/** * @file duval.cpp * @brief Implementation of [Duval's algorithm](https://en.wikipedia.org/wiki/Lyndon_word). * * @details * Duval's algorithm is an algorithm to find the lexicographically smallest * rotation of a string. It is based on the concept of Lyndon words. * Lyndon words are defined as the lexicographically smallest string in a * rotation equivalence class. A rotation equivalence class is a set of strings * that can be obtained by rotating a string. For example, the rotation * equivalence class of "abc" is {"abc", "bca", "cab"}. The lexicographically * smallest string in this class is "abc". * * Duval's algorithm works by iterating over the string and finding the * smallest rotation of the string that is a Lyndon word. This is done by * comparing the string with its suffixes and finding the smallest suffix that * is lexicographically smaller than the string. This suffix is then added to * the result and the process is repeated with the remaining string. * The algorithm has a time complexity of O(n) where n is the length of the * string. * * @note While Lyndon words are described in the context of strings, * Duval's algorithm can be used to find the lexicographically smallest cyclic * shift of any sequence of comparable elements. * * @author [Amine Ghoussaini](https://github.com/aminegh20) */ #include /// for std::array #include /// for assert #include /// for std::size_t #include /// for std::deque #include /// for std::cout and std::endl #include /// for std::string #include /// for std::vector /** * @brief string manipulation algorithms * @namespace */ namespace string { /** * @brief Find the lexicographically smallest cyclic shift of a sequence. * @tparam T type of the sequence * @param s the sequence * @returns the 0-indexed position of the least cyclic shift of the sequence */ template size_t duval(const T& s) { size_t n = s.size(); size_t i = 0, ans = 0; while (i < n) { ans = i; size_t j = i + 1, k = i; while (j < (n + n) && s[j % n] >= s[k % n]) { if (s[k % n] < s[j % n]) { k = i; } else { k++; } j++; } while (i <= k) { i += j - k; } } return ans; // returns 0-indexed position of the least cyclic shift } } // namespace string /** * @brief self test implementation * returns void */ static void test() { using namespace string; // Test 1 std::string s1 = "abcab"; assert(duval(s1) == 3); // Test 2 std::string s2 = "011100"; assert(duval(s2) == 4); // Test 3 std::vector v = {5, 2, 1, 3, 4}; assert(duval(v) == 2); // Test 4 std::array a = {1, 2, 3, 4, 5}; assert(duval(a) == 0); // Test 5 std::deque d = {'a', 'z', 'c', 'a', 'b'}; assert(duval(d) == 3); // Test 6 std::string s3; assert(duval(s3) == 0); // Test 7 std::vector v2 = {5, 2, 1, 3, -4}; assert(duval(v2) == 4); std::cout << "All tests passed!" << std::endl; } /** * @brief main function * @returns 0 on exit */ int main() { test(); // run self test implementations return 0; }