mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-03 10:35:34 +08:00
Merge branch 'master' into lazeeez
This commit is contained in:
@@ -46,6 +46,8 @@
|
||||
* [Main Cll](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/cll/main_cll.cpp)
|
||||
* [Disjoint Set](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/disjoint_set.cpp)
|
||||
* [Doubly Linked List](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/doubly_linked_list.cpp)
|
||||
* [Dsu Path Compression](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/dsu_path_compression.cpp)
|
||||
* [Dsu Union Rank](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/dsu_union_rank.cpp)
|
||||
* [Linked List](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/linked_list.cpp)
|
||||
* [Linkedlist Implentation Usingarray](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/linkedlist_implentation_usingarray.cpp)
|
||||
* [List Array](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/data_structures/list_array.cpp)
|
||||
@@ -241,7 +243,7 @@
|
||||
* [Circular Queue Using Array](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/circular_queue_using_array.cpp)
|
||||
* [Get Size Of Linked List](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/get_size_of_linked_list.cpp)
|
||||
* [Inorder Successor Of Bst](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/inorder_successor_of_bst.cpp)
|
||||
* [Intersection Of 2 Arrays](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/intersection_of_2_arrays.cpp)
|
||||
* [Intersection Of Two Arrays](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/intersection_of_two_arrays.cpp)
|
||||
* [Reverse A Linked List Using Recusion](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/reverse_a_linked_list_using_recusion.cpp)
|
||||
* [Reverse Binary Tree](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/reverse_binary_tree.cpp)
|
||||
* [Selectionsortlinkedlist](https://github.com/TheAlgorithms/C-Plus-Plus/blob/master/operations_on_datastructures/selectionsortlinkedlist.cpp)
|
||||
|
||||
213
data_structures/dsu_path_compression.cpp
Normal file
213
data_structures/dsu_path_compression.cpp
Normal file
@@ -0,0 +1,213 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief [DSU (Disjoint
|
||||
* sets)](https://en.wikipedia.org/wiki/Disjoint-set-data_structure)
|
||||
* @details
|
||||
* It is a very powerful data structure that keeps track of different
|
||||
* clusters(sets) of elements, these sets are disjoint(doesnot have a common
|
||||
* element). Disjoint sets uses cases : for finding connected components in a
|
||||
* graph, used in Kruskal's algorithm for finding Minimum Spanning tree.
|
||||
* Operations that can be performed:
|
||||
* 1) UnionSet(i,j): add(element i and j to the set)
|
||||
* 2) findSet(i): returns the representative of the set to which i belogngs to.
|
||||
* 3) get_max(i),get_min(i) : returns the maximum and minimum
|
||||
* Below is the class-based approach which uses the heuristic of path
|
||||
* compression. Using path compression in findSet(i),we are able to get to the
|
||||
* representative of i in O(1) time.
|
||||
* @author [AayushVyasKIIT](https://github.com/AayushVyasKIIT)
|
||||
* @see dsu_union_rank.cpp
|
||||
*/
|
||||
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
using std::cout;
|
||||
using std::endl;
|
||||
using std::vector;
|
||||
|
||||
/**
|
||||
* @brief Disjoint sets union data structure, class based representation.
|
||||
* @param n number of elements
|
||||
*/
|
||||
class dsu {
|
||||
private:
|
||||
vector<uint64_t> p; ///< keeps track of the parent of ith element
|
||||
vector<uint64_t> depth; ///< tracks the depth(rank) of i in the tree
|
||||
vector<uint64_t> setSize; ///< size of each chunk(set)
|
||||
vector<uint64_t> maxElement; ///< maximum of each set to which i belongs to
|
||||
vector<uint64_t> minElement; ///< minimum of each set to which i belongs to
|
||||
public:
|
||||
/**
|
||||
* @brief contructor for initialising all data members.
