From 43362d3b501168a8b6e356e0525c84cdad57e14f Mon Sep 17 00:00:00 2001 From: Krishna Vedala <7001608+kvedala@users.noreply.github.com> Date: Fri, 5 Jun 2020 20:26:34 -0400 Subject: [PATCH] add author name --- machine_learning/adaline_learning.cpp | 2 ++ machine_learning/kohonen_som_trace.cpp | 2 ++ math/fibonacci_fast.cpp | 1 + math/fibonacci_large.cpp | 1 + math/large_factorial.cpp | 1 + math/large_number.h | 1 + math/realtime_stats.cpp | 1 + math/sqrt_double.cpp | 4 ++-- numerical_methods/durand_kerner_roots.cpp | 1 + numerical_methods/newton_raphson_method.cpp | 4 +++- numerical_methods/ordinary_least_squares_regressor.cpp | 1 + sorting/shell_sort2.cpp | 1 + 12 files changed, 17 insertions(+), 3 deletions(-) diff --git a/machine_learning/adaline_learning.cpp b/machine_learning/adaline_learning.cpp index 077b9408e..eafeca826 100644 --- a/machine_learning/adaline_learning.cpp +++ b/machine_learning/adaline_learning.cpp @@ -3,6 +3,8 @@ * \brief [Adaptive Linear Neuron * (ADALINE)](https://en.wikipedia.org/wiki/ADALINE) implementation * + * \author [Krishna Vedala](https://github.com/kvedala) + * * diff --git a/machine_learning/kohonen_som_trace.cpp b/machine_learning/kohonen_som_trace.cpp index 4929eaef3..31e9421bf 100644 --- a/machine_learning/kohonen_som_trace.cpp +++ b/machine_learning/kohonen_som_trace.cpp @@ -8,6 +8,8 @@ * follows the given data points. This this creates a chain of nodes that * resembles the given input shape. * + * \author [Krishna Vedala](https://github.com/kvedala) + * * \note This C++ version of the program is considerable slower than its [C * counterpart](https://github.com/kvedala/C/blob/master/machine_learning/kohonen_som_trace.c) * \note The compiled code is much slower when compiled with MS Visual C++ 2019 diff --git a/math/fibonacci_fast.cpp b/math/fibonacci_fast.cpp index 08cced351..8fdb20058 100644 --- a/math/fibonacci_fast.cpp +++ b/math/fibonacci_fast.cpp @@ -11,6 +11,7 @@ * found if we have already found n/2th or (n+1)/2th fibonacci It is a property * of fibonacci similar to matrix exponentiation. * + * \author [Krishna Vedala](https://github.com/kvedala) * @see fibonacci_large.cpp, fibonacci.cpp, string_fibonacci.cpp */ diff --git a/math/fibonacci_large.cpp b/math/fibonacci_large.cpp index d9dbff799..e4f4e5eaf 100644 --- a/math/fibonacci_large.cpp +++ b/math/fibonacci_large.cpp @@ -7,6 +7,7 @@ * Took 0.608246 seconds to compute 50,000^th Fibonacci * number that contains 10450 digits! * + * \author [Krishna Vedala](https://github.com/kvedala) * @see fibonacci.cpp, fibonacci_fast.cpp, string_fibonacci.cpp */ diff --git a/math/large_factorial.cpp b/math/large_factorial.cpp index 1027f41ab..20c677cdc 100644 --- a/math/large_factorial.cpp +++ b/math/large_factorial.cpp @@ -2,6 +2,7 @@ * @file * @brief Compute factorial of any arbitratily large number/ * + * \author [Krishna Vedala](https://github.com/kvedala) * @see factorial.cpp */ #include diff --git a/math/large_number.h b/math/large_number.h index c1a3665e4..bffb764d0 100644 --- a/math/large_number.h +++ b/math/large_number.h @@ -2,6 +2,7 @@ * @file * @brief Library to perform arithmatic operations on arbitrarily large * numbers. + * \author [Krishna Vedala](https://github.com/kvedala) */ #ifndef MATH_LARGE_NUMBER_H_ diff --git a/math/realtime_stats.cpp b/math/realtime_stats.cpp