mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-03 10:35:34 +08:00
Merge branch 'master' into LakshmiSrikumar-patch-1
This commit is contained in:
@@ -340,6 +340,7 @@
|
|||||||
* [Sparse Table](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/range_queries/sparse_table.cpp)
|
* [Sparse Table](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/range_queries/sparse_table.cpp)
|
||||||
|
|
||||||
## Search
|
## Search
|
||||||
|
* [Longest Increasing Subsequence Using Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/Longest_Increasing_Subsequence_using_binary_search.cpp)
|
||||||
* [Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/binary_search.cpp)
|
* [Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/binary_search.cpp)
|
||||||
* [Exponential Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/exponential_search.cpp)
|
* [Exponential Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/exponential_search.cpp)
|
||||||
* [Fibonacci Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/fibonacci_search.cpp)
|
* [Fibonacci Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/fibonacci_search.cpp)
|
||||||
|
|||||||
151
dynamic_programming/Unbounded_0_1_Knapsack.cpp
Normal file
151
dynamic_programming/Unbounded_0_1_Knapsack.cpp
Normal file
@@ -0,0 +1,151 @@
|
|||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @brief Implementation of the Unbounded 0/1 Knapsack Problem
|
||||||
|
*
|
||||||
|
* @details
|
||||||
|
* The Unbounded 0/1 Knapsack problem allows taking unlimited quantities of each item.
|
||||||
|
* The goal is to maximize the total value without exceeding the given knapsack capacity.
|
||||||
|
* Unlike the 0/1 knapsack, where each item can be taken only once, in this variation,
|
||||||
|
* any item can be picked any number of times as long as the total weight stays within
|
||||||
|
* the knapsack's capacity.
|
||||||
|
*
|
||||||
|
* Given a set of N items, each with a weight and a value, represented by the arrays
|
||||||
|
* `wt` and `val` respectively, and a knapsack with a weight limit W, the task is to
|
||||||
|
* fill the knapsack to maximize the total value.
|
||||||
|
*
|
||||||
|
* @note weight and value of items is greater than zero
|
||||||
|
*
|
||||||
|
* ### Algorithm
|
||||||
|
* The approach uses dynamic programming to build a solution iteratively.
|
||||||
|
* A 2D array is used for memoization to store intermediate results, allowing
|
||||||
|
* the function to avoid redundant calculations.
|
||||||
|
*
|
||||||
|
* @author [Sanskruti Yeole](https://github.com/yeolesanskruti)
|
||||||
|
* @see dynamic_programming/0_1_knapsack.cpp
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <iostream> // Standard input-output stream
|
||||||
|
#include <vector> // Standard library for using dynamic arrays (vectors)
|
||||||
|
#include <cassert> // For using assert function to validate test cases
|
||||||
|
#include <cstdint> // For fixed-width integer types like std::uint16_t
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace dynamic_programming
|
||||||
|
* @brief Namespace for dynamic programming algorithms
|
||||||
|
*/
|
||||||
|
namespace dynamic_programming {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace Knapsack
|
||||||
|
* @brief Implementation of unbounded 0-1 knapsack problem
|
||||||
|
*/
|
||||||
|
namespace unbounded_knapsack {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Recursive function to calculate the maximum value obtainable using
|
||||||
|
* an unbounded knapsack approach.
|
||||||
|
*
|
||||||
|
* @param i Current index in the value and weight vectors.
|
||||||
|
* @param W Remaining capacity of the knapsack.
|
||||||
|
* @param val Vector of values corresponding to the items.
|
||||||
|
* @note "val" data type can be changed according to the size of the input.
|
||||||
|
* @param wt Vector of weights corresponding to the items.
|
||||||
|
* @note "wt" data type can be changed according to the size of the input.
|
||||||
|
* @param dp 2D vector for memoization to avoid redundant calculations.
|
||||||
|
* @return The maximum value that can be obtained for the given index and capacity.
|
||||||
|
*/
|
||||||
|
std::uint16_t KnapSackFilling(std::uint16_t i, std::uint16_t W,
|
||||||
|
const std::vector<std::uint16_t>& val,
|
||||||
|
const std::vector<std::uint16_t>& wt,
|
||||||
|
std::vector<std::vector<int>>& dp) {
|
||||||
|
if (i == 0) {
|
||||||
|
if (wt[0] <= W) {
|
||||||
|
return (W / wt[0]) * val[0]; // Take as many of the first item as possible
|
||||||
|
} else {
|
||||||
|
return 0; // Can't take the first item
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (dp[i][W] != -1) return dp[i][W]; // Return result if available
|
||||||
|
|
||||||
|
int nottake = KnapSackFilling(i - 1, W, val, wt, dp); // Value without taking item i
|
||||||
|
int take = 0;
|
||||||
|
if (W >= wt[i]) {
|
||||||
|
take = val[i] + KnapSackFilling(i, W - wt[i], val, wt, dp); // Value taking item i
|
||||||
|
}
|
||||||
|
return dp[i][W] = std::max(take, nottake); // Store and return the maximum value
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Wrapper function to initiate the unbounded knapsack calculation.
|
||||||
|
*
|
||||||
|
* @param N Number of items.
|
||||||
|
* @param W Maximum weight capacity of the knapsack.
|
||||||
|
* @param val Vector of values corresponding to the items.
|
||||||
|
* @param wt Vector of weights corresponding to the items.
|
||||||
|
* @return The maximum value that can be obtained for the given capacity.