|
||||
* @param n number of elements
|
||||
*/
|
||||
explicit dsu(uint64_t n) {
|
||||
p.assign(n, 0);
|
||||
/// initially, all of them are their own parents
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
p[i] = i;
|
||||
}
|
||||
/// initially all have depth are equals to zero
|
||||
depth.assign(n, 0);
|
||||
maxElement.assign(n, 0);
|
||||
minElement.assign(n, 0);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
depth[i] = 0;
|
||||
maxElement[i] = i;
|
||||
minElement[i] = i;
|
||||
}
|
||||
setSize.assign(n, 0);
|
||||
/// initially set size will be equals to one
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
setSize[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Method to find the representative of the set to which i belongs
|
||||
* to, T(n) = O(1)
|
||||
* @param i element of some set
|
||||
* @returns representative of the set to which i belongs to.
|
||||
*/
|
||||
uint64_t findSet(uint64_t i) {
|
||||
/// using path compression
|
||||
if (p[i] == i) {
|
||||
return i;
|
||||
}
|
||||
return (p[i] = findSet(p[i]));
|
||||
}
|
||||
/**
|
||||
* @brief Method that combines two disjoint sets to which i and j belongs to
|
||||
* and make a single set having a common representative.
|
||||
* @param i element of some set
|
||||
* @param j element of some set
|
||||
* @returns void
|
||||
*/
|
||||
void UnionSet(uint64_t i, uint64_t j) {
|
||||
/// check if both belongs to the same set or not
|
||||
if (isSame(i, j)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// we find the representative of the i and j
|
||||
uint64_t x = findSet(i);
|
||||
uint64_t y = findSet(j);
|
||||
|
||||
/// always keeping the min as x
|
||||
/// shallow tree
|
||||
if (depth[x] > depth[y]) {
|
||||
std::swap(x, y);
|
||||
}
|
||||
/// making the shallower root's parent the deeper root
|
||||
p[x] = y;
|
||||
|
||||
/// if same depth, then increase one's depth
|
||||
if (depth[x] == depth[y]) {
|
||||
depth[y]++;
|
||||
}
|
||||
/// total size of the resultant set
|
||||
setSize[y] += setSize[x];
|
||||
/// changing the maximum elements
|
||||
maxElement[y] = std::max(maxElement[x], maxElement[y]);
|
||||
minElement[y] = std::min(minElement[x], minElement[y]);
|
||||
}
|
||||
/**
|
||||
* @brief A utility function which check whether i and j belongs to
|
||||
* same set or not
|
||||
* @param i element of some set
|
||||
* @param j element of some set
|
||||
* @returns `true` if element `i` and `j` ARE in the same set
|
||||
* @returns `false` if element `i` and `j` are NOT in same set
|
||||
*/
|
||||
bool isSame(uint64_t i, uint64_t j) {
|
||||
if (findSet(i) == findSet(j)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
/**
|
||||
* @brief prints the minimum, maximum and size of the set to which i belongs
|
||||
* to
|
||||
* @param i element of some set
|
||||
* @returns void
|
||||
*/
|
||||
vector<uint64_t> get(uint64_t i) {
|
||||
vector<uint64_t> ans;
|
||||
ans.push_back(get_min(i));
|
||||
ans.push_back(get_max(i));
|
||||
ans.push_back(size(i));
|
||||
return ans;
|
||||
}
|
||||
/**
|
||||
* @brief A utility function that returns the size of the set to which i
|
||||
* belongs to
|
||||
* @param i element of some set
|
||||
* @returns size of the set to which i belongs to
|
||||
*/
|
||||
uint64_t size(uint64_t i) { return setSize[findSet(i)]; }
|
||||
/**
|
||||
* @brief A utility function that returns the max element of the set to
|
||||
* which i belongs to
|
||||
* @param i element of some set
