diff --git a/DIRECTORY.md b/DIRECTORY.md index cf1621932..ebe776444 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -255,6 +255,7 @@ * [Bucket Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/bucket_sort.cpp) * [Cocktail Selection Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/cocktail_selection_sort.cpp) * [Comb Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/comb_sort.cpp) + * [Count Inversions](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/count_inversions.cpp) * [Counting Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/counting_sort.cpp) * [Counting Sort String](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/counting_sort_string.cpp) * [Cycle Sort](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/sorting/cycle_sort.cpp) diff --git a/sorting/count_inversions.cpp b/sorting/count_inversions.cpp new file mode 100644 index 000000000..2619bdab7 --- /dev/null +++ b/sorting/count_inversions.cpp @@ -0,0 +1,275 @@ +/** + * @file + * @brief Counting Inversions using [Merge + Sort](https://en.wikipedia.org/wiki/Merge_sort) + * + * @details + * Program to count the number of inversions in an array + * using merge-sort. + * + * The count of inversions help to determine how close the array + * is to be sorted in ASCENDING order. + * + * two elements a[i] and a[j] form an inversion if `a[i]` > `a[j]` and i < j + * + * Time Complexity --> `O(n.log n)` + + * Space Complexity --> `O(n)` ; additional array `temp[1..n]` + * ### Algorithm + + * 1. The idea is similar to merge sort, divide the array into two equal or + almost + * equal halves in each step until the base case is reached. + * 2. Create a function merge that counts the number of inversions when two + halves of + * the array are merged, create two indices i and j, i is the index for + first half + * and j is an index of the second half. if `a[i]` is greater than `a[j]`, + then there are (mid – i) + * inversions, Because left and right subarrays are sorted, so all the + remaining elements + * in left-subarray (a[i+1], a[i+2] … a[mid]) will be greater than a[j]. + * 3. Create a recursive function to divide the array into halves and find the + answer by summing + * the number of inversions is the first half, number of inversion in the + second half and + * the number of inversions by merging the two. + * 4. The base case of recursion is when there is only one element in the + given half. + * 5. Print the answer + * + * @author [Rakshit Raj](https://github.com/rakshitraj) + */ +#include /// for assert +#include /// for typedef datatype uint64_t +#include /// for IO operations +#include /// for std::vector + +/** + * @namespace sorting + * @brief Sorting algorithms + */ +namespace sorting { +/** + * @namespace inversion + * @brief Functions for counting inversions using Merge Sort algorithm + */ +namespace inversion { + +// Functions used ---> +// int mergeSort(int* arr, int* temp, int left, int right); +// int merge(int* arr, int* temp, int left, int mid, int right); +// int countInversion(int* arr, const int size); +// void show(int* arr, const int size); + +/** + * @brief Function to merge two sub-arrays. + * + * @details + * merge() function is called from mergeSort() + * to merge the array after it split for sorting + * by the mergeSort() funtion. + * + * In this case the merge fuction will also count and return + * inversions detected when merging the sub arrays. + * + * @param arr input array, data-menber of vector + * @param temp stores the resultant merged array + * @param left lower bound of `arr[]` and left-sub-array + * @param mid midpoint, upper bound of left sub-array, + * `(mid+1)` gives the lower bound of right-sub-array + * @param right upper bound of `arr[]` and right-sub-array + * @returns number of inversions found in merge step + */ +template +uint32_t merge(T* arr, T* temp, uint32_t left, uint32_t mid, uint32_t right) { + uint32_t i = left; /* i --> index of left sub-array */ + uint32_t j = mid + 1; /* j --> index for right sub-array */ + uint32_t k = left; /* k --> index for resultant array temp */ + uint32_t inv_count = 0; // inversion count + + while ((i <= mid) && (j <= right)) { + if (arr[i] <= arr[j]) { + temp[k++] = arr[i++]; + } else { + temp[k++] = arr[j++]; + inv_count += + (mid - i + + 1); // tricky; may vary depending on selection of sub-array + } + } + // Add remaining elements from the larger subarray to the end of temp + while (i <= mid) { + temp[k++] = arr[i++]; + } + while (j <= right) { + temp[k++] = arr[j++]; + } + // Copy temp[] to arr[] + for (k = left; k <= right; k++) { + arr[k] = temp[k]; + } + return inv_count; +} + +/** + * @brief Implement