/**
* @file
* @brief Prime Numbers using [Sieve of
* Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
* @details
* Sieve of Eratosthenes is an algorithm that finds all the primes
* between 2 and N.
*
* Time Complexity : \f$O(N \cdot\log \log N)\f$
*
Space Complexity : \f$O(N)\f$
*
* @see primes_up_to_billion.cpp prime_numbers.cpp
*/
#include
#include /// for assert
#include /// for IO operations
#include /// for std::vector
/**
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @namespace sieve_of_eratosthenes
* @brief Functions for finding Prime Numbers using Sieve of Eratosthenes
*/
namespace sieve_of_eratosthenes {
/**
* @brief Function to sieve out the primes
* @details
* This function finds all the primes between 2 and N using the Sieve of
* Eratosthenes algorithm. It starts by assuming all numbers (except zero and
* one) are prime and then iteratively marks the multiples of each prime as
* non-prime.
*
* Contains a common optimization to start eliminating multiples of
* a prime p starting from p * p since all of the lower multiples
* have been already eliminated.
* @param N number till which primes are to be found
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is
* a prime or not
*/
std::vector sieve(uint32_t N) {
std::vector is_prime(N + 1, true); // Initialize all as prime numbers
is_prime[0] = is_prime[1] = false; // 0 and 1 are not prime numbers
for (uint32_t i = 2; i * i <= N; i++) {
if (is_prime[i]) {
for (uint32_t j = i * i; j <= N; j += i) {
is_prime[j] = false;
}
}
}
return is_prime;
}
/**
* @brief Function to print the prime numbers
* @param N number till which primes are to be found
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is
* a prime or not
*/
void print(uint32_t N, const std::vector &is_prime) {
for (uint32_t i = 2; i <= N; i++) {
if (is_prime[i]) {
std::cout << i << ' ';
}
}
std::cout << std::endl;
}
} // namespace sieve_of_eratosthenes
} // namespace math
/**
* @brief Self-test implementations
* @return void
*/
static void tests() {
std::vector is_prime_1 =
math::sieve_of_eratosthenes::sieve(static_cast(10));
std::vector is_prime_2 =
math::sieve_of_eratosthenes::sieve(static_cast(20));
std::vector is_prime_3 =
math::sieve_of_eratosthenes::sieve(static_cast(100));
std::vector expected_1{false, false, true, true, false, true,
false, true, false, false, false};
assert(is_prime_1 == expected_1);
std::vector expected_2{false, false, true, true, false, true,
false, true, false, false, false, true,
false, true, false, false, false, true,
false, true, false};
assert(is_prime_2 == expected_2);
std::vector expected_3{
false, false, true, true, false, true, false, true, false, false,
false, true, false, true, false, false, false, true, false, true,
false, false, false, true, false, false, false, false, false, true,
false, true, false, false, false, false, false, true, false, false,
false, true, false, true, false, false, false, true, false, false,
false, false, false, true, false, false, false, false, false, true,
false, true, false, false, false, false, false, true, false, false,
false, true, false, true, false, false, false, false, false, true,
false, false, false, true, false, false, false, false, false, true,
false, false, false, false, false, false, false, true, false, false,
false};
assert(is_prime_3 == expected_3);
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
tests();
return 0;
}