|
||||
* @returns maximum of the set to which i belongs to
|
||||
*/
|
||||
uint64_t get_max(uint64_t i) { return maxElement[findSet(i)]; }
|
||||
/**
|
||||
* @brief A utility function that returns the min element of the set to
|
||||
* which i belongs to
|
||||
* @param i element of some set
|
||||
* @returns minimum of the set to which i belongs to
|
||||
*/
|
||||
uint64_t get_min(uint64_t i) { return minElement[findSet(i)]; }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Self-test implementations, 1st test
|
||||
* @returns void
|
||||
*/
|
||||
static void test1() {
|
||||
// the minimum, maximum, and size of the set
|
||||
uint64_t n = 10; ///< number of items
|
||||
dsu d(n + 1); ///< object of class disjoint sets
|
||||
// set 1
|
||||
d.UnionSet(1, 2); // performs union operation on 1 and 2
|
||||
d.UnionSet(1, 4); // performs union operation on 1 and 4
|
||||
vector<uint64_t> ans = {1, 4, 3};
|
||||
for (uint64_t i = 0; i < ans.size(); i++) {
|
||||
assert(d.get(4).at(i) == ans[i]); // makes sure algorithm works fine
|
||||
}
|
||||
cout << "1st test passed!" << endl;
|
||||
}
|
||||
/**
|
||||
* @brief Self-implementations, 2nd test
|
||||
* @returns void
|
||||
*/
|
||||
static void test2() {
|
||||
// the minimum, maximum, and size of the set
|
||||
uint64_t n = 10; ///< number of items
|
||||
dsu d(n + 1); ///< object of class disjoint sets
|
||||
// set 1
|
||||
d.UnionSet(3, 5);
|
||||
d.UnionSet(5, 6);
|
||||
d.UnionSet(5, 7);
|
||||
vector<uint64_t> ans = {3, 7, 4};
|
||||
for (uint64_t i = 0; i < ans.size(); i++) {
|
||||
assert(d.get(3).at(i) == ans[i]); // makes sure algorithm works fine
|
||||
}
|
||||
cout << "2nd test passed!" << endl;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
* */
|
||||
int main() {
|
||||
uint64_t n = 10; ///< number of items
|
||||
dsu d(n + 1); ///< object of class disjoint sets
|
||||
|
||||
test1(); // run 1st test case
|
||||
test2(); // run 2nd test case
|
||||
|
||||
return 0;
|
||||
}
|
||||
187
data_structures/dsu_union_rank.cpp
Normal file
187
data_structures/dsu_union_rank.cpp
Normal file
@@ -0,0 +1,187 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief [DSU (Disjoint
|
||||
* sets)](https://en.wikipedia.org/wiki/Disjoint-set-data_structure)
|
||||
* @details
|
||||
* dsu : It is a very powerful data structure which keeps track of different
|
||||
* clusters(sets) of elements, these sets are disjoint(doesnot have a common
|
||||
* element). Disjoint sets uses cases : for finding connected components in a
|
||||
* graph, used in Kruskal's algorithm for finding Minimum Spanning tree.
|
||||
* Operations that can be performed:
|
||||
* 1) UnionSet(i,j): add(element i and j to the set)
|
||||
* 2) findSet(i): returns the representative of the set to which i belogngs to.
|
||||
* 3) getParents(i): prints the parent of i and so on and so forth.
|
||||
* Below is the class-based approach which uses the heuristic of union-ranks.
|
||||
* Using union-rank in findSet(i),we are able to get to the representative of i
|
||||
* in slightly delayed O(logN) time but it allows us to keep tracks of the
|
||||
* parent of i.
|
||||
* @author [AayushVyasKIIT](https://github.com/AayushVyasKIIT)
|
||||
* @see dsu_path_compression.cpp
|
||||
*/
|
||||
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
using std::cout;
|
||||
using std::endl;
|
||||
using std::vector;
|
||||
|
||||
/**
|
||||
* @brief Disjoint sets union data structure, class based representation.