|
||||||
|
*/
|
||||||
|
std::uint16_t unboundedKnapsack(std::uint16_t N, std::uint16_t W,
|
||||||
|
const std::vector<std::uint16_t>& val,
|
||||||
|
const std::vector<std::uint16_t>& wt) {
|
||||||
|
if(N==0)return 0; // Expect 0 since no items
|
||||||
|
std::vector<std::vector<int>> dp(N, std::vector<int>(W + 1, -1)); // Initialize memoization table
|
||||||
|
return KnapSackFilling(N - 1, W, val, wt, dp); // Start the calculation
|
||||||
|
}
|
||||||
|
|
||||||
|
} // unbounded_knapsack
|
||||||
|
|
||||||
|
} // dynamic_programming
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief self test implementation
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
static void tests() {
|
||||||
|
// Test Case 1
|
||||||
|
std::uint16_t N1 = 4; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt1 = {1, 3, 4, 5}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val1 = {6, 1, 7, 7}; // Values of the items
|
||||||
|
std::uint16_t W1 = 8; // Maximum capacity of the knapsack
|
||||||
|
// Test the function and assert the expected output
|
||||||
|
assert(unboundedKnapsack(N1, W1, val1, wt1) == 48);
|
||||||
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N1, W1, val1, wt1) << std::endl;
|
||||||
|
|
||||||
|
// Test Case 2
|
||||||
|
std::uint16_t N2 = 3; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt2 = {10, 20, 30}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val2 = {60, 100, 120}; // Values of the items
|
||||||
|
std::uint16_t W2 = 5; // Maximum capacity of the knapsack
|
||||||
|
// Test the function and assert the expected output
|
||||||
|
assert(unboundedKnapsack(N2, W2, val2, wt2) == 0);
|
||||||
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N2, W2, val2, wt2) << std::endl;
|
||||||
|
|
||||||
|
// Test Case 3
|
||||||
|
std::uint16_t N3 = 3; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt3 = {2, 4, 6}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val3 = {5, 11, 13};// Values of the items
|
||||||
|
std::uint16_t W3 = 27;// Maximum capacity of the knapsack
|
||||||
|
// Test the function and assert the expected output
|
||||||
|
assert(unboundedKnapsack(N3, W3, val3, wt3) == 27);
|
||||||
|
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N3, W3, val3, wt3) << std::endl;
|
||||||
|
|
||||||
|
// Test Case 4
|
||||||
|
std::uint16_t N4 = 0; // Number of items
|
||||||
|
std::vector<std::uint16_t> wt4 = {}; // Weights of the items
|
||||||
|
std::vector<std::uint16_t> val4 = {}; // Values of the items
|
||||||
|
std::uint16_t W4 = 10; // Maximum capacity of the knapsack
|
||||||
|
assert(unboundedKnapsack(N4, W4, val4, wt4) == 0);
|
||||||
|
std::cout << "Maximum Knapsack value for empty arrays: " << unboundedKnapsack(N4, W4, val4, wt4) << std::endl;
|
||||||
|
|
||||||
|
std::cout << "All test cases passed!" << std::endl;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief main function
|
||||||
|
* @return 0 on successful exit
|
||||||
|
*/
|
||||||
|
int main() {
|
||||||
|
tests(); // Run self test implementation
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
119
greedy_algorithms/binary_addition.cpp
Normal file
119
greedy_algorithms/binary_addition.cpp
Normal file
@@ -0,0 +1,119 @@
|
|||||||
|
/**
|
||||||
|
* @file binary_addition.cpp
|
||||||
|
* @brief Adds two binary numbers and outputs resulting string
|
||||||
|
*
|
||||||
|
* @details The algorithm for adding two binary strings works by processing them
|
||||||
|
* from right to left, similar to manual addition. It starts by determining the
|
||||||
|
* longer string's length to ensure both strings are fully traversed. For each
|
||||||
|
* pair of corresponding bits and any carry from the previous addition, it
|
||||||
|
* calculates the sum. If the sum exceeds 1, a carry is generated for the next
|
||||||
|
* bit. The results for each bit are collected in a result string, which is
|
||||||
|
* reversed at the end to present the final binary sum correctly. Additionally,
|
||||||
|
* the function validates the input to ensure that only valid binary strings
|
||||||
|
* (containing only '0' and '1') are processed. If invalid input is detected,
|
||||||
|
* it returns an empty string.
|
||||||
|
* @author [Muhammad Junaid Khalid](https://github.com/mjk22071998)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <algorithm> /// for reverse function
|
||||||
|
#include <cassert> /// for tests
|
||||||
|
#include <iostream> /// for input and outputs
|
||||||
|
#include <string> /// for string class
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace
|
||||||
|
* @brief Greedy Algorithms
|
||||||
|
*/
|
||||||
|
namespace greedy_algorithms {
|
||||||
|
/**
|
||||||
|
* @brief A class to perform binary addition of two binary strings.
|
||||||
|
*/
|
||||||
|
class BinaryAddition {
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* @brief Adds two binary strings and returns the result as a binary string.
|
||||||
|
* @param a The first binary string.
|
||||||
|
* @param b The second binary string.
|
||||||
|
* @return The sum of the two binary strings as a binary string, or an empty
|
||||||
|
* string if either input string contains non-binary characters.
