diff --git a/numerical_methods/midpoint_integral_method.cpp b/numerical_methods/midpoint_integral_method.cpp index 2298526c5..02776645f 100644 --- a/numerical_methods/midpoint_integral_method.cpp +++ b/numerical_methods/midpoint_integral_method.cpp @@ -1,26 +1,32 @@ /*! * @file - * \brief A numerical method for easy [approximation of integrals](https://en.wikipedia.org/wiki/Midpoint_method) - * \details The idea is to split the interval into N of intervals and use as interpolation points the xi - * for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the - * first and last points of the interval of the integration [a, b]. + * \brief A numerical method for easy [approximation of + * integrals](https://en.wikipedia.org/wiki/Midpoint_method) \details The idea + * is to split the interval into N of intervals and use as interpolation points + * the xi for which it applies that xi = x0 + i*h, where h is a step defined as + * h = (b-a)/N where a and b are the first and last points of the interval of + * the integration [a, b]. * - * We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula: - * I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} + * We create a table of the xi and their corresponding f(xi) values and we + * evaluate the integral by the formula: I = h * {f(x0+h/2) + f(x1+h/2) + ... + + * f(xN-1+h/2)} * - * Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b. - * In this case if the default values N=16, a=1, b=3 are changed then the tests/assert are disabled. + * Arguments can be passed as parameters from the command line argv[1] = N, + * argv[2] = a, argv[3] = b. In this case if the default values N=16, a=1, b=3 + * are changed then the tests/assert are disabled. * * More info: [Link to wikipedia](https://en.wikipedia.org/wiki/Midpoint_method) * * @author [ggkogkou](https://github.com/ggkogkou) -*/ -#include /// for IO operations -#include /// for math functions -#include /// for assert + */ +#include /// for assert +#include /// for math functions #include /// for std::atof -#include /// for std::function -#include /// for std::map container +#include /// for std::function +#include /// for IO operations +#include /// for std::map container + +#include "math.h" /** * @namespace numerical_methods @@ -30,68 +36,64 @@ namespace numerical_methods { /** * @namespace midpoint_rule * \brief Contains the function of the midpoint method implementation -*/ - namespace midpoint_rule { - /*! - * @fn double midpoint(const int N, const double h, const double a, const std::function& func) - * \brief Implement midpoint method - * @param N is the number of intervals - * @param h is the step - * @param a is x0 - * @param func is the function that will be integrated - * @returns the result of the integration - */ - double midpoint(const int N, const double h, const double a, const std::function &func) { - std::map data_table; // Contains the data points, key: i, value: f(xi) - double xi = a; // Initialize xi to the starting point x0 = a + */ +namespace midpoint_rule { +/*! + * @fn double midpoint(const int N, const double h, const double a, const + * std::function& func) \brief Implement midpoint method + * @param N is the number of intervals + * @param h is the step + * @param a is x0 + * @param func is the function that will be integrated + * @returns the result of the integration + */ +double midpoint(const int N, const double h, const double a, + const std::function& func) { + std::map + data_table; // Contains the data points, key: i, value: f(xi) + double xi = a; // Initialize xi to the starting point x0 = a - // Create the data table - // Loop from x0 to xN-1 - double temp; - for (int i = 0; i < N; i++) { - temp = func(xi + h / 2); // find f(xi+h/2) - data_table.insert(std::pair(i, temp)); // add i and f(xi) - xi += h; // Get the next point xi for the next iteration - } + // Create the data table + // Loop from x0 to xN-1 + double temp = NAN; + for (int i = 0; i < N; i++) { + temp = func(xi + h / 2); // find f(xi+h/2) + data_table.insert(std::pair(i, temp)); // add i and f(xi) + xi += h; // Get the next point xi for the next iteration + } - // Evaluate the integral. - // Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} - double evaluate_integral = 0; - for (int i = 0; i < N; i++) evaluate_integral += data_table.at(i); + // Evaluate the integral. + // Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} + double evaluate_integral = 0; + for (int i = 0; i < N; i++) evaluate_integral += data_table.at(i); - // Multiply by the coefficient h - evaluate_integral *= h; + // Multiply by the coefficient h + evaluate_integral *= h; - // If the result calculated is nan, then the user has given wrong input interval. - assert(!std::isnan(evaluate_integral) && - "The definite integral can't be evaluated. Check the validity of your input.\n"); - // Else return - return evaluate_integral; - } + // If the result calculated is nan, then the user has given wrong input + // interval. + assert(!std::isnan(evaluate_integral) && + "The definite integral can't be evaluated. Check the validity of " + "your input.