mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-03 18:46:50 +08:00
rename Dynamic Programming -> dynamic_programming (#645)
* rename Dynamic Programming -> dynamic_programming * rename dynamic-programming -> dynamic_programming
This commit is contained in:
62
dynamic_programming/Matrix-Chain-Multiplication.cpp
Normal file
62
dynamic_programming/Matrix-Chain-Multiplication.cpp
Normal file
@@ -0,0 +1,62 @@
|
||||
#include <iostream>
|
||||
#include <climits>
|
||||
using namespace std;
|
||||
|
||||
#define MAX 10
|
||||
|
||||
// dp table to store the solution for already computed sub problems
|
||||
int dp[MAX][MAX];
|
||||
|
||||
// Function to find the most efficient way to multiply the given sequence of matrices
|
||||
int MatrixChainMultiplication(int dim[], int i, int j)
|
||||
{
|
||||
// base case: one matrix
|
||||
if (j <= i + 1)
|
||||
return 0;
|
||||
|
||||
// stores minimum number of scalar multiplications (i.e., cost)
|
||||
// needed to compute the matrix M[i+1]...M[j] = M[i..j]
|
||||
int min = INT_MAX;
|
||||
|
||||
// if dp[i][j] is not calculated (calculate it!!)
|
||||
|
||||
if (dp[i][j] == 0)
|
||||
{
|
||||
// take the minimum over each possible position at which the
|
||||
// sequence of matrices can be split
|
||||
|
||||
for (int k = i + 1; k <= j - 1; k++)
|
||||
{
|
||||
// recur for M[i+1]..M[k] to get a i x k matrix
|
||||
int cost = MatrixChainMultiplication(dim, i, k);
|
||||
|
||||
// recur for M[k+1]..M[j] to get a k x j matrix
|
||||
cost += MatrixChainMultiplication(dim, k, j);
|
||||
|
||||
// cost to multiply two (i x k) and (k x j) matrix
|
||||
cost += dim[i] * dim[k] * dim[j];
|
||||
|
||||
if (cost < min)
|
||||
min = cost; // store the minimum cost
|
||||
}
|
||||
dp[i][j] = min;
|
||||
}
|
||||
|
||||
// return min cost to multiply M[j+1]..M[j]
|
||||
return dp[i][j];
|
||||
}
|
||||
|
||||
// main function
|
||||
int main()
|
||||
{
|
||||
// Matrix i has Dimensions dim[i-1] & dim[i] for i=1..n
|
||||
// input is 10 x 30 matrix, 30 x 5 matrix, 5 x 60 matrix
|
||||
int dim[] = {10, 30, 5, 60};
|
||||
int n = sizeof(dim) / sizeof(dim[0]);
|
||||
|
||||
// Function Calling: MatrixChainMultiplications(dimensions_array, starting, ending);
|
||||
|
||||
cout << "Minimum cost is " << MatrixChainMultiplication(dim, 0, n - 1) << "\n";
|
||||
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user