|
||||||
|
*/
|
||||||
|
std::string addBinary(const std::string& a, const std::string& b) {
|
||||||
|
if (!isValidBinaryString(a) || !isValidBinaryString(b)) {
|
||||||
|
return ""; // Return empty string if input contains non-binary
|
||||||
|
// characters
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string result;
|
||||||
|
int carry = 0;
|
||||||
|
int maxLength = std::max(a.size(), b.size());
|
||||||
|
|
||||||
|
// Traverse both strings from the end to the beginning
|
||||||
|
for (int i = 0; i < maxLength; ++i) {
|
||||||
|
// Get the current bits from both strings, if available
|
||||||
|
int bitA = (i < a.size()) ? (a[a.size() - 1 - i] - '0') : 0;
|
||||||
|
int bitB = (i < b.size()) ? (b[b.size() - 1 - i] - '0') : 0;
|
||||||
|
|
||||||
|
// Calculate the sum of bits and carry
|
||||||
|
int sum = bitA + bitB + carry;
|
||||||
|
carry = sum / 2; // Determine the carry for the next bit
|
||||||
|
result.push_back((sum % 2) +
|
||||||
|
'0'); // Append the sum's current bit to result
|
||||||
|
}
|
||||||
|
if (carry) {
|
||||||
|
result.push_back('1');
|
||||||
|
}
|
||||||
|
std::reverse(result.begin(), result.end());
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
/**
|
||||||
|
* @brief Validates whether a string contains only binary characters (0 or 1).
|
||||||
|
* @param str The string to validate.
|
||||||
|
* @return true if the string is binary, false otherwise.
|
||||||
|
*/
|
||||||
|
bool isValidBinaryString(const std::string& str) const {
|
||||||
|
return std::all_of(str.begin(), str.end(),
|
||||||
|
[](char c) { return c == '0' || c == '1'; });
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace greedy_algorithms
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief run self test implementation.
|
||||||
|
* @returns void
|
||||||
|
*/
|
||||||
|
static void tests() {
|
||||||
|
greedy_algorithms::BinaryAddition binaryAddition;
|
||||||
|
|
||||||
|
// Valid binary string tests
|
||||||
|
assert(binaryAddition.addBinary("1010", "1101") == "10111");
|
||||||
|
assert(binaryAddition.addBinary("1111", "1111") == "11110");
|
||||||
|
assert(binaryAddition.addBinary("101", "11") == "1000");
|
||||||
|
assert(binaryAddition.addBinary("0", "0") == "0");
|
||||||
|
assert(binaryAddition.addBinary("1111", "1111") == "11110");
|
||||||
|
assert(binaryAddition.addBinary("0", "10101") == "10101");
|
||||||
|
assert(binaryAddition.addBinary("10101", "0") == "10101");
|
||||||
|
assert(binaryAddition.addBinary("101010101010101010101010101010",
|
||||||
|
"110110110110110110110110110110") ==
|
||||||
|
"1100001100001100001100001100000");
|
||||||
|
assert(binaryAddition.addBinary("1", "11111111") == "100000000");
|
||||||
|
assert(binaryAddition.addBinary("10101010", "01010101") == "11111111");
|
||||||
|
|
||||||
|
// Invalid binary string tests (should return empty string)
|
||||||
|
assert(binaryAddition.addBinary("10102", "1101") == "");
|
||||||
|
assert(binaryAddition.addBinary("ABC", "1101") == "");
|
||||||
|
assert(binaryAddition.addBinary("1010", "1102") == "");
|
||||||
|
assert(binaryAddition.addBinary("111", "1x1") == "");
|
||||||
|
assert(binaryAddition.addBinary("1x1", "111") == "");
|
||||||
|
assert(binaryAddition.addBinary("1234", "1101") == "");
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief main function
|
||||||
|
* @returns 0 on successful exit
|
||||||
|
*/
|
||||||
|
int main() {
|
||||||
|
tests(); /// To execute tests
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
@@ -30,8 +30,8 @@
|
|||||||
* a^{m-2} &≡& a^{-1} \;\text{mod}\; m
|
* a^{m-2} &≡& a^{-1} \;\text{mod}\; m
|
||||||
* \f}
|
* \f}
|
||||||
*
|
*
|
||||||
* We will find the exponent using binary exponentiation. Such that the
|
* We will find the exponent using binary exponentiation such that the
|
||||||
* algorithm works in \f$O(\log m)\f$ time.
|
* algorithm works in \f$O(\log n)\f$ time.
|
||||||
*
|
*
|
||||||
* Examples: -
|
* Examples: -
|
||||||
* * a = 3 and m = 7
|
* * a = 3 and m = 7
|
||||||
@@ -43,56 +43,98 @@
|
|||||||
* (as \f$a\times a^{-1} = 1\f$)
|
* (as \f$a\times a^{-1} = 1\f$)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <iostream>
|
#include <cassert> /// for assert
|
||||||
#include <vector>
|
#include <cstdint> /// for std::int64_t
|
||||||
|
#include <iostream> /// for IO implementations
|
||||||
|
|
||||||
/** Recursive function to calculate exponent in \f$O(\log n)\f$ using binary
|
/**
|
||||||
* exponent.
|
* @namespace math
|
||||||
|
* @brief Maths algorithms.
|
||||||
*/
|
*/
|
||||||
int64_t binExpo(int64_t a, int64_t b, int64_t m) {
|
namespace math {
|
||||||
a %= m;
|
/**
|
||||||
int64_t res = 1;
|
* @namespace modular_inverse_fermat
|
||||||
while (b > 0) {
|
* @brief Calculate modular inverse using Fermat's Little Theorem.
