mirror of
https://github.com/TheAlgorithms/C-Plus-Plus.git
synced 2026-02-03 02:25:57 +08:00
Merge branch 'master' into directory-update
This commit is contained in:
151
dynamic_programming/Unbounded_0_1_Knapsack.cpp
Normal file
151
dynamic_programming/Unbounded_0_1_Knapsack.cpp
Normal file
@@ -0,0 +1,151 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Implementation of the Unbounded 0/1 Knapsack Problem
|
||||
*
|
||||
* @details
|
||||
* The Unbounded 0/1 Knapsack problem allows taking unlimited quantities of each item.
|
||||
* The goal is to maximize the total value without exceeding the given knapsack capacity.
|
||||
* Unlike the 0/1 knapsack, where each item can be taken only once, in this variation,
|
||||
* any item can be picked any number of times as long as the total weight stays within
|
||||
* the knapsack's capacity.
|
||||
*
|
||||
* Given a set of N items, each with a weight and a value, represented by the arrays
|
||||
* `wt` and `val` respectively, and a knapsack with a weight limit W, the task is to
|
||||
* fill the knapsack to maximize the total value.
|
||||
*
|
||||
* @note weight and value of items is greater than zero
|
||||
*
|
||||
* ### Algorithm
|
||||
* The approach uses dynamic programming to build a solution iteratively.
|
||||
* A 2D array is used for memoization to store intermediate results, allowing
|
||||
* the function to avoid redundant calculations.
|
||||
*
|
||||
* @author [Sanskruti Yeole](https://github.com/yeolesanskruti)
|
||||
* @see dynamic_programming/0_1_knapsack.cpp
|
||||
*/
|
||||
|
||||
#include <iostream> // Standard input-output stream
|
||||
#include <vector> // Standard library for using dynamic arrays (vectors)
|
||||
#include <cassert> // For using assert function to validate test cases
|
||||
#include <cstdint> // For fixed-width integer types like std::uint16_t
|
||||
|
||||
/**
|
||||
* @namespace dynamic_programming
|
||||
* @brief Namespace for dynamic programming algorithms
|
||||
*/
|
||||
namespace dynamic_programming {
|
||||
|
||||
/**
|
||||
* @namespace Knapsack
|
||||
* @brief Implementation of unbounded 0-1 knapsack problem
|
||||
*/
|
||||
namespace unbounded_knapsack {
|
||||
|
||||
/**
|
||||
* @brief Recursive function to calculate the maximum value obtainable using
|
||||
* an unbounded knapsack approach.
|
||||
*
|
||||
* @param i Current index in the value and weight vectors.
|
||||
* @param W Remaining capacity of the knapsack.
|
||||
* @param val Vector of values corresponding to the items.
|
||||
* @note "val" data type can be changed according to the size of the input.
|
||||
* @param wt Vector of weights corresponding to the items.
|
||||
* @note "wt" data type can be changed according to the size of the input.
|
||||
* @param dp 2D vector for memoization to avoid redundant calculations.
|
||||
* @return The maximum value that can be obtained for the given index and capacity.
|
||||
*/
|
||||
std::uint16_t KnapSackFilling(std::uint16_t i, std::uint16_t W,
|
||||
const std::vector<std::uint16_t>& val,
|
||||
const std::vector<std::uint16_t>& wt,
|
||||
std::vector<std::vector<int>>& dp) {
|
||||
if (i == 0) {
|
||||
if (wt[0] <= W) {
|
||||
return (W / wt[0]) * val[0]; // Take as many of the first item as possible
|
||||
} else {
|
||||
return 0; // Can't take the first item
|
||||
}
|
||||
}
|
||||
if (dp[i][W] != -1) return dp[i][W]; // Return result if available
|
||||
|
||||
int nottake = KnapSackFilling(i - 1, W, val, wt, dp); // Value without taking item i
|
||||
int take = 0;
|
||||
if (W >= wt[i]) {
|
||||
take = val[i] + KnapSackFilling(i, W - wt[i], val, wt, dp); // Value taking item i
|
||||
}
|
||||
return dp[i][W] = std::max(take, nottake); // Store and return the maximum value
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Wrapper function to initiate the unbounded knapsack calculation.
|
||||
*
|
||||
* @param N Number of items.
|
||||
* @param W Maximum weight capacity of the knapsack.
|
||||
* @param val Vector of values corresponding to the items.
|
||||
* @param wt Vector of weights corresponding to the items.
