diff --git a/numerical_methods/fast_fourier_transform.cpp b/numerical_methods/fast_fourier_transform.cpp index cad6bb92c..45014ccfa 100644 --- a/numerical_methods/fast_fourier_transform.cpp +++ b/numerical_methods/fast_fourier_transform.cpp @@ -45,7 +45,7 @@ std::complex *FastFourierTransform(std::complex *p, return p; /// Base Case To return } - std::complex om = std::complex( + auto om = std::complex( cos(2 * pi / n), sin(2 * pi / n)); /// Calculating value of omega auto *pe = new std::complex[n / 2]; /// Coefficents of even power @@ -61,11 +61,9 @@ std::complex *FastFourierTransform(std::complex *p, po[k2++] = p[j]; /// Assigning value of odd coefficents } - std::complex *ye = - FastFourierTransform(pe, n / 2); /// Recursive Call + auto *ye = FastFourierTransform(pe, n / 2); /// Recursive Call - std::complex *yo = - FastFourierTransform(po, n / 2); /// Recursive Call + auto *yo = FastFourierTransform(po, n / 2); /// Recursive Call auto *y = new std::complex[n]; /// Final value representation list @@ -110,8 +108,8 @@ static void test() { std::vector> r2 = { {10, 0}, {-2, -2}, {-2, 0}, {-2, 2}}; /// True Answer for test case 2 - std::complex *o1 = numerical_methods::FastFourierTransform(t1, n1); - std::complex *o2 = numerical_methods::FastFourierTransform(t2, n2); + auto *o1 = numerical_methods::FastFourierTransform(t1, n1); + auto *o2 = numerical_methods::FastFourierTransform(t2, n2); for (uint8_t i = 0; i < n1; i++) { assert((r1[i].real() - o1->real() < 0.000000000001) &&