|
||||
* @param n number of elements
|
||||
*/
|
||||
class dsu {
|
||||
private:
|
||||
vector<uint64_t> p; ///< keeps track of the parent of ith element
|
||||
vector<uint64_t> depth; ///< tracks the depth(rank) of i in the tree
|
||||
vector<uint64_t> setSize; ///< size of each chunk(set)
|
||||
public:
|
||||
/**
|
||||
* @brief constructor for initialising all data members
|
||||
* @param n number of elements
|
||||
*/
|
||||
explicit dsu(uint64_t n) {
|
||||
p.assign(n, 0);
|
||||
/// initially all of them are their own parents
|
||||
depth.assign(n, 0);
|
||||
setSize.assign(n, 0);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
p[i] = i;
|
||||
depth[i] = 0;
|
||||
setSize[i] = 1;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @brief Method to find the representative of the set to which i belongs
|
||||
* to, T(n) = O(logN)
|
||||
* @param i element of some set
|
||||
* @returns representative of the set to which i belongs to
|
||||
*/
|
||||
uint64_t findSet(uint64_t i) {
|
||||
/// using union-rank
|
||||
while (i != p[i]) {
|
||||
i = p[i];
|
||||
}
|
||||
return i;
|
||||
}
|
||||
/**
|
||||
* @brief Method that combines two disjoint sets to which i and j belongs to
|
||||
* and make a single set having a common representative.
|
||||
* @param i element of some set
|
||||
* @param j element of some set
|
||||
* @returns void
|
||||
*/
|
||||
void unionSet(uint64_t i, uint64_t j) {
|
||||
/// checks if both belongs to same set or not
|
||||
if (isSame(i, j)) {
|
||||
return;
|
||||
}
|
||||
/// we find representative of the i and j
|
||||
uint64_t x = findSet(i);
|
||||
uint64_t y = findSet(j);
|
||||
|
||||
/// always keeping the min as x
|
||||
/// in order to create a shallow tree
|
||||
if (depth[x] > depth[y]) {
|
||||
std::swap(x, y);
|
||||
}
|
||||
/// making the shallower tree, root parent of the deeper root
|
||||
p[x] = y;
|
||||
|
||||
/// if same depth, then increase one's depth
|
||||
if (depth[x] == depth[y]) {
|
||||
depth[y]++;
|
||||
}
|
||||
/// total size of the resultant set
|
||||
setSize[y] += setSize[x];
|
||||
}
|
||||
/**
|
||||
* @brief A utility function which check whether i and j belongs to same set
|
||||
* or not
|
||||
* @param i element of some set
|
||||
* @param j element of some set
|
||||
* @returns `true` if element i and j are in same set
|
||||
* @returns `false` if element i and j are not in same set
|
||||
*/
|
||||
bool isSame(uint64_t i, uint64_t j) {
|
||||
if (findSet(i) == findSet(j)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
/**
|
||||
* @brief Method to print all the parents of i, or the path from i to
|
||||
* representative.