|
||||
* @return The maximum value that can be obtained for the given capacity.
|
||||
*/
|
||||
std::uint16_t unboundedKnapsack(std::uint16_t N, std::uint16_t W,
|
||||
const std::vector<std::uint16_t>& val,
|
||||
const std::vector<std::uint16_t>& wt) {
|
||||
if(N==0)return 0; // Expect 0 since no items
|
||||
std::vector<std::vector<int>> dp(N, std::vector<int>(W + 1, -1)); // Initialize memoization table
|
||||
return KnapSackFilling(N - 1, W, val, wt, dp); // Start the calculation
|
||||
}
|
||||
|
||||
} // unbounded_knapsack
|
||||
|
||||
} // dynamic_programming
|
||||
|
||||
/**
|
||||
* @brief self test implementation
|
||||
* @return void
|
||||
*/
|
||||
static void tests() {
|
||||
// Test Case 1
|
||||
std::uint16_t N1 = 4; // Number of items
|
||||
std::vector<std::uint16_t> wt1 = {1, 3, 4, 5}; // Weights of the items
|
||||
std::vector<std::uint16_t> val1 = {6, 1, 7, 7}; // Values of the items
|
||||
std::uint16_t W1 = 8; // Maximum capacity of the knapsack
|
||||
// Test the function and assert the expected output
|
||||
assert(unboundedKnapsack(N1, W1, val1, wt1) == 48);
|
||||
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N1, W1, val1, wt1) << std::endl;
|
||||
|
||||
// Test Case 2
|
||||
std::uint16_t N2 = 3; // Number of items
|
||||
std::vector<std::uint16_t> wt2 = {10, 20, 30}; // Weights of the items
|
||||
std::vector<std::uint16_t> val2 = {60, 100, 120}; // Values of the items
|
||||
std::uint16_t W2 = 5; // Maximum capacity of the knapsack
|
||||
// Test the function and assert the expected output
|
||||
assert(unboundedKnapsack(N2, W2, val2, wt2) == 0);
|
||||
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N2, W2, val2, wt2) << std::endl;
|
||||
|
||||
// Test Case 3
|
||||
std::uint16_t N3 = 3; // Number of items
|
||||
std::vector<std::uint16_t> wt3 = {2, 4, 6}; // Weights of the items
|
||||
std::vector<std::uint16_t> val3 = {5, 11, 13};// Values of the items
|
||||
std::uint16_t W3 = 27;// Maximum capacity of the knapsack
|
||||
// Test the function and assert the expected output
|
||||
assert(unboundedKnapsack(N3, W3, val3, wt3) == 27);
|
||||
std::cout << "Maximum Knapsack value " << unboundedKnapsack(N3, W3, val3, wt3) << std::endl;
|
||||
|
||||
// Test Case 4
|
||||
std::uint16_t N4 = 0; // Number of items
|
||||
std::vector<std::uint16_t> wt4 = {}; // Weights of the items
|
||||
std::vector<std::uint16_t> val4 = {}; // Values of the items
|
||||
std::uint16_t W4 = 10; // Maximum capacity of the knapsack
|
||||
assert(unboundedKnapsack(N4, W4, val4, wt4) == 0);
|
||||
std::cout << "Maximum Knapsack value for empty arrays: " << unboundedKnapsack(N4, W4, val4, wt4) << std::endl;
|
||||
|
||||
std::cout << "All test cases passed!" << std::endl;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief main function
|
||||
* @return 0 on successful exit
|
||||
*/
|
||||
int main() {
|
||||
tests(); // Run self test implementation
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,50 +1,189 @@
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
/**
|
||||
* @file
|
||||
* @brief [Topological Sort
|
||||
* Algorithm](https://en.wikipedia.org/wiki/Topological_sorting)
|
||||
* @details
|
||||
* Topological sorting of a directed graph is a linear ordering or its vertices
|
||||
* such that for every directed edge (u,v) from vertex u to vertex v, u comes
|
||||
* before v in the oredering.
|
||||
*
|
||||
* A topological sort is possible only in a directed acyclic graph (DAG).
