/** * @file * @brief Algorithm to find largest x such that p^x divides n! (factorial) using * Legendre's Formula. * @details Given an integer n and a prime number p, the task is to find the * largest x such that p^x (p raised to power x) divides n! (factorial). This * will be done using Legendre's formula: x = [n/(p^1)] + [n/(p^2)] + [n/(p^3)] * + \ldots + 1 * @see more on * https://math.stackexchange.com/questions/141196/highest-power-of-a-prime-p-dividing-n * @author [uday6670](https://github.com/uday6670) */ #include /// for assert #include /// for integral typedefs #include /// for std::cin and std::cout /** * @namespace math * @brief Mathematical algorithms */ namespace math { /** * @brief Function to calculate largest power * @param n number * @param p prime number * @returns largest power */ uint64_t largestPower(uint32_t n, const uint16_t& p) { // Initialize result int x = 0; // Calculate result while (n) { n /= p; x += n; } return x; } } // namespace math /** * @brief Function for testing largestPower function. * test cases and assert statement. * @returns `void` */ static void test() { uint8_t test_case_1 = math::largestPower(5, 2); assert(test_case_1 == 3); std::cout << "Test 1 Passed!" << std::endl; uint16_t test_case_2 = math::largestPower(10, 3); assert(test_case_2 == 4); std::cout << "Test 2 Passed!" << std::endl; uint32_t test_case_3 = math::largestPower(25, 5); assert(test_case_3 == 6); std::cout << "Test 3 Passed!" << std::endl; uint32_t test_case_4 = math::largestPower(27, 2); assert(test_case_4 == 23); std::cout << "Test 4 Passed!" << std::endl; uint16_t test_case_5 = math::largestPower(7, 3); assert(test_case_5 == 2); std::cout << "Test 5 Passed!" << std::endl; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // execute the tests return 0; }