Merge branch 'master' into LakshmiSrikumar-patch-1

This commit is contained in:
realstealthninja
2024-10-31 10:44:22 +05:30
committed by GitHub
7 changed files with 822 additions and 65 deletions

View File

@@ -340,6 +340,7 @@
* [Sparse Table](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/range_queries/sparse_table.cpp) * [Sparse Table](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/range_queries/sparse_table.cpp)
## Search ## Search
* [Longest Increasing Subsequence Using Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/Longest_Increasing_Subsequence_using_binary_search.cpp)
* [Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/binary_search.cpp) * [Binary Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/binary_search.cpp)
* [Exponential Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/exponential_search.cpp) * [Exponential Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/exponential_search.cpp)
* [Fibonacci Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/fibonacci_search.cpp) * [Fibonacci Search](https://github.com/TheAlgorithms/C-Plus-Plus/blob/HEAD/search/fibonacci_search.cpp)

View File

@@ -0,0 +1,151 @@
/**
* @file
* @brief Implementation of the Unbounded 0/1 Knapsack Problem
*
* @details
* The Unbounded 0/1 Knapsack problem allows taking unlimited quantities of each item.
* The goal is to maximize the total value without exceeding the given knapsack capacity.
* Unlike the 0/1 knapsack, where each item can be taken only once, in this variation,
* any item can be picked any number of times as long as the total weight stays within
* the knapsack's capacity.
*
* Given a set of N items, each with a weight and a value, represented by the arrays
* `wt` and `val` respectively, and a knapsack with a weight limit W, the task is to
* fill the knapsack to maximize the total value.
*
* @note weight and value of items is greater than zero
*
* ### Algorithm
* The approach uses dynamic programming to build a solution iteratively.
* A 2D array is used for memoization to store intermediate results, allowing
* the function to avoid redundant calculations.
*
* @author [Sanskruti Yeole](https://github.com/yeolesanskruti)
* @see dynamic_programming/0_1_knapsack.cpp
*/
#include <iostream> // Standard input-output stream
#include <vector> // Standard library for using dynamic arrays (vectors)
#include <cassert> // For using assert function to validate test cases
#include <cstdint> // For fixed-width integer types like std::uint16_t
/**
* @namespace dynamic_programming
* @brief Namespace for dynamic programming algorithms
*/
namespace dynamic_programming {
/**
* @namespace Knapsack
* @brief Implementation of unbounded 0-1 knapsack problem
*/
namespace unbounded_knapsack {
/**
* @brief Recursive function to calculate the maximum value obtainable using
* an unbounded knapsack approach.
*
* @param i Current index in the value and weight vectors.
* @param W Remaining capacity of the knapsack.
* @param val Vector of values corresponding to the items.
* @note "val" data type can be changed according to the size of the input.
* @param wt Vector of weights corresponding to the items.
* @note "wt" data type can be changed according to the size of the input.
* @param dp 2D vector for memoization to avoid redundant calculations.
* @return The maximum value that can be obtained for the given index and capacity.
*/
