/** * @author [Jason Nardoni](https://github.com/JNardoni) * @file * * @brief * [Borůvkas Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) to *find the Minimum Spanning Tree * * * @details * Boruvka's algorithm is a greepy algorithm to find the MST by starting with *small trees, and combining them to build bigger ones. * 1. Creates a group for every vertex. * 2. looks through each edge of every vertex for the smallest weight. Keeps *track of the smallest edge for each of the current groups. * 3. Combine each group with the group it shares its smallest edge, adding the *smallest edge to the MST. * 4. Repeat step 2-3 until all vertices are combined into a single group. * * It assumes that the graph is connected. Non-connected edges can be *represented using 0 or INT_MAX * */ #include /// for assert #include /// for INT_MAX #include /// for IO operations #include /// for std::vector /** * @namespace greedy_algorithms * @brief Greedy Algorithms */ namespace greedy_algorithms { /** * @namespace boruvkas_minimum_spanning_tree * @brief Functions for the [Borůvkas * Algorithm](https://en.wikipedia.org/wiki/Borůvka's_algorithm) implementation */ namespace boruvkas_minimum_spanning_tree { /** * @brief Recursively returns the vertex's parent at the root of the tree * @param parent the array that will be checked * @param v vertex to find parent of * @returns the parent of the vertex */ int findParent(std::vector> parent, const int v) { if (parent[v].first != v) { parent[v].first = findParent(parent, parent[v].first); } return parent[v].first; } /** * @brief the implementation of boruvka's algorithm * @param adj a graph adjancency matrix stored as 2d vectors. * @returns the MST as 2d vectors */ std::vector> boruvkas(std::vector> adj) { size_t size = adj.size(); size_t total_groups = size; if (size <= 1) { return adj; } // Stores the current Minimum Spanning Tree. As groups are combined, they // are added to the MST std::vector> MST(size, std::vector(size, INT_MAX)); for (int i = 0; i < size; i++) { MST[i][i] = 0; } // Step 1: Create a group for each vertex // Stores the parent of the vertex and its current depth, both initialized // to 0 std::vector> parent(size, std::make_pair(0, 0)); for (int i = 0; i < size; i++) { parent[i].first = i; // Sets parent of each vertex to itself, depth remains 0 } // Repeat until all are in a single group while (total_groups > 1) { std::vector> smallest_edge( size, std::make_pair(-1, -1)); // Pairing: start node, end node // Step 2: Look throught each vertex for its smallest edge, only using // the right half of the adj matrix for (int i = 0; i < size; i++) { for (int j = i + 1; j < size; j++) { if (adj[i][j] == INT_MAX || adj[i][j] == 0) { // No connection continue; } // Finds the parents of the start and end points to make sure // they arent in the same group int parentA = findParent(parent, i); int parentB = findParent(parent, j); if (parentA != parentB) { // Grabs the start and end points for the first groups // current smallest edge int start = smallest_edge[parentA].first; int end = smallest_edge[parentA].second; // If there is no current smallest edge, or the new edge is // smaller, records the new smallest if (start == -1 || adj[i][j] < adj[start][end]) { smallest_edge[parentA].first = i; smallest_edge[parentA].second = j; } // Does the same for the second group start = smallest_edge[parentB].first; end = smallest_edge[parentB].second; if (start == -1 || adj[j][i] < adj[start][end]) { smallest_edge[parentB].first = j; smallest_edge[parentB].second = i; } } } } // Step 3: Combine the groups based off their smallest edge for (int i = 0; i < size; i++) { // Makes sure the smallest edge exists if (smallest_edge[i].first != -1) { // Start and end points for the groups smallest edge int start = smallest_edge[i].first; int end = smallest_edge[i].second; // Parents of the two groups - A is always itself int parentA = i; int parentB = findParent(parent, end); // Makes sure the two nodes dont share the same parent. Would // happen if the two groups have been // merged previously through a common shortest edge if (parentA == parentB) { continue; } // Tries to balance the trees as much as possible as they are // merged. The parent of the shallower // tree will be pointed to the parent of the deeper tree. if (parent[parentA].second < parent[parentB].second) { parent[parentB].first = parentA; // New parent parent[parentB].second++; // Increase depth } else { parent[parentA].first = parentB; parent[parentA].second++; } // Add the connection to the MST, using both halves of the adj // matrix MST[start][end] = adj[start][end]; MST[end][start] = adj[end][start]; total_groups--; // one fewer group } } } return MST; } /** * @brief counts the sum of edges in the given tree * @param adj 2D vector adjacency matrix * @returns the int size of the tree */ int test_findGraphSum(std::vector> adj) { size_t size = adj.size(); int sum = 0; // Moves through one side of the adj matrix, counting the sums of each edge for (int i = 0; i < size; i++) { for (int j = i + 1; j < size; j++) { if (adj[i][j] < INT_MAX) { sum += adj[i][j]; } } } return sum; } } // namespace boruvkas_minimum_spanning_tree } // namespace greedy_algorithms /** * @brief Self-test implementations * @returns void */ static void tests() { std::cout << "Starting tests...\n\n"; std::vector> graph = { {0, 5, INT_MAX, 3, INT_MAX}, {5, 0, 2, INT_MAX, 5}, {INT_MAX, 2, 0, INT_MAX, 3}, {3, INT_MAX, INT_MAX, 0, INT_MAX}, {INT_MAX, 5, 3, INT_MAX, 0}, }; std::vector> MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph); assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum( MST) == 13); std::cout << "1st test passed!" << std::endl; graph = {{0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0}}; MST = greedy_algorithms::boruvkas_minimum_spanning_tree::boruvkas(graph); assert(greedy_algorithms::boruvkas_minimum_spanning_tree::test_findGraphSum( MST) == 16); std::cout << "2nd test passed!" << std::endl; } /** * @brief Main function * @returns 0 on exit */ int main() { tests(); // run self-test implementations return 0; }