document + improvize root finding algorithms

This commit is contained in:
Krishna Vedala
2020-05-28 23:04:35 -04:00
parent 68cf8540a1
commit 7af2ad1eaa
3 changed files with 128 additions and 42 deletions

View File

@@ -1,42 +1,57 @@
/**
* \file
* \brief Solve the equation \f$f(x)=0\f$ using [Newton-Raphson
* method](https://en.wikipedia.org/wiki/Newton%27s_method)
*
* The \f$(i+1)^\text{th}\f$ approximation is given by:
* \f[
* x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}
* \f]
*
* \see bisection_method.cpp, false_position.cpp
*/
#include <cmath>
#include <ctime>
#include <iostream>
#include <limits>
static float eq(float i) {
#define EPSILON \
1e-6 // std::numeric_limits<double>::epsilon() ///< system accuracy limit
#define MAX_ITERATIONS 50000 ///< Maximum number of iterations to check
/** define \f$f(x)\f$ to find root for
*/
static double eq(double i) {
return (std::pow(i, 3) - (4 * i) - 9); // original equation
}
static float eq_der(float i) {
/** define the derivative function \f$f'(x)\f$
*/
static double eq_der(double i) {
return ((3 * std::pow(i, 2)) - 4); // derivative of equation
}
/** Main function */
int main() {
float a, b, z, c, m, n;
std::srand(std::time(nullptr)); // initialize randomizer
for (int i = 0; i < 100; i++) {
z = eq(i);
if (z >= 0) {
b = i;
a = --i;
break;
}
}
double z, c = std::rand() % 100, m, n;
int i;
std::cout << "\nFirst initial: " << a;
std::cout << "\nSecond initial: " << b;
c = (a + b) / 2;
std::cout << "\nInitial approximation: " << c;
for (int i = 0; i < 100; i++) {
float h;
// start iterations
for (i = 0; i < MAX_ITERATIONS; i++) {
m = eq(c);
n = eq_der(c);
z = c - (m / n);
c = z;
if (m > 0 && m < 0.009) // stoping criteria
if (std::abs(m) < EPSILON) // stoping criteria
break;
}
std::cout << "\n\nRoot: " << z << std::endl;
std::cout << "\n\nRoot: " << z << "\t\tSteps: " << i << std::endl;
return 0;
}