std::uint16_t KnapSackFilling(std::uint16_t i, std::uint16_t W,
const std::vector<std::uint16_t>& val,
const std::vector<std::uint16_t>& wt,
std::vector<std::vector<int>>& dp) {
if (i == 0) {
if (wt[0] <= W) {
return (W / wt[0]) * val[0]; // Take as many of the first item as possible
} else {
return 0; // Can't take the first item
}
}
if (dp[i][W] != -1) return dp[i][W]; // Return result if available
int nottake = KnapSackFilling(i - 1, W, val, wt, dp); // Value without taking item i
int take = 0;
if (W >= wt[i]) {
take = val[i] + KnapSackFilling(i, W - wt[i], val, wt, dp); // Value taking item i
}
return dp[i][W] = std::max(take, nottake); // Store and return the maximum value
}
/**
* @brief Wrapper function to initiate the unbounded knapsack calculation.
*
* @param N Number of items.
* @param W Maximum weight capacity of the knapsack.
* @param val Vector of values corresponding to the items.
* @param wt Vector of weights corresponding to the items.
* @return The maximum value that can be obtained for the given capacity.
*/
std::uint16_t unboundedKnapsack(std::uint16_t N, std::uint16_t W,
const std::vector<std::uint16_t>& val,
const std::vector<std::uint16_t>& wt) {
if(N==0)return 0; // Expect 0 since no items
std::vector<std::vector<int>> dp(N, std::vector<int>(W + 1, -1)); // Initialize memoization table
return KnapSackFilling(N - 1, W, val, wt, dp); // Start the calculation
}
} // unbounded_knapsack
} // dynamic_programming
/**
* @brief self test implementation
* @return void
*/
static void tests() {
// Test Case 1
std::uint16_t N1 = 4; // Number of items
std::vector<std::uint16_t> wt1 = {1, 3, 4, 5}; // Weights of the items
std::vector<std::uint16_t> val1 = {6, 1, 7, 7}; // Values of the items
std::uint16_t W1 = 8; // Maximum capacity of the knapsack
// Test the function and assert the expected output
assert(unboundedKnapsack(N1, W1, val1, wt1) == 48);
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N1, W1, val1, wt1) << std::endl;
// Test Case 2
std::uint16_t N2 = 3; // Number of items
std::vector<std::uint16_t> wt2 = {10, 20, 30}; // Weights of the items
std::vector<std::uint16_t> val2 = {60, 100, 120}; // Values of the items
std::uint16_t W2 = 5; // Maximum capacity of the knapsack
// Test the function and assert the expected output
assert(unboundedKnapsack(N2, W2, val2, wt2) == 0);
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N2, W2, val2, wt2) << std::endl;
// Test Case 3
std::uint16_t N3 = 3; // Number of items
std::vector<std::uint16_t> wt3 = {2, 4, 6}; // Weights of the items
std::vector<std::uint16_t> val3 = {5, 11, 13};// Values of the items
std::uint16_t W3 = 27;// Maximum capacity of the knapsack
// Test the function and assert the expected output
assert(unboundedKnapsack(N3, W3, val3, wt3) == 27);
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N3, W3, val3, wt3) << std::endl;
// Test Case 4
std::uint16_t N4 = 0; // Number of items
std::vector<std::uint16_t> wt4 = {}; // Weights of the items
std::vector<std::uint16_t> val4 = {}; // Values of the items
std::uint16_t W4 = 10; // Maximum capacity of the knapsack
assert(unboundedKnapsack(N4, W4, val4, wt4) == 0);
std::cout << "Maximum Knapsack value for empty arrays: " << unboundedKnapsack(N4, W4, val4, wt4) << std::endl;
std::cout << "All test cases passed!" << std::endl;
}
/**
* @brief main function
* @return 0 on successful exit
*/
int main() {
tests(); // Run self test implementation
return 0;
}