|
||||
* @param i element of some set
|
||||
* @returns void
|
||||
*/
|
||||
vector<uint64_t> getParents(uint64_t i) {
|
||||
vector<uint64_t> ans;
|
||||
while (p[i] != i) {
|
||||
ans.push_back(i);
|
||||
i = p[i];
|
||||
}
|
||||
ans.push_back(i);
|
||||
return ans;
|
||||
}
|
||||
};
|
||||
/**
|
||||
* @brief Self-implementations, 1st test
|
||||
* @returns void
|
||||
*/
|
||||
static void test1() {
|
||||
/* checks the parents in the resultant structures */
|
||||
uint64_t n = 10; ///< number of elements
|
||||
dsu d(n + 1); ///< object of class disjoint sets
|
||||
d.unionSet(2, 1); ///< performs union operation on 1 and 2
|
||||
d.unionSet(1, 4);
|
||||
d.unionSet(8, 1);
|
||||
d.unionSet(3, 5);
|
||||
d.unionSet(5, 6);
|
||||
d.unionSet(5, 7);
|
||||
d.unionSet(9, 10);
|
||||
d.unionSet(2, 10);
|
||||
// keeping track of the changes using parent pointers
|
||||
vector<uint64_t> ans = {7, 5};
|
||||
for (uint64_t i = 0; i < ans.size(); i++) {
|
||||
assert(d.getParents(7).at(i) ==
|
||||
ans[i]); // makes sure algorithm works fine
|
||||
}
|
||||
cout << "1st test passed!" << endl;
|
||||
}
|
||||
/**
|
||||
* @brief Self-implementations, 2nd test
|
||||
* @returns void
|
||||
*/
|
||||
static void test2() {
|
||||
// checks the parents in the resultant structures
|
||||
uint64_t n = 10; ///< number of elements
|
||||
dsu d(n + 1); ///< object of class disjoint sets
|
||||
d.unionSet(2, 1); /// performs union operation on 1 and 2
|
||||
d.unionSet(1, 4);
|
||||
d.unionSet(8, 1);
|
||||
d.unionSet(3, 5);
|
||||
d.unionSet(5, 6);
|
||||
d.unionSet(5, 7);
|
||||
d.unionSet(9, 10);
|
||||
d.unionSet(2, 10);
|
||||
|
||||
/// keeping track of the changes using parent pointers
|
||||
vector<uint64_t> ans = {2, 1, 10};
|
||||
for (uint64_t i = 0; i < ans.size(); i++) {
|
||||
assert(d.getParents(2).at(i) ==
|
||||
ans[i]); /// makes sure algorithm works fine
|
||||
}
|
||||
cout << "2nd test passed!" << endl;
|
||||
}
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test1(); // run 1st test case
|
||||
test2(); // run 2nd test case
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,26 +0,0 @@
|
||||
#include <iostream>
|
||||
int main() {
|
||||
int i, j, m, n;
|
||||
cout << "Enter size of array 1:";
|
||||
cin >> m;
|
||||
cout << "Enter size of array 2:";
|
||||
cin >> n;
|
||||
int a[m];
|
||||
int b[n];
|
||||
cout << "Enter elements of array 1:";
|
||||
for (i = 0; i < m; i++) cin >> a[i];
|
||||
for (i = 0; i < n; i++) cin >> b[i];
|
||||
i = 0;
|
||||
j = 0;
|
||||
while ((i < m) && (j < n)) {
|
||||
if (a[i] < b[j])
|
||||
i++;
|
||||
else if (a[i] > b[j])
|
||||
j++;
|
||||
else {
|
||||
cout << a[i++] << " ";
|
||||
j++;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
203
operations_on_datastructures/intersection_of_two_arrays.cpp
Normal file
203
operations_on_datastructures/intersection_of_two_arrays.cpp
Normal file
@@ -0,0 +1,203 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Implementation for the [Intersection of two sorted
|
||||
* Arrays](https://en.wikipedia.org/wiki/Intersection_(set_theory))
|
||||
* algorithm.
|
||||
* @details The intersection of two arrays is the collection of all the elements
|
||||
* that are common in both the first and second arrays. This implementation uses
|
||||
* ordered arrays, and an algorithm to correctly order them and return the
|
||||
* result as a new array (vector).
|
||||
* @see union_of_two_arrays.cpp
|
||||
* @author [Alvin](https://github.com/polarvoid)
|
||||
*/
|
||||
|
||||
#include <algorithm> /// for std::sort
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/**
|
||||
* @namespace operations_on_datastructures
|
||||
* @brief Operations on Data Structures
|
||||
*/
|
||||
namespace operations_on_datastructures {
|
||||
|
||||
/**
|
||||
* @brief Prints the values of a vector sequentially, ending with a newline
|
||||
* character.
