ickgu0
https://github.com/hao-lee
http://github.com/woodpenker
http://github.com/tjm-1990
https://github.com/up2wing
https://github.com/NeoCui
https://github.com/narcijie
https://github.com/biopuppet
https://github.com/Albertchamberlain
https://github.com/nannxnann

	简介
	引导
	从引导加载程序内核
	在内核安装代码的第一步
	视频模式初始化和转换到保护模式
	过渡到 64 位模式
	内核解压缩

	初始化
	内核解压之后的首要步骤
	早期的中断和异常控制
	在到达内核入口之前最后的准备
	内核入口 - start_kernel
	体系架构初始化
	进一步初始化指定体系架构
	最后对指定体系架构初始化
	调度器初始化
	RCU 初始化
	初始化结束

	中断
	中断和中断处理第一部分
	深入 Linux 内核中的中断
	初步中断处理
	中断处理
	异常处理的实现
	处理不可屏蔽中断
	深入外部硬件中断
	IRQs的非早期初始化
	Softirq, Tasklets and Workqueues
	最后一部分

	系统调用
	系统调用概念简介
	Linux 内核如何处理系统调用
	vsyscall and vDSO
	Linux 内核如何运行程序
	open 系统调用的实现

	定时器和时钟管理
	简介
	时钟源框架简介
	The tick broadcast framework and dyntick
	定时器介绍
	Clockevents 框架简介
	x86 相关的时钟源
	Linux 内核中与时钟相关的系统调用

	同步原语
	自旋锁简介
	队列自旋锁
	信号量
	互斥锁
	读者/写者信号量
	顺序锁

	内存管理
	内存块
	固定映射地址和 ioremap
	kmemcheck

	控制组
	控制组简介

	概念
	每个 CPU 的变量
	CPU 掩码
	initcall 机制
	Linux 内核的通知链

	Linux 内核中的数据结构
	双向链表
	基数树
	位数组

	理论
	分页
	ELF 文件格式
	內联汇编

	杂项
	Linux 内核开发
	内核编译方法
	链接器
	用户空间的程序启动过程

	内核数据结构
	中断描述符表

	有帮助的链接
	贡献者

