mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-11 06:26:05 +08:00
added documentations, to match the typical structure
Added @brief @details @author @param @returns
This commit is contained in:
@@ -1,22 +1,46 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
/**
|
||||
* @file
|
||||
* @brief [DSU(Disjoint sets)](https://en.wikipedia.org/wiki/Disjoint-set-data_structure)
|
||||
* @details
|
||||
* dsu : It is a very powerful data structure which keeps track of different
|
||||
* clusters(sets) of elements, these sets are disjoint(doesnot have a common element).
|
||||
* Disjoint sets uses cases : for finding connected components in a graph,
|
||||
* used in Kruskal's algorithm for finding Minimum Spanning tree.
|
||||
* Operations that can be performed:
|
||||
* 1) UnionSet(i,j): add(element i and j to the set)
|
||||
* 2) findSet(i): returns the representative of the set to which i belogngs to.
|
||||
* 3) get_max(i),get_min(i) : returns the maximum and minimum
|
||||
* Below is the class-based approach which uses the heuristic of path compression.
|
||||
* Using path compression in findSet(i),we are able to get to the representative of i
|
||||
* in O(1) time.
|
||||
* @author [AayushVyasKIIT](https://github.com/AayushVyasKIIT)
|
||||
* @see dsu_union_rank.cpp
|
||||
*/
|
||||
|
||||
#include <iostream> ///for io
|
||||
#include <vector> ///for using vectors
|
||||
|
||||
using std::cout;
|
||||
using std::endl;
|
||||
using std::vector;
|
||||
|
||||
//Disjoint set union
|
||||
class DSU{
|
||||
/**
|
||||
* @brief Disjoint sets union data structure, class based representation.
|
||||
* @param n number of elements
|
||||
*/
|
||||
class dsu{
|
||||
private:
|
||||
// p: keeps track of parent of i
|
||||
// depth: tracks the depth of i
|
||||
// setSize: size of each chunk(set)
|
||||
// maxElement : max of each set, using maxElement[representative]
|
||||
// minElement : min of each set, using minElement[representative]
|
||||
vector<int> p,depth,setSize,maxElement,minElement;
|
||||
vector<int> p; ///<keeps track of the parent of ith element
|
||||
vector<int> depth; ///<tracks the depth(rank) of i in the tree
|
||||
vector<int> setSize;///<size of each chunk(set)
|
||||
vector<int> maxElement;/// <maximum of each set to which i belongs to
|
||||
vector<int> minElement;/// <minimum of each set to which i belongs to
|
||||
public:
|
||||
// parameter : int n -> maximum number of items
|
||||
explicit DSU(int n){
|
||||
/**
|
||||
* @brief contructor for initialising all data members.
|
||||
* @param n number of elements
|
||||
*/
|
||||
explicit dsu(int n){
|
||||
p.assign(n,0);
|
||||
//initially all of them are their own parents.
|
||||
for(int i=0;i<n;i++){
|
||||
@@ -38,15 +62,25 @@ class DSU{
|
||||
}
|
||||
}
|
||||
|
||||
//returns the leader/representative of the set
|
||||
/**
|
||||
* @brief Method to find the representative of the set to which i belongs to, T(n) = O(1)
|
||||
* @param i element of some set
|
||||
* @returns representative of the set to which i belongs to.
|
||||
*/
|
||||
int findSet(int i){
|
||||
/// using path compression
|
||||
if(p[i]==i){
|
||||
return i;
|
||||
}
|
||||
//path compression i -> root(representative)
|
||||
return (p[i] = findSet(p[i]));
|
||||
}
|
||||
//union of 2 sets
|
||||
/**
|
||||
* @brief Method that combines two disjoint sets to which i and j belongs to
|
||||
* and make a single set having a common representative.
|
||||
* @param i element of some set
|
||||
* @param j element of some set
|
||||
* @returns void
|
||||
*/
|
||||
void UnionSet(int i,int j){
|
||||
//check if both belongs to same set or not
|
||||
if(isSame(i,j)){
|
||||
@@ -75,37 +109,61 @@ class DSU{
|
||||
maxElement[y] = std::max(maxElement[x],maxElement[y]);
|
||||
minElement[y] = std::min(minElement[x],minElement[y]);
|
||||
}
|
||||
//checks if both belongs to same set
|
||||
/**
|
||||
* @brief A utility function which check whether i and j belongs to
|
||||
* same set or not
|
||||
* @param i element of some set
|
||||
* @param j element of some set
|
||||
* @returns `true` if element i and j are in same set
|
||||
* @returns `false` if element i and j are not in same set
|
||||
*/
|
||||
bool isSame(int i,int j){
|
||||
if(findSet(i) == findSet(j)){
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
//returns min max size of i's set
|
||||
/**
|
||||
* @brief prints the minimum, maximum and size of the set to which i belongs to
|
||||
* @param i element of some set
|
||||
* @returns void
|
||||
*/
|
||||
void get(int i){
|
||||
cout << "min:" << get_min(i) << " max:" << get_max(i) << " size of set:" <<size(i) << endl;
|
||||
}
|
||||
//number of elements of each set
|
||||
/**
|
||||
* @brief A utility function that returns the size of the set to which i belongs to
|
||||
* @param i element of some set
|
||||
* @returns size of the set to which i belongs to
|
||||
*/
|
||||
int size(int i){
|
||||
return setSize[findSet(i)];
|
||||
}
|
||||
//returns max of the set whose part is i
|
||||
/**
|
||||
* @brief A utility function that returns the max element of the set to which i belongs to
|
||||
* @param i element of some set
|
||||
* @returns maximum of the set to which i belongs to
|
||||
*/
|
||||
int get_max(int i){
|
||||
return maxElement[findSet(i)];
|
||||
}
|
||||
//returns min of the set whose part is i
|
||||
/**
|
||||
* @brief A utility function that returns the min element of the set to which i belongs to
|
||||
* @param i element of some set
|
||||
* @returns minimum of the set to which i belongs to
|
||||
*/
|
||||
int get_min(int i){
|
||||
return minElement[findSet(i)];
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
//T(n) = O(n)
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
* */
|
||||
int main(){
|
||||
int n = 10;
|
||||
//n: number of items
|
||||
DSU d(n+1);
|
||||
int n = 10;///< number of items
|
||||
dsu d(n+1);///< object of class disjoint sets
|
||||
//set 1
|
||||
cout << "set 1:"<<endl;
|
||||
d.UnionSet(1,2); //performs union operation on 1 and 2
|
||||
|
||||
Reference in New Issue
Block a user