diff --git a/others/recursive_tree_traversal.cpp b/others/recursive_tree_traversal.cpp index 3e46b8974..56f0c75c3 100644 --- a/others/recursive_tree_traversal.cpp +++ b/others/recursive_tree_traversal.cpp @@ -16,8 +16,8 @@ * we are back at n again. * * In normal inorder traversal, we visit the left subtree before the right - *subtree. If we visit the right subtree before visiting the left subtree, it is - *referred to as reverse inorder traversal. + * subtree. If we visit the right subtree before visiting the left subtree, it is + * referred to as reverse inorder traversal. * * ### Iterative Preorder Traversal of a tree * For traversing a (non-empty) binary tree in a preorder fashion, we must do @@ -30,8 +30,8 @@ * we are back at n again. * * In normal preorder traversal, visit the left subtree before the right - *subtree. If we visit the right subtree before visiting the left subtree, it is - *referred to as reverse preorder traversal. + * subtree. If we visit the right subtree before visiting the left subtree, it is + * referred to as reverse preorder traversal. * * ### Iterative Postorder Traversal of a tree * For traversing a (non-empty) binary tree in a postorder fashion, we must do @@ -44,8 +44,8 @@ * (N) Process n itself. * * In normal postorder traversal, visit the left subtree before the right - *subtree. If we visit the right subtree before visiting the left subtree, it is - *referred to as reverse postorder traversal. + * subtree. If we visit the right subtree before visiting the left subtree, it is + * referred to as reverse postorder traversal. * * @author [Lajat Manekar](https://github.com/Lazeeez) * @@ -64,8 +64,8 @@ namespace others { /****************************************************************************** * @namespace interpolation_search * @brief Functions for the Recursive version of Inorder, Preorder, and - *Postorder [Traversal of the - *Tree](https://en.wikipedia.org/wiki/Tree_traversal) algorithm implementation + * Postorder [Traversal of the + * Tree](https://en.wikipedia.org/wiki/Tree_traversal) algorithm implementation *******************************************************************************/ namespace recursive_tree_traversals { @@ -82,7 +82,7 @@ struct Node { }; /****************************************************************************** * @brief BT used to make the entire structure of the binary tree and the - *functions associated with the binary tree + * functions associated with the binary tree *******************************************************************************/ class BT { public: @@ -123,7 +123,7 @@ Node *BT::createNewNode(uint64_t data) { /****************************************************************************** * @brief inorder() function that will perform the inorder traversal * recursively, and return the resultant vector that contain the inorder - *traversal of a tree. + * traversal of a tree. * @param root head/root node of a tree * @return result that is containing the inorder traversal of a tree *******************************************************************************/ @@ -143,7 +143,7 @@ std::vector BT::inorder(Node *root) { /****************************************************************************** * @brief preorder function that will perform the preorder traversal * recursively, and return the resultant vector that contain the preorder - *traversal of a tree. + * traversal of a tree. * @param root head/root node of a tree * @return result that is containing the preorder traversal of a tree *******************************************************************************/ @@ -163,7 +163,7 @@ std::vector BT::preorder(Node *root) { /****************************************************************************** * @brief postorder function that will perform the postorder traversal * recursively, and return the result vector that contain the postorder - *traversal of a tree. + * traversal of a tree. * @param root head/root node of a tree * @return result that is containing the postorder traversal of a tree *******************************************************************************/