\n"); + // Else return + return evaluate_integral; +} - } // namespace midpoint_rule -} // namespace numerical_methods +} // namespace midpoint_rule +} // namespace numerical_methods /** * \brief A function f(x) that will be used to test the method * @param x The independent variable xi * @returns the value of the dependent variable yi = f(xi) -*/ -double f(double x){ - return std::sqrt(x) + std::log(x); -} + */ +double f(double x) { return std::sqrt(x) + std::log(x); } /** @brief Another test function */ -double g(double x){ - return std::exp(-x) * (4 - std::pow(x, 2)); -} +double g(double x) { return std::exp(-x) * (4 - std::pow(x, 2)); } /** @brief Another test function */ -double k(double x){ - return std::sqrt(2*std::pow(x, 3)+3); -} +double k(double x) { return std::sqrt(2 * std::pow(x, 3) + 3); } /** @brief Another test function */ -double l(double x){ - return x + std::log(2*x+1); -} +double l(double x) { return x + std::log(2 * x + 1); } /** * \brief Self-test implementations @@ -99,55 +101,72 @@ double l(double x){ * @param h is the step * @param a is x0 * @param b is the end of the interval - * @param used_argv_parameters is 'true' if argv parameters are given and 'false' if not -*/ -static void test(int N, double h, double a,double b, bool used_argv_parameters){ + * @param used_argv_parameters is 'true' if argv parameters are given and + * 'false' if not + */ +static void test(int N, double h, double a, double b, + bool used_argv_parameters) { // Call midpoint() for each of the test functions f, g, k, l // Assert with two decimal point precision double result_f = numerical_methods::midpoint_rule::midpoint(N, h, a, f); - assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong"); - std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl; + assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && + "The result of f(x) is wrong"); + std::cout << "The result of integral f(x) on interval [" << a << ", " << b + << "] is equal to: " << result_f << std::endl; double result_g = numerical_methods::midpoint_rule::midpoint(N, h, a, g); - assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong"); - std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl; + assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && + "The result of g(x) is wrong"); + std::cout << "The result of integral g(x) on interval [" << a << ", " << b + << "] is equal to: " << result_g << std::endl; double result_k = numerical_methods::midpoint_rule::midpoint(N, h, a, k); - assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong"); - std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl; + assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && + "The result of k(x) is wrong"); + std::cout << "The result of integral k(x) on interval [" << a << ", " << b + << "] is equal to: " << result_k << std::endl; double result_l = numerical_methods::midpoint_rule::midpoint(N, h, a, l); - assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong"); - std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl; - + assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && + "The result of l(x) is wrong"); + std::cout << "The result of integral l(x) on interval [" << a << ", " << b + << "] is equal to: " << result_l << std::endl; } /** main function */ -int main(int argc, char** argv){ - int N = 16; /// Number of intervals to divide the integration interval. MUST BE EVEN - double a = 1, b = 3; /// Starting and ending point of the integration in the real axis - double h; /// Step, calculated by a, b and N +int main(int argc, char** argv) { + int N = 16; /// Number of intervals to divide the integration interval. + /// MUST BE EVEN + double a = 1, b = 3; /// Starting and ending point of the integration in + /// the real axis + double h = NAN; /// Step, calculated by a, b and N - bool used_argv_parameters = false; // If argv parameters are used then the assert must be omitted for the tst cases + bool used_argv_parameters = + false; // If argv parameters are used then the assert must be omitted + // for the tst cases - // Get user input (by the command line parameters or the console after displaying messages) - if(argc == 4){ + // Get user input (by the command line parameters or the console after + // displaying messages) + if (argc == 4) { N = std::atoi(argv[1]); - a = (double) std::atof(argv[2]); - b = (double) std::atof(argv[3]); + a = std::atof(argv[2]); + b = std::atof(argv[3]); // Check if a 0 && "N has to be > 0"); - if(N<4 || a!=1 || b!=3) used_argv_parameters = true; - std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b << std::endl; + if (N < 4 || a != 1 || b != 3) + used_argv_parameters = true; + std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b + << std::endl; + } else { + std::cout << "Default N=" << N << ", a=" << a << ", b=" << b + << std::endl; } - else - std::cout << "Default N=" << N << ", a=" << a << ", b=" << b << std::endl; // Find the step - h = (b-a)/N; + h = (b - a) / N; - test(N, h, a, b, used_argv_parameters); /// run self-test implementations + test(N, h, a, b, used_argv_parameters); /// run self-test implementations return 0; }