|
||||||
if (b % 2) {
|
*/
|
||||||
res = res * a % m;
|
namespace modular_inverse_fermat {
|
||||||
}
|
/**
|
||||||
a = a * a % m;
|
* @brief Calculate exponent with modulo using binary exponentiation in \f$O(\log b)\f$ time.
|
||||||
// Dividing b by 2 is similar to right shift.
|
* @param a The base
|
||||||
b >>= 1;
|
* @param b The exponent
|
||||||
|
* @param m The modulo
|
||||||
|
* @return The result of \f$a^{b} % m\f$
|
||||||
|
*/
|
||||||
|
std::int64_t binExpo(std::int64_t a, std::int64_t b, std::int64_t m) {
|
||||||
|
a %= m;
|
||||||
|
std::int64_t res = 1;
|
||||||
|
while (b > 0) {
|
||||||
|
if (b % 2 != 0) {
|
||||||
|
res = res * a % m;
|
||||||
}
|
}
|
||||||
return res;
|
a = a * a % m;
|
||||||
|
// Dividing b by 2 is similar to right shift by 1 bit
|
||||||
|
b >>= 1;
|
||||||
|
}
|
||||||
|
return res;
|
||||||
}
|
}
|
||||||
|
/**
|
||||||
/** Prime check in \f$O(\sqrt{m})\f$ time.
|
* @brief Check if an integer is a prime number in \f$O(\sqrt{m})\f$ time.
|
||||||
|
* @param m An intger to check for primality
|
||||||
|
* @return true if the number is prime
|
||||||
|
* @return false if the number is not prime
|
||||||
*/
|
*/
|
||||||
bool isPrime(int64_t m) {
|
bool isPrime(std::int64_t m) {
|
||||||
if (m <= 1) {
|
if (m <= 1) {
|
||||||
return false;
|
return false;
|
||||||
} else {
|
}
|
||||||
for (int64_t i = 2; i * i <= m; i++) {
|
for (std::int64_t i = 2; i * i <= m; i++) {
|
||||||
if (m % i == 0) {
|
if (m % i == 0) {
|
||||||
return false;
|
return false;
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
return true;
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
/**
|
||||||
|
* @brief calculates the modular inverse.
|
||||||
|
* @param a Integer value for the base
|
||||||
|
* @param m Integer value for modulo
|
||||||
|
* @return The result that is the modular inverse of a modulo m
|
||||||
|
*/
|
||||||
|
std::int64_t modular_inverse(std::int64_t a, std::int64_t m) {
|
||||||
|
while (a < 0) {
|
||||||
|
a += m;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check for invalid cases
|
||||||
|
if (!isPrime(m) || a == 0) {
|
||||||
|
return -1; // Invalid input
|
||||||
|
}
|
||||||
|
|
||||||
|
return binExpo(a, m - 2, m); // Fermat's Little Theorem
|
||||||
|
}
|
||||||
|
} // namespace modular_inverse_fermat
|
||||||
|
} // namespace math
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Self-test implementation
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
static void test() {
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(0, 97) == -1);
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(15, -2) == -1);
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(3, 10) == -1);
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(3, 7) == 5);
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(1, 101) == 1);
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(-1337, 285179) == 165519);
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(123456789, 998244353) == 25170271);
|
||||||
|
assert(math::modular_inverse_fermat::modular_inverse(-9876543210, 1000000007) == 784794281);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Main function
|
* @brief Main function
|
||||||
|
* @return 0 on exit
|
||||||
*/
|
*/
|
||||||
int main() {
|
int main() {
|
||||||
int64_t a, m;
|
test(); // run self-test implementation
|
||||||
// Take input of a and m.
|
return 0;
|
||||||
std::cout << "Computing ((a^(-1))%(m)) using Fermat's Little Theorem";
|
|
||||||
std::cout << std::endl << std::endl;
|
|
||||||
std::cout << "Give input 'a' and 'm' space separated : ";
|
|
||||||
std::cin >> a >> m;
|
|
||||||
if (isPrime(m)) {
|
|
||||||
std::cout << "The modular inverse of a with mod m is (a^(m-2)) : ";
|
|
||||||
std::cout << binExpo(a, m - 2, m) << std::endl;
|
|
||||||
} else {
|
|
||||||
std::cout << "m must be a prime number.";
|
|
||||||
std::cout << std::endl;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
/**
|
/**
|
||||||
* @file
|
* @file
|
||||||
* @brief Get list of prime numbers using Sieve of Eratosthenes
|
* @brief Prime Numbers using [Sieve of
|
||||||
|
* Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
|
||||||
* @details
|
* @details
|
||||||
* Sieve of Eratosthenes is an algorithm that finds all the primes
|
* Sieve of Eratosthenes is an algorithm that finds all the primes
|
||||||
* between 2 and N.
|
* between 2 and N.
|
||||||
@@ -11,21 +12,39 @@
|
|||||||
* @see primes_up_to_billion.cpp prime_numbers.cpp
|
* @see primes_up_to_billion.cpp prime_numbers.cpp
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <cassert>
|
#include <cassert> /// for assert
|
||||||
#include <iostream>
|
#include <iostream> /// for IO operations
|
||||||
#include <vector>
|
#include <vector> /// for std::vector
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This is the function that finds the primes and eliminates the multiples.
