From 2d15e14e1e18bc1e5e2cfbf150f6bbd5e1323ac6 Mon Sep 17 00:00:00 2001 From: Lajat5 <64376519+Lazeeez@users.noreply.github.com> Date: Sat, 6 Nov 2021 14:25:31 +0530 Subject: [PATCH] Delete inverse_fast_fourier_transform.cpp --- .../inverse_fast_fourier_transform.cpp | 160 ------------------ 1 file changed, 160 deletions(-) delete mode 100644 numerical_methods/inverse_fast_fourier_transform.cpp diff --git a/numerical_methods/inverse_fast_fourier_transform.cpp b/numerical_methods/inverse_fast_fourier_transform.cpp deleted file mode 100644 index 0970d40cd..000000000 --- a/numerical_methods/inverse_fast_fourier_transform.cpp +++ /dev/null @@ -1,160 +0,0 @@ -/** - * @file - * @brief [An inverse fast Fourier transform - * (IFFT)](https://www.geeksforgeeks.org/python-inverse-fast-fourier-transformation/) - * is an algorithm that computes the inverse fourier transform. - * @details - * This algorithm has an application in use case scenario where a user wants - * find coefficients of a function in a short time by just using points - * generated by DFT. Time complexity this algorithm computes the IDFT in - * O(nlogn) time in comparison to traditional O(n^2). - * @author [Ameya Chawla](https://github.com/ameyachawlaggsipu) - */ - -#include /// for assert -#include /// for mathematical-related functions -#include /// for storing points and coefficents -#include /// for IO operations -#include /// for std::vector - -/** - * @namespace numerical_methods - * @brief Numerical algorithms/methods - */ -namespace numerical_methods { -/** - * @brief InverseFastFourierTransform is a recursive function which returns list - * of complex numbers - * @param p List of Coefficents in form of complex numbers - * @param n Count of elements in list p - * @returns p if n==1 - * @returns y if n!=1 - */ -std::complex *InverseFastFourierTransform(std::complex *p, - uint8_t n) { - if (n == 1) { - return p; /// Base Case To return - } - - double pi = 2 * asin(1.0); /// Declaring value of pi - - std::complex om = std::complex( - cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega - - om.real(om.real() / n); /// One change in comparison with DFT - om.imag(om.imag() / n); /// One change in comparison with DFT - - auto *pe = new std::complex[n / 2]; /// Coefficients of even power - - auto *po = new std::complex[n / 2]; /// Coefficients of odd power - - int k1 = 0, k2 = 0; - for (int j = 0; j < n; j++) { - if (j % 2 == 0) { - pe[k1++] = p[j]; /// Assigning values of even Coefficients - - } else { - po[k2++] = p[j]; /// Assigning value of odd Coefficients - } - } - - std::complex *ye = - InverseFastFourierTransform(pe, n / 2); /// Recursive Call - - std::complex *yo = - InverseFastFourierTransform(po, n / 2); /// Recursive Call - - auto *y = new std::complex[n]; /// Final value representation list - - k1 = 0, k2 = 0; - - for (int i = 0; i < n / 2; i++) { - y[i] = - ye[k1] + pow(om, i) * yo[k2]; /// Updating the first n/2 elements - y[i + n / 2] = - ye[k1] - pow(om, i) * yo[k2]; /// Updating the last n/2 elements - - k1++; - k2++; - } - - if (n != 2) { - delete[] pe; - delete[] po; - } - - delete[] ye; /// Deleting dynamic array ye - delete[] yo; /// Deleting dynamic array yo - return y; -} - -} // namespace numerical_methods - -/** - * @brief Self-test implementations - * @details - * Declaring two test cases and checking for the error - * in predicted and true value is less than 0.000000000001. - * @returns void - */ -static void test() { - /* descriptions of the following test */ - - auto *t1 = new std::complex[2]; /// Test case 1 - auto *t2 = new std::complex[4]; /// Test case 2 - - t1[0] = {3, 0}; - t1[1] = {-1, 0}; - t2[0] = {10, 0}; - t2[1] = {-2, -2}; - t2[2] = {-2, 0}; - t2[3] = {-2, 2}; - - uint8_t n1 = 2; - uint8_t n2 = 4; - std::vector> r1 = { - {1, 0}, {2, 0}}; /// True Answer for test case 1 - - std::vector> r2 = { - {1, 0}, {2, 0}, {3, 0}, {4, 0}}; /// True Answer for test case 2 - - std::complex *o1 = - numerical_methods::InverseFastFourierTransform(t1, n1); - - std::complex *o2 = - numerical_methods::InverseFastFourierTransform(t2, n2); - - for (uint8_t i = 0; i < n1; i++) { - assert((r1[i].real() - o1[i].real() < 0.000000000001) && - (r1[i].imag() - o1[i].imag() < - 0.000000000001)); /// Comparing for both real and imaginary - /// values for test case 1 - } - - for (uint8_t i = 0; i < n2; i++) { - assert((r2[i].real() - o2[i].real() < 0.000000000001) && - (r2[i].imag() - o2[i].imag() < - 0.000000000001)); /// Comparing for both real and imaginary - /// values for test case 2 - } - - delete[] t1; - delete[] t2; - delete[] o1; - delete[] o2; - std::cout << "All tests have successfully passed!\n"; -} - -/** - * @brief Main function - * @param argc commandline argument count (ignored) - * @param argv commandline array of arguments (ignored) - * calls automated test function to test the working of fast fourier transform. - * @returns 0 on exit - */ - -int main(int argc, char const *argv[]) { - test(); // run self-test implementations - // with 2 defined test cases - return 0; -}