View File

@@ -0,0 +1,119 @@
/**
* @file binary_addition.cpp
* @brief Adds two binary numbers and outputs resulting string
*
* @details The algorithm for adding two binary strings works by processing them
* from right to left, similar to manual addition. It starts by determining the
* longer string's length to ensure both strings are fully traversed. For each
* pair of corresponding bits and any carry from the previous addition, it
* calculates the sum. If the sum exceeds 1, a carry is generated for the next
* bit. The results for each bit are collected in a result string, which is
* reversed at the end to present the final binary sum correctly. Additionally,
* the function validates the input to ensure that only valid binary strings
* (containing only '0' and '1') are processed. If invalid input is detected,
* it returns an empty string.
* @author [Muhammad Junaid Khalid](https://github.com/mjk22071998)
*/
#include <algorithm> /// for reverse function
#include <cassert> /// for tests
#include <iostream> /// for input and outputs
#include <string> /// for string class
/**
* @namespace
* @brief Greedy Algorithms
*/
namespace greedy_algorithms {
/**
* @brief A class to perform binary addition of two binary strings.
*/
class BinaryAddition {
public:
/**
* @brief Adds two binary strings and returns the result as a binary string.
* @param a The first binary string.
* @param b The second binary string.
* @return The sum of the two binary strings as a binary string, or an empty
* string if either input string contains non-binary characters.
*/
std::string addBinary(const std::string& a, const std::string& b) {
if (!isValidBinaryString(a) || !isValidBinaryString(b)) {
return ""; // Return empty string if input contains non-binary
// characters
}
std::string result;
int carry = 0;
int maxLength = std::max(a.size(), b.size());
// Traverse both strings from the end to the beginning
for (int i = 0; i < maxLength; ++i) {
// Get the current bits from both strings, if available
int bitA = (i < a.size()) ? (a[a.size() - 1 - i] - '0') : 0;
int bitB = (i < b.size()) ? (b[b.size() - 1 - i] - '0') : 0;
// Calculate the sum of bits and carry
int sum = bitA + bitB + carry;
carry = sum / 2; // Determine the carry for the next bit
result.push_back((sum % 2) +
'0'); // Append the sum's current bit to result
}
if (carry) {
result.push_back('1');
}
std::reverse(result.begin(), result.end());
return result;
}
private:
/**
* @brief Validates whether a string contains only binary characters (0 or 1).
* @param str The string to validate.
* @return true if the string is binary, false otherwise.
*/
bool isValidBinaryString(const std::string& str) const {
return std::all_of(str.begin(), str.end(),
[](char c) { return c == '0' || c == '1'; });
}
};
} // namespace greedy_algorithms
/**
* @brief run self test implementation.
* @returns void
*/
static void tests() {
greedy_algorithms::BinaryAddition binaryAddition;
// Valid binary string tests
assert(binaryAddition.addBinary("1010", "1101") == "10111");
assert(binaryAddition.addBinary("1111", "1111") == "11110");
assert(binaryAddition.addBinary("101", "11") == "1000");
assert(binaryAddition.addBinary("0", "0") == "0");
assert(binaryAddition.addBinary("1111", "1111") == "11110");
assert(binaryAddition.addBinary("0", "10101") == "10101");
assert(binaryAddition.addBinary("10101", "0") == "10101");
assert(binaryAddition.addBinary("101010101010101010101010101010",
"110110110110110110110110110110") ==
"1100001100001100001100001100000");
assert(binaryAddition.addBinary("1", "11111111") == "100000000");
assert(binaryAddition.addBinary("10101010", "01010101") == "11111111");
// Invalid binary string tests (should return empty string)
assert(binaryAddition.addBinary("10102", "1101") == "");
assert(binaryAddition.addBinary("ABC", "1101") == "");
assert(binaryAddition.addBinary("1010", "1102") == "");
assert(binaryAddition.addBinary("111", "1x1") == "");
assert(binaryAddition.addBinary("1x1", "111") == "");
assert(binaryAddition.addBinary("1234", "1101") == "");
}
/**
* @brief main function
* @returns 0 on successful exit
*/
int main() {
tests(); /// To execute tests
return 0;
}