|
||||
* @param array Reference to the array to be printed
|
||||
* @returns void
|
||||
*/
|
||||
void print(const std::vector<int32_t> &array) {
|
||||
for (int32_t i : array) {
|
||||
std::cout << i << " "; /// Print each value in the array
|
||||
}
|
||||
std::cout << "\n"; /// Print newline
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Gets the intersection of two sorted arrays, and returns them in a
|
||||
* vector.
|
||||
* @details An algorithm is used that compares the elements of the two vectors,
|
||||
* incrementing the index of the smaller of the two. If the elements are the
|
||||
* same, the element is appended to the result array to be returned.
|
||||
* @param first A std::vector of sorted integer values
|
||||
* @param second A std::vector of sorted integer values
|
||||
* @returns A std::vector of the intersection of the two arrays, in ascending
|
||||
* order
|
||||
*/
|
||||
std::vector<int32_t> get_intersection(const std::vector<int32_t> &first,
|
||||
const std::vector<int32_t> &second) {
|
||||
std::vector<int32_t> res; ///< Vector to hold the intersection
|
||||
size_t f_index = 0; ///< Index for the first array
|
||||
size_t s_index = 0; ///< Index for the second array
|
||||
size_t f_length = first.size(); ///< Length of first array
|
||||
size_t s_length = second.size(); ///< Length of second array
|
||||
|
||||
while (f_index < f_length && s_index < s_length) {
|
||||
if (first[f_index] < second[s_index]) {
|
||||
f_index++; ///< Increment index of second array
|
||||
} else if (first[f_index] > second[s_index]) {
|
||||
s_index++; ///< Increment index of second array
|
||||
} else {
|
||||
if ((res.size() == 0) || (first[f_index] != res.back())) {
|
||||
res.push_back(
|
||||
first[f_index]); ///< Add the element if it is unique
|
||||
}
|
||||
f_index++; ///< Increment index of first array
|
||||
s_index++; ///< Increment index of second array too
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
} // namespace operations_on_datastructures
|
||||
|
||||
/**
|
||||
* @namespace tests
|
||||
* @brief Testcases to check intersection of Two Arrays.
|
||||
*/
|
||||
namespace tests {
|
||||
using operations_on_datastructures::get_intersection;
|
||||
using operations_on_datastructures::print;
|
||||
/**
|
||||
* @brief A Test to check an edge case (two empty arrays)
|
||||
* @returns void
|
||||
*/
|
||||
void test1() {
|
||||
std::cout << "TEST CASE 1\n";
|
||||
std::cout << "Intialized a = {} b = {}\n";
|
||||
std::cout << "Expected result: {}\n";
|
||||
std::vector<int32_t> a = {};
|
||||
std::vector<int32_t> b = {};
|
||||
std::vector<int32_t> result = get_intersection(a, b);
|
||||
assert(result == a); ///< Check if result is empty
|
||||
print(result); ///< Should only print newline
|
||||
std::cout << "TEST PASSED!\n\n";
|
||||
}
|
||||
/**
|
||||
* @brief A Test to check an edge case (one empty array)
|
||||
* @returns void
|
||||
*/
|
||||
void test2() {
|
||||
std::cout << "TEST CASE 2\n";
|
||||
std::cout << "Intialized a = {} b = {2, 3}\n";
|
||||
std::cout << "Expected result: {}\n";
|
||||
std::vector<int32_t> a = {};
|
||||
std::vector<int32_t> b = {2, 3};
|
||||
std::vector<int32_t> result = get_intersection(a, b);
|
||||
assert(result == a); ///< Check if result is equal to a
|
||||
print(result); ///< Should only print newline