|
||||
* This file contains code of finding topological sort using Kahn's Algorithm
|
||||
* which involves using Depth First Search technique
|
||||
*/
|
||||
|
||||
int number_of_vertices,
|
||||
number_of_edges; // For number of Vertices (V) and number of edges (E)
|
||||
std::vector<std::vector<int>> graph;
|
||||
std::vector<bool> visited;
|
||||
std::vector<int> topological_order;
|
||||
#include <algorithm> // For std::reverse
|
||||
#include <cassert> // For assert
|
||||
#include <iostream> // For IO operations
|
||||
#include <stack> // For std::stack
|
||||
#include <stdexcept> // For std::invalid_argument
|
||||
#include <vector> // For std::vector
|
||||
|
||||
void dfs(int v) {
|
||||
visited[v] = true;
|
||||
for (int u : graph[v]) {
|
||||
if (!visited[u]) {
|
||||
dfs(u);
|
||||
/**
|
||||
* @namespace graph
|
||||
* @brief Graph algorithms
|
||||
*/
|
||||
namespace graph {
|
||||
|
||||
/**
|
||||
* @namespace topological_sort
|
||||
* @brief Topological Sort Algorithm
|
||||
*/
|
||||
namespace topological_sort {
|
||||
/**
|
||||
* @class Graph
|
||||
* @brief Class that represents a directed graph and provides methods for
|
||||
* manipulating the graph
|
||||
*/
|
||||
class Graph {
|
||||
private:
|
||||
int n; // Number of nodes
|
||||
std::vector<std::vector<int>> adj; // Adjacency list representation
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for the Graph class
|
||||
* @param nodes Number of nodes in the graph
|
||||
*/
|
||||
Graph(int nodes) : n(nodes), adj(nodes) {}
|
||||
|
||||
/**
|
||||
* @brief Function that adds an edge between two nodes or vertices of graph
|
||||
* @param u Start node of the edge
|
||||
* @param v End node of the edge
|
||||
*/
|
||||
void addEdge(int u, int v) { adj[u].push_back(v); }
|
||||
|
||||
/**
|
||||
* @brief Get the adjacency list of the graph
|
||||
* @returns A reference to the adjacency list
|
||||
*/
|
||||
const std::vector<std::vector<int>>& getAdjacencyList() const {
|
||||
return adj;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the number of nodes in the graph
|
||||
* @returns The number of nodes
|
||||
*/
|
||||
int getNumNodes() const { return n; }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Function to perform Depth First Search on the graph
|
||||
* @param v Starting vertex for depth-first search
|
||||
* @param visited Array representing whether each node has been visited
|
||||
* @param graph Adjacency list of the graph
|
||||
* @param s Stack containing the vertices for topological sorting
|
||||
*/
|
||||
void dfs(int v, std::vector<int>& visited,
|
||||
const std::vector<std::vector<int>>& graph, std::stack<int>& s) {
|
||||
visited[v] = 1;
|
||||
for (int neighbour : graph[v]) {
|
||||
if (!visited[neighbour]) {
|
||||
dfs(neighbour, visited, graph, s);
|
||||
}
|
||||
}
|
||||
topological_order.push_back(v);
|
||||
s.push(v);
|
||||
}
|
||||
|
||||
void topological_sort() {
|
||||
visited.assign(number_of_vertices, false);
|
||||
topological_order.clear();
|
||||
for (int i = 0; i < number_of_vertices; ++i) {
|
||||
/**
|
||||
* @brief Function to get the topological sort of the graph
|
||||
* @param g Graph object
|
||||
* @returns A vector containing the topological order of nodes
|
||||
*/
|
||||
std::vector<int> topologicalSort(const Graph& g) {
|
||||
int n = g.getNumNodes();
|
||||
const auto& adj = g.getAdjacencyList();
|
||||
std::vector<int> visited(n, 0);
|
||||
std::stack<int> s;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (!visited[i]) {
|
||||
dfs(i);
|
||||
dfs(i, visited, adj, s);
|
||||
}
|
||||
}
|
||||
reverse(topological_order.begin(), topological_order.end());
|
||||
}
|
||||
int main() {
|
||||
std::cout
|
||||
<< "Enter the number of vertices and the number of directed edges\n";
|
||||
std::cin >> number_of_vertices >> number_of_edges;
|
||||
int x = 0, y = 0;
|
||||
graph.resize(number_of_vertices, std::vector<int>());
|
||||
for (int i = 0; i < number_of_edges; ++i) {
|
||||
std::cin >> x >> y;
|
||||
x--, y--; // to convert 1-indexed to 0-indexed
|
||||
graph[x].push_back(y);
|
||||
|
||||
std::vector<int> ans;
|
||||
while (!s.empty()) {
|
||||
int elem = s.top();
|
||||
s.pop();
|
||||
ans.push_back(elem);
|
||||
}
|
||||
topological_sort();
|
||||
std::cout << "Topological Order : \n";
|
||||
for (int v : topological_order) {
|
||||
std::cout << v + 1
|
||||
<< ' '; // converting zero based indexing back to one based.