View File

@@ -30,8 +30,8 @@
* a^{m-2} &≡& a^{-1} \;\text{mod}\; m * a^{m-2} &≡& a^{-1} \;\text{mod}\; m
* \f} * \f}
* *
* We will find the exponent using binary exponentiation. Such that the * We will find the exponent using binary exponentiation such that the
* algorithm works in \f$O(\log m)\f$ time. * algorithm works in \f$O(\log n)\f$ time.
* *
* Examples: - * Examples: -
* * a = 3 and m = 7 * * a = 3 and m = 7
@@ -43,56 +43,98 @@
* (as \f$a\times a^{-1} = 1\f$) * (as \f$a\times a^{-1} = 1\f$)
*/ */
#include <iostream> #include <cassert> /// for assert
#include <vector> #include <cstdint> /// for std::int64_t
#include <iostream> /// for IO implementations
/** Recursive function to calculate exponent in \f$O(\log n)\f$ using binary /**
* exponent. * @namespace math
* @brief Maths algorithms.
*/ */
int64_t binExpo(int64_t a, int64_t b, int64_t m) { namespace math {
a %= m; /**
int64_t res = 1; * @namespace modular_inverse_fermat
while (b > 0) { * @brief Calculate modular inverse using Fermat's Little Theorem.
if (b % 2) { */
res = res * a % m; namespace modular_inverse_fermat {
} /**
a = a * a % m; * @brief Calculate exponent with modulo using binary exponentiation in \f$O(\log b)\f$ time.
// Dividing b by 2 is similar to right shift. * @param a The base
b >>= 1; * @param b The exponent
* @param m The modulo
* @return The result of \f$a^{b} % m\f$
*/
std::int64_t binExpo(std::int64_t a, std::int64_t b, std::int64_t m) {
a %= m;
std::int64_t res = 1;
while (b > 0) {
if (b % 2 != 0) {
res = res * a % m;
} }
return res; a = a * a % m;
// Dividing b by 2 is similar to right shift by 1 bit
b >>= 1;
}
return res;
} }
/**
/** Prime check in \f$O(\sqrt{m})\f$ time. * @brief Check if an integer is a prime number in \f$O(\sqrt{m})\f$ time.
* @param m An intger to check for primality
* @return true if the number is prime
* @return false if the number is not prime
*/ */
bool isPrime(int64_t m) { bool isPrime(std::int64_t m) {
if (m <= 1) { if (m <= 1) {
return false; return false;
} else { }
for (int64_t i = 2; i * i <= m; i++) { for (std::int64_t i = 2; i * i <= m; i++) {
if (m % i == 0) { if (m % i == 0) {
return false; return false;
}
}
} }
return true; }
return true;
}
/**
* @brief calculates the modular inverse.
* @param a Integer value for the base
* @param m Integer value for modulo
* @return The result that is the modular inverse of a modulo m
*/
std::int64_t modular_inverse(std::int64_t a, std::int64_t m) {
while (a < 0) {
a += m;
}
// Check for invalid cases
if (!isPrime(m) || a == 0) {
return -1; // Invalid input
}
return binExpo(a, m - 2, m); // Fermat's Little Theorem
}
} // namespace modular_inverse_fermat
} // namespace math
/**
* @brief Self-test implementation
* @return void
*/
static void test() {
assert(math::modular_inverse_fermat::modular_inverse(0, 97) == -1);
assert(math::modular_inverse_fermat::modular_inverse(15, -2) == -1);
assert(math::modular_inverse_fermat::modular_inverse(3, 10) == -1);
assert(math::modular_inverse_fermat::modular_inverse(3, 7) == 5);
assert(math::modular_inverse_fermat::modular_inverse(1, 101) == 1);
assert(math::modular_inverse_fermat::modular_inverse(-1337, 285179) == 165519);
assert(math::modular_inverse_fermat::modular_inverse(123456789, 998244353) == 25170271);
assert(math::modular_inverse_fermat::modular_inverse(-9876543210, 1000000007) == 784794281);
} }
/** /**
* Main function * @brief Main function
* @return 0 on exit
*/ */
int main() { int main() {
int64_t a, m; test(); // run self-test implementation
// Take input of a and m. return 0;
std::cout << "Computing ((a^(-1))%(m)) using Fermat's Little Theorem";
std::cout << std::endl << std::endl;
std::cout << "Give input 'a' and 'm' space separated : ";
std::cin >> a >> m;
if (isPrime(m)) {
std::cout << "The modular inverse of a with mod m is (a^(m-2)) : ";
std::cout << binExpo(a, m - 2, m) << std::endl;
} else {
std::cout << "m must be a prime number.";
std::cout << std::endl;
}
} }