|
* @namespace math
|
||||||
|
* @brief Mathematical algorithms
|
||||||
|
*/
|
||||||
|
namespace math {
|
||||||
|
/**
|
||||||
|
* @namespace sieve_of_eratosthenes
|
||||||
|
* @brief Functions for finding Prime Numbers using Sieve of Eratosthenes
|
||||||
|
*/
|
||||||
|
namespace sieve_of_eratosthenes {
|
||||||
|
/**
|
||||||
|
* @brief Function to sieve out the primes
|
||||||
|
* @details
|
||||||
|
* This function finds all the primes between 2 and N using the Sieve of
|
||||||
|
* Eratosthenes algorithm. It starts by assuming all numbers (except zero and
|
||||||
|
* one) are prime and then iteratively marks the multiples of each prime as
|
||||||
|
* non-prime.
|
||||||
|
*
|
||||||
* Contains a common optimization to start eliminating multiples of
|
* Contains a common optimization to start eliminating multiples of
|
||||||
* a prime p starting from p * p since all of the lower multiples
|
* a prime p starting from p * p since all of the lower multiples
|
||||||
* have been already eliminated.
|
* have been already eliminated.
|
||||||
* @param N number of primes to check
|
* @param N number till which primes are to be found
|
||||||
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
|
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is
|
||||||
|
* a prime or not
|
||||||
*/
|
*/
|
||||||
std::vector<bool> sieve(uint32_t N) {
|
std::vector<bool> sieve(uint32_t N) {
|
||||||
std::vector<bool> is_prime(N + 1, true);
|
std::vector<bool> is_prime(N + 1, true); // Initialize all as prime numbers
|
||||||
is_prime[0] = is_prime[1] = false;
|
is_prime[0] = is_prime[1] = false; // 0 and 1 are not prime numbers
|
||||||
|
|
||||||
for (uint32_t i = 2; i * i <= N; i++) {
|
for (uint32_t i = 2; i * i <= N; i++) {
|
||||||
if (is_prime[i]) {
|
if (is_prime[i]) {
|
||||||
for (uint32_t j = i * i; j <= N; j += i) {
|
for (uint32_t j = i * i; j <= N; j += i) {
|
||||||
@@ -37,9 +56,10 @@ std::vector<bool> sieve(uint32_t N) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This function prints out the primes to STDOUT
|
* @brief Function to print the prime numbers
|
||||||
* @param N number of primes to check
|
* @param N number till which primes are to be found
|
||||||
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
|
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is
|
||||||
|
* a prime or not
|
||||||
*/
|
*/
|
||||||
void print(uint32_t N, const std::vector<bool> &is_prime) {
|
void print(uint32_t N, const std::vector<bool> &is_prime) {
|
||||||
for (uint32_t i = 2; i <= N; i++) {
|
for (uint32_t i = 2; i <= N; i++) {
|
||||||
@@ -50,23 +70,53 @@ void print(uint32_t N, const std::vector<bool> &is_prime) {
|
|||||||
std::cout << std::endl;
|
std::cout << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
} // namespace sieve_of_eratosthenes
|
||||||
|
} // namespace math
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Test implementations
|
* @brief Self-test implementations
|
||||||
|
* @return void
|
||||||
*/
|
*/
|
||||||
void tests() {
|
static void tests() {
|
||||||
// 0 1 2 3 4 5 6 7 8 9 10
|
std::vector<bool> is_prime_1 =
|
||||||
std::vector<bool> ans{false, false, true, true, false, true, false, true, false, false, false};
|
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(10));
|
||||||
assert(sieve(10) == ans);
|
std::vector<bool> is_prime_2 =
|
||||||
|
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(20));
|
||||||
|
std::vector<bool> is_prime_3 =
|
||||||
|
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(100));
|
||||||
|
|
||||||
|
std::vector<bool> expected_1{false, false, true, true, false, true,
|
||||||
|
false, true, false, false, false};
|
||||||
|
assert(is_prime_1 == expected_1);
|
||||||
|
|
||||||
|
std::vector<bool> expected_2{false, false, true, true, false, true,
|
||||||
|
false, true, false, false, false, true,
|
||||||
|
false, true, false, false, false, true,
|
||||||
|
false, true, false};
|
||||||
|
assert(is_prime_2 == expected_2);
|
||||||
|
|
||||||
|
std::vector<bool> expected_3{
|
||||||
|
false, false, true, true, false, true, false, true, false, false,
|
||||||
|
false, true, false, true, false, false, false, true, false, true,
|
||||||
|
false, false, false, true, false, false, false, false, false, true,
|
||||||
|
false, true, false, false, false, false, false, true, false, false,
|
||||||
|
false, true, false, true, false, false, false, true, false, false,
|
||||||
|
false, false, false, true, false, false, false, false, false, true,
|
||||||
|
false, true, false, false, false, false, false, true, false, false,
|
||||||
|
false, true, false, true, false, false, false, false, false, true,
|
||||||
|
false, false, false, true, false, false, false, false, false, true,
|
||||||
|
false, false, false, false, false, false, false, true, false, false,
|
||||||
|
false};
|
||||||
|
assert(is_prime_3 == expected_3);
|
||||||
|
|
||||||
|
std::cout << "All tests have passed successfully!\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Main function
|
* @brief Main function
|
||||||
|
* @returns 0 on exit
|
||||||
*/
|
*/
|
||||||
int main() {
|
int main() {
|
||||||
tests();
|
tests();
|
||||||
|
|
||||||
uint32_t N = 100;
|
|
||||||
std::vector<bool> is_prime = sieve(N);
|
|
||||||
print(N, is_prime);
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|||||||
277
others/lru_cache2.cpp
Normal file
277
others/lru_cache2.cpp
Normal file
@@ -0,0 +1,277 @@
|
|||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @brief Implementation for [LRU Cache]
|
||||||
|
* (https://en.wikipedia.org/wiki/Cache_replacement_policies#:~:text=Least%20Recently%20Used%20(LRU))
|
||||||
|
*
|
||||||
|
* @details
|
||||||
|
* LRU discards the least recently used value.