|
||||
std::cout << "TEST PASSED!\n\n";
|
||||
}
|
||||
/**
|
||||
* @brief A Test to check correct functionality with a simple test case
|
||||
* @returns void
|
||||
*/
|
||||
void test3() {
|
||||
std::cout << "TEST CASE 3\n";
|
||||
std::cout << "Intialized a = {4, 6} b = {3, 6}\n";
|
||||
std::cout << "Expected result: {6}\n";
|
||||
std::vector<int32_t> a = {4, 6};
|
||||
std::vector<int32_t> b = {3, 6};
|
||||
std::vector<int32_t> result = get_intersection(a, b);
|
||||
std::vector<int32_t> expected = {6};
|
||||
assert(result == expected); ///< Check if result is correct
|
||||
print(result); ///< Should print 6
|
||||
std::cout << "TEST PASSED!\n\n";
|
||||
}
|
||||
/**
|
||||
* @brief A Test to check correct functionality with duplicate values
|
||||
* @returns void
|
||||
*/
|
||||
void test4() {
|
||||
std::cout << "TEST CASE 4\n";
|
||||
std::cout << "Intialized a = {4, 6, 6, 6} b = {2, 4, 4, 6}\n";
|
||||
std::cout << "Expected result: {4, 6}\n";
|
||||
std::vector<int32_t> a = {4, 6, 6, 6};
|
||||
std::vector<int32_t> b = {2, 4, 4, 6};
|
||||
std::vector<int32_t> result = get_intersection(a, b);
|
||||
std::vector<int32_t> expected = {4, 6};
|
||||
assert(result == expected); ///< Check if result is correct
|
||||
print(result); ///< Should print 4 6
|
||||
std::cout << "TEST PASSED!\n\n";
|
||||
}
|
||||
/**
|
||||
* @brief A Test to check correct functionality with a harder test case
|
||||
* @returns void
|
||||
*/
|
||||
void test5() {
|
||||
std::cout << "TEST CASE 5\n";
|
||||
std::cout << "Intialized a = {1, 2, 3, 4, 6, 7, 9} b = {2, 3, 4, 5}\n";
|
||||
std::cout << "Expected result: {2, 3, 4}\n";
|
||||
std::vector<int32_t> a = {1, 2, 3, 4, 6, 7, 9};
|
||||
std::vector<int32_t> b = {2, 3, 4, 5};
|
||||
std::vector<int32_t> result = get_intersection(a, b);
|
||||
std::vector<int32_t> expected = {2, 3, 4};
|
||||
assert(result == expected); ///< Check if result is correct
|
||||
print(result); ///< Should print 2 3 4
|
||||
std::cout << "TEST PASSED!\n\n";
|
||||
}
|
||||
/**
|
||||
* @brief A Test to check correct functionality with an array sorted using
|
||||
* std::sort
|
||||
* @returns void
|
||||
*/
|
||||
void test6() {
|
||||
std::cout << "TEST CASE 6\n";
|
||||
std::cout << "Intialized a = {1, 3, 3, 2, 5, 9, 4, 7, 3, 2} ";
|
||||
std::cout << "b = {11, 3, 7, 8, 6}\n";
|
||||
std::cout << "Expected result: {3, 7}\n";
|
||||
std::vector<int32_t> a = {1, 3, 3, 2, 5, 9, 4, 7, 3, 2};
|
||||
std::vector<int32_t> b = {11, 3, 7, 8, 6};
|
||||
std::sort(a.begin(), a.end()); ///< Sort vector a
|
||||
std::sort(b.begin(), b.end()); ///< Sort vector b
|
||||
std::vector<int32_t> result = get_intersection(a, b);
|
||||
std::vector<int32_t> expected = {3, 7};
|
||||
assert(result == expected); ///< Check if result is correct
|
||||
print(result); ///< Should print 3 7
|
||||
std::cout << "TEST PASSED!\n\n";
|
||||
}
|
||||
} // namespace tests
|
||||
|
||||
/**
|
||||
* @brief Function to test the correctness of get_intersection() function
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
tests::test1();
|
||||
tests::test2();
|
||||
tests::test3();
|
||||
tests::test4();
|
||||
tests::test5();
|
||||
tests::test6();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // run self-test implementations
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user