View File

@@ -1,6 +1,7 @@
/** /**
* @file * @file
* @brief Get list of prime numbers using Sieve of Eratosthenes * @brief Prime Numbers using [Sieve of
* Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
* @details * @details
* Sieve of Eratosthenes is an algorithm that finds all the primes * Sieve of Eratosthenes is an algorithm that finds all the primes
* between 2 and N. * between 2 and N.
@@ -11,21 +12,39 @@
* @see primes_up_to_billion.cpp prime_numbers.cpp * @see primes_up_to_billion.cpp prime_numbers.cpp
*/ */
#include <cassert> #include <cassert> /// for assert
#include <iostream> #include <iostream> /// for IO operations
#include <vector> #include <vector> /// for std::vector
/** /**
* This is the function that finds the primes and eliminates the multiples. * @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @namespace sieve_of_eratosthenes
* @brief Functions for finding Prime Numbers using Sieve of Eratosthenes
*/
namespace sieve_of_eratosthenes {
/**
* @brief Function to sieve out the primes
* @details
* This function finds all the primes between 2 and N using the Sieve of
* Eratosthenes algorithm. It starts by assuming all numbers (except zero and
* one) are prime and then iteratively marks the multiples of each prime as
* non-prime.
*
* Contains a common optimization to start eliminating multiples of * Contains a common optimization to start eliminating multiples of
* a prime p starting from p * p since all of the lower multiples * a prime p starting from p * p since all of the lower multiples
* have been already eliminated. * have been already eliminated.
* @param N number of primes to check * @param N number till which primes are to be found
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not * @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is
* a prime or not
*/ */
std::vector<bool> sieve(uint32_t N) { std::vector<bool> sieve(uint32_t N) {
std::vector<bool> is_prime(N + 1, true); std::vector<bool> is_prime(N + 1, true); // Initialize all as prime numbers
is_prime[0] = is_prime[1] = false; is_prime[0] = is_prime[1] = false; // 0 and 1 are not prime numbers
for (uint32_t i = 2; i * i <= N; i++) { for (uint32_t i = 2; i * i <= N; i++) {
if (is_prime[i]) { if (is_prime[i]) {
for (uint32_t j = i * i; j <= N; j += i) { for (uint32_t j = i * i; j <= N; j += i) {
@@ -37,9 +56,10 @@ std::vector<bool> sieve(uint32_t N) {
} }
/** /**
* This function prints out the primes to STDOUT * @brief Function to print the prime numbers
* @param N number of primes to check * @param N number till which primes are to be found
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not * @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is
* a prime or not
*/ */
void print(uint32_t N, const std::vector<bool> &is_prime) { void print(uint32_t N, const std::vector<bool> &is_prime) {
for (uint32_t i = 2; i <= N; i++) { for (uint32_t i = 2; i <= N; i++) {
@@ -50,23 +70,53 @@ void print(uint32_t N, const std::vector<bool> &is_prime) {
std::cout << std::endl; std::cout << std::endl;
} }
} // namespace sieve_of_eratosthenes
} // namespace math
/** /**
* Test implementations * @brief Self-test implementations
* @return void
*/ */
void tests() { static void tests() {
// 0 1 2 3 4 5 6 7 8 9 10 std::vector<bool> is_prime_1 =
std::vector<bool> ans{false, false, true, true, false, true, false, true, false, false, false}; math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(10));
assert(sieve(10) == ans); std::vector<bool> is_prime_2 =
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(20));
std::vector<bool> is_prime_3 =
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(100));
std::vector<bool> expected_1{false, false, true, true, false, true,
false, true, false, false, false};
assert(is_prime_1 == expected_1);
std::vector<bool> expected_2{false, false, true, true, false, true,
false, true, false, false, false, true,
false, true, false, false, false, true,
false, true, false};
assert(is_prime_2 == expected_2);
std::vector<bool> expected_3{
false, false, true, true, false, true, false, true, false, false,
false, true, false, true, false, false, false, true, false, true,
false, false, false, true, false, false, false, false, false, true,
false, true, false, false, false, false, false, true, false, false,
false, true, false, true, false, false, false, true, false, false,
false, false, false, true, false, false, false, false, false, true,
false, true, false, false, false, false, false, true, false, false,
false, true, false, true, false, false, false, false, false, true,
false, false, false, true, false, false, false, false, false, true,
false, false, false, false, false, false, false, true, false, false,
false};
assert(is_prime_3 == expected_3);
std::cout << "All tests have passed successfully!\n";
} }
/** /**
* Main function * @brief Main function
* @returns 0 on exit
*/ */
int main() { int main() {
tests(); tests();
uint32_t N = 100;
std::vector<bool> is_prime = sieve(N);
print(N, is_prime);
return 0; return 0;
} }