|
||||
|
||||
if (ans.size() < n) { // Cycle detected
|
||||
throw std::invalid_argument("cycle detected in graph");
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
} // namespace topological_sort
|
||||
} // namespace graph
|
||||
|
||||
/**
|
||||
* @brief Self-test implementation
|
||||
* @returns void
|
||||
*/
|
||||
static void test() {
|
||||
// Test 1
|
||||
std::cout << "Testing for graph 1\n";
|
||||
int n_1 = 6;
|
||||
graph::topological_sort::Graph graph1(n_1);
|
||||
graph1.addEdge(4, 0);
|
||||
graph1.addEdge(5, 0);
|
||||
graph1.addEdge(5, 2);
|
||||
graph1.addEdge(2, 3);
|
||||
graph1.addEdge(3, 1);
|
||||
graph1.addEdge(4, 1);
|
||||
std::vector<int> ans_1 = graph::topological_sort::topologicalSort(graph1);
|
||||
std::vector<int> expected_1 = {5, 4, 2, 3, 1, 0};
|
||||
std::cout << "Topological Sorting Order: ";
|
||||
for (int i : ans_1) {
|
||||
std::cout << i << " ";
|
||||
}
|
||||
std::cout << '\n';
|
||||
assert(ans_1 == expected_1);
|
||||
std::cout << "Test Passed\n\n";
|
||||
|
||||
// Test 2
|
||||
std::cout << "Testing for graph 2\n";
|
||||
int n_2 = 5;
|
||||
graph::topological_sort::Graph graph2(n_2);
|
||||
graph2.addEdge(0, 1);
|
||||
graph2.addEdge(0, 2);
|
||||
graph2.addEdge(1, 2);
|
||||
graph2.addEdge(2, 3);
|
||||
graph2.addEdge(1, 3);
|
||||
graph2.addEdge(2, 4);
|
||||
std::vector<int> ans_2 = graph::topological_sort::topologicalSort(graph2);
|
||||
std::vector<int> expected_2 = {0, 1, 2, 4, 3};
|
||||
std::cout << "Topological Sorting Order: ";
|
||||
for (int i : ans_2) {
|
||||
std::cout << i << " ";
|
||||
}
|
||||
std::cout << '\n';
|
||||
assert(ans_2 == expected_2);
|
||||
std::cout << "Test Passed\n\n";
|
||||
|
||||
// Test 3 - Graph with cycle
|
||||
std::cout << "Testing for graph 3\n";
|
||||
int n_3 = 3;
|
||||
graph::topological_sort::Graph graph3(n_3);
|
||||
graph3.addEdge(0, 1);
|
||||
graph3.addEdge(1, 2);
|
||||
graph3.addEdge(2, 0);
|
||||
try {
|
||||
graph::topological_sort::topologicalSort(graph3);
|
||||
} catch (std::invalid_argument& err) {
|
||||
assert(std::string(err.what()) == "cycle detected in graph");
|
||||
}
|
||||
std::cout << "Test Passed\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
test(); // run self test implementations
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
/**
|
||||
* @file
|
||||
* @brief Get list of prime numbers using Sieve of Eratosthenes
|
||||
* @brief Prime Numbers using [Sieve of
|
||||
* Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
|
||||
* @details
|
||||
* Sieve of Eratosthenes is an algorithm that finds all the primes
|
||||
* between 2 and N.
|
||||
@@ -11,21 +12,39 @@
|
||||
* @see primes_up_to_billion.cpp prime_numbers.cpp
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <cassert> /// for assert
|
||||
#include <iostream> /// for IO operations
|
||||
#include <vector> /// for std::vector
|
||||
|
||||
/**
|
||||
* This is the function that finds the primes and eliminates the multiples.