|
||||||
|
* Data structures used - doubly linked list and unordered_map
|
||||||
|
*
|
||||||
|
* unordered_map maps the key to the address of the node of the linked list.
|
||||||
|
* If the element is accessed, the element is moved to the beginning of the
|
||||||
|
* linked list.
|
||||||
|
*
|
||||||
|
* When the cache is full, the last element in the linked list is popped.
|
||||||
|
*
|
||||||
|
* @author [Karan Sharma](https://github.com/deDSeC00720)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <cassert> // for assert
|
||||||
|
#include <cstdint> // for std::uint32_t
|
||||||
|
#include <iostream> // for std::cout
|
||||||
|
#include <unordered_map> // for std::unordered_map
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace
|
||||||
|
* @brief Other algorithms
|
||||||
|
*/
|
||||||
|
namespace others {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @namespace
|
||||||
|
* @brief Cache algorithm
|
||||||
|
*/
|
||||||
|
namespace Cache {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @class
|
||||||
|
* @brief Node for a doubly linked list with data, prev and next pointers
|
||||||
|
* @tparam T type of the data of the node
|
||||||
|
*/
|
||||||
|
template <typename T>
|
||||||
|
class D_Node {
|
||||||
|
public:
|
||||||
|
T data; ///< data of the node
|
||||||
|
D_Node<T> *prev; ///< previous node in the doubly linked list
|
||||||
|
D_Node<T> *next; ///< next node in the doubly linked list
|
||||||
|
|
||||||
|
explicit D_Node(T data) : data(data), prev(nullptr), next(nullptr) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename K, typename V>
|
||||||
|
using CacheNode = D_Node<std::pair<K, V>>;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @class
|
||||||
|
* @brief LRUCache
|
||||||
|
* @tparam K type of key in the LRU
|
||||||
|
* @tparam V type of value in the LRU
|
||||||
|
*/
|
||||||
|
template <typename K, typename V>
|
||||||
|
class LRUCache {
|
||||||
|
CacheNode<K, V> *head; ///< head of the doubly linked list
|
||||||
|
CacheNode<K, V> *tail; ///< tail of the doubly linked list
|
||||||
|
std::uint32_t _capacity; ///< maximum capacity of the cache
|
||||||
|
|
||||||
|
std::unordered_map<K, CacheNode<K, V> *>
|
||||||
|
node_map; ///< maps the key to the node address
|
||||||
|
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* @brief Constructor, Initialize the head and tail pointers to nullptr and
|
||||||
|
* initialize the _capacity of the cache
|
||||||
|
* @param _capacity Total capacity of the cache
|
||||||
|
*/
|
||||||
|
explicit LRUCache(int _capacity)
|
||||||
|
: head(nullptr), tail(nullptr), _capacity(_capacity) {}
|
||||||
|
|
||||||
|
private:
|
||||||
|
/**
|
||||||
|
* @brief push the node to the front of the linked list.
|
||||||
|
* @param node_ptr the node to be pushed
|
||||||
|
*/
|
||||||
|
void push_front(CacheNode<K, V> *node_ptr) {
|
||||||
|
if (!head) {
|
||||||
|
head = node_ptr;
|
||||||
|
tail = node_ptr;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
node_ptr->next = head;
|
||||||
|
head->prev = node_ptr;
|
||||||
|
head = node_ptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief move the existing node in the list to the beginning of the list.
|
||||||
|
* @param node_ptr node to be moved to the beginning.
|
||||||
|
*/
|
||||||
|
void make_recent(CacheNode<K, V> *node_ptr) {
|
||||||
|
if (head == node_ptr) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
CacheNode<K, V> *prev = node_ptr->prev;
|
||||||
|
CacheNode<K, V> *next = node_ptr->next;
|
||||||
|
|
||||||
|
prev->next = next;
|
||||||
|
if (next) {
|
||||||
|
next->prev = prev;
|
||||||
|
} else {
|
||||||
|
tail = prev;
|
||||||
|
}
|
||||||
|
|
||||||
|
node_ptr->prev = nullptr;
|
||||||
|
node_ptr->next = nullptr;
|
||||||
|
push_front(node_ptr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief pop the last node in the linked list.
|
||||||
|
*/
|
||||||
|
void pop_back() {
|
||||||
|
if (!head) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (head == tail) {
|
||||||
|
delete head;
|
||||||
|
head = nullptr;
|
||||||
|
tail = nullptr;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
CacheNode<K, V> *temp = tail;
|
||||||
|
tail = tail->prev;
|
||||||
|
tail->next = nullptr;
|
||||||
|
delete temp;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* @brief upsert a key-value pair
|
||||||
|
* @param key key of the key-value pair
|
||||||
|
* @param value value of the key-value pair
|
||||||
|
*/
|
||||||
|
void put(K key, V value) {
|
||||||
|
// update the value if key already exists
|
||||||
|
if (node_map.count(key)) {
|
||||||
|
node_map[key]->data.second = value;
|
||||||
|
make_recent(node_map[key]);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// if the cache is full
|
||||||
|
// remove the least recently used item
|
||||||
|
if (node_map.size() == _capacity) {
|
||||||
|
node_map.erase(tail->data.first);
|
||||||
|
pop_back();
|
||||||
|
}
|
||||||
|
|
||||||
|
CacheNode<K, V> *newNode = new CacheNode<K, V>({key, value});
|
||||||
|
|
||||||
|
node_map[key] = newNode;
|
||||||
|
push_front(newNode);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief get the value of the key-value pair if exists
|
||||||
|
* @param key key of the key-value pair
|
||||||
|
* @return the value mapped to the given key
|
||||||
|
* @exception exception is thrown if the key is not present in the cache
|
||||||
|
*/
|
||||||
|
V get(K key) {
|
||||||
|
if (!node_map.count(key)) {
|
||||||
|
throw std::runtime_error("key is not present in the cache");
|
||||||
|
}
|
||||||
|
|
||||||
|
// move node to the beginning of the list
|
||||||
|
V value = node_map[key]->data.second;
|
||||||
|
make_recent(node_map[key]);
|
||||||
|
return value;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Returns the number of items present in the cache.
|
||||||
|
* @return number of items in the cache
|
||||||
|
*/
|
||||||
|
int size() const { return node_map.size(); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Returns the total capacity of the cache
|
||||||
|
* @return Total capacity of the cache
|
||||||
|
*/
|
||||||
|
int capacity() const { return _capacity; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief returns whether the cache is empty or not
|
||||||
|
* @return true if the cache is empty, false otherwise.
|
||||||
|
*/
|
||||||
|
bool empty() const { return node_map.empty(); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief destructs the cache, iterates on the map and deletes every node
|
||||||
|
* present in the cache.
|
||||||
|
*/
|
||||||
|
~LRUCache() {
|
||||||
|
auto it = node_map.begin();
|
||||||
|
while (it != node_map.end()) {
|
||||||
|
delete it->second;
|
||||||
|
++it;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace Cache
|
||||||
|
} // namespace others
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief self test implementations
|
||||||
|
* @return void
|
||||||
|
*/
|
||||||
|
static void test() {
|
||||||
|
others::Cache::LRUCache<int, int> cache(5);
|
||||||
|
|
||||||
|
// test the initial state of the cache
|
||||||
|
assert(cache.size() == 0);
|
||||||
|
assert(cache.capacity() == 5);
|
||||||
|
assert(cache.empty());
|
||||||
|
|
||||||
|
// test insertion in the cache
|
||||||
|
cache.put(1, 10);
|
||||||
|
cache.put(-2, 20);
|
||||||
|
|
||||||
|
// test the state of cache after inserting some items
|
||||||
|
assert(cache.size() == 2);
|
||||||
|
assert(cache.capacity() == 5);
|
||||||
|
assert(!cache.empty());
|
||||||
|
|
||||||
|
// test getting items from the cache
|
||||||
|
assert(cache.get(1) == 10);
|
||||||
|
assert(cache.get(-2) == 20);
|
||||||
|
|
||||||
|
cache.put(-3, -30);
|
||||||
|
cache.put(4, 40);
|
||||||
|
cache.put(5, -50);
|
||||||
|
cache.put(6, 60);
|
||||||
|
|
||||||
|
// test the state after inserting more items than the capacity
|
||||||
|
assert(cache.size() == 5);
|
||||||
|
assert(cache.capacity() == 5);
|
||||||
|
assert(!cache.empty());
|
||||||
|
|
||||||
|
// fetching 1 throws runtime_error
|
||||||
|
// as 1 was evicted being the least recently used
|
||||||
|
// when 6 was added
|
||||||
|
try {
|
||||||
|
cache.get(1);
|
||||||
|
} catch (const std::runtime_error &e) {
|
||||||
|
assert(std::string(e.what()) == "key is not present in the cache");
|
||||||
|
}
|
||||||
|
|
||||||
|
// test retrieval of all items in the cache
|
||||||
|
assert(cache.get(-2) == 20);
|
||||||
|
assert(cache.get(-3) == -30);
|
||||||
|
assert(cache.get(4) == 40);
|
||||||
|
assert(cache.get(5) == -50);
|
||||||
|
assert(cache.get(6) == 60);
|
||||||
|
|
||||||
|
std::cout << "test - passed\n";
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief main function
|
||||||
|
* @return 0 on exit
|
||||||
|
*/
|
||||||
|
int main() {
|
||||||
|
test(); // run the self test implementation
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
117
search/longest_increasing_subsequence_using_binary_search.cpp
Normal file
117
search/longest_increasing_subsequence_using_binary_search.cpp
Normal file
@@ -0,0 +1,117 @@
|
|||||||
|
/**
|
||||||
|
* @file
|
||||||
|
* @brief find the length of the Longest Increasing Subsequence (LIS)
|
||||||
|
* using [Binary Search](https://en.wikipedia.org/wiki/Longest_increasing_subsequence)
|
||||||
|
* @details
|
||||||
|
* Given an integer array nums, return the length of the longest strictly
|
||||||
|
* increasing subsequence.
|
||||||
|
* The longest increasing subsequence is described as a subsequence of an array
|
||||||
|
* where: All elements of the subsequence are in increasing order. This subsequence
|
||||||
|
* itself is of the longest length possible.
|
||||||
|
|
||||||
|
* For solving this problem we have Three Approaches :-
|
||||||
|
|
||||||
|
* Approach 1 :- Using Brute Force
|
||||||
|
* The first approach that came to your mind is the Brute Force approach where we
|
||||||
|
* generate all subsequences and then manually filter the subsequences whose
|
||||||
|
* elements come in increasing order and then return the longest such subsequence.
|
||||||
|
* Time Complexity :- O(2^n)
|
||||||
|
* It's time complexity is exponential. Therefore we will try some other
|
||||||
|
* approaches.
|
||||||
|
|
||||||
|
* Approach 2 :- Using Dynamic Programming
|
||||||
|
* To generate all subsequences we will use recursion and in the recursive logic we
|
||||||
|
* will figure out a way to solve this problem. Recursive Logic to solve this
|
||||||
|
* problem:-
|
||||||
|
* 1. We only consider the element in the subsequence if the element is grater then
|
||||||
|
* the last element present in the subsequence
|
||||||
|
* 2. When we consider the element we will increase the length of subsequence by 1
|
||||||
|
* Time Complexity: O(N*N)
|
||||||
|
* Space Complexity: O(N*N) + O(N)
|
||||||
|
|
||||||
|
* This approach is better then the previous Brute Force approach so, we can
|
||||||
|
* consider this approach.
|
||||||
|
|
||||||
|
* But when the Constraints for the problem is very larger then this approach fails
|
||||||
|
|
||||||
|
* Approach 3 :- Using Binary Search
|
||||||
|
* Other approaches use additional space to create a new subsequence Array.
|
||||||
|
* Instead, this solution uses the existing nums Array to build the subsequence
|
||||||
|
* array. We can do this because the length of the subsequence array will never be
|
||||||
|
* longer than the current index.
|
||||||
|
|
||||||
|
* Time complexity: O(n∗log(n))
|
||||||
|
* Space complexity: O(1)
|
||||||
|
|
||||||
|
* This approach consider Most optimal Approach for solving this problem
|
||||||
|
|
||||||
|
* @author [Naman Jain](https://github.com/namanmodi65)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <cassert> /// for std::assert
|
||||||
|
#include <iostream> /// for IO operations
|
||||||
|
#include <vector> /// for std::vector
|
||||||
|
#include <algorithm> /// for std::lower_bound
|
||||||
|
#include <cstdint> /// for std::uint32_t
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Function to find the length of the Longest Increasing Subsequence (LIS)
|
||||||
|
* using Binary Search
|
||||||
|
* @tparam T The type of the elements in the input vector
|
||||||
|
* @param nums The input vector of elements of type T
|
||||||
|
* @return The length of the longest increasing subsequence
|
||||||
|
*/
|
||||||
|
template <typename T>
|
||||||
|
std::uint32_t longest_increasing_subsequence_using_binary_search(std::vector<T>& nums) {
|
||||||
|
if (nums.empty()) return 0;
|
||||||
|
|
||||||
|
std::vector<T> ans;
|
||||||
|
ans.push_back(nums[0]);
|
||||||
|
for (std::size_t i = 1; i < nums.size(); i++) {
|
||||||
|
if (nums[i] > ans.back()) {
|
||||||
|
ans.push_back(nums[i]);
|
||||||
|
} else {
|
||||||
|
auto idx = std::lower_bound(ans.begin(), ans.end(), nums[i]) - ans.begin();
|
||||||
|
ans[idx] = nums[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return static_cast<std::uint32_t>(ans.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Test cases for Longest Increasing Subsequence function
|
||||||
|
* @returns void
|
||||||
|
*/
|
||||||
|
static void tests() {
|
||||||
|
std::vector<int> arr = {10, 9, 2, 5, 3, 7, 101, 18};
|
||||||
|
assert(longest_increasing_subsequence_using_binary_search(arr) == 4);
|
||||||
|
|
||||||
|
std::vector<int> arr2 = {0, 1, 0, 3, 2, 3};
|
||||||
|
assert(longest_increasing_subsequence_using_binary_search(arr2) == 4);
|
||||||
|
|
||||||
|
std::vector<int> arr3 = {7, 7, 7, 7, 7, 7, 7};
|
||||||
|
assert(longest_increasing_subsequence_using_binary_search(arr3) == 1);
|
||||||
|
|
||||||
|
std::vector<int> arr4 = {-10, -1, -5, 0, 5, 1, 2};
|
||||||
|
assert(longest_increasing_subsequence_using_binary_search(arr4) == 5);
|
||||||
|
|
||||||
|
std::vector<double> arr5 = {3.5, 1.2, 2.8, 3.1, 4.0};
|
||||||
|
assert(longest_increasing_subsequence_using_binary_search(arr5) == 4);
|
||||||
|
|
||||||
|
std::vector<char> arr6 = {'a', 'b', 'c', 'a', 'd'};
|
||||||
|
assert(longest_increasing_subsequence_using_binary_search(arr6) == 4);
|
||||||
|
|
||||||
|
std::vector<int> arr7 = {};
|
||||||
|
assert(longest_increasing_subsequence_using_binary_search(arr7) == 0);
|
||||||
|
|
||||||
|
std::cout << "All tests have successfully passed!\n";
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Main function to run tests
|
||||||
|
* @returns 0 on exit
|
||||||
|
*/
|
||||||
|
int main() {
|
||||||
|
tests(); // run self test implementation
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user