277
others/lru_cache2.cpp Normal file
View File

@@ -0,0 +1,277 @@
/**
* @file
* @brief Implementation for [LRU Cache]
* (https://en.wikipedia.org/wiki/Cache_replacement_policies#:~:text=Least%20Recently%20Used%20(LRU))
*
* @details
* LRU discards the least recently used value.
* Data structures used - doubly linked list and unordered_map
*
* unordered_map maps the key to the address of the node of the linked list.
* If the element is accessed, the element is moved to the beginning of the
* linked list.
*
* When the cache is full, the last element in the linked list is popped.
*
* @author [Karan Sharma](https://github.com/deDSeC00720)
*/
#include <cassert> // for assert
#include <cstdint> // for std::uint32_t
#include <iostream> // for std::cout
#include <unordered_map> // for std::unordered_map
/**
* @namespace
* @brief Other algorithms
*/
namespace others {
/**
* @namespace
* @brief Cache algorithm
*/
namespace Cache {
/**
* @class
* @brief Node for a doubly linked list with data, prev and next pointers
* @tparam T type of the data of the node
*/
template <typename T>
class D_Node {
public:
T data; ///< data of the node
D_Node<T> *prev; ///< previous node in the doubly linked list
D_Node<T> *next; ///< next node in the doubly linked list
explicit D_Node(T data) : data(data), prev(nullptr), next(nullptr) {}
};
template <typename K, typename V>
using CacheNode = D_Node<std::pair<K, V>>;
/**
* @class
* @brief LRUCache
* @tparam K type of key in the LRU
* @tparam V type of value in the LRU
*/
template <typename K, typename V>
class LRUCache {
CacheNode<K, V> *head; ///< head of the doubly linked list
CacheNode<K, V> *tail; ///< tail of the doubly linked list
std::uint32_t _capacity; ///< maximum capacity of the cache
std::unordered_map<K, CacheNode<K, V> *>
node_map; ///< maps the key to the node address
public:
/**
* @brief Constructor, Initialize the head and tail pointers to nullptr and
* initialize the _capacity of the cache
* @param _capacity Total capacity of the cache
*/
explicit LRUCache(int _capacity)
: head(nullptr), tail(nullptr), _capacity(_capacity) {}
private:
/**
* @brief push the node to the front of the linked list.
* @param node_ptr the node to be pushed
*/
void push_front(CacheNode<K, V> *node_ptr) {
if (!head) {
head = node_ptr;
tail = node_ptr;
return;
}
node_ptr->next = head;
head->prev = node_ptr;
head = node_ptr;
}
/**
* @brief move the existing node in the list to the beginning of the list.
* @param node_ptr node to be moved to the beginning.
*/
void make_recent(CacheNode<K, V> *node_ptr) {
if (head == node_ptr) {
return;
}
CacheNode<K, V> *prev = node_ptr->prev;
CacheNode<K, V> *next = node_ptr->next;
prev->next = next;
if (next) {
next->prev = prev;
} else {
tail = prev;
}
node_ptr->prev = nullptr;
node_ptr->next = nullptr;
push_front(node_ptr);
}
/**
* @brief pop the last node in the linked list.
*/
void pop_back() {
if (!head) {
return;
}
if (head == tail) {
delete head;
head = nullptr;
tail = nullptr;
return;
}
CacheNode<K, V> *temp = tail;
tail = tail->prev;
tail->next = nullptr;