|
||||
* @namespace math
|
||||
* @brief Mathematical algorithms
|
||||
*/
|
||||
namespace math {
|
||||
/**
|
||||
* @namespace sieve_of_eratosthenes
|
||||
* @brief Functions for finding Prime Numbers using Sieve of Eratosthenes
|
||||
*/
|
||||
namespace sieve_of_eratosthenes {
|
||||
/**
|
||||
* @brief Function to sieve out the primes
|
||||
* @details
|
||||
* This function finds all the primes between 2 and N using the Sieve of
|
||||
* Eratosthenes algorithm. It starts by assuming all numbers (except zero and
|
||||
* one) are prime and then iteratively marks the multiples of each prime as
|
||||
* non-prime.
|
||||
*
|
||||
* Contains a common optimization to start eliminating multiples of
|
||||
* a prime p starting from p * p since all of the lower multiples
|
||||
* have been already eliminated.
|
||||
* @param N number of primes to check
|
||||
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
|
||||
* @param N number till which primes are to be found
|
||||
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is
|
||||
* a prime or not
|
||||
*/
|
||||
std::vector<bool> sieve(uint32_t N) {
|
||||
std::vector<bool> is_prime(N + 1, true);
|
||||
is_prime[0] = is_prime[1] = false;
|
||||
std::vector<bool> is_prime(N + 1, true); // Initialize all as prime numbers
|
||||
is_prime[0] = is_prime[1] = false; // 0 and 1 are not prime numbers
|
||||
|
||||
for (uint32_t i = 2; i * i <= N; i++) {
|
||||
if (is_prime[i]) {
|
||||
for (uint32_t j = i * i; j <= N; j += i) {
|
||||
@@ -37,9 +56,10 @@ std::vector<bool> sieve(uint32_t N) {
|
||||
}
|
||||
|
||||
/**
|
||||
* This function prints out the primes to STDOUT
|
||||
* @param N number of primes to check
|
||||
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
|
||||
* @brief Function to print the prime numbers
|
||||
* @param N number till which primes are to be found
|
||||
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is
|
||||
* a prime or not
|
||||
*/
|
||||
void print(uint32_t N, const std::vector<bool> &is_prime) {
|
||||
for (uint32_t i = 2; i <= N; i++) {
|
||||
@@ -50,23 +70,53 @@ void print(uint32_t N, const std::vector<bool> &is_prime) {
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
} // namespace sieve_of_eratosthenes
|
||||
} // namespace math
|
||||
|
||||
/**
|
||||
* Test implementations
|
||||
* @brief Self-test implementations
|
||||
* @return void
|
||||
*/
|
||||
void tests() {
|
||||
// 0 1 2 3 4 5 6 7 8 9 10
|
||||
std::vector<bool> ans{false, false, true, true, false, true, false, true, false, false, false};
|
||||
assert(sieve(10) == ans);
|
||||
static void tests() {
|
||||
std::vector<bool> is_prime_1 =
|
||||
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(10));
|
||||
std::vector<bool> is_prime_2 =
|
||||
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(20));
|
||||
std::vector<bool> is_prime_3 =
|
||||
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(100));
|
||||
|
||||
std::vector<bool> expected_1{false, false, true, true, false, true,
|
||||
false, true, false, false, false};
|
||||
assert(is_prime_1 == expected_1);
|
||||
|
||||
std::vector<bool> expected_2{false, false, true, true, false, true,
|
||||
false, true, false, false, false, true,
|
||||
false, true, false, false, false, true,
|
||||
false, true, false};
|
||||
assert(is_prime_2 == expected_2);
|
||||
|
||||
std::vector<bool> expected_3{
|
||||
false, false, true, true, false, true, false, true, false, false,
|
||||
false, true, false, true, false, false, false, true, false, true,
|
||||
false, false, false, true, false, false, false, false, false, true,
|
||||
false, true, false, false, false, false, false, true, false, false,
|
||||
false, true, false, true, false, false, false, true, false, false,
|
||||
false, false, false, true, false, false, false, false, false, true,
|
||||
false, true, false, false, false, false, false, true, false, false,
|
||||
false, true, false, true, false, false, false, false, false, true,
|
||||
false, false, false, true, false, false, false, false, false, true,
|
||||
false, false, false, false, false, false, false, true, false, false,
|
||||
false};
|
||||
assert(is_prime_3 == expected_3);
|
||||
|
||||
std::cout << "All tests have passed successfully!\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* Main function
|
||||
* @brief Main function
|
||||
* @returns 0 on exit
|
||||
*/
|
||||
int main() {
|
||||
tests();
|
||||
|
||||
uint32_t N = 100;
|
||||
std::vector<bool> is_prime = sieve(N);
|
||||
print(N, is_prime);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user