index 26b923625..5f353ac4d 100644 --- a/math/realtime_stats.cpp +++ b/math/realtime_stats.cpp @@ -5,6 +5,7 @@ * This algorithm is really beneficial to compute statistics on data read in * realtime. For example, devices reading biometrics data. The algorithm is * simple enough to be easily implemented in an embedded system. + * \author [Krishna Vedala](https://github.com/kvedala) */ #include #include diff --git a/math/sqrt_double.cpp b/math/sqrt_double.cpp index 1521b500a..c4beec9d8 100644 --- a/math/sqrt_double.cpp +++ b/math/sqrt_double.cpp @@ -1,7 +1,7 @@ /** * @file - * @brief Calculate the square root of any positive number in \f$O(\log N)\f$ - * time, with precision fixed using [bisection + * @brief Calculate the square root of any positive real number in \f$O(\log + * N)\f$ time, with precision fixed using [bisection * method](https://en.wikipedia.org/wiki/Bisection_method) of root-finding. * * @see Can be implemented using faster and better algorithms like diff --git a/numerical_methods/durand_kerner_roots.cpp b/numerical_methods/durand_kerner_roots.cpp index 80464412a..897141143 100644 --- a/numerical_methods/durand_kerner_roots.cpp +++ b/numerical_methods/durand_kerner_roots.cpp @@ -3,6 +3,7 @@ * \brief Compute all possible approximate roots of any given polynomial using * [Durand Kerner * algorithm](https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method) + * \author [Krishna Vedala](https://github.com/kvedala) * * Test the algorithm online: * https://gist.github.com/kvedala/27f1b0b6502af935f6917673ec43bcd7 diff --git a/numerical_methods/newton_raphson_method.cpp b/numerical_methods/newton_raphson_method.cpp index 318363a39..d086123ca 100644 --- a/numerical_methods/newton_raphson_method.cpp +++ b/numerical_methods/newton_raphson_method.cpp @@ -1,13 +1,15 @@ /** * \file * \brief Solve the equation \f$f(x)=0\f$ using [Newton-Raphson - * method](https://en.wikipedia.org/wiki/Newton%27s_method) + * method](https://en.wikipedia.org/wiki/Newton%27s_method) for both real and + * complex solutions * * The \f$(i+1)^\text{th}\f$ approximation is given by: * \f[ * x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} * \f] * + * \author [Krishna Vedala](https://github.com/kvedala) * \see bisection_method.cpp, false_position.cpp */ #include diff --git a/numerical_methods/ordinary_least_squares_regressor.cpp b/numerical_methods/ordinary_least_squares_regressor.cpp index de02b27bb..43979d0ea 100644 --- a/numerical_methods/ordinary_least_squares_regressor.cpp +++ b/numerical_methods/ordinary_least_squares_regressor.cpp @@ -3,6 +3,7 @@ * \brief Linear regression example using [Ordinary least * squares](https://en.wikipedia.org/wiki/Ordinary_least_squares) * + * \author [Krishna Vedala](https://github.com/kvedala) * Program that gets the number of data samples and number of features per * sample along with output per sample. It applies OLS regression to compute * the regression output for additional test data samples. diff --git a/sorting/shell_sort2.cpp b/sorting/shell_sort2.cpp index 85186e752..96ef25580 100644 --- a/sorting/shell_sort2.cpp +++ b/sorting/shell_sort2.cpp @@ -1,6 +1,7 @@ /** * \file * \brief [Shell sort](https://en.wikipedia.org/wiki/Shell_sort) algorithm + * \author [Krishna Vedala](https://github.com/kvedala) */ #include #include