delete temp;
}
public:
/**
* @brief upsert a key-value pair
* @param key key of the key-value pair
* @param value value of the key-value pair
*/
void put(K key, V value) {
// update the value if key already exists
if (node_map.count(key)) {
node_map[key]->data.second = value;
make_recent(node_map[key]);
return;
}
// if the cache is full
// remove the least recently used item
if (node_map.size() == _capacity) {
node_map.erase(tail->data.first);
pop_back();
}
CacheNode<K, V> *newNode = new CacheNode<K, V>({key, value});
node_map[key] = newNode;
push_front(newNode);
}
/**
* @brief get the value of the key-value pair if exists
* @param key key of the key-value pair
* @return the value mapped to the given key
* @exception exception is thrown if the key is not present in the cache
*/
V get(K key) {
if (!node_map.count(key)) {
throw std::runtime_error("key is not present in the cache");
}
// move node to the beginning of the list
V value = node_map[key]->data.second;
make_recent(node_map[key]);
return value;
}
/**
* @brief Returns the number of items present in the cache.
* @return number of items in the cache
*/
int size() const { return node_map.size(); }
/**
* @brief Returns the total capacity of the cache
* @return Total capacity of the cache
*/
int capacity() const { return _capacity; }
/**
* @brief returns whether the cache is empty or not
* @return true if the cache is empty, false otherwise.
*/
bool empty() const { return node_map.empty(); }
/**
* @brief destructs the cache, iterates on the map and deletes every node
* present in the cache.
*/
~LRUCache() {
auto it = node_map.begin();
while (it != node_map.end()) {
delete it->second;
++it;
}
}
};
} // namespace Cache
} // namespace others
/**
* @brief self test implementations
* @return void
*/
static void test() {
others::Cache::LRUCache<int, int> cache(5);
// test the initial state of the cache
assert(cache.size() == 0);
assert(cache.capacity() == 5);
assert(cache.empty());
// test insertion in the cache
cache.put(1, 10);
cache.put(-2, 20);
// test the state of cache after inserting some items
assert(cache.size() == 2);
assert(cache.capacity() == 5);
assert(!cache.empty());
// test getting items from the cache
assert(cache.get(1) == 10);
assert(cache.get(-2) == 20);
cache.put(-3, -30);
cache.put(4, 40);
cache.put(5, -50);
cache.put(6, 60);
// test the state after inserting more items than the capacity
assert(cache.size() == 5);
assert(cache.capacity() == 5);
assert(!cache.empty());
// fetching 1 throws runtime_error
// as 1 was evicted being the least recently used
// when 6 was added
try {
cache.get(1);
} catch (const std::runtime_error &e) {
assert(std::string(e.what()) == "key is not present in the cache");
}
// test retrieval of all items in the cache
assert(cache.get(-2) == 20);
assert(cache.get(-3) == -30);
assert(cache.get(4) == 40);
assert(cache.get(5) == -50);
assert(cache.get(6) == 60);
std::cout << "test - passed\n";
}
/**
* @brief main function
* @return 0 on exit
*/
int main() {
test(); // run the self test implementation
return 0;
}