merge Sort and count inverions while merging + * + * @details + * The mergeSort() function implements Merge Sort, a + * Divide and conquer algorithm, it divides the input + * array into two halves and calls itself for each + * sub-array and then calls the merge() function to + * merge the two halves. + * + * @param arr - array to be sorted + * @param temp - merged resultant array + * @param left - lower bound of array + * @param right - upper bound of array + * @returns number of inversions in array + */ +template +uint32_t mergeSort(T* arr, T* temp, uint32_t left, uint32_t right) { + uint32_t mid = 0, inv_count = 0; + if (right > left) { + // midpoint to split the array + mid = (right + left) / 2; + // Add inversions in left and right sub-arrays + inv_count += mergeSort(arr, temp, left, mid); // left sub-array + inv_count += mergeSort(arr, temp, mid + 1, right); + + // inversions in the merge step + inv_count += merge(arr, temp, left, mid, right); + } + return inv_count; +} + +/** + * @brief Function countInversion() returns the number of inversion + * present in the input array. Inversions are an estimate of + * how close or far off the array is to being sorted. + * + * @details + * Number of inversions in a sorted array is 0. + * Number of inversion in an array[1...n] sorted in + * non-ascending order is n(n-1)/2, since each pair of elements + * contitute an inversion. + * + * @param arr - array, data member of std::vector, input for counting + * inversions + * @param array_size - number of elementa in the array + * @returns number of inversions in input array, sorts the array + */ +template +uint32_t countInversion(T* arr, const uint32_t size) { + std::vector temp; + temp.reserve(size); + temp.assign(size, 0); + return mergeSort(arr, temp.data(), 0, size - 1); +} + +/** + * @brief UTILITY function to print array. + * @param arr[] array to print + * @param array_size size of input array arr[] + * @returns void + * + */ +template +void show(T* arr, const uint32_t array_size) { + std::cout << "Printing array: \n"; + for (uint32_t i = 0; i < array_size; i++) { + std::cout << " " << arr[i]; + } + std::cout << "\n"; +} + +} // namespace inversion +} // namespace sorting + +/** + * @brief Test implementations + * @returns void + */ +static void test() { + // Test 1 + std::vector arr1 = { + 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, + 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, + 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, + 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, + 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, + 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; + uint32_t size1 = arr1.size(); + uint32_t inv_count1 = 4950; + uint32_t result1 = sorting::inversion::countInversion(arr1.data(), size1); + assert(inv_count1 == result1); + // Test 2 + std::vector arr2 = {22, 66, 75, 23, 11, 87, 2, 44, 98, 43}; + uint32_t size2 = arr2.size(); + uint32_t inv_count2 = 20; + uint32_t result2 = sorting::inversion::countInversion(arr2.data(), size2); + assert(inv_count2 == result2); + // Test 3 + std::vector arr3 = {33.1, 45.2, 65.4, 76.5, 1.0, + 2.9, 5.4, 7.7, 88.9, 12.4}; + uint32_t size3 = arr3.size(); + uint32_t inv_count3 = 21; + uint32_t result3 = sorting::inversion::countInversion(arr3.data(), size3); + assert(inv_count3 == result3); + // Test 4 + std::vector arr4 = {'a', 'b', 'c', 'd', 'e'}; + uint32_t size4 = arr4.size(); + uint32_t inv_count4 = 0; + uint32_t result4 = sorting::inversion::countInversion(arr4.data(), size4); + assert(inv_count4 == result4); +} + +// /** +// * @brief Program Body contains all main funtionality +// * @returns void +// */ +// template +// static void body() { +// // Input your own sequence +// uint_t size; +// T input; +// std::cout << "Enter number of elements:"; +// std::cin >> size; +// +// std::vector arr; +// arr.reserve(size); +// +// std::cout << "Enter elements -->\n"; +// for (uint64_t i=1; i<=size; i++) { +// std::cout << "Element "<< i <<" :"; +// std::cin >> input; +// arr.push_back(input); +// } +// +// if (size != arr.size()) { +// size = arr.size(); +// } +// +// std::cout << "\n"; +// sorting::inversion::show(arr.data(), size); +// std::cout << "\n"; +// +// // Counting inversions +// std::cout << "\nThe number of inversions: "<< +// sorting::inversion::countInversion(arr.data(), size) << "\n"; +// +// // Output sorted array +// std::cout << "\nSorted array --> \n"; +// sorting::inversion::show(arr.data(), size); +// } + +/** + * @brief Main function + * @returns 0 on exit + */ +int main() { + test(); // Run test implementations + // body(); // test your own array + return 0; +}