diff --git a/search/exponential_search.cpp b/search/exponential_search.cpp index 0684bc602..e140d9df6 100644 --- a/search/exponential_search.cpp +++ b/search/exponential_search.cpp @@ -1,6 +1,47 @@ -// copyright 2020 divide-et-impera-11 +// Copyright 2020 Divide-et-Impera-11 +#include #include #include +using namespaces std; +// Binary Search Algorithm(use by struziki algorithm) +// Time Complexity O(log n) where 'n' is the number of elements +// Worst Time Complexity O(log n) +// Best Time Complexity Ω(1) +// Space Complexity O(1) +// Auxiliary Space Complexity O(1) +template inline Type* binary_s(Type *array, size_t size, Type key) { +int32_t lower_index(0), upper_index(size - 1), middle_index; +while (lower_index <= upper_index) { + middle_index = floor((lower_index + upper_index) / 2); + if (*(array + middle_index) < key) lower_index = (middle_index + 1); + else if (*(array + middle_index) > key)upper_index = (middle_index - 1); + else return (array + middle_index); + } +return nullptr; +} +// Struzik Search Algorithm(Exponential) +// Time Complexity O(log i)where i is the position of search key in the list +// Worst Time Complexity O(log i) +// Best Time Complexity Ω(1) +// Space Complexity O(1) +// Auxiliary Space Complexity O(1) +template Type* struzik_search(Type* array, size_t size, Type key) { + uint32_t block_front(0), block_size = size == 0 ? 0 : 1; + while (block_front != block_size) { + if (*(array + block_size - 1) < key) { + block_front = block_size; + (block_size * 2 - 1 < size) ? (block_size *= 2) : block_size = size; + continue; + } + return binary_s(array + block_front, (block_size - block_front), key); + } +return nullptr; +} int main() { +int *sorted_array = new int[7]{7, 10, 15, 23, 70, 105, 203}; +assert(struzik_search(sorted_array, 7, 0) == nullptr); +assert(struzik_search(sorted_array, 7, 1000) == nullptr); +assert(struzik_search(sorted_array, 7, 50) == nullptr); +assert(struzik_search(sorted_array, 7, 7) == sorted_array); return 0; }