/** * * @file * @brief Implementation of Sparse Table * * @author [Mann Patel](https://github.com/manncodes) * * @details * Sparse Table is a data structure, that allows answering range queries. * It can answer most range queries in O(logn), but its true power is answering * range minimum queries (or equivalent range maximum queries). For those * queries it can compute the answer in O(1) time. The only drawback of this * data structure is, that it can only be used on immutable arrays. This means, * that the array cannot be changed between two queries. * * If any element in the array changes, the complete data structure has to be * recomputed. * * @warning this sparse table is made for min(a1,a2,...an) duplicate invariant * function. This implementation can be changed to other functions like * gcd(),lcm(),max() by changing few lines of code. */ /** * @namespace data_structures * @brief Data Structures algorithms */ namespace data_structures { /** * @namespace sparse_table * @brief Implementation of Sparse Table for function : min() * */ namespace sparse_table { /** * @brief A struct to represent sparse table * */ struct Sparse_table { // N : the maximum size of the array. // M : ceil(log2(N)). const static int N = 12345, M = 14; // The array to compute its sparse table. int n; std::array a; // // Sparse table related variables. // // ST[j][i] : the sparse table value (min, max, ...etc) in the interval [i, // i + (2^j) - 1]. LOG[i] : floor(log2(i)). std::array, M> ST; std::array LOG; /** * * Builds the sparse table for computing min/max/gcd/lcm/...etc * for any contiguous sub-segment of the array. * * This is an example of computing the index of the minimum value. * * Complexity: O(n.log(n)) */ void buildST() { LOG[0] = -1; for (int i = 0; i < n; ++i) { ST[0][i] = i; LOG[i + 1] = LOG[i] + !(i & (i + 1)); } for (int j = 1; (1 << j) <= n; ++j) { for (int i = 0; (i + (1 << j)) <= n; ++i) { int x = ST[j - 1][i]; int y = ST[j - 1][i + (1 << (j - 1))]; ST[j][i] = (a[x] <= a[y] ? x : y); } } } /** * Queries the sparse table for the value of the interval [l, r] * (i.e. from l to r inclusive). * * Complexity: O(1) * * @param l the left index of the range (inclusive). * @param r the right index of the range (inclusive). * * @return the computed value of the given interval. */ int query(int l, int r) { int g = LOG[r - l + 1]; int x = ST[g][l]; int y = ST[g][r - (1 << g) + 1]; return (a[x] <= a[y] ? x : y); } }; } // namespace sparse_table } // namespace data_structures /** * @brief testcase for sparse_table */ static void test() { std::array testcase = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; int testcase_size = sizeof(testcase) / sizeof(testcase[0]); data_structures::sparse_table::Sparse_table st{}; // copying testcase to the struct std::copy(std::begin(testcase), std::end(testcase), std::begin(st.a)); st.n = testcase_size; // precomputing sparse tree st.buildST(); // pass queries of form [l,r] assert(st.query(1, 9) == 1); // as 1 is smallest from 1..9 assert(st.query(2, 6) == 2); // as 2 is smallest from 2..6 assert(st.query(3, 8) == 3); // as 3 is smallest from 3..8 std::cout << "Testcase passed!" << std::endl; } /** * @brief Main function * @param argc commandline argument count (ignored) * @param argv commandline array of arguments (ignored) * @returns 0 on exit */ int main(int argc, char *argv[]) { test(); // execute the tests return 0; }