View File

@@ -0,0 +1,117 @@
/**
* @file
* @brief find the length of the Longest Increasing Subsequence (LIS)
* using [Binary Search](https://en.wikipedia.org/wiki/Longest_increasing_subsequence)
* @details
* Given an integer array nums, return the length of the longest strictly
* increasing subsequence.
* The longest increasing subsequence is described as a subsequence of an array
* where: All elements of the subsequence are in increasing order. This subsequence
* itself is of the longest length possible.
* For solving this problem we have Three Approaches :-
* Approach 1 :- Using Brute Force
* The first approach that came to your mind is the Brute Force approach where we
* generate all subsequences and then manually filter the subsequences whose
* elements come in increasing order and then return the longest such subsequence.
* Time Complexity :- O(2^n)
* It's time complexity is exponential. Therefore we will try some other
* approaches.
* Approach 2 :- Using Dynamic Programming
* To generate all subsequences we will use recursion and in the recursive logic we
* will figure out a way to solve this problem. Recursive Logic to solve this
* problem:-
* 1. We only consider the element in the subsequence if the element is grater then
* the last element present in the subsequence
* 2. When we consider the element we will increase the length of subsequence by 1
* Time Complexity: O(N*N)
* Space Complexity: O(N*N) + O(N)
* This approach is better then the previous Brute Force approach so, we can
* consider this approach.
* But when the Constraints for the problem is very larger then this approach fails
* Approach 3 :- Using Binary Search
* Other approaches use additional space to create a new subsequence Array.
* Instead, this solution uses the existing nums Array to build the subsequence
* array. We can do this because the length of the subsequence array will never be
* longer than the current index.
* Time complexity: O(nlog(n))
* Space complexity: O(1)
* This approach consider Most optimal Approach for solving this problem
* @author [Naman Jain](https://github.com/namanmodi65)
*/
#include <cassert> /// for std::assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
#include <algorithm> /// for std::lower_bound
#include <cstdint> /// for std::uint32_t
/**
* @brief Function to find the length of the Longest Increasing Subsequence (LIS)
* using Binary Search
* @tparam T The type of the elements in the input vector
* @param nums The input vector of elements of type T
* @return The length of the longest increasing subsequence
*/
template <typename T>
std::uint32_t longest_increasing_subsequence_using_binary_search(std::vector<T>& nums) {
if (nums.empty()) return 0;
std::vector<T> ans;
ans.push_back(nums[0]);
for (std::size_t i = 1; i < nums.size(); i++) {
if (nums[i] > ans.back()) {
ans.push_back(nums[i]);
} else {
auto idx = std::lower_bound(ans.begin(), ans.end(), nums[i]) - ans.begin();
ans[idx] = nums[i];
}
}
return static_cast<std::uint32_t>(ans.size());
}
/**
* @brief Test cases for Longest Increasing Subsequence function
* @returns void
*/
static void tests() {
std::vector<int> arr = {10, 9, 2, 5, 3, 7, 101, 18};
assert(longest_increasing_subsequence_using_binary_search(arr) == 4);
std::vector<int> arr2 = {0, 1, 0, 3, 2, 3};
assert(longest_increasing_subsequence_using_binary_search(arr2) == 4);
std::vector<int> arr3 = {7, 7, 7, 7, 7, 7, 7};
assert(longest_increasing_subsequence_using_binary_search(arr3) == 1);
std::vector<int> arr4 = {-10, -1, -5, 0, 5, 1, 2};
assert(longest_increasing_subsequence_using_binary_search(arr4) == 5);
std::vector<double> arr5 = {3.5, 1.2, 2.8, 3.1, 4.0};
assert(longest_increasing_subsequence_using_binary_search(arr5) == 4);
std::vector<char> arr6 = {'a', 'b', 'c', 'a', 'd'};
assert(longest_increasing_subsequence_using_binary_search(arr6) == 4);
std::vector<int> arr7 = {};
assert(longest_increasing_subsequence_using_binary_search(arr7) == 0);
std::cout << "All tests have successfully passed!\n";
}
/**
* @brief Main function to run tests
* @returns 0 on exit
*/
int main() {
tests(); // run self test implementation
return 0;
}