#include #include #include #include #include #include /*! * @title Calculate definite integrals with midpoint method * @see https://en.wikipedia.org/wiki/Midpoint_method * @brief A numerical method for easy approximation of integrals * @details The idea is to split the interval into N of intervals and use as interpolation points the xi * for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the * first and last points of the interval of the integration [a, b]. * * We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula: * I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} * * In this program there are 4 sample test functions f, g, k, l that are evaluated in the same interval [1, 3. * * Arguments can be passed as parameters from the command line argv[1] = N, argv[2] = a, argv[3] = b. * In this case if the default values N=16, a=1, b=3 are changed then the tests/assert are disabled. * * In the end of the main() and if and only if N, a, b are on their default values, * i compare the program's result with the one from mathematical software with 2 decimal points margin. * * Add your own sample function by replacing one of the f, g, k, l and the corresponding assert * * @author ggkogkou */ /** * @namespace midpoint_rule * @brief Contains the function of the midpoint method implementation */ namespace midpoint_rule{ /*! * @fn double midpoint(const int N, const double h, const double a, const std::function& func) * @brief Implement midpoint method * @param N number of intervals * @param h step * @param a x0 * @param func The function that will be evaluated * @returns the result of the integration */ double midpoint(const int N, const double h, const double a, const std::function& func){ std::map data_table; /// Contains the data points, key: i, value: f(xi) double xi = a; /// Initialize xi to the starting point x0 = a // Create the data table /// Loop from x0 to xN-1 double temp; for(int i=0; i(i, temp)); /// add i and f(xi) xi += h; /// Get the next point xi for the next iteration } /// Evaluate the integral. // Remember: {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)} double evaluate_integral = 0; for(int i=0; i 0 && "N has to be > 0"); if(N<4 || a!=1 || b!=3) used_argv_parameters = true; std::cout << "You selected N=" << N << ", a=" << a << ", b=" << b << std::endl; } else std::cout << "Default N=" << N << ", a=" << a << ", b=" << b << std::endl; // Find the step h = (b-a)/N; // Call midpoint() for each of the test functions f, g, k, l // Assert with two decimal point precision double result_f = midpoint_rule::midpoint(N, h, a, f); assert((used_argv_parameters || (result_f >= 4.09 && result_f <= 4.10)) && "The result of f(x) is wrong"); std::cout << "The result of integral f(x) on interval [" << a << ", " << b << "] is equal to: " << result_f << std::endl; double result_g = midpoint_rule::midpoint(N, h, a, g); assert((used_argv_parameters || (result_g >= 0.27 && result_g <= 0.28)) && "The result of g(x) is wrong"); std::cout << "The result of integral g(x) on interval [" << a << ", " << b << "] is equal to: " << result_g << std::endl; double result_k = midpoint_rule::midpoint(N, h, a, k); assert((used_argv_parameters || (result_k >= 9.06 && result_k <= 9.07)) && "The result of k(x) is wrong"); std::cout << "The result of integral k(x) on interval [" << a << ", " << b << "] is equal to: " << result_k << std::endl; double result_l = midpoint_rule::midpoint(N, h, a, l); assert((used_argv_parameters || (result_l >= 7.16 && result_l <= 7.17)) && "The result of l(x) is wrong"); std::cout << "The result of integral l(x) on interval [" << a << ", " << b << "] is equal to: " << result_l << std::endl; return 0; } double f(double x){ return std::sqrt(x) + std::log(x); } double g(double x){ return std::exp(-x) * (4 - std::pow(x, 2)); } double k(double x){ return std::sqrt(2*std::pow(x, 3)+3); } double l(double x){ return x